WO2015182647A1 - 抗菌水 - Google Patents

抗菌水 Download PDF

Info

Publication number
WO2015182647A1
WO2015182647A1 PCT/JP2015/065218 JP2015065218W WO2015182647A1 WO 2015182647 A1 WO2015182647 A1 WO 2015182647A1 JP 2015065218 W JP2015065218 W JP 2015065218W WO 2015182647 A1 WO2015182647 A1 WO 2015182647A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanobubbles
water
nanobubble water
nanobubble
present
Prior art date
Application number
PCT/JP2015/065218
Other languages
English (en)
French (fr)
Inventor
直之 村田
次一 荒井
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Priority to US15/314,187 priority Critical patent/US10556256B2/en
Priority to JP2016523531A priority patent/JP6913458B2/ja
Priority to EP15799779.2A priority patent/EP3150559A4/en
Publication of WO2015182647A1 publication Critical patent/WO2015182647A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/012Deodorant compositions characterised by being in a special form, e.g. gels, emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to high-density nanobubble water, a method for producing high-density nanobubble water, a method for maintaining high-density nanobubbles for a long period of time, and nanobubble water having antibacterial action. More specifically, the present invention relates to nanobubble water whose antibacterial action is enhanced by increasing the number of nanobubbles, a method for increasing the number of nanobubbles in nanobubble water, and the like.
  • Nanobubble water is currently used in semiconductor cleaning processes and crop growth promotion. Until now, nanobubbles could only be produced at low density, and it was difficult to maintain nanobubbles in water for a long period of time. Therefore, the use of nanobubble water has been limited to cases where nanobubbles need to exist for a short period of time, such as use during instrument cleaning. Injections such as vaccine preparations are roughly classified into two types, single dose type and multiple dose type. In a single-dose injection, only a single dose of a drug solution such as a sterilized vaccine solution is individually sealed in a vial in order to prevent contamination due to bacterial contamination.
  • a drug solution such as a sterilized vaccine solution
  • Patent Document 1 discloses that a composition containing ultrafine bubbles and a drug develops the effect of the drug better, and when the drug is dispersed in an aqueous solution of ultrafine bubbles, without using a surfactant. It is described that a stable dispersion can be obtained.
  • Example 1 describes 4.0-8.0 ⁇ 10 6 ultrafine water bubbles / mL.
  • FIG. 4 shows that ultrafine bubbles exist stably for 300 hours.
  • the antibacterial action of ultrafine bubble water containing ultrafine bubbles of 2.0 ⁇ 10 8 / mL or more and ultrafine bubble water itself is not described.
  • Nanobubble water is produced using a nanobubble generator (nanoGALF TM ) under conditions of 4.0 L of distilled water, a flow rate of bubble water of 4.0 L / min, a dissolution pressure of 0.3 MPa, and 30 minutes.
  • nanobubble generator nanoGALF TM
  • LM20 NanoSight
  • the nanobubble water is stably maintained at 1.0 ⁇ 10 8 / mL nanobubbles in water for about 3 days immediately after production, but if the number of nanobubbles is measured after storage for 4 months, It is described that it will disappear.
  • an object of the present invention is to provide a technique for stably storing a liquid pharmaceutical preparation (for example, an injection) without using a preservative that is concerned about potential side effects such as thimerosal.
  • Another object of the present invention is to provide nanobubble water having a higher density than the nanobubble water obtained by the conventional generation technology in order to expand the use and application fields of nanobubble water.
  • Another object of the present invention is to provide a method for maintaining high-density nanobubbles for a long period of time in order to maintain the effect of nanobubble water for a long period of time.
  • the inventors of the present application have dramatically increased the number of nanobubbles by adding a surfactant, a hydrophilic resin, an electrolyte, and the like during the preparation of nanobubble water. It was found that the density was generated. In addition, the inventors have found that the number of nanobubbles of nanobubble water prepared in the presence of a surfactant, a hydrophilic resin, an electrolyte and the like is maintained over a long period of time. In addition, nanobubble water prepared in the presence of surfactants, hydrophilic resins, electrolytes, etc.
  • the present invention [1] Nanobubble water containing 2.0 ⁇ 10 8 / mL or more nanobubbles; [2] Nanobubble water according to the above [1], which has an antibacterial action; [3] Nanobubble water according to the above [1], which is produced in the presence of a surfactant, a hydrophilic resin and / or an electrolyte; [4] Nanobubble water according to the above [1], which is produced in the presence of polysorbate 80 and / or polyvinyl alcohol; [5] A method for increasing the number of nanobubbles in nanobubble water to 2.0 ⁇ 10 8 / mL or more, which comprises producing nanobubble water in the presence of a surfactant, a hydrophilic resin and / or an electrolyte; [6] The method according to [5] above, wherein the nanobubble water is produced in the presence of polysorbate 80 and / or polyvinyl alcohol; [7] A method of maintaining the number of nanobubbles in nanobubble water
  • Nanobubble water with an increased number of nanobubbles of the present invention that is, high-density nanobubble water, exhibits excellent antibacterial action and storage efficiency thereby, and is a multi-dose liquid pharmaceutical preparation that is repeatedly used from the same container for a certain period of time. It is useful as a base for (for example, injection).
  • nanobubble water with an increased number of nanobubbles of the present invention is used as a base of a liquid pharmaceutical preparation, there is no need to separately contain an inorganic or organic compound as a preservative, so there is less concern about side effects, and high-density nanobubbles are long-lasting. Therefore, it is possible to provide a preparation that can be stably stored and is extremely useful.
  • the nanobubble water with an increased number of nanobubbles of the present invention is utilized in various fields such as enhancement of detergency by enhancing various effects of nanobubble water itself.
  • enhancement of detergency by enhancing various effects of nanobubble water itself.
  • FIG. 1 It is a graph which shows the result of the preservation
  • - ⁇ - shows the result of water for injection
  • - ⁇ - shows the result of nanobubble water containing polysorbate 80
  • - ⁇ - shows the result of nanobubble water containing polyvinyl alcohol.
  • nanobubble water of the present invention contains 2.0 ⁇ 10 8 nanobubbles / mL or more nanobubbles.
  • nano bubble water means water in which gas particles (nano bubbles) having a diameter of 1000 nm or less exist stably.
  • the diameter of nanobubbles is preferably 800 nm or less, and more preferably 500 nm or less.
  • nanobubble diameter is 1 nm or more, Preferably it is 5 nm or more, More preferably, it is 10 nm or more.
  • the average diameter of the nanobubbles can be appropriately set in the range of 500 nm or less, preferably in the range of 1 to 500 nm, preferably in the range of 5 to 300 nm, more preferably in the range of 10 to 150 nm.
  • the average diameter means a particle diameter (mode diameter) corresponding to the mode of distribution (maximum value of volume% or number%).
  • the size of the nanobubbles is preferably uniform, and the d90 / d10 ratio is 5 or less when the nanobubble diameters corresponding to 10% cumulative and 90% cumulative from the small diameter side of the nanobubble diameter distribution are d10 and d90, respectively. Is preferably 4.5 or less.
  • the number of nanobubbles contained in the nanobubble water of the present invention means the number of nanobubbles present in 1 mL of nanobubble water, and may be referred to as “nanobubble density” in the present specification.
  • the nanobubble water of the present invention is characterized in that the number of contained nanobubbles is 2.0 ⁇ 10 8 / mL or more, and thereby excellent action effects (for example, antibacterial action, preservation effect action, detergency, crop growth) Promoting effect).
  • the number of nanobubbles is preferably 2.0 ⁇ 10 8 / mL or more, and more preferably 2.5 ⁇ 10 8 / mL or more.
  • the upper limit of the number of nanobubbles is not particularly limited, but may be 2.0 ⁇ 10 9 cells / mL or less, preferably 1.0 ⁇ 10 9 cells / mL or less.
  • the nanobubble diameter, its distribution, and the number of nanobubbles are determined by a method using laser light scattering based on Brownian motion (eg, Nanosite, LM20, LM10, etc.), a method based on a change in electrical resistance (eg, Beckman Coulter, Measurement using a method based on a laser diffraction scattering method (eg, Shimadzu Corporation, SALD-7100H), a method using Mie scattering (eg, Nippon Denshoku Industries Co., Ltd., NP-500T, etc.), etc.
  • a method using laser light scattering based on Brownian motion eg, Nanosite, LM20, LM10, etc.
  • a method based on a change in electrical resistance eg, Beckman Coulter, Measurement using a method based on a laser diffraction scattering method (eg, Shimadzu Corporation, SALD-7100H)
  • Mie scattering eg, Nippon Denshoku Industries
  • the nanobubble diameter and distribution of the nanobubble water or nanobubble aqueous solution used in the present invention were measured using a tracking method (tracking method) using laser light scattering using Nanosite, LM20 or LM10. Or the thing measured according to it is used.
  • the nanobubble diameter, its distribution, and the number of nanobubbles usually mean those measured immediately after the production of nanobubble water, but the nanobubble diameter, its distribution and the number of nanobubbles of the present invention are long as described later.
  • nanobubble water Since it is maintained stably for a period, it may be a value obtained by storing nanobubble water in a sealed state for a certain period (for example, about 6 months) after production and measuring the nanobubble diameter, its distribution, and the number of nanobubbles immediately before use.
  • Examples of the gas constituting the nanobubble include oxygen, ozone, nitrogen, carbon dioxide, helium, argon, or a mixture of one or more gases selected from oxygen, ozone, nitrogen, carbon dioxide, helium, argon, and the like, Examples include, but are not limited to, atmospheric gases (eg, air). Nitrogen, ozone, oxygen, and argon are preferable, and nitrogen and ozone are more preferable.
  • the inside of the nanobubble may be a vacuum.
  • vacuum means a state of a space filled with a gas having a pressure lower than the normal atmospheric pressure.
  • the “water” containing nanobubbles is not particularly limited, and for example, tap water, deionized water, distilled water, sterilized distilled water, purified water for injection, ultrapure water, and the like can be used. When used for sterilization, sterile distilled water, purified water for injection and the like are preferred.
  • the “aqueous solution” in the present specification includes, for example, water further containing any additive that can be usually used in the field of pharmaceutical preparations. Examples of such additives include excipients, lubricants, binders, disintegrants, solubilizers, suspending agents, isotonic agents, buffers, soothing agents, preservatives, antioxidants.
  • additives Preferable examples include the same pharmacologically acceptable carriers as described below. Two or more of the above-described additives may be mixed and used at an appropriate ratio.
  • 1 or 2 or more additives chosen from a suspending agent, a stabilizer, a dispersing agent, an isotonic agent, etc. are mentioned.
  • nanobubble aqueous solution in the present specification includes, for example, nanobubble water further containing any additive that can be usually used in the field of pharmaceutical preparations.
  • additives include excipients, lubricants, binders, disintegrants, solubilizers, suspending agents, isotonic agents, buffers, soothing agents, preservatives, antioxidants.
  • additives chosen from a suspending agent, a stabilizer, a dispersing agent, an isotonic agent, etc. are mentioned.
  • these additives do not affect the generation and / or stability of nanobubbles, they can be dissolved in water in advance and directly prepared as nanobubble aqueous solutions.
  • nanobubbles are generated in water containing no additives. Then, the nanobubble water may be used, and then the additive may be dissolved to form a nanobubble aqueous solution.
  • the method for producing nanobubble water includes a method in which microbubbles (gas particles having a diameter of about 1 to 60 ⁇ m) and nanobubbles are simultaneously generated in water, and then the microbubbles are levitated and separated to leave only nanobubbles. It is roughly divided into the method of directly generating, but at present, the former is mainstream. As the former method, the gas is crushed by high-speed swirling to generate a large number of microbubbles, and the microbubbles are floated and separated to leave the nanobubbles in water. The gas is pressurized and dissolved with supersaturation. There is a pressure dissolution method in which the liquid is rapidly decompressed to precipitate microbubbles and nanobubbles, and the microbubbles are floated and separated to leave the nanobubbles in water.
  • the method for producing nanobubble water of the present invention is preferably a pressure dissolution type. For example, if gas is forcibly dissolved in a pressurized container pressurized to about 0.2 to 0.5 MPa by a pressure pump and then flushed into water through a nozzle, the decompressed and supersaturated gas is released. Microbubbles or nanobubbles are discharged into the wastewater, and a cloudy microbubble water and nanobubble water mixture is generated. After that, when the microbubbles are naturally levitated and released by stopping the aeration and allowing to stand, clear nanobubble water in which only the nanobubbles remain is generated.
  • the pressurized dissolution method generates gas bubbles secondarily through a two-step process of pressure dissolution and precipitation by decompression, and the gas sucked into the working fluid is directly generated as gas bubbles.
  • nanobubble generators include pressure-dissolving type IDEC nanoGALF TM , Auratech OM4-MD5-045, Nikuni microbubble generator, and high-speed swirling liquid flow type BYJ YJ. , Aqua-Air Micro Bubble Generator, Royal Electric Micro Blade, etc.
  • the nanobubble generator is preferably a pressure dissolution type nanoGALF TM manufactured by IDEC.
  • increasing the number of nanobubbles means that the number of nanobubbles in nanobubble water is increased by producing nanobubble water in the presence of a specific additive as compared to the case where the additive is not present. means.
  • the nanobubble water of the present invention can increase the number of nanobubbles by subjecting “water” or “aqueous solution” to the method for producing nanobubble water in the presence of a surfactant, a hydrophilic resin and / or an electrolyte.
  • the nanobubble water produced in the presence of the surfactant, hydrophilic resin and / or electrolyte of the present invention is nanobubble compared to nanobubble water prepared with water containing no surfactant, hydrophilic resin and electrolyte.
  • the number can be increased.
  • the nanobubble water produced in the presence of the surfactant, hydrophilic resin and / or electrolyte of the present invention is superior to nanobubble water prepared with water containing no surfactant, hydrophilic resin or electrolyte. Shows antibacterial action.
  • Surfactant, hydrophilic resin, and electrolyte may be used independently and may be used in combination of 2 or more.
  • surfactant used in the present invention examples include anionic surfactants (such as sodium lauryl sulfate), nonionic surfactants [glycerin fatty acid esters such as glyceryl monostearate, sucrose fatty acid esters, monostearic acid Sorbitan fatty acid esters such as sorbitan and sorbitan monolaurate, polyglycerin fatty acid ester, polyoxyethylene (hardened) castor oil, polyoxyethylene sorbitan fatty acid ester (polyoxyethylene sorbitan laurate (such as polysorbate 20), polyoxyethylene sorbitan olein Acid esters (such as polysorbate 80)), polyethylene glycol fatty acid esters, polyoxyethylene alkyl ethers (such as polyoxyethylene lauryl ether) Polyoxyethylene polyoxypropylene alkyl ether (such as polyoxyethylene polyoxypropylene cetyl ether), polyoxyethylene alkylphenyl ether (such as polyoxyethylene nonylphen
  • hydrophilic resin used in the present invention examples include acrylic resins such as polyacrylamide, polyacrylic acid or alkali metal salts thereof, or esters thereof, and vinyl such as polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl ethyl ether and copolymers thereof.
  • Resin natural polysaccharides such as tragacanth gum and karaya gum, methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hyaluronic acid or alkali metal salts thereof, agarose, curdlan, etc., polyvinyl alcohol, hydroxypropylcellulose etc. are preferred, more Preferably, polyvinyl alcohol is used.
  • the said hydrophilic resin may be used independently and may be used in combination of 2 or more.
  • Examples of the electrolyte used in the present invention include sodium salts such as sodium chloride, sodium bromide, sodium iodide, sodium fluoride, sodium hydrogen carbonate, sodium carbonate, sodium percarbonate, sodium sulfite, sodium sulfate, sodium thiosulfate, and chloride.
  • Examples include calcium salts such as calcium and calcium sulfate, magnesium salts such as magnesium chloride, magnesium sulfate, magnesium oxide, magnesium peroxide, and magnesium carbonate.
  • Sodium chloride, calcium chloride, sodium carbonate, and the like are preferable.
  • the said electrolyte may be used independently and may be used in combination of 2 or more.
  • hydrophilic resin and / or electrolyte used in the present invention, a surfactant (eg, polysorbate 80) and / or a hydrophilic resin (eg, polyvinyl alcohol) is preferable.
  • a surfactant eg, polysorbate 80
  • a hydrophilic resin eg, polyvinyl alcohol
  • the content of the surfactant, hydrophilic resin and / or electrolyte used in the present invention in water is not particularly limited as long as it can be used for a desired use (for example, a liquid pharmaceutical preparation such as an injection).
  • the upper limit is preferably 50% (W / V) or less, more preferably 20% (W / V) or less, and still more preferably 10% (W / V) or less.
  • the lower limit is not particularly limited as long as it can be used for a desired application (for example, liquid pharmaceutical preparations such as injections).
  • (W / V) preferably 0.01% (W / V) or more, More preferably, it is 0.05% (W / V) or more, More preferably, it is 0.1% (W / V) or more.
  • (W / V) means g / mL.
  • nanobubble water is produced in the presence of a surfactant, a hydrophilic resin and / or an electrolyte, and the number of nanobubbles in nanobubble water is 2.0 ⁇ 10 8 / mL.
  • a surfactant a hydrophilic resin and / or an electrolyte
  • the number of nanobubbles in nanobubble water is 2.0 ⁇ 10 8 / mL.
  • the content of the surfactant, hydrophilic resin and / or electrolyte is the same as the content of the surfactant, hydrophilic resin and / or electrolyte in nanobubble water.
  • “Maintaining the number of nanobubbles at 2.0 ⁇ 10 8 / mL or more” means that, for example, the effects of the nanobubble water of the present invention (for example, antibacterial action, detergency, crop growth promoting action, etc.) are maintained. This means that nanobubbles exist in water in a state where the above-mentioned number of nanobubbles is maintained during a required period (for example, the effective period when used as a base of an injection). In the nanobubble water of the present invention, the number of nanobubbles of 2.0 ⁇ 10 8 / mL or more that exhibits excellent antibacterial action can be maintained for a long time.
  • the number of nanobubbles of 2.0 ⁇ 10 8 cells / mL or more is preferably maintained for 3 months or more, more preferably 6 months or more, and further preferably 1 year or more.
  • the antibacterial action can be maintained within the effective period.
  • the upper limit of the period for maintaining the number of nanobubbles at 2.0 ⁇ 10 8 / mL or more is not particularly limited, but is preferably 5 years or less, more preferably 3 years or less, and even more preferably 1 year or less. .
  • “having antibacterial activity” means, for example, Japanese Pharmacopoeia (JP), United States Pharmacopoeia (USP), British Pharmacopoeia (BP), European Pharmacopoeia (European Pharmacopoeia: EP), etc. means that it exhibits antibacterial activity to the extent that it meets the standards of preservative efficacy tests.
  • “enhancing the antibacterial action of nanobubble water” means that the storage efficacy measured by the above test is enhanced by containing the number of nanobubbles at 2.0 ⁇ 10 8 / mL or more. Means.
  • Specific bacteria having the antibacterial action of the nanobubble water of the present invention include Staphylococcus spp., Streptococcus spp., Streptococcus spp., Streptococcus spp., Streptococcus spp., Streptococcus spp.
  • Streptococcus bacterium (Streptococcus agalactiae), Streptococcus bovis, Streptococcus pneumoniae, Streptococcus mutans, etc .; Streptococcus mutr; Neisseria bacteria such as Neisseria meningitides; Bacillus bacteria such as Bacillus anthracis and Bacillus issubtilis; Propionibacterium acnes and other propionic acid bacteria ; Collies such as Corynebacterium diphtheriae Listeria genus bacteria such as Listeria monocytogenes; Clostridium bacterium such as Clostridium tetani, Clostridium difficile; Escherichia bacterium such as Escherichia coli; Enterobacter genus Bacteria (Enterobacter spp.); Pseudomonas aeruginosa and other Pseudomonas bacteria; Klebsiella pneumoniae and other Klebsiella
  • fungi in which the nanobubble water of the present invention exhibits an antibacterial action include various filamentous fungi (for example, Microsporum canis), Ausuan microspores (Microsporum audouinii), gypsum-like microspores (Microsporum gypseum) Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton Trichophyton, Trichophyton schoenleinii, Trichophyton schoenleinii, Trichophyton ⁇ schoenleinii (Trichophyton tonsurans), etc .; Acremonium spp .; Fusarium oxysporum, etc .; Fusarium fungi, such as Scopulariopsis brevicaulis Such as Scytalidium dimidiatum Saccharomyces fungi such as Saccharomyces cerevisiae; Saccharomyces cerevisiae, etc .; Malassezi
  • bacteria are excellent in antibacterial activity against Escherichia, Staphylococcus, and Pseudomonas bacteria, especially those of Escherichia coli, Pseudomonas aeruginosa, and / or Staphylococcus aureus. Effectively suppresses proliferation.
  • fungi are excellent in antibacterial action against Candida fungi and Aspergillus fungi, and in particular, effectively suppress the growth of Candida albicans and / or Aspergillus brasiliensis.
  • the nanobubble water of the present invention exhibits an excellent antibacterial action and storage efficiency thereby, and is a multi-dose liquid pharmaceutical preparation that is repeatedly used from the same container for a certain period of time, such as an injection (eg, subcutaneous injection, Intravenous injection, intramuscular injection, intraperitoneal injection, instillation, intracerebral injection, cerebrospinal fluid injection, intraocular injection), eye drop, syrup, liquid, emulsion, suspension Useful as a base for turbidity agents.
  • the nanobubble water of the present invention is also suitable as a base for liquid products that are repeatedly used from the same container for a certain period of time, such as cosmetics (eg, lotion, lotion, tonic, etc.), foods (eg, beverages, etc.). Can be used for Moreover, the nanobubble water preserve
  • the active pharmaceutical ingredient when using the nanobubble water of the present invention as a base of a liquid pharmaceutical preparation is not particularly limited, but various vaccines (eg, influenza vaccine, rubella vaccine, Japanese encephalitis vaccine, etc.), peptides having physiological activity Compounds, antibiotics, antifungals, antihyperlipidemic, antitumor, antipyretic, analgesic, antiphlogistic, antitussive expectorant, sedative, muscle relaxant, antiepileptic, antiulcer, anti Depressants, antiallergic drugs, cardiotonic drugs, arrhythmia drugs, vasodilators, antihypertensive diuretics, diabetes drugs, anticoagulants, hemostatic drugs, antiplatelet drugs, antituberculosis drugs, hormone drugs, narcotic antagonists, bones Absorption inhibitors, osteogenesis promoters, angiogenesis inhibitors and the like can be mentioned.
  • various vaccines such as influenza vaccines in which thimerosal is used as a pre
  • the nanobubble water of the present invention When used as a base of a liquid pharmaceutical preparation, it is prepared into a liquid pharmaceutical preparation by a conventional method in the pharmaceutical preparation field, and then a mammal (eg, human, mouse, rat, rabbit, dog, cat, cow) , Horses, pigs, monkeys) for the prevention or treatment of various diseases.
  • a mammal eg, human, mouse, rat, rabbit, dog, cat, cow
  • a pharmaceutically acceptable carrier in the aqueous solution or suspension, can be blended in an amount acceptable to humans or animals.
  • Pharmaceutically acceptable carriers include monosodium phosphate, dipotassium phosphate, disodium phosphate, monopotassium phosphate, sodium hydroxide, hydrochloric acid and other pH regulators, kanamycin sulfate, erythromycin lactobionate, penicillin G potassium, etc.
  • Stabilizers such as antibiotics, lactose, potassium glutamate, D-sorbitol, aminoacetic acid, human serum albumin, colorants such as phenol red, isotonic agents such as sodium chloride and potassium chloride, and the like can be added.
  • Aqueous solutions or suspensions are stored sealed in vials or ampoules. Storage is preferably performed under light-shielding conditions.
  • the storage temperature is preferably room temperature or lower, more preferably 10 ° C. or lower.
  • Example 1 Effect of increasing the number of nanobubbles by an additive
  • the effect of increasing the number of nanobubbles when polysorbate 80, polyvinyl alcohol (PVA), sodium lauryl sulfate or NaCl was used as an additive was measured.
  • 2 g of each additive was dissolved in 2 L of water for injection, and nanobubble water was prepared with the following settings using a nanobubble generator manufactured by IDEC (nanoGALF TM FZ1N-02).
  • ⁇ Bubble water flow rate approx. 4.0 L / min
  • Dissolution pressure 300 KPa ⁇ 5%
  • nanobubble water was similarly prepared using only 2 L of water for injection.
  • the number of nanobubbles was measured for the prepared nanobubble water using a tracking method (tracking method) using laser light scattering using Nanosite, LM20 or LM10. The results are shown in Table 1.
  • nanobubble water containing nanobubbles of 2.0 ⁇ 10 8 / mL or more can be stably produced.
  • Example 2 Preservation efficacy of nanobubble water Using the method according to the preservation efficacy test described in the US Pharmacopoeia (USP ⁇ 51> “Antimicrobial effectiveness testing”), the preservation efficacy of nanobubble water prepared in Example 1 was evaluated. did. Each of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus was mixed with each nanobubble water and stored at 20-25 ° C. On 0, 7, 14, and 28 days, the number of viable bacteria was measured using the test conditions and test methods described in the US Pharmacopoeia (USP ⁇ 51> “Antimicrobial effectiveness testing”).
  • Candida albicans and Aspergillus brasiliensis were mixed with each nanobubble water and stored at 20 to 25 ° C.
  • the preservation efficacy test of these fungi not the culture medium described in the US Pharmacopoeia (USP ⁇ 51> “Antimicrobial effectiveness testing”) (Sabouraud glucose medium or Sabouraud glucose agar medium)
  • the same liquid culture medium as in the storage efficacy test with Pseudomonas aeruginosa and S. aureus was used.
  • the viable cell count was measured according to the US Pharmacopoeia (USP ⁇ 51> “Antimicrobial effectiveness testing”).
  • the fungi were evaluated as having antibacterial effect if there was no growth from the start of the test (day 0). The results are shown in FIG.
  • the nanobubble water of the present invention containing nanobubbles of 2.0 ⁇ 10 8 cells / mL or more showed an antibacterial action satisfying the standards as a preservative of the US Pharmacopoeia (USP) against all of these five kinds of bacteria. .
  • Example 3 Effect of maintaining the number of nanobubbles by an additive Nanobubble water prepared according to the method of Example 1 using polysorbate 80 or polyvinyl alcohol as an additive under conditions of 25 ° C. and 60% RH for 6 months or 12 Stored for months.
  • the number of nanobubbles contained in the nanobubble water after storage was measured in the same manner as in Example 1.
  • Table 2 shows the measurement results of the number of nanobubbles after storage for 6 months
  • Table 3 shows the measurement results of the number of nanobubbles after storage for 12 months.
  • the nanobubble water of the present invention containing 2.0 ⁇ 10 8 / mL or more nanobubbles exhibits an excellent antibacterial action and can be suitably used as a base for liquid pharmaceutical preparations such as injections.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明は、液体医薬製剤を安全かつ安定に保存する新規技術を提供する。 本発明の、界面活性剤、親水性樹脂および/または電解質の存在下で製造される2.0×10個/mL以上のナノバブルを含有するナノバブル水は、優れた抗菌作用を示し、安全かつ安定な保存性を示す液体医薬製剤の基剤として好適に使用できる。

Description

抗菌水
 本発明は、高密度のナノバブル水、高密度のナノバブル水の製造方法、高密度のナノバブルを長期間維持する方法、および抗菌作用を有するナノバブル水に関する。より詳細には、ナノバブル数が増大することにより抗菌作用が増強されたナノバブル水、及びナノバブル水のナノバブル数の増加方法等に関する。
(発明の背景)
 ナノバブル水は半導体の洗浄工程や作物の成長促進に現在使われている。これまでは低密度でしかナノバブルを生成できず、また水中にナノバブルを長期間存在させその効果を維持させることは困難であった。そのため、ナノバブル水の活用は、器具洗浄時の使用など、ナノバブルが短時間存在すれば足りる場合に限定されていた。
 ワクチン製剤等の注射剤は、大きく単回投与型と複数回投与型の2種類に分類される。
 単回投与型の注射剤は、細菌混入による汚染を防止するため、滅菌処理したワクチン溶液等の薬液の単回投与分のみをバイアルに個別密封している。単回投与型の注射剤は1回で薬液を使い切るため、保存剤の添加を考慮する必要は無い。しかし、このような単回投与型の注射剤は製造コストが高いため、特に発展途上国における使用(例えばワクチン製剤の予防接種等)は現実的ではない。
 一方、数人分の量のワクチン等の薬液を一つのバイアルに入れた複数回投与型の注射剤では、バイアルの口ゴム部分に使用のたびに複数回注射針を刺すことになるため、針刺し時に混入した細菌を殺菌又は増殖抑制するための保存剤としてチメロサール、フェノキシエタノール、パラオキシ安息香酸エステル、フェノール等の保存剤が薬液に添加されている。
 特許文献1には、超微細気泡と薬剤とを含む組成物が薬剤の効果をよりよく発現させること、また超微細気泡水溶液中に薬剤を分散させた場合には界面活性剤を使用することなく安定な分散体を得ることができることが記載されている。実施例1には4.0~8.0×10個/mLの超微細気泡水が記載されている。また図4には超微細気泡が300時間安定して存在することが記載されている。しかし2.0×10個/mL以上の超微細気泡を含有する超微細気泡水および超微細気泡水自体の抗菌作用については記載されていない。
 非特許文献1には、ナノバブル発生装置(nanoGALFTM)を用いて、蒸留水4.0L、気泡水流量4.0L/分、溶解圧力0.3MPa、30分の条件下でナノバブル水を製造し、LM20(NanoSight社)を用いてナノバブル数を計測した結果、1.42×10個/mLのナノバブル水が得られたことが記載されている。しかし、2.0×10個/mL以上のナノバブルを含有するナノバブル水およびナノバブル水自体の抗菌作用について記載はない。また、当該ナノバブル水は水中に製造直後から3日間程度は安定に1.0×10個/mLのナノバブルが維持されるが、4ヶ月間保管したのちにナノバブル数の計測を行うとナノバブルが消滅することが記載されている。
WO2011/016529
日本混相流学会年会講演会2011、「nanoGALF技術による直径100nmのナノバブルの高密度・安定製造」
 ワクチン製剤等の液体医薬製剤の保存剤として使用されているチメロサールは潜在的な毒性が懸念されるエチル水銀化合物であり、チメロサールを使用せずに保存効力を示し、かつワクチン製剤等の液体医薬製剤を安定に保存する技術の開発が望まれている。従って、本願発明の目的は、チメロサールのように潜在的な副作用が懸念される保存剤を用いずに、液体医薬製剤(例えば、注射剤)を安定に保存する技術を提供することである。
 また、本願発明のもう1つの目的は、ナノバブル水の用途、応用分野を拡大するために、今までの生成技術で得られるナノバブル水よりも高密度のナノバブル水を提供することである。
 また、本願発明のもう1つの目的は、ナノバブル水の効果を長期間持続させるために、高密度のナノバブルを長期間維持する方法を提供することである。
 本願発明者らは、上記課題に鑑み鋭意検討した結果、ナノバブル水の調製時に、界面活性剤、親水性樹脂、電解質等を添加することでナノバブル数が飛躍的に増加する、即ち、ナノバブルを高密度で生成させることを見出した。また、このように界面活性剤、親水性樹脂、電解質等の存在下で調製したナノバブル水のナノバブル数は長期間に渡って維持されることを見出した。また、界面活性剤、親水性樹脂、電解質等の存在下で調製したナノバブル水は、米国薬局方(USP)を参考にした保存効力試験において保存剤としての基準を満たす保存効力を示し、液体医薬製剤(例えば、注射剤)用の基剤として十分使用可能であることを見出した。即ち、本願発明のナノバブル数が増大したナノバブル水を液体医薬製剤の基剤として使用することで、チメロサール、フェノキシエタノール、パラオキシ安息香酸エステル、フェノール等の従来の保存剤の添加を不要又は添加量を極めて少なくすることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
[1]2.0×10個/mL以上のナノバブルを含有するナノバブル水;
[2]抗菌作用を有する、上記[1]記載のナノバブル水;
[3]界面活性剤、親水性樹脂および/または電解質の存在下で製造される、上記[1]記載のナノバブル水;
[4]ポリソルベート80および/またはポリビニルアルコールの存在下で製造される、上記[1]記載のナノバブル水;
[5]界面活性剤、親水性樹脂および/または電解質の存在下でナノバブル水を製造することを特徴とする、ナノバブル水のナノバブル数を2.0×10個/mL以上に増加させる方法;
[6]ポリソルベート80および/またはポリビニルアルコールの存在下でナノバブル水を製造することを特徴とする、上記[5]記載の方法;
[7]界面活性剤、親水性樹脂および/または電解質の存在下でナノバブル水を製造することを特徴とする、ナノバブル水のナノバブル数を2.0×10個/mL以上に維持する方法;
[8]ポリソルベート80および/またはポリビニルアルコールの存在下でナノバブル水を製造することを特徴とする、上記[7]記載の方法;
[9]3ヶ月以上、ナノバブル水のナノバブル数を2.0×10個/mL以上に維持する、上記[8]記載の方法;
[10]ナノバブル水が含有するナノバブルの数を、2.0×10個/mL以上にすることを特徴とする、ナノバブル水の抗菌作用を増強する方法;
等に関する。
 本願発明のナノバブル数が増大したナノバブル水、即ち高密度のナノバブル水は、優れた抗菌作用とそれによる保存効力を示し、一定期間、同一容器から繰り返して使用される複数回投与型の液体医薬製剤(例えば、注射剤)の基剤として有用である。本願発明のナノバブル数が増大したナノバブル水を液体医薬製剤の基剤として用いる場合、保存剤として無機または有機化合物を別途含有させる必要はないので副作用の懸念が少なく、また高密度のナノバブルが長期間に渡って維持されるため安定的に保存可能な製剤を提供することが可能となり、極めて有用である。
 また、本願発明のナノバブル数が増大したナノバブル水、即ち高密度のナノバブル水は、ナノバブル水自体の有する様々な効果が増強されることで、洗浄力の増強などの様々な分野での活用、展開が期待される。
 また、本願発明の高密度のナノバブルを長期間に渡って維持する方法が提供されることで、長期間に渡ってナノバブル水の作用が維持することが可能になるため、作物の成長の増強、精密機器の洗浄性の増強、土壌浄化の増強等の様々な分野での活用、展開が期待される。
特定添加剤の存在下で製造されたナノバブル水の保存効力試験の結果を示すグラフである。図1において、-●-は注射用水の結果を示し、-□-はポリソルベート80含有のナノバブル水の結果を示し、-▲-はポリビニルアルコール含有のナノバブル水の結果を示す。
(発明の詳細な説明)
 本願発明のナノバブル水は、2.0×10個/mL以上のナノバブルを含有することを特徴とする。
 本明細書において「ナノバブル水」とは、1000nm以下の直径を有する気体粒子(ナノバブル)が安定に存在する水を意味する。ナノバブルの直径(ナノバブル径)は、好ましくは800nm以下であり、より好ましくは500nm以下である。ナノバブル径の下限に特に制限はないが、例えば、1nm以上、好ましくは5nm以上、より好ましくは10nm以上である。また、ナノバブルの平均径は500nm以下、好ましくは1~500nmの範囲で適宜設定することができるが、好ましくは5~300nm、より好ましくは10~150nmの範囲で適宜設定される。本明細書において、平均径とは、分布の最頻値(体積%または個数%の極大値)に対応する粒子径(モード径)を意味する。
 ナノバブルのサイズは均一であることが望ましく、ナノバブル径分布の小径側から累積10%及び累積90%に相当するナノバブル径をそれぞれd10及びd90としたときのd90/d10比は、5以下であることが好ましく4.5以下であることがより好ましい。
 本願発明のナノバブル水に含有されるナノバブルの数とは、ナノバブル水1mLに存在するナノバブルの数を意味し、本明細書においては「ナノバブル密度」と称することもある。
 本願発明のナノバブル水は含有されるナノバブル数が2.0×10個/mL以上であることを特徴とし、これにより優れた作用効果(例えば、抗菌作用、保存効力作用、洗浄力、作物成長促進作用)が奏される。
 抗菌作用、保存効力作用等の作用効果の観点から、ナノバブル数は2.0×10個/mL以上が好ましく、2.5×10個/mL以上がより好ましい。
 ナノバブル数の上限は特に制限されないが、2.0×10個/mL以下、好ましくは1.0×10個/mL以下であってよい。
 ナノバブル径、その分布、及びナノバブル数は、ブラウン運動に基づくレーザー光の散乱を利用した方法(例、ナノサイト社、LM20やLM10など)、電気抵抗変化に基づく方法(例、ベックマン・コールター社、Multisizer4など)、レーザー回折散乱法に基づく方法(例、島津製作所、SALD-7100Hなど)、ミー散乱を利用した方法(例、日本電色工業、NP-500Tなど)等を用いて測定することができるが、本発明に用いられるナノバブル水またはナノバブル水溶液のナノバブル径及びその分布は、ナノサイト社、LM20やLM10を用いたレーザー光散乱を利用したトラッキング法(追尾法)を用いて測定されたもの、或いはそれに準じて測定されたものが使用される。
 ナノバブル径、その分布、及びナノバブル数の値は、通常、ナノバブル水の製造直後に測定されるものを意味するが、後述のように本願発明のナノバブル水のナノバブル径、その分布及びナノバブル数は長期間安定に維持されるため、ナノバブル水を製造後に一定期間(例えば6ヶ月程度)密閉で保管して、使用の直前にナノバブル径、その分布、及びナノバブル数を測定した値であってもよい。
 ナノバブルを構成する気体としては、例えば、酸素、オゾン、窒素、二酸化炭素、ヘリウム、アルゴン等、または酸素、オゾン、窒素、二酸化炭素、ヘリウム、アルゴン等から選ばれる1または2以上の気体の混合物、大気中の気体(例、空気)等が挙げられ、これらに限定されないが、好ましくは、窒素、オゾン、酸素、アルゴンであり、より好ましくは、窒素、オゾンである。あるいは、ナノバブル内は、真空であってもよい。
 ここで、「真空」とは通常の大気圧より低い圧力の気体で満たされた空間の状態を意味する。
 一方、ナノバブルを含有させる「水」としては、特に制限はなく、例えば水道水、脱イオン水、蒸留水、滅菌蒸留水、注射用精製水、超純水等を用いることができるが、注射剤に使用する場合は、滅菌蒸留水、注射用精製水等が好ましい。
 また、本明細書における「水溶液」は、例えば、医薬製剤分野で通常使用され得る任意の添加剤をさらに含有する水が挙げられる。そのような添加剤としては、例えば、賦形剤、滑沢剤、結合剤、崩壊剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤、防腐剤、抗酸化剤、着色剤、甘味剤、pH調整剤、安定化剤、酸味料、香料、流動化剤等が挙げられる。好適な例としては下記の薬理学的に許容し得る担体と同様のものが挙げられる。
 上記した添加剤は、2種以上を適宜の割合で混合して用いてもよい。添加剤として、好ましくは、懸濁化剤、安定化剤、分散剤、等張化剤等から選ばれる1または2以上の添加剤が挙げられる。
 また、本明細書における「ナノバブル水溶液」は、例えば、医薬製剤分野で通常使用され得る任意の添加剤をさらに含有するナノバブル水が挙げられる。そのような添加剤としては、例えば、賦形剤、滑沢剤、結合剤、崩壊剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤、防腐剤、抗酸化剤、着色剤、甘味剤、pH調整剤、安定化剤、酸味料、香料、流動化剤等が挙げられる。
 上記した添加剤は、2種以上を適宜の割合で混合して用いてもよい。添加剤として、好ましくは、懸濁化剤、安定化剤、分散剤、等張化剤等から選ばれる1または2以上の添加剤が挙げられる。
 これらの添加剤は、ナノバブルの生成及び/又は安定性に影響を与えない限り、予め水に溶解して直接ナノバブル水溶液として調製することもできるが、まず添加剤を含まない水中にナノバブルを生成させてナノバブル水とした後、用時添加剤を溶解してナノバブル水溶液としてもよい。
 ナノバブル水の製造方法としては、マイクロバブル(1~60μm程度の直径を有する気体粒子)とナノバブルとを水中に同時発生させた後、マイクロバブルを浮上分離させてナノバブルのみを残留させる方法と、ナノバブルを直接生成させる方法とに大別されるが、現状では前者が主流である。前者の方法としては、気体を高速旋回で破砕してマイクロバブルを多数発生させ、マイクロバブルを浮上分離してナノバブルを水中に残留させる高速旋回液流式、気体を加圧して過飽和で溶解させた液を急速減圧してマイクロバブルとナノバブルを析出させ、マイクロバブルを浮上分離してナノバブルを水中に残留させる加圧溶解式などがある。
 本願発明のナノバブル水の製造方法は、好ましくは、加圧溶解式である。例えば、加圧ポンプにより0.2~0.5MPa程度に加圧された加圧容器内で気体を強制的に溶解させた後、ノズルを通して水中にフラッシュ操作すると、減圧され過飽和となった気体が排水中にマイクロバブルまたはナノバブルとなり放出され、白濁したマイクロバブル水およびナノバブル水の混合物が生成される。その後通気を停止し静置することでマイクロバブルを自然浮上離脱させると、ナノバブルのみが残留した澄明なナノバブル水が生成される。従って、加圧溶解式は、加圧溶解-減圧による析出の2段階の過程を経て、二次的に気体泡を発生させる点で、作動流体中に吸引した気体を直接的に気体泡として生成する他の方式とは異なる。
 ナノバブル発生装置としては、例えば、加圧溶解式のIDEC社製nanoGALFTM、オーラテック社製OM4-MD5-045、ニクニ社製マイクロバブルジェネレータなどや、高速旋回液流式のバイ・クリーン社製YJ、アクアエアー社製マイクロバブル発生装置、ローヤル電機社製マイクロブレードなどが挙げられる。ナノバブル発生装置は、好ましくは、加圧溶解式のIDEC社製nanoGALFTMである。
 本明細書において「ナノバブル数を増加させる」とは、特定の添加剤の存在下でナノバブル水を製造することで該添加剤非存在下の場合と比べてナノバブル水のナノバブル数を増加させることを意味する。本願発明のナノバブル水は、界面活性剤、親水性樹脂および/または電解質の存在下に「水」又は「水溶液」を上記ナノバブル水の製造方法に供することにより、ナノバブル数を増大させることができる。
 例えば、本願発明の界面活性剤、親水性樹脂および/または電解質の存在下で製造されたナノバブル水は、界面活性剤、親水性樹脂および電解質を含まない水で調製したナノバブル水と比べて、ナノバブル数を増大させることができる。そして、本願発明の界面活性剤、親水性樹脂および/または電解質の存在下で製造されたナノバブル水は、界面活性剤、親水性樹脂または電解質を含まない水で調製したナノバブル水に比べて優れた抗菌作用を示す。
 界面活性剤、親水性樹脂及び電解質は、単独で用いてもよいし、2個以上を組み合わせて用いてもよい。
 本願発明で用いられる界面活性剤としては、例えば、アニオン性界面活性剤(ラウリル硫酸ナトリウムなど)、非イオン性界面活性剤[モノステアリン酸グリセリンなどのグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、モノステアリン酸ソルビタン、モノラウリン酸ソルビタンなどのソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレン(硬化)ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル(ポリオキシエチレンソルビタンラウリン酸エステル(ポリソルベート20など)、ポリオキシエチレンソルビタンオレイン酸エステル(ポリソルベート80など)など)、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルエーテル(ポリオキシエチレンラウリルエーテルなど)、ポリオキシエチレンポリオキシプロピレンアルキルエーテル(ポリオキシエチレンポリオキシプロピレンセチルエーテルなど)、ポリオキシエチレンアルキルフェニルエーテル(ポリオキシエチレンノニルフェニルエーテルなど)、マクロゴール類、ポリオキシエチレンポリオキシプロピレングリコール(ポロクサマー407、ポロクサマー235、ポロクサマー188、ポロキサミンなど)など]、カチオン性界面活性剤(例えば、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウム、臭化ヘキサデシルトリメチルアンモニウム、塩化デカリニウム等)、両性界面活性剤(例えばコカミドプロピルベタイン、コカミドプロピルヒドロキシスルタイン等)が挙げられ、ラウリル硫酸ナトリウム、ポリソルベート80などが好ましく、より好ましくはポリソルベート80が挙げられる。上記界面活性剤は、単独で用いてもよいし、2個以上を組み合わせて用いてもよい。
 本願発明で用いられる親水性樹脂としては、例えば、ポリアクリルアミド、ポリアクリル酸又はそのアルカリ金属塩、またはそれらのエステル等のアクリル系樹脂、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルエチルエーテルおよびそのコポリマー等のビニル系樹脂、トラガントガム、カラヤガム等の天然多糖類、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒアルロン酸またはそのアルカリ金属塩、アガロース、カードランなどが挙げられ、ポリビニルアルコール、ヒドロキシプロピルセルロースなどが好ましく、より好ましくはポリビニルアルコールが挙げられる。上記親水性樹脂は、単独で用いてもよいし、2個以上を組み合わせて用いてもよい。
 本願発明で用いられる電解質としては、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、過炭酸ナトリウム、亜硫酸ナトリウム、硫酸ナトリウム、チオ硫酸ナトリウムなどのナトリウム塩、塩化カルシウム、硫酸カルシウムなどのカルシウム塩、塩化マグネシウム、硫酸マグネシウム、酸化マグネシウム、過酸化マグネシウム、炭酸マグネシウムなどのマグネシウム塩などが挙げられ、塩化ナトリウム、塩化カルシウム、炭酸ナトリウムなどが好ましい。上記電解質は、単独で用いてもよいし、2個以上を組み合わせて用いてもよい。
 本願発明で用いられる界面活性剤、親水性樹脂および/または電解質としては、界面活性剤(例、ポリソルベート80)および/または親水性樹脂(例、ポリビニルアルコール)が好ましい。
 本願発明で用いられる界面活性剤、親水性樹脂および/または電解質の水への含有量は、所望の用途(例えば、注射剤等の液体医薬製剤)に使用できれば特に限定されるものではないが、その上限は、好ましくは50%(W/V)以下、より好ましくは20%(W/V)以下、さらに好ましくは10%(W/V)以下である。また、下限も、所望の用途(例えば、注射剤等の液体医薬製剤)に使用できれば特に限定はないが、ナノバブル数の増加効果の観点から、好ましくは0.01%(W/V)以上、より好ましくは0.05%(W/V)以上、さらに好ましくは0.1%(W/V)以上である。ここで、(W/V)は、g/mLを意味するものとする。
 界面活性剤、親水性樹脂及び電解質を2個以上組み合わせて用いる場合は、その合計量を水への含有量とする。
 また、本願発明の一態様として、界面活性剤、親水性樹脂および/または電解質の存在下でナノバブル水を製造することを特徴とする、ナノバブル水のナノバブル数を2.0×10個/mL以上に維持する方法が挙げられる。
 当該態様において、界面活性剤、親水性樹脂および/または電解質の含有量は、上記界面活性剤、親水性樹脂および/または電解質のナノバブル水への含有量と同様である。
 「ナノバブル数を2.0×10個/mL以上に維持する」とは、例えば、本願発明のナノバブル水の作用効果(例えば、抗菌作用、洗浄力、作物成長促進作用等)が維持されることが要求される期間(例えば、注射剤の基剤として使用した場合にはその有効期間)に上記のナノバブル数を維持した状態でナノバブルが水中に存在することを意味する。
 本願発明のナノバブル水においては、優れた抗菌作用が奏される2.0×10個/mL以上のナノバブル数を長期間維持することができる。具体的には、2.0×10個/mL以上のナノバブル数を好ましくは3ヶ月以上、より好ましくは6ヶ月以上、さらに好ましくは1年以上維持することができ、例えば一般的な注射剤の有効期間内に抗菌作用を維持することができる。また、ナノバブル数を2.0×10個/mL以上に維持する期間の上限も特に限定されないが、好ましくは5年以下、より好ましくは3年以下、さらに好ましくは1年以下であってよい。
 また、本明細書において「抗菌作用を有する」とは、例えば、日本薬局方(Japanese Pharmacopoeia: JP)、米国薬局方(United States Pharmacopeia: USP)、英国薬局方(British Pharmacopoeia: B.P.)、ヨーロッパ薬局方(European Pharmacopoeia: EP)などに準拠した保存効力試験の基準を満たす程度の抗菌作用を示すことを意味する。
 また、本明細書において「ナノバブル水の抗菌作用を増強する」とは、ナノバブル数を2.0×10個/mL以上含有することによって、上記試験により測定される保存効力が増強されることを意味する。
 本願発明のナノバブル水が抗菌作用を示す具体的細菌類としては、黄色ブドウ球菌(Staphylococcus aureus)等のスタフィロコッカス属細菌;化膿連鎖球菌(Streptococcus pyogenes)、連鎖球菌(Streptococcus spp.)、ストレプトコッカス・アガラクチアエ(Streptococcus agalactiae)、ストレプトコッカス・ボビス(Streptococcus bovis)、肺炎連鎖球菌(Streptococcus pneumoniae)、ミュータンス連鎖球菌(Streptococcus mutans)等のストレプトコッカス属細菌;腸球菌(Enterococcus spp.);淋菌(Neisseria gonorrhoeae)、髄膜炎菌(Neisseria meningitides)等のナイセリア属細菌;炭疽菌(Bacillus anthracis)、枯草菌(Bacillus subtilis)等のバチルス属細菌;プロピオン酸菌属アクネ菌(Propionibacterium acnes)等のプロピオン酸菌属細菌;ジフテリア菌(Corynebacterium diphtheriae)等のコリネバクテリウム属細菌;リステリア菌(Listeria monocytogenes)等のリステリア属細菌;破傷風菌(Clostridium tetani)、クロストリジウム・ディフィシレ(Clostridium difficile)等のクロストリジウム属細菌;大腸菌(Escherichia coli)等のエスケリキア属細菌;エンテロバクター属細菌(Enterobacter spp.);緑膿菌(Pseudomonas aeruginosa)等のシュードモナス属細菌;肺炎桿菌(Klebsiella pneumoniae)等のクレブシエラ属細菌;サルモネラ属細菌(Salmonella spp.);赤痢菌属細菌(Shigella spp.)等が挙げられる。
 本願発明のナノバブル水が抗菌作用を示す具体的真菌類としては、各種糸状菌類(例えば、イヌ小胞子菌(Microsporum canis)、オードアン小胞子菌(Microsporum audouinii)、石膏状小胞子菌(Microsporum gypseum)等の小胞子菌属真菌;紅色白癬菌(Trichophyton rubrum)、毛瘡白癬菌(Trichophyton mentagrophytes)、トリコフィトン・トリコフィトン(Trichophyton Trichophyton)、トリコフィトン・シェーンライニイ(Trichophyton schoenleinii)、頭部白癬菌(Trichophyton tonsurans)等の白癬菌属真菌;アクレモニウム属真菌(Acremonium spp.);フサリウム・オキシスポルム(Fusarium oxysporum)等のフサリウム属真菌;スコプラリオプシス・ブレビカウリス(Scopulariopsis brevicaulis)等のスコプラリオプシス属真菌;スキタリジウム・ディミディアツム(Scytalidium dimidiatum)等のスキタリジウム属真菌)、各種酵母菌類(例えば、カンジダ・アルビカンス(Candida albicans)、カンジダ・トロピカリス(Candida tropicalis)等のカンジダ属真菌;サッカロマイセス・セレヴィシエ(Saccharomyces cerevisiae)等のサッカロマイセス属真菌;癜風菌(Malassezia furfur)等のマラセチア属真菌;クリプトコックス・ネオフォルマンス(Cryptococcus neoformans)等のクリプトコックス属真菌;アスペルギルス・フミガーツス(Aspergillus fumigatus)、アスペルギルス・ニデュランス(Aspergillus nidulans)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・ブラジリエンシス(Aspergillus brasiliensis)等のアスペルギルス属真菌;コクシジオイデス・イミティス(Coccidioides immitis)等のコクシジオイデス属真菌)等が挙げられる。
 なかでも、細菌類ではエスケリキア属細菌、スタフィロコッカス属細菌、シュードモナス属細菌に対する抗菌作用に優れ、特に大腸菌(Escherichia coli)、緑膿菌(Pseudomonas aeruginosa)および/または黄色ブドウ球菌(Staphylococcus aureus)の増殖を効果的に抑制する。また、真菌ではカンジダ属真菌、アスペルギルス属真菌に対する抗菌作用に優れ、特にカンジダ・アルビカンス(Candida albicans)および/またはアスペルギルス・ブラジリエンシス(Aspergillus brasiliensis)の増殖を効果的に抑制する。
 本願発明のナノバブル水は、優れた抗菌作用とそれによる保存効力を示し、一定期間、同一容器から繰り返して使用される複数回投与型の液体医薬製剤、例えば、注射剤(例、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤、脳内投与注射剤、脳脊髄液内投与注射剤、眼内投与注射剤)、点眼剤、シロップ剤、液剤、乳剤、懸濁剤等の基剤として有用である。さらに本願発明のナノバブル水は、一定期間、同一容器から繰り返して使用される液体製品、例えば、化粧品(例、化粧水、ローション、トニック等)、食品(例、飲料等)の基剤としても好適に使用することができる。
 また、器具洗浄、作物成長促進などの従来用時調製されたナノバブル水を使用していた用途にも、例えば、調製後一定期間保存したナノバブル水を好適に使用することができる。
 本願発明のナノバブル水を液体医薬製剤の基剤として使用する場合の医薬有効成分は、特に限定されないが、各種ワクチン類(例、インフルエンザワクチン、風疹ワクチン、日本脳炎ワクチン等)、生理活性を有するペプチド系化合物、抗生物質、抗真菌薬、抗高脂血症薬、抗腫瘍薬、解熱薬、鎮痛薬、消炎薬、鎮咳去痰薬、鎮静薬、筋弛緩薬、抗てんかん薬、抗潰瘍薬、抗うつ薬、抗アレルギー薬、強心薬、不整脈治療薬、血管拡張薬、降圧利尿薬、糖尿病治療薬、抗凝血薬、止血薬、抗血小板薬、抗結核薬、ホルモン薬、麻薬拮抗薬、骨吸収抑制薬、骨形成促進薬、血管新生抑制薬などが挙げられ、中でも保存剤としてチメロサールが使用されるインフルエンザワクチン等の各種ワクチン類に好適に使用することができる。
 本願発明のナノバブル水を液体医薬製剤の基剤として使用する場合、医薬製剤分野の常法により液体医薬製剤に調製した後、哺乳動物(例、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル)に対して、各種疾患の予防または治療のために投与することができる。
 具体的には、上記の医薬有効成分を本願発明のナノバブル水に加えて緩やかに混合し、水溶液ないしは懸濁液とする。
 上記水溶液ないしは懸濁液には、医薬上許容できる担体をヒトないしは動物が許容できる量配合することができる。
 医薬上許容できる担体としては、リン酸一ナトリウム、リン酸二カリウム、リン酸二ナトリウム、リン酸一カリウム、水酸化ナトリウム、塩酸などのpH調節剤、硫酸カナマイシン、ラクトビオン酸エリスロマイシン、ペニシリンGカリウムなどの抗生物質、乳糖、グルタミン酸カリウム、D-ソルビトール、アミノ酢酸、ヒト血清アルブミンなどの安定剤、フェノールレッドなどの着色剤、塩化ナトリウム、塩化カリウムなどの等張化剤などを添加することができる。
 水溶液ないしは懸濁液は、バイアル又はアンプルに密封して保存する。保存は遮光条件下で行うのが好ましい。
 保存温度は室温以下が好ましく、10℃以下がより好ましい。
 以下、実施例により本発明をさらに説明するが、本発明はいかなる意味においてもこれらに限定されるものではない。
実施例1:添加剤によるナノバブル数の増加効果
 添加剤としてポリソルベート80、ポリビニルアルコール(PVA)、ラウリル硫酸ナトリウムまたはNaClを用いたときのナノバブル数の増加効果を測定した。
 注射用水2Lに各添加剤を2g溶解させ、IDEC社製ナノバブル発生装置(nanoGALFTMFZ1N-02)を用いて、以下の設定によりナノバブル水を調製した。
・気泡水流量 約4.0L/分
・溶解圧力 300KPa±5%
 コントロールとして、注射用水2Lのみを用いて同様にナノバブル水を調製した。
 調製したナノバブル水をナノサイト社、LM20またはLM10を用いたレーザー光散乱を利用したトラッキング法(追尾法)を用いてナノバブル数を測定した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 界面活性剤、親水性樹脂または電解質の添加により、ナノバブル数が飛躍的に増加し、2.0×10個/mL以上のナノバブルを含有するナノバブル水が安定的に製造できることが明らかとなった。
実施例2:ナノバブル水の保存効力
 米国薬局方(USP<51>“Antimicrobial effectiveness testing”)に記載の保存効力試験に準じた方法を用いて、実施例1で作成したナノバブル水の保存効力を評価した。
 大腸菌(Escherichia coli)、緑膿菌(Pseudomonas aeruginosa)、黄色ブドウ球菌(Staphylococcus aureus)のそれぞれを各ナノバブル水と混合し、20~25℃で保存した。0、7、14、28日目に米国薬局方(USP<51>“Antimicrobial effectiveness testing”)に記載されている試験条件や試験方法を用いて、生菌数を測定した。
 また、カンジダ・アルビカンス(Candida albicans)、アスペルギルス・ブラジリエンシス(Aspergillus brasiliensis)のそれぞれを各ナノバブル水と混合し、20~25℃で保存した。これら真菌類の保存効力試験に関しては、米国薬局方(USP<51>“Antimicrobial effectiveness testing”)に記載されている培養培地(サブロー・ブドウ糖培地またはサブロー・ブドウ糖カンテン培地)ではなく、上記の大腸菌、緑膿菌及び黄色ブドウ球菌での保存効力試験と同一の液体培養培地を用いた。その他の試験条件や試験方法については米国薬局方(USP<51>“Antimicrobial effectiveness testing”)に従って、生菌数を測定した。真菌類は、試験開始時(0日)から増殖がなければ、抗菌効果ありと評価した。
 結果を図1に示す。
 2.0×10個/mL以上のナノバブルを含有する本発明のナノバブル水はこれら5種の菌の全てに対して米国薬局方(USP)の保存剤としての基準を満たす抗菌作用を示した。
実施例3:添加剤によるナノバブル数の維持効果
 添加剤としてポリソルベート80またはポリビニルアルコールを用いて、実施例1の方法に従って調製したナノバブル水を、25℃、60%RHの条件下で6ヶ月又は12ヶ月保存した。保存後のナノバブル水に含まれるナノバブル数を実施例1と同様の方法で測定した。6ヶ月保存後のナノバブル数の測定結果を表2、12ヶ月保存後のナノバブル数の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 2.0×10個/mL以上のナノバブルを含有する本発明のナノバブル水は優れた抗菌作用を示し、例えば、注射剤等の液体医薬製剤の基剤として好適に使用できる。
 本出願は、日本で出願された特願2014-110209を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (10)

  1.  2.0×10個/mL以上のナノバブルを含有するナノバブル水。
  2.  抗菌作用を有する、請求項1記載のナノバブル水。
  3.  界面活性剤、親水性樹脂および/または電解質の存在下で製造される、請求項1記載のナノバブル水。
  4.  ポリソルベート80および/またはポリビニルアルコールの存在下で製造される、請求項1記載のナノバブル水。
  5.  界面活性剤、親水性樹脂および/または電解質の存在下でナノバブル水を製造することを特徴とする、ナノバブル水のナノバブル数を2.0×10個/mL以上に増加させる方法。
  6.  ポリソルベート80および/またはポリビニルアルコールの存在下でナノバブル水を製造することを特徴とする、請求項5記載の方法。
  7.  界面活性剤、親水性樹脂および/または電解質の存在下でナノバブル水を製造することを特徴とする、ナノバブル水のナノバブル数を2.0×10個/mL以上に維持する方法。
  8.  ポリソルベート80および/またはポリビニルアルコールの存在下でナノバブル水を製造することを特徴とする、請求項7記載の方法。
  9.  3ヶ月以上、ナノバブル水のナノバブル数を2.0×10個/mL以上に維持する請求項8記載の方法。
  10.  ナノバブル水が含有するナノバブルの数を、2.0×10個/mL以上にすることを特徴とする、ナノバブル水の抗菌作用を増強する方法。
PCT/JP2015/065218 2014-05-28 2015-05-27 抗菌水 WO2015182647A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/314,187 US10556256B2 (en) 2014-05-28 2015-05-27 Antibacterial water
JP2016523531A JP6913458B2 (ja) 2014-05-28 2015-05-27 抗菌水
EP15799779.2A EP3150559A4 (en) 2014-05-28 2015-05-27 Antibacterial water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014110209 2014-05-28
JP2014-110209 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182647A1 true WO2015182647A1 (ja) 2015-12-03

Family

ID=54698971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065218 WO2015182647A1 (ja) 2014-05-28 2015-05-27 抗菌水

Country Status (4)

Country Link
US (1) US10556256B2 (ja)
EP (1) EP3150559A4 (ja)
JP (1) JP6913458B2 (ja)
WO (1) WO2015182647A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131723A1 (ja) 2017-12-27 2019-07-04 武田薬品工業株式会社 薬物の投与方法
KR20200034287A (ko) * 2018-09-21 2020-03-31 삼육대학교산학협력단 나노버블수를 이용한 나노입자의 제조방법
JP2020094088A (ja) * 2018-12-10 2020-06-18 国立研究開発法人産業技術総合研究所 洗浄溶液、洗浄溶液の製造方法、および洗浄方法
JP2020099862A (ja) * 2018-12-21 2020-07-02 Idec株式会社 ウルトラファインバブル液生成装置
WO2020179842A1 (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 湿式塗装ブース循環水の処理装置および処理方法
WO2020203698A1 (ja) * 2019-03-29 2020-10-08 株式会社Ihi オゾン水製造装置、オゾン水製造方法、オゾン水、オゾン水処理装置、および、評価方法
WO2020262540A1 (ja) 2019-06-26 2020-12-30 武田薬品工業株式会社 トランスフェクション方法
JPWO2020261464A1 (ja) * 2019-06-26 2020-12-30
JP2021021603A (ja) * 2019-07-26 2021-02-18 橋本 博之 放射能処理方法
JPWO2021144889A1 (ja) * 2020-01-15 2021-07-22
JPWO2022010000A1 (ja) * 2021-09-07 2022-01-13
JP2022031841A (ja) * 2017-04-13 2022-02-22 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JP2022064317A (ja) * 2020-10-13 2022-04-25 トスレック株式会社 Ufb水溶液生成装置、ufb水溶液生成方法および水溶液
WO2022186014A1 (ja) * 2021-03-04 2022-09-09 Idec株式会社 ウルトラファインバブル液生成方法およびウルトラファインバブル液生成装置
JP7185390B2 (ja) 2017-04-13 2022-12-07 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
WO2023079812A1 (ja) * 2021-11-04 2023-05-11 キヤノン株式会社 ウルトラファインバブル含有液の製造方法およびウルトラファインバブル含有液の製造装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537203B1 (en) * 2018-03-09 2020-12-23 IMEC vzw An apparatus for displaying a three-dimensional image
KR102641786B1 (ko) * 2023-08-04 2024-02-28 (주)위아 초미세기포를 포함하는 화장료 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206896A (ja) * 2004-12-28 2006-08-10 Sanyo Chem Ind Ltd 微小気泡発生用界面活性剤
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤
WO2011016529A1 (ja) * 2009-08-06 2011-02-10 株式会社協和機設 組成物およびその製造方法
JP2013180956A (ja) * 2012-02-29 2013-09-12 Sunstar Engineering Inc 殺菌剤組成物
WO2014050910A1 (ja) * 2012-09-26 2014-04-03 武田薬品工業株式会社 固体粒子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN172208B (ja) 1990-04-02 1993-05-01 Sint Sa
FR2735978B1 (fr) * 1995-06-30 1997-09-19 Sanofi Sa Composition pharmaceutique d'amiodarone pour administration parenterale
US20100310665A1 (en) * 2007-10-25 2010-12-09 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206896A (ja) * 2004-12-28 2006-08-10 Sanyo Chem Ind Ltd 微小気泡発生用界面活性剤
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤
WO2011016529A1 (ja) * 2009-08-06 2011-02-10 株式会社協和機設 組成物およびその製造方法
JP2013180956A (ja) * 2012-02-29 2013-09-12 Sunstar Engineering Inc 殺菌剤組成物
WO2014050910A1 (ja) * 2012-09-26 2014-04-03 武田薬品工業株式会社 固体粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150559A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309826B2 (ja) 2017-04-13 2023-07-18 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JP7185390B2 (ja) 2017-04-13 2022-12-07 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JP2022031841A (ja) * 2017-04-13 2022-02-22 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JPWO2019131723A1 (ja) * 2017-12-27 2021-01-14 武田薬品工業株式会社 薬物の投与方法
WO2019131723A1 (ja) 2017-12-27 2019-07-04 武田薬品工業株式会社 薬物の投与方法
KR20200034287A (ko) * 2018-09-21 2020-03-31 삼육대학교산학협력단 나노버블수를 이용한 나노입자의 제조방법
KR102594454B1 (ko) * 2018-09-21 2023-10-27 삼육대학교산학협력단 나노버블수를 이용한 나노입자의 제조방법
JP2020094088A (ja) * 2018-12-10 2020-06-18 国立研究開発法人産業技術総合研究所 洗浄溶液、洗浄溶液の製造方法、および洗浄方法
JP7287777B2 (ja) 2018-12-21 2023-06-06 Idec株式会社 ウルトラファインバブル生成方法
JP2020099862A (ja) * 2018-12-21 2020-07-02 Idec株式会社 ウルトラファインバブル液生成装置
WO2020179842A1 (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 湿式塗装ブース循環水の処理装置および処理方法
WO2020203698A1 (ja) * 2019-03-29 2020-10-08 株式会社Ihi オゾン水製造装置、オゾン水製造方法、オゾン水、オゾン水処理装置、および、評価方法
CN113646269A (zh) * 2019-03-29 2021-11-12 株式会社Ihi 臭氧水制造装置、臭氧水制造方法、臭氧水、臭氧水处理装置和评价方法
JPWO2020203698A1 (ja) * 2019-03-29 2020-10-08
JP7314270B2 (ja) 2019-06-26 2023-07-25 武田薬品工業株式会社 トランスフェクション方法
WO2020261464A1 (ja) 2019-06-26 2020-12-30 武田薬品工業株式会社 トランスフェクション方法
WO2020262540A1 (ja) 2019-06-26 2020-12-30 武田薬品工業株式会社 トランスフェクション方法
JPWO2020261464A1 (ja) * 2019-06-26 2020-12-30
JP2021021603A (ja) * 2019-07-26 2021-02-18 橋本 博之 放射能処理方法
JPWO2021144889A1 (ja) * 2020-01-15 2021-07-22
JP7154549B2 (ja) 2020-01-15 2022-10-18 三粧化研株式会社 ナノバブル含有化粧料
WO2021144889A1 (ja) * 2020-01-15 2021-07-22 三粧化研株式会社 ナノバブル含有化粧料
JP2022064317A (ja) * 2020-10-13 2022-04-25 トスレック株式会社 Ufb水溶液生成装置、ufb水溶液生成方法および水溶液
WO2022186014A1 (ja) * 2021-03-04 2022-09-09 Idec株式会社 ウルトラファインバブル液生成方法およびウルトラファインバブル液生成装置
CN116261443A (zh) * 2021-09-07 2023-06-13 日本科玛株式会社 纳米气泡化妆料用外用组合物
JP7180931B2 (ja) 2021-09-07 2022-11-30 日本コルマー株式会社 ナノバブル化粧料用外用組成物
JPWO2022010000A1 (ja) * 2021-09-07 2022-01-13
WO2022010000A3 (ja) * 2021-09-07 2022-03-03 日本コルマー株式会社 ナノバブル化粧料用外用組成物
GB2622125A (en) * 2021-09-07 2024-03-06 Nihon Kilmar Co Ltd Topical composition for nanobubble cosmetic
CN116261443B (zh) * 2021-09-07 2024-05-24 日本科玛株式会社 纳米气泡化妆料用外用组合物
GB2622125B (en) * 2021-09-07 2024-08-21 Toa Inc Topical composition for nanobubble cosmetic
WO2023079812A1 (ja) * 2021-11-04 2023-05-11 キヤノン株式会社 ウルトラファインバブル含有液の製造方法およびウルトラファインバブル含有液の製造装置

Also Published As

Publication number Publication date
EP3150559A1 (en) 2017-04-05
EP3150559A4 (en) 2018-02-21
JPWO2015182647A1 (ja) 2017-04-20
US20170189943A1 (en) 2017-07-06
JP6913458B2 (ja) 2021-08-04
US10556256B2 (en) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2015182647A1 (ja) 抗菌水
EP2367572B1 (en) Formulations comprising ceftiofur and benzyl alcohol
ES2857098T3 (es) Composiciones antimicrobianas y métodos
JP2016028077A (ja) 水性眼科組成物
ES2393675T3 (es) Composición conservante para uso oftálmico
CN108883064B (zh) 包含pvp-i的眼用组合物
US9345779B2 (en) Aqueous ophthalmic composition
UA73954C2 (uk) Водний розчин для внутрішньовенного введення та фармацевтичний розчин, що містять левосимендан
JP5176132B2 (ja) 眼科用剤
JP2017533274A (ja) メトトレキサート製剤
JP4438908B2 (ja) テルペノイドエマルション
WO2017040099A1 (en) Ophthalmic formulations of mycophenolic acid
KR102582560B1 (ko) 아나킨라를 포함하는 조성물
RU2666961C2 (ru) Эмульсионная композиция дифлюпредната, содержащая антимикробный металл
EP2730292A1 (en) Aqueous ophthalmic composition
JP2010265261A (ja) レボカバスチン懸濁型点眼剤
BR102014023050B1 (pt) Processo de obtenção de um sistema nanoestruturado catiônico, sistema nanoestruturado catiônico e seu uso
WO2019131723A1 (ja) 薬物の投与方法
JP2011084521A (ja) アゼラスチン塩酸塩含有カプセル剤
WO2019167979A1 (ja) 保存安定性に優れた医薬組成物
JP4892291B2 (ja) 眼科用防腐組成物
JP5097751B2 (ja) コンタクトレンズの洗浄方法
JP4221073B2 (ja) 乳剤用保存剤および乳剤
JP2012524094A (ja) アニオン性治療剤を含む水性眼用組成物
JP2011126856A (ja) スマトリプタン含有内用液剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523531

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015799779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15314187

Country of ref document: US