WO2015182253A1 - 活性エネルギー線硬化性樹脂組成物、これを用いたハードコート積層フィルム、及び透明樹脂積層体 - Google Patents

活性エネルギー線硬化性樹脂組成物、これを用いたハードコート積層フィルム、及び透明樹脂積層体 Download PDF

Info

Publication number
WO2015182253A1
WO2015182253A1 PCT/JP2015/060820 JP2015060820W WO2015182253A1 WO 2015182253 A1 WO2015182253 A1 WO 2015182253A1 JP 2015060820 W JP2015060820 W JP 2015060820W WO 2015182253 A1 WO2015182253 A1 WO 2015182253A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
mass
hard coat
parts
transparent resin
Prior art date
Application number
PCT/JP2015/060820
Other languages
English (en)
French (fr)
Inventor
保広 板垣
茂一 伊藤
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Priority to US15/315,267 priority Critical patent/US10407590B2/en
Priority to EP15800072.9A priority patent/EP3150640B1/en
Priority to CN201580028711.2A priority patent/CN106459239B/zh
Priority to KR1020167033592A priority patent/KR101873145B1/ko
Publication of WO2015182253A1 publication Critical patent/WO2015182253A1/ja
Priority to US16/529,103 priority patent/US10696861B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/02Characterised by the use of homopolymers or copolymers of esters

Definitions

  • the present invention relates to an active energy ray-curable resin composition and a hard coat laminated film using the same. More specifically, the present invention relates to an active energy ray-curable resin composition capable of forming a hard coat excellent in transparency, color tone, scratch resistance, surface hardness, bending resistance, and surface appearance, and The present invention relates to a hard coat laminated film using The present invention also relates to a transparent resin laminate.
  • the present invention has a small specific gravity, excellent transparency, rigidity, scratch resistance, weather resistance, impact resistance, and workability, and is a vehicle window and windshield, building window and door, electronic
  • the present invention relates to a transparent resin laminate that can be suitably used as a member such as a protection plate for a signboard, a surface member for household appliances such as a refrigerator, a door for furniture such as a cupboard, and a show window.
  • touch panels that are installed on image display devices such as a liquid crystal display, a plasma display, and an electroluminescence display and can be input by touching with a finger or a pen while watching the display have become widespread.
  • glass-based articles have been used for display faceplates of touch panels because they meet required characteristics such as heat resistance, dimensional stability, high transparency, high surface hardness, and high rigidity.
  • glass has disadvantages such as low impact resistance and easy cracking; low workability; difficult to handle; high specific gravity and heavy; difficult to meet demands for curved display and flexibility. Therefore, materials that replace glass have been actively studied for these applications.
  • hard coat laminates in which hard coats with excellent surface hardness and scratch resistance are formed on the surface of transparent resin film substrates such as triacetyl cellulose, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, and norbornene polymers. It has been proposed (see, for example, Patent Document 1). However, its scratch resistance is still insufficient. There is a need for a hard coat forming coating that can maintain surface characteristics such as slipperiness even when repeatedly wiped with a handkerchief or the like.
  • members such as windows and windshields of vehicles, windows and doors of buildings, protection boards for electronic signboards, and show windows also have transparency, rigidity, scratch resistance, weather resistance, etc.
  • Glass based articles have been used because they meet the required properties.
  • glass has been widely used for surface members of home appliances such as refrigerators and furniture doors such as cupboards because of its transparent design.
  • glass has disadvantages such as low impact resistance and easy cracking, low workability, high specific gravity and heavy. Therefore, materials that replace glass have been actively studied for these applications.
  • a transparent resin laminate having a transparent resin layer such as polycarbonate resin or acrylic resin and a hard coat layer has been proposed (see, for example, Patent Documents 2 and 3). However, its scratch resistance is still insufficient. There is a need for a transparent resin laminate that can maintain its initial characteristics even when repeatedly wiped with a wiper or the like or repeatedly wiped with a dust cloth or the like.
  • the first object of the present invention is to provide an active energy ray-curable resin composition capable of forming a hard coat excellent in transparency, color tone, scratch resistance, surface hardness, bending resistance, and surface smoothness, and , Members of image display devices such as liquid crystal displays, plasma displays, and electroluminescence displays using the same (including image display devices having a touch panel function and image display devices not having a touch panel function), particularly as a display face plate of a touch panel.
  • the object is to provide a suitable hard coat laminated film.
  • the second object of the present invention is that the specific gravity is small, the transparency, the rigidity, the scratch resistance, the weather resistance, the impact resistance, and the workability are excellent, and the conventional glass-based article has been used.
  • Transparency that can be suitably used as a member such as a vehicle window or windshield, a building window or door, a protective plate for an electronic signboard, a surface member of a home appliance such as a refrigerator, a furniture door such as a cupboard, or a show window
  • the object is to provide a resin laminate.
  • the present inventor has found that the active energy ray-curable resin composition containing a polyfunctional (meth) acrylate, a compound having a specific functional group, organic titanium, and fine particles having an average particle diameter within a specific range, We found that the first objective can be achieved.
  • the present inventor forms a transparent resin laminate using a paint containing polyfunctional (meth) acrylate, a compound having a specific functional group, organic titanium, and fine particles having an average particle diameter within a specific range.
  • the inventors have found that the second object can be achieved.
  • the first aspect of the present invention for achieving the first object is as follows. [1]. (A) 100 parts by mass of a polyfunctional (meth) acrylate; (B) 0.2 to 4 parts by mass of a compound having an alkoxysilyl group and a (meth) acryloyl group; (C) 0.05 to 3 parts by mass of organic titanium; and (D) an active energy ray-curable resin composition comprising 5 to 100 parts by mass of fine particles having an average particle diameter of 1 to 300 nm. [2].
  • the poly (meth) acrylimide resin film is First poly (meth) acrylimide resin layer ( ⁇ 1); An aromatic polycarbonate resin layer ( ⁇ ); and a second poly (meth) acrylimide resin layer ( ⁇ 2),
  • the hard coat laminated film according to item [6] which is a transparent multilayer film directly laminated in this order. [8].
  • a touch panel display face plate hardware having a hard coat formed from a paint containing an active energy ray-curable resin composition on at least one side of a transparent resin film and satisfying the following requirements (1-i) to (1-v) Coated laminated film: (1-i) 80% or more of total light transmittance; (1-ii) haze of 3.0% or less; (1-iii) Yellowness index of 3 or less; (1-iv) The water contact angle of the touch surface is 100 ° or more; and (1-v) The water contact angle of the touch surface after 20,000 reciprocating cotton wipes is 100 ° or more. [9].
  • the said method including the process of apply
  • the method for producing a hard coat laminated film according to the above [8], (A) 100 parts by mass of a polyfunctional (meth) acrylate; (B) 0.2 to 4 parts by mass of a compound having an alkoxysilyl group and a (meth) acryloyl group; (C) 0.05-3 parts by mass of organic titanium; (D) 5-100 parts by mass of fine particles having an average particle size of 1-300 nm; and (E) a hard coat-forming coating composition comprising an active energy ray-curable resin composition comprising 0.01-7 parts by mass of a water repellent.
  • the said method including the process of apply
  • the (E) water repellent comprises a (meth) acryloyl group-containing fluoropolyether water repellent.
  • a hard coat laminated film produced by the method according to any one of [9] to [11] above. [13]. Use of the hard coat laminated film according to any one of [4] to [8] and [12] as an image display device member. [14].
  • An image display device member comprising the hard coat laminated film according to any one of [4] to [8] and [12].
  • the second aspect of the present invention for achieving the second object is as follows. [15]. Having a hard coat layer and a transparent resin sheet layer in order from the outermost layer side, The hard coat is (A) 100 parts by mass of a polyfunctional (meth) acrylate; (B) 0.2 to 4 parts by mass of a compound having an alkoxysilyl group and a (meth) acryloyl group; (C) 0.05 to 3 parts by mass of organic titanium; and (D) a transparent resin laminate formed from a coating material containing 5 to 100 parts by mass of fine particles having an average particle diameter of 1 to 300 nm. [16].
  • the poly (meth) acrylimide resin sheet is First poly (meth) acrylimide resin layer; An aromatic polycarbonate resin layer; and a second poly (meth) acrylimide resin layer,
  • the transparent resin laminate according to the above item [17] which is a laminate sheet directly laminated in this order. [19].
  • Transparent resin laminate characterized by satisfying the following properties (2-i) to (2-iii): (2-i) 80% or more of total light transmittance; (2-ii) Haze 5% or less; and (2-iii) Yellowness index 3 or less.
  • a vehicle member comprising the transparent resin laminate according to any one of items [15] to [19].
  • a building member comprising the transparent resin laminate according to any one of items [15] to [19].
  • a hard coat laminated film having a hard coat formed from a paint comprising the active energy ray-curable resin composition according to the first aspect of the present invention is transparent, color tone, scratch resistance, surface hardness, bending resistance, Excellent surface appearance. Therefore, this film is a member of an image display device such as a liquid crystal display, a plasma display, and an electroluminescence display (including an image display device having a touch panel function and an image display device not having a touch panel function), particularly a touch panel display face plate. Can be suitably used.
  • the transparent resin laminate according to the second aspect of the present invention has a small specific gravity and is excellent in transparency, rigidity, scratch resistance, weather resistance, impact resistance, and workability.
  • this laminated body is used as a member such as a vehicle window or windshield, a building window or door, a protective plate for an electronic signboard, a surface member of a home appliance such as a refrigerator, a furniture door such as a cupboard, or a show window. It can be used suitably.
  • FIG. 3 is a conceptual diagram of an apparatus used for forming a transparent resin film (p-1) in Examples. In an Example, it is a conceptual diagram of the apparatus used for film forming of the transparent resin sheet.
  • Active energy ray-curable resin composition according to the first aspect of the present invention, and hard coat laminated film using the same 1.
  • Active energy ray-curable resin composition The active energy ray-curable resin composition according to the first aspect of the present invention will be described.
  • the active energy ray-curable resin composition of the present invention contains (A) a polyfunctional (meth) acrylate.
  • the component A is a (meth) acrylate having two or more (meth) acryloyl groups in one molecule. Since this compound has two or more (meth) acryloyl groups in one molecule, it functions to form a hard coat by polymerization and curing with active energy rays such as ultraviolet rays and electron beams.
  • polyfunctional (meth) acrylate examples include diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 2, (2) -Bis (4- (meth) acryloyloxypolyethyleneoxyphenyl) propane and (2) -bis (4- (meth) acryloyloxypolypropyleneoxyphenyl) propane (meth) acryloyl group-containing bifunctional reaction Monomers; (meth) acryloyl group-containing trifunctional reactive monomers such as trimethylolpropane tri (meth) acrylate and trimethylolethane tri (meth) acrylate; (meth) acrylates such as pentaerythritol tetra (meth) acrylate Examples include loyl group-containing tetrafunctional reactive monomers; (meth) acryloyl
  • (meth) acrylate means acrylate or methacrylate.
  • the active energy ray-curable resin composition of the present invention includes (B) a compound having an alkoxysilyl group and a (meth) acryloyl group.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • the component B is distinguished from the component A in that it has an alkoxysilyl group.
  • the compound of component A does not have an alkoxysilyl group.
  • a compound having an alkoxysilyl group and two or more (meth) acryloyl groups in one molecule is Component B.
  • the component B can interact chemically or strongly with the component A by having a (meth) acryloyl group in the molecule and the component D by having an alkoxysilyl group in the molecule.
  • Component B serves to greatly improve the scratch resistance of the hard coat due to such chemical bonds or strong interactions.
  • Component B also interacts with Component E as described above by having a (meth) acryloyl group in the molecule or by having an alkoxysilyl group, or a chemical bond or strong interaction.
  • Component B also serves to prevent troubles such as bleeding out of component E due to such chemical bonds or strong interactions.
  • Examples of the component B include compounds having a chemical structure represented by the general formula “(—SiO 2 RR′—) n ⁇ (—SiO 2 RR ′′ —) m ”.
  • n is a natural number (a positive integer)
  • m is 0 or a natural number.
  • n is a natural number of 2 to 10
  • m is 0 or a natural number of 1 to 10.
  • R is an alkoxy group such as a methoxy group (CH 3 O—) or an ethoxy group (C 2 H 5 O—).
  • R ′ is an acryloyl group (CH 2 ⁇ CHCO—) or a methacryloyl group (CH 2 ⁇ C (CH 3 ) CO—).
  • R ′′ is an alkyl group such as a methyl group (CH 3 ) or an ethyl group (CH 2 CH 3 ).
  • component B one or a mixture of two or more of these can be used.
  • the compounding amount of the component B is 0.2 parts by mass or more, preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the component A from the viewpoint of scratch resistance.
  • the blending amount of the component B is: It is 4 parts by mass or less, preferably 3 parts by mass or less, more preferably 2 parts by mass or less with respect to 100 parts by mass of the component A.
  • the blending ratio of the component B and the component D is usually 0.2 to 80 parts by mass of the component B with respect to 100 parts by mass of the component D.
  • the amount is preferably 0.5 to 15 parts by mass, and more preferably 2 to 7 parts by mass.
  • (C) Organic titanium The active energy ray-curable resin composition of the present invention contains (C) organic titanium.
  • the component C is a component that assists the function of the component B. From the viewpoint of greatly improving the scratch resistance of the hard coat, Component B and Component C show specific compatibility. In addition, component C itself also has a chemical bond or strong interaction with component D and the like, and functions to increase the scratch resistance of the hard coat.
  • organic titanium examples include tetra-i-propoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexyloxy) titanium, titanium-i-propoxyoctylene glycolate, and di-i-propoxybis (acetyl).
  • Acetonato) titanium propanedioxytitanium bis (ethylacetoacetate), tri-n-butoxytitanium monostearate, di-i-propoxytitanium distearate, titanium stearate, di-i-propoxytitanium diisostearate, (2-n-butoxycarbonylbenzoyloxy) tributoxytitanium, di-n-butoxy-bis (triethanolaminato) titanium; and polymers composed of one or more of these.
  • these 1 type, or 2 or more types of mixtures can be used.
  • tetra-i-propoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexyloxy) titanium, and titanium-i-propoxyoctylene glycolate of alkoxytitanium are in terms of scratch resistance and color tone. To preferred.
  • the blending amount of the component C is 0.05 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more from the viewpoint of scratch resistance with respect to 100 parts by mass of the component A.
  • the compounding amount of Component C is 3 parts by mass or less, preferably 2 parts by mass or less, and more preferably 1.5 parts by mass or less with respect to 100 parts by mass of Component A.
  • the blending ratio of the component B and the component C is usually 1.25 to 1500 parts by mass of the component C with respect to 100 parts by mass of the component B.
  • the amount is preferably 5 to 150 parts by mass, and more preferably 20 to 80 parts by mass.
  • the active energy ray-curable resin composition of the present invention includes (D) fine particles having an average particle diameter of 1 to 300 nm.
  • component D functions to increase the surface hardness of the hard coat.
  • the interaction with the component A was weak, which caused the scratch resistance to be insufficient. Therefore, the present invention solves this problem by using the component B that can chemically bond or strongly interact with both the component A and the component D, and the component C that assists the function of the component B. . Therefore, component D is preferably a substance that can chemically bond or strongly interact with component B, and more preferably a substance that can chemically bond or strongly interact with component B and component C. is there.
  • inorganic fine particles or organic fine particles can be used.
  • the inorganic fine particles include silica (silicon dioxide); metal oxide fine particles such as aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, and cerium oxide;
  • metal fluoride fine particles such as magnesium fluoride and sodium fluoride; metal sulfide fine particles; metal nitride fine particles;
  • organic fine particles include resin beads such as a styrene resin, an acrylic resin, a polycarbonate resin, an ethylene resin, and a cured resin of an amino compound and formaldehyde. These can be used alone or in combination of two or more. Any of these substance groups exemplified as component D is considered to be a substance that can at least chemically bond or strongly interact with component B.
  • the surface of the fine particles is a silane coupling agent such as vinylsilane or aminosilane; a titanate coupling agent; Aluminate coupling agent; organic compound having a reactive functional group such as an ethylenically unsaturated bond group such as (meth) acryloyl group, vinyl group or allyl group or epoxy group; surface treatment agent such as fatty acid or fatty acid metal salt What was processed by etc. may be used.
  • fine particles of silica or aluminum oxide are preferable to obtain a hard coat having higher surface hardness, and fine particles of silica are more preferable.
  • examples of commercially available silica fine particles include Snowtex (trade name) manufactured by Nissan Chemical Industries, Ltd. and Quattron (trade name) manufactured by Fuso Chemical Industries, Ltd.
  • the average particle size of the component D is 300 nm or less from the viewpoint of maintaining the transparency of the hard coat and from the viewpoint of surely obtaining the effect of improving the surface hardness of the hard coat.
  • the average particle size of component D is preferably 200 nm or less, and more preferably 120 nm or less. On the other hand, there is no particular reason for limiting the lower limit of the average particle diameter, but normally available fine particles are fine at most about 1 nm.
  • the average particle size of the fine particles is the particle size distribution curve measured using a laser diffraction / scattering particle size analyzer “MT3200II (trade name)” manufactured by Nikkiso Co., Ltd. Is the particle diameter at which the accumulation of 50% by mass.
  • the compounding amount of the component D is 5 parts by mass or more, preferably 20 parts by mass or more from the viewpoint of surface hardness with respect to 100 parts by mass of the component A.
  • the amount of component D is 100 parts by mass or less, preferably 70 parts by mass or less, and more preferably 50 parts by mass or less with respect to 100 parts by mass of the component A.
  • the active energy ray-curable resin composition of the present invention further includes (E) 0.01 to 7 parts by mass of a water repellent from the viewpoint of improving slipperiness, preventing adhesion of dirt, and wiping of dirt. (A) (Amount based on 100 parts by mass of polyfunctional (meth) acrylate) is preferably included.
  • water repellent examples include wax-based water repellents such as paraffin wax, polyethylene wax, and acrylic / ethylene copolymer wax; silicon-based water repellents such as silicon oil, silicon resin, polydimethylsiloxane, and alkylalkoxysilane; Examples thereof include fluorine-containing water repellents such as fluoropolyether water repellents and fluoropolyalkyl water repellents.
  • wax-based water repellents such as paraffin wax, polyethylene wax, and acrylic / ethylene copolymer wax
  • silicon-based water repellents such as silicon oil, silicon resin, polydimethylsiloxane, and alkylalkoxysilane
  • fluorine-containing water repellents such as fluoropolyether water repellents and fluoropolyalkyl water repellents.
  • these 1 type, or 2 or more types of mixtures can be used.
  • fluoropolyether water repellents are preferred from the viewpoint of water repellent performance.
  • the component E includes a (meth) acryloyl group and a fluoro A water repellent containing a compound containing a polyether group (hereinafter abbreviated as (meth) acryloyl group-containing fluoropolyether water repellent) is more preferable.
  • Component E is an acryloyl group-containing fluoropolyether-based water repellent from the viewpoint of appropriately adjusting the chemical bond or interaction between Component A or Component B and Component E, and expressing good water repellency while maintaining high transparency.
  • An admixture of an agent and a methacryloyl group-containing fluoropolyether water repellent may be used.
  • the blending amount is usually 7 parts by mass or less, preferably 4 parts by mass or less, more preferably from the viewpoint of preventing troubles such as bleeding out of the component E with respect to 100 parts by mass of the component A. Is 2 parts by mass or less.
  • the lower limit of the amount of component E is an optional component and is not particularly limited. However, from the viewpoint of obtaining a desired effect, it is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0. 1 part by mass or more.
  • the active energy ray-curable resin composition of the present invention includes a compound having two or more isocyanate groups (—N ⁇ C ⁇ O) in one molecule from the viewpoint of improving curability by active energy rays, and It is preferable to further include a photopolymerization initiator.
  • Examples of the compound having two or more isocyanate groups in one molecule include methylene bis-4-cyclohexyl isocyanate; trimethylol propane adduct of tolylene diisocyanate, trimethylol propane adduct of hexamethylene diisocyanate, trimethylol of isophorone diisocyanate.
  • Polyisocyanates such as propane adduct, isocyanurate of tolylene diisocyanate, isocyanurate of hexamethylene diisocyanate, isocyanurate of isophorone diisocyanate, biuret of hexamethylene diisocyanate; and urethanes such as block isocyanates of the above polyisocyanates
  • a crosslinking agent etc. can be mentioned.
  • the compound having two or more isocyanate groups in one molecule one or a mixture of two or more thereof can be used.
  • a catalyst such as dibutyltin dilaurate or dibutyltin diethylhexoate may be added as necessary.
  • photopolymerization initiator examples include benzophenone, methyl-o-benzoylbenzoate, 4-methylbenzophenone, 4,4′-bis (diethylamino) benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl.
  • Benzophenone compounds such as -4'-methyldiphenyl sulfide, 3,3 ', 4,4'-tetra (tert-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone; benzoin, benzoin methyl ether, benzoin Benzoin compounds such as ethyl ether, benzoin isopropyl ether, benzyl methyl ketal; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone Acetophenone compounds; methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and other anthraquinone compounds; thioxanthone, 2,4-diethylthioxanthone, thioxanthone compounds such as 2,4-diisopropylthioxanthone; alkyl such as
  • the active energy ray-curable resin composition of the present invention includes an antistatic agent, a surfactant, a leveling agent, a thixotropic agent, a stain-preventing agent, a printability improving agent, an antioxidant, a weather resistance, if desired.
  • an antistatic agent such as a stability stabilizer, a light resistance stabilizer, a ultraviolet absorber, a heat stabilizer, a coloring agent, and a filler, may be included.
  • the active energy ray-curable resin composition of the present invention is diluted to a concentration that facilitates coating, it may contain a solvent as desired.
  • the solvent is not particularly limited as long as it does not react with the above components A to D and other optional components or catalyze (promote) the self-reaction (including deterioration reaction) of these components.
  • the solvent include 1-methoxy-2-propanol, ethyl acetate, n-butyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, and acetone.
  • the above active energy ray-curable resin composition can be obtained by mixing and stirring these components.
  • Hard coat laminated film The hard coat laminated film according to the first aspect of the present invention will be described.
  • the hard coat laminated film of the present invention can be preferably obtained by forming a hard coat made of a paint containing the active energy ray-curable resin composition of the present invention on at least one side of a transparent resin film.
  • the hard coat is formed on at least one side of the transparent resin film, preferably on both sides from the viewpoint of curling resistance.
  • the hard coat laminated film has, in order from the outermost layer side, a first hard coat layer; a transparent resin film layer; and a second hard coat layer, wherein the first hard coat layer is an activity of the present invention. It is formed from the coating material containing an energy-beam curable resin composition.
  • surface layer side means that an article formed from a hard coat laminate having a multilayer structure is closer to the outer surface (touch surface in the case of a touch panel display face plate) when used for on-site use. means.
  • the hard coat of the hard coat laminated film is not limited to one layer, and may be two or more layers.
  • the transparent resin film layer is not limited to one layer, and may be two or more layers.
  • the hard coat laminated film may have an arbitrary layer other than the hard coat and the transparent resin film, if desired.
  • the optional layer include an anchor coat layer, an adhesive layer, a transparent conductive layer, a high refractive index layer, a low refractive index layer, and an antireflection functional layer.
  • the method for forming a hard coat using a hard coat forming coating containing the active energy ray-curable resin composition of the present invention is not particularly limited, and a known web coating method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating.
  • the thickness of the hard coat is not particularly limited, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, more preferably from the viewpoint of surface hardness, rigidity, heat resistance, and dimensional stability of the hard coat laminated film. May be 20 ⁇ m or more.
  • the thickness of the hard coat is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoints of cutting workability of the hard coat laminated film and web handling properties.
  • the said transparent resin film is a layer used as the transparent film base material for forming the said hard coat.
  • the transparent resin film is not limited except that it has high transparency and is not colored, and any transparent resin film can be used.
  • transparent resin films include cellulose ester resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate; cyclic hydrocarbon resins such as ethylene norbornene copolymers; acrylic resins such as polymethyl methacrylate and polyethyl methacrylate.
  • the transparent resin film includes an unstretched film, a uniaxially stretched film, and a biaxially stretched film. Moreover, these 1 type, or 2 or more types of laminated
  • the transparent resin film is preferably a poly (meth) acrylimide resin film.
  • a poly (meth) acrylimide resin film By using a poly (meth) acrylimide resin film, it becomes a hard coat laminated film excellent in surface hardness, scratch resistance, transparency, surface smoothness, appearance, rigidity, heat resistance, and dimensional stability. It can be suitably used as a display face plate or a transparent conductive substrate.
  • the above poly (meth) acrylimide resin introduces the characteristics of excellent heat resistance and dimensional stability of polyimide resin while maintaining the characteristics of acrylic resin such as high transparency, high surface hardness and high rigidity. To a reddish brown color.
  • the poly (meth) acrylimide resin is disclosed in, for example, JP-T-2011-519999.
  • poly (meth) acrylimide means polyacrylimide or polymethacrylamide.
  • poly (meth) acrylimide-type resin from the objective of using a hard coat laminated film for optical articles, such as a touch panel, it is not restrict
  • a preferable example of the poly (meth) acrylimide resin is a yellowness index (measured using a chromaticity meter “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation according to JIS K7105: 1981). The following can be mentioned.
  • the yellowness index of the poly (meth) acrylimide resin is more preferably 2 or less, and still more preferably 1 or less.
  • a preferred poly (meth) acrylimide resin has a melt mass flow rate (measured in accordance with ISO 1133 at 260 ° C. and 98.07 N) of 0.1 to 20 g. / 10 minutes.
  • the melt mass flow rate of the poly (meth) acrylimide resin is more preferably 0.5 to 10 g / 10 min.
  • the glass transition temperature of the poly (meth) acrylimide resin is preferably 150 ° C. or higher from the viewpoint of heat resistance.
  • the glass transition temperature is more preferably 170 ° C. or higher.
  • the poly (meth) acrylimide-based resin may be a thermoplastic resin other than the poly (meth) acrylimide-based resin; a pigment, an inorganic filler, an organic filler, a resin as long as it does not contradict the purpose of the present invention. Fillers; additives such as lubricants, antioxidants, weather resistance stabilizers, heat stabilizers, mold release agents, antistatic agents, and surfactants may be further included. The amount of these optional components is usually about 0.01 to 10 parts by mass when the poly (meth) acrylimide resin is 100 parts by mass.
  • Examples of commercially available poly (meth) acrylimide resins include “PLEXIMID TT70” (trade name) manufactured by Evonik.
  • the poly (meth) acrylimide resin film is preferably a first poly (meth) acrylimide resin layer ( ⁇ 1); an aromatic polycarbonate resin layer ( ⁇ ); a second poly (meth) acrylimide resin.
  • the layer ( ⁇ 2) is a transparent multilayer film directly laminated in this order. In the present specification, a hard coat laminated film will be described on the assumption that a touch surface is formed on the ⁇ 1 layer side.
  • Poly (meth) acrylimide resins are generally excellent in heat resistance and surface hardness, but are likely to have insufficient machinability.
  • the aromatic polycarbonate resin is excellent in machinability but tends to have insufficient heat resistance and surface hardness. Therefore, by using the transparent multilayer film having the above-described layer configuration, it is possible to easily obtain a hard coat laminated film that compensates for the weaknesses of both and is excellent in any of heat resistance, surface hardness, and cutting workability. Become.
  • the layer thickness of the ⁇ 1 layer is not particularly limited, but may be usually 20 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 60 ⁇ m or more from the viewpoint of heat resistance and surface hardness of the hard coat laminated film of the present invention.
  • the layer thickness of the ⁇ 2 layer is not particularly limited, but is preferably the same layer thickness as the ⁇ 1 layer from the viewpoint of curl resistance of the hard coat laminated film of the present invention.
  • the “same layer thickness” should not be interpreted as the same layer thickness in a physicochemically strict sense. It should be construed that the layer thickness is the same within the range of process and quality control that is usually performed industrially. This is because the curl resistance of the multilayer film can be kept good if the layer thickness is the same within the range of the amplitude of process and quality control that is usually performed industrially.
  • the layer thicknesses of 65 ⁇ m and 75 ⁇ m should be interpreted as the same. is there.
  • “the same layer thickness” is also referred to as “substantially the same layer thickness”.
  • the layer thickness of the ⁇ layer is not particularly limited, but may be usually 20 ⁇ m or more, preferably 80 ⁇ m or more, more preferably 120 ⁇ m or more from the viewpoint of cutting resistance of the hard coat laminated film of the present invention.
  • the poly (meth) acrylimide resin used for the ⁇ 1 layer and the ⁇ 2 layer has been described above.
  • the poly (meth) acrylimide resin used for the ⁇ 1 layer and the poly (meth) acrylimide resin used for the ⁇ 2 layer have different resin characteristics, such as those having different melt mass flow rate and glass transition temperature.
  • (Meth) acrylimide resin can be used.
  • aromatic polycarbonate resin used for the ⁇ layer examples include aromatic dihydroxy compounds such as bisphenol A, dimethylbisphenol A, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and phosgene.
  • One or a mixture of two or more aromatic polycarbonate resins such as a polymer obtained by a transesterification reaction with a diester can be used.
  • the aromatic polycarbonate resin include core-shell rubber.
  • the core-shell rubber is 0-30 parts by mass (aromatic polycarbonate-based resin 100-70 parts by mass), preferably 0-10 parts by mass (aromatic By using it in an amount of 100 to 90 parts by mass of a polycarbonate-based resin, cutting resistance and impact resistance can be further improved.
  • the core shell rubber examples include methacrylic ester / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / ethylene / propylene rubber graft copolymer, and acrylonitrile / styrene / acrylic.
  • core-shell rubbers such as acid ester graft copolymers, methacrylic acid ester / acrylic acid ester rubber graft copolymers, and methacrylic acid ester / acrylonitrile / acrylic acid ester rubber graft copolymers. A mixture of one or more of these core-shell rubbers can be used.
  • the aromatic polycarbonate-based resin may be a thermoplastic resin other than the aromatic polycarbonate-based resin or the core-shell rubber; a pigment, an inorganic filler, an organic filler, a resin filler; Further, additives such as an antioxidant, a weather resistance stabilizer, a heat stabilizer, a release agent, an antistatic agent, and a surfactant can be further included.
  • the amount of these optional components is usually about 0.01 to 10 parts by mass, where the total of the aromatic polycarbonate resin and the core-shell rubber is 100 parts by mass.
  • the production method for obtaining the poly (meth) acrylimide resin film is not particularly limited.
  • the poly (meth) acrylimide is obtained from the T die.
  • Examples thereof include a method including a step of supplying and pressing a molten film of an imide resin.
  • the production method of the transparent multilayer film in which the ⁇ 1, ⁇ , and ⁇ 2 layers are directly laminated in this order is not particularly limited.
  • T die used in the step (A) or the step (A ′) can be any known one.
  • a manifold die, a fish tail die, and a coat hanger die can be used.
  • coextrusion apparatus Any known apparatus can be used as the coextrusion apparatus.
  • a co-extrusion apparatus such as a feed block system, a multi-manifold system, and a stack plate system can be used.
  • any known one can be used as the extruder used in the step (A) or the step (A ′).
  • a single screw extruder, a same direction rotating twin screw extruder, and a different direction rotating twin screw extruder can be exemplified.
  • the poly (meth) acrylimide resin is a highly hygroscopic resin, it is preferably dried before being used for film formation.
  • it is one of preferable methods that the poly (meth) acrylimide resin dried by the dryer is directly transported from the dryer to the extruder and charged.
  • the set temperature of the dryer is preferably 100 to 150 ° C. It is also a preferred method to provide a vacuum vent in the extruder (usually in the metering zone at the screw tip).
  • the temperature of the T die used in the step (A) or the step (A ′) is a continuous extrusion or coextrusion of a poly (meth) acrylimide resin melt film or a transparent multilayer film melt film.
  • it is preferable to set it at least 260 degreeC or more. More preferably, it is 270 degreeC or more.
  • the temperature of the T die is preferably set to 350 ° C. or lower.
  • the ratio (R / T) between the lip opening (R) and the thickness (T) of the resulting poly (meth) acrylimide film is preferably 10 or less from the viewpoint of preventing the retardation from increasing. Is more preferable. Further, the ratio (R / T) is preferably 1 or more, more preferably 1.5 or more, from the viewpoint of preventing the extrusion load from becoming excessive.
  • Examples of the first mirror body used in the step (B) or the step (B ′) include a mirror roll and a mirror belt.
  • a mirror roll and a mirror belt As said 2nd mirror surface body, a mirror surface roll, a mirror surface belt, etc. can be mentioned, for example.
  • the above mirror roll is a roll whose surface is mirror finished.
  • the material of the mirror roll include metal, ceramic, and silicon rubber.
  • the surface of the mirror roll can be subjected to chrome plating, iron-phosphorus alloy plating, hard carbon treatment by PVD method or CVD method, etc. for the purpose of protection from corrosion and scratches.
  • the above-mentioned mirror belt is a seamless belt, usually made of metal, whose surface is mirror-finished.
  • the mirror belt is, for example, circulated between a pair of belt rollers.
  • the surface of the mirror belt can be subjected to chrome plating, iron-phosphorus alloy plating, hard carbon treatment by PVD method or CVD method for the purpose of protection from corrosion and scratches.
  • Mirror surface processing is not limited and can be performed by any method.
  • the arithmetic average roughness (Ra) of the surface of the mirror body is preferably 100 nm or less, more preferably 50 nm or less, and the ten-point average roughness (Rz) is preferably The method of making it 500 nm or less, More preferably, 250 nm or less can be mentioned.
  • a poly (meth) acrylimide resin film or a transparent multilayer film excellent in transparency, surface smoothness, and appearance can be obtained by the above-described film forming method.
  • the highly smooth surface state of the first mirror body and the second mirror body is a film. It can be considered that a defective portion such as a die stripe is corrected.
  • the surface temperature of the first mirror body is 100 ° C. or higher so that the above surface state can be transferred satisfactorily.
  • the surface temperature is more preferably 120 ° C. or higher, still more preferably 130 ° C. or higher.
  • the surface temperature of the first mirror body is preferably 200 ° C. or less, more preferably 160 ° C. or less, in order to prevent appearance defects (peeling marks) due to peeling with the first mirror body from appearing on the film. .
  • the surface temperature of the second mirror body it is preferable to set the surface temperature of the second mirror body to 20 ° C. or higher so that the transfer of the surface state can be performed satisfactorily.
  • the surface temperature is more preferably 60 ° C. or higher, and still more preferably 100 ° C. or higher.
  • the surface temperature of the second mirror body is preferably 200 ° C. or less, more preferably 160 ° C. or less in order to prevent appearance defects (peeling marks) accompanying the peeling with the second mirror body from appearing on the film. .
  • the surface temperature of the first mirror body is preferably higher than the surface temperature of the second mirror body. This is because the film is held in the first mirror body and sent to the next transfer roll.
  • the hard coat forming surface or both surfaces of the poly (meth) acrylimide resin film or the transparent multilayer film, which is a transparent film substrate for forming the hard coat.
  • easy adhesion treatment such as corona discharge treatment or anchor coat formation may be performed in advance.
  • good interlayer adhesion strength can be obtained by setting the wetting index (measured in accordance with JIS K6768: 1999) to 50 mN / m or more, preferably 60 mN / m or more. It becomes like this. Further, after the corona discharge treatment, an anchor coat may be further formed.
  • a film is passed between an insulated electrode and a dielectric roll, a high frequency high voltage is applied to generate a corona discharge, and the film surface is treated.
  • Oxygen and the like are ionized by the corona discharge and collide with the film surface, so that the resin molecular chain is broken or the oxygen-containing functional group is added to the resin molecular chain on the film surface, and the wetting index is increased.
  • the unit area and the treatment amount (S) per unit time of the corona discharge treatment are determined from the viewpoint of obtaining the above wetting index, and are usually 80 W ⁇ min / m 2 or more, preferably 120 W ⁇ min / m 2 or more. . Further, from the viewpoint of preventing the deterioration of the film, the processing amount (S) is preferably suppressed to 500 W ⁇ min / m 2 or less. The processing amount (S) is more preferably 400 W ⁇ min / m 2 or less.
  • the processing amount (S) is defined by the following equation.
  • S P / (L ⁇ V)
  • S throughput (W ⁇ min / m 2 )
  • P discharge power
  • L length of discharge electrode
  • V line speed (m / min).
  • the anchor coat agent for forming the anchor coat is not limited except that it has high transparency and is not colored.
  • the anchor coating agent for example, known materials such as polyester, acrylic, polyurethane, acrylic urethane, and polyester urethane can be used. Of these, a thermoplastic urethane anchor coating agent is preferred from the viewpoint of improving the adhesive strength with the hard coat.
  • a paint containing a silane coupling agent can be used as the anchor coating agent.
  • Silane coupling agents include hydrolyzable groups (for example, alkoxy groups such as methoxy group and ethoxy group; acyloxy groups such as acetoxy group; halogen groups such as chloro group) and organic functional groups (for example, amino group, vinyl group) Group, epoxy group, methacryloxy group, acryloxy group, isocyanate group, and the like).
  • Such a silane coupling agent functions to improve the adhesive strength with the hard coat.
  • a silane coupling agent having an amino group is preferred from the viewpoint of improving the adhesive strength with the hard coat.
  • the paint containing the silane coupling agent is a paint containing the silane coupling agent as a main component (50% by mass or more as a solid content). Preferably, 75% by mass or more, more preferably 90% by mass or more of the solid content of the paint is the silane coupling agent.
  • silane coupling agent having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N- 2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, and the like.
  • silane coupling agent having an amino group one or a mixture of two or more of these can be used.
  • the method for forming the anchor coat using the anchor coat agent is not limited, and a known method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating. At this time, an optional diluting solvent such as methanol, ethanol, 1-methoxy-2-propanol, n-butyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and acetone may be used as necessary. it can.
  • an optional diluting solvent such as methanol, ethanol, 1-methoxy-2-propanol, n-butyl acetate, toluene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and acetone may be used as necessary. it can.
  • the anchor coating agent has an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an ultraviolet absorber, a heat stabilizer, an antistatic agent, a surfactant, and a coloring agent as long as the object of the present invention is not adversely affected.
  • One kind or two or more kinds of additives such as an agent, an infrared shielding agent, a leveling agent, a thixotropic agent, and a filler may be contained.
  • the thickness of the anchor coat is usually about 0.01 to 5 ⁇ m, preferably 0.1 to 2 ⁇ m.
  • the thickness of the transparent resin film is not particularly limited, but may be usually 20 ⁇ m or more, preferably 50 ⁇ m or more from the viewpoint of handleability.
  • the thickness of the transparent resin film is usually 100 ⁇ m or more, preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more from the viewpoint of maintaining rigidity.
  • the thickness of the transparent resin film is usually 1500 ⁇ m or less, preferably 1200 ⁇ m or less, more preferably 1000 ⁇ m or less.
  • the thickness of the transparent resin film may be usually 250 ⁇ m or less, preferably 150 ⁇ m or less, from the viewpoint of economy.
  • the hard coat laminated film of the present invention preferably has a total light transmittance when measured using a turbidimeter “NDH2000 (trade name)” of Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1: 1997. 80% or more.
  • NDH2000 trade name
  • the total light transmittance is preferably as high as possible, more preferably 85% or more, and still more preferably 90% or more.
  • the hard coat laminated film of the present invention preferably has a haze of 3.0% or less when measured using a turbidimeter “NDH2000 (trade name)” of Nippon Denshoku Industries Co., Ltd. according to JIS K7136: 2000. It is. By being highly transparent with a haze of 3.0% or less, the hard coat laminated film can be suitably used for a display face plate of a touch panel.
  • the haze is preferably as low as possible, more preferably 2.0% or less, still more preferably 1.5% or less.
  • the hard coat laminated film of the present invention preferably has a yellowness index of 3 or less when measured using a color meter “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation according to JIS K7105: 1981. is there. By having no yellowness index of 3 or less, the hard coat laminated film can be suitably used for a display face plate of a touch panel.
  • the yellowness index is preferably as low as possible, more preferably 2 or less, and still more preferably 1 or less.
  • the water contact angle measured by the following method (4) (Example) on the touch surface of the hard coat laminated film is 100 degrees or more.
  • the “touch surface” of the hard coat laminated film here means a surface to be touched with a finger or a pen on the touch panel display face plate to perform an input operation.
  • the touch panel can be operated by sliding a finger or a pen as desired on the touch surface of the hard coat laminated film. From the viewpoint of sliding a finger or pen as desired, the water contact angle is preferably higher, more preferably 105 degrees or more.
  • the upper limit of the water contact angle is not particularly limited, but about 120 degrees is usually sufficient from the viewpoint of slipperiness.
  • the water after 20,000 reciprocating cotton wipes measured by the method of (5) (Example) below on the touch surface of the hard coat laminated film.
  • the contact angle is 100 degrees or more.
  • the water contact angle after 20,000 reciprocating cotton wiping of the touch surface is 100 degrees or more, surface characteristics such as slipperiness can be maintained even when the touch surface is repeatedly wiped with a handkerchief or the like.
  • the water contact angle after 20,000 reciprocating cotton swabs is preferably 105 degrees or more. On the other hand, although there is no upper limit of the water contact angle after 20,000 reciprocating cotton swabs, about 120 degrees is usually sufficient from the viewpoint of slipperiness.
  • the term “sheet” is intended to include a film or a plate.
  • the term “resin” is intended to include a resin mixture containing two or more resins and a resin composition containing components other than resins.
  • the transparent resin laminate of the present invention has a hard coat layer and a transparent resin sheet layer in order from the outermost layer side.
  • This transparent resin laminate has high transparency and is not colored for the purpose of being used as a material replacing glass.
  • the meaning of “surface layer side” here is as described above.
  • the transparent resin laminate of the present invention has at least a hard coat layer on the surface of the outermost layer side of the transparent resin sheet layer. Furthermore, the transparent resin laminate of the present invention may have a hard coat layer on the other surface of the transparent resin sheet layer.
  • Active energy ray curable resin composition for hard coat layer formation The hard coat on the surface of the outermost layer side of the transparent resin sheet layer is formed from a paint containing the active energy ray curable resin composition and is scratch-resistant. Excellent in resistance and scratch resistance.
  • the coating material containing this active energy ray-curable resin composition will be described.
  • the active energy ray-curable resin composition used for forming the hard coat of the transparent resin laminate according to the second aspect includes (A) a polyfunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate is not particularly limited as long as it has two or more (meth) acryloyl groups in one molecule, but is the same as the active energy ray-curable resin composition according to the first aspect. Can be used.
  • the active energy ray-curable resin composition used for forming the hard coat of the transparent resin laminate according to the second aspect includes a compound having (B) an alkoxysilyl group and a (meth) acryloyl group.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • the component B is distinguished from the component A in that it has an alkoxysilyl group.
  • the compound of component A does not have an alkoxysilyl group.
  • a compound having an alkoxysilyl group and two or more (meth) acryloyl groups in one molecule is Component B.
  • the compound having an alkoxysilyl group and a (meth) acryloyl group is not particularly limited as long as it is within the scope of this definition, but the same compound as the active energy ray-curable resin composition according to the first aspect is used. be able to. Moreover, you may adjust the compounding quantity of the compound which has an alkoxy silyl group and a (meth) acryloyl group similarly to the active energy ray-curable resin composition which concerns on said 1st aspect.
  • the active energy ray-curable resin composition used for forming the hard coat of the transparent resin laminate according to the second aspect includes (C) organic titanium.
  • organic titanium the same thing as the active energy ray curable resin composition which concerns on said 1st aspect can be used. Moreover, you may adjust the compounding quantity of organic titanium similarly to the active energy ray-curable resin composition which concerns on said 1st aspect.
  • the active energy ray-curable resin composition used for forming the hard coat of the transparent resin laminate according to the second aspect includes (D) fine particles having an average particle diameter of 1 to 300 nm.
  • the fine particles those similar to the active energy ray-curable resin composition according to the first aspect can be used.
  • fine-particles similarly to the active energy ray curable resin composition which concerns on said 1st aspect.
  • the active energy ray-curable resin composition used for forming the hard coat of the transparent resin laminate according to the second aspect is preferably from the viewpoint of enhancing the adhesion prevention property of dirt and the wiping property of dirt.
  • a water repellent may be further included. As this water repellent, the same thing as the active energy ray-curable resin composition which concerns on said 1st aspect can be used. Moreover, you may adjust the compounding quantity of a water repellent similarly to the active energy ray-curable resin composition which concerns on said 1st aspect.
  • the active energy ray-curable resin composition includes a compound having two or more isocyanate groups (—N ⁇ C ⁇ O) in one molecule and / or from the viewpoint of improving curability by active energy rays. It is preferable to further contain a photopolymerization initiator. Such a compound having two or more isocyanate groups (—N ⁇ C ⁇ O) and a photopolymerization initiator in one molecule are the same as those in the active energy ray-curable resin composition according to the first aspect. Can be used.
  • the active energy ray curable resin composition is, as desired, an antistatic agent, a surfactant, a leveling agent, a thixotropic agent, a stain inhibitor, a printability improver, an antioxidant, a weather resistance stabilizer, One type or two or more types of additives such as a light resistance stabilizer, an ultraviolet absorber, a heat stabilizer, a colorant, and a filler may be included.
  • the active energy ray-curable resin composition is diluted to a concentration that allows easy application, it may contain a solvent as desired.
  • the solvent is not particularly limited as long as it does not react with the above components A to D and other optional components or catalyze (promote) the self-reaction (including deterioration reaction) of these components.
  • the same solvent as the active energy ray-curable resin composition according to the first aspect can be used.
  • the above active energy ray-curable resin composition can be obtained by mixing and stirring these components.
  • Hard Coat Layer The method for forming a hard coat using a hard coat forming paint containing the active energy ray-curable resin composition is not particularly limited, and a known web coating method can be used. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, and die coating.
  • the thickness of the hard coat layer is not particularly limited, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably, from the viewpoint of scratch resistance and scratch resistance of the transparent resin laminate of the present invention. May be 20 ⁇ m or more.
  • the thickness of the hard coat layer may be preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of cutting workability and handling properties of the transparent resin laminate of the present invention.
  • the layer of the transparent resin sheet is not limited except that it has high transparency and is not colored for the purpose of using the transparent resin laminate of the present invention as a material to replace glass. Any transparent resin sheet can be used.
  • transparent resin sheets include cellulose ester resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate; cyclic hydrocarbon resins such as ethylene norbornene copolymers; acrylics such as polymethyl methacrylate and polyethyl methacrylate Polyresin; Poly (meth) acrylimide resin; Aromatic polycarbonate resin; Polyolefin resin such as polypropylene and 4-methyl-pentene-1; Polyamide resin; Polyarylate resin; Polymer type urethane acrylate resin; A sheet of polyimide resin or the like can be used.
  • the transparent resin sheet includes an unstretched sheet, a uniaxially stretched sheet, and a biaxially stretched sheet. Moreover, these 1 type, or 2 or more types of laminated sheets
  • A1 a poly (meth) acrylimide resin sheet;
  • A2) Acrylic resin sheet;
  • A3) an aromatic polycarbonate resin sheet;
  • A5) A laminated sheet of one or more of the transparent resin sheets a1 to a4.
  • the (a1) poly (meth) acrylimide resin sheet is a sheet formed from a resin containing a poly (meth) acrylimide resin as a main component.
  • the “main component” here means usually 80% by mass or more, preferably 90% by mass or more.
  • the above poly (meth) acrylimide resin introduces the characteristics of excellent heat resistance and dimensional stability of polyimide resin while maintaining the characteristics of acrylic resin such as high transparency, high surface hardness and high rigidity. To a reddish brown color.
  • the poly (meth) acrylimide resin is disclosed in, for example, JP-T-2011-519999.
  • poly (meth) acrylimide means polyacrylimide or polymethacrylamide.
  • the poly (meth) acrylimide resin is not limited except that it has high transparency for the purpose of using a transparent resin laminate as a material to replace glass, and any known poly (meth) acrylimide resin. Can be used.
  • a preferred example of the poly (meth) acrylimide resin is a yellowness index (measured using a chromaticity meter “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation according to JIS K7105: 1981). The following can be mentioned.
  • the yellowness index of the poly (meth) acrylimide resin is more preferably 2 or less, and still more preferably 1 or less.
  • a preferred poly (meth) acrylimide resin has a melt mass flow rate (measured in accordance with ISO 1133 at 260 ° C. and 98.07 N) of 0.1 to 20 g. / 10 minutes.
  • the melt mass flow rate of the poly (meth) acrylimide resin is more preferably 0.5 to 10 g / 10 min.
  • the glass transition temperature of the poly (meth) acrylimide resin is preferably 150 ° C. or higher from the viewpoint of heat resistance.
  • the glass transition temperature is more preferably 170 ° C. or higher.
  • the poly (meth) acrylimide resin can further contain other additives as desired, as long as the object of the present invention is not adversely affected.
  • the kind and blending amount of the optional component are the same as those used for the active energy ray-curable resin composition according to the first embodiment.
  • PLEXIMID TT70 (trade name) of Evonik Co., Ltd. is used in the same manner as that used for the active energy ray-curable resin composition according to the first embodiment. Or the like.
  • the acrylic resin sheet is a sheet formed of a resin containing an acrylic resin such as polymethyl methacrylate and polyethyl methacrylate as a main component.
  • the “main component” here means usually 50% by mass or more, preferably 60% by mass or more.
  • acrylic resin examples include, for example, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, poly (meth) acrylate butyl, methyl (meth) acrylate ⁇ (meth ) (Meth) acrylic acid ester (co) polymer such as butyl acrylate copolymer, (meth) ethyl acrylate / (meth) butyl acrylate copolymer; ethylene / methyl (meth) acrylate copolymer, One or a mixture of two or more acrylic resins (Acry) such as a copolymer containing a (meth) acrylic ester such as a styrene / methyl methacrylate copolymer, and a methacrylate ester / styrene / butadiene Rubber graft copolymer, acrylonitrile / styrene / but
  • (meth) acryl here means acryl or methacryl.
  • the (co) polymer means a polymer or a copolymer.
  • the mixing ratio of the above Acry and the above Core is preferably Acry 50 to 85 parts by mass: Core 50 to 15 parts by mass, more preferably Acry 60 to 75 parts by mass: Core 40 to 25, when the total of both is 100 parts by mass. Part by mass.
  • thermoplastic resins other than the above Acry and Core include thermoplastic resins other than the above Acry and Core; pigments, inorganic fillers, organic fillers, resin fillers; lubricants, antioxidants, and weathering stabilizers. , Thermal stabilizers, mold release agents, antistatic agents, nucleating agents, and additives such as surfactants.
  • the amount of these optional components is usually 25 parts by mass or less, preferably about 0.01 to 10 parts by mass when the total of Acry and Core is 100 parts by mass.
  • the (a3) aromatic polycarbonate resin sheet is a sheet formed of a resin containing an aromatic polycarbonate resin as a main component.
  • the “main component” here means usually 70% by mass or more, preferably 90% by mass or more.
  • aromatic polycarbonate resin examples include interfacial weight between an aromatic dihydroxy compound such as bisphenol A, dimethylbisphenol A, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and phosgene.
  • an aromatic dihydroxy compound such as bisphenol A, dimethylbisphenol A, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and phosgene.
  • ester of aromatic dihydroxy compound such as bisphenol A, dimethyl bisphenol A, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • diester carbonate such as diphenyl carbonate
  • One or a mixture of two or more aromatic polycarbonate resins such as a polymer obtained by an exchange reaction can be used.
  • the aromatic polycarbonate resin include core-shell rubber.
  • the core-shell rubber is 0-30 parts by mass (aromatic polycarbonate-based resin 100-70 parts by mass), preferably 0-10 parts by mass (aromatic When used in an amount of 100 to 90 parts by mass of the polycarbonate resin, the cutting resistance and impact resistance of the (a3) aromatic polycarbonate resin sheet can be further improved.
  • the core shell rubber examples include methacrylic ester / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / ethylene / propylene rubber graft copolymer, and acrylonitrile / styrene / acrylic.
  • core-shell rubbers such as acid ester graft copolymers, methacrylic acid ester / acrylic acid ester rubber graft copolymers, and methacrylic acid ester / acrylonitrile / acrylic acid ester rubber graft copolymers.
  • One or a mixture of two or more of these can be used as the core-shell rubber.
  • the aromatic polycarbonate-based resin may be a thermoplastic resin other than the aromatic polycarbonate-based resin or the core-shell rubber; a pigment, an inorganic filler, an organic filler, a resin filler; Further, additives such as an antioxidant, a weather resistance stabilizer, a heat stabilizer, a release agent, an antistatic agent, and a surfactant can be further included.
  • the amount of these optional components is usually about 0.01 to 10 parts by mass, where the total of the aromatic polycarbonate resin and the core-shell rubber is 100 parts by mass.
  • the (a4) polyester resin sheet is a sheet made of a resin containing a polyester resin such as polyethylene terephthalate as a main component.
  • the “main component” here means usually 80% by mass or more, preferably 90% by mass or more.
  • This polyester resin sheet includes an unstretched sheet, a uniaxially stretched sheet, and a biaxially stretched sheet.
  • this polyester-type resin sheet includes these 1 type, or 2 or more types of laminated sheets.
  • the (a4) polyester-based resin sheet is preferably a sheet made of a resin containing an amorphous or low-crystalline aromatic polyester-based resin as a main component.
  • the “main component” here means usually 80% by mass or more, preferably 90% by mass or more.
  • amorphous or low crystalline aromatic polyester resin examples include aromatic polyvalent carboxylic acid components such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, neopentyl glycol, 1 , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,3-propanediol, Mention may be made of polyester copolymers with polyhydric alcohol components such as 1,4-cyclohexanedimethanol.
  • aromatic polyvalent carboxylic acid components such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, neopentyl glycol, 1 , 2-butanediol, 1,
  • glycol-modified polyethylene terephthalate composed of 50 mol% terephthalic acid, 30 to 40 mol% ethylene glycol, and 10 to 20 mol% 1,4-cyclohexanedimethanol, where the total amount of monomers is 100 mol%.
  • PCTG Glycol modified polycyclohexylene dimethylene terephthalate
  • PCTA Acid-modified polycyclohexylenedimethylene terephthalate
  • the polyester-based resin can contain other components as desired, as long as the object of the present invention is not adversely affected.
  • Optional components that can be included include thermoplastic resins other than polyester resins; pigments, inorganic fillers, organic fillers, resin fillers; lubricants, antioxidants, weathering stabilizers, thermal stabilizers, mold release agents, antistatic agents, And additives, such as surfactant, can be mentioned.
  • the amount of these optional components is usually 25 parts by mass or less, preferably about 0.01 to 10 parts by mass, based on 100 parts by mass of the polyester resin.
  • polyester resin examples include core-shell rubber. By using the core-shell rubber, the impact resistance of the (a4) polyester resin sheet can be improved.
  • the core shell rubber examples include methacrylic ester / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / butadiene rubber graft copolymer, acrylonitrile / styrene / ethylene / propylene rubber graft copolymer, and acrylonitrile / styrene / acrylic.
  • List one or a mixture of two or more core-shell rubbers such as acid ester graft copolymers, methacrylic ester / acrylic ester rubber graft copolymers, methacrylic ester / acrylonitrile / acrylic ester rubber graft copolymers Can do.
  • the core-shell rubber one or a mixture of two or more of these can be used.
  • the blending amount of the core shell rubber is preferably 0.5 parts by mass or more in order to improve impact resistance when the polyester resin is 100 parts by mass.
  • the amount of the core-shell rubber is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.
  • the order of lamination is not particularly limited, but most preferably, the first poly (meth) acrylimide resin layer; Group polycarbonate resin layer; a laminated sheet in which a second poly (meth) acrylimide resin layer is directly laminated in this order.
  • the first poly (meth) acrylimide resin layer and the second poly (meth) acrylimide resin layer have substantially the same layer thickness from the viewpoint of curling resistance.
  • the first poly (meth) acrylimide resin layer and the second poly (meth) acrylimide resin layer may be the same or different, but preferably have the same resin characteristics and are the same. More preferably, they are of the same lot of grade.
  • any one or two or more laminated sheets of the transparent resin sheets a1 to a4 are used, for example, by using an arbitrary co-extrusion apparatus such as a feed block method, a multi-manifold method, and a stack plate method, By co-extrusion film formation so as to have a desired layer structure; or after obtaining any one or more of the transparent resin sheets a1 to a4 using an arbitrary film formation apparatus, By heat laminating or dry laminating so as to obtain a desired layer structure; or after obtaining any one of the transparent resin sheets a1 to a4 using an arbitrary film forming apparatus, the sheet is used as a base material. Can be obtained by extrusion lamination so as to obtain a desired layer structure.
  • the production method for obtaining the transparent resin sheet is not particularly limited.
  • (P) a device including an extruder and a T die is used, and a molten sheet of transparent resin is continuously extruded from the T die.
  • Step: (Q) A method comprising a step of supplying and pressing the molten sheet of the transparent resin between a rotating or circulating first mirror body and a rotating or circulating second mirror body. Can be mentioned.
  • T die any known one can be used as the T die in the above step (P).
  • T die include a manifold die, a fish tail die, and a coat hanger die.
  • any known one can be used as the extruder in the above step (P).
  • the extruder include a single-screw extruder, a same-direction rotating twin-screw extruder, and a different-direction rotating twin-screw extruder.
  • the transparent resin is dry before subjecting it to film formation.
  • the transparent resin is directly transported from the dryer to the extruder and charged by the dryer. It is also preferable to provide a vacuum vent in the extruder (usually in the metering zone at the screw tip).
  • the same one as in the step (B) or (B ′) described in regard to the first embodiment can be used.
  • the above-described film forming method can provide a transparent resin sheet having excellent transparency, surface smoothness, and appearance.
  • the first mirror body and the second mirror body are transparent. It can be considered that when the molten sheet of resin is pressed, highly smooth surface states of the first mirror body and the second mirror body are transferred to the sheet, and a defective portion such as a die stripe is corrected.
  • the surface temperature of the first mirror body is preferably 80 ° C. or higher, more preferably 100 ° C. or higher.
  • the surface temperature of the first mirror body is preferably 200 ° C. or less, more preferably 160 ° C. or less, in order to prevent appearance defects (peeling marks) due to peeling from the first mirror body on the sheet. Good.
  • the surface temperature of the second mirror surface may be preferably 20 ° C. or higher, more preferably 60 ° C. or higher.
  • the surface temperature of the second mirror body is preferably 200 ° C. or less, more preferably 160 ° C. or less, in order to prevent appearance defects (peeling marks) due to peeling from the second mirror body on the sheet. Good.
  • the surface temperature of the first mirror body is preferably higher than the surface temperature of the second mirror body. This is because the sheet is held by the first mirror body and sent to the next transfer roll.
  • the hard coat layer in order to increase the adhesive strength with the hard coat on the hard coat forming surface or both surfaces of the transparent resin sheet to be a base material, in advance, corona discharge treatment, anchor coat formation, etc. Easy adhesion treatment may be performed.
  • the thickness of the transparent resin sheet is not particularly limited, and can be any thickness as desired.
  • the thickness of the transparent resin sheet is usually 20 ⁇ m or more, preferably 50 ⁇ m from the viewpoint of handling. It may be above. From the economical viewpoint, the thickness of the transparent resin sheet may be usually 250 ⁇ m or less, preferably 150 ⁇ m or less.
  • the thickness of the transparent resin sheet is usually 1 mm or more, preferably from the viewpoint of maintaining rigidity. It may be 1.5 mm or more, more preferably 2 mm or more. Further, from the viewpoint of meeting the demand for reducing the weight of the member, the thickness of the transparent resin sheet may be usually 6 mm or less, preferably 4 mm or less, more preferably 3 mm or less.
  • the transparent resin sheet has a total light transmittance (measured using a turbidimeter “NDH2000” (trade name) of Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1: 1997), preferably 80% or more. More preferably, it is 85% or more, More preferably, it is 90% or more. A higher total light transmittance is preferable.
  • the transparent resin sheet has a haze (measured using a turbidimeter “NDH2000” (trade name) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7136: 2000), preferably 5% or less, more preferably It is 3% or less, more preferably 2% or less. The lower the haze, the better.
  • NDH2000 turbidimeter
  • the transparent resin sheet has a yellowness index (measured using a chromaticity meter “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with JIS K7105: 1981), preferably 3 or less. Is 2 or less, more preferably 1 or less. The lower the yellowness index, the better.
  • the transparent resin laminate of the present invention is required to have high transparency and no coloring for the purpose of being used as a material replacing glass.
  • the transparent resin laminate of the present invention has a total light transmittance (according to JIS K7361-1: 1997, a turbidimeter “NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd.) ) Is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. A higher total light transmittance is preferable.
  • the transparent resin laminate of the present invention has a haze (measured using a turbidimeter “NDH2000” (trade name) of Nippon Denshoku Industries Co., Ltd. according to JIS K7136: 2000), preferably 5% or less. More preferably, it is 3% or less, More preferably, it is 2% or less. The lower the haze, the better.
  • the transparent resin laminate of the present invention preferably has a yellowness index (measured using a chromaticity meter “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with JIS K7105: 1981). More preferably, it is 2 or less, and more preferably 1 or less. The lower the yellowness index, the better.
  • Total Light Transmittance was measured using a turbidimeter “NDH2000” (trade name) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1: 1997.
  • Yellowness index (YI) According to JIS K7105: 1981, the yellowness index was measured using a color meter “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation.
  • a 350 g load was placed, and the hard coat surface of the hard coat laminate film of the test piece or the hard coat surface of the transparent resin laminate was rubbed 20,000 times back and forth under the conditions of a friction terminal moving distance of 60 mm and a speed of 1 reciprocation per second. Then, according to the method of (4) above, the water contact angle of the cotton swab was measured. If the water contact angle is 100 degrees or more, it is determined that the scratch resistance is good. Moreover, when the water contact angle after 20,000 reciprocations was less than 100 degrees, the measurement was carried out by changing the predetermined reciprocation times to 15,000 times and 10,000 times, and evaluated according to the following criteria. A (very good): The water contact angle was 100 degrees or more even after 20,000 reciprocations.
  • the distance between chucks was 10 mm, and the temperature program was a program in which the temperature was maintained at 20 ° C. for 3 minutes and then the temperature was increased to 270 ° C. at a temperature increase rate of 5 ° C./min.
  • the linear expansion coefficient was calculated from the obtained temperature-test piece length curve as a low temperature side temperature of 30 ° C. and a high temperature side temperature of 250 ° C.
  • the cutting end surface was observed visually or with a microscope (100 times), and evaluated according to the following criteria.
  • the former results are listed in the order of the latter results.
  • Pencil Hardness According to JIS K5600-5-4, pencil hardness was measured using a pencil “Uni (trade name)” manufactured by Mitsubishi Pencil Co., Ltd. under a load of 750 g. In addition, about the hard coat laminated film, the touch surface side measured value / printed surface side measured value was described in the table
  • E Water repellent: (E-1) Shin-Etsu Chemical Co., Ltd. acryloyl group-containing fluoropolyether water repellent “KY-1203” (trade name; solid content 20 mass%) (E-2) Solvay's methacryloyl group-containing fluoropolyether water repellent “FOMBLIN MT70” (trade name; solid content: 70% by mass) (E-3) DIC Corporation's acryloyl group-containing fluoropolyether-based water repellent "Megafac RS-91" (trade name)
  • (p) transparent resin films were prepared as follows.
  • (P-1) Using a co-extrusion film forming apparatus having a configuration shown in FIG. 1, the above ( ⁇ -1) is used as both outer layers ( ⁇ 1 layer and ⁇ 2 layer) of the transparent multilayer film by the extruder 1, and the above ( ⁇ -1) was used as an intermediate layer ( ⁇ layer) of the transparent multilayer film by the extruder 2 and ⁇ 1 layer; ⁇ layer; ⁇ 2 layer was directly laminated in this order, and the molten film 4 of the transparent multilayer film was classified into two types 3 Continuous extrusion was performed from a co-extrusion T-die 3 of a layer multi-manifold system.
  • the molten film 4 is wound around a rotating mirror surface roll 5 and a pair of belt rollers 7 so that the ⁇ 1 layer is on the mirror surface roll 5 side, and a mirror surface belt 6 that circulates along the outer peripheral surface of the mirror surface roll 5.
  • a transparent multilayer film having a total thickness of 250 ⁇ m, an ⁇ 1 layer thickness of 80 ⁇ m, a ⁇ layer thickness of 90 ⁇ m, and an ⁇ 2 layer thickness of 80 ⁇ m.
  • the setting conditions are: ( ⁇ -1) is 150 ° C. and ( ⁇ -1) is 100 ° C.
  • Example 1 Corona discharge treatment was performed on both sides of the p-1 transparent resin film under the conditions of a treatment amount of 167 W ⁇ min / m 2 (discharge power 500 W, discharge electrode length 1 m, line speed 3 m / min). The wetness index on both sides was 64 mN / m. Subsequently, on the surface on the ⁇ 1 layer side of the transparent resin film, as a touch surface-side hard coat forming coating material, a coating composition (part by mass) shown in Table 1 is applied using a die-type coating device.
  • Examples 2 to 14 and Comparative Examples 1 to 7 Except that the composition of the paint for forming the touch surface side hard coat was changed as shown in any one of Tables 1 to 4, creation of the hard coat laminated film and evaluation of physical properties were performed in the same manner as in Example 1. . The results are shown in any one of Tables 1 to 4.
  • Example 15 Corona discharge treatment was performed on both surfaces of the p-2 transparent resin film under the conditions of a treatment amount of 167 W ⁇ min / m 2 (discharge power 500 W, discharge electrode length 1 m, line speed 3 m / min). The wetness index on both sides was 63 mN / m. Subsequently, on one surface of the transparent resin film, a coating composition having the composition shown in Table 4 is used as a touch surface-side hard coat forming coating, and the thickness after curing is 25 ⁇ m using a die-type coating device.
  • Example 16 On one side of the p-3 transparent resin film, a paint having the composition shown in Table 4 as a paint for forming a touch surface side hard coat was applied to a thickness of 25 ⁇ m after curing using a die-type coating apparatus. On the other side of the film, the above-mentioned ⁇ -1 is applied as a hard coat forming coating on the printing surface side using a die type coating device so that the thickness after curing is 25 ⁇ m. Thus, a hard coat laminate was obtained. The above tests (1) to (13) were performed. The results are shown in Table 4. In addition, in the test (9) regarding the linear expansion coefficient, the contraction of the test piece was large, and the measured value could not be obtained.
  • Example 17 Except for using p-4 instead of p-3 as the transparent resin film, a hard coat laminated film was prepared and evaluated for physical properties in the same manner as in Example 16. The results are shown in Table 4.
  • Example 18 Except that the p-5 was used instead of the p-3 as a transparent resin film, a hard coat laminated film was prepared and evaluated for physical properties in the same manner as in Example 16. The results are shown in Table 4.
  • Example 19 Except that the blend composition of the paint for forming the touch surface side hard coat was changed as shown in Table 4, the preparation of the hard coat laminated film and the evaluation of physical properties were performed in the same manner as in Example 1. The results are shown in Table 4.
  • the hard coat laminated film having a hard coat formed from a paint containing the active energy ray-curable resin composition of the present invention has transparency, color tone, scratch resistance (cotton wiping resistance and steel wool resistance), surface hardness. Excellent in bending resistance and surface appearance.
  • the hard coat laminated film of Comparative Example 1 containing no component C was inferior in cotton wiping resistance.
  • the hard coat laminated film of Comparative Example 2 in which Component C exceeded the specified amount was inferior in color tone.
  • the hard coat laminated film of Comparative Example 3 in which Component B was less than the specified amount was inferior in cotton wiping resistance.
  • the hard coat laminated film of Comparative Example 4 in which Component B exceeds the specified amount is less likely to exhibit water repellency.
  • the hard coat laminated film of Comparative Example 5 using a compound having an alkoxysilyl group and an epoxy group instead of Component B and not having a (meth) acryloyl group was inferior in cotton wiping resistance.
  • the hard coat laminated film of Comparative Example 6 using a compound having an alkoxysilyl group and an amino group instead of Component B and having no (meth) acryloyl group was inferior in color tone.
  • the hard coat laminated film of Comparative Example 7 using tetra-n-propoxyzirconium instead of Component C was inferior in cotton wiping resistance.
  • a transparent resin laminate according to the second embodiment and comparative examples thereof (a) transparent resin sheets of plural types were prepared as follows.
  • the setting conditions at this time were a first mirror surface roll setting temperature of 140 ° C., a second mirror surface roll setting temperature of 120 ° C., and a T-die outlet resin temperature of 300 ° C.
  • the obtained transparent resin sheet had a total light transmittance of 92%, a haze of 1.0%, and a yellowness index of 0.6.
  • Acrylic resin sheet A Sumitomo Chemical Co., Ltd. acrylic resin composition (70 parts by mass of acrylic resin and 30 parts by mass of acrylic core-shell rubber) “HT03Y” (trade name), an apparatus comprising an extruder and a T-die The molten sheet of the resin is continuously extruded from the T die, and the molten sheet is supplied and pressed between the rotating first mirror roll and the rotating second mirror roll, and is pressed. A transparent resin sheet having a thickness of 1 mm was obtained. The setting conditions at this time were a first mirror surface roll setting temperature of 100 ° C., a second mirror surface roll setting temperature of 80 ° C., and a T die outlet resin temperature of 300 ° C. The obtained transparent resin sheet had a total light transmittance of 86%, a haze of 2.7%, and a yellowness index of 0.7.
  • Aromatic polycarbonate resin sheet 99.5 parts by mass of aromatic polycarbonate-based resin “K-1300Y” (trade name) manufactured by Teijin Chemicals Limited and Kaneka's core shell rubber (methacrylate / styrene / butadiene rubber graft copolymer) “Kane Ace B-56” (Product name)
  • the molten resin sheet is continuously extruded from the T die using a device comprising 0.5 parts by mass of the resin composition and provided with an extruder and a T die, and rotated first.
  • the molten sheet was supplied and pressed between the mirror roll and the rotating second mirror roll to obtain a transparent resin sheet having a thickness of 1 mm.
  • the setting conditions at this time were a first mirror surface roll setting temperature of 140 ° C., a second mirror surface roll setting temperature of 120 ° C., and a T-die outlet resin temperature of 300 ° C.
  • the obtained transparent resin sheet had a total light transmittance of 88%, a haze of 2.3%, and a yellowness index of 0.8.
  • Polyester resin sheet 99 parts by mass of non-crystalline polyester resin (PETG resin) “Cadence GS1” (trade name) from Eastman Chemical Company and Kaneka's core shell rubber (methacrylic ester / styrene / butadiene rubber graft copolymer) “Kaneace” B-56 "(trade name) 1 part by mass of a resin composition, and using a device including an extruder and a T die, a molten sheet of the resin is continuously extruded from the T die and rotated. The molten sheet was supplied and pressed between one mirror roll and a rotating second mirror roll to obtain a transparent resin sheet having a thickness of 1 mm.
  • PETG resin non-crystalline polyester resin
  • Kaneka's core shell rubber methacrylic ester / styrene / butadiene rubber graft copolymer
  • the setting conditions at this time were a first mirror surface roll setting temperature of 80 ° C., a second mirror surface roll setting temperature of 40 ° C., and a T die outlet resin temperature of 200 ° C.
  • the obtained transparent resin sheet had a total light transmittance of 85%, a haze of 3.0%, and a yellowness index of 0.5.
  • Laminated sheet 1 Using a co-extrusion filming device of 2 types, 3 layers multi-manifold system equipped with an extruder and a T-die, poly (meth) acrylimide resin “PLEXIMID TT70” (trade name) of Evonik Co., Ltd. is used as both outer layers.
  • a first mirror roll that rotates by continuously extruding a melt-laminated sheet with an aromatic polycarbonate “Caliver 301-4” (trade name) from Kay Stylon Polycarbonate Co., Ltd.
  • the melt-laminated sheet was supplied and pressed between the two, and a transparent resin sheet having a total thickness of 1 mm, a thickness of both outer layers of 0.1 mm, and a thickness of intermediate layer of 0.8 mm was obtained.
  • the setting conditions at this time were a first mirror surface roll setting temperature of 140 ° C., a second mirror surface roll setting temperature of 120 ° C., and a T-die outlet resin temperature of 300 ° C.
  • the obtained transparent resin sheet had a total light transmittance of 91%, a haze of 1.0%, and a yellowness index of 0.7.
  • Example 20 Corona discharge treatment was performed on both surfaces of the a1-1 transparent resin sheet under the conditions of a treatment amount of 167 W ⁇ min / m 2 (discharge power 500 W, discharge electrode length 1 m, line speed 3 m / min). The wetness index on both sides was 64 mN / m. Subsequently, as a hard coat-forming coating material, a coating composition (parts by mass) shown in Table 1 was used, and a die-type coating apparatus was used to form a thickness after curing on both surfaces of the a1-1 transparent resin sheet. A hard coat was formed so as to be 25 ⁇ m to obtain a transparent resin laminate. The above tests (1) to (5), (8) and (12) to (15) were performed. The results are shown in Table 1.
  • Examples 21 to 33, Comparative Examples 8 to 14 A transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 20, except that the composition of the hard coat-forming coating composition was changed as shown in any one of Tables 5 to 8. The results are shown in any one of Tables 5-8.
  • the initial water contact angle (test (4)) was less than 100 degrees, so the scratch resistance (water contact angle after cotton wiping) of test (5) was 20,000 times. Only subsequent water contact angle measurements were made.
  • Example 28-2 Except that the composition of the hard coat-forming coating composition was changed as shown in Table 2, the transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 1. The results are shown in Table 6.
  • Example 34 A transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 20, except that the a2-1 was used instead of the a1-1 as the transparent resin sheet. The results are shown in Table 8.
  • Example 35 A transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 20, except that the a3-1 was used instead of the a1-1 as the transparent resin sheet. The results are shown in Table 8.
  • Example 36 A transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 20 except that the a4-1 was used instead of the a1-1 as the transparent resin sheet. The results are shown in Table 8.
  • Example 37 A transparent resin laminate was prepared and evaluated for physical properties in the same manner as in Example 20, except that the a5-1 was used instead of the a1-1 as the transparent resin sheet. The results are shown in Table 8.
  • the transparent resin laminate of the present invention exhibits physical properties suitable as a material replacing glass. Further, the transparent resin laminates of Examples 20 to 33 and 37 using a poly (meth) acrylimide resin sheet as the transparent resin sheet were particularly excellent in transparency. On the other hand, the transparent resin laminate of Comparative Example 1 containing no component C was inferior in cotton wiping resistance. The transparent resin laminate of Comparative Example 2 in which Component C exceeded the specified amount was inferior in color tone. The transparent resin laminate of Comparative Example 3 in which Component B was less than the specified amount was inferior in cotton wiping resistance. The transparent resin laminate of Comparative Example 4 in which Component B exceeds the specified amount is less likely to exhibit water repellency.
  • the transparent resin laminate of Comparative Example 5 using a compound having an alkoxysilyl group and an epoxy group in place of Component B and not having a (meth) acryloyl group was inferior in cotton wiping resistance.
  • the transparent resin laminate of Comparative Example 6 using a compound having an alkoxysilyl group and an amino group instead of Component B and having no (meth) acryloyl group was inferior in color tone.
  • the transparent resin laminate of Comparative Example 7 using tetra-n-propoxyzirconium instead of Component C was inferior in cotton wiping resistance.
  • the hard coat laminated film having a hard coat formed from a paint containing the active energy ray-curable resin composition according to the first aspect of the present invention is excellent in the above properties, a liquid crystal display, a plasma display, an electroluminescence It can be suitably used as a member of an image display device such as a display (including an image display device having a touch panel function and an image display device not having a touch panel function), particularly as a display face plate of a touch panel.
  • the transparent resin laminate according to the second aspect of the present invention is excellent in the above-mentioned various characteristics, the surfaces of household electrical appliances such as vehicle windows and windshields, building windows and doors, protective boards for electronic signboards, refrigerators, etc. It can be suitably used as a member, a door of furniture such as a cupboard, and a member of a show window.
  • Extruder 1 Extruder 1 2: Extruder 2 3: Two-type, three-layer, multi-manifold co-extrusion T die 4: Molten film 5: Mirror roll 6: Mirror belt 7: Pair of belt rollers 8: T die 9: Molten sheet 10: Mirror roll 11: Mirror belt 12: Pair of belt rollers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、(A)多官能(メタ)アクリレート100質量部;(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;(C)有機チタン0.05~3質量部;及び(D)平均粒子径1~300nmの微粒子5~100質量部を含む、活性エネルギー線硬化性樹脂組成物に関する。また、本発明は、最表層側から順にハードコートの層と透明樹脂シートの層とを有し、上記ハードコートが、(A)多官能(メタ)アクリレート100質量部;(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;(C)有機チタン0.05~3質量部;及び(D)平均粒子径1~300nmの微粒子5~100質量部を含む塗料から形成されている透明樹脂積層体に関する。

Description

活性エネルギー線硬化性樹脂組成物、これを用いたハードコート積層フィルム、及び透明樹脂積層体
 本発明は、活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルムに関する。更に詳しくは、本発明は、透明性、色調、耐擦傷性、表面硬度、耐曲げ性、及び表面外観に優れたハードコートを形成することのできる活性エネルギー線硬化性樹脂組成物、並びに、これを用いたハードコート積層フィルムに関する。
 また、本発明は、透明樹脂積層体に関する。更に詳しくは、本発明は、比重が小さく、透明性、剛性、耐傷付性、耐候性、耐衝撃性、及び加工性に優れ、かつ、車両の窓や風防、建築物の窓や扉、電子看板の保護板、冷蔵庫等の家電製品の表面部材、食器棚等の家具の扉、及びショーウインドウなどの部材として好適に用いることのできる透明樹脂積層体に関する。
 近年、液晶ディスプレイ、プラズマディスプレイ、及びエレクトロルミネセンスディスプレイ等の画像表示装置上に設置され、表示を見ながら指やペン等でタッチすることにより入力を行うことのできるタッチパネルが普及している。
 従来、タッチパネルのディスプレイ面板には、耐熱性、寸法安定性、高透明性、高表面硬度、及び高剛性などの要求特性に合致することから、ガラスを基材とする物品が使用されてきた。一方、ガラスには、耐衝撃性が低く割れ易い;加工性が低い;ハンドリングが難しい;比重が高く重い;ディスプレイの曲面化やフレキシブル化の要求に応えることが難しいなどの不都合がある。そこで、これらの用途のため、ガラスに替わる材料が盛んに研究されている。トリアセチルセルロース、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、及びノルボルネン系重合体などの透明樹脂フィルム基材の表面に、表面硬度と耐擦傷性に優れるハードコートを形成したハードコート積層体が、多数提案されている(例えば、特許文献1参照)。しかし、その耐擦傷性はまだ不十分である。ハンカチなどで繰返し拭かれたとしても指すべり性などの表面特性を維持できるハードコート形成用塗料が求められている。
 また、従来、車両の窓や風防等の部材、建築物の窓や扉等の部材、電子看板の保護板、及びショーウインドウなどにも、透明性、剛性、耐傷付性、及び耐候性などの要求特性に合致することから、ガラスを基材とする物品が使用されてきた。また、ガラスは、その透明感のある意匠感から、冷蔵庫等の家電製品の表面部材、及び食器棚等の家具の扉などにも採用が広がっている。一方、上述のとおり、ガラスには、耐衝撃性が低く割れ易い、加工性が低い、比重が高く重いなどの不都合がある。そこで、これらの用途のため、ガラスに替わる材料が盛んに研究されている。ポリカーボネート系樹脂やアクリル系樹脂などの透明樹脂層と、ハードコート層とを有する透明樹脂積層体が提案されている(例えば、特許文献2及び3参照)。しかし、その耐傷付性はまだ不十分である。ワイパーなどで繰返ししごかれたり、雑巾などで繰返し拭かれたりしても、初期の特性を維持できる透明樹脂積層体が求められている。
特開2013-208896号公報 特開2014-043101号公報 特開2014-040017号公報
 本発明の第一の目的は、透明性、色調、耐擦傷性、表面硬度、耐曲げ性、及び表面平滑性に優れたハードコートを形成することのできる活性エネルギー線硬化性樹脂組成物、並びに、これを用いた液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネセンスディスプレイ等の画像表示装置の部材(タッチパネル機能を有する画像表示装置及びタッチパネル機能を有しない画像表示装置を含む。)、特にタッチパネルのディスプレイ面板として好適なハードコート積層フィルムを提供することにある。
 また、本発明の第二の目的は、比重が小さく、透明性、剛性、耐傷付性、耐候性、耐衝撃性、及び加工性に優れ、従来ガラスを基材とする物品が使用されてきた車両の窓や風防、建築物の窓や扉、電子看板の保護板、冷蔵庫等の家電製品の表面部材、食器棚等の家具の扉、及びショーウインドウなどの部材として好適に用いることのできる透明樹脂積層体を提供することにある。
 本発明者は、鋭意研究した結果、多官能(メタ)アクリレート、特定官能基を有する化合物、有機チタン、及び特定範囲内の平均粒子径の微粒子を含む活性エネルギー線硬化性樹脂組成物により、上記第一の目的を達成できることを見出した。
 また、本発明者は、多官能(メタ)アクリレート、特定官能基を有する化合物、有機チタン、及び特定範囲内の平均粒子径の微粒子を含む塗料を用いて、透明樹脂積層体を形成することにより、上記第二の目的を達成できることを見出した。
 すなわち、上記第一の目的を達成するための本発明の第一の態様は、以下のとおりである。
[1].
 (A)多官能(メタ)アクリレート100質量部;
 (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
 (C)有機チタン0.05~3質量部;及び
 (D)平均粒子径1~300nmの微粒子5~100質量部
を含む、活性エネルギー線硬化性樹脂組成物。
[2].
 更に、(E)撥水剤0.01~7質量部を含む、上記[1]項に記載の活性エネルギー線硬化性樹脂組成物。
[3].
 上記(E)撥水剤が、(メタ)アクリロイル基含有フルオロポリエーテル系撥水剤を含む、上記[2]項に記載の活性エネルギー線硬化性樹脂組成物。
[4].
 透明樹脂フィルムの少なくとも片面に、上記[1]~[3]項の何れか1項に記載の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有する、ハードコート積層フィルム。
[5].
 最表層側から順に、第一ハードコート層;透明樹脂フィルム層;及び、第二ハードコート層を有し、ここで上記第一ハードコート層は、上記[1]~[3]項の何れか1項に記載の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されている、ハードコート積層フィルム。
[6].
 上記透明樹脂フィルムがポリ(メタ)アクリルイミド系樹脂フィルムである、上記[4]又は[5]項に記載のハードコート積層フィルム。
[7].
 上記ポリ(メタ)アクリルイミド系樹脂フィルムが、
 第一ポリ(メタ)アクリルイミド系樹脂層(α1);
 芳香族ポリカーボネート系樹脂層(β);及び
 第二ポリ(メタ)アクリルイミド系樹脂層(α2)が、
この順に直接積層された透明多層フィルムである、上記[6]項に記載のハードコート積層フィルム。
[8].
 透明樹脂フィルムの少なくとも片面に、活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有し、下記(1-i)~(1-v)の要件を満たすタッチパネルディスプレイ面板用ハードコート積層フィルム:
 (1-i)全光線透過率80%以上;
 (1-ii)ヘーズ3.0%以下;
 (1-iii)黄色度指数3以下;
 (1-iv)タッチ面の水接触角100度以上;及び
 (1-v)タッチ面の2万往復綿拭後の水接触角100度以上。
[9].
 上記[8]項に記載のハードコート積層フィルムの製造方法であって、
 (A)多官能(メタ)アクリレート100質量部;
 (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
 (C)有機チタン0.05~3質量部;及び
 (D)平均粒子径1~300nmの微粒子5~100質量部
を含む活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を、ポリ(メタ)アクリルイミド系樹脂フィルムの少なくとも片面に塗布し、ハードコートを形成する工程を含む、上記方法。
[10].
 上記[8]項に記載のハードコート積層フィルムの製造方法であって、
 (A)多官能(メタ)アクリレート100質量部;
 (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
 (C)有機チタン0.05~3質量部;
 (D)平均粒子径1~300nmの微粒子5~100質量部;及び
 (E)撥水剤0.01~7質量部
を含む活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を、ポリ(メタ)アクリルイミド系樹脂フィルムの少なくとも片面に塗布し、ハードコートを形成する工程を含む上記方法。
[11].
 上記(E)撥水剤が、(メタ)アクリロイル基含有フルオロポリエーテル系撥水剤を含む、上記[10]項に記載の方法。
[12].
 上記[9]~[11]項の何れか1項に記載の方法で製造されたハードコート積層フィルム。
[13].
 上記[4]~[8]及び[12]項の何れか1項に記載のハードコート積層フィルムの画像表示装置部材としての使用。
[14].
 上記[4]~[8]及び[12]項の何れか1項に記載のハードコート積層フィルムを含む画像表示装置部材。
 上記第二の目的を達成するための本発明の第二の態様は、以下のとおりである。
[15].
 最表層側から順にハードコートの層と透明樹脂シートの層とを有し、
 上記ハードコートが、
 (A)多官能(メタ)アクリレート100質量部;
 (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
 (C)有機チタン0.05~3質量部;及び
 (D)平均粒子径1~300nmの微粒子5~100質量部
を含む塗料から形成されている透明樹脂積層体。
[16].
 上記ハードコートが、更に(E)撥水剤0.1~7質量部を含む塗料から形成されている、上記[15]項に記載の透明樹脂積層体。
[17].
 上記透明樹脂シートがポリ(メタ)アクリルイミド系樹脂シートである、上記[15]又は[16]項に記載の透明樹脂積層体。
[18].
 上記ポリ(メタ)アクリルイミド系樹脂シートが、
 第一ポリ(メタ)アクリルイミド系樹脂層;
 芳香族ポリカーボネート系樹脂層;及び
 第二ポリ(メタ)アクリルイミド系樹脂層が、
この順に直接積層された積層シートである、上記[17]項に記載の透明樹脂積層体。
[19].
 最表層側から順にハードコートの層とポリ(メタ)アクリルイミド系樹脂シートの層とを有し、
 下記特性(2-i)~(2-iii)を満たすことを特徴とする透明樹脂積層体:
 (2-i)全光線透過率80%以上;
 (2-ii)ヘーズ5%以下;及び
 (2-iii)黄色度指数3以下。
[20].
 上記[15]~[19]項の何れか1項に記載の透明樹脂積層体の、車両部材としての使用。
[21].
 上記[15]~[19]項の何れか1項に記載の透明樹脂積層体の、建築物部材としての使用。
[22].
 上記[15]~[19]項の何れか1項に記載の透明樹脂積層体を含む、車両部材。
[23].
 上記[15]~[19]項の何れか1項に記載の透明樹脂積層体を含む、建築物部材。
 本発明の上記第一の態様による活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有するハードコート積層フィルムは、透明性、色調、耐擦傷性、表面硬度、耐曲げ性、及び表面外観に優れる。そのため、このフィルムは、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネセンスディスプレイ等の画像表示装置の部材(タッチパネル機能を有する画像表示装置及びタッチパネル機能を有しない画像表示装置を含む。)、特にタッチパネルのディスプレイ面板として好適に用いることができる。
 また、本発明の上記第二の態様による透明樹脂積層体は、比重が小さく、透明性、剛性、耐傷付性、耐候性、耐衝撃性、及び加工性に優れる。そのため、この積層体は、車両の窓や風防、建築物の窓や扉、電子看板の保護板、冷蔵庫等の家電製品の表面部材、食器棚等の家具の扉、及びショーウインドウなどの部材として好適に用いることができる。
実施例にて、透明樹脂フィルム(p-1)の製膜に使用した装置の概念図である。 実施例において、透明樹脂シートの製膜に使用した装置の概念図である。
[I].本発明の第一の態様による活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルム
1.活性エネルギー線硬化性樹脂組成物:
 本発明の上記第一の態様に係る活性エネルギー線硬化性樹脂組成物について説明する。
(A)多官能(メタ)アクリレート:
 本発明の活性エネルギー線硬化性樹脂組成物は、(A)多官能(メタ)アクリレートを含む。
 上記成分Aは、1分子中に2以上の(メタ)アクリロイル基を有する(メタ)アクリレートである。この化合物は、1分子中に2以上の(メタ)アクリロイル基を有するため、紫外線や電子線等の活性エネルギー線により重合・硬化して、ハードコートを形成する働きをする。
 上記多官能(メタ)アクリレートとしては、例えば、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2,2’-ビス(4-(メタ)アクリロイルオキシポリエチレンオキシフェニル)プロパン、及び、2,2’-ビス(4-(メタ)アクリロイルオキシポリプロピレンオキシフェニル)プロパン等の(メタ)アクリロイル基含有2官能反応性モノマー;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート等の(メタ)アクリロイル基含有3官能反応性モノマー;ペンタエリスリトールテトラ(メタ)アクリレート等の(メタ)アクリロイル基含有4官能反応性モノマー;ジペンタエリスリトールヘキサアクリレート等の(メタ)アクリロイル基含有6官能反応性モノマー;及び、これらの1種以上を構成モノマーとする重合体(オリゴマーやプレポリマー)を挙げることができる。上記成分Aとしては、これらの1種又は2種以上の混合物を用いることができる。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートの意味である。
(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物:
 本発明の活性エネルギー線硬化性樹脂組成物は、(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物を含む。
 ここで、(メタ)アクリロイル基は、アクリロイル基又はメタクリロイル基の意味である。なお、上記成分Bは、アルコキシシリル基を有するという点で上記成分Aとは区別される。上記成分Aの化合物は、アルコキシシリル基を有しない。本明細書において、1分子中にアルコキシシリル基と2以上の(メタ)アクリロイル基を有する化合物は、成分Bである。
 上記成分Bは、分子内に(メタ)アクリロイル基を有することにより上記成分Aと、分子内にアルコキシシリル基を有することにより上記成分Dと、化学結合ないし強く相互作用することができる。成分Bは、そのような化学結合又は強い相互作用によって、ハードコートの耐擦傷性を大きく向上させる働きをする。また、成分Bは、上記成分Eとも、分子内に(メタ)アクリロイル基を有することにより、あるいはアルコキシシリル基を有することにより、化学結合ないし強く相互作用する。成分Bは、そのような化学結合又は強い相互作用によって、成分Eのブリードアウトなどのトラブルを防止する働きもする。
 上記成分Bとしては、例えば、一般式「(-SiORR’-)・(-SiORR”-)」で表される化学構造を有する化合物を挙げることができる。ここで、nは自然数(正の整数)であり、mは0又は自然数である。好ましくは、nは2~10の自然数、mは0又は1~10の自然数である。Rは、メトキシ基(CHO-)、エトキシ基(CO-)などのアルコキシ基である。R’は、アクリロイル基(CH=CHCO-)又はメタクリロイル基(CH=C(CH)CO-)である。R”は、メチル基(CH)、エチル基(CHCH)などのアルキル基である。
 上記成分Bとしては、例えば、一般式(-SiO(OCH)(OCHC=CH)-)、(-SiO(OCH)(OC(CH)C=CH)-)、(-SiO(OCH)(OCHC=CH)-)・(-SiO(OCH)(CH)-)、(-SiO(OCH)(OC(CH)C=CH)-)・(-SiO(OCH)(CH)-)、(-SiO(OC)(OCHC=CH)-)、(-SiO(OC)(OC(CH)C=CH)-)、(-SiO(OC)(OCHC=CH)-)・(-SiO(OCH)(CH)-)、及び(-SiO(OC)(OC(CH)C=CH)-)・(-SiO(OCH)(CH)-)で表される化学構造を有する化合物を挙げることができる。ここで、nは自然数(正の整数)であり、mは0又は自然数である。好ましくは、nは2~10の自然数、mは0又は1~10の自然数である。
 上記成分Bとしては、これらの1種又は2種以上の混合物を用いることができる。
 上記成分Bの配合量は、上記成分A100質量部に対して、耐擦傷性の観点から、0.2質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上である。一方、撥水性を発現し易くする観点から、また成分Bと上記成分Cとの配合比を好ましい範囲にしたときに成分Cが過剰量にならないようにする観点から、成分Bの配合量は、上記成分A100質量部に対して、4質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。
 また、上記成分Dと化学結合ないし強く相互作用させる観点から、上記成分Bと上記成分Dとの配合比は、通常、成分D100質量部に対して、成分B0.2~80質量部であり、好ましくは0.5~15質量部であり、より好ましくは2~7質量部である。
(C)有機チタン:
 本発明の活性エネルギー線硬化性樹脂組成物は、(C)有機チタンを含む。
 上記成分Cは、上記成分Bの働きを補助する成分である。ハードコートの耐擦傷性を大きく向上させる観点において、成分Bと成分Cとは特異的な好相性を示す。また、成分C自体も、上記成分Dなどと化学結合ないし強く相互作用し、ハードコートの耐擦傷性を高める働きをする。
 上記有機チタンとしては、例えば、テトラ-i-プロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキシルオキシ)チタン、チタニウム-i-プロポキシオクチレングリコレート、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン、プロパンジオキシチタンビス(エチルアセトアセテート)、トリ-n-ブトキシチタンモノステアレート、ジ-i-プロポキシチタンジステアレート、チタニウムステアレート、ジ-i-プロポキシチタンジイソステアレート、(2-n-ブトキシカルボニルベンゾイルオキシ)トリブトキシチタン、ジ-n-ブトキシ-ビス(トリエタノールアミナト)チタン;及びこれらの1種以上からなる重合体などを挙げることができる。上記成分Cとしては、これらの1種又は2種以上の混合物を用いることができる。
 これらの中で、アルコキシチタンのテトラ-i-プロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキシルオキシ)チタン、及びチタニウム-i-プロポキシオクチレングリコレートが、耐擦傷性と色調の観点から好ましい。
 上記成分Cの配合量は、上記成分A100質量部に対して、耐擦傷性の観点から0.05質量部以上、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。一方、色調の観点から、成分Cの配合量は、上記成分A100質量部に対して、3質量部以下、好ましくは2質量部以下、より好ましくは1.5質量部以下である。
 また、上記成分Bの働きを効果的に補助する観点から、上記成分Bと上記成分Cとの配合比は、通常、成分B100質量部に対して、成分C1.25~1500質量部であり、好ましくは5~150質量部であり、より好ましくは20~80質量部である。
(D)平均粒子径1~300nmの微粒子:
 本発明の活性エネルギー線硬化性樹脂組成物は、(D)平均粒子径1~300nmの微粒子を含む。
 上記成分Dは、ハードコートの表面硬度を高める働きをする。一方、上記成分Aとの相互作用は弱く、耐擦傷性を不十分なものにする原因となっていた。そこで本発明においては、成分Aと成分Dの両方に化学結合ないし強く相互作用することのできる上記成分B、及び成分Bの働きを補助する上記成分Cを用い、この問題を解決したものである。
 従って、成分Dは、好ましくは、上記成分Bと化学結合ないし強く相互作用することのできる物質であり、さらに好ましくは、上記成分B及び成分Cと化学結合ないし強く相互作用することのできる物質である。
 上記成分Dとしては、無機微粒子、有機微粒子のどちらも用いることができる。無機微粒子としては、例えば、シリカ(二酸化珪素);酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物、酸化アンチモン、酸化セリウム等の金属酸化物微粒子;弗化マグネシウム、弗化ナトリウム等の金属弗化物微粒子;金属硫化物微粒子;金属窒化物微粒子;金属微粒子などを挙げることができる。有機微粒子としては、例えば、スチレン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、エチレン系樹脂、アミノ系化合物とホルムアルデヒドとの硬化樹脂などの樹脂ビーズを挙げることができる。これらは、1種単独で又は2種以上組み合わせて用いることができる。
 成分Dとして例示されたこれらの物質群のいずれも、少なくとも、成分Bと化学結合ないし強く相互作用することのできる物質であると考えられる。
 また、微粒子の塗料中での分散性を高めたり、得られるハードコートの表面硬度を高めたりする目的で、当該微粒子の表面をビニルシラン、アミノシラン等のシラン系カップリング剤;チタネート系カップリング剤;アルミネート系カップリング剤;(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基やエポキシ基などの反応性官能基を有する有機化合物;脂肪酸、脂肪酸金属塩等の表面処理剤などにより処理したものを用いてもよい。
 これらの微粒子の中で、より表面硬度の高いハードコートを得るためにシリカや酸化アルミニウムの微粒子が好ましく、シリカの微粒子がより好ましい。シリカ微粒子の市販品としては、日産化学工業株式会社のスノーテックス(商品名)、扶桑化学工業株式会社のクォートロン(商品名)などを挙げることができる。
 上記成分Dの平均粒子径は、ハードコートの透明性を保持する観点、及びハードコートの表面硬度改良効果を確実に得る観点から300nm以下である。成分Dの平均粒子径は、好ましくは200nm以下であり、より好ましくは120nm以下である。一方、平均粒子径の下限を制限する理由は特にないが、通常入手可能な微粒子は細かくてもせいぜい1nm程度である。
 なお、本明細書において、微粒子の平均粒子径は、日機装株式会社のレーザー回折・散乱式粒度分析計「MT3200II(商品名)」を使用して測定した粒子径分布曲線において、粒子の小さい方からの累積が50質量%となる粒子径である。
 上記成分Dの配合量は、上記成分A100質量部に対して、表面硬度の観点から、5質量部以上、好ましくは20質量部以上である。一方、耐擦傷性と透明性の観点から、成分Dの配合量は、上記成分A100質量部に対して、100質量部以下、好ましくは70質量部以下、より好ましくは50質量部以下である。
(E)撥水剤:
 本発明の活性エネルギー線硬化性樹脂組成物には、指すべり性、汚れの付着防止性、及び汚れの拭取り性を高める観点から、更に、(E)撥水剤0.01~7質量部((A)多官能(メタ)アクリレート100質量部に対する量)を含ませることが好ましい。
 上記撥水剤として、例えば、パラフィンワックス、ポリエチレンワックス、アクリル・エチレン共重合体ワックス等のワックス系撥水剤;シリコンオイル、シリコン樹脂、ポリジメチルシロキサン、アルキルアルコキシシラン等のシリコン系撥水剤;フルオロポリエーテル系撥水剤、フルオロポリアルキル系撥水剤等の含弗素系撥水剤などを挙げることができる。上記成分Eとして、これらの1種又は2種以上の混合物を用いることができる。
 これらの撥水剤の中で、撥水性能の観点から、フルオロポリエーテル系撥水剤が好ましい。上記成分Aや上記成分Bと成分Eとが化学結合ないしは強く相互作用し、成分Eがブリードアウトするなどのトラブルを防止する観点から、成分Eとしては、分子内に(メタ)アクリロイル基とフルオロポリエーテル基とを含有する化合物を含む撥水剤(以下、(メタ)アクリロイル基含有フルオロポリエーテル系撥水剤と略す。)がより好ましい。成分Eとしては、成分Aや成分Bと成分Eとの化学結合ないしは相互作用を適宜調節し、透明性を高く保ちつつ良好な撥水性を発現させる観点から、アクリロイル基含有フルオロポリエーテル系撥水剤とメタアクリロイル基含有フルオロポリエーテル系撥水剤との混和物を用いてもよい。
 上記成分Eを用いる場合の配合量は、上記成分A100質量部に対して、成分Eがブリードアウトするなどのトラブルを防止する観点から、通常7質量部以下、好ましくは4質量部以下、より好ましくは2質量部以下である。成分Eの配合量の下限は、任意成分であるから特に制限されないが、所望の効果を得るという観点から、通常0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上である。
 また、本発明の活性エネルギー線硬化性樹脂組成物には、活性エネルギー線による硬化性を良好にする観点から、1分子中に2以上のイソシアネート基(-N=C=O)を有する化合物及び/又は光重合開始剤を更に含ませることが好ましい。
 上記1分子中に2以上のイソシアネート基を有する化合物としては、例えば、メチレンビス-4-シクロヘキシルイソシアネート;トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、イソホロンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのビウレット体等のポリイソシアネート;及び、上記ポリイソシアネートのブロック型イソシアネート等のウレタン架橋剤などを挙げることができる。上記1分子中に2以上のイソシアネート基を有する化合物としては、これらの1種又は2種以上の混合物を用いることができる。また、架橋の際には、必要に応じてジブチルスズジラウレート、ジブチルスズジエチルヘキソエートなどの触媒を添加してもよい。
 上記光重合開始剤としては、例えば、ベンゾフェノン、メチル-o-ベンゾイルベンゾエート、4-メチルベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン等のベンゾフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルメチルケタール等のベンゾイン系化合物;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン系化合物;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノン等のアントラキノン系化合物;チオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系化合物;アセトフェノンジメチルケタール等のアルキルフェノン系化合物;トリアジン系化合物;ビイミダゾール化合物;アシルフォスフィンオキサイド系化合物;チタノセン系化合物;オキシムエステル系化合物;オキシムフェニル酢酸エステル系化合物;ヒドロキシケトン系化合物;及び、アミノベンゾエート系化合物などを挙げることができる。上記光重合開始剤としては、これらの1種又は2種以上の混合物を用いることができる。
 また、本発明の活性エネルギー線硬化性樹脂組成物は、所望に応じて、帯電防止剤、界面活性剤、レベリング剤、チクソ性付与剤、汚染防止剤、印刷性改良剤、酸化防止剤、耐候性安定剤、耐光性安定剤、紫外線吸収剤、熱安定剤、着色剤、及びフィラーなどの添加剤を1種、又は2種以上含んでいてもよい。
 また、本発明の活性エネルギー線硬化性樹脂組成物は、塗工し易い濃度に希釈するため、所望に応じて溶剤を含んでいてもよい。溶剤は、上記成分A~D、及びその他の任意成分と反応したり、これらの成分の自己反応(劣化反応を含む)を触媒(促進)したりしないものであれば、特に制限されない。溶剤としては、例えば、1-メトキシ-2-プロパノール、酢酸エチル、酢酸n-ブチル、トルエン、メチルエチルケトン、メチルイソブチルケトン、ダイアセトンアルコール、及びアセトンなどを挙げることができる。
 上記活性エネルギー線硬化性樹脂組成物は、これらの成分を混合、攪拌することにより得られる。
2.ハードコート積層フィルム:
 本発明の上記第一の態様に係るハードコート積層フィルムについて説明する。
 本発明のハードコート積層フィルムは、好ましくは、透明樹脂フィルムの少なくとも片面に、本発明の活性エネルギー線硬化性樹脂組成物を含む塗料からなるハードコートを形成することにより得ることができる。
 上記ハードコートは、上記透明樹脂フィルムの少なくとも片面に、好ましくは耐カール性の観点から両面に形成される。
 好ましくは、ハードコート積層フィルムは、最表層側から順に、第一ハードコート層;透明樹脂フィルム層;及び、第二ハードコート層を有し、ここで第一ハードコート層は、本発明の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されている。
 ここで「表層側」とは、複層構造であるハードコート積層体から形成された物品が、現場での使用に供される際の外面(タッチパネルディスプレイ面板の場合のタッチ面)により近いことを意味する。
 更に、上記ハードコート積層フィルムが有する上記ハードコートは、1層に限らず、2層以上であってもよい。また、透明樹脂フィルム層は、1層に限らず、2層以上であってもよい。更に、ハードコート積層フィルムは、所望により、ハードコートと透明樹脂フィルム以外の任意の層を有していてもよい。任意の層としては、例えば、アンカーコート層、粘着剤層、透明導電層、高屈折率層、低屈折率層、及び反射防止機能層などを挙げることができる。
 本発明の活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を用いてハードコートを形成する方法は、特に制限されず、公知のウェブ塗布方法を使用することができる。具体的には、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアナイフコート、及びダイコートなどの方法を挙げることができる。
 上記ハードコートの厚みは、特に制限されないが、ハードコート積層フィルムの表面硬度、剛性、耐熱性、及び寸法安定性の観点から、通常1μm以上、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上であってよい。また、上記ハードコートの厚みは、ハードコート積層フィルムの切削加工適性やウェブハンドリング性の観点から、好ましくは100μm以下、より好ましくは50μm以下であってよい。
 上記透明樹脂フィルムは、上記ハードコートを形成するための透明フィルム基材となる層である。上記透明樹脂フィルムとしては、高い透明性を有し、かつ着色のないものであること以外は制限されず、任意の透明樹脂フィルムを用いることができる。
 透明樹脂フィルムとして、例えば、トリアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;エチレンノルボルネン共重合体等の環状炭化水素系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のアクリル系樹脂;ポリ(メタ)アクリルイミド系樹脂;芳香族ポリカーボネート系樹脂;ポリプロピレン、4-メチル-ペンテン-1等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリアリレート系樹脂;ポリマー型ウレタンアクリレート系樹脂;及びポリイミド系樹脂などのフィルムが挙げられる。透明樹脂フィルムは、無延伸フィルム、一軸延伸フィルム、及び二軸延伸フィルムを包含する。また、これらの1種又は2種以上の積層フィルムを包含する。
 上記透明樹脂フィルムは、好ましくは、ポリ(メタ)アクリルイミド系樹脂フィルムである。ポリ(メタ)アクリルイミド系樹脂フィルムを用いることによって、表面硬度、耐擦傷性、透明性、表面平滑性、外観、剛性、耐熱性、及び寸法安定性に優れたハードコート積層フィルムとなり、タッチパネルのディスプレイ面板や透明導電性基板として好適に用いることができる。
 上記ポリ(メタ)アクリルイミド系樹脂は、アクリル系樹脂の高透明性、高表面硬度、高剛性という特徴はそのままにポリイミド系樹脂の耐熱性や寸法安定性に優れるという特徴を導入し、淡黄色から赤褐色に着色するという欠点を改良した熱可塑性樹脂である。ポリ(メタ)アクリルイミド系樹脂は、例えば、特表2011-519999号公報に開示されている。なお本明細書において、ポリ(メタ)アクリルイミドとは、ポリアクリルイミド又はポリメタクリルイミドの意味である。
 上記ポリ(メタ)アクリルイミド系樹脂としては、ハードコート積層フィルムをタッチパネルなどの光学物品に用いる目的から、高い透明性を有し、かつ着色のないものであること以外は制限されず、任意の公知のポリ(メタ)アクリルイミド系樹脂を用いることができる。
 上記ポリ(メタ)アクリルイミド系樹脂の好ましいものとして、黄色度指数(JIS K7105:1981に従い、株式会社島津製作所の色度計「SolidSpec-3700」(商品名)を用いて測定。)が、3以下のものを挙げることができる。ポリ(メタ)アクリルイミド系樹脂の黄色度指数は、より好ましくは2以下であり、更に好ましくは1以下である。
 また、押出負荷や溶融フィルムの安定性の観点から、好ましいポリ(メタ)アクリルイミド系樹脂として、メルトマスフローレート(ISO1133に従い、260℃、98.07Nの条件で測定。)が0.1~20g/10分のものを挙げることができる。ポリ(メタ)アクリルイミド系樹脂のメルトマスフローレートは、0.5~10g/10分がより好ましい。
 更に、ポリ(メタ)アクリルイミド系樹脂のガラス転移温度は、耐熱性の観点から、150℃以上のものが好ましい。ガラス転移温度は、より好ましくは170℃以上である。
 また、上記ポリ(メタ)アクリルイミド系樹脂には、本発明の目的に反しない限度において、所望により、ポリ(メタ)アクリルイミド系樹脂以外の熱可塑性樹脂;顔料、無機フィラー、有機フィラー、樹脂フィラー;滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤、及び界面活性剤等の添加剤などを更に含ませることができる。これらの任意成分の配合量は、通常、ポリ(メタ)アクリルイミド系樹脂を100質量部としたとき、0.01~10質量部程度である。
 上記ポリ(メタ)アクリルイミド系樹脂の市販例としては、エボニック社の「PLEXIMID TT70」(商品名)などを挙げることができる。
 上記ポリ(メタ)アクリルイミド系樹脂フィルムは、好ましくは、第一ポリ(メタ)アクリルイミド系樹脂層(α1);芳香族ポリカーボネート系樹脂層(β);第二ポリ(メタ)アクリルイミド系樹脂層(α2)が、この順に直接積層された透明多層フィルムである。なお、本明細書においては、上記α1層側にタッチ面が形成されるものとして、ハードコート積層フィルムを説明する。
 ポリ(メタ)アクリルイミド系樹脂は、一般的に耐熱性や表面硬度には優れているが、切削加工性が不十分になり易い。それに対して、芳香族ポリカーボネート系樹脂は、切削加工性には優れているが、耐熱性や表面硬度が不十分になり易い。そのため、上記の層構成の透明多層フィルムを用いることにより、両者の弱点を補い合い、耐熱性、表面硬度、及び切削加工性の何れにも優れたハードコート積層フィルムを容易に得ることができるようになる。
 上記α1層の層厚みは、特に制限されないが、本発明のハードコート積層フィルムの耐熱性や表面硬度の観点から、通常20μm以上、好ましくは40μm以上、より好ましくは60μm以上であってよい。
 上記α2層の層厚みは、特に制限されないが、本発明のハードコート積層フィルムの耐カール性の観点から、上記α1層と同じ層厚みであることが好ましい。
 なお、ここで「同じ層厚み」とは、物理化学的に厳密な意味で同じ層厚みと解釈されるべきではない。工業的に通常行われる工程・品質管理の振れ幅の範囲内において同じ層厚みと解釈されるべきである。工業的に通常行われる工程・品質管理の振れ幅の範囲内において同じ層厚みであれば、多層フィルムの耐カール性を良好に保つことができるからである。Tダイ共押出法による無延伸多層フィルムの場合には、通常-5~+5μm程度の幅で工程・品質管理されるものであるから、層厚み65μmと同75μmとは同一と解釈されるべきである。ここでの「同じ層厚み」は、「実質的に同じ層厚み」とも言い換えられる。
 上記β層の層厚みは、特に制限されないが、本発明のハードコート積層フィルムの耐切削性の観点から、通常20μm以上、好ましくは80μm以上、より好ましくは120μm以上であってよい。
 上記α1層及び上記α2層に用いるポリ(メタ)アクリルイミド系樹脂については、上述した。
 なお、上記α1層に用いるポリ(メタ)アクリルイミド系樹脂と、上記α2層に用いるポリ(メタ)アクリルイミド系樹脂とは、異なる樹脂特性のもの、例えばメルトマスフローレートやガラス転移温度の異なるポリ(メタ)アクリルイミド系樹脂を用いることができる。しかし、本発明のハードコート積層フィルムの耐カール性の観点から、同じ樹脂特性のものを用いることがより好ましい。例えば、α1層及びα2層について、同一グレードの同一ロットのポリ(メタ)アクリルイミド系樹脂を用いるのは、好ましい実施態様の一つである。
 上記β層に用いる芳香族ポリカーボネート系樹脂としては、例えば、ビスフェノールA、ジメチルビスフェノールA、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンなどの芳香族ジヒドロキシ化合物とホスゲンとの界面重合法によって得られる重合体;ビスフェノールA、ジメチルビスフェノールA、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンなどの芳香族ジヒドロキシ化合物とジフェニルカーボネートなどの炭酸ジエステルとのエステル交換反応により得られる重合体などの芳香族ポリカーボネート系樹脂の1種又は2種以上の混合物を用いることができる。
 上記芳香族ポリカーボネート系樹脂に含み得る好ましい任意成分としては、コアシェルゴムを挙げることができる。芳香族ポリカーボネート系樹脂とコアシェルゴムとの合計を100質量部としたとき、コアシェルゴムを0~30質量部(芳香族ポリカーボネート系樹脂100~70質量部)、好ましくは0~10質量部(芳香族ポリカーボネート系樹脂100~90質量部)の量で用いることにより、耐切削加工性や耐衝撃性をより高めることができる。
 上記コアシェルゴムとしては、例えば、メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/エチレン・プロピレンゴムグラフト共重合体、アクリロニトリル・スチレン/アクリル酸エステルグラフト共重合体、メタクリル酸エステル/アクリル酸エステルゴムグラフト共重合体、メタクリル酸エステル・アクリロニトリル/アクリル酸エステルゴムグラフト共重合体などのコアシェルゴムを挙げることができる。これらの1種又は2種以上のコアシェルゴムの混合物を用いることができる。
 また、上記芳香族ポリカーボネート系樹脂には、本発明の目的に反しない限度において、所望により、芳香族ポリカーボネート系樹脂やコアシェルゴム以外の熱可塑性樹脂;顔料、無機フィラー、有機フィラー、樹脂フィラー;滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤、及び界面活性剤等の添加剤などを更に含ませることができる。これらの任意成分の配合量は、通常、芳香族ポリカーボネート系樹脂とコアシェルゴムとの合計を100質量部としたとき、0.01~10質量部程度である。
 上記ポリ(メタ)アクリルイミド系樹脂フィルムを得るための製造方法は、特に制限されないが、例えば、(A)押出機とTダイとを備える装置を用い、Tダイから、ポリ(メタ)アクリルイミド系樹脂の溶融フィルムを、連続的に押出す工程;(B)回転する又は循環する第一の鏡面体と、回転する又は循環する第二の鏡面体との間に、上記ポリ(メタ)アクリルイミド系樹脂の溶融フィルムを供給投入し、押圧する工程を含む方法を挙げることができる。
 同様に、上記α1層、β層、α2層がこの順に直接積層された透明多層フィルムの製造方法は、特に制限されないが、例えば、(A’)押出機とTダイとを備える共押出装置を用い、第一ポリ(メタ)アクリルイミド系樹脂層(α1);芳香族ポリカーボネート系樹脂層(β);第二ポリ(メタ)アクリルイミド系樹脂層(α2)が、この順に直接積層された透明多層フィルムの溶融フィルムを、Tダイから連続的に共押出する工程;(B’)回転する又は循環する第一の鏡面体と、回転する又は循環する第二の鏡面体との間に、上記透明多層フィルムの溶融フィルムを供給投入し、押圧する工程を含む方法を挙げることができる。
 上記工程(A)又は上記工程(A’)で使用する上記Tダイとしては、任意の公知のものを使用することができる。例えば、マニホールドダイ、フィッシュテールダイ、及びコートハンガーダイなどを挙げることができる。
 上記共押出装置としては、任意の公知のものを使用することができる。例えば、フィードブロック方式、マルチマニホールド方式、及びスタックプレート方式などの共押出装置を挙げることができる。
 上記工程(A)又は上記工程(A’)で使用する上記押出機としては、任意の公知のものを使用することができる。例えば、単軸押出機、同方向回転二軸押出機、及び異方向回転二軸押出機などを挙げることができる。
 また、ポリ(メタ)アクリルイミド系樹脂や芳香族ポリカーボネート系樹脂の劣化を抑制するため、押出機内を窒素パージすることも好ましい方法の一つである。
 更に、ポリ(メタ)アクリルイミド系樹脂は吸湿性の高い樹脂であるため、製膜に供する前に、これを乾燥することが好ましい。また、乾燥機で乾燥したポリ(メタ)アクリルイミド系樹脂を、乾燥機から押出機に直接輸送し、投入することも好ましい方法の一つである。乾燥機の設定温度は、好ましくは100~150℃である。また、押出機に(通常はスクリュウ先端の計量ゾーンに)、真空ベントを設けることも好ましい方法の一つである。
 上記工程(A)又は上記工程(A’)で使用する上記Tダイの温度は、ポリ(メタ)アクリルイミド系樹脂の溶融フィルム又は上記透明多層フィルムの溶融フィルムを、連続的に押出又は共押出する工程を安定的に行うために、少なくとも260℃以上に設定することが好ましい。より好ましくは270℃以上である。また、ポリ(メタ)アクリルイミド系樹脂や芳香族ポリカーボネート系樹脂の劣化を抑制するため、Tダイの温度は、350℃以下に設定することが好ましい。
 また、リップ開度(R)と得られるポリ(メタ)アクリルイミドフィルムの厚み(T)との比(R/T)は、レタデーションが大きくならないようにする観点から、10以下が好ましく、5以下がより好ましい。また比(R/T)は、押出負荷が過大にならないようにする観点から、1以上が好ましく、1.5以上がより好ましい。
 上記工程(B)又は上記工程(B’)で使用する上記第一の鏡面体としては、例えば、鏡面ロールや鏡面ベルトなどを挙げることができる。上記第二の鏡面体としては、例えば、鏡面ロールや鏡面ベルトなどを挙げることができる。
 上記鏡面ロールは、その表面が鏡面加工されたロールである。鏡面ロールの材質には、金属製、セラミック製、及びシリコンゴム製などがある。また、鏡面ロールの表面については、腐食や傷付きからの保護を目的としてクロームメッキや鉄-リン合金メッキ、PVD法やCVD法による硬質カーボン処理などを施すことができる。
 上記鏡面ベルトは、その表面が鏡面加工された、通常は金属製のシームレスのベルトである。鏡面ベルトは、例えば、一対のベルトローラー相互間に掛け巡らされて、循環するようにされている。また、鏡面ベルトの表面については、腐食や傷付きからの保護を目的としてクロームメッキや鉄-リン合金メッキ、PVD法やCVD法による硬質カーボン処理などを施すことができる。
 上記鏡面加工は、限定されず、任意の方法で行うことができる。例えば、微細な砥粒を用いて研磨することにより、上記鏡面体の表面の算術平均粗さ(Ra)を好ましくは100nm以下、より好ましくは50nm以下、十点平均粗さ(Rz)を好ましくは500nm以下、より好ましくは250nm以下にする方法を挙げることができる。
 理論に拘束される意図はないが、上記の製膜方法により、透明性、表面平滑性、及び外観に優れたポリ(メタ)アクリルイミド系樹脂フィルム又は透明多層フィルムが得られるのは、第一鏡面体と第二鏡面体とでポリ(メタ)アクリルイミド系樹脂フィルム又は透明多層フィルムの溶融フィルムが押圧されることにより、第一鏡面体及び第二鏡面体の高度に平滑な面状態がフィルムに転写され、ダイスジ等の不良箇所が修正されるためと考察できる。
 上記面状態の転写が良好に行われるようにするため、第一鏡面体の表面温度は、100℃以上にすることが好ましい。その表面温度は、より好ましくは120℃以上、更に好ましくは130℃以上である。一方、フィルムに第一鏡面体との剥離に伴う外観不良(剥離痕)の現れることを防止するため、第一鏡面体の表面温度は、好ましくは200℃以下、より好ましくは160℃以下である。
 上記面状態の転写が良好に行われるようにするため、第二鏡面体の表面温度は、20℃以上にすることが好ましい。その表面温度は、より好ましくは60℃以上、更に好ましくは100℃以上である。一方、フィルムに第二鏡面体との剥離に伴う外観不良(剥離痕)の現れることを防止するため、第二鏡面体の表面温度は、好ましくは200℃以下、より好ましくは160℃以下である。
 なお第一鏡面体の表面温度を、第二鏡面体の表面温度よりも高くすることが好ましい。これはフィルムを第一鏡面体に抱かせて次の移送ロールへと送り出すためである。
 また、上記ハードコートを形成するに際し、ハードコートを形成するための透明フィルム基材となる上記ポリ(メタ)アクリルイミド系樹脂フィルム又は透明多層フィルムのハードコート形成面又は両面に、ハードコートとの接着強度を高めるため、事前にコロナ放電処理やアンカーコート形成などの易接着処理を施してもよい。
 上記コロナ放電処理を施す場合は、濡れ指数(JIS K6768:1999に従い測定。)を、通常は50mN/m以上、好ましくは60mN/m以上にすることにより、良好な層間接着強度を得ることができるようになる。また、コロナ放電処理を施した後、更にアンカーコートを形成してもよい。
 コロナ放電処理は、絶縁された電極と誘電体ロールとの間にフィルムを通し、高周波高電圧を印加してコロナ放電を発生させ、フィルム表面を処理するというものである。このコロナ放電により酸素などがイオン化し、フィルム表面に衝突することにより、フィルム表面において、樹脂分子鎖の切断や樹脂分子鎖への含酸素官能基付加が起こり、濡れ指数が高くなる。
 上記コロナ放電処理の単位面積、単位時間当たりの処理量(S)は、上記の濡れ指数を得る観点から決定され、通常80W・min/m以上、好ましくは120W・min/m以上である。また、フィルムの劣化を防止する観点から、処理量(S)は500W・min/m以下に抑えることが好ましい。処理量(S)は、より好ましくは400W・min/m以下である。
 なお、処理量(S)は次式で定義される。
 S=P/(L・V)
 ここで、S:処理量(W・min/m)、P:放電電力(W)、L:放電電極の長さ(m)、V:ライン速度(m/min)である。
 上記アンカーコートを形成するためのアンカーコート剤としては、高い透明性を有し、かつ着色のないものであること以外は制限されない。アンカーコート剤として、例えば、ポリエステル、アクリル、ポリウレタン、アクリルウレタン、及びポリエステルウレタンなどの公知のものを用いることができる。中でもハードコートとの接着強度向上の観点から、熱可塑性ウレタン系アンカーコート剤が好ましい。
 また、上記アンカーコート剤としては、シランカップリング剤を含む塗料を用いることもできる。シランカップリング剤は、加水分解性基(例えば、メトキシ基、エトキシ基等のアルコキシ基;アセトキシ基等のアシルオキシ基;クロロ基等のハロゲン基など)、及び有機官能基(例えば、アミノ基、ビニル基、エポキシ基、メタクリロキシ基、アクリロキシ基、及びイソシアネート基など)の少なくとも2種類の異なる反応性基を有するシラン化合物である。このようなシランカップリング剤は、ハードコートとの接着強度を向上させる働きをする。中でもハードコートとの接着強度向上の観点から、アミノ基を有するシランカップリング剤が好ましい。
 上記シランカップリング剤を含む塗料は、シランカップリング剤を主成分として(固形分として50質量%以上)含む塗料である。好ましくは上記塗料の固形分の75質量%以上、より好ましくは90質量%以上がシランカップリング剤である。
 上記アミノ基を有するシランカップリング剤としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランなどを挙げることができる。アミノ基を有するシランカップリング剤として、これらの1種又は2種以上の混合物を用いることができる。
 上記アンカーコート剤を用いてアンカーコートを形成する方法は、制限されず、公知の方法を使用することができる。具体的には、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアナイフコート、及びダイコートなどの方法を挙げることができる。このとき、必要に応じて任意の希釈溶剤、例えば、メタノール、エタノール、1-メトキシ-2-プロパノール、酢酸n-ブチル、トルエン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、及びアセトンなどを使用することができる。
 また、上記アンカーコート剤には、本発明の目的に反しない限度において、酸化防止剤、耐候性安定剤、耐光性安定剤、紫外線吸収剤、熱安定剤、帯電防止剤、界面活性剤、着色剤、赤外線遮蔽剤、レベリング剤、チクソ性付与剤、及びフィラー等の添加剤を1種、又は2種以上含ませてもよい。
 上記アンカーコートの厚みは、通常0.01~5μm程度、好ましくは0.1~2μmである。
 上記透明樹脂フィルムの厚みは、特に制限されないが、取扱性の観点から、通常20μm以上、好ましくは50μm以上であってよい。本発明のハードコート積層フィルムをタッチパネルのディスプレイ面板として用いる場合には、剛性を保持する観点から、透明樹脂フィルムの厚みは、通常100μm以上、好ましくは200μm以上、より好ましくは300μm以上であってよい。また、タッチパネルの薄型化の要求に応える観点から、透明樹脂フィルムの厚みは、通常1500μm以下、好ましくは1200μm以下、より好ましくは1000μm以下であってよい。タッチパネルのディスプレイ面板以外の高い剛性を必要としない用途に適用する場合、経済性の観点から、透明樹脂フィルムの厚みは、通常250μm以下、好ましくは150μm以下であってよい。
 本発明のハードコート積層フィルムは、JIS K7361-1:1997に従い、日本電色工業株式会社の濁度計「NDH2000(商品名)」を用いて測定したときに、好ましくは、全光線透過率が80%以上である。全光線透過率が80%以上の高透明なものであることにより、ハードコート積層フィルムを、タッチパネルのディスプレイ面板などに好適に用いることができる。全光線透過率は、高いほど好ましく、より好ましくは85%以上、更に好ましくは90%以上である。
 本発明のハードコート積層フィルムは、JIS K7136:2000に従い、日本電色工業株式会社の濁度計「NDH2000(商品名)」を用いて測定したときに、好ましくは、ヘーズが3.0%以下である。ヘーズが3.0%以下の高透明なものであることにより、ハードコート積層フィルムを、タッチパネルのディスプレイ面板などに好適に用いることができる。ヘーズは、低いほど好ましく、より好ましくは2.0%以下、更に好ましくは1.5%以下である。
 本発明のハードコート積層フィルムは、JIS K7105:1981に従い、島津製作所社製の色度計「SolidSpec-3700(商品名)」を用いて測定したときに、好ましくは、黄色度指数が3以下である。黄色度指数が3以下の着色のないものであることにより、ハードコート積層フィルムを、タッチパネルのディスプレイ面板などに好適に用いることができる。黄色度指数は、低いほど好ましく、より好ましくは2以下、更に好ましくは1以下である。
 本発明のハードコート積層フィルムをタッチパネルのディスプレイ面板として用いる場合には、好ましくは、ハードコート積層フィルムのタッチ面の下記(4)(実施例)の方法で測定した水接触角は100度以上である。ここでのハードコート積層フィルムの「タッチ面」とは、タッチパネルディスプレイ面板の指やペンでタッチし、入力操作を行う面となる面を意味する。水接触角が100度以上であることにより、ハードコート積層フィルムのタッチ面上において、指やペンを思い通りに滑らし、タッチパネルを操作することができるようになる。指やペンを思い通りに滑らせるという観点からは、水接触角は高い方が好ましく、より好ましくは105度以上である。一方、水接触角の上限は特にないが、指すべり性の観点からは、通常120度程度で十分である。
 本発明のハードコート積層フィルムをタッチパネルのディスプレイ面板として用いる場合には、好ましくは、ハードコート積層フィルムのタッチ面の下記(5)(実施例)の方法で測定した2万往復綿拭後の水接触角は100度以上である。タッチ面の2万往復綿拭後の水接触角が100度以上であることにより、ハンカチなどで繰返し拭かれたとしても指すべり性などの表面特性を維持することができる。2万往復綿拭後の水接触角は、好ましくは105度以上である。一方、2万往復綿拭後の水接触角の上限は特にないが、指すべり性の観点からは、通常120度程度で十分である。
[II].本発明の第二の態様による透明樹脂積層体
 本発明の上記第二の態様に係る透明樹脂積層体について説明する。
 本明細書において「シート」の用語は、フィルムや板をも含むことを意図する。
 また、本明細書において「樹脂」の用語は、2以上の樹脂を含む樹脂混合物や、樹脂以外の成分を含む樹脂組成物をも含むことを意図する。
 本発明の透明樹脂積層体は、最表層側から順にハードコートの層と透明樹脂シートの層とを有する。この透明樹脂積層体は、ガラスに替わる材料として用いる目的から、高い透明性を有し、かつ着色がないものである。ここでの「表層側」の意味は、上述したとおりである。
 本発明の透明樹脂積層体は、少なくとも、透明樹脂シートの層の最表層側の表面にハードコートの層を有する。さらに、本発明の透明樹脂積層体は、透明樹脂シートの層の他方の表面にも、ハードコートの層を有していてよい。
1.ハードコート層形成用の活性エネルギー線硬化性樹脂組成物
 透明樹脂シートの層の最表層側の表面上のハードコートは、活性エネルギー線硬化性樹脂組成物を含む塗料から形成されており、耐傷付性や耐擦傷性に優れている。
 以下、この活性エネルギー線硬化性樹脂組成物を含む塗料について説明する。
(A)多官能(メタ)アクリレート:
 上記第二の態様に係る透明樹脂積層体のハードコートを形成するために用いられる活性エネルギー線硬化性樹脂組成物は、(A)多官能(メタ)アクリレートを含む。
 この多官能(メタ)アクリレートとしては、1分子中に2以上の(メタ)アクリロイル基を有する限りは特に限定されないが、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。
(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物:
 上記第二の態様に係る透明樹脂積層体のハードコートを形成するために用いられる活性エネルギー線硬化性樹脂組成物は、(B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物を含む。
 ここで、(メタ)アクリロイル基は、アクリロイル基又はメタクリロイル基の意味である。なお、上記成分Bは、アルコキシシリル基を有するという点で上記成分Aとは区別される。上記成分Aの化合物は、アルコキシシリル基を有しない。本明細書において、1分子中にアルコキシシリル基と2以上の(メタ)アクリロイル基を有する化合物は、成分Bである。
 アルコキシシリル基と(メタ)アクリロイル基とを有する化合物としては、この定義の範疇である以上は特に限定されないが、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。また、アルコキシシリル基と(メタ)アクリロイル基とを有する化合物の配合量も、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様に調整してよい。
(C)有機チタン:
 上記第二の態様に係る透明樹脂積層体のハードコートを形成するために用いられる活性エネルギー線硬化性樹脂組成物は、(C)有機チタンを含む。
 この有機チタンとしては、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。また、有機チタンの配合量も、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様に調整してよい。
(D)平均粒子径1~300nmの微粒子:
 上記第二の態様に係る透明樹脂積層体のハードコートを形成するために用いられる活性エネルギー線硬化性樹脂組成物は、(D)平均粒子径1~300nmの微粒子を含む。
 この微粒子としては、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。また、微粒子の配合量も、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様に調整してよい。
(E)撥水剤:
 上記第二の態様に係る透明樹脂積層体のハードコートを形成するために用いられる活性エネルギー線硬化性樹脂組成物は、汚れの付着防止性、及び汚れの拭取り性を高める観点から、好ましくは、(E)撥水剤を更に含んでよい。
 この撥水剤としては、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。また、撥水剤の配合量も、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様に調整してよい。
 また、上記活性エネルギー線硬化性樹脂組成物には、活性エネルギー線による硬化性を良好にする観点から、1分子中に2以上のイソシアネート基(-N=C=O)を有する化合物及び/又は光重合開始剤を更に含ませることが好ましい。
 このような1分子中に2以上のイソシアネート基(-N=C=O)を有する化合物及び光重合開始剤としては、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。
 上記活性エネルギー線硬化性樹脂組成物は、所望に応じて、帯電防止剤、界面活性剤、レベリング剤、チクソ性付与剤、汚染防止剤、印刷性改良剤、酸化防止剤、耐候性安定剤、耐光性安定剤、紫外線吸収剤、熱安定剤、着色剤、及びフィラーなどの添加剤を1種、又は2種以上含んでいてもよい。
 上記活性エネルギー線硬化性樹脂組成物は、塗工し易い濃度に希釈するため、所望に応じて溶剤を含んでいてもよい。溶剤は、上記成分A~D、及びその他の任意成分と反応したり、これらの成分の自己反応(劣化反応を含む)を触媒(促進)したりしないものであれば、特に制限されない。このような溶媒としては、上記第一の態様に係る活性エネルギー線硬化性樹脂組成物と同様のものを用いることができる。
 上記活性エネルギー線硬化性樹脂組成物は、これらの成分を混合、攪拌することにより得られる。
2.ハードコートの層
 上記活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を用いてハードコートを形成する方法は、特に制限されず、公知のウェブ塗布方法を使用することができる。具体的には、ロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、エアナイフコート、及びダイコートなどの方法を挙げることができる。
 上記ハードコートの層の厚みは、特に制限されないが、本発明の透明樹脂積層体の耐傷付き性や耐擦傷性の観点から、通常1μm以上、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上であってよい。また、上記ハードコートの層の厚みは、本発明の透明樹脂積層体の切削加工適性やハンドリング性の観点から、好ましくは100μm以下、より好ましくは50μm以下であってよい。
3.透明樹脂シートの層
 上記透明樹脂シートの層は、本発明の透明樹脂積層体をガラスに替わる材料として用いる目的から、高い透明性を有し、かつ着色のないものであること以外は制限されず、任意の透明樹脂シートを用いることができる。
 透明樹脂シートとして、例えば、トリアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;エチレンノルボルネン共重合体等の環状炭化水素系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のアクリル系樹脂;ポリ(メタ)アクリルイミド系樹脂;芳香族ポリカーボネート系樹脂;ポリプロピレン、4-メチル-ペンテン-1等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリアリレート系樹脂;ポリマー型ウレタンアクリレート系樹脂;及びポリイミド系樹脂などのシートが挙げられる。透明樹脂シートは、無延伸シート、一軸延伸シート、及び二軸延伸シートを包含する。また、これらの1種又は2種以上の積層シートを包含する。
 透明樹脂シートの好ましい例として、以下のものを挙げることができる。
 (a1)ポリ(メタ)アクリルイミド系樹脂シート;
 (a2)アクリル系樹脂シート;
 (a3)芳香族ポリカーボネート系樹脂シート;
 (a4)ポリエステル系樹脂シート;
 (a5)上記透明樹脂シートa1~a4の何れか1種又は2種以上の積層シート。
 上記(a1)ポリ(メタ)アクリルイミド系樹脂シートは、ポリ(メタ)アクリルイミド系樹脂を主成分として含む樹脂から形成されているシートである。ここでの「主成分」は、通常80質量%以上、好ましくは90質量%以上を意味する。
 上記ポリ(メタ)アクリルイミド系樹脂は、アクリル系樹脂の高透明性、高表面硬度、高剛性という特徴はそのままにポリイミド系樹脂の耐熱性や寸法安定性に優れるという特徴を導入し、淡黄色から赤褐色に着色するという欠点を改良した熱可塑性樹脂である。ポリ(メタ)アクリルイミド系樹脂は、例えば、特表2011-519999号公報に開示されている。なお本明細書において、ポリ(メタ)アクリルイミドとは、ポリアクリルイミド又はポリメタクリルイミドの意味である。
 上記ポリ(メタ)アクリルイミド系樹脂としては、透明樹脂積層体をガラスに替わる材料として用いる目的から、高い透明性を有すること以外は制限されず、任意の公知のポリ(メタ)アクリルイミド系樹脂を用いることができる。
 上記ポリ(メタ)アクリルイミド系樹脂の好ましいものとして、黄色度指数(JIS K7105:1981に従い、株式会社島津製作所の色度計「SolidSpec-3700(商品名)」を用いて測定。)が、3以下のものを挙げることができる。ポリ(メタ)アクリルイミド系樹脂の黄色度指数は、より好ましくは2以下であり、更に好ましくは1以下である。
 また、押出負荷や溶融シートの安定性の観点から、好ましいポリ(メタ)アクリルイミド系樹脂として、メルトマスフローレート(ISO1133に従い、260℃、98.07Nの条件で測定。)が0.1~20g/10分のものを挙げることができる。ポリ(メタ)アクリルイミド系樹脂のメルトマスフローレートは、0.5~10g/10分がより好ましい。
 更に、ポリ(メタ)アクリルイミド系樹脂のガラス転移温度は、耐熱性の観点から、150℃以上のものが好ましい。ガラス転移温度は、より好ましくは170℃以上である。
 また、上記ポリ(メタ)アクリルイミド系樹脂には、本発明の目的に反しない限度において、所望により、他の添加剤を更に含ませることができる。この任意成分の種類及び配合量は、上記第一の形態に係る活性エネルギー線硬化性樹脂組成物のために用いられるものと同様である。
 上記ポリ(メタ)アクリルイミド系樹脂の市販例としては、上記第一の形態に係る活性エネルギー線硬化性樹脂組成物のために用いられるものと同様に、エボニック社の「PLEXIMID TT70(商品名)」などを挙げることができる。
 上記(a2)アクリル系樹脂シートは、ポリメタクリル酸メチル、ポリメタクリル酸エチル等のアクリル系樹脂を主成分として含む樹脂から形成されているシートである。ここでの「主成分」は、通常50質量%以上、好ましくは60質量%以上を意味する。
 上記アクリル系樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸ブチル、(メタ)アクリル酸メチル・(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸エチル・(メタ)アクリル酸ブチル共重合体などの(メタ)アクリル酸エステル(共)重合体;エチレン・(メタ)アクリル酸メチル共重合体、スチレン・(メタ)アクリル酸メチル共重合体等の(メタ)アクリル酸エステルを含む共重合体などのアクリル系樹脂(Acry)の1種又は2種以上の混合物と、メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/エチレン・プロピレンゴムグラフト共重合体、アクリロニトリル・スチレン/アクリル酸エステルグラフト共重合体、メタクリル酸エステル/アクリル酸エステルゴムグラフト共重合体、メタクリル酸エステル・アクリロニトリル/アクリル酸エステルゴムグラフト共重合体などのコアシェルゴム(Core)の1種又は2種以上の混合物を含む樹脂組成物を挙げることができる。
 なお、ここで(メタ)アクリルとは、アクリル又はメタクリルの意味である。また、(共)重合体とは、重合体又は共重合体の意味である。
 上記Acryと上記Coreとの配合比は、両者の合計を100質量部としたとき、好ましくはAcry50~85質量部:Core50~15質量部であり、より好ましくはAcry60~75質量部:Core40~25質量部である。
 また、上記アクリル系樹脂組成物に含み得るその他の任意成分としては、上記Acryや上記Core以外の熱可塑性樹脂;顔料、無機フィラー、有機フィラー、樹脂フィラー;滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤、核剤、及び、界面活性剤等の添加剤などを挙げることができる。これらの任意成分の配合量は、通常、AcryとCoreとの合計を100質量部としたとき、通常25質量部以下、好ましくは0.01~10質量部程度である。
 上記(a3)芳香族ポリカーボネート系樹脂シートは、芳香族ポリカーボネート系樹脂を主成分として含む樹脂から形成されているシートである。ここでの「主成分」は、通常70質量%以上、好ましくは90質量%以上を意味する。
 上記芳香族ポリカーボネート系樹脂としては、例えば、ビスフェノールA、ジメチルビスフェノールA、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンなどの芳香族ジヒドロキシ化合物とホスゲンとの界面重合法によって得られる重合体;ビスフェノールA、ジメチルビスフェノールA、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンなどの芳香族ジヒドロキシ化合物とジフェニルカーボネートなどの炭酸ジエステルとのエステル交換反応により得られる重合体などの芳香族ポリカーボネート系樹脂の1種又は2種以上の混合物を用いることができる。
 上記芳香族ポリカーボネート系樹脂に含み得る好ましい任意成分としては、コアシェルゴムを挙げることができる。芳香族ポリカーボネート系樹脂とコアシェルゴムとの合計を100質量部としたとき、コアシェルゴムを0~30質量部(芳香族ポリカーボネート系樹脂100~70質量部)、好ましくは0~10質量部(芳香族ポリカーボネート系樹脂100~90質量部)の量で用いることにより、上記(a3)芳香族ポリカーボネート系樹脂シートの耐切削加工性や耐衝撃性をより高めることができる。
 上記コアシェルゴムとしては、例えば、メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/エチレン・プロピレンゴムグラフト共重合体、アクリロニトリル・スチレン/アクリル酸エステルグラフト共重合体、メタクリル酸エステル/アクリル酸エステルゴムグラフト共重合体、メタクリル酸エステル・アクリロニトリル/アクリル酸エステルゴムグラフト共重合体などのコアシェルゴムを挙げることができる。コアシェルゴムとして、これらの1種又は2種以上の混合物を用いることができる。
 また、上記芳香族ポリカーボネート系樹脂には、本発明の目的に反しない限度において、所望により、芳香族ポリカーボネート系樹脂やコアシェルゴム以外の熱可塑性樹脂;顔料、無機フィラー、有機フィラー、樹脂フィラー;滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤、及び界面活性剤等の添加剤などを更に含ませることができる。これらの任意成分の配合量は、通常、芳香族ポリカーボネート系樹脂とコアシェルゴムとの合計を100質量部としたとき、0.01~10質量部程度である。
 上記(a4)ポリエステル系樹脂シートは、ポリエチレンテレフタレート等のポリエステル系樹脂を主成分として含む樹脂からなるシートである。ここでの「主成分」は、通常80質量%以上、好ましくは90質量%以上を意味する。このポリエステル系樹脂シートは、無延伸シート、一軸延伸シート、及び二軸延伸シートを包含する。また、このポリエステル系樹脂シートは、これらの1種又は2種以上の積層シートを包含する。
 上記(a4)ポリエステル系樹脂シートは、好ましくは、非晶性又は低結晶性芳香族ポリエステル系樹脂を主成分として含む樹脂からなるシートである。ここでの「主成分」は、通常80質量%以上、好ましくは90質量%以上を意味する。
 上記非晶性又は低結晶性芳香族ポリエステル系樹脂としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸などの芳香族多価カルボン酸成分とエチレングリコール、ジエチレングリコール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,4-シクロヘキサンジメタノールなどの多価アルコール成分とのポリエステル系共重合体を挙げることができる。より具体的には、モノマーの総和を100モル%として、テレフタル酸50モル%及びエチレングリコール30~40モル%、1,4-シクロヘキサンジメタノール10~20モル%からなるグリコール変性ポリエチレンテレフタレート(PETG);テレフタル酸50モル%、エチレングリコール16~21モル%及び1,4-シクロヘキサンジメタノール29~34モル%からなるグリコール変性ポリシクロヘキシレンジメチレンテレフタレート(PCTG);テレフタル酸25~49.5モル%、イソフタル酸0.5~25モル%及び1,4-シクロヘキサンジメタノール50モル%からなる酸変性ポリシクロヘキシレンジメチレンテレフタレート(PCTA);テレフタル酸30~45モル%、イソフタル酸5~20モル%及びエチレングリコール35~48モル%、ネオペンチルグリコール2~15モル%、ジエチレングリコール1モル%未満、ビスフェノールA1モル%未満からなる酸変性及びグリコール変性ポリエチレンテレフタレートなどの1種又は2種以上の混合物を挙げることができる。
 本明細書では、株式会社パーキンエルマージャパンのDiamond DSC型示差走査熱量計を使用し、試料を320℃で5分間保持した後、20℃/分の降温速度で-50℃まで冷却し、-50℃で5分間保持した後、20℃/分の昇温速度で320℃まで加熱するという温度プログラムで測定されるセカンド融解曲線(最後の昇温過程において測定される融解曲線)の融解熱量が、10J/g以下のポリエステルを非結晶性、10J/gを超えて60J/g以下のポリエステルを低結晶性と定義した。
 上記ポリエステル系樹脂には、本発明の目的に反しない限度において、所望により、その他の成分を含ませることができる。含む得る任意成分としては、ポリエステル系樹脂以外の熱可塑性樹脂;顔料、無機フィラー、有機フィラー、樹脂フィラー;滑剤、酸化防止剤、耐候性安定剤、熱安定剤、離型剤、帯電防止剤、及び、界面活性剤等の添加剤などを挙げることができる。これらの任意成分の配合量は、ポリエステル系樹脂を100質量部としたとき、通常25質量部以下、好ましくは0.01~10質量部程度である。
 上記ポリエステル系樹脂に含み得る好ましい任意成分としては、コアシェルゴムを挙げることができる。コアシェルゴムを用いることで、上記(a4)ポリエステル系樹脂シートの耐衝撃性を向上させることができる。
 上記コアシェルゴムとしては、例えば、メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/ブタジエンゴムグラフト共重合体、アクリロニトリル・スチレン/エチレン・プロピレンゴムグラフト共重合体、アクリロニトリル・スチレン/アクリル酸エステルグラフト共重合体、メタクリル酸エステル/アクリル酸エステルゴムグラフト共重合体、メタクリル酸エステル・アクリロニトリル/アクリル酸エステルゴムグラフト共重合体などのコアシェルゴムの1種又は2種以上の混合物を挙げることができる。コアシェルゴムとしては、これらの1種又は2種以上の混合物を用いることができる。
 上記コアシェルゴムの配合量は、ポリエステル系樹脂を100質量部としたとき、耐衝撃性を向上させるため、好ましくは0.5質量部以上である。一方、透明性を保持するため、コアシェルゴムの配合量は、好ましくは5質量部以下、より好ましくは3質量部以下である。
 上記(a5)上記透明樹脂シートa1~a4の何れか1種又は2種以上の積層シートについて、積層順は特に限定されないが、最も好ましくは、第一ポリ(メタ)アクリルイミド系樹脂層;芳香族ポリカーボネート系樹脂層;第二ポリ(メタ)アクリルイミド系樹脂層が、この順に直接積層された積層シートである。
 この場合、第一ポリ(メタ)アクリルイミド系樹脂層と第二ポリ(メタ)アクリルイミド系樹脂層とは、耐カール性の観点から、実質的に同じ層厚みであることが好ましい。また、第一ポリ(メタ)アクリルイミド系樹脂層と第二ポリ(メタ)アクリルイミド系樹脂層とは、同じであっても異なっていてもよいが、同じ樹脂特性を有することが好ましく、同一グレードの同一ロットのものであることが更に好ましい。
 上記(a5)上記透明樹脂シートa1~a4の何れか1種又は2種以上の積層シートは、例えば、フィードブロック方式、マルチマニホールド方式、及びスタックプレート方式などの任意の共押出装置を使用し、所望の層構成になるように共押出製膜することにより;あるいは、任意の製膜装置を使用して上記透明樹脂シートa1~a4の何れか1種又は2種以上を得た後、これらを所望の層構成になるように熱ラミネート又はドライラミネートすることにより;あるいは、任意の製膜装置を使用して上記透明樹脂シートa1~a4の何れか1種を得た後、該シートを基材として所望の層構成になるように押出ラミネートすることにより得ることができる。
 上記透明樹脂シートを得るための製造方法は、特に制限されないが、例えば、(P)押出機とTダイとを備える装置を用い、Tダイから、透明樹脂の溶融シートを、連続的に押出す工程;(Q)回転する又は循環する第一の鏡面体と、回転する又は循環する第二の鏡面体との間に、上記透明樹脂の溶融シートを供給投入し、押圧する工程を含む方法を挙げることができる。
 上記工程(P)のTダイとしては、任意の公知のものを使用することができる。Tダイとして、例えばマニホールドダイ、フィッシュテールダイ、及びコートハンガーダイなどを挙げることができる。
 上記工程(P)の押出機としては、任意の公知のものを使用することができる。押出機として、例えば単軸押出機、同方向回転二軸押出機、及び異方向回転二軸押出機などを挙げることができる。
 また、透明樹脂の劣化を抑制するため、押出機内を窒素パージすることも好ましい方法の一つである。
 更に、透明樹脂を製膜に供する前に、これを乾燥することは好ましい。また、乾燥機で透明樹脂を、乾燥機から押出機に直接輸送し、投入することも好ましい。また、押出機に(通常はスクリュウ先端の計量ゾーンに)、真空ベントを設けることも好ましい。
 上記工程(Q)の第一の鏡面体としては、第一の形態に関して説明した上記工程(B)又は(B’)と同様のものを用いることができる。
 理論に拘束される意図はないが、上記の製膜方法により、透明性、表面平滑性、及び外観に優れた透明樹脂シートが得られるのは、第一鏡面体と第二鏡面体とで透明樹脂の溶融シートが押圧されることにより、第一鏡面体及び第二鏡面体の高度に平滑な面状態がシートに転写され、ダイスジ等の不良箇所が修正されるためと考察できる。
 上記面状態の転写が良好に行われるようにするため、第一鏡面体の表面温度は、好ましくは80℃以上、より好ましくは100℃以上であってよい。一方、シートに第一鏡面体との剥離に伴う外観不良(剥離痕)の現れることを防止するため、第一鏡面体の表面温度は好ましくは200℃以下、より好ましくは160℃以下であってよい。
 上記面状態の転写が良好に行われるようにするため、第二鏡面体の表面温度は、好ましくは20℃以上、より好ましくは60℃以上であってよい。一方、シートに第二鏡面体との剥離に伴う外観不良(剥離痕)の現れることを防止するため、第二鏡面体の表面温度は好ましくは200℃以下、より好ましくは160℃以下であってよい。
 なお第一鏡面体の表面温度を、第二鏡面体の表面温度よりも高くすることが好ましい。これはシートを第一鏡面体に抱かせて次の移送ロールへと送り出すためである。
 また、上記ハードコートの層を形成するに際し、基材となる上記透明樹脂シートのハードコート形成面又は両面に、ハードコートとの接着強度を高めるため、事前にコロナ放電処理やアンカーコート形成などの易接着処理を施してもよい。
 上記透明樹脂シートの厚みは、特に制限されず、所望により任意の厚みにすることができる。本発明の透明樹脂積層体を、更にポリカーボネート板やアクリル板等の他の基板と積層して用いる場合には、取扱性の観点から、上記透明樹脂シートの厚みは、通常20μm以上、好ましくは50μm以上であってよい。また経済性の観点から、上記透明樹脂シートの厚みは、通常250μm以下、好ましくは150μm以下であってよい。
 本発明の透明樹脂積層体を、車両の窓ガラスや建築物の窓ガラスを代替する部材として用いる場合には、剛性を保持する観点から、上記透明樹脂シートの厚みは、通常1mm以上、好ましくは1.5mm以上、より好ましくは2mm以上であってよい。また部材の軽量化の要求に応える観点から、上記透明樹脂シートの厚みは、通常6mm以下、好ましくは4mm以下、より好ましくは3mm以下であってよい。
 上記透明樹脂シートは、全光線透過率(JIS K7361-1:1997に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて測定。)が、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。全光線透過率は高いほど好ましい。
 また、上記透明樹脂シートは、ヘーズ(JIS K7136:2000に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて測定。)が、好ましくは5%以下、より好ましくは3%以下、更に好ましくは2%以下である。ヘーズは低いほど好ましい。
 更に、上記透明樹脂シートは、黄色度指数(JIS K7105:1981に従い、島津製作所社製の色度計「SolidSpec-3700」(商品名)を用いて測定。)が、好ましくは3以下、より好ましくは2以下、更に好ましくは1以下である。黄色度指数は低いほど好ましい。
4.透明樹脂積層体の好ましい特性
 本発明の透明樹脂積層体は、ガラスに替わる材料として用いる目的から、高い透明性を有し、かつ着色がないことが必要とされる。
 この目的のため、上記透明樹脂シートと同様に、本発明の透明樹脂積層体は、全光線透過率(JIS K7361-1:1997に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて測定。)が、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。全光線透過率は高いほど好ましい。
 また、本発明の透明樹脂積層体は、ヘーズ(JIS K7136:2000に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて測定。)が、好ましくは5%以下、より好ましくは3%以下、更に好ましくは2%以下である。ヘーズは低いほど好ましい。
 更に、本発明の透明樹脂積層体は、黄色度指数(JIS K7105:1981に従い、島津製作所社製の色度計「SolidSpec-3700」(商品名)を用いて測定。)が、好ましくは3以下、より好ましくは2以下、更に好ましくは1以下である。黄色度指数は低いほど好ましい。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
物性の測定・評価方法
(1)全光線透過率
 JIS K7361-1:1997に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて、全光線透過率を測定した。
(2)ヘーズ
 JIS K7136:2000に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて、ヘーズを測定した。
(3)黄色度指数(YI)
 JIS K7105:1981に従い、島津製作所社製の色度計「SolidSpec-3700」(商品名)を用いて、黄色度指数を測定した。
(4)水接触角
 ハードコート積層フィルムのタッチ面側ハードコート面、又は透明樹脂積層体のハードコート面を、KRUSS社の自動接触角計「DSA20」(商品名)を使用し、水滴の幅と高さとから算出する方法(JIS R3257:1999を参照。)で測定した。
(5)耐擦傷性(綿拭後の水接触角)
 縦150mm、横50mmの大きさで、ハードコート積層フィルム又は透明樹脂積層体のマシン方向が試験片の縦方向となるように採取した試験片を、ハードコート積層フィルムのタッチ面側ハードコート面又は透明樹脂積層体のハードコート面が表面になるようにJIS L0849の学振試験機に置いた。学振試験機の摩擦端子に、4枚重ねのガーゼ(川本産業株式会社の医療用タイプ1ガーゼ)で覆ったステンレス板(縦10mm、横10mm、厚み1mm)を取付け、該ステンレス板の縦横面が試験片と接触するようにセットした。350g荷重を載せ、試験片のハードコート積層フィルムのタッチ面側ハードコート面又は透明樹脂積層体のハードコート面を、摩擦端子の移動距離60mm、速度1往復/秒の条件で往復2万回擦った後、上記(4)の方法に従い、当該綿拭箇所の水接触角を測定した。なお、水接触角が100度以上であれば、耐擦傷性は良好であると判断される。また、2万往復後の水接触角が100度未満のときは、所定の往復回数を1万5千回、及び1万回に変更した測定も行い、以下の基準で評価した。
 ◎(非常に良好):往復回数2万回後でも水接触角100度以上であった。
 ○(良好):往復回数1万5千回後では水接触角100度以上だが、2万回後は100度未満であった。
 △(やや不良):往復回数1万回後では水接触角100度以上だが、1万5千回後は100度未満であった。
 ×(不良):往復回数1万回後で水接触角100度未満であった。
(6)指すべり性
 ハードコート積層フィルムのタッチ面側ハードコート面を人差し指で上下左右や円状になぞり、思い通りになぞることができたか否かの印象により評価した。試験は10名が各々行い、思い通りになぞれた場合を2点、ほぼ思い通りになぞれた場合を1点、指が引っ掛かるなどして思い通りになぞれなかった場合を0点として各人の点数を集計し、以下の基準で評価した。
 ◎(非常に良好):16~20点
 △(やや不良):10~15点
 ×(不良):0~9点
(7)綿拭後の指すべり性
 2万往復綿拭した後のハードコート積層フィルムをサンプルとしたこと以外は、上記(6)指すべり性と同様に試験し、評価した。
(8)耐擦傷性
 ハードコート積層フィルム又は透明樹脂積層体を、ハードコート積層フィルムのタッチ面側ハードコート面又は透明樹脂積層体のハードコート面が表面になるようにJIS L0849の学振試験機に置いた。続いて、学振試験機の摩擦端子に#0000のスチールウールを取り付けた後、500g荷重を載せ、試験片の表面を100往復擦った。上記表面を目視観察し、以下の基準で評価した。
 同様に、ハードコート積層フィルムの印刷面側ハードコート面についても試験・評価を行った。なお、表にはタッチ面側の結果/印刷面側の結果と記載した。
 ◎(非常に良好):傷がなかった。
 ○(良好):1~5本の傷があった。
 △(やや不良):6~10本の傷があった。
 ×(不良):11本以上の傷があった。
(9)線膨張係数
 JIS K7197:1991に従い、線膨張係数を測定した。セイコーインスツル株式会社の熱機械的分析装置(TMA)「EXSTAR6000」(商品名)を用いた。試験片は、縦20mm、横10mmの大きさで、フィルムのマシン方向(MD)が試験片の縦方向となるように採取した。試験片の状態調節は、温度23℃±2℃、相対湿度50±5%で24時間とし、フィルムの物性値としての寸法安定性を測定する目的から、測定最高温度における状態調節は行わなかった。チャック間距離は10mm、温度プログラムは、温度20℃で3分間保持した後、昇温速度5℃/分で温度270℃まで昇温するプログラムとした。線膨張係数は、得られた温度-試験片長さ曲線から、低温側温度30℃、高温側温度250℃として計算した。
(10)最小曲げ半径
 JIS-K6902:2007の曲げ成形性(B法)を参考とし、温度23℃±2℃、相対湿度50±5%にて24時間状態調節した試験片について、曲げ温度23℃±2℃、折り曲げ線はハードコート積層フィルムのマシン方向と直角となる方向とし、ハードコート積層フィルムのタッチ面側ハードコートが外側となるように折り曲げて曲面が形成されるようにして行った。クラックが発生しなかった成形ジグのうち正面部分の半径の最も小さいものの正面部分の半径を最小曲げ半径とした。この「正面部分」は、JIS K6902:2007の18.2項に規定されたB法における成形ジグに関する同用語を意味する。
(11)切削加工性(曲線状切削加工線の状態)
 コンピュータにより自動制御を行うルーター加工機を使用し、ハードコート積層フィルムに、半径0.5mmの真円形の切削孔と半径0.1mmの真円形の切削孔を設けた。このとき使用したミルは、刃先の先端形状が円筒丸型の超硬合金製4枚刃、ニック付きのものであり、刃径は加工箇所に合わせて適宜選択した。続いて、半径0.5mmの切削孔について、その切削端面を目視又は顕微鏡(100倍)観察し、以下の基準で評価した。同様に、半径0.1mmの切削孔について、その切削端面を目視又は顕微鏡(100倍)観察し、以下の基準で評価した。表には、前者の結果-後者の結果の順に記載した。
 ◎(非常に良好):顕微鏡観察でもクラック、ヒゲは認められなかった。
 ○(良好):顕微鏡観察でもクラックは、認められなかった。しかし、ヒゲは認められた。
 △(やや不良):目視でクラックは認められなかった。しかし、顕微鏡観察ではクラックが認められた。
 ×(不良):目視でもクラックが認められた。
(12)表面平滑性(表面外観)
 ハードコート積層フィルム又は透明樹脂積層体の表面(両方の面)を、蛍光灯の光の入射角をいろいろと変えて当てながら目視観察し、以下の基準で評価した。
 ◎(非常に良好):表面にうねりや傷がなかった。間近に光を透かし見ても、曇感がなかった。
 ○(良好):間近に光を透かし見ると、僅かな曇感のある箇所があった。
 △(やや不良):間近に見ると、表面にうねりや傷を僅かに認められた。また、曇感があった。
 ×(不良):表面にうねりや傷を多数認めることができた。また、明らかな曇感があった。
(13)鉛筆硬度
 JIS K5600-5-4に従い、750g荷重の条件で、三菱鉛筆株式会社の鉛筆「ユニ(商品名)」を用いて、鉛筆硬度を測定した。なお、ハードコート積層フィルムに関しては、表にタッチ面側測定値/印刷面側測定値を記載した。
(14)耐候性
 JIS B7753:2007に規定するサンシャインカーボンアーク灯式の耐候性試験機を使用し、JIS A5759:2008の表10の条件(但し、試験片は、縦125mm、横50mmの大きさで、透明樹脂積層体のマシン方向が試験片の縦方向となるように採取したものをそのまま用い、ガラスへの貼り付けは行わなかった。)で、2000時間の促進耐候性試験を行った。試験のN数は3とし、全ての試験で、透明樹脂積層体に膨れ、ひび割れ、及び剥がれ等の外観変化がない場合を合格(表中で◎)とし、それ以外は不合格(表中で×)とした。
(15)耐衝撃性
 前面板、背面板、及び側面板の各壁面で形成される上部が開口した直方体の金属製治具(縦1100mm、横900mm、高さ200mm)に、透明樹脂積層体を、ハードコート面が上になるようにして、上記治具の開口部を完全に覆うように設置・固定した。続いて、直径100mm、質量4.11Kgの金属球を、透明樹脂積層体の上3000mmの高さから、透明樹脂積層体の開口部を覆う部分の中心付近に印した一辺130mmの正三角形の頂点に、金属球を各1回、合計で3回落下させた。試験のN数は3とし、全ての試験で金属球が透明樹脂積層体を貫通しなければ合格(表中で◎)とし、それ以外は不合格(表中で×)とした。
使用した原材料
(A)多官能(メタ)アクリレート:
 (A-1)ジペンタエリスリトールヘキサアクリレート(6官能)
 (A-2)エトキシ化トリメチロールプロパンアクリレート(3官能)
(B)アルコキシシリル基と(メタ)アクリロイル基を有する化合物:
 (B-1)信越化学工業株式会社の「信越シリコーンKR-513」(商品名;R:メトキシ基、R’:アクリロイル基、R”:メチル基)
 (B-2)信越化学工業株式会社の「信越シリコーンX-40-2655A(商品名;R:メトキシ基、R’:メタクリロイル基、R”:メチル基)
(B’)比較成分:
 (B’-1)信越化学工業株式会社の「信越シリコーンKBM-403」(商品名;アルコキシシリル基とエポキシ基を有し、(メタ)アクリロイル基を有しない化合物)
 (B’-2)信越化学工業株式会社の「信越シリコーンKBM-903」(商品名;アルコキシシリル基とアミノ基を有し、(メタ)アクリロイル基を有しない化合物)
(C)有機チタン:
 (C-1)日本曹達株式会社のチタニウム-i-プロポキシオクチレングリコレート「TOG」(商品名)
 (C-2)日本曹達株式会社のテトラキス(2-エチルヘキシルオキシ)チタン「TOT(商品名)」
 (C-3)日本曹達株式会社のジ-i-プロポキシ・ビス(アセチルアセトナト)チタン「T-50」(商品名)
(C’)比較成分:
 (C’-1)日本曹達株式会社のテトラ-n-プロポキシジルコニウム「ZAA」(商品名)
(D)平均粒子径1~300nmの微粒子:
 (D-1)平均粒子径20nmのシリカ微粒子
(E)撥水剤:
 (E-1)信越化学工業株式会社のアクリロイル基含有フルオロポリエーテル系撥水剤「KY-1203」(商品名;固形分20質量%)
 (E-2)ソルベイ(Solvay)社のメタクリロイル基含有フルオロポリエーテル系撥水剤「FOMBLIN MT70」(商品名;固形分70質量%)
 (E-3)DIC株式会社のアクリロイル基含有フルオロポリエーテル系撥水剤「メガフアツクRS-91」(商品名)
その他の任意成分:
 (F-1)双邦實業股分有限公司のフェニルケトン系光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン)「SB-PI714」(商品名)
 (F-2)1-メトキシ-2-プロパノール
 (F-3)ビッグケミー・ジャパン株式会社の表面調整剤「BYK-399」(商品名)
 (F-4)BASF社のヒドロキシケトン系光重合開始剤(α-ヒドロキシアルキルフェノン)「イルガキュア127」(商品名)
I.第一の態様に係る活性エネルギー線硬化性樹脂組成物を用いたハードコート積層フィルム及びその比較例
 (α)ポリ(メタ)アクリルイミド系樹脂として、(α-1)エボニック社のポリ(メタ)アクリルイミド「PLEXIMID TT70」(商品名)、及び、(β)芳香族ポリカーボネート系樹脂として、(β-1)住化スタイロンポリカーボネート株式会社の芳香族ポリカーボネート「カリバー301-4」(商品名)を用意した。
 また、(γ)印刷面側ハードコート形成用塗料として、上記A-1を65質量部、上記A-2を35質量部、上記B-1を1.4質量部、上記C-1を0.7質量部、上記D-1を35質量部、上記F-1を5.3質量部、上記F-2を95質量部、及び上記F-3を0.5質量の配合組成比で混合・攪拌して、塗料(γ-1)を調製した。
 複数種の(p)透明樹脂フィルムを、以下のとおり調製した。
 (p-1)図1に概念図を示す構成の共押出製膜装置を使用し、上記(α-1)を押出機1により透明多層フィルムの両外層(α1層とα2層)として、上記(β-1)を押出機2により透明多層フィルムの中間層(β層)として、α1層;β層;α2層が、この順に直接積層された透明多層フィルムの溶融フィルム4を、2種3層マルチマニホールド方式の共押出Tダイ3から連続的に押出した。この溶融フィルム4を、α1層が鏡面ロール5側になるように、回転する鏡面ロール5と、一対のベルトローラー7に掛け巡らされ、鏡面ロール5の外周面に沿って循環する鏡面ベルト6との間に供給投入し、押圧して、全厚み250μm、α1層の層厚み80μm、β層の層厚み90μm、α2層の層厚み80μmの透明多層フィルムを得た。このとき設定条件は、製膜前の乾燥温度として、(α-1)が150℃、(β-1)が100℃;押出機1の設定温度C1/C2/C3/C4/C5/AD=260/290~290℃;押出機2の設定温度C1/C2/C3/C4/C5/C6/AD=260/280/280/260~260/270℃;押出機1、2の何れも窒素パージを行い、真空ベントを使用;Tダイ3の設定温度300℃、リップ開度0.5mm;鏡面ロール5の設定温度130℃;鏡面ベルト6の設定温度120℃、押圧1.4MPa;引取速度6.5m/分であった。
 (p-2)上記(α-1)を用い、50mm押出機(L/D=29、CR=1.86のWフライトスクリュウを装着);ダイ幅680mmのTダイ;鏡面ロール(第一鏡面体)と鏡面ベルト(第二鏡面体)とで溶融フィルムを押圧する機構を有する引巻取機を備えた装置を使用して、厚み250μmのフィルムを得た。このとき設定条件は、押出機の設定温度C1/C2/C3/AD=280/300/320/320℃;Tダイの設定温度320℃;Tダイのリップ開度0.5mm;鏡面ロールの設定温度140℃;鏡面ベルトの設定温度120℃;鏡面ベルトの押圧1.4MPa;引取速度5.6m/分であった。
 (p-3)三菱樹脂株式会社の二軸延伸ポリエチレンテレフタレート系フィルム「ダイヤホイル」(商品名;厚み250μm)
 (p-4)住友化学株式会社のアクリル系樹脂フィルム「テクノロイS001G」(商品名;厚み250μm)
 (p-5)上記(β-1)を用い、50mm押出機(L/D=29、CR=1.86のWフライトスクリュウを装着);ダイ幅680mmのTダイ;鏡面ロール(第一鏡面体)と鏡面ベルト(第二鏡面体)とで溶融フィルムを押圧する機構を有する引巻取機を備えた装置を使用して、厚み250μmのフィルムを得た。このとき設定条件は、押出機の設定温度C1/C2/C3/AD=280/300/320/320℃;Tダイの設定温度320℃;Tダイのリップ開度0.5mm;鏡面ロールの設定温度140℃;鏡面ベルトの設定温度120℃;鏡面ベルトの押圧1.4MPa;引取速度5.6m/分であった。
実施例1
 上記p-1の透明樹脂フィルムの両面に処理量167W・min/m(放電電力500W、放電電極の長さ1m、ライン速度3m/min)の条件で、コロナ放電処理を行った。両面とも濡れ指数は64mN/mであった。続いて、透明樹脂フィルムのα1層側の面には、タッチ面側ハードコート形成用塗料として、表1に示す配合組成(質量部)の塗料を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布し;透明樹脂フィルムのα2層側の面には印刷面側ハードコート形成用塗料として上記γ-1を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布して、ハードコート積層フィルムを得た。上記試験(1)~(13)を行った。結果を表1に示す。
実施例2~14、比較例1~7
 タッチ面側ハードコート形成用塗料の配合組成を表1~4の何れか1に示すように変更したこと以外は、全て実施例1と同様に、ハードコート積層フィルムの作成及び物性評価を行った。結果を表1~4の何れか1つに示す。
実施例15
 上記p-2の透明樹脂フィルムの両面に処理量167W・min/m(放電電力500W、放電電極の長さ1m、ライン速度3m/min)の条件で、コロナ放電処理を行った。両面とも濡れ指数は63mN/mであった。続いて、透明樹脂フィルムの一方の面にはタッチ面側ハードコート形成用塗料として、表4に示す配合組成の塗料を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布し;透明樹脂フィルムの他方の面には印刷面側ハードコート形成用塗料として上記γ-1を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布して、ハードコート積層フィルムを得た。上記試験(1)~(13)を行った。結果を表4に示す。
実施例16
 上記p-3の透明樹脂フィルムの一方の面に、タッチ面側ハードコート形成用塗料として表4に示す配合組成の塗料を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布し;このフィルムの他方の面には印刷面側ハードコート形成用塗料として上記γ-1を、ダイ方式の塗工装置を使用して、硬化後厚みが25μmとなるように塗布して、ハードコート積層体を得た。上記試験(1)~(13)を行った。結果を表4に示す。なお、線膨張係数に関する試験(9)は、試験片の収縮が大きく、測定値を得ることができなかった。
実施例17
 透明樹脂フィルムとして、上記p-3に替えて上記p-4を用いたこと以外は、全て実施例16と同様に、ハードコート積層フィルムの作成及び物性評価を行った。結果を表4に示す。
実施例18
 透明樹脂フィルムとして、上記p-3に替えて上記p-5を用いたこと以外は、全て実施例16と同様に、ハードコート積層フィルムの作成及び物性評価を行った。結果を表4に示す。
実施例19
 タッチ面側ハードコート形成用塗料の配合組成を表4に示すように変更したこと以外は、全て実施例1と同様に、ハードコート積層フィルムの作成及び物性評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有するハードコート積層フィルムは、透明性、色調、耐擦傷性(耐綿拭性及び耐スチールウール性)、表面硬度、耐曲げ性、及び表面外観に優れていた。一方、成分Cを含まない比較例1のハードコート積層フィルムは、耐綿拭性に劣っていた。成分Cが規定量を超える比較例2のハードコート積層フィルムは、色調に劣っていた。成分Bが規定量未満の比較例3のハードコート積層フィルムは、耐綿拭性に劣っていた。成分Bが規定量を超える比較例4のハードコート積層フィルムは、撥水性が発現し難くなった。成分Bの替わりにアルコキシシリル基とエポキシ基を有し、(メタ)アクリロイル基を有しない化合物を使用した比較例5のハードコート積層フィルムは、耐綿拭性に劣っていた。成分Bの替わりにアルコキシシリル基とアミノ基を有し、(メタ)アクリロイル基を有しない化合物を使用した比較例6のハードコート積層フィルムは、色調に劣っていた。成分Cの替わりにテトラ-n-プロポキシジルコニウムを使用した比較例7のハードコート積層フィルムは、耐綿拭性に劣っていた。
II.第二の態様に係る透明樹脂積層体及びその比較例
 複数種の(a)透明樹脂シートを、以下のとおり調製した。
 (a1-1)ポリ(メタ)アクリルイミド系樹脂シート:
 エボニック社のポリ(メタ)アクリルイミド系樹脂「PLEXIMID TT70」(商品名)を用い、図2に概念図を示す構成の押出機とTダイとを備える装置を使用して、Tダイ8から上記樹脂の溶融シート9を連続的に押出し、回転する鏡面ロール10と、一対のベルトローラー12に掛け巡らされ、鏡面ロール10の外周面に沿って循環する鏡面ベルト11との間に、上記溶融シート9を供給投入し、押圧して、厚さ1mmの透明樹脂シートを得た。このときの設定条件は、第一鏡面ロールの設定温度140℃、第二鏡面ロールの設定温度120℃、Tダイ出口の樹脂温度300℃であった。得られた透明樹脂シートの全光線透過率は92%、ヘーズは1.0%、黄色度指数は0.6であった。
 (a2-1)アクリル系樹脂シート:
 住友化学工業株式会社のアクリル系樹脂組成物(アクリル系樹脂70質量部とアクリル系コアシェルゴム30質量部の樹脂組成物)「HT03Y」(商品名)を用い、押出機とTダイとを備える装置を使用して、Tダイから上記樹脂の溶融シートを連続的に押出し、回転する第一鏡面ロールと、回転する第二鏡面ロールとの間に、上記溶融シートを供給投入し、押圧して、厚さ1mmの透明樹脂シートを得た。このときの設定条件は、第一鏡面ロールの設定温度100℃、第二鏡面ロールの設定温度80℃、Tダイ出口の樹脂温度300℃であった。得られた透明樹脂シートの全光線透過率は86%、ヘーズは2.7%、黄色度指数は0.7であった。
 (a3-1)芳香族ポリカーボネート系樹脂シート:
 帝人化成株式会社の芳香族ポリカーボネート系樹脂「K-1300Y」(商品名)99.5質量部と株式会社カネカのコアシェルゴム(メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体)「カネエースB-56」(商品名)0.5質量部との樹脂組成物を用い、押出機とTダイとを備える装置を使用して、Tダイから上記樹脂の溶融シートを連続的に押出し、回転する第一鏡面ロールと、回転する第二鏡面ロールとの間に、上記溶融シートを供給投入し、押圧して、厚さ1mmの透明樹脂シートを得た。このときの設定条件は、第一鏡面ロールの設定温度140℃、第二鏡面ロールの設定温度120℃、Tダイ出口の樹脂温度300℃であった。得られた透明樹脂シートの全光線透過率は88%、ヘーズは2.3%、黄色度指数は0.8であった。
 (a4-1)ポリエステル系樹脂シート:
 イーストマンケミカルカンパニー社の非結晶性ポリエステル系樹脂(PETG樹脂)「Cadence GS1」(商品名)99質量部と株式会社カネカのコアシェルゴム(メタクリル酸エステル・スチレン/ブタジエンゴムグラフト共重合体)「カネエースB-56」(商品名)1質量部との樹脂組成物を用い、押出機とTダイとを備える装置を使用して、Tダイから上記樹脂の溶融シートを連続的に押出し、回転する第一鏡面ロールと、回転する第二鏡面ロールとの間に、上記溶融シートを供給投入し、押圧して、厚さ1mmの透明樹脂シートを得た。このときの設定条件は、第一鏡面ロールの設定温度80℃、第二鏡面ロールの設定温度40℃、Tダイ出口の樹脂温度200℃であった。得られた透明樹脂シートの全光線透過率は85%、ヘーズは3.0%、黄色度指数は0.5であった。
 (a5-1)積層シート1:
 押出機とTダイとを備える2種3層マルチマニホールド方式の共押出製膜装置を使用し、エボニック社のポリ(メタ)アクリルイミド系樹脂「PLEXIMID TT70」(商品名)を両外層とし、住化スタイロンポリカーボネート株式会社の芳香族ポリカーボネート「カリバー301-4」(商品名)を中間層とする溶融積層シートをTダイから連続的に押出し、回転する第一鏡面ロールと、回転する第二鏡面ロールとの間に、上記溶融積層シートを供給投入し、押圧して、全厚み1mm、両外層の厚み0.1mm、中間層の厚み0.8mmの透明樹脂シートを得た。このときの設定条件は、第一鏡面ロールの設定温度140℃、第二鏡面ロールの設定温度120℃、Tダイ出口の樹脂温度300℃であった。得られた透明樹脂シートの全光線透過率は91%、ヘーズは1.0%、黄色度指数は0.7であった。
実施例20
 上記a1-1の透明樹脂シートの両面に処理量167W・min/m(放電電力500W、放電電極の長さ1m、ライン速度3m/min)の条件で、コロナ放電処理を行った。両面とも濡れ指数は64mN/mであった。続いてハードコート形成用塗料として、表1に示す配合組成(質量部)の塗料を用い、ダイ方式の塗工装置を使用して、上記a1-1の透明樹脂シートの両面に、硬化後厚みが25μmとなるようにハードコートを形成し、透明樹脂積層体を得た。上記試験(1)~(5)、(8)及び(12)~(15)を行った。結果を表1に示す。
実施例21~33、比較例8~14
 ハードコート形成用塗料の配合組成を表5~8の何れか1つに示すように変更したこと以外は、全て実施例20と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表5~8の何れか1つに示す。なお比較例11は、初期の水接触角(試験(4))が100度未満であったので、試験(5)の耐擦傷性(綿拭後の水接触角)は、往復回数2万回後の水接触角測定のみを行った。
実施例28-2
 ハードコート形成用塗料の配合組成を表2に示すように変更したこと以外は、全て実施例1と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表6に示す。
実施例34
 透明樹脂シートとして、上記a1-1に替えて上記a2-1を用いたこと以外は、全て実施例20と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表8に示す。
実施例35
 透明樹脂シートとして、上記a1-1に替えて上記a3-1を用いたこと以外は、全て実施例20と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表8に示す。
実施例36
 透明樹脂シートとして、上記a1-1に替えて上記a4-1を用いたこと以外は、全て実施例20と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表8に示す。
実施例37
 透明樹脂シートとして、上記a1-1に替えて上記a5-1を用いたこと以外は、全て実施例20と同様に、透明樹脂積層体の作成及び物性評価を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明の透明樹脂積層体は、ガラスに替わる材料として好適な物性を発現していることが分かった。また、透明樹脂シートとしてポリ(メタ)アクリルイミド系樹脂シートを使用した実施例20~33、37の透明樹脂積層体は、透明性が特に優れていた。一方、成分Cを含まない比較例1の透明樹脂積層体は、耐綿拭性に劣っていた。成分Cが規定量を超える比較例2の透明樹脂積層体は、色調に劣っていた。成分Bが規定量未満の比較例3の透明樹脂積層体は、耐綿拭性に劣っていた。成分Bが規定量を超える比較例4の透明樹脂積層体は、撥水性が発現し難くなった。成分Bの替わりにアルコキシシリル基とエポキシ基を有し、(メタ)アクリロイル基を有しない化合物を使用した比較例5の透明樹脂積層体は、耐綿拭性に劣っていた。成分Bの替わりにアルコキシシリル基とアミノ基を有し、(メタ)アクリロイル基を有しない化合物を使用した比較例6の透明樹脂積層体は、色調に劣っていた。成分Cの替わりにテトラ-n-プロポキシジルコニウムを使用した比較例7の透明樹脂積層体は、耐綿拭性に劣っていた。
 本発明の上記第一の態様による活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有するハードコート積層フィルムは、上記諸特性に優れるため、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミネセンスディスプレイ等の画像表示装置の部材(タッチパネル機能を有する画像表示装置及びタッチパネル機能を有しない画像表示装置を含む。)、特にタッチパネルのディスプレイ面板として好適に用いることができる。
 また、本発明の上記第二の態様による透明樹脂積層体は、上記諸特性に優れるため、車両の窓や風防、建築物の窓や扉、電子看板の保護板、冷蔵庫等の家電製品の表面部材、食器棚等の家具の扉、及びショーウインドウなどの部材として好適に用いることができる。
1:押出機1
2:押出機2
3:2種3層マルチマニホールド方式の共押出Tダイ
4:溶融フィルム
5:鏡面ロール
6:鏡面ベルト
7:一対のベルトローラー
8:Tダイ
9:溶融シート
10:鏡面ロール
11:鏡面ベルト
12:一対のベルトローラー
 
 

Claims (23)

  1.  (A)多官能(メタ)アクリレート100質量部;
     (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
     (C)有機チタン0.05~3質量部;及び
     (D)平均粒子径1~300nmの微粒子5~100質量部
    を含む、活性エネルギー線硬化性樹脂組成物。
  2.  更に、(E)撥水剤0.01~7質量部を含む、請求項1に記載の活性エネルギー線硬化性樹脂組成物。
  3.  上記(E)撥水剤が、(メタ)アクリロイル基含有フルオロポリエーテル系撥水剤を含む、請求項2に記載の活性エネルギー線硬化性樹脂組成物。
  4.  透明樹脂フィルムの少なくとも片面に、請求項1~3の何れか1項に記載の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有する、ハードコート積層フィルム。
  5.  最表層側から順に、第一ハードコート層;透明樹脂フィルム層;及び、第二ハードコート層を有し、ここで上記第一ハードコート層は、請求項1~3の何れか1項に記載の活性エネルギー線硬化性樹脂組成物を含む塗料から形成されている、ハードコート積層フィルム。
  6.  上記透明樹脂フィルムがポリ(メタ)アクリルイミド系樹脂フィルムである、請求項4又は5に記載のハードコート積層フィルム。
  7.  上記ポリ(メタ)アクリルイミド系樹脂フィルムが、
     第一ポリ(メタ)アクリルイミド系樹脂層(α1);
     芳香族ポリカーボネート系樹脂層(β);及び
     第二ポリ(メタ)アクリルイミド系樹脂層(α2)が、
    この順に直接積層された透明多層フィルムである、請求項6に記載のハードコート積層フィルム。
  8.  透明樹脂フィルムの少なくとも片面に、活性エネルギー線硬化性樹脂組成物を含む塗料から形成されたハードコートを有し、下記(1-i)~(1-v)の要件を満たすタッチパネルディスプレイ面板用ハードコート積層フィルム:
     (1-i)全光線透過率80%以上;
     (1-ii)ヘーズ3.0%以下;
     (1-iii)黄色度指数3以下;
     (1-iv)タッチ面の水接触角100度以上;及び
     (1-v)タッチ面の2万往復綿拭後の水接触角100度以上。
  9.  請求項8に記載のハードコート積層フィルムの製造方法であって、
     (A)多官能(メタ)アクリレート100質量部;
     (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
     (C)有機チタン0.05~3質量部;及び
     (D)平均粒子径1~300nmの微粒子5~100質量部
    を含む活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を、ポリ(メタ)アクリルイミド系樹脂フィルムの少なくとも片面に塗布し、ハードコートを形成する工程を含む、上記方法。
  10.  請求項8に記載のハードコート積層フィルムの製造方法であって、
     (A)多官能(メタ)アクリレート100質量部;
     (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
     (C)有機チタン0.05~3質量部;
     (D)平均粒子径1~300nmの微粒子5~100質量部;及び
     (E)撥水剤0.01~7質量部
    を含む活性エネルギー線硬化性樹脂組成物を含むハードコート形成用塗料を、ポリ(メタ)アクリルイミド系樹脂フィルムの少なくとも片面に塗布し、ハードコートを形成する工程を含む上記方法。
  11.  上記(E)撥水剤が、(メタ)アクリロイル基含有フルオロポリエーテル系撥水剤を含む、請求項10に記載の方法。
  12.  請求項9~11の何れか1項に記載の方法で製造されたハードコート積層フィルム。
  13.  請求項4~8、12の何れか1項に記載のハードコート積層フィルムの画像表示装置部材としての使用。
  14.  請求項4~8、12の何れか1項に記載のハードコート積層フィルムを含む画像表示装置部材。
  15.  最表層側から順にハードコートの層と透明樹脂シートの層とを有し、
     上記ハードコートが、
     (A)多官能(メタ)アクリレート100質量部;
     (B)アルコキシシリル基と(メタ)アクリロイル基とを有する化合物0.2~4質量部;
     (C)有機チタン0.05~3質量部;及び
     (D)平均粒子径1~300nmの微粒子5~100質量部
    を含む塗料から形成されている透明樹脂積層体。
  16.  上記ハードコートが、更に(E)撥水剤0.01~7質量部を含む塗料から形成されている、請求項15に記載の透明樹脂積層体。
  17.  上記透明樹脂シートがポリ(メタ)アクリルイミド系樹脂シートである、請求項15又は16に記載の透明樹脂積層体。
  18.  上記ポリ(メタ)アクリルイミド系樹脂シートが、
     第一ポリ(メタ)アクリルイミド系樹脂層;
     芳香族ポリカーボネート系樹脂層;及び
     第二ポリ(メタ)アクリルイミド系樹脂層が、
    この順に直接積層された積層シートである、請求項17に記載の透明樹脂積層体。
  19.  最表層側から順にハードコートの層とポリ(メタ)アクリルイミド系樹脂シートの層とを有し、
     下記特性(2-i)~(2-iii)を満たすことを特徴とする透明樹脂積層体:
     (2-i)全光線透過率80%以上;
     (2-ii)ヘーズ5%以下;及び
     (2-iii)黄色度指数3以下。
  20.  請求項15~19の何れか1項に記載の透明樹脂積層体の、車両部材としての使用。
  21.  請求項15~19の何れか1項に記載の透明樹脂積層体の、建築物部材としての使用。
  22.  請求項15~19の何れか1項に記載の透明樹脂積層体を含む、車両部材。
  23.  請求項15~19の何れか1項に記載の透明樹脂積層体を含む、建築物部材。
     
PCT/JP2015/060820 2014-05-30 2015-04-07 活性エネルギー線硬化性樹脂組成物、これを用いたハードコート積層フィルム、及び透明樹脂積層体 WO2015182253A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/315,267 US10407590B2 (en) 2014-05-30 2015-04-07 Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
EP15800072.9A EP3150640B1 (en) 2014-05-30 2015-04-07 Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
CN201580028711.2A CN106459239B (zh) 2014-05-30 2015-04-07 活性能量线固化性树脂组合物,使用了该树脂组合物的硬涂层层合膜及透明树脂层合体
KR1020167033592A KR101873145B1 (ko) 2014-05-30 2015-04-07 활성 에너지선 경화성 수지 조성물, 이것으로 형성된 하드코트를 포함하는 적층 필름, 및 투명 수지 적층체
US16/529,103 US10696861B2 (en) 2014-05-30 2019-08-01 Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-112034 2014-05-30
JP2014112034 2014-05-30
JP2014123031 2014-06-16
JP2014-123031 2014-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/315,267 A-371-Of-International US10407590B2 (en) 2014-05-30 2015-04-07 Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
US16/529,103 Division US10696861B2 (en) 2014-05-30 2019-08-01 Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product

Publications (1)

Publication Number Publication Date
WO2015182253A1 true WO2015182253A1 (ja) 2015-12-03

Family

ID=54698594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060820 WO2015182253A1 (ja) 2014-05-30 2015-04-07 活性エネルギー線硬化性樹脂組成物、これを用いたハードコート積層フィルム、及び透明樹脂積層体

Country Status (7)

Country Link
US (2) US10407590B2 (ja)
EP (1) EP3150640B1 (ja)
JP (2) JP6276211B2 (ja)
KR (1) KR101873145B1 (ja)
CN (1) CN106459239B (ja)
TW (3) TWI568807B (ja)
WO (1) WO2015182253A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090679A1 (ja) * 2015-11-25 2017-06-01 リケンテクノス株式会社 扉体
WO2017098935A1 (ja) * 2015-12-08 2017-06-15 リケンテクノス株式会社 ハードコート積層フィルム
WO2017126431A1 (ja) * 2016-01-18 2017-07-27 リケンテクノス株式会社 ハードコート積層フィルム
JP2018522089A (ja) * 2015-05-21 2018-08-09 サン ケミカル コーポレイション 超疎水性uv硬化性コーティング
US10596739B2 (en) 2015-03-18 2020-03-24 Riken Technos Corporation Molded body
US10780685B2 (en) 2015-03-18 2020-09-22 Riken Technos Corporation Hard coat laminated film
US10809418B2 (en) 2015-03-18 2020-10-20 Riken Technos Corporation Anti-glare hard coat laminated film
US11065851B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Multilayer hard coating film
US11407870B2 (en) 2016-09-14 2022-08-09 Riken Technos Corporation Hard coat laminated film
US11433651B2 (en) 2015-03-18 2022-09-06 Riken Technos Corporation Hard coat laminated film
US11459489B2 (en) 2016-02-19 2022-10-04 Riken Technos Corporation Pressure-sensitive adhesive and articles including same
US11639428B2 (en) 2016-11-25 2023-05-02 Riken Technos Corporation Hardcoat multilayer film
US11774166B2 (en) 2015-11-25 2023-10-03 Riken Technos Corporation Door body

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276211B2 (ja) 2014-05-30 2018-02-07 リケンテクノス株式会社 透明樹脂積層体
JP6153977B2 (ja) 2014-10-02 2017-06-28 リケンテクノス株式会社 粘着フィルム
CN107405897B (zh) 2015-03-18 2020-08-07 理研科技株式会社 粘合膜
KR101942163B1 (ko) 2015-03-18 2019-01-24 리껭테크노스 가부시키가이샤 하드 코트 적층 필름 및 이의 제조 방법
KR102421569B1 (ko) * 2015-09-25 2022-07-15 에스케이이노베이션 주식회사 폴리머 필름의 제조방법
KR102421570B1 (ko) * 2015-10-02 2022-07-15 에스케이이노베이션 주식회사 폴리머 필름의 제조방법
WO2018043357A1 (ja) 2016-08-31 2018-03-08 リケンテクノス株式会社 熱可塑性樹脂組成物、及びこれを用いた積層体
WO2018100929A1 (ja) * 2016-12-01 2018-06-07 Dic株式会社 活性エネルギー線硬化性組成物及びそれを用いたフィルム
CN110100192B (zh) * 2016-12-22 2021-02-09 富士胶片株式会社 光学膜及光学膜的制造方法
CN107031154A (zh) * 2017-04-27 2017-08-11 张家港康得新光电材料有限公司 一种复合膜
JP7307877B2 (ja) * 2018-02-05 2023-07-13 Jsr株式会社 配線部材
JP7210227B2 (ja) * 2018-11-05 2023-01-23 トヨタ紡織株式会社 車両用内外装材
CN113278181A (zh) * 2021-01-20 2021-08-20 银金达(上海)新材料有限公司 一种自清洁petg材料及其应用
WO2024050722A1 (zh) * 2022-09-07 2024-03-14 扬州纳力新材料科技有限公司 复合聚酯膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314880A (ja) * 1989-06-13 1991-01-23 Seiko Epson Corp コーティング用組成物
JPH06107951A (ja) * 1992-09-30 1994-04-19 Toray Dow Corning Silicone Co Ltd 光硬化性オルガノポリシロキサン組成物用接着付与剤および光硬化性オルガノポリシロキサン組成物
JP2008138084A (ja) * 2006-12-01 2008-06-19 Dainippon Toryo Co Ltd 酸化ジルコニウム粒子分散液、酸化ジルコニウム粒子含有光硬化性組成物及び硬化膜
JP2012048185A (ja) * 2010-07-28 2012-03-08 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2014149520A (ja) * 2013-01-11 2014-08-21 Dainippon Printing Co Ltd ハードコートフィルム、ハードコート層用硬化性樹脂組成物およびハードコートフィルムの製造方法
WO2015005049A1 (ja) * 2013-07-10 2015-01-15 リケンテクノス株式会社 ポリ(メタ)アクリルイミドフィルム、その易接着性フィルム及びそれらの製造方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US112368A (en) * 1871-03-07 Improvement in wash-boilers
US4753827A (en) 1986-10-03 1988-06-28 Ppg Industries, Inc. Abrasion-resistant organosiloxane/metal oxide coating
IL84025A0 (en) 1986-10-03 1988-02-29 Ppg Industries Inc Organosiloxane/metal oxide coating compositions and their production
CN1029122C (zh) 1988-08-12 1995-06-28 拜尔公司 二羟基二苯基环烷烃,其制备方法及其在制备高分子量聚碳酸酯中的应用
NO170326C (no) 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
US5227458A (en) 1988-08-12 1993-07-13 Bayer Aktiengesellschaft Polycarbonate from dihydroxydiphenyl cycloalkane
JPH035761A (ja) 1989-06-02 1991-01-11 Ricoh Co Ltd 電子写真用感光体
JPH0419142A (ja) * 1990-05-14 1992-01-23 Mitsubishi Rayon Co Ltd 改質ポリカーボネートシート及びその製造方法
JPH0671826A (ja) * 1992-08-27 1994-03-15 Nissan Motor Co Ltd 車両用グレージング材
JP3400530B2 (ja) 1994-04-18 2003-04-28 三菱化学株式会社 耐摩耗性被覆組成物
JPH08224823A (ja) 1994-12-16 1996-09-03 Kanegafuchi Chem Ind Co Ltd 光学プラスチック積層シート及びその製造方法
DE69813144T2 (de) 1997-11-07 2003-12-04 Rohm & Haas Kunstoffsubstrate zur Verwendung in elektronischen Anzeigesystemen
JP4033558B2 (ja) 1998-09-08 2008-01-16 帝人化成株式会社 共重合ポリカーボネート樹脂シート
JP4369092B2 (ja) 2002-03-29 2009-11-18 帝人株式会社 ディスプレイ用透明フィルム基板
JP2004002508A (ja) * 2002-05-31 2004-01-08 Nippon Arc Co Ltd ハードコート被覆トリアセチルセルロース樹脂物品の製造方法およびハードコート被覆トリアセチルセルロース樹脂物品
WO2004018579A1 (ja) * 2002-08-21 2004-03-04 Jsr Corporation コーティング用組成物
JP2004122429A (ja) 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd 複層フィルム
JP2004176054A (ja) * 2002-11-13 2004-06-24 Asahi Glass Co Ltd 活性エネルギー線硬化型被覆用組成物及びプラスチック成形品
JP4923572B2 (ja) * 2002-11-13 2012-04-25 旭硝子株式会社 活性エネルギー線硬化型被覆用組成物および該組成物の硬化物からなる被膜を有する成形品
JP2004346228A (ja) 2003-05-23 2004-12-09 Mitsubishi Chemicals Corp 活性エネルギー線硬化性組成物及びハードコートフィルム
US7635525B2 (en) 2003-09-30 2009-12-22 Fujifilm Corporation Gas barrier laminate film and method for producing the same
JP4590849B2 (ja) 2003-10-03 2010-12-01 Tdk株式会社 ハードコート剤組成物及びこれを用いた光情報媒体
JP4779293B2 (ja) 2003-10-21 2011-09-28 Tdk株式会社 ハードコート剤組成物及びこれを用いた光情報媒体
JP4784723B2 (ja) 2003-12-24 2011-10-05 Tdk株式会社 ハードコート剤組成物及びこれを用いた光情報媒体
JP5046482B2 (ja) 2003-12-26 2012-10-10 富士フイルム株式会社 無機酸化物微粒子分散物の製造方法、無機酸化物微粒子分散物、コーティング組成物、光学フィルム、反射防止フィルム、偏光板、及び液晶表示装置
US7482996B2 (en) * 2004-06-28 2009-01-27 Honeywell International Inc. Head-up display
JP2006337492A (ja) 2005-05-31 2006-12-14 Kaneka Corp 偏光子保護フィルムならびにそれを用いた偏光板
JP2007070455A (ja) * 2005-09-07 2007-03-22 Aica Kogyo Co Ltd 帯電防止防眩ハードコート剤およびそれを用いたフィルム
JP5446071B2 (ja) 2006-09-11 2014-03-19 Dic株式会社 保護粘着フィルム、スクリーンパネル及び携帯電子端末
JP5483810B2 (ja) * 2007-09-28 2014-05-07 株式会社ニデック 樹脂組成物
JP2009161744A (ja) 2007-12-11 2009-07-23 Kaneka Corp 熱可塑性樹脂組成物、光学用フィルムおよび偏光子保護フィルム
DE102008001695A1 (de) 2008-05-09 2009-11-12 Evonik Röhm Gmbh Poly(meth)acrylimide mit verbesserten optischen und Farbeigenschaften, insbesondere bei thermischer Belastung
JP5339775B2 (ja) 2008-05-21 2013-11-13 株式会社日本触媒 積層板、積層板の製造方法および、表示装置用前面板
JP5407210B2 (ja) 2008-07-30 2014-02-05 東レ株式会社 シロキサン樹脂組成物およびそれを用いた硬化膜
KR20110055730A (ko) 2008-09-17 2011-05-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 확산 특성을 갖는 광학 접착제
JP4709272B2 (ja) 2008-12-11 2011-06-22 信越化学工業株式会社 含フッ素アクリレート
JP5472685B2 (ja) 2009-05-27 2014-04-16 Dic株式会社 飛散防止粘着シート
JP2010284840A (ja) 2009-06-10 2010-12-24 Kaneka Corp コーティング層が付与されたフィルム、偏光子保護フィルム、及び、それを用いてなる偏光板
JP2011131407A (ja) * 2009-12-22 2011-07-07 Toyobo Co Ltd 成型用ハードコートフィルム
JP2012133314A (ja) 2010-12-01 2012-07-12 Nitto Denko Corp 光学積層体
KR101374368B1 (ko) * 2010-12-31 2014-03-17 제일모직주식회사 광경화형 수지 조성물 및 이를 이용한 광학필름 제조 방법
DE102011077612A1 (de) 2011-06-16 2012-12-20 Evonik Röhm Gmbh Verfahren zur kontinuierlichen inline Herstellung von beschichteten polymeren Substraten oder Laminaten
WO2013021631A1 (ja) 2011-08-11 2013-02-14 日本曹達株式会社 有機無機複合体及びその形成用組成物
JP5745639B2 (ja) * 2011-10-26 2015-07-08 フクビ化学工業株式会社 透明樹脂基板
KR20140118976A (ko) 2012-02-28 2014-10-08 미쓰비시 쥬시 가부시끼가이샤 내찰상성 수지 적층체, 디스플레이의 프론트 커버재 및 화상 표시 장치
CN104204088B (zh) 2012-02-29 2016-08-24 沙特基础全球技术有限公司 具有低烟气的热塑性组合物、它们的制备方法及其用途
WO2013153648A1 (ja) * 2012-04-12 2013-10-17 フクビ化学工業株式会社 透明樹脂積層板
KR101418409B1 (ko) * 2012-05-31 2014-07-09 주식회사 엘지화학 하드코팅 조성물
JP6090048B2 (ja) 2012-08-03 2017-03-08 マツダ株式会社 透明積層体およびその製造方法
JP2014040017A (ja) 2012-08-21 2014-03-06 Mitsubishi Rayon Co Ltd 樹脂フィルム、樹脂積層体及びその製造方法
US9395836B2 (en) 2012-10-01 2016-07-19 Atmel Corporation System and method for reducing borders of a touch sensor
KR101899696B1 (ko) * 2013-09-20 2018-10-04 리껭테크노스 가부시키가이샤 폴리(메트)아크릴이미드계 수지층을 포함한 투명 다층 필름, 및 상기 투명 다층 필름의 제조 방법
JP5963376B2 (ja) * 2014-05-30 2016-08-03 リケンテクノス株式会社 活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルム
JP6276211B2 (ja) 2014-05-30 2018-02-07 リケンテクノス株式会社 透明樹脂積層体
JP2016003319A (ja) * 2014-06-19 2016-01-12 昭和電工株式会社 硬化性組成物及びその硬化物並びにハードコート材及びハードコート膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314880A (ja) * 1989-06-13 1991-01-23 Seiko Epson Corp コーティング用組成物
JPH06107951A (ja) * 1992-09-30 1994-04-19 Toray Dow Corning Silicone Co Ltd 光硬化性オルガノポリシロキサン組成物用接着付与剤および光硬化性オルガノポリシロキサン組成物
JP2008138084A (ja) * 2006-12-01 2008-06-19 Dainippon Toryo Co Ltd 酸化ジルコニウム粒子分散液、酸化ジルコニウム粒子含有光硬化性組成物及び硬化膜
JP2012048185A (ja) * 2010-07-28 2012-03-08 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2014149520A (ja) * 2013-01-11 2014-08-21 Dainippon Printing Co Ltd ハードコートフィルム、ハードコート層用硬化性樹脂組成物およびハードコートフィルムの製造方法
WO2015005049A1 (ja) * 2013-07-10 2015-01-15 リケンテクノス株式会社 ポリ(メタ)アクリルイミドフィルム、その易接着性フィルム及びそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150640A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596739B2 (en) 2015-03-18 2020-03-24 Riken Technos Corporation Molded body
US11065851B2 (en) 2015-03-18 2021-07-20 Riken Technos Corporation Multilayer hard coating film
US11512176B2 (en) 2015-03-18 2022-11-29 Riken Technos Corporation Anti-glare hard coat laminated film
US11433651B2 (en) 2015-03-18 2022-09-06 Riken Technos Corporation Hard coat laminated film
US10809418B2 (en) 2015-03-18 2020-10-20 Riken Technos Corporation Anti-glare hard coat laminated film
US10780685B2 (en) 2015-03-18 2020-09-22 Riken Technos Corporation Hard coat laminated film
JP2018522089A (ja) * 2015-05-21 2018-08-09 サン ケミカル コーポレイション 超疎水性uv硬化性コーティング
WO2017090679A1 (ja) * 2015-11-25 2017-06-01 リケンテクノス株式会社 扉体
US11774166B2 (en) 2015-11-25 2023-10-03 Riken Technos Corporation Door body
US11241866B2 (en) 2015-11-25 2022-02-08 Riken Technos Corporation Door body
KR20180091023A (ko) * 2015-12-08 2018-08-14 리껭테크노스 가부시키가이샤 하드 코트 적층 필름
KR102635004B1 (ko) * 2015-12-08 2024-02-07 리껭테크노스 가부시키가이샤 하드 코트 적층 필름
CN108367557B (zh) * 2015-12-08 2020-03-20 理研科技株式会社 硬涂层层合膜
WO2017098935A1 (ja) * 2015-12-08 2017-06-15 リケンテクノス株式会社 ハードコート積層フィルム
CN108367557A (zh) * 2015-12-08 2018-08-03 理研科技株式会社 硬涂层层合膜
US10816700B2 (en) 2015-12-08 2020-10-27 Riken Technos Corporation Hard coat layered film
TWI720065B (zh) * 2015-12-08 2021-03-01 日商理研科技股份有限公司 硬化塗佈層積薄膜、硬化塗佈層積薄膜之製造方法、及影像顯示裝置
EP3388237A4 (en) * 2015-12-08 2019-08-07 Riken Technos Corporation MULTILAYER FILM WITH HARD COATING
CN108463492A (zh) * 2016-01-18 2018-08-28 理研科技株式会社 硬涂层层叠膜
EP3406660A4 (en) * 2016-01-18 2019-09-11 Riken Technos Corporation HART COAT COMPOSITE FILM
KR20180101399A (ko) * 2016-01-18 2018-09-12 리껭테크노스 가부시키가이샤 하드 코트 적층 필름
JP2017128114A (ja) * 2016-01-18 2017-07-27 リケンテクノス株式会社 ハードコート積層フィルム
WO2017126431A1 (ja) * 2016-01-18 2017-07-27 リケンテクノス株式会社 ハードコート積層フィルム
KR102651209B1 (ko) * 2016-01-18 2024-03-25 리껭테크노스 가부시키가이샤 하드 코트 적층 필름
CN108463492B (zh) * 2016-01-18 2024-04-26 理研科技株式会社 硬涂层层叠膜
US11459489B2 (en) 2016-02-19 2022-10-04 Riken Technos Corporation Pressure-sensitive adhesive and articles including same
US11407870B2 (en) 2016-09-14 2022-08-09 Riken Technos Corporation Hard coat laminated film
US11639428B2 (en) 2016-11-25 2023-05-02 Riken Technos Corporation Hardcoat multilayer film

Also Published As

Publication number Publication date
US20170198164A1 (en) 2017-07-13
US10696861B2 (en) 2020-06-30
KR20170015903A (ko) 2017-02-10
TW201634599A (zh) 2016-10-01
CN106459239A (zh) 2017-02-22
JP6276211B2 (ja) 2018-02-07
TW201634598A (zh) 2016-10-01
JP2017196901A (ja) 2017-11-02
EP3150640A1 (en) 2017-04-05
JP2016020087A (ja) 2016-02-04
TWI577761B (zh) 2017-04-11
TWI568807B (zh) 2017-02-01
TW201602268A (zh) 2016-01-16
KR101873145B1 (ko) 2018-06-29
EP3150640B1 (en) 2020-11-18
TWI577762B (zh) 2017-04-11
CN106459239B (zh) 2019-04-02
US20190352531A1 (en) 2019-11-21
JP6509945B2 (ja) 2019-05-08
EP3150640A4 (en) 2017-12-27
US10407590B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
US10696861B2 (en) Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
JP6181803B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びこれを用いたハードコート積層フィルム
JP6395478B2 (ja) ポリ(メタ)アクリルイミド系樹脂積層体
TWI705892B (zh) 硬化塗佈層積薄膜
KR101899696B1 (ko) 폴리(메트)아크릴이미드계 수지층을 포함한 투명 다층 필름, 및 상기 투명 다층 필름의 제조 방법
JP6153977B2 (ja) 粘着フィルム
WO2016147776A1 (ja) ハードコート積層フィルム
WO2018096921A1 (ja) ハードコート積層フィルム
WO2017098935A1 (ja) ハードコート積層フィルム
JP6456840B2 (ja) 青色光遮蔽性樹脂組成物
WO2016088441A1 (ja) ハードコート積層フィルム
WO2016147719A1 (ja) 透明樹脂積層体
JP2017141416A (ja) ハードコート積層フィルム
JP6599789B2 (ja) ハードコート積層フィルム
JP6506018B2 (ja) ガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800072

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015800072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800072

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167033592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15315267

Country of ref document: US