WO2015178437A1 - 透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体 - Google Patents

透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体 Download PDF

Info

Publication number
WO2015178437A1
WO2015178437A1 PCT/JP2015/064543 JP2015064543W WO2015178437A1 WO 2015178437 A1 WO2015178437 A1 WO 2015178437A1 JP 2015064543 W JP2015064543 W JP 2015064543W WO 2015178437 A1 WO2015178437 A1 WO 2015178437A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
scratch
transparent
solution
Prior art date
Application number
PCT/JP2015/064543
Other languages
English (en)
French (fr)
Inventor
裕一 下木場
広平 西野
哲央 野口
黒川 欽也
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to KR1020167035403A priority Critical patent/KR102244204B1/ko
Priority to CN201580039629.XA priority patent/CN106536576B/zh
Priority to JP2016521140A priority patent/JP6517791B2/ja
Publication of WO2015178437A1 publication Critical patent/WO2015178437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • C08F222/08Maleic anhydride with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers

Definitions

  • the present invention relates to a copolymer for transparent scratch-resistant plates and a laminate for transparent scratch-resistant plates using the copolymer.
  • Glass that is transparent and excellent in scratch resistance is used for touch panel members such as displays, but from the viewpoints of weight reduction, moldability, prevention of cracking, etc., it is lightweight from glass and excellent in productivity, and from the safety aspect
  • transparent resins include methacrylic resins and polycarbonate resins.
  • the methacrylic resin is excellent in transparency, surface scratch resistance, light resistance, etc., but problems remain in heat resistance, hygroscopicity, strength, and the like.
  • polycarbonate resin is excellent in transparency, heat resistance, low hygroscopicity, and strength, but problems remain in surface scratch resistance and light resistance. Performance required for glass replacement applications include transparency, surface scratch resistance, light resistance, and strength.
  • the surface of a polycarbonate resin layer that is transparent and has low moisture absorption and strength is transparent and has surface scratch resistance.
  • a sheet or film in which a methacrylic resin having excellent properties and light resistance is laminated is used.
  • this laminated sheet or film has problems such as warpage due to moisture absorption deformation of the methacrylic resin and warpage due to the influence of a heat resistant temperature difference with a methacrylic resin having low heat resistance compared to a polycarbonate resin having high heat resistance.
  • the present invention is to provide a transparent scratch-resistant plate copolymer and a transparent scratch-resistant plate laminate that is excellent in transparency, surface hardness and appearance using the copolymer and hardly warps and deforms. is there.
  • the gist of the present invention is as follows.
  • a resin composition layer (a) comprising 5 to 90% by mass of the copolymer according to (1) and 10 to 95% by mass of a methacrylic resin is laminated on at least one surface of the polycarbonate resin layer (b).
  • a laminate for transparent scratch-resistant boards is as follows.
  • the transparent scratch-resistant laminate for plate according to (2) wherein the resin composition layer (a) comprises 5 to 80% by mass of the copolymer and 20 to 95% by mass of the methacrylic resin.
  • the methacrylic resin is a copolymer comprising 70 to 100% by mass of (meth) acrylic acid ester monomer units and 0 to 30% by mass of aromatic vinyl monomer units, as described in (2) or (3) A laminate for transparent scratch-resistant boards.
  • the ratio of (thickness of resin composition layer (a)) / (thickness of polycarbonate resin layer (b)) is 5/95 to 80/20, and any of (2) to (4) The laminated body for transparent scratch-resistant boards as described in one.
  • the copolymer of the present invention is useful for a transparent scratch-resistant plate, and by using the copolymer, a laminate for a transparent scratch-resistant plate that is excellent in transparency, surface hardness, and appearance and hardly warps and deforms. Can be provided.
  • Transparent scratch-resistant plates include, for example, LCD TVs, personal computer monitors, display windows for portable information terminals such as mobile phones, PHS, and tablets, viewfinders for digital cameras and handy video cameras, and display windows for portable game consoles. It is a sheet or film that is transparent and has excellent surface scratch resistance used for touch panel members such as a display unit of a car navigation system.
  • the copolymer for transparent scratch-resistant plates of the present invention has a total light transmittance of 2 mm thickness measured according to ASTM D1003 of 88% or more, preferably 89% or more, more preferably 90% or more. . If the total light transmittance of 2 mm thickness is 88% or more, the transparency of the resin composition obtained by blending with a methacrylic resin will be good.
  • the total light transmittance is a mirror surface of 90 mm in length, 55 mm in width, and 2 mm in thickness formed using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.) under molding conditions of a cylinder temperature of 230 ° C. and a mold temperature of 40 ° C.
  • the plate is a value measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with ASTM D1003.
  • aromatic vinyl monomer units include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene. , Units derived from styrene monomers such as p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, and the like. Of these, styrene units are preferred. These aromatic vinyl monomer units may be one type or a combination of two or more types.
  • Examples of the (meth) acrylic acid ester monomer unit include methyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate, and Examples include units derived from acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. Among these, a methyl methacrylate unit is preferable.
  • These (meth) acrylic acid ester monomer units may be one kind or a combination of two or more kinds.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer unit include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Among these, maleic anhydride units are preferable.
  • the unsaturated dicarboxylic acid anhydride monomer unit may be one type or a combination of two or more types.
  • the structural unit of the copolymer for transparent scratch-resistant plates of the present invention is composed of 45 to 85% by mass of an aromatic vinyl monomer unit, 5 to 45% by mass of a (meth) acrylate monomer unit, and an unsaturated dicarboxylic acid. 10 to 20% by mass of acid anhydride monomer unit, preferably 50 to 80% by mass of aromatic vinyl monomer unit, 8 to 38% by mass of (meth) acrylic acid ester monomer unit, unsaturated dicarboxylic acid
  • the anhydride monomer unit is 12 to 18% by mass.
  • the aromatic vinyl monomer unit is 85% by mass or less, the effect of imparting heat resistance to the methacrylic resin is improved, and if it is 80% by mass or less, the effect of imparting heat resistance is further improved.
  • the (meth) acrylic acid ester monomer unit is 45% by mass or less, the thermal stability is improved and the moisture absorption is low, which is good when a resin composition obtained by blending with a methacrylic resin is molded.
  • a molded product having a good appearance and low hygroscopicity is obtained, and if it is 38% by mass or less, the thermal stability is further improved and low hygroscopicity is obtained, and a resin composition obtained by blending with a methacrylic resin is molded.
  • a molded article having a better appearance and low hygroscopicity can be obtained.
  • the unsaturated dicarboxylic acid anhydride monomer unit is 20% by mass or less, the compatibility with the methacrylic resin is improved, the transparency of the resin composition obtained by blending with the methacrylic resin is good, and the heat resistance If the resin composition has improved properties, the compatibility with the methacrylic resin is further improved if it is 18% by mass or less, and the transparency of the resin composition obtained by blending with the methacrylic resin is even better. And a resin composition having improved heat resistance can be obtained.
  • the aromatic vinyl monomer unit is 45% by mass or more, the heat stability is improved and the moisture absorption is low, and when the resin composition obtained by blending with the methacrylic resin is molded, it is good.
  • a molded product having an appearance and low hygroscopicity is obtained, and if it is 50% by mass or more, thermal stability is further improved and low hygroscopicity, and a resin composition obtained by blending with a methacrylic resin is molded. In this case, a molded article having a better appearance and low hygroscopicity can be obtained.
  • the compatibility with the methacrylic resin is improved, the transparency of the resin composition obtained by blending with the methacrylic resin is good, and heat resistance
  • a resin composition with improved properties can be obtained, and if it is 8% by mass or more, the compatibility with the methacrylic resin is further improved, and the transparency of the resin composition obtained by blending with the methacrylic resin is further improved. And a resin composition having improved heat resistance can be obtained. Further, if the unsaturated dicarboxylic acid anhydride monomer unit is 10% by mass or more, the compatibility with the methacrylic resin is improved, and the transparency of the resin composition obtained by blending with the methacrylic resin is good.
  • the effect of imparting heat resistance to the methacrylic resin is improved, and if it is 12% by mass or more, the compatibility with the methacrylic resin is further improved, and the transparency of the resin composition obtained by blending with the methacrylic resin is further improved. And the effect of imparting heat resistance is further improved.
  • the transparent scratch-resistant plate copolymer of the present invention is a copolymer other than an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • Possible vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less.
  • copolymerizable vinyl monomer unit examples include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, and N-ethylmaleimide N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide Examples are units derived from the body. Two or more types of copolymerizable vinyl monomer units may be used.
  • the copolymer of the present invention preferably has a weight average molecular weight (Mw) of 100,000 to 200,000, more preferably a weight average molecular weight (Mw) of 120,000 to 180,000. If the weight average molecular weight (Mw) is too large, the moldability of the resin composition obtained by blending with the methacrylic resin or the appearance of the molded product may be inferior. If the weight average molecular weight (Mw) is too small, the moldability Or, the strength of the molded product may be inferior.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and is a value measured under the measurement conditions described below.
  • the method for producing the copolymer of the present invention will be described.
  • the polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable.
  • the solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects.
  • the type of the solvent is not particularly limited.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery.
  • the amount of the solvent added is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a desired weight average molecular weight (Mw).
  • the polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
  • the polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process.
  • the polymerization initiator is not particularly limited.
  • Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate
  • Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these
  • the copolymer of the present invention has a total light transmittance of 88% or more with a thickness of 2 mm measured based on ASTM D1003. If a copolymer satisfying this condition is obtained, the polymerization procedure is not particularly limited. However, in order to obtain a copolymer having a total light transmittance of 88% or more, the copolymer composition distribution is small. Must be polymerized. Since the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer. Thus, a method of continuously adding unsaturated dicarboxylic acid anhydride monomers is preferred. The control of the polymerization rate can be adjusted by the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator. It is preferable to continuously add a polymerization initiator because the polymerization rate can be more easily controlled.
  • the chain transfer agent is not particularly limited.
  • a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
  • the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound,
  • a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound
  • Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.
  • a well-known devolatilization technique can be used. For example, a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned.
  • the devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
  • the laminate for a transparent scratch-resistant plate of the present invention comprises 5 to 90% by mass of the copolymer for transparent scratch-resistant plate of the present invention and 10 to 95% by weight of methacrylic resin on at least one surface of the polycarbonate resin layer (b). % Resin composition layer (a) is laminated.
  • the laminate for a transparent scratch-resistant plate is in the form of a sheet or film, and it is sufficient that the resin composition layer (a) is laminated on at least one surface of the polycarbonate resin layer (b).
  • the resin composition layer (a) is laminated on at least one surface of the polycarbonate resin layer (b).
  • Examples thereof include a two-layer structure in which the resin composition layer (a) is laminated on one surface of (b), and a three-layer structure in which the resin composition layer (a) is laminated on both surfaces of the polycarbonate resin layer (b).
  • the ratio of (thickness of resin composition layer (a)) / (thickness of polycarbonate resin layer (b)) is preferably 5/95 to 80/20. In this case, the balance of warpage resistance, transparency, and surface scratch resistance is excellent. This ratio is preferably 5/95 to 70/30, more preferably 8/92 to 20/80. In this case, the warping resistance is further improved.
  • the resin composition layer (a) comprising the copolymer for transparent scratch-resistant plate of the present invention and a methacrylic resin is laminated on at least one surface of the polycarbonate resin layer (b).
  • a cured coating agent hard coating agent
  • an antistatic agent in the transparent scratch-resistant laminate for the laminate as long as the effects of the present invention are not impaired.
  • the resin constituting the resin composition layer (a) is preferably 5 to 90% by mass of the copolymer for transparent scratch-resistant plates of the present invention and 10 to 95% by mass of methacrylic resin.
  • the resin composition has an excellent balance of transparency, hue, surface scratch resistance, heat resistance, moisture absorption resistance, and moldability, and effectively suppresses warpage of the laminate for transparent scratch-resistant boards of the present invention. I can do it.
  • the transparent scratch-resistant plate copolymer is preferably 5 to 80% by mass and the methacrylic resin 20 to 95% by mass, and the transparent scratch-resistant plate copolymer 10 to 30% by mass and the methacrylic resin 70 to 90% by mass. More preferably. In this case, the warp of the transparent scratch-resistant board laminate can be more effectively suppressed.
  • melt-kneading apparatus there is no limitation in particular about the method of obtaining the resin composition used for a resin composition layer (a), A well-known melt-kneading technique can be used.
  • melt-kneading apparatus examples include a single screw extruder, a meshing type co-rotating or meshing type counter-rotating twin screw extruder, a screw extruder such as a non- or incomplete meshing type twin screw extruder, a Banbury mixer, There are kneaders and mixing rolls.
  • the resin composition layer (a) may contain a stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, and the like as long as the effects of the present invention are not impaired.
  • the methacrylic resin used for the resin composition layer (a) is (meth) acrylic acid ester monomer unit 70 to 100% by mass and aromatic vinyl monomer unit 0 to 30% by mass. It is preferable because the compatibility with the copolymer is improved, and the resulting resin composition has good surface scratch resistance, heat resistance, moisture absorption resistance, and moldability, and more preferably a (meth) acrylic acid ester unit.
  • the monomer unit is 75 to 100% by mass, and the aromatic vinyl monomer unit is 0 to 25% by mass.
  • the (meth) acrylic acid ester monomer unit is less than 70% by mass and the aromatic vinyl monomer unit exceeds 30% by mass, when mixed with the transparent scratch-resistant board copolymer of the present invention. , Transparency and pencil hardness will decrease.
  • the polycarbonate used in the polycarbonate resin layer (b) is a resin in which the junction between monomer units is composed of a carbonate group (—O— (C ⁇ O) —O—), for example, a dihydric phenol and a carbonylating agent.
  • a polymer by interfacial polycondensation or melt transesterification, etc., obtained by polymerizing a carbonate prepolymer by solid phase transesterification, etc., and a cyclic carbonate compound can be polymerized by ring-opening polymerization. And the like that can be obtained.
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ methane, 1,1- Bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dibromo ) Phenyl ⁇ propane, 2,2-bis ⁇ (3-isopropyl-4-hydroxy) phenyl ⁇ propane, 2,2-bis ⁇ (4 -Hydroxy-3-phenyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl)
  • bisphenol A 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3 -Methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl)
  • a dihydric phenol selected from the group consisting of ⁇ 3,3,5-trimethylcyclohexane and ⁇ , ⁇ ′-bis (4-hydroxyphenyl) -m-diisopropylbenzene alone or in combination of two or more.
  • Bisphenol A alone or bisphenol A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylsilane One selected from the group consisting of rhohexane, bisphenol A, 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, and ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-diisopropylbenzene
  • rhohexane bisphenol A
  • 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane propane
  • ⁇ , ⁇ '-bis (4-hydroxyphenyl) -m-diisopropylbenzene The combined use with the above dihydric phenol is preferable.
  • carbonylating agent examples include carbonyl halides such as phosgene, carbonate esters such as diphenyl carbonate, and haloformates such as dihaloformates of dihydric phenols. These may be used alone or in combination of two or more. .
  • the polycarbonate resin layer (b) may contain a stabilizer, a plasticizer, a lubricant, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant and the like as long as the effects of the present invention are not impaired.
  • a 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization.
  • a 120-liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, 10.4 kg of methyl methacrylate, and 40 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C. after the temperature rise, 2.1% / hour of 20% maleic anhydride solution and 375 g / hour of 2% t-butylperoxy-2-ethylhexanoate solution were respectively added. The addition continued continuously over 8 hours.
  • the pellet-shaped copolymer (A-1) was obtained by volatilization treatment and extrusion cutting into strands.
  • the obtained copolymer (A-1) was subjected to composition analysis by C-13 NMR method.
  • molecular weight measurement was performed with a GPC apparatus. Further, a 2 mm-thick mirror surface plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. Table 1 shows the composition analysis results, the molecular weight measurement results, and the total light transmittance measurement results.
  • a 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1.
  • a 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 20% maleic anhydride solution, 24 kg of styrene, 12 kg of methyl methacrylate, 40 g of t-dodecyl mercaptan, and 5 kg of methyl isobutyl ketone. After the replacement, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C.
  • a 20% maleic anhydride solution was added at a rate of 1.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8 ° C./hour while maintaining the addition rate of 1.5 kg / hour.
  • a 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1.
  • a 120 liter autoclave equipped with a stirrer was charged with 3.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, 8.4 kg of methyl methacrylate, and 32 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C.
  • a 20% maleic anhydride solution was added at a rate of 2.85 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated up to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 2.85 kg / hour.
  • Example of production of copolymer (A-4)> A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1.
  • a 120-liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 13.8 kg of styrene, 16 kg of methyl methacrylate, and 48 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring.
  • a 20% maleic anhydride solution was added at a rate of 1.68 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 200 g / hour, respectively. The addition continued continuously over 10 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 20 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 5 hours at a temperature increase rate of 6.4 ° C./hour, while maintaining the addition rate of 1.68 kg / hour.
  • the addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 25.2 kg.
  • the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer.
  • the pellet-shaped copolymer (A-5) was obtained by volatilization treatment and extrusion cutting into strands. With respect to the obtained copolymer (A-5), the composition analysis, the molecular weight, and the total light transmittance were measured in the same manner as in A-1. The measurement results are shown in Table 1.
  • the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer. Volatilization treatment was performed, and extrusion-cutting into strands was performed to obtain a pellet-shaped copolymer (A-6).
  • A-6 a composition analysis, a molecular weight, and a total light transmittance were measured in the same manner as in A-1. The measurement results are shown in Table 1.
  • the polymerization was terminated by maintaining 120 ° C. for 1 hour.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (B-1) was obtained.
  • the composition analysis, molecular weight, and total light transmittance were measured in the same manner as in A-1. The measurement results are shown in Table 2.
  • a 20% maleic anhydride solution was added at a rate of 2.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 250 g / hour. The addition continued continuously over 6 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 10 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 2 hours at a temperature increase rate of 16 ° C./hour while maintaining the addition rate of 2.5 kg / hour.
  • a 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 10% maleic anhydride solution, 24 kg of styrene, 14 kg of methyl methacrylate, 48 g of t-dodecyl mercaptan, and 2 kg of methyl isobutyl ketone, and the gas phase part was filled with nitrogen gas.
  • the temperature was raised to 90 ° C. over 40 minutes with stirring.
  • a 10% maleic anhydride solution was added at a rate of 1.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour, respectively.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (B-3) was obtained.
  • the composition analysis, the molecular weight, and the total light transmittance were measured in the same manner as in A-1. The measurement results are shown in Table 2.
  • a 20% maleic anhydride solution was added at a rate of 3.75 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 3.75 kg / hour.
  • a 20% maleic anhydride solution was added at a rate of 0.76 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 250 g / hour, respectively. The addition continued continuously over 15 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 60 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 128 ° C. over 9 hours at a temperature increase rate of 4 ° C./hour while maintaining the addition rate of 0.76 kg / hour.
  • 1,1-bis (t-butylperoxy) -cyclohexane Perhexa C manufactured by NOF Corporation 0 with respect to a mixed solution composed of 98 parts by weight of methyl methacrylate, 2 parts by weight of ethyl acrylate, and 18 parts by weight of ethylbenzene .02 parts by mass, 0.3 parts by mass of n-dodecyl mercaptan (thiocalcol 20 manufactured by Kao Corporation), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Ciba Specialty Chemicals) 0.1 parts by mass of IRGANOX 1076) manufactured as a raw material solution was mixed.
  • n-dodecyl mercaptan thiocalcol 20 manufactured by Kao Corporation
  • octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate Cib
  • This raw material solution was introduced into a fully mixed reactor controlled at a temperature of 120 ° C. at 6 kg per hour.
  • the stirring number of the complete mixing type reactor was 200 rpm.
  • the reaction liquid was continuously withdrawn from the complete mixing type reactor and introduced into a column type plug flow type reactor adjusted so as to have a gradient of 130 ° C. to 150 ° C. in the flow direction. While this reaction solution was heated with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as unreacted monomers.
  • This resin liquid was extracted with a gear pump, and extruded and cut into strands to obtain pellet-shaped methacrylic resin (C-1).
  • methacrylic resin (C-1) the composition analysis, molecular weight, and total light transmittance were measured in the same manner as in A-1. Table 3 shows the measurement results.
  • n-dodecyl mercaptan thiocalcol 20 manufactured by Kao Corporation
  • octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate manufactured by Ciba Specialty Chemicals
  • IRGANOX 1076 0.1 parts by mass of IRGANOX 1076
  • reaction liquid was continuously withdrawn from the complete mixing type reactor and introduced into a column type plug flow type reactor adjusted so as to have a gradient of 130 ° C. to 150 ° C. in the flow direction. While this reaction solution was heated with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as unreacted monomers.
  • the resin liquid was extracted with a gear pump, and extruded and cut into strands to obtain pellet-shaped methacrylic resin (C-2). With respect to the obtained methacrylic resin (C-2), composition analysis, molecular weight, and total light transmittance were measured in the same manner as in A-1. Table 3 shows the measurement results.
  • Examples and comparative examples > Copolymers (A-1) to (A-6) or Copolymers (B-1) to (B-5) described in the above production examples and methacrylic resins (C-1) to (C-2) Were mixed at a ratio (mass%) shown in Tables 4 to 5 using a Henschel mixer and then melt-kneaded at a cylinder temperature of 230 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.). To obtain a resin composition. The resin composition and the polycarbonate resin were each fed by a feed block method (500 mm wide T-die) using a single screw extruder (SE-65CA manufactured by Toshiba Machine Co., Ltd.).
  • the laminate was cut into a square of 90 mm in length and 90 mm in width, and then allowed to stand for 72 hours under conditions of a temperature of 85 ° C. and a humidity of 85% with an environmental tester (PL-3KPH manufactured by Espec). Then, the laminated body after the test is placed on a flat glass substrate so as to protrude downward, the gap between each of the four apexes of the laminated body and the glass substrate surface, and the center of each side of the laminated body (each side is The gap between 4 positions and the glass substrate surface was measured (total of 8 positions measured), and the average value was taken as the amount of warpage. A warp amount of 1 mm or less was evaluated as “excellent”, and a warp amount of more than 1 mm to 1.5 mm or less was determined as “good”.
  • Total light transmittance and Haze cloudiness
  • ASTM D1003 Total light transmittance and Haze
  • the appearance evaluation was performed by counting the number of samples in which appearance defects such as coloring, bubbles, burn-out contamination, and bumps occurred.
  • the evaluation criteria are as follows. A: The number of appearance defect samples is 0. ⁇ : The number of appearance defect samples is 1-2. ⁇ : The number of appearance defect samples is 2-5. ⁇ : The number of appearance defects is 6 or more.
  • a resin composition layer (a) comprising the copolymers (A-1) to (A-6) of the present invention and methacrylic resins (C-1) to (C-2), and a polycarbonate resin layer (b) All the examples relating to the laminates were able to suppress warpage and have an excellent appearance while maintaining good transparency and pencil hardness.
  • a resin composition layer (a) comprising copolymers (B-1) to (B-5) and methacrylic resins (C-1) to (C-2) that do not meet the conditions of the present invention, and a polycarbonate resin
  • Comparative Examples 1 to 6 related to the laminate with the layer (b) the transparency was lowered and many appearance defects occurred.
  • Comparative Examples 7 to 8 where no copolymer was added the amount of warpage was very large.
  • Comparative Example 9 in which the resin composition layer (a) was not provided, the pencil hardness was very low.
  • a transparent scratch-resistant plate copolymer with a methacrylic resin, it becomes possible to impart low moisture absorption and heat resistance without impairing transparency and surface scratch resistance,
  • a laminate for a transparent scratch-resistant plate having an excellent appearance by suppressing warpage of a laminated sheet or film of the resin composition layer comprising a copolymer for transparent scratch-resistant plate, a methacrylic resin, and a polycarbonate resin layer. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

透明性、表面硬度、外観に優れた透明耐擦傷性板用共重合体及びその共重合体を用いた透明耐擦傷性板用積層体を提供する。芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~20質量%からなり、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である透明耐擦傷性板用共重合体。該透明耐擦傷性板用共重合体を用いてなる透明耐擦傷性板用積層体。

Description

透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体
本発明は、透明耐擦傷性板用共重合体及びその共重合体を用いた透明耐擦傷性板用積層体に関するものである。
ディスプレイ等のタッチパネル部材には、透明で耐擦傷性に優れるガラスが使用されているが、軽量化や成形加工性、割れ防止などの観点から、ガラスから軽量で生産性に優れ、かつ安全面から透明樹脂への代替要望が強くなっている。代替用の透明樹脂として、例えばメタクリル樹脂やポリカーボネート樹脂などがある。メタクリル樹脂は、透明性や耐表面傷付き性、耐光性などに優れるが、耐熱性や吸湿性、強度などに課題が残る。一方、ポリカーボネート樹脂は、透明性や耐熱性、低吸湿性、強度に優れるが、耐表面傷付き性や耐光性などに課題が残る。ガラス代替用途に必要な性能として、透明性と耐表面傷付き性、耐光性、強度などがある為、例えば透明で低吸湿性、強度に優れるポリカーボネート樹脂層の表層に、透明で耐表面傷付き性、耐光性に優れるメタクリル樹脂とを積層させたシートまたはフィルムが用いられている。しかしながら、この積層シートまたはフィルムは、メタクリル樹脂の吸湿変形による反りや、高耐熱性を有するポリカーボネート樹脂と比べて耐熱性の低いメタクリル樹脂との耐熱温度差の影響による反りなどの課題がある。
特開2013-193241号 特開平11-058627号
本発明は、透明耐擦傷性板用共重合体及びその共重合体を用いた透明性や表面硬度、外観に優れ、且つ反り変形が起こりにくい透明耐擦傷性板用積層体を提供することである。
本発明は、以下を要旨とするものである。
(1)芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~20質量%からなり、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である透明耐擦傷性板用共重合体。
(2)ポリカーボネート樹脂層(b)の少なくとも一方の面に、(1)に記載の共重合体5~90質量%とメタクリル樹脂10~95質量%からなる樹脂組成物層(a)を積層してなる透明耐擦傷性板用積層体。
(3)前記樹脂組成物層(a)は、前記共重合体5~80質量%と前記メタクリル樹脂20~95質量%からなる(2)に記載の透明耐擦傷性板用積層体。
(4)メタクリル樹脂が(メタ)アクリル酸エステル単量体単位70~100質量%と芳香族ビニル単量体単位0~30質量%からなる共重合体である(2)又は(3)に記載の透明耐擦傷性板用積層体。
(5)(樹脂組成物層(a)の厚さ)/(ポリカーボネート樹脂層(b)の厚さ)の比が、5/95~80/20である(2)~(4)の何れか1つに記載の透明耐擦傷性板用積層体。
(6)前記比は、5/95~70/30である(5)に記載の透明耐擦傷性板用積層体。
本発明の共重合体は、透明耐擦傷性板に有用であり、その共重合体を用いることで透明性や表面硬度、外観に優れ、且つ反り変形が起こりにくい透明耐擦傷性板用積層体を提供することが出来る。
<用語の説明>
本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
以下、本発明の実施形態について、詳細に説明する。
透明耐擦傷性板とは、例えば液晶テレビやパソコンのモニター、携帯電話やPHS、タブレット等の携帯型情報端末の表示窓、デジタルカメラやハンディ型ビデオカメラのファインダー部、携帯型ゲーム機の表示窓、カーナビの表示部等のタッチパネル部材に使用される透明で耐表面傷付き性に優れるシートまたはフィルムのことである。
本発明の透明耐擦傷性板用共重合体は、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上であり、好ましくは89%以上であり、さらに好ましくは90%以上である。2mm厚みの全光線透過率が88%以上であれば、メタクリル樹脂に配合して得られる樹脂組成物の透明性が良好となる。なお、全光線透過率は射出成形機(東芝機械社製IS-50EPN)を用いて、シリンダー温度230℃、金型温度40℃の成形条件で成形された縦90mm、横55mm、厚み2mmの鏡面プレートを、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて測定した値である。
本発明の透明耐擦傷性板用共重合体において、芳香族ビニル単量体単位としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。
(メタ)アクリル酸エステル単量体単位としては、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。
不飽和ジカルボン酸無水物単量体単位としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これらの中でも好ましくはマレイン酸無水物単位である。不飽和ジカルボン酸無水物単量体単位は、1種でもよく、2種類以上の併用であってもよい。
本発明の透明耐擦傷性板用共重合体の構成単位は、芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル系単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~20質量%であり、好ましくは芳香族ビニル単量体単位50~80質量%、(メタ)アクリル酸エステル単量体単位8~38質量%、不飽和ジカルボン酸無水物単量体単位12~18質量%である。
芳香族ビニル単量体単位が85質量%以下であれば、メタクリル樹脂への耐熱性付与効果が向上し、80質量%以下であれば、さらに耐熱性付与効果が向上する。(メタ)アクリル酸エステル単量体単位が45質量%以下であれば、熱安定性の向上及び低吸湿性となり、メタクリル樹脂に配合して得られる樹脂組成物を成形加工した際には、良好な外観を有しかつ低吸湿性な成形品が得られ、38質量%以下であれば、さらに熱安定性の向上及び低吸湿性となり、メタクリル樹脂に配合して得られる樹脂組成物を成形加工した際には、さらに良好な外観を有しかつ低吸湿性な成形品が得られる。不飽和ジカルボン酸無水物単量体単位が20質量%以下であれば、メタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性が良好であり、かつ耐熱性を向上させた樹脂組成物を得ることが出来、18質量%以下であれば、さらにメタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性がさらに良好となり、かつ耐熱性を向上させた樹脂組成物を得ることが出来る。一方、芳香族ビニル単量体単位が45質量%以上であれば、熱安定性の向上及び低吸湿性となり、メタクリル樹脂に配合して得られる樹脂組成物を成形加工した際には、良好な外観を有しかつ低吸湿性な成形品が得られ、50質量%以上であれば、さらに熱安定性が向上及び低吸湿性となり、メタクリル樹脂に配合して得られる樹脂組成物を成形加工した際には、さらに良好な外観を有しかつ低吸湿性な成形品が得られる。(メタ)アクリル酸エステル単量体単位が5質量%以上であれば、メタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性が良好であり、かつ耐熱性を向上させた樹脂組成物を得ることが出来、8質量%以上であれば、さらにメタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性がさらに良好となり、かつ耐熱性を向上させた樹脂組成物を得ることが出来る。また、不飽和ジカルボン酸無水物単量体単位が10質量%以上であれば、メタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性が良好であり、かつメタクリル樹脂への耐熱性付与効果が向上し、12質量%以上であれば、さらにメタクリル樹脂との相溶性が向上し、メタクリル樹脂に配合して得られる樹脂組成物の透明性がさらに良好であり、かつ耐熱性付与効果がさらに向上する。
なお本発明の透明耐擦傷性板用共重合体は、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、および不飽和ジカルボン酸無水物単量体単位以外の、共重合可能なビニル単量体の単位を共重合体中に発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。共重合可能なビニル単量体の単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。共重合可能なビニル単量体の単位は、2種類以上の併用であってもよい。
本発明の共重合体は、重量平均分子量(Mw)が10万~20万であることが好ましく、より好ましくは、重量平均分子量(Mw)が12万~18万である。重量平均分子量(Mw)が大きすぎると、メタクリル樹脂に配合して得られる樹脂組成物の成形性や、成形品の外観が劣る場合があり、重量平均分子量(Mw)が小さすぎると、成形性や、成形品の強度に劣る場合がある。なお、重量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、下記記載の測定条件における測定値である。
   装置名:SYSTEM-21 Shodex(昭和電工社製)
   カラム:PL gel MIXED-Bを3本直列
   温度:40℃
   検出:示差屈折率
   溶媒:テトラヒドロフラン
   濃度:2質量%
   検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
本発明の共重合体の製造方法について説明する。
重合様式においては特に限定はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合がより好ましい。溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。溶剤の種類としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4-ジオキサン等のエーテル類、トルエン、エチルベンゼン、キシレン、クロロベンゼン等の芳香族炭化水素などが挙げられるが、単量体や共重合体の溶解度、溶剤回収のし易さの観点から、メチルエチルケトン、メチルイソブチルケトンが好ましい。溶剤の添加量は、得られる共重合体量100質量部に対して、10~100質量部が好ましく、さらに好ましくは30~80質量部である。10質量部以上であれば、反応速度および重合液粘度を制御する上で好適であり、100質量部以下であれば、所望の重量平均分子量(Mw)を得る上で好適である。
重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えないが、所望の分子量範囲と透明性を得る上で回分式重合法が好適である。
重合方法は特に限定されないが、簡潔プロセスによって生産性良く製造することが可能であるという観点から、好ましくはラジカル重合法である。重合開始剤としては特に限定されるものではないが、例えばジベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシアセテート、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機過酸化物やアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物を用いることができる。これらの重合開始剤は2種以上を併用することも出来る。これらの中でも10時間半減期温度が、70~110℃である有機過酸化物を用いるのが好ましい。
本発明の共重合体は、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である。この条件を満たす共重合体が得られれば、その重合手順に特に制限はないが、全光線透過率が88%以上の透明性を有する共重合体を得るためには、共重合組成分布が小さくなるように重合しなければならない。芳香族ビニル単量体と不飽和ジカルボン酸無水物単量体とが強い交互共重合性を有することから、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体の重合速度に対応するように不飽和ジカルボン酸無水物単量体を連続的に分添する方法が好適である。重合速度のコントロールについては、重合温度、重合時間、および重合開始剤添加量とで調整することが出来る。重合開始剤を連続分添すると、より重合速度をコントロールし易くなるので好ましい。
さらに、好ましい重量平均分子量(Mw)の範囲である10万~20万である共重合体を得る方法については、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶剤添加量および連鎖移動剤添加量を調整することで得ることが出来る。連鎖移動剤としては、特に限定されるものではないが、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を用いることができる。
重合終了後、重合液には必要に応じて、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の耐光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を加えても構わない。その添加量は全単量体単位100質量部に対して0.2質量部未満であることが好ましい。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。
重合液から本発明の共重合体を回収する方法については、特に限定はなく、公知の脱揮技術を用いることが出来る。例えば、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤や未反応モノマー等を脱揮処理する方法が挙げられる。なお、重合溶剤や未反応モノマー等を含む脱揮成分は、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤は再利用することが可能である。
本発明の透明耐擦傷性板用積層体は、ポリカーボネート樹脂層(b)の少なくとも一方の面に、本発明の透明耐擦傷性板用共重合体5~90質量%とメタクリル樹脂10~95質量%からなる樹脂組成物層(a)を積層させたものである。
透明耐擦傷性板用積層体は、シート状又はフィルム状であり、ポリカーボネート樹脂層(b)の少なくとも一方の面に樹脂組成物層(a)を積層させていればよく、例えば、ポリカーボネート樹脂層(b)の一方の面に樹脂組成物層(a)を積層した二層構成や、ポリカーボネート樹脂層(b)の両面に樹脂組成物層(a)を積層した三層構成等が挙げられる。
(樹脂組成物層(a)の厚さ)/(ポリカーボネート樹脂層(b)の厚さ)の比は、5/95~80/20であることが好ましい。この場合、耐反り性、透明性、耐表面傷付き性のバランスに優れる。この比は、好ましくは5/95~70/30であり、さらに好ましくは8/92~20/80である。この場合、耐反り性がさらに向上する。
ポリカーボネート樹脂層(b)の少なくとも一方の面に、本発明の透明耐擦傷性板用共重合体とメタクリル樹脂からなる樹脂組成物層(a)を積層させた透明耐擦傷性板用積層体を得る方法については、特に限定はなく、公知の溶融共押出成形技術を用いることが出来る。好適に使用できる溶融共押出成形としては、フィードブロック方式またはマルチダイ方式等がある。
透明耐擦傷性板用積層体には、本発明の効果を阻害しない範囲で硬化被膜剤(ハードコート剤)や帯電防止剤などを使用した方が好ましい。
樹脂組成物層(a)を構成する樹脂が、本発明の透明耐擦傷性板用共重合体5~90質量%とメタクリル樹脂10~95質量%であることが好ましい。この場合、樹脂組成物の透明性、色相、耐表面傷付き性、耐熱性、耐吸湿性、成形性のバランスに優れ、本発明の透明耐擦傷性板用積層体の反りを効果的に抑制することが出来る。透明耐擦傷性板用共重合体5~80質量%とメタクリル樹脂20~95質量%であると好ましく、透明耐擦傷性板用共重合体10~30質量%とメタクリル樹脂70~90質量%であるとさらに好ましい。この場合、透明耐擦傷性板用積層体の反りをさらに効果的に抑制することが出来る。
樹脂組成物層(a)に用いる樹脂組成物を得る方法については、特に限定はなく、公知の溶融混練技術を用いることが出来る。好適に使用できる溶融混練装置としては、単軸押出機、噛合形同方向回転または噛合形異方向回転二軸押出機、非または不完全噛合形二軸押出機等のスクリュー押出機、バンバリーミキサー、コニーダー及び混合ロール等がある。
なお樹脂組成物層(a)には、本発明の効果を阻害しない範囲で安定剤や可塑剤、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、着色剤などを配合してもよい。
樹脂組成物層(a)に用いるメタクリル樹脂としては、(メタ)アクリル酸エステル単量体単位70~100質量%、芳香族ビニル単量体単位0~30質量%であることが、本発明の共重合体との相溶性が向上し、得られる樹脂組成物の耐表面傷付き性、耐熱性、耐吸湿性、成形性が良好となることから好ましく、さらに好ましくは(メタ)アクリル酸エステル単量体単位75~100質量%、芳香族ビニル単量体単位0~25質量%である。(メタ)アクリル酸エステル単量体単位が70質量%未満、芳香族ビニル単量体単位が30質量%を超過する場合には、本発明の透明耐擦傷性板用共重合体と混合した際、透明性や鉛筆硬度が低下してしまう。
ポリカーボネート樹脂層(b)に用いるポリカーボネートとは、モノマー単位同士の接合部がカーボネート基(-O-(C=O)-O-) で構成される樹脂であり、例えば二価フェノールとカルボニル化剤とを界面重縮合法や溶融エステル交換法等で反応させることにより得られるもの、カーボネートプレポリマーを固相エステル交換法等で重合させることにより得られるもの、環状カーボネート化合物を開環重合法で重合させることにより得られるもの等が挙げられる。
前記二価フェノールとしては、例えばハイドロキノン、レゾルシノール、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)メタン、ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジメチル)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3,5-ジブロモ)フェニル}プロパン、2,2-ビス{(3-イソプロピル-4-ヒドロキシ)フェニル}プロパン、2,2-ビス{(4-ヒドロキシ-3-フェニル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス{(4-ヒドロキシ-3-メチル)フェニル}フルオレン、α,α'-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α'-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、α,α'-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルケトン、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシジフェニルエステル等が挙げられ、単独で用いても、2種類以上を併用しても構わない。
中でも、ビスフェノールA、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-3,3-ジメチルブタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンおよびα,α'-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンからなる群より選ばれる二価フェノールを単独で、または2種以上用いるのが好ましく、特に、ビスフェノールAの単独使用や、ビスフェノールAと、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンと、ビスフェノールA、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパンおよびα,α'-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼンからなる群より選ばれる1種以上の二価フェノールとの併用が好ましい。
前記カルボニル化剤としては、例えばホスゲン等のカルボニルハライド、ジフェニルカーボネート等のカーボネートエステル、二価フェノールのジハロホルメート等のハロホルメート等が挙げられ、単独で用いても、2種類以上を併用しても構わない。
なおポリカーボネート樹脂層(b)には、本発明の効果を阻害しない範囲で安定剤や可塑剤、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、着色剤などを配合してもよい。
以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。
<共重合体(A-1)の製造例>
マレイン酸無水物が20質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液と、t-ブチルパーオキシ-2-エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを事前に調製し、重合に使用した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kg、t-ドデシルメルカプタン40gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-1)を得た。得られた共重合体(A-1)をC-13NMR法により組成分析を行った。さらにGPC装置にて分子量測定を行った。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した。組成分析結果、分子量測定結果、および全光線透過率測定結果を表1に示す。
<共重合体(A-2)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2kg、スチレン24kg、メチルメタクレリレート12kg、t-ドデシルメルカプタン40g、メチルイソブチルケトン5kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を1.5kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま1.5kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で18kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-2)を得た。得られた共重合体(A-2)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表1に示す。
<共重合体(A-3)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.8kg、スチレン24kg、メチルメタクレリレート8.4kg、t-ドデシルメルカプタン32gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.85kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.85kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で34.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-3)を得た。得られた共重合体(A-3)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表1に示す。
<共重合体(A-4)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン13.8kg、メチルメタクレリレート16kg、t-ドデシルメルカプタン48gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.8kg/時、スチレン0.5kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に6時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを20g添加した。20%マレイン酸無水物溶液およびスチレンは、各々そのまま2.8kg/時、0.5kg/時の分添速度を維持しながら、10℃/時の昇温速度で3時間かけて118℃まで昇温した。20%マレイン酸無水物溶液の分添は積算で25.2kgになった時点で、スチレンの分添は積算で4.5kgになった時点で、各々の分添を停止した。昇温後、1時間118℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-4)を得た。得られた共重合体(A-4)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表1に示す。
<共重合体(A-5)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を1.68kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を200g/時の分添速度で各々連続的に10時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを20g添加した。20%マレイン酸無水物溶液はそのまま1.68kg/時の分添速度を維持しながら、6.4℃/時の昇温速度で5時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-5)を得た。得られた共重合体(A-5)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表1に示す。
<共重合体(A-6)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート
溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kg、t-ドデシルメルカプタン300gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-6)を得た。得られた共重合体(A-6)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表1に示す。
<共重合体(B-1)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kg、t-ドデシルメルカプタン40gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を750g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-1)を得た。得られた共重合体(B-1)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表2に示す。
<共重合体(B-2)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液8kg、スチレン0.8kg、メチルメタクレリレート17.6kg、t-ドデシルメルカプタン30gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.5kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を250g/時の分添速度で各々連続的に6時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを10g添加した。20%マレイン酸無水物溶液はそのまま2.5kg/時の分添速度を維持しながら、16℃/時の昇温速度で2時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で20kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-2)を得た。得られた共重合体(B-2)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表2に示す。
<共重合体(B-3)の製造例>
マレイン酸無水物が10質量%濃度となるようにメチルイソブチルケトンに溶解させた10%マレイン酸無水物溶液と、t-ブチルパーオキシ-2-エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを事前に調製し、重合に使用した。撹拌機を備えた120リットルのオートクレーブ中に、10%マレイン酸無水物溶液2kg、スチレン24kg、メチルメタクレリレート14kg、t-ドデシルメルカプタン48g、メチルイソブチルケトン2kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて90℃まで昇温した。昇温後90℃を保持しながら、10%マレイン酸無水物溶液を1.5kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。10%マレイン酸無水物溶液はそのまま1.5kg/時の分添速度を維持しながら、7.5℃/時の昇温速度で4時間かけて120℃まで昇温した。10%マレイン酸無水物溶液の分添は、分添量が積算で18kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-3)を得た。得られた共重合体(B-3)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表2に示す。
<共重合体(B-4)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液5kg、スチレン24kg、メチルメタクレリレート6kg、t-ドデシルメルカプタン32gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を3.75kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま3.75kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で45kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-4)を得た。得られた共重合体(B-4)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表2に示す。
<共重合体(B-5)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液1.2kg、スチレン35.2kg、t-ドデシルメルカプタン30g、メチルイソブチルケトン2kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて92℃まで昇温した。昇温後92℃を保持しながら、20%マレイン酸無水物溶液を0.76kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を250g/時の分添速度で各々連続的に15時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを60g添加した。20%マレイン酸無水物溶液はそのまま0.76kg/時の分添速度を維持しながら、4℃/時の昇温速度で9時間かけて128℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で18.24kgになった時点で停止した。昇温後、1時間128℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B-5)を得た。得られた共重合体(B-5)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表2に示す。
<メタクリル樹脂(C-1)の製造例>
撹拌機を付した容積20リットルの完全混合型反応器、容積40リットルの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。メチルメタクリレート98質量部、エチルアクリレート2質量部、エチルベンゼン18質量部で構成される混合溶液に対して、さらに1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン(日本油脂社製パーヘキサC)0.02質量部、n-ドデシルメルカプタン(花王社製チオカルコール20)0.3質量部、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ社製IRGANOX1076)を0.1質量部混合し原料溶液とした。この原料溶液を毎時6kgで温度120℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は200rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この反応液を予熱器で加温しながら、温度240℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギヤーポンプで抜き出し、ストランド状に押出し切断することによりペレット形状のメタクリル樹脂(C-1)を得た。得られたメタクリル樹脂(C-1)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表3に示す。
<メタクリル樹脂(C-2)の製造例>
撹拌機を付した容積20リットルの完全混合型反応器、容積40リットルの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。メチルメタクリレート78質量部、スチレン22質量部、エチルベンゼン12質量部で構成される混合溶液に対して、さらに1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン(日本油脂社製パーヘキサC)0.02質量部、n-ドデシルメルカプタン(花王社製チオカルコール20)0.3質量部、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ社製IRGANOX1076)を0.1質量部混合し原料溶液とした。この原料溶液を毎時6kgで温度125℃に制御した完全混合型反応器に導入した。なお、完全混合型反応器の撹拌数は200rpmで実施した。次いで完全混合型反応器より反応液を連続的に抜き出し、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この反応液を予熱器で加温しながら、温度240℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギヤーポンプで抜き出し、ストランド状に押出し切断することによりペレット形状のメタクリル樹脂(C-2)を得た。得られたメタクリル樹脂(C-2)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<実施例・比較例>
前記製造例で記した共重合体(A-1)~(A-6)または共重合体(B-1)~(B-5)とメタクリル樹脂(C-1)~(C-2)とを、表4~表5で示した割合(質量%)でヘンシェルミキサーを用いて混合した後、二軸押出機(東芝機械社製TEM-35B)にて、シリンダー温度230℃で溶融混練しペレット化して樹脂組成物を得た。この樹脂組成物とポリカーボネート樹脂とを、それぞれ単軸押出機(東芝機械社製SE-65CA)を用いたフィードブロック方式(500mm幅Tダイ)にて、樹脂組成物側のシリンダー温度260℃、ポリカーボネート樹脂側のシリンダー温度270℃で溶融共押出成形を行い、厚さ1.0mm±0.01mmである二層構成の積層体を作製した。この際、樹脂組成物層(a)とポリカーボネート樹脂層(b)の層比(各層の厚さの比)が表4~表5に記載した値となるよう調整した。この積層体について、以下の評価を行い、その評価結果を表4~表5に示した。なお、ポリカーボネート樹脂は、帝人社製「パンライト L-1250」(MFR:8g/10min、ガラス転移温度:150℃)を用いた。
(反り量)
積層体を縦90mm、横90mmの正方形に切削後、環境試験機(エスペック社製PL-3KPH)にて温度85℃、湿度85%の条件下で72時間静置させた。その後、平坦なガラス基板上に試験後の積層体を下に凸となる様に置き、積層体の各頂点4箇所とガラス基板面との隙間、および積層体各辺の中央部(各辺を2等分する位置)4箇所とガラス基板面との隙間を計測し(計8箇所計測)、その平均値を反り量とした。反り量1mm以下を「優」、反り量1mm超~1.5mm以下を「可」とした。
(全光線透過率、およびHaze(曇り度))
積層体を縦90mm、横90mmに切削後、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH-1001DP型)を用いて全光線透過率およびHazeを測定した。全光線透過率88%以上、およびHaze3.0%以下を合格とした。
(鉛筆硬度)
積層体を縦90mm、横90mmに切削後、樹脂組成物層(a)が上層、ポリカーボネート樹脂層(b)が下層となるように積層体を静置し、JIS K 5600-5-4:1999(荷重750g、角度45℃)に準拠し、鉛筆ひっかき硬度試験器(コーテック社製KT-VF2380)を用いて鉛筆硬度を測定した。鉛筆硬度H以上を「優」、鉛筆硬度Fを「可」とした。
(外観)
積層体を縦90mm、横90mmに切削したサンプル50個を目視にて観察し、着色、気泡、焼けコンタミ、ブツなどの外観不良が発生したサンプル数を数えることによって、外観評価を行った。評価基準は以下の通りで、◎と○を合格とした。
◎:外観不良のサンプル数が0個
○:外観不良のサンプル数が1~2個
△:外観不良のサンプル数が2~5個
×:外観不良のサンプル数が6個以上
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
本発明の共重合体(A-1)~(A-6)とメタクリル樹脂(C-1)~(C-2)からなる樹脂組成物層(a)と、ポリカーボネート樹脂層(b)との積層体に係わる実施例は、いずれも良好な透明性と鉛筆硬度を維持したまま、反りを抑制し、優れた外観を備えることが出来ていた。一方、本発明の条件に合わない共重合体(B-1)~(B-5)とメタクリル樹脂(C-1)~(C-2)からなる樹脂組成物層(a)と、ポリカーボネート樹脂層(b)との積層体に係わる比較例1~6では、透明性が低下し、外観不良が多く発生した。共重合体を添加していない比較例7~8では、反り量が非常に大きくなった。樹脂組成物層(a)を設けていない比較例9では、鉛筆硬度が非常に低かった。
本発明によれば、透明耐擦傷性板用共重合体をメタクリル樹脂に配合することで、透明性と耐表面傷付き性を損なうことなく低吸湿性と耐熱性を付与することが可能となり、この透明耐擦傷性板用共重合体とメタクリル樹脂からなる樹脂組成物層とポリカーボネート樹脂層との積層シートまたはフィルムの反りを抑制し、優れた外観の透明耐擦傷性板用積層体を提供することができる。

Claims (6)

  1. 芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~20質量%からなり、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上である透明耐擦傷性板用共重合体。
  2. ポリカーボネート樹脂層(b)の少なくとも一方の面に、請求項1に記載の共重合体5~90質量%とメタクリル樹脂10~95質量%からなる樹脂組成物層(a)を積層してなる透明耐擦傷性板用積層体。
  3. 前記樹脂組成物層(a)は、前記共重合体5~80質量%と前記メタクリル樹脂20~95質量%からなる請求項2に記載の透明耐擦傷性板用積層体。
  4. メタクリル樹脂が(メタ)アクリル酸エステル単量体単位70~100質量%と芳香族ビニル単量体単位0~30質量%からなる共重合体である請求項2又は請求項3に記載の透明耐擦傷性板用積層体。
  5. (樹脂組成物層(a)の厚さ)/(ポリカーボネート樹脂層(b)の厚さ)の比が、5/95~80/20である請求項2~請求項4の何れか1つに記載の透明耐擦傷性板用積層体。
  6. 前記比は、5/95~70/30である請求項5に記載の透明耐擦傷性板用積層体。
PCT/JP2015/064543 2014-05-22 2015-05-20 透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体 WO2015178437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167035403A KR102244204B1 (ko) 2014-05-22 2015-05-20 투명 내찰상성 판용 공중합체, 투명 내찰상성 판용 적층체
CN201580039629.XA CN106536576B (zh) 2014-05-22 2015-05-20 透明耐擦伤性板用共聚物、透明耐擦伤性板用层叠体
JP2016521140A JP6517791B2 (ja) 2014-05-22 2015-05-20 透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-106139 2014-05-22
JP2014106139 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178437A1 true WO2015178437A1 (ja) 2015-11-26

Family

ID=54554101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064543 WO2015178437A1 (ja) 2014-05-22 2015-05-20 透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体

Country Status (5)

Country Link
JP (1) JP6517791B2 (ja)
KR (1) KR102244204B1 (ja)
CN (1) CN106536576B (ja)
TW (1) TWI653275B (ja)
WO (1) WO2015178437A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020052A (ja) * 2014-07-14 2016-02-04 三菱樹脂株式会社 積層体
WO2017141787A1 (ja) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 透明樹脂積層体
JP2020097197A (ja) * 2018-12-19 2020-06-25 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
TWI740834B (zh) * 2015-12-01 2021-10-01 日商三菱瓦斯化學股份有限公司 透明樹脂積層體

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation
JPS60137915A (ja) * 1983-12-27 1985-07-22 Mitsui Toatsu Chem Inc スチレン系共重合体
JP2008255149A (ja) * 2007-04-02 2008-10-23 Asahi Kasei Chemicals Corp 光学材料用樹脂組成物
WO2009031544A1 (ja) * 2007-09-04 2009-03-12 Denki Kagaku Kogyo Kabushiki Kaisha 熱可塑性共重合樹脂及びその光学成形体
JP2011001525A (ja) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp 透明プラスチック基板
WO2012117897A1 (ja) * 2011-02-28 2012-09-07 日本ゼオン株式会社 複層フィルム及び複層フィルムの製造方法
WO2014021264A1 (ja) * 2012-07-30 2014-02-06 電気化学工業株式会社 メタクリル樹脂耐熱性向上用の共重合体
WO2014065129A1 (ja) * 2012-10-22 2014-05-01 電気化学工業株式会社 芳香族ビニル-シアン化ビニル系樹脂耐熱性向上用の共重合体
JP2014159517A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板
JP2014160583A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457514B2 (ja) 1997-08-08 2003-10-20 株式会社クラレ 積層板およびその製造方法
JP5936395B2 (ja) 2012-03-16 2016-06-22 住友化学株式会社 積層板、並びにそれを用いた耐擦傷性積層板
JP2014004747A (ja) * 2012-06-25 2014-01-16 Meihan Shinku Kogyo Kk 熱可塑性樹脂積層体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation
JPS60137915A (ja) * 1983-12-27 1985-07-22 Mitsui Toatsu Chem Inc スチレン系共重合体
JP2008255149A (ja) * 2007-04-02 2008-10-23 Asahi Kasei Chemicals Corp 光学材料用樹脂組成物
WO2009031544A1 (ja) * 2007-09-04 2009-03-12 Denki Kagaku Kogyo Kabushiki Kaisha 熱可塑性共重合樹脂及びその光学成形体
JP2011001525A (ja) * 2009-06-22 2011-01-06 Asahi Kasei Chemicals Corp 透明プラスチック基板
WO2012117897A1 (ja) * 2011-02-28 2012-09-07 日本ゼオン株式会社 複層フィルム及び複層フィルムの製造方法
WO2014021264A1 (ja) * 2012-07-30 2014-02-06 電気化学工業株式会社 メタクリル樹脂耐熱性向上用の共重合体
WO2014065129A1 (ja) * 2012-10-22 2014-05-01 電気化学工業株式会社 芳香族ビニル-シアン化ビニル系樹脂耐熱性向上用の共重合体
JP2014159517A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板
JP2014160583A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020052A (ja) * 2014-07-14 2016-02-04 三菱樹脂株式会社 積層体
TWI740834B (zh) * 2015-12-01 2021-10-01 日商三菱瓦斯化學股份有限公司 透明樹脂積層體
WO2017141787A1 (ja) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 透明樹脂積層体
CN108698393A (zh) * 2016-02-15 2018-10-23 三菱瓦斯化学株式会社 透明树脂叠层体
JPWO2017141787A1 (ja) * 2016-02-15 2018-12-13 三菱瓦斯化学株式会社 透明樹脂積層体
JP2020097197A (ja) * 2018-12-19 2020-06-25 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
JP7239314B2 (ja) 2018-12-19 2023-03-14 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料

Also Published As

Publication number Publication date
KR102244204B1 (ko) 2021-04-26
KR20170013293A (ko) 2017-02-06
TWI653275B (zh) 2019-03-11
JP6517791B2 (ja) 2019-05-22
CN106536576B (zh) 2019-08-16
TW201602202A (zh) 2016-01-16
CN106536576A (zh) 2017-03-22
JPWO2015178437A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6055832B2 (ja) メタクリル樹脂耐熱性向上用の共重合体
JP6228126B2 (ja) 芳香族ビニル−シアン化ビニル系樹脂耐熱性向上用の共重合体
JP6587620B2 (ja) メタクリル樹脂の耐熱性向上に適した共重合体
JP6517791B2 (ja) 透明耐擦傷性板用共重合体、透明耐擦傷性板用積層体
JP6166058B2 (ja) 導光板
JP2008094912A (ja) 樹脂組成物と光学成形体
JP6058420B2 (ja) 導光板
WO2018084068A1 (ja) 加飾フィルム
JPWO2017094748A1 (ja) 透明な高耐熱性スチレン系共重合体
JP2007224221A (ja) 光学用成形体
CN111133050A (zh) 苯乙烯系树脂组合物,成型品以及导光板
TWI683830B (zh) 透明高耐熱性樹脂組合物
CN107960084B (zh) 树脂组合物、汽车透明部件用树脂组合物、仪表面板透明盖、半球形透镜
CN113661207A (zh) 苯乙烯系树脂组合物、成型品以及导光板
JP6680213B2 (ja) 樹脂組成物
KR20180011140A (ko) 투명한 수지 조성물 및 그의 제조 방법
JP2008031339A (ja) 透明押出成形品および各種成形品
JP2007031560A (ja) 成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035403

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15795500

Country of ref document: EP

Kind code of ref document: A1