WO2015178282A1 - 生体内留置部材およびその製造方法 - Google Patents

生体内留置部材およびその製造方法 Download PDF

Info

Publication number
WO2015178282A1
WO2015178282A1 PCT/JP2015/063906 JP2015063906W WO2015178282A1 WO 2015178282 A1 WO2015178282 A1 WO 2015178282A1 JP 2015063906 W JP2015063906 W JP 2015063906W WO 2015178282 A1 WO2015178282 A1 WO 2015178282A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
primary coil
rod
shape
shaped portion
Prior art date
Application number
PCT/JP2015/063906
Other languages
English (en)
French (fr)
Inventor
祥平 鈴木
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/312,455 priority Critical patent/US10709453B2/en
Priority to JP2016521061A priority patent/JP6418238B2/ja
Publication of WO2015178282A1 publication Critical patent/WO2015178282A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/12031Type of occlusion complete occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing

Definitions

  • the present invention relates to an in-vivo indwelling member and a manufacturing method thereof, for example, an in-vivo indwelling member using a secondary coil and a manufacturing method thereof.
  • a technique in which a coil formed of metal is buried in the aneurysm so that the aneurysm becomes a thrombus and prevents rupture.
  • a metal coil that is such an in-vivo indwelling member, a primary coil that is shaped so as to extend linearly by forming a wire of platinum or the like into a coil shape, and further shaped so as to extend linearly as a coil shape. Secondary coils are used. Then, the metal coil is inserted into the lumen of the delivery catheter in the state of a linear coil that has been linearly extended, transferred to the target site, and restored to the state of the secondary coil when discharged from the catheter.
  • the secondary shape (secondary coil shape) imparted to the metal coil is preferably not a two-dimensional shape that extends in a linear shape in the above-described coil shape, but a three-dimensional shape that easily expands in a complicated manner. . Therefore, a secondary coil having such a three-dimensional shape has been proposed.
  • Patent Document 1 discloses a substantially spherical or ellipsoidal secondary coil and a method for manufacturing the same.
  • the secondary coil is formed by winding and heating a primary coil on a substantially spherical or elliptical core.
  • Patent Document 2 discloses a method for producing a spherical secondary coil.
  • the secondary coil is formed by winding a coil around a mandrel in which one or more metal rods are arranged in a radial direction on the surface of a spherical core.
  • a method of imparting a secondary shape using a “candy mold” type tool is also disclosed. In this method, a spherical secondary coil is obtained by forming a coil in a spherical lumen.
  • Patent Document 3 discloses a method for producing a spherical secondary coil.
  • the secondary coil is formed by fitting the primary coil into a groove portion of a spherical mandrel in which a groove for fitting the primary coil is formed on the surface.
  • Patent Document 4 discloses a secondary coil having a three-dimensional orthogonal shape and a manufacturing method thereof.
  • the secondary coil is formed by being wound around a three-dimensional orthogonal mandrel and heating.
  • the surface of the core around which the primary coil is wound is a smooth curved surface as in the embodiment described in Patent Document 1
  • the primary coil slides on the outer surface during winding, so that molding is difficult.
  • a complicated groove is provided on the surface of the spherical core as in the other embodiments described in Patent Document 1 and the embodiment described in Patent Document 3, the complicated groove on the spherical surface is formed. It is not always easy to fit the primary coil along. Further, it is not always easy to provide a groove in a core having the same size as an aneurysm, that is, a diameter of about 1 mm to 30 mm. Particularly in the case of a core having a diameter of about 1 to 10 mm, it is considered extremely difficult.
  • a mandrel with one or more metal rods standing in the radial direction on the surface of a spherical core can be produced as in an embodiment described in Patent Document 2, the primary coil is wound on the curved surface of the core It is considered that it is relatively easy to fix in the above-mentioned case, but a metal rod is attached to a spherical core having the same size as an aneurysm, that is, a diameter of about 1 mm to 30 mm. It is not always easy to arrange. Particularly in the case of a core having a diameter of about 1 to 10 mm, it is considered extremely difficult.
  • Patent Document 4 Since the manufacturing method described in Patent Document 4 uses a single three-dimensional orthogonal shape mandrel, it is easier to wind and fix the primary coil around the mandrel than the methods described in Patent Documents 1 to 3. It is possible to give the same shape. However, the shape obtained by this manufacturing method is a simple cubic shape, and it is impossible to manufacture a secondary coil having a complicated three-dimensional shape.
  • the present invention has been made to solve the above problems. And the objective is to provide the in-vivo indwelling member which has the secondary coil of the three-dimensional shape which spreads intricately, and the manufacturing method which can manufacture such an in-vivo indwelling member simply.
  • the gist of the present invention is as follows.
  • the first of the present invention is a method for manufacturing an in-vivo indwelling member having a secondary coil with a secondary shape applied to a linear primary coil with a primary shape applied to a wire,
  • Second solid formation that forms a second solid in which at least a part of the remaining primary coil is formed in a three-dimensional manner by arranging a plurality of segments formed by winding the primary coil at least once and forming the first solid.
  • an inner arrangement step of arranging one solid inside the annular portion of a plurality of segments arranged in a ring of the other solid relates to a method for producing an in-vivo indwelling member.
  • the second of the present invention is a method for producing an in-vivo indwelling member having a secondary coil with a secondary shape applied to a linear primary coil with a primary shape applied to a wire,
  • Second solid formation that forms a second solid in which at least a part of the remaining primary coil is formed in a three-dimensional manner by arranging a plurality of segments formed by winding the primary coil at least once and forming the first solid.
  • a plurality of segments formed by the process and winding of the primary coil at least once are arranged in a ring shape to form an additional solid in which at least a part of the remaining primary coil forming the first and second solids is arranged in three dimensions
  • An additional three-dimensional forming step Any one of the first solid, the second solid, and the additional solid is arranged inside the annular portion of the plurality of segments arranged in a ring of one of the remaining two solids.
  • the present invention relates to a method for manufacturing an in-vivo indwelling member including a second inner three-dimensional arrangement step of arranging two solids after the first inner arrangement step inside annular portions of a plurality of segments.
  • the size of the solid is smaller as it is arranged inside the annular portion of the segment arranged in the annular shape.
  • the solid is formed into a polygonal cylindrical shape in which a plurality of segments are arranged in a ring shape, and the polygonal shape is formed into a cylindrical shape.
  • the solids In the shape grasped in the cross-sectional direction orthogonal to the central axis, it is desirable that the solids have a similar relationship.
  • solids formed in the above-described polygonal cylindrical shape may be arranged so that the central axes of adjacent solids intersect or twist.
  • solids formed in the above-described polygonal cylindrical shape are arranged so that the central axes thereof are coaxial or parallel, and the polygons are adjacent to each other. You may arrange
  • the shape of the segment is at least one selected from a polygon, a polygonal line, an arc, a circle, an elliptic arc, an ellipse, and a spiral shape.
  • the primary coils constituting the segment are arranged two-dimensionally or three-dimensionally.
  • the segment is preferably formed by winding the primary coil around the mandrel at least once.
  • the mandrel has a structure in which at least two portions in which a rod-like portion around which the primary coil can be wound are annularly arranged are connected.
  • the third of the present invention is an in-vivo indwelling member having a secondary coil with a secondary shape applied to a linear primary coil with a primary shape applied to the wire, A first solid in which a plurality of segments generated by at least one winding with respect to a part of the primary coil are arranged in a ring shape and a part of the primary coil is arranged three-dimensionally; A plurality of segments generated by at least one winding with respect to at least a part of the remaining part of the primary coil in which the first solid is formed are arranged in a plurality of rings, and at least a part of the remaining part of the primary coil is three-dimensionally arranged.
  • the present invention relates to an in-vivo indwelling member in which one of the first and second solids is arranged inside an annular portion of a plurality of segments arranged in a ring of the other solid.
  • a plurality of segments generated by at least one winding with respect to at least a part of the remaining portion of the primary coil forming the first and second solids are arranged in a plurality of rings, An additional solid in which at least a part of the remaining part of the coil is three-dimensionally arranged;
  • the remaining one solid is arranged inside the annular portion formed by arranging a plurality of segments in any one solid, and the remaining solid is the remaining solid It may be arranged inside one of the three-dimensional annular portions.
  • the size of the three-dimensional object is as small as that arranged inside the annular portion of the segment arranged in the above-described ring shape.
  • the solid body is formed in a polygonal cylindrical shape in which a plurality of segments are arranged in a ring shape, and the polygonal shape is formed in a cylindrical shape.
  • the solids In the shape grasped in the cross-sectional direction orthogonal to the central axis of the solid, it is preferable that the solids have a similar relationship.
  • the adjacent three-dimensional central axes may be in a relationship of crossing or twisting positions.
  • the three-dimensional objects formed in the above-described polygonal cylindrical shape have their central axes arranged coaxially or in parallel, and the adjacent three-dimensional objects have the above-mentioned many You may arrange
  • the shape of the segment is at least one selected from a polygon, a polygonal line, an arc, a circle, an ellipse arc, an ellipse, and a spiral shape.
  • the primary coils constituting the segment are arranged two-dimensionally or three-dimensionally.
  • an in-vivo indwelling member having a three-dimensional secondary coil that expands in a complicated manner, and a manufacturing method capable of easily manufacturing such an in-vivo indwelling member.
  • FIG. 10 is a perspective view showing an initial arrangement state of a first solid and a second solid in an inner arrangement step performed after a second solid formation step performed using another example of the mandrel shown in FIG. 9. In the inner arrangement step performed after the second solid formation step performed using another example of the mandrel shown in FIG.
  • the state when the second solid is arranged inside the annular portion of the first solid, or the final It is a perspective view which shows typically the shape of the secondary coil obtained, and a structure. It is a perspective view which shows typically the further another example of the mandrel which can be used with an example of the manufacturing method of the in-vivo indwelling member which concerns on this invention. It is a perspective view which shows typically the state after passing through the additional solid formation process in an example of the manufacturing method of the in-vivo indwelling member which concerns on this invention.
  • the 1st inner side arrangement process in an example of the manufacturing method of the in-vivo indwelling member concerning the present invention, it is a perspective view showing the initial arrangement state of the 1st solid, the 2nd solid, and the additional solid.
  • the arrangement state of the first solid, the second solid and the additional solid after the second inner arrangement step in an example of the method for producing the in-vivo indwelling member according to the present invention, or the shape of the secondary coil finally obtained It is a perspective view which shows a structure typically. It is sectional drawing which shows typically the state in the middle of inserting the in-vivo indwelling member in an aneurysm.
  • the primary shape means a shape first given to the wire.
  • the wire 10 which is a single wire as shown in FIG. 1A is first applied by being wound around a mandrel 14 which is a straight rod-like member as shown in FIG. 1B, for example, FIG.
  • the spiral shape as shown in FIG. 1D is meant.
  • the wire 10 provided with the spiral primary shape illustrated in FIGS. 1C and 1D is referred to as the primary coils 11 and 11a.
  • the intermediate shape to be described later refers to the shape that the primary coil is given through the first three-dimensional formation step and the second three-dimensional formation step, and the shape that is given through the additional three-dimensional formation step that is performed as necessary.
  • the primary coils 11 and 11a are shaped so as to have the first solid 51 and the second solid 52 shown in FIG. 7A, or the first solid 51, the second solid 52, and the additional solid 53 shown in FIG. , Each solid means a shape arranged outside the other solid.
  • the primary coils 11 and 11a given the intermediate shape shown in FIGS. 7A and 14 are referred to as intermediate shape coils (12 and 120).
  • the secondary shape means that the primary coil having a shape given through the first three-dimensional formation step and the second three-dimensional formation step, or an additional three-dimensional formation step that is performed as necessary, is on the inner side.
  • positioning process is meant.
  • the intermediate shape coils (12, 120) shown in FIG. 7A or FIG. 14 described above mean a final shape further shaped as shown in FIG. 7D or FIG.
  • the secondary shape shown in FIG. 7D, FIG. 8A or FIG. 15 is fixed to the intermediate shape coil (12, 120), and the applied primary coil (11, 11a) is the secondary coil (13, 130, 131).
  • arranging the segments in a plurality of rings and arranging the primary coil in a three-dimensional manner means a shape that extends in a coil shape and a linear shape (for example, FIGS. 1C and 1D in which the primary coil is wound) This means that the primary coil is arranged in a three-dimensional shape other than the coil shape.
  • the primary coil which comprises a segment is arrange
  • positioned two-dimensionally means that the primary coil in one segment exists on the same plane.
  • the same plane includes not only the case of being completely on one plane but also the case of being considered substantially the same plane.
  • the three-dimensional arrangement of primary coils constituting a segment means that the primary coils in one segment are arranged not to be on the same plane but to form a three-dimensional structure as a whole segment. To do.
  • a coil shape extending linearly is also included in the three-dimensional arrangement.
  • the shape grasped in the cross-sectional direction orthogonal to the central axis of the solid body formed in the cylindrical shape does not mean only the cross section of the primary coil, but grasps from the segment formed by winding the primary coil. Means the shape to be made.
  • An arrangement of a solid inside a ring portion of a plurality of segments arranged in a ring of another solid means a state resulting from the arrangement of a solid inside the circular portion of another solid. This does not mean that the primary coil constituting the solid arranged inside does not protrude to the outside of the annular portion, and may protrude within a range that does not hinder the function of the in-vivo indwelling member.
  • the primary coil used in the present invention is formed, for example, by giving a primary shape to a wire 10 that is a wire as shown in FIG. 1A.
  • This wire 10 is a linear member (wire).
  • the structure of the wire is not particularly limited as long as it can be spirally wound to form a coil shape, and may be a single wire or a stranded wire in which a plurality of single wires are twisted into a single wire. May be.
  • the shape of the wire may be linear as a whole, and the cross-sectional shape orthogonal to the length direction can be appropriately selected from a polygon such as a circle, an ellipse, and a rectangle. Even in the case of a stranded wire, it is sufficient that the entire stranded wire has such a shape.
  • the wire 10 shown in FIG. 1A is a single wire that is not shown, but has a circular cross section and can extend linearly.
  • a material which comprises a wire For example, platinum, tungsten, gold
  • the width or diameter of the wire can be appropriately selected depending on the use and the like, and is not particularly limited.
  • the width or diameter of the wire can be appropriately selected depending on the use and the like, and is not particularly limited.
  • a primary coil is obtained by imparting a primary shape to the wire rod such as the wire 10 described above.
  • a primary coil is formed, for example, by winding the wire 10 around the mandrel 14 shown in FIG. 1B.
  • the shape and structure of the mandrel can be wound around a wire and can be appropriately selected according to the desired shape of the primary coil.
  • a linear rod-shaped member having a columnar shape or a cylindrical shape and having a substantially constant outer diameter in the length direction.
  • prismatic ones, rectangular cylinders having a polygonal cross-sectional shape, and the like are those in which the outer diameter is changed in the length direction.
  • the primary shape of the coil shape in which the wire 10 is spirally wound and the outer diameter is constant.
  • the shape of the primary coil may be linear.
  • the term “linear” means that a portion in which the wire is formed in a spiral shape has a structure that continuously extends in a linear shape. For example, a linear structure as a whole as shown in FIGS. 1C and 1D can be given.
  • the primary coil 11 can be appropriately selected depending on the application and the like, and is not particularly limited. For example, it is used for the treatment of aneurysm occlusion. In this case, 0.100 mm or more and 0.500 mm or less is preferable. Similarly, the total length of the primary coil 11 can be appropriately selected depending on the application and is not particularly limited. For example, when used for the treatment of aneurysm occlusion, it is preferably 10 mm or more and 1000 mm or less. .
  • the pitch interval of the primary coil is not particularly limited.
  • adjacent wires 10 may be in close contact with each other, and as shown in FIG. 1D, an interval may be provided between adjacent wires 10.
  • the wires may be in close contact with each other over the entire length of the primary coil 11 or may be spaced between the wires, or the primary coil pitch in the length direction of the primary coil. There may be one or more portions where the intervals are in close contact with each other and portions where the pitch intervals of the primary coils are open.
  • the in-vivo indwelling member of the present invention is a first solid in which a plurality of segments generated by at least one winding with respect to a part of the primary coil are arranged in a ring shape and a part of the primary coil is arranged three-dimensionally, and A plurality of segments formed by at least one winding with respect to at least a part of the remaining part of the primary coil in which the first solid is formed are arranged in a ring shape, and at least a part of the remaining part of the primary coil is arranged in a three-dimensional manner Second solid.
  • the first three-dimensional structure and the second three-dimensional structure are structural in that a plurality of segments generated by at least one winding with respect to a part of the primary coil are arranged in a ring shape and a part of the primary coil is three-dimensionally arranged. Have similarities. Therefore, this structural feature will be described together.
  • FIG. 2A is a perspective view showing as a model a solid 20 in which four circular segments (21a, 21b, 21c, 21d) are arranged in a ring and arranged three-dimensionally.
  • FIG. 2B is a diagram for explaining the three-dimensional configuration of each segment of the solid 20 shown in FIG. 2A as a cubic model.
  • each segment is indicated by a line to explain it as a model. However, this corresponds to a segment formed by at least one winding of a part of the primary coil described above.
  • the four segments (21a, 21b, 21c, 21d) of the solid 20 shown in FIG. 2A constitute the four side surfaces (23a, 23b, 23c, 23d) of the cube 22 as a model, as shown in FIG. 2B.
  • each segment (21 a, 21 b, 21 c, 21 d) is arranged so as to constitute four side surfaces of the cube 22, thereby constituting the annular portion 21.
  • the annular portion 21 has a one-turn annular shape with each segment arranged in a linear shape (single stitch shape).
  • the upper surface 24 and the lower surface 25 of the cube 22 exist as a model, but no segment is arranged in a portion corresponding to the upper surface 24 and the lower surface 25 of the cube 22 of the solid 20.
  • a portion where the segment is not arranged is referred to as an opening. This opening is different from the space portion of the portion surrounded by the circular primary coil in the segment 21a of FIG. 2A, for example.
  • the annular portion has a central axis in a direction orthogonal to a direction in which the segments are arranged in an annular shape (a surface generated by arranging the segments in an annular shape). In the example shown in FIGS.
  • the direction in which the segments (21a, 21b, 21c, 21d) are arranged is orthogonal.
  • a central axis 27 of the annular portion 21 is formed in the direction of the movement.
  • the direction orthogonal to the direction in which the segments are arranged in a ring is not limited to being strictly orthogonal.
  • the solid 20 shown in FIG. 2A has a cylindrical annular portion 21 in which the segments are arranged in a ring shape, and the inside of the annular portion 21 is open at both ends in the direction of the central axis 27 of the annular portion 21.
  • a hollow portion 26 is formed.
  • another solid can be arranged from the opening to the hollow portion 26.
  • the solid 20 or the cube 22 shown in FIG. 2A or 2B is viewed from the direction of the central axis 27 of the solid 20, that is, from the upper surface 24 or the lower surface 25 of the cube 22, FIG.
  • an annular regular square formed by four segments (21a, 21b, 21c, 21d) or four side surfaces (23a, 23b, 23c, 23d) is grasped.
  • the solid body 20 has an annular portion 21 formed by each segment (21a, 21b, 21c, 21d) formed in a square shape.
  • the shape of the annular portion 21 grasped in the cross-sectional direction orthogonal to the central axis 27 is also a regular square.
  • the shape grasped in the cross-sectional direction orthogonal to the central axis is not the sectional shape grasped only from the primary coil constituting each segment, but grasped from the entire annular portion 21 including the primary coil. It means the shape that can be grasped when the shape is assumed.
  • it means the overall shape of the side surface (23a, 23b, 23c, 23d) of the cube 22 shown in FIG. 2B.
  • the upper opening surface 24a and the lower opening surface 25a corresponding to the upper surface 24 and the lower surface 25 of FIG. .
  • the opening surfaces 24 a and 25 a are orthogonal to the central axis 27.
  • each segment is all shown by a circle, but is not limited to this, and for example, a circle, an arc, an ellipse, an elliptic arc , Polygons, polygonal lines, spiral shapes, and the like.
  • a circle, an arc shape, an elliptical shape, an elliptical arc shape, a spiral shape, and a spiral shape which are shapes close to the inner wall surface shape of the aneurysm, is preferable.
  • the shape of each segment may be the same or different.
  • each segment (21a, 21b, 21c, 21d) of FIG. 2A is the same, it is not restricted to this, You may differ.
  • the number of segments in FIG. 2A is four, but there is no particular limitation as long as the segments can be arranged in a ring shape. However, from the viewpoint of ease of manufacturing the mandrel 30 described later, the number of segments is preferably 3 or more and 6 or less.
  • the shape grasped in the cross-sectional direction orthogonal to the central axis of the annular portion can be a polygon corresponding to the number of segments.
  • the shape grasped in the cross-sectional direction orthogonal to the central axis of the annular portion is a triangle.
  • the polygon may be a regular polygon or not a regular polygon.
  • the primary coils constituting each segment are arranged two-dimensionally, that is, on the same plane, but may be arranged three-dimensionally. Examples of the three-dimensionally arranged shape include a spiral shape. Further, as the spiral shape, the primary coil may be less than one turn, may be one turn, or may exceed one turn.
  • each segment in this case is also formed by three-dimensionally arranging the primary coils in the shape described above, that is, circular, arc, ellipse, elliptical arc, polygon, polygonal line, spiral, spiral, etc. Preferably it is done.
  • Each segment may be a two-dimensional primary coil arrangement, a three-dimensional primary coil arrangement, or a combination of a two-dimensional arrangement and a three-dimensional arrangement. In FIGS. 2A to 2C, each segment has been described by taking as an example the case where the primary coils are two-dimensionally arranged.
  • a virtual surface as a model is assumed at a portion facing the inside of an annular portion of a plurality of segments arranged in an annular shape, and the same consideration as in FIGS. 2A to 2C is made with reference to the virtual surface.
  • the present invention is not limited to this, and examples thereof include a polyhedral cylindrical body, a cylindrical body, and an elliptical cylindrical body.
  • the polyhedral cylindrical body includes a cylindrical body having a polygonal cross section whose size is constant or changes in the central axis direction, a cylindrical body having a regular polygonal cross section, and a regular octahedron.
  • a regular polyhedron cylindrical body having the above-mentioned number of surfaces is exemplified.
  • the cylindrical body include a straight tubular body, a truncated cone-shaped body, and a bowl-shaped tubular body.
  • the annular portion constituted by each segment is formed by a single stroke using one primary coil as described above and overlapping in the length direction of the primary coil is suppressed.
  • one of the first and second solids can be easily inserted inside the annular portion of the other solid.
  • a three-dimensional solid shape can be formed that extends in a complex manner without biasing the primary coil. Further, it is not necessary to use a mandrel having a complicated groove structure as in the prior art.
  • a plurality of segments generated by at least one winding with respect to a part of the primary coil are arranged in a ring shape, and a part of the primary coil is three-dimensional.
  • a part of the primary coil is three-dimensional.
  • one of the first and second solids having the three-dimensional structure as shown in FIGS. 2A to 2C one solid is the hollow portion 26 inside the annular portion 21 of the other solid. Is arranged. Details of this will be described later.
  • FIGS. 3 to 8B the linear primary coil formed in a coil shape using the wire material is shown as a smooth surface, omitting the coil shape of the wire material for simplification.
  • First three-dimensional formation step Then, a second solid is formed in which at least a part of the remaining part of the primary coil that has formed the first solid is three-dimensionally arranged.
  • these steps are preferably performed, for example, by winding a primary coil around a mandrel. More preferably, each segment is formed by winding the primary coil around the mandrel at least once.
  • FIG. 3 is a perspective view schematically showing an example of a mandrel that can be used in this example.
  • the mandrel 30 shown in FIG. 3 has a first solid formation part 31 that forms a first solid 51 (see FIG. 6) and a second solid formation part 32 that forms a second solid 52 (see FIG. 6). These are connected in series.
  • the first three-dimensional forming portion 31 has four first rod-shaped portions (31a, 31b, 31c, 31d), and each first rod-shaped portion (31a, 31b, 31c, 31d) is an axis of each first rod-shaped portion. It arrange
  • the second three-dimensional forming portion 32 has four second rod-shaped portions (32a, 32b, 32c, 32d), and each second rod-shaped portion (32a, 32b, 32c, 32d) is an axis of each second rod-shaped portion. It arrange
  • one first rod-shaped portion 31b of the four first rod-shaped portions of the first three-dimensional formation portion 31 and one first of the four second rod-shaped portions of the second three-dimensional formation portion 32 are used.
  • the two rod-shaped parts 32d are connected.
  • the first three-dimensional forming part 31 and the second three-dimensional forming part 32 are examples in the case of forming the structure of the solid 20 shown in FIG. 2A as described above, and the first rod-shaped parts (31a, 31b, 31c, 31d) and The second rod-shaped portions (32a, 32b, 32c, 32d) are arranged so as to be orthogonal to each other in a cross shape, and all have a circular cross section.
  • the structures of the first three-dimensional forming portion and the second three-dimensional forming portion can be appropriately selected according to the desired first and second three-dimensional shapes. These three-dimensional shapes are as described above.
  • the width or outer diameter of the first rod-shaped portion (31a, 31b, 31c, 31d) and the second rod-shaped portion (32a, 32b, 32c, 32d) in the direction orthogonal to the axial direction is the use of the in-vivo indwelling member, It can be appropriately selected according to the shape and structure of the solid and the second solid. For example, when used for the treatment of aneurysm occlusion, 1 mm to 30 mm is preferable.
  • the diameter of the rod-shaped portion of the mandrel 30 determines the size of the loop of one segment in the secondary coil as it is, and therefore it is preferable that this loop diameter is approximately the same as the aneurysm diameter (1 to 30 mm). .
  • the size of the first three-dimensional forming portion and the second three-dimensional forming portion that is, the width or outer diameter of the rod-shaped portion and the size of the intersecting portion of the rod-shaped portions are one of the first and second solids, as will be described later. From the viewpoint of easily arranging the three-dimensional body inside the other annular portion, it is preferable to be different.
  • the first three-dimensional forming part and the second three-dimensional forming part are stable after the inner arrangement step described later when the first three-dimensional part and the second three-dimensional part formed therein are formed in a polygonal cylindrical shape, respectively.
  • the polygonal shape grasped in the cross-sectional direction orthogonal to the central axis of the first solid and the second solid has a similar relationship.
  • the four first rod-like portions (31 a, 31 b, 31 c, 31 d) of the first three-dimensional formation portion 31 are all the same outer diameter
  • the two rod-shaped portions (32a, 32b, 32c, 32d) all have the same outer diameter, but the outer diameter of the first rod-shaped portion (31a, 31b, 31c, 31d) is the second rod-shaped portion (32a, 32b, 32c). 32d) is larger than the outer diameter.
  • the 1st solid formation part 31 is larger than the 2nd solid formation part 32, Therefore, regarding the magnitude
  • the shape of the portion around which the primary coil 11 is wound around the first three-dimensional forming portion 31 and the second three-dimensional forming portion 32 is a polygon grasped in a plane including the central axes of the first and second rod-shaped portions, It is a regular quadrangle and has a similar relationship, and the first solid 51 and the second solid 52 formed there have a similar relationship.
  • first three-dimensional formation step and the second three-dimensional formation step will be described by taking, as an example, the case where the primary coil 11 shown in FIG. 1C is wound around the mandrel 30 shown in FIG.
  • first three-dimensional formation step from the viewpoint of workability, it is preferable to first insert the core wire 38 that is longer than the entire length of the primary coil 11 into the lumen of the primary coil 11. Therefore, a case where a core wire is used will be described.
  • After inserting the core wire it is preferable to fix one end of the core wire 38 at a desired position of the mandrel 30 from the viewpoint of workability.
  • the mandrel 30 is fixed at the core wire fixing position (uppermost portion in the arrangement of FIG.
  • the fixing method is not particularly limited as long as the winding of the primary coil 11 is not hindered. For example, fixing by attaching with a tape, fixing of a clip or a screw provided in advance on the surface of the first rod-shaped portion 31a, and the like. For example, fixing using tools.
  • the core material 38 is wound around the first three-dimensional forming portion 31 of the mandrel 30 so that the one end 40 of the primary coil 11 is positioned at a desired position of the first three-dimensional forming portion 31. In the example shown in FIG.
  • the one end 40 of the primary coil 11 has a winding start position indicated by reference numeral 35 on the peripheral surfaces of the first rod-shaped portions 31 a and 31 b (about 90 degrees from the core wire fixing position indicated by reference numeral 39, The position moved to the three-dimensional forming part 32 side).
  • the primary coil 11 is wound around the 1st rod-shaped part (31a or 31b) nearest to the winding start position 35 of the 1st three-dimensional formation part 31.
  • FIG. In this example, the primary coil 11 is wound along the circumferential surface on the lower side in FIG. 4 of the first rod-shaped portion 31b.
  • the operation when winding the primary coil 11 around the mandrel 30 can be performed by moving the mandrel 30 to a core wire 38 extending outward from the other end (not shown) of the primary coil 11 with a weight suspended, for example.
  • the primary coil 11 is wound about 180 degrees in the direction orthogonal to the axial direction of the first rod-shaped portion 31b from the winding start position 35 on the lower side in FIG.
  • the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side in FIG. 4 of the first rod-shaped portion 31c.
  • the primary coil 11 is wound about 180 degrees in the direction perpendicular to the axial direction of the first rod-shaped portion 31c from the continuous portion of the first rod-shaped portion 31b and the first rod-shaped portion 31c on the upper side in FIG. 4 of the first rod-shaped portion 31c.
  • the first bar-shaped part 31c and the first bar-shaped part 31d reach a continuous part.
  • the first coil-shaped portion 31d is continuously wound on the upper side of FIG.
  • the primary coil 11 is wound along the surface. That is, the first rotation primary coil 11 is wound around the first rod-shaped portion 31d continuously in a direction orthogonal to the axial direction of the first rod-shaped portion 31d.
  • the first rod-shaped portion 31c and the first rod-shaped portion 31d return to the continuous portion.
  • the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of the first rod-shaped portion 31c in FIG.
  • the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the first rod-shaped portion 31c from the continuous portion of the first rod-shaped portion 31c and the first rod-shaped portion 31d on the lower side of the first rod-shaped portion 31c in FIG. And it returns to the continuous part of the 1st rod-shaped part 31b and the 1st rod-shaped part 31c. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side in FIG. 4 of the first rod-shaped portion 31b.
  • the primary coil 11 When the primary coil 11 is wound about 180 degrees in the direction orthogonal to the axial direction of the first rod-shaped portion 31b from the continuous portion of the first rod-shaped portion 31b and the first rod-shaped portion 31c on the upper side of the first rod-shaped portion 31b in FIG. Return to the winding start position 35. Therefore, after changing the winding direction of the primary coil 11 and winding the primary coil 11 along the lower circumferential surface of the first rod-shaped portion 31a in FIG. 4, the first coil-shaped portion 31a is continuously wound on the upper side in FIG. The primary coil 11 is wound along the surface. That is, the first primary coil 11 is wound around the first rod-shaped portion 31a continuously in a direction orthogonal to the axial direction of the first rod-shaped portion 31a.
  • FIG. 5 is a perspective view schematically showing the state at this time.
  • the first three-dimensional formation process is completed.
  • the primary coil is wound once, and in the first rod-shaped portion indicated by reference numerals 31b and 31c, the primary coil is wound twice.
  • the corresponding first three-dimensional segments are formed by the primary coils 11 arranged in the first rod-like portions.
  • the primary coil 11 is wound around the first three-dimensional forming portion 31 so as to be drawn with a single stroke. Further, the last winding in the first three-dimensional forming part 31 is close to the second three-dimensional forming part 32 among the four first rod-shaped parts, and the first three-dimensional forming part 31 and the second three-dimensional forming part 32 are This is performed in the first rod-shaped portion 31a having an axial direction orthogonal to the direction of alignment. Thereby, the primary coil 11 at the switching portion between the first solid to be formed by the first solid forming portion 31 and the second solid to be formed by the second solid forming portion 32 and the vicinity thereof. And the primary coil 11 can be easily wound around the mandrel 30 that holds the shapes of the first solid and the second solid in a desired shape.
  • the primary coil 11 when the primary coil 11 is wound around the first rod-shaped portions adjacent to the winding start position 35 and then further wound around the plurality of first rod-shaped portions, the first rod-shaped coil that is currently wound. (I) change the direction of winding around the adjacent first rod-shaped part and wind the primary coil around the adjacent first rod-shaped part, (ii) current winding The first coil is wound around the first rod-shaped portion as it is, and the primary coil is wound around the adjacent first rod-shaped portion or the currently wound first rod-shaped portion. The above selection is performed each time the primary coil reaches a continuous portion of the first rod-shaped portion adjacent to the currently wound first rod-shaped portion, and the primary coil 11 is wound around the first three-dimensional forming portion 31 of the mandrel 30.
  • FIG. 6 is a perspective view schematically showing a state after the second solid formation step.
  • the second solid formation portion 31 has an axial direction parallel to the axial direction of the first rod-shaped portion 31a of the first solid formation portion 31 and is close to the winding start position 35 of the first solid formation portion 31.
  • the primary coil 11 is wound around the second rod-shaped part 32 a of the three-dimensional forming part 32.
  • the operation for winding the primary coil 11 may be performed in a state where tension is applied to a core wire that extends outward from the other end (not shown) of the primary coil 11, as in the first three-dimensional forming step.
  • the primary coil 11 after winding the primary coil 11 along the peripheral surface on the upper side of FIGS.
  • the second three-dimensional forming portion is the second three-dimensional forming portion. It is wound along the peripheral surface of the lower side of FIG.
  • the primary coil 11 is wound in a direction orthogonal to the axial direction of the second rod-shaped portion 32a on the lower side of the second rod-shaped portion 32a in FIG. 6, a continuous portion of the second rod-shaped portion 32a and the second rod-shaped portion 32b. To reach. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side of FIG. 6 of the second rod-shaped portion 32b.
  • the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the second rod-shaped portion 32c from the continuous portion of the second rod-shaped portion 32b and the second rod-shaped portion 32c on the lower side of the second rod-shaped portion 32c in FIG. Then, it reaches a continuous portion of the second rod-shaped portion 32c and the second rod-shaped portion 32d. Therefore, after changing the winding direction of the primary coil 11 and winding the primary coil 11 along the peripheral surface on the upper side of FIG. 6 of the second rod-shaped portion 32d, the second rod-shaped portion 32d on the lower side of FIG. The primary coil 11 is wound along the peripheral surface.
  • the one-turn primary coil 11 is continuously wound in a direction orthogonal to the axial direction of the second rod-shaped portion 32d.
  • the continuous portion of the second rod-shaped portion 32c and the second rod-shaped portion 32d returns. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side of FIG. 6 of the second rod-shaped portion 32c.
  • the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the second rod-shaped portion 32b from the continuous portion of the second rod-shaped portion 32b and the second rod-shaped portion 32c. And it returns to the continuous part of the 2nd rod-shaped part 32a and the 2nd rod-shaped part 32b. Therefore, after changing the winding direction of the primary coil 11 and winding the primary coil 11 along the upper peripheral surface of the second rod-shaped portion 32a in FIG. 6, the second rod-shaped portion 32a is continuously wound on the lower side of FIG. The primary coil 11 is wound along the surface.
  • FIG. 6 is a perspective view schematically showing the state at this time.
  • a 2nd solid formation process is complete
  • the primary coil is wound once, and in the second rod-shaped portion indicated by signs 32b and 32c, the primary coil is wound twice.
  • Each segment of the corresponding second solid is formed by the primary coil 11 arranged in each of these second rod-like portions. Further, the primary coil 11 is wound around the second three-dimensional forming part 32 so as to be written with a single stroke.
  • the remaining part of the primary coil 11 that has wound the primary coil 11 around the first three-dimensional forming portion 31 to form the first solid 51 is first wound around the adjacent second rod-shaped portion, When wound around a plurality of second rod-shaped portions, when reaching the continuous portion of the second rod-shaped portion adjacent to the currently wound second rod-shaped portion, (i) the direction of winding around the adjacent second rod-shaped portion And ii) winding the primary coil around the adjacent second rod-shaped portion, or (ii) winding the coil directly around the currently wound second rod-shaped portion, and selecting the adjacent second rod-shaped portion or the currently wound second rod-shaped portion. Wrap the primary coil around the two-bar shaped part.
  • the above selection is performed every time the primary coil reaches the continuous portion of the second rod-shaped portion adjacent to the currently wound second rod-shaped portion, and the second of the mandrel 30 is made to the second solid end 43 of the primary coil 11.
  • the primary coil 11 is wound around the three-dimensional forming part 32.
  • a connecting element portion 54 may be provided between the first solid 51 and the second solid 52 of the primary coil 11. This makes it easier to prevent deformation of the first solid 51 and the second solid 52 when the second solid 52 is disposed in the hollow portion inside the first solid 51 in the inner arrangement step. Moreover, it becomes easy to arrange the second solid 52 in the hollow portion inside the first solid 51.
  • the length of the connecting element portion 54 is the first rod-shaped portion 31b of the first three-dimensional forming portion 31 and the second rod-shaped portion 32d of the second three-dimensional forming portion 32 in the example of the mandrel 30 shown in FIG. Of the primary coil 11 between the first solid 51 formed in the first solid forming portion 31 and the second solid 52 formed in the second solid forming portion 32. It can adjust suitably by providing.
  • the end of the core member 38 is fixed to the second three-dimensional forming portion 32 of the mandrel 30 as necessary (not shown), and the primary coil 11 including the core member 38 is heated together with the mandrel 30.
  • the shapes of the first solid 51 and the second solid 52 can be fixed to the primary coil 11 wound around the mandrel 30.
  • the heating condition can be appropriately determined depending on the material of the primary coil 11.
  • the heating temperature is preferably 400 ° C. or more, and the heating time is preferably 15 minutes or more.
  • the intermediate shape coil 12 having a shape as shown in FIG. 7A is obtained.
  • the intermediate shape coil 12 is formed of one continuous primary coil 11 and has a first solid 51 and a second solid 52.
  • the first solid 51 and the second solid 52 are connected via a connecting element portion 54.
  • a model structure similar to that of the solid 20 shown in FIG. 2A can be generally assumed, and therefore, a virtual solid model similar to the cube 22 shown in FIG. 2B.
  • the first solid 51 includes two segments 51a and 51d formed in a circular shape by one circular winding of the primary coil 11, and two semicircular (semicircular arc) windings of the primary coil 11.
  • Two segments 51b and 51c formed in a circular shape are arranged in a ring and three-dimensionally arranged in a cubic shape.
  • the four segments (51a, 51b, 51c, 51d) are arranged in a cylindrical shape to form an annular portion of the first solid 51, and this annular portion is divided into each segment (51a, 51b, 51c, 51d).
  • the annular portion is formed with a hollow portion 261 that opens on both sides in the direction of the central axis 57 on the inner side.
  • the second solid 52 is formed with respect to the remaining portion of the primary coil 11 on which the first solid 51 is formed, and the circular winding of the primary coil 11 once and about 3 / of the primary coil 11 of one time.
  • two Two segments 52b and 52c formed in a circular shape by winding the primary coil 11 in a semicircular shape (semicircular arc) are arranged in a ring and three-dimensionally arranged in a cubic shape.
  • the four segments (52a, 52b, 52c, 52d) are arranged in a cylindrical shape to form an annular portion of the second solid 52, and this annular portion is divided into each segment (52a, 52b, 52c, 52d).
  • the annular portion is formed with a hollow portion 262 that opens on both sides in the direction of the central axis 58.
  • the upper opening surface 56 is virtually assumed in the upper opening in FIG. 7A of the annular portion.
  • the core material 38 is omitted for convenience.
  • one of the first and second solids is arranged inside the annular portion of the plurality of segments arranged in a ring of the other solid. I do.
  • the second solid that is smaller in size than the first solid 51 is formed in the hollow portion 261 inside the first solid 51.
  • 52 is arranged will be described.
  • the midway shape coil 12 is arranged so that the upper opening surface 55 of the first solid 51 and the upper opening surface 56 of the second solid 52 of the midway shape coil 12 face the upper side of FIG. 7A.
  • FIG. 7A the midway shape coil 12 is arranged so that the upper opening surface 55 of the first solid 51 and the upper opening surface 56 of the second solid 52 of the midway shape coil 12 face the upper side of FIG. 7A.
  • the second solid 52 is moved above the first solid 51 so that the central axis 58 of the second solid 52 is collinear with the central axis 57 of the first solid 51.
  • a regular square which is a shape grasped in a cross-sectional direction orthogonal to the central axis 57 of the first solid 51 and a shape grasped in a cross-sectional direction orthogonal to the central axis 58 of the second solid 52
  • each side of the regular square is arranged in parallel.
  • the first solid 51 and the second solid 52 are arranged so that the sides formed by the segments 51a and 52a, 51b and 52b, 51c and 52c, 51d and 52d are parallel to each other.
  • the second solid 52 is rotated about the central axis 58 of the second solid 52 by a desired angle with respect to the first solid 51.
  • a regular square which is a shape grasped in a cross-sectional direction orthogonal to the central axis 57 of the first solid 51 and a shape grasped in a cross-sectional direction orthogonal to the central axis 58 of the second solid 52 It is preferable to rotate the axis so that the sides of the regular square are not parallel to each other.
  • the second solid 52 is arranged in the hollow portion 261 inside the first solid 51 as shown in FIG. 7D with the second solid 52 rotated relative to the first solid 51 in this manner. .
  • the inner arrangement process is completed.
  • FIG. 7E shows a surface 59 (see also FIG. 7D) that is parallel to the opening surfaces (55, 56) of the compatible body (51, 52) when the inner arrangement step is completed, that is, orthogonal to the central axes 57, 58.
  • FIG. 6 is a projection view showing the first regular quadrangle 61 and the second regular quadrangle 62 formed when the first solid 51 and the second solid 52 are respectively projected, and at the same time, the direction orthogonal to the central axis of the compatible body It is also a sectional view of the shape grasped by.
  • the regular square 60 corresponding to the first solid 51 has sides (60a, 60b, 60c, 60d) corresponding to the segments (51a, 51b, 51c, 51d) of the first solid 51, respectively.
  • An annular portion is formed.
  • the regular square 61 corresponding to the second solid 52 has sides (61a, 61b, 61c, 61d) corresponding to the segments (52a, 52b, 52c, 52d) of the first solid 52, respectively.
  • An annular portion is formed.
  • the regular square 61 is smaller than the regular square 60 and has a similar relationship.
  • the compatible bodies (51, 52) are arranged so that the sides of the regular squares (60, 61) are not parallel.
  • the degree of not being parallel is not particularly limited.
  • the angle ⁇ formed by the two line segments (62a, 63a) extending toward 57, 58 is greater than 0 degree and less than 90 degrees, greater than 90 degrees and less than 180 degrees, greater than 180 degrees and less than 270 degrees, It is sufficient that it is larger than 270 degrees and smaller than 360 degrees.
  • the arrangement of the second solid 52 with respect to the first solid 51 in the inner arrangement step is not limited to the method of rotating about the central axes 57 and 58 as shown in FIGS. 7A to 7D. You may arrange
  • FIG. 8A shows that the first solid 51 and the second solid 52 are arranged so that the central axis 57 of the first solid 51 and the central axis 58 of the second solid 52 intersect after the inner placement step. An example in the case of arrangement is shown.
  • FIG. 8A shows the positional relationship between the first solid 51 and the second solid 52 shown in FIG. 7B, and then includes the central axis 57 of the first solid 51 and the segments indicated by the reference numerals 51d and 51b of the first solid 51 are formed.
  • the central axis 58 of the second solid 52 is rotated along a plane parallel to the surface to be moved so that the central axis 57 of the first solid 51 and the central axis 58 of the second solid 52 intersect each other, and the second
  • the surface formed by the segments 52d and 52b of the solid 52 includes the central axis 57 of the first solid 51 and is parallel to the surface formed by the segments 51d and 51b of the first solid 51,
  • positioned in the hollow part 261 inside the 1st solid 51 is shown.
  • FIG. 8B shows a plane 68 parallel to the plane formed by the segments indicated by reference numerals 51d and 51b of the first solid 51 and the plane formed by the segments indicated by reference numerals 52d and 52b of the second solid 52 (see also FIG. 8A).
  • FIG. 8B for convenience, the same reference numerals as those in FIG. 8A are used. Therefore, the first regular square corresponding to the first solid 51 is denoted by reference numeral 51, and the second regular square corresponding to the second solid 52 is denoted by reference numeral 52.
  • 8B has four sides corresponding to the segments 51a and 51c, the upper opening surface 55, and the lower opening surface 55a of the first solid 51, and the surface surrounded by the four sides is the first solid. This corresponds to 51 segments 51b or 51d. Further, it has a central axis 57 corresponding to the central axis of the first solid 51. 8B has four sides corresponding to the segments 52a, 52c, the upper opening surface 56, and the lower opening surface 56a of the first solid 52, and the surface surrounded by the four sides is the second solid. This corresponds to 52 segments 52b or 52d. Further, it has a central axis 58 corresponding to the central axis of the second solid 52. As shown in FIG.
  • the central axis 57 of the first regular square 51 and the central axis 58 of the second regular square 52 intersect each other at the center point 271 of both regular squares, and The two solids 52 intersect at the center point (not shown).
  • the crossing angle ⁇ of the central axis 58 with respect to the central axis 57 is not particularly limited as long as both central axes are not coincident or parallel, and is larger than 0 degree and smaller than 180 degrees and larger than 180 degrees.
  • the angle may be smaller than 360 degrees, but from the viewpoint of suppressing deformation of the compatible body due to the positional shift of the continuous portion of the first solid 51 and the second solid 52, and from the viewpoint of arrangement workability, it should be larger than 15 degrees and smaller than 75 degrees. Is preferred.
  • the crossing angle ⁇ in the case shown in FIG. 8B is based on the central axis 57 (the portion on the upper side of FIG. 8B from the central point 271), and on the other hand, the central axis 58 (from the central point 271) is centered on the central point 271. It means the angle when the upper part (8B) is rotated clockwise.
  • each segment of the first solid and the second solid may be one in which primary coils are two-dimensionally arranged, but may also include a three-dimensionally arranged segment.
  • 9 to 11 show an example in which a solid includes a segment formed by primary coils arranged three-dimensionally.
  • FIG. 9 shows a state after passing through the second solid formation step performed using an example of a mandrel capable of making one of the four segments constituting the first solid into a three-dimensionally arranged segment. It is a perspective view which shows a state typically.
  • a mandrel 301 shown in FIG. 9 has a first three-dimensional forming portion 331 that forms a first solid 351 (see FIG. 10) and a second three-dimensional forming portion 332 that forms a second solid 352 (see FIG. 10). These are connected in series.
  • the first three-dimensional forming portion 331 has four first rod-shaped portions (331a, 331b, 331c, 331d), and each first rod-shaped portion (331a, 331b, 331c, 331d) is an axis of each first rod-shaped portion. It arrange
  • the second three-dimensional forming portion 332 has four second rod-shaped portions (332a, 332b, 332c, 332d), and each second rod-shaped portion (332a, 332b, 332c, 332d) is an axis of each second rod-shaped portion.
  • one first rod-shaped portion 331d of the four first rod-shaped portions of the first three-dimensional formation portion 331 and one of the four second rod-shaped portions of the second three-dimensional formation portion 332 are provided.
  • the two rod-like portions 332b are connected.
  • both are connected so that the central axes in the axial direction of the first rod-shaped portions 331b and 331d and the second rod-shaped portions 332b and 332d coincide.
  • the first rod-shaped portions (331a, 331b, 331c, 331d) and the second rod-shaped portions (332a, 332b, 332c, 332d) are arranged so as to be orthogonal to each other in a cross shape, and all have a circular cross section.
  • one first rod-shaped portion 331b among the four first rod-shaped portions (331a, 331b, 331c, 331d) is a portion that forms a three-dimensionally arranged segment.
  • the first rod-shaped portion 331b includes a large-diameter portion 335, a tapered portion 334, and a small-diameter portion 333 in order from the side closer to the intersecting portion of the first rod-shaped portion.
  • the large diameter portion 335 has the same outer diameter as the other first rod-shaped portions 331a, 331c, and 331d
  • the small diameter portion 333 has an outer diameter smaller than the large diameter portion 335
  • the tapered portion 334 has a large diameter portion.
  • the diameter gradually decreases from 335 and continues to the small diameter portion 333.
  • the structures of the first three-dimensional forming portion and the second three-dimensional forming portion can be appropriately selected according to the desired first and second three-dimensional shapes. These three-dimensional shapes are as described above. The same applies to the position of the rod-shaped portion for forming the segment in which the primary coil is arranged three-dimensionally, but at the position where the primary coil of the first solid starts to be wound first or the position where the primary coil of the second solid ends. It is preferable to provide it.
  • the segment in which the primary coil is arranged three-dimensionally first It can be inserted into the aneurysm, and when the tip of the primary coil inserted into the aneurysm is restored to the secondary shape, it acts as an anchor in the aneurysm and becomes easy to be fixed to the aneurysm wall. This is because it becomes easier to insert the primary coil.
  • the width or outer diameter of the first rod-shaped portion (331a, 331b, 331c, 331d) and the second rod-shaped portion (332a, 332b, 332c, 332d) in the direction orthogonal to the axial direction is the use of the in-vivo indwelling member, It can be appropriately selected according to the shape and structure of the solid and the second solid.
  • the size of the first three-dimensional forming portion and the second three-dimensional forming portion that is, the width or outer diameter of the rod-shaped portion and the size of the intersecting portion of the rod-shaped portions is one of the first and second solids. From the viewpoint of easily arranging the three-dimensional body inside the other annular portion, it is preferable to be different.
  • first three-dimensional forming portion and the second three-dimensional forming portion are the centers of the first three-dimensional solid and the second three-dimensional solid, respectively, when the first three-dimensional and the second three-dimensional are formed in a polygonal cylindrical shape. It is preferable that the polygonal shape grasped in the cross-sectional direction orthogonal to the axis has a similar relationship.
  • first solid for the segment arranged in three dimensions, pay attention only to the virtual surface assumed for the part facing the inside of the annular part, and grasp the shape of the polygon
  • it demonstrates by paying attention only to a virtual surface similarly in description of the following this example.
  • the three first rod-shaped portions (331a, 331c, 331d) of the first three-dimensional formation portion 331 and the large-diameter portion 335 of one first rod-shaped portion 331b all have the same outer diameter.
  • the four second rod-shaped portions (332a, 332b, 332c, 332d) of the second three-dimensional forming portion 332 have the same outer diameter, but the first rod-shaped portions (331a, 331c, 331d) and the first rod-shaped portion 331b.
  • the outer diameter of the large-diameter portion 335 is smaller than the outer diameter of the second rod-like portions (332a, 332b, 332c, 332d).
  • the 1st solid formation part 31 is larger than the 2nd solid formation part 32, Therefore, regarding the magnitude
  • the shape of the portion around which the primary coil 11 of the first three-dimensional forming portion 331 and the second three-dimensional forming portion 332 is wound is a polygon grasped in a plane including the central axes of the first and second rod-shaped portions. It is a regular square and has a similar relationship, and the first solid 351 and the second solid 352 formed there are similar.
  • first three-dimensional formation step An example of the first three-dimensional formation step, the second three-dimensional formation step, and the inner arrangement step will be described by taking, for example, the case where the primary coil 11 shown in FIG. 1C is wound around the mandrel 301 shown in FIG.
  • first three-dimensional forming step first, it is preferable to insert a core wire (not shown) longer than the entire length of the primary coil 11 into the lumen of the primary coil 11. Then, as described above, one end of the core wire is fixed to a desired position of the mandrel 301, and the primary coil 11 is wound around the first rod-shaped portion 331b of the mandrel 301, for example, while applying tension.
  • a core wire (not shown) longer than the entire length of the primary coil 11 into the lumen of the primary coil 11.
  • one end of the core wire is fixed to a desired position of the mandrel 301, and the primary coil 11 is wound around the first rod-shaped portion 331b of the mandrel 301, for example,
  • the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side in FIG. 9 of the first rod-shaped portion 331a.
  • the primary coil 11 is wound about 180 degrees in the direction orthogonal to the axial direction of the first rod-shaped portion 331a from the continuous portion of the first rod-shaped portion 331b and the first rod-shaped portion 331a on the upper side of the first rod-shaped portion 331a in FIG.
  • the first rod-shaped portion 331a and the first rod-shaped portion 331d reach a continuous portion. Therefore, after changing the winding direction of the primary coil 11 and winding the primary coil 11 along the lower circumferential surface of the first rod-shaped portion 331d in FIG.
  • the primary coil 11 is wound along the surface.
  • the one-turn primary coil 11 is continuously wound in a direction orthogonal to the axial direction of the first rod-shaped portion 331d.
  • the one-turn primary coil 11 is continuously wound around the first rod-shaped portion 331d, the continuous portion of the first rod-shaped portion 331a and the first rod-shaped portion 331d is returned. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of the first rod-shaped portion 331a in FIG.
  • the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the first rod-shaped portion 331a from the continuous portion of the first rod-shaped portion 331a and the first rod-shaped portion 331d. And it returns to the continuous part of the 1st rod-shaped part 331a and the 1st rod-shaped part 31b. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the upper peripheral surface of FIG. 9 of the large-diameter portion 335 of the first rod-shaped portion 331b. On the upper side of FIG.
  • the primary coil is about 180 degrees in a direction orthogonal to the axial direction of the first rod-shaped portion 331b from the continuous portion of the first rod-shaped portion 331a and the first rod-shaped portion 31b. 11 is wound, it reaches a continuous portion of the first rod-shaped portion 331b and the first rod-shaped portion 331c. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the circumferential surface on the lower side in FIG. 9 of the first rod-shaped portion 331c.
  • the primary coil 11 is wound about 180 degrees in a direction perpendicular to the axial direction of the first rod-shaped portion 331c from the continuous portion of the first rod-shaped portion 331b and the first rod-shaped portion 331c. And the vicinity of the continuous portion of the first rod-shaped portion 331c and the first rod-shaped portion 331d.
  • the first three-dimensional formation process is thus completed.
  • the first rod-shaped portion indicated by reference numerals 331c and 331d is wound with the primary coil once, and the first rod-shaped portion indicated by reference numerals 331a and 331b is wound twice with the primary coil.
  • the corresponding three-dimensional segments are formed by the primary coils 11 arranged in the first rod-like portions.
  • the primary coil 11 is arranged in a three-dimensional manner by providing a portion that spirally winds between two portions that wind the primary coil 11 on the same plane. Segment 351b can be formed (see FIG. 10). As described above, also in this example, the primary coil 11 is wound around the first three-dimensional forming portion 331 so as to be drawn with a single stroke.
  • the remaining portion of the primary coil 11 forming the first three-dimensional body 351 is wound around the second rod-shaped portion (332a, 332b, 332c, 332d) of the second three-dimensional formation portion 332, A second solid formation step for forming the second solid is performed.
  • a primary coil is formed on the second rod-shaped portion 332c that has an axial direction parallel to the axial direction of the first rod-shaped portion 331c of the first solid formation portion 331 and is close to the second solid formation portion 332. 11 is wound.
  • the operation for winding the primary coil 11 may be performed in a state where tension is applied to a core wire that extends outward from the other end (not shown) of the primary coil 11, as in the first three-dimensional forming step.
  • the primary coil 11 after winding the primary coil 11 along the lower peripheral surface of FIG. 9 of the first rod-shaped portion 331 c of the first three-dimensional forming portion 331 is replaced with the second rod-shaped portion 332 b.
  • the one-turn primary coil 11 is continuously wound around the second rod-shaped portion 332c, the continuous portion of the second rod-shaped portion 332c and the second rod-shaped portion 332b is returned. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side of FIG. 9 of the second rod-shaped portion 332b.
  • the primary coil 11 is wound about 180 degrees in the direction perpendicular to the axial direction of the second rod-shaped portion 332b from the continuous portion of the second rod-shaped portion 332c and the second rod-shaped portion 332b on the upper side in FIG. 9 of the second rod-shaped portion 332c.
  • the second rod-shaped portion 332b and the second rod-shaped portion 332a reach a continuous portion. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of the second rod-shaped portion 332a in FIG. In the lower side of FIG. 9 of the second rod-shaped portion 332a, the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the second rod-shaped portion 332a from the continuous portion of the second rod-shaped portion 332b and the second rod-shaped portion 332a. Then, it reaches a continuous portion of the second rod-shaped portion 332a and the second rod-shaped portion 332d.
  • the winding direction of the primary coil 11 is changed, the primary coil 11 is wound along the upper peripheral surface of the second rod-shaped portion 332d in FIG. 9, and then the second rod-shaped portion 332d of the lower periphery of FIG.
  • the primary coil 11 is wound along the surface. That is, the first primary coil 11 is wound around the second rod-shaped portion 332d continuously in a direction orthogonal to the axial direction of the second rod-shaped portion 332d. In this way, when the one-turn primary coil 11 is continuously wound around the second rod-shaped portion 332d, the continuous portion between the second rod-shaped portion 332d and the second rod-shaped portion 332a is returned.
  • the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the upper side of FIG. 9 of the second rod-shaped portion 332a.
  • the primary coil 11 is wound about 180 degrees in the direction perpendicular to the axial direction of the second rod-shaped portion 332a from the continuous portion of the second rod-shaped portion 332d and the second rod-shaped portion 332a on the upper side of the second rod-shaped portion 332a in FIG.
  • the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the peripheral surface on the lower side of FIG. 9 of the second rod-shaped portion 332b.
  • FIG. 9 is a perspective view schematically showing the state at this time. Above, a 2nd solid formation process is complete
  • the primary rod is wound once in the second rod-shaped portion indicated by reference numerals 332c and 332d, and the primary coil is wound twice in the first rod-shaped portion indicated by reference numerals 332a and 332b.
  • Each segment of the corresponding second solid is formed by the primary coil 11 arranged in each of these second rod-like portions.
  • the primary coil 11 is wound around the 2nd solid formation part 332 so that it may be written in one stroke.
  • a connecting element 354 may be provided between the first solid 351 and the second solid 352 of the primary coil 11. Further, the length of the connecting element portion 354 can be adjusted as described above.
  • the primary coil 11 including the core material is heated together with the mandrel 301 as described above, so that the primary coil 11 wound around the mandrel 301 has the first solid 351 and The shape of the second solid 352 can be fixed. Thereafter, when the primary coil 11 including the core material is removed from the mandrel 301, a midway shape coil 121 having a shape as shown in FIG. 10 is obtained.
  • the intermediate shape coil 121 is formed of one continuous primary coil 11 and includes a first solid 351 and a second solid 352. Further, the first solid 351 and the second solid 352 are connected via a connecting element portion 354. In addition, for the second solid 352, a model structure similar to that of the solid 20 illustrated in FIG. 2A can be generally assumed, and therefore a virtual solid model similar to the cube 22 illustrated in FIG. 2B can be assumed.
  • the first solid 351 is formed by being wound around the large-diameter portion 335 of the first rod-shaped portion 331b with respect to the segment 351b in which the primary coil 11 is three-dimensionally formed by the first rod-shaped portion 331b.
  • the first solid 351 has one segment 351a formed into a circular shape by winding the primary coil 11 twice in a semicircular shape (semicircular arc), a circular arc of the primary coil 11 once, and a half rotation continuous thereto.
  • One segment 351b formed in a three-dimensional shape by a spiral winding and a semicircular (semicircular) winding of the primary coil 11, and approximately 3/8 yen of the primary coil 11 once.
  • One segment 351c formed into a shape of about 3/8 circle (about 3/8 arc) by winding the shape (about 3/8 arc), and circular by one round winding of the primary coil 11
  • One segment 351d to be formed is arranged in a ring and three-dimensionally arranged in a cubic shape.
  • primary coils are two-dimensionally arranged, and in the segment 351b, primary coils are three-dimensionally arranged.
  • the four segments (351a, 351b, 351c, 351d) are arranged in a cylindrical shape to form an annular portion of the first three-dimensional body 351, and this annular portion is divided into each segment (351a, 351b, 351c, 351d).
  • the annular portion is formed with a hollow portion 326 that opens on both sides in the direction of the central axis 357.
  • an upper opening surface 355 is virtually assumed in the upper opening in FIG. 10 in the annular portion.
  • the second solid 352 is formed with respect to the remaining portion of the primary coil 11 on which the first solid 351 is formed, and is formed into a circular shape by winding the primary coil 11 in a semicircular shape (semicircular arc) twice.
  • the two segments 352c and 352d formed in a circular shape by one circular winding of the primary coil 11 are arranged in a ring and three-dimensionally arranged in a cubic shape.
  • the four segments (352a, 352b, 352c, 352d) are arranged in a cylindrical shape to form an annular portion of the second solid 352, and this annular portion is divided into each segment (352a, 352b, 352c, 352d).
  • the core material is omitted for convenience.
  • the first solid 351 having the similar relationship shown in FIG. 10 is obtained with the first solid 351 relatively rotated with respect to the second solid 352.
  • the first solid 351 having a smaller size than the second solid 352 is disposed in the hollow portion 327 inside the second solid 352.
  • FIG. 11 is a perspective view schematically showing the state at this time. Note that the similarity between the first solid 351 and the second solid 352 focuses only on the above-described virtual plane, not the structure of the entire three-dimensionally arranged primary coil for the segment 351b of the first solid 351. It is a case relationship.
  • the primary coil 11 is heated by heating the intermediate coils 12, 121 in a state in which the second solid 52 is disposed inside the first solid 51 as shown in FIGS. 7D, 8A, and 11.
  • the shape in which the second solid 52 is arranged inside the first solid 51 can be fixed as a secondary shape.
  • the heating condition can be appropriately determined depending on the material of the primary coil 11.
  • the heating temperature is preferably 400 ° C. or higher, and as described above, it is desirable that the heating temperature be higher than the heating temperature when the intermediate coil 11 is provided with a halfway shape.
  • the heating time is preferably 15 minutes or more.
  • a three-dimensional three-dimensional secondary shape is imparted to the primary coil 11 as shown in FIGS. 7D, 8A, and 11, and the secondary coils 13, 130, and 133 are formed. can get.
  • the additional solid formation step is similarly performed.
  • the additional solid is formed by performing, for example, another solid is arranged inside the annular portion of a plurality of segments arranged in a ring of a certain solid, and the plurality of segments arranged in a ring of the other solid is arranged.
  • the first and second inner arrangement steps are arranged in which another solid is arranged inside the annular portion, and the first solid, the second solid, and the additional solid are arranged in a triple order in any order.
  • the same primary coil as described in the first embodiment can be used, and the same model as in FIGS. 2A to 2C will be applied for explanation.
  • the primary coil as described above is used as in the first embodiment.
  • a plurality of segments formed by winding the primary coil at least once are arranged in a ring shape.
  • a first solid is formed in which a part is three-dimensionally arranged (first solid formation step).
  • a second solid is formed in which at least a part of the remaining part of the primary coil that has formed the first solid is three-dimensionally arranged (second solid formation step).
  • the segments formed by winding the primary coil at least once are arranged in a plurality of rings, and at least a part of the remaining portion of the primary coil forming the first and second solids is three-dimensionally arranged.
  • An additional solid is formed (additional solid forming step).
  • FIG. 12 is a perspective view schematically showing an example of a mandrel that can be used in this example.
  • a mandrel 300 shown in FIG. 12 has a first three-dimensional forming part 31, a second three-dimensional forming part 32, and an additional three-dimensional forming part 33, which are connected in series.
  • the additional three-dimensional forming portion 33 has four additional rod-shaped portions (33a, 33b, 33c, 33d), and each additional rod-shaped portion (33a, 33b, 33c, 33d) has a radial direction in the axial direction of each additional rod-shaped portion. It is arranged in a ring so as to face, and is integrated at the intersection.
  • one second rod-shaped portion 32b of the four second rod-shaped portions (32a, 32b, 32c, 32d) of the second three-dimensionally formed portion 32 and four additional rod-shaped portions of the additional three-dimensionally formed portion 33 are used. It is connected with one additional rod-shaped part 33d of the parts (33a, 33b, 33c, 33d). Moreover, both are connected so that the axial center axis
  • the additional solid forming portion 33 is an example in the case of forming the structure of the solid 20 shown in FIG.
  • the additional rod-shaped portions (33a, 33b, 33c, 33d) are arranged so as to be orthogonal to the cross shape. , Both are circular in cross section.
  • the structure of the additional three-dimensional forming portion can be appropriately selected according to the desired additional three-dimensional shape.
  • the shape of this solid is as described in the description of the first and second solids in the first embodiment.
  • the width or outer diameter of the additional rod-shaped portion (33a, 33b, 33c, 33d) in the direction orthogonal to the axial direction can be appropriately selected according to the use of the in-vivo indwelling member, the shape of the additional solid, and the structure. For example, when used for the treatment of aneurysm occlusion, 1 mm or more and 30 mm or less is preferable.
  • the size of the first three-dimensional forming portion, the second three-dimensional forming portion, and the additional three-dimensional forming portion that is, the width or outer diameter of the rod-shaped portion and the size of the intersecting portion of the rod-shaped portion, as described later, From the viewpoint of facilitating the arrangement of the two solids and the additional solid, optionally, any one of the solids inside the ring portion of the other solid, it is preferable that the two solids and the additional solids are different from each other.
  • the size is preferably small.
  • the configurations of the first three-dimensional forming part 31 and the second three-dimensional forming part 32 are as described in the first embodiment, and the additional three-dimensional forming part 33 includes four additional rod-like parts ( 33a, 33b, 33c, 33d) all have the same outer diameter, but are smaller than the outer diameter of the second rod-shaped portions (32a, 32b, 32c, 32d).
  • the 1st solid formation part 31 is larger than the 2nd solid formation part 32, and the 2nd solid formation part 32 is larger than the additional solid formation part 33, Therefore, the 1st solid 51 formed in there, the 2nd solid 52 As for the size of the additional solid 53, the first solid 51, the second solid 52, and the additional solid 53 become smaller in this order.
  • the shape of the part by which the primary coil 11 of the 1st solid formation part 31, the 2nd solid formation part 32, and the additional solid formation part 33 is wound is the center of a 1st rod-shaped part, a 2nd rod-shaped part, and an additional rod-shaped part.
  • the polygons grasped in the plane including the axis are all regular squares and have a similar relationship, and the first solid 51, the second solid 52 and the additional solid 53 formed there are similar to each other. .
  • first three-dimensional formation process, the second three-dimensional formation process, and the additional three-dimensional formation process will be described by taking as an example the case where the primary coil 11 shown in FIG. 1C is wound around the mandrel 300 shown in FIG.
  • the first three-dimensional formation process and the second three-dimensional formation process are performed in the same manner as described in the first embodiment.
  • the primary coil 11 has the second solid end 43 continuous rather than the other end of the primary coil 11.
  • FIG. 13 is a perspective view schematically showing a state after the additional three-dimensional formation step.
  • the additional three-dimensional formation step first, it has an axial direction parallel to the axial direction of the second rod-shaped portion 32a of the second three-dimensional formation portion 32 and is close to the remaining portion of the primary coil 11 immediately after the second three-dimensional formation step.
  • the primary coil 11 is wound around the additional rod-shaped portion 33a of the additional three-dimensional forming portion 33.
  • the operation for winding the primary coil 11 may be performed in a state where tension is applied to a core wire that extends outward from the other end (not shown) of the primary coil 11, as in the first three-dimensional forming step.
  • the second rod-shaped portion 33a is wound along the upper peripheral surface of FIG.
  • the primary coil 11 is wound in a direction orthogonal to the axial direction of the additional rod-shaped portion 33a on the upper side in FIG. 13 of the additional rod-shaped portion 33a, the continuous portion of the additional rod-shaped portion 33a and the additional rod-shaped portion 33b is reached. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of the additional rod-shaped portion 33b in FIG.
  • the primary coil 11 is wound along That is, the one-turn primary coil 11 is continuously wound around the additional rod-shaped portion 33d in a direction orthogonal to the axial direction of the additional rod-shaped portion 33d. As described above, when the one-turn primary coil 11 is continuously wound around the additional rod-shaped portion 33d, the portion returns to the continuous portion of the additional rod-shaped portion 33c and the additional rod-shaped portion 33d. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of the additional rod-shaped portion 33c in FIG.
  • the primary coil 11 When the primary coil 11 is wound about 180 degrees in a direction orthogonal to the axial direction of the additional rod-shaped portion 33b from the continuous portion of the additional rod-shaped portion 33b and the additional rod-shaped portion 33c on the upper side of the additional rod-shaped portion 33b in FIG. It returns to the continuous part of 33a and the additional rod-shaped part 33b. Therefore, the winding direction of the primary coil 11 is changed, and the primary coil 11 is wound along the lower peripheral surface of FIG. 13 of the additional rod-shaped portion 33a. 13 below the additional rod-shaped portion 33a, the primary coil 11 is wound about 90 degrees in a direction orthogonal to the axial direction of the additional rod-shaped portion 33a from the continuous portion of the additional rod-shaped portion 33a and the additional rod-shaped portion 33b.
  • the additional solid 53 is formed by the primary coil 11 wound around the additional three-dimensional forming portion 33 and arranged three-dimensionally (cubic in this example).
  • FIG. 13 is a perspective view schematically showing the state at this time.
  • the additional three-dimensional formation process is completed.
  • the primary coil is wound once, and in the additional rod-shaped portion indicated by reference numerals 33a, 33b and 33c, the primary coil is wound twice.
  • Corresponding additional solid segments are formed by the primary coil 11 arranged in each additional bar-shaped portion.
  • the primary coil 11 is wound around the additional three-dimensional formation part 33 so that it may be written in one stroke.
  • the remaining part of the primary coil 11 that forms the first solid 51 and the second solid by winding the primary coil 11 around the first solid formation portion 31 and the second solid formation portion 32 is an additional rod-shaped portion that is adjacent thereto.
  • the above selection is performed each time the primary coil reaches the continuous portion of the additional rod-shaped portion adjacent to the currently wound additional rod-shaped portion, and the mandrel 30 is moved to the additional solid end 45 (see FIG. 14) of the primary coil 11.
  • the primary coil 11 is wound around the additional three-dimensional forming part 33.
  • a connecting element portion 540 may be provided between the second solid 52 and the additional solid 53 of the primary coil 11.
  • the length of the connecting element portion 540 is the axis of the first rod-shaped portion 32b of the second three-dimensional forming portion 32 and the axis of the additional rod-shaped portion 33d of the additional three-dimensional forming portion 33. The direction length is adjusted, or an appropriate slack is provided in the primary coil 11 between the second solid 52 formed in the second solid forming portion 32 and the additional solid 53 formed in the additional solid forming portion 33. Therefore, it can be adjusted appropriately.
  • the end of the core material is fixed to the additional solid formation portion 33 of the mandrel 300 (not shown), and the primary coil 11 including the core material is heated together with the mandrel 300,
  • the shapes of the first solid 51, the second solid 52, and the additional solid 53 can be fixed to the primary coil 11 wound around the mandrel 300.
  • the heating conditions can be determined in the same manner as in the first embodiment.
  • the intermediate shape coil 120 having a shape as shown in FIG. 14 is obtained.
  • the intermediate shape coil 120 is formed of one continuous primary coil 11 and includes a first solid 51, a second solid 52, and an additional solid 53.
  • the first solid 51 and the second solid 52 are connected via a connecting element portion 54
  • the second solid 52 and the additional solid 53 are connected via a connecting element portion 540.
  • the virtual similar to the cube 22 shown in FIG. 2B since the model structure similar to the solid 20 shown in FIG. 2A can be assumed generally, the virtual similar to the cube 22 shown in FIG. 2B.
  • a solid model can be envisaged.
  • the first solid 51 and the second solid 52 are configured as described in the first embodiment.
  • the additional solid 53 is formed with respect to the remaining portion of the primary coil 11 on which the first solid 51 and the second solid 52 are formed, and has an approximately three-eighth circular shape (about eight minutes) of the primary coil 11 of one time. 3 arcs) and approximately one quarter of a circle (about one quarter arc) of the primary coil 11 is formed into a shape of about 5/8 circle (about 5/8 arc).
  • one segment 53d formed in a circular shape has a central axis 272 in a direction orthogonal to the direction in which the segments 53d are arranged in an annular shape.
  • the annular portion is formed with a hollow portion 263 that is open on both sides in the direction of the central axis 272.
  • an upper opening surface 241 is virtually assumed in the opening on the upper side of FIG. 14 in the annular portion.
  • the core material is omitted for convenience.
  • any one of the first solid, the second solid, and the additional solid is arranged in a ring shape of one of the remaining two solids, and the annular portion of a plurality of segments. Arranging the remaining one solid inside the annular portion of a plurality of segments arranged in a ring shape of the solid arranged inside in the first inner arrangement step arranged inside Alternatively, the second inner arrangement step of arranging the two solids after the first inner arrangement step is performed inside the annular portions of the plurality of segments arranged in a ring of the remaining one solid. In this example, in the first inner arrangement step, among the second solid 52 and the additional solid 53 having the similar relationship shown in FIG. 14, the hollow portion 262 inside the second solid 52 is larger than the second solid 52.
  • the small additional solid 53 is arranged, and in the second inner arrangement step 53, the second solid 52 and the additional solid 53 are similar to each other, and the hollow portion 261 inside the first solid 51 larger than the second solid 52 is The example in the case of arrange
  • positioning process in the hollow part 262 is demonstrated.
  • the first inner arrangement step will be described. First, so that the positional relationship is the same as in the case of FIG. 7A, the middle shape coil 120 so that the upper opening surface 56 of the second solid 52 of the middle shape coil 120 and the upper opening surface 241 of the additional solid 53 face the upper side of FIG. 120 is arranged. Next, the additional solid 53 is placed above the second solid 52 so that the central axis 58 of the second solid 52 is collinear with the central axis 272 of the additional solid 53 so as to have the same positional relationship as in FIG. Move to.
  • the shape is grasped in the cross-sectional direction perpendicular to the central axis 272 of the additional solid 53 and the regular square that is the shape grasped in the cross-sectional direction orthogonal to the central axis 58 of the second solid 52.
  • each side of the regular square is arranged in parallel. That is, the second solid 52 and the additional solid 53 are arranged so that the sides formed by the segments indicated by reference numerals 52a and 53a, 52b and 53b, 52c and 53c, and 52d and 53d are parallel to each other.
  • the additional solid 53 is rotated about the center axis 272 of the additional solid 53 by a desired angle with respect to the second solid 52 so as to have the same positional relationship as in FIG. 7C.
  • the shape is grasped in the cross-sectional direction perpendicular to the central axis 272 of the additional solid 53 and the regular square that is the shape grasped in the cross-sectional direction orthogonal to the central axis 58 of the second solid 52. It is preferable to rotate the axis so that the sides of the regular square are not parallel to each other.
  • the additional solid 53 is hollow inside the second solid 52 so that the positional relationship is the same as that in the case of FIG. It arranges in part 262.
  • the positional relationship between the second solid 52 and the additional solid 53 is the same as that shown in FIG. 7E.
  • the arrangement of the additional solid 53 and the second solid 52 may be the same as that shown in FIGS. 8A and 8B.
  • the second inner placement step is performed.
  • the second solid 52 in which the additional solid 53 after the first inner arrangement step is arranged in the hollow portion 262 is arranged in the hollow portion 261 inside the first solid 51.
  • the arrangement method can be determined by the positional relationship between the first solid 51 and the second solid 52, as in the case of FIGS. 7A to 7E.
  • FIG. 15 is a perspective view schematically showing a state after the second inner arrangement step.
  • the arrangement of the first solid 51 and the second solid 52 may be the same as that shown in FIGS. 8A and 8B.
  • the arrangement shown in FIGS. 7A to 7E may be used in one process, and the arrangement shown in FIGS. 8A and 8B may be used in the other process.
  • the intermediate shape coil 120 or the secondary coil 131 shown in FIG. 15 has a second solid 52 arranged inside the first solid 51, an additional solid 53 arranged inside the second solid 52, and the size of these solids. Is smaller as it is arranged inside each solid, that is, inside the annular portion of the segment of each solid arranged in a ring.
  • the shape grasped in the cross-sectional direction orthogonal to the central axes 57, 58, and 272 of each solid is a regular tetragon, which are similar to each other.
  • the central axes 57, 58, and 272 of each solid are on the same straight line, and are arranged so that the sides of the regular square in each solid are not parallel.
  • the second solid 52 is arranged in the hollow portion 261 inside the first solid 51, and in the second inner arrangement step, the hollow portion inside the second solid 52 is arranged.
  • An additional solid 53 may be arranged at 262.
  • the shape in which the second solid 52 is arranged inside the first solid 51 and the additional solid 53 is arranged inside the second solid 52 is fixed to the primary coil 11 as a secondary shape.
  • the heating conditions are the same as in the first embodiment.
  • a three-dimensional three-dimensional secondary shape is imparted to the primary coil 11 as shown in FIG.
  • the mandrel 300 shown in FIG. 12 is arranged in a line in the order of the first three-dimensional forming unit 31, the second three-dimensional forming unit 32, and the additional three-dimensional forming unit 33. That is, the size of each three-dimensional forming unit decreases in this order.
  • the present invention is not limited to this. For example, the largest one may be arranged at the center, and the smallest one may be arranged at the center.
  • the three-dimensional forming units are arranged in a line in the order of the first three-dimensional forming unit 31, the second three-dimensional forming unit 32, and the additional three-dimensional forming unit 33.
  • the present invention is not limited to this, and the first three-dimensional forming portion may be provided in the center, and the primary coil may be wound from the center portion. In this case, when moving from the second three-dimensional forming unit to the additional three-dimensional forming unit, the first three-dimensional forming unit is routed, but this portion can function as a connecting element.
  • the procedure for winding the primary coil around the mandrel is arbitrary, and FIGS. 4 to 6, 9, and 13 It is not limited to the procedure mentioned.
  • the mode of winding around one bar by one winding is as follows: 3/8 arc, semi-arc, 3/4 arc, round winding It is not limited to a single circle formed by turning, but may be an arc of another length, a single and a half circle formed by winding one and a half turns, a double or more circle formed by winding two or more turns, etc. May be.
  • the present invention is not limited to this, and there may be a rod-shaped portion around which the primary coil is not wound.
  • the mandrels 30, 301, and 300 as shown in FIGS. 3, 9, and 12 are used, when one of the four rod-shaped portions of a certain three-dimensionally formed portion is not wound with a primary coil, A triangular cylindrical solid is formed.
  • the first solid is formed by one mandrel having a first solid formation portion, a second solid formation portion, and an additional solid formation portion formed as necessary, as shown in FIGS. 3, 9, and 12.
  • the formation process and the second solid formation process, or the first solid formation process, the second solid formation process, and the additional solid formation process are performed, but the present invention is not limited thereto, and two or more mandrels corresponding to each process are used. You may perform each solid formation process.
  • a desired secondary shape is formed on the midway-shaped coil by performing a heat treatment that heats the midway-shaped coil after completion of the inner-side placement step of the first embodiment or the second inner-side placement step of the second embodiment. It is fixed.
  • a secondary shape maintaining jig for fixing the secondary shape may be used.
  • the shape and structure of the secondary shape maintaining jig are not particularly limited as long as the shape of the intermediate shape coil provided with the secondary shape after the inner placement step or the second inner placement step can be maintained during the heat treatment.
  • bore part corresponding to the secondary shape provided to the middle shape coil is mentioned.
  • the shape of the lumen portion of the mold may be determined according to the secondary shape, and examples thereof include a polyhedron such as a prismatic shape and a regular polyhedron, and a cylindrical shape.
  • FIG. 16 shows an aneurysm in which the in-vivo indwelling member 132 is formed in the mother blood vessel 72 by using the delivery catheter 73 that carries the in-vivo indwelling member 132 having the secondary coil (13, 130, 131, 133) described above. It is sectional drawing which showed typically the state at the time of inserting in 71 inside.
  • the in-vivo indwelling member 132 is shown as a smooth surface, omitting the coil shape of the primary coil (11, 11a) as shown in FIGS. 1C and 1D.
  • the in-vivo indwelling member 132 is placed in the aneurysm 71 generated in the mother blood vessel 72 in the living body through the delivery catheter 73, thereby embolizing the aneurysm 71. Therefore, the in-vivo indwelling member 132 is also referred to as a vascular embolization coil.
  • the in-vivo indwelling member 132 is detachably connected to the distal end portion of the delivery wire 74.
  • the connection method of the delivery wire 74 and the in-vivo indwelling member 132 is performed by a usual method.
  • the in-vivo indwelling member 132 connected to the distal end portion of the delivery wire 74 is inserted into the lumen portion 75 of the delivery catheter 73.
  • the in-vivo indwelling member 132 is in the state of a primary coil (11, 11a) extended linearly as shown in FIG. 1C or FIG. 1D.
  • the in-vivo indwelling member 132 By operating the proximal end (not shown) of the delivery wire 74, the in-vivo indwelling member 132 is released from the distal end opening 76 of the delivery catheter 73 and inserted into the aneurysm 71. As shown in FIG. 7D, FIG. 8A, FIG. 11, and FIG. 15, the in-vivo indwelling member 132 is sequentially released from the released portion inside the aneurysm 71 when released from the distal end opening 76 of the delivery catheter 73. It becomes a three-dimensional secondary shape (13, 130, 131, 133). That is, the in-vivo indwelling member 132 is restored from the primary shape to the secondary shape.
  • this tertiary The originally arranged portion is first inserted into the aneurysm, and a spiral-shaped portion continuing from a circle corresponding to the portion formed from the small diameter portion 333 to the tapered portion 334 of the mandrel 301 serves as an anchor in the aneurysm. It becomes easy to be fixed to the wall of the knob and the insertion of the remaining primary coil into the knob is facilitated.
  • connection between the delivery wire 74 and the in-vivo indwelling member 132 is released by a conventional method, so that the three-dimensional secondary shape (13, 130) shown in FIGS. 7D, 8A, 11, and 15 is used. , 131, 133) is placed inside the aneurysm 71.

Abstract

線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイル(13)を有する生体内留置部材の製造方法にあって、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記一次コイルの一部を立体的に配置した第一立体(51)を形成する第一立体形成工程と、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一立体(51)を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体(52)を形成する第二立体形成工程と、上記第一および第二立体のうち一方の立体を他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する内側配置工程と、を含む生体内留置部材の製造方法により、複雑に拡がる三次元形状の二次コイルを有する生体内留置部材、及び、このような生体内留置部材を簡便に製造できる製造方法を提供することができる。

Description

生体内留置部材およびその製造方法
 本発明は、生体内留置部材およびその製造方法に関し、例えば、二次コイルを用いた生体内留置部材およびその製造方法に関する。
 血管に生じた動脈瘤等の治療では、金属で形成されたコイルを動脈瘤に埋めることで、その動脈瘤を血栓化させて破裂を防止する手技が採用される。このような生体内留置部材である金属コイルとしては、白金等のワイヤーをコイル状にして線状に延びるように形付けした一次コイルを、さらに、コイル状にして線状に延びるように形付けした二次コイルが用いられる。そして、金属コイルは、線状に伸ばした一次コイルの状態で、搬送用のカテーテルの内腔に挿入されて目的部位に搬送され、カテーテルから排出されると、二次コイルの状態に復元する。
 動脈瘤を血栓化させる場合、動脈瘤の内部にて、金属コイルは1カ所にかたまらず、様々な方向に広がると、治療に有利とされる。そのため、金属コイルに付与される二次形状(二次コイルの形状)は、上記のようなコイル状で線状に延びる二次元的な形状ではなく、複雑に拡がりやすい三次元形状であると望ましい。そのため、このような三次元形状を有する二次コイルが提案されている。
 例えば、特許文献1には、実質的に球形あるいは楕円球形状の二次コイルおよびその作製方法が開示されている。この二次コイルは、実質的に球形あるいは楕円球形のコア上に一次コイルを巻き付け加熱成形することで成形される。
 また、特許文献2には、球形状の二次コイルの作製方法が開示されている。この二次コイルは、球形状のコアの表面上に1つ以上の金属ロッドを半径方向に立てたマンドレルにコイルを巻き付け、成形される。また、「キャンディー鋳型」タイプの用具を用いて二次形状を付与する方法も開示されている。この方法では、球形状の内腔内でコイルを成形することで球形状の二次コイルを得ている。
 また、特許文献3には、球形状の二次コイルの作製方法が開示されている。この二次コイルは、表面に一次コイルをはめ込むための溝が掘られた球形状の心棒の溝部分に一次コイルをはめ込むことで、成形される。
 また、特許文献4では、三次元直行形状をもつ二次コイルおよびその作製方法が開示されている。この二次コイルは、三次元直行形状のマンドレルに巻き付けて加熱することで、成形される。
特許第3665133号公報 特許第3024071号公報 特許第4065665号公報 特表2004-500929号公報
 しかしながら、特許文献1に記載のある実施形態のように、一次コイルを巻き付けるコアの表面が平滑な曲面の場合は、巻き付ける際に一次コイルが外表面上を滑ってしまうため、成形が困難である。また、特許文献1に記載の他の実施形態や特許文献3に記載の実施形態のように、球形状のコアの表面に複雑な溝を設けた場合は、球形状の表面の複雑な溝に沿って一次コイルを嵌め込むことは必ずしも容易ではない。また、動脈瘤等と同じ大きさ、すなわち直径1mmから30mm程度のコアに溝を設けることは必ずしも容易ではない。特に直径1~10mm程度のコアの場合は、極めて困難であると考えられる。
 特許文献2に記載のある実施形態のように、球形状のコアの表面上に1つ以上の金属ロッドを半径方向に立てたマンドレルを作製可能な場合は、一次コイルをコアの曲面上に巻き付けて固定することは、上記のコアの溝に嵌め込む場合に比べれば比較的容易であると考えられるが、動脈瘤等と同じ大きさ、すなわち直径1mmから30mm程度の球形状のコアに金属ロッドを配置することは必ずしも容易ではない。特に直径1~10mm程度のコアの場合は、極めて困難であると考えられる。
 特許文献2に記載の「キャンディー鋳型」タイプの用具を用いる製造方法では、鋳型内腔内での一次コイルの配置が常にランダムとなり、同一形状のコイルを製造することは極めて困難であり、品質管理も困難であると考えられる。
 特許文献4に記載の製造方法では、単一の三次元直交形状のマンドレルを用いるため、このマンドレルに一次コイルを巻き付けて固定することは、特許文献1~3に記載の方法よりも容易であり、同一形状を付与することは可能ではある。しかし、この製造方法で得られる形状は単純な立方体形状で、複雑に広がる三次元形状の二次コイルを作製することができない。
 本発明は、上記の問題点を解決するためになされたものである。そして、その目的は、複雑に拡がる三次元形状の二次コイルを有する生体内留置部材、及び、このような生体内留置部材を簡便に製造できる製造方法を提供することにある。
 本発明者は、上記課題に鑑みて鋭意検討を行った結果、下記の構成により上記目的を達成可能であることを見出した。本発明の要旨は以下のとおりである。
 本発明の第一は、線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材の製造方法にあって、
 少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記一次コイルの一部を立体的に配置した第一立体を形成する第一立体形成工程と、
 少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する第二立体形成工程と、
 上記第一および第二立体のうち、一方の立体を他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する内側配置工程と、
 を含む生体内留置部材の製造方法に関する。
 また、本発明の第二は、線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材の製造方法にあって、
 少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記一次コイルの一部を立体的に配置した第一立体を形成する第一立体形成工程と、
 少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する第二立体形成工程と、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一および第二立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した追加立体を形成する追加立体形成工程と、
 上記第一立体、第二立体および追加立体のうち、何れか一の立体を、残りの二の立体のうちの一の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する第一内側配置工程と、
 第一内側配置工程において内側に配置されている立体の環状に並べられた複数のセグメントの環状部分の内側に、残りの一の立体を配置する、又は、残りの一の立体の環状に並べられた複数のセグメントの環状部分の内側に、第一内側配置工程後の二つの立体を配置する第二内側立体配置工程と、を含む生体内留置部材の製造方法に関する。
 また、本発明に係る製造方法では、上記の立体の大きさが上記の環状に並べられたセグメントの環状部分の内側に配置されるものほど小さいことが望ましい。
 また、本発明に係る製造方法では、前記の立体が、複数のセグメントを環状に並べた多角形の筒状に形成されており、かつ、その多角形の形状が、筒状に形成された立体の中心軸に対して直交する断面方向で把握される形状において、立体同士で相似関係にあるのが望ましい。
 また、本発明に係る製造方法では、上記の多角形の筒状に形成された立体同士を、隣接する立体の中心軸同士が交差又はねじれの位置の関係になるように配置してもよい。
 また、本発明に係る製造方法では、上記の多角形の筒状に形成された立体同士を、その中心軸が同軸または平行になるように配置し、かつ、隣接する立体同士において、上記多角形の各辺が平行ではないように配置してもよい。
 また、本発明に係る製造方法では、上記セグメントの形状が多角形、折れ線、円弧、円形、楕円弧、楕円形および螺旋形状から選択される少なくとも一種であることが望ましい。
 また、本発明に係る製造方法では、上記セグメントを構成する一次コイルが、二次元的又は三次元的に配置されるのが好ましい。
 また、本発明に係る製造方法では、上記セグメントは、マンドレルに対する少なくとも1回の一次コイルの巻き回しにより形成されるのが好ましい。また、この場合、マンドレルは、一次コイルを巻き回し可能な棒状部が環状に配置されている部分が少なくとも2つ連設された構造を有するのが好ましい。
 本発明の第三は、線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材にあって、
 上記一次コイルの一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの一部が立体的に配置された第一立体と、
 上記第一立体が形成された一次コイルの残部の少なくとも一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの当該残部の少なくとも一部が立体的に配置された第二立体とを含み、
 上記第一および第二立体のうち、一方の立体が他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置されている生体内留置部材に関する。
 また、本発明に係る生体内留置部材では、上記第一及び第二立体を形成した一次コイルの残部の少なくとも一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの当該残部の少なくとも一部が立体的に配置された追加立体をさらに含み、
 上記第一、第二および追加立体のうち、いずれかの立体における複数のセグメントを並べて形成された環状部分の内側に残りの一方の立体が配置され、かつ、残りの他方の立体が当該残りの一方の立体の環状部分の内側に配置されていても構わない。
 また、本発明に係る生体内留置部材では、上記の立体の大きさが上記の環状に並べられたセグメントの環状部分の内側に配置されるものほど小さいことが好ましい。
 また、本発明に係る生体内留置部材では、上記の立体が、複数のセグメントを環状に並べた多角形の筒状に形成されており、かつ、その多角形の形状が、筒状に形成された立体の中心軸に対して直交する断面方向で把握される形状において、立体同士で相似関係にあるのが好ましい。
 また、本発明に係る生体内留置部材では、隣接する上記の立体の中心軸同士が交差又はねじれの位置の関係にあってもよい。
 また、本発明に係る生体内留置部材では、上記の多角形の筒状に形成された立体同士が、その中心軸が同軸または平行に配置されており、かつ、隣接する立体同士において、上記多角形の各辺が平行ではないように配置されていてもよい。
 また、本発明に係る生体内留置部材では、上記セグメントの形状が多角形、折れ線、円弧、円形、楕円弧、楕円形および螺旋形状から選択される少なくとも一種であることが好ましい。
 上記セグメントを構成する一次コイルが、二次元的又は三次元的に配置されていることが好ましい。
 本発明によれば、複雑に拡がる三次元形状の二次コイルを有する生体内留置部材、及び、このような生体内留置部材を簡便に製造できる製造方法を提供することができる。
ワイヤーの平面図である。 一次形状付与用のマンドレルを示す平面図である。 一次コイルの一形態を示す平面図である。 別の形態の一次コイルを示す平面図である。 4つの円形セグメントが環状に並べられて立体的に配置された立体をモデルとして模式的に示す斜視図である。 図2Aに示す立体の各セグメントの立体配置を立方体の仮想モデルとして模式的に示す斜視図である。 図2Aの立体又は図2Bの立方体を中心軸方向から正面視した時の正面図である。 本発明に係る生体内留置部材の製造方法で使用可能なマンドレルの一例を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における第一立体形成工程の初期の状態を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における第一立体形成工程を経た後の状態を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における第二立体形成工程を経た後の状態を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における内側配置工程において、第一立体と第二立体の初期の配置状態を示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における内側配置工程において、第一立体の環状部分の内側に第二立体を配置している途中の状態を示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における内側配置工程において、図7Bに示す状態の後の、第一立体の環状部分の内側に第二立体を配置している途中の状態を示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における内側配置工程において、第一立体の環状部分の内側に第二立体を配置した時の状態、又は、最終的に得られる二次コイルの形状、構造を模式的に示す斜視図である。 図7Dにおける第一立体と第二立体の位置関係を説明するための説明図である。 本発明に係る生体内留置部材の製造工程の一例における内側配置工程において、第一立体の環状部分の内側に第二立体を配置した時の他の状態を示す斜視図である。 図8Aにおける第一立体と第二立体の位置関係を説明するための説明図である。 本発明に係る生体内留置部材の製造方法の一例において、マンドレルの他の例を用いて行った第二立体形成工程を経た後の状態を模式的に示す斜視図である。 図9に示すマンドレルの他の例を用いて行った第二立体形成工程を経た後に行う内側配置工程において、第一立体と第二立体の初期の配置状態を示す斜視図である。 図9に示すマンドレルの他の例を用いて行った第二立体形成工程を経た後に行う内側配置工程において、第一立体の環状部分の内側に第二立体を配置した時の状態、又は、最終的に得られる二次コイルの形状、構造を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例で使用可能なマンドレルのさらに他の例を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における追加立体形成工程を経た後の状態を模式的に示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における第一内側配置工程において、第一立体、第二立体及び追加立体の初期の配置状態を示す斜視図である。 本発明に係る生体内留置部材の製造方法の一例における第二内側配置工程を経た後の第一立体、第二立体及び追加立体の配置状態、又は、最終的に得られる二次コイルの形状、構造を模式的に示す斜視図である。 動脈瘤に生体内留置部材を挿入している途中の状態を模式的に示す断面図である。
 以下、本発明の実施形態について、図面に基づいて説明する。なお、便宜上、図面において符号を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されていることもある。
 本発明において、一次形状とは、線材に最初に付与された形状を意味する。例えば、図1Aに示されるような単線の線材であるワイヤー10が図1Bに示されるような直線状の棒状部材であるマンドレル14等に巻き付けられることで最初に付与される、例えば、図1Cや図1Dに示すような螺旋形状を意味する。なお、例えば、図1C、1Dに示す螺旋形状の一次形状が付与されたワイヤー10は、一次コイル11、11aと称される。
 後述する途中形状とは、一次コイルが、第一立体形成工程と第二立体形成工程を経ることで付与される形状、及び、必要に応じて行われる追加立体形成工程を経て付与される形状を意味する。例えば、図7Aに示す第一立体51と第二立体52、あるいは、図14に示す第一立体51と第二立体52と追加立体53を有するように一次コイル11、11aが形状付けされており、各々の立体がいずれも他の立体の外部に配置されている形状を意味する。なお、例えば、図7A及び図14に示す途中形状を付与された一次コイル11、11aは、途中形状コイル(12、120)と称される。
 本発明において、二次形状とは、第一立体形成工程及び第二立体形成工程、又は、これらに必要に応じて行われる追加立体形成工程を経て付与される形状を有する一次コイルが、それぞれ内側配置工程、又は、第一及び第二内側配置工程を経て付与される形状を意味する。例えば、上述の図7A又は図14に示す途中形状コイル(12、120)が、それぞれ図7D又は図15に示すようにさらに形状付けされた最終的な形状を意味する。なお、例えば、途中形状コイル(12、120)に図7D、図8A又は図15に示す二次形状が固定され、付与された一次コイル(11、11a)は、二次コイル(13、130、131)と称される。
 第一立体、第二立体及び追加立体の形成において、セグメントを複数環状に並べて一次コイルを立体的に配置するとは、コイル状で線状に延びる形状(例えば一次コイルを巻き回した図1C、Dのようなコイル形状)以外の立体的な形状に一次コイルを配置することを意味する。
 また、セグメントを構成する一次コイルが二次元的に配置されるとは、1つのセグメントにおける一次コイルが同一平面上に存在することを意味する。ここで、同一平面上には、完全に一平面上に存在する場合だけでなく、実質的に同一平面とみなし得る場合を含む。
 セグメントを構成する一次コイルが三次元的に配置されるとは、1つのセグメントにおける一次コイルが、同一平面上ではなく、1つのセグメント全体として三次元構造を形成するように配置されることを意味する。1つのセグメントの構造としては、コイル状で線状に延びる形状も、三次元的な配置に含まれる。 
 筒状に形成された立体の中心軸に対して直交する断面方向で把握される形状とは、一次コイルの断面だけを意味するのではなく、一次コイルの巻き回しによりにより形成されるセグメントから把握される形状を意味する。
 ある立体が他の立体の環状に並べられた複数のセグメントの環状部分の内側に配置されているとは、ある立体が他の立体の環状部分の内側に配置された結果生じた状態を意味し、内側に配置された立体を構成する一次コイルが、環状部分の外側に全く飛び出していないことを意味するものではなく、生体内留置部材の機能を妨げない範囲で飛び出していてもよい。
 [実施の形態1]
 本発明で使用する、線材に一次形状が付与された線状の一次コイルについて説明する。
 まず、本発明で使用する一次コイルは、例えば、図1Aに示されるような、線材であるワイヤー10に一次形状を付与して形成される。このワイヤー10は線状部材(線材)である。線材の構造としては、螺旋状に巻き回してコイル形状を形成することが可能であれば特に限定はなく、単線でも良いし、複数の単線を撚って一本の線材にした撚り線であってもよい。また、線材の形状としては、全体として直線状に形成されていればよく、また、長さ方向に直交する断面形状は、円形、楕円、長方形等の多角形等適宜選択することができる。撚り線の場合も、撚り線全体がこのような形状を有しておればよい。図1Aに示すワイヤー10は、図示しないが、断面が円形で直線状に延び得る単線である。
 線材を構成する材料としては特に限定はなく、例えば、プラチナ、タングステン、金、ステンレス鋼、または、タングステンとプラチナとの合金が挙げられる。なお、これら材料は、放射線不透過性材料である。また、線材の幅あるいは直径は、用途等に応じて適宜選択可能であり、特に限定されるものではないが、例えば、動脈瘤閉塞の治療に用いる場合は、好ましくは0.010mm以上0.200mm以下、より好ましくは、0.030mm以上0.100mm以下である。
 上述したワイヤー10等の線材に一次形状を付与して一次コイルが得られる。このような一次コイルは、例えば図1Bに示されるマンドレル14に対して、上述のワイヤー10を巻き付けることで形成される。マンドレルの形状、構造は、線材を巻き付けることが可能で、所望の一次コイルの形状に応じて適宜選択可能である。例えば、図1Bに示す例では、円柱又は円筒状で、実質的に外径が長さ方向で一定の直線状の棒状部材である。これ以外にも、外径を長さ方向で変化させたもの、角柱状のもの、断面形状が多角形の角筒状のもの等が挙げられる。マンドレルの形状や、マンドレルに対する線材の巻き付け方を適宜選択することで、例えば、図1Cや図1Dに示すように、ワイヤー10が螺旋状に巻き回されて外径が一定のコイル形状の一次形状が付与された一次コイル11、11aが得られる。一次コイルの形状は、線状であるとよい。ここで、線状とは、線材が螺旋状に形成された部分が、連続して線状に延びた構造を有していることを意味する。例えば、図1Cや図1Dに示すような全体として線状の構造が挙げられる。図1Cや図1Dに示されるような一次コイル11、11aの外径あるいは幅は、用途等に応じて適宜選択可能であり、特に限定されるものではないが、例えば動脈瘤閉塞の治療に用いる場合は、0.100mm以上0.500mm以下が好ましい。また、一次コイル11の全長も、同様に、用途等に応じて適宜選択可能であり、特に限定されるものではないが、例えば、動脈瘤閉塞の治療に用いる場合は、10mm以上1000mm以下が好ましい。
 一次コイルのピッチ間隔は特に限定はない。たとえば、図1Cに示すように、隣接するワイヤー10同士が密着していてもよいし、図1Dに示すように、隣接するワイヤー10同士の間に間隔があいていてもよい。また、一次コイル11の長さ方向の全長にわたって、ワイヤー同士が密着していてもよいし、ワイヤー同士の間に間隔があいていてもよいし、一次コイルの長さ方向において、一次コイルのピッチ間隔が密着している部分と、一次コイルのピッチ間隔があいている部分が、それぞれ1つ以上存在していてもよい。
 本発明の生体内留置部材は、一次コイルの一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの一部が立体的に配置された第一立体、及び、上記第一立体が形成された一次コイルの残部の少なくとも一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの当該残部の少なくとも一部が立体的に配置された第二立体、を有する。
 第一立体及び第二立体は、一次コイルの一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの一部が立体的に配置されている点で構造的な共通点を有する。そこで、この構造的特徴をまとめて説明することとする。
 複数のセグメントが環状に並べられて立体的に配置された立体の実施形態について、図2A~2Cに示したモデルに基づき説明する。図2Aは、4つの円形のセグメント(21a、21b、21c、21d)が環状に並べられて立体的に配置された立体20をモデルとして示す斜視図である。図2Bは、図2Aに示す立体20の各セグメントの三次元の立体配置を立方体のモデルとして説明するための図である。図2A~2Cでは、各セグメントをモデルとして説明するために線で示したが、上述した一次コイルの一部に対する少なくとも1回の巻き回しで形成されたものに対応する。
 図2Aに示す立体20の4つの各セグメント(21a、21b、21c、21d)は、図2Bに示すように、モデルとしての立方体22の4つの各側面(23a、23b、23c、23d)を構成するように環状に配置されている。
 図2A、図2Bに示す例では、各セグメント(21a、21b、21c、21d)は立方体22の4つの側面を構成するように配置されて環状部分21を構成する。環状部分21は線状(ひとつなぎ状)に並ぶ各セグメントによる一回巻きの環状になっている。一方、立方体22の上面24及び下面25はモデルとして存在するが、立体20の立方体22の上面24及び下面25に対応する部分には、セグメントが配置されていない。本発明では、このセグメントが配置されていない部分を開口部と称する。この開口部は、例えば図2Aのセグメント21aにおける円形の一次コイルで囲まれた部分の空間部分とは異なるものである。
 環状部分は、各セグメントが環状に並べられる方向(環状に並べられることで生じる面)に対して直交する方向に中心軸を有する。図2A、図2Bに示す例では、各セグメント(21a、21b、21c、21d)が並べられる方向、即ち、立方体22の各側面(23a、23b、23c、23d)が並べられる方向に対して直交する方向に環状部分21の中心軸27が形成される。ここで、各セグメントが環状に並べられる方向に直交する方向とは、厳密に直交する場合に限らない。
 このように、図2Aに示す立体20は、各セグメントが環状に並べられた筒状の環状部分21を有し、環状部分21の内側には、環状部分21の中心軸27方向の両端で開口する中空部26が形成される。そして、後述するように、この開口する開口部から中空部26に他の立体が配置され得る。
 立体20の中心軸27の方向、即ち、立方体22の上面24または下面25の側から、図2A又は図2Bに示す立体20又は立方体22を正面視した場合、図2C(上面24側からの正面視)に示すように、4つのセグメント(21a、21b、21c、21d)又は4つの側面(23a、23b、23c、23d)から形成される環状の正四角形が把握される。即ち、立体20は、各セグメント(21a、21b、21c、21d)により形成された環状部分21が正四角形の筒状に形成されている。この時、環状部分21は、中心軸27に対して直交する断面方向で把握される形状も同様に正四角形となる。ここで、中心軸に対して直交する断面方向で把握される形状とは、各セグメントを構成する一次コイルのみから把握される断面形状ではなく、一次コイルを含む環状部分21の全体から把握される形状を仮定した時に把握される形状を意味する。例えば、図2Bに示す立方体22の側面(23a、23b、23c、23d)の全体の形状を意味する。
 尚、以下では、図2Aに示すように、立体20の2つの開口部に、図2Bの上面24及び下面25に対応する上開口面24a及び下開口面25aを仮想して説明する場合がある。開口面24a、25aは、中心軸27に直交する。
 図2Aに示す例では、各セグメント(21a、21b、21c、21d)の形状は、全て円で示されているが、これに限定されるものではなく、例えば、円形、円弧、楕円形、楕円弧、多角形、折れ線、螺旋形状等が挙げられる。このうち、動脈瘤の内壁面形状に近い形状である円形、円弧、楕円形、楕円弧、渦巻き形状および螺旋形状から選択される少なくとも一種が好ましい。各セグメントの形状は、同一でも異なっていてもよい。セグメントが例えば円弧等のように一次コイルで閉じた面を形成しない場合でも、円弧等が存在する平面を仮想して同様に考えることとする。また、図2Aの各セグメント(21a、21b、21c、21d)の大きさは、全て同じであるが、これに限らず、異なっていてもよい。また、図2Aのセグメントの数は4つであるが、セグメントを環状に並べることができれば、特に限定はない。ただし、後述のマンドレル30の製造の容易性の観点からは、セグメントの数は3以上6以下が好ましい。環状部分の中心軸に対して直交する断面方向で把握される形状は、セグメントの数に応じた多角形とすることができる。例えばセグメントの数が3つである場合、環状部分の中心軸に対して直交する断面方向で把握される形状は、三角形となる。なお、多角形は正多角形であってもよいし、正多角形でなくてもよい。
 図2Aに示す例では、各セグメントを構成する一次コイルは二次元的に、即ち、同一平面上に配置されているが、三次元的に配置されていてもよい。三次元的に配置された形状としては、螺旋形状等が挙げられる。また、螺旋形状としては、一次コイルが、一巻き未満でもよいし、一巻きでも良いし一巻きを超えてもよい。また、二次元面における巻き回す径や幅、または、三次元の方向の一次コイルの間隔(ピッチ)は、一定でも良いし、変化してもよい。この場合の各セグメントも、上述の形状、即ち、円形、円弧、楕円形、楕円弧、多角形、折れ線、渦巻き形状、螺旋形状等の形状の一次コイルを連続させて三次元的に配置して形成されるのが好ましい。
 また、各セグメントは全て二次元的な一次コイルの配置でも良いし、全て三次元的な一次コイルの配置でも良いし、二次元的な配置と三次元的な配置を組み合わせてもよい。
 尚、図2A~Cでは、各セグメントが、いずれも、一次コイルが二次元的に配置されている場合を例にして説明したが、三次元的な配置の場合についても、概ね、同様に考えることができる。例えば、環状に並べられた複数のセグメントの環状部分の内側に面する部分にモデルとしての仮想面を想定し、その仮想面を基準にして、図2A~Cと同様に考えることとする。
 図2Aに示す例では、立体20を構成する各セグメント(21a、21b、21c、21d)の配置、換言すれば、環状部分21の全体構造は、図2Bに示す立方体22の側面により形成される正四角形の筒状体であるが、本発明ではこれに限定することなく、例えば、多面体の筒状体、円筒体、楕円筒体などが挙げられる。より具体的には、多面体の筒状体としては、中心軸方向に大きさが一定の又は変化する断面多角形の筒状体、その断面多角形が正多角形である筒状体、正八面体以上の面数の正多面体の筒状体等が挙げられる。円筒体としては、直管状の筒状体、円錐台状の筒状体、俵状の筒状体等が挙げられる。
 本発明では、各セグメントにより構成される環状部分は、上述した一次コイルを1本用い、一次コイルの長さ方向の重なりが抑制された一筆書きで形成されるのが好ましい。これにより、後述するように、第一および第二立体のうち、一方の立体が他方の立体の環状部分の内側に容易に挿入することができる。また、瘤内に挿入された時に、一次コイルの偏りなく複雑に広がる三次元形状の立体を形成することができる。また、従来のような複雑な溝構造を有するマンドレルを使用する必要がない。
 本発明における第一立体及び第二立体は、上述したように、一次コイルの一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの一部が立体的に配置されている。そして、上述したように、例えば図2A~図2Cに示す例のような立体構造を有する第一立体及び第二立体のうち、一方の立体が他方の立体の環状部分21の内側の中空部26に配置されている。この詳細については後述する。
 図3から図11に基づき、本発明に係る生体内留置部材及びその製造方法の一実施形態を説明する。尚、図3から図8Bでは、線材を用いてコイル状に形成された線状の一次コイルを簡略化のため線材によるコイル形状を省略し、平滑面で示している。
 本発明では、上述したような一次コイルを使用して、まず、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて一次コイルの一部を立体的に配置した第一立体を形成する(第一立体形成工程)。そして、この第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する(第二立体形成工程)。
 本発明では、これらの工程は、例えばマンドレルに対する一次コイルの巻き回しにより行われるのが好ましい。また、マンドレルに対する少なくとも1回の一次コイルの巻き回しにより各セグメントが形成されるのがより好ましい。
 図3は、本例で使用可能なマンドレルの一例を模式的に示した斜視図である。図3に示すマンドレル30は、第一立体51(図6参照)を形成する第一立体形成部31と第二立体52(図6参照)を形成する第二立体形成部32とを有し、これらが連設されている。第一立体形成部31は、4つの第一棒状部(31a、31b、31c、31d)を有し、各第一棒状部(31a、31b、31c、31d)は、各第一棒状部の軸方向が放射方向を向くように環状に配置され、交差部分で一体化されている。第二立体形成部32は、4つの第二棒状部(32a、32b、32c、32d)を有し、各第二棒状部(32a、32b、32c、32d)は、各第二棒状部の軸方向が放射方向を向くように環状に配置され、交差部分で一体化されている。そして、本例では、第一立体形成部31の4つの第一棒状部のうちの一つの第一棒状部31bと、第二立体形成部32の4つの第二棒状部のうちの一つの第二棒状部32dとで連結されている。また、両者は、第一棒状部31b、31dと第二棒状部32b、32dの軸方向の中心軸が一致するように連設されている。第一立体形成部31及び第二立体形成部32は、上述したように図2Aに示す立体20の構造を形成する場合の例であり、第一棒状部(31a、31b、31c、31d)及び第二棒状部(32a、32b、32c、32d)は十字状に直交するように配置され、いずれも断面円形である。
 第一立体形成部及び第二立体形成部の構造は、所望の第一及び第二立体の形状に応じて適宜選択することができる。これらの立体の形状は、上述したとおりである。第一棒状部(31a、31b、31c、31d)及び第二棒状部(32a、32b、32c、32d)の軸方向に直交する方向の幅又は外径は、生体内留置部材の用途、第一立体及び第二立体の形状、構造に応じて適宜選択可能であり、例えば、動脈瘤閉塞の治療に用いる場合、1mm以上30mm以下が好ましい。なぜなら、マンドレル30の棒状部の径は、そのまま二次コイルにおける1つのセグメントのループのサイズを決定付けるため、このループ径が動脈瘤径(1~30mm)と同程度であると好ましいためである。
 第一立体形成部と第二立体形成部の大きさ、即ち、棒状部の幅ないし外径及び棒状部の交差部分の大きさは、後述するように、第一および第二立体のうち、一方の立体を他方の環状部分の内側に配置し易くする観点からは、異なることが好ましい。
 また、第一立体形成部と第二立体形成部とは、そこに形成されるそれぞれ第一立体と第二立体が多角形の筒状に形成される場合、後述する内側配置工程後に安定して構造を維持できる観点から、第一立体と第二立体の中心軸に対して直交する断面方向で把握される多角形の形状が相似関係になるような構造であるのが好ましい。
 図3に示すマンドレル30の例では、第一立体形成部31の4つの第一棒状部(31a、31b、31c、31d)はいずれも同じ外径で、第二立体形成部32の4つの第二棒状部(32a、32b、32c、32d)はいずれも同じ外径であるが、第一棒状部(31a、31b、31c、31d)の外径は、第二棒状部(32a、32b、32c、32d)の外径よりも大きくなっている。このため、第一立体形成部31は第二立体形成部32より大きく、したがって、そこに形成される第一立体51及び第二立体52の大きさに関しては、第一立体51のほうが第二立体52より大きくなる。また、第一立体形成部31と第二立体形成部32の一次コイル11が巻き回される部分の形状は、第一及び第二棒状部の中心軸を含む平面において把握される多角形は、正四角形で相似関係になっており、そこに形成される第一立体51及び第二立体52は相似関係になる。
 図3に示すマンドレル30に、例えば図1Cに示す一次コイル11を巻き回す場合を例にして、第一立体形成工程及び第二立体形成工程の例を説明する。
 第一立体形成工程では、作業性の観点から、まず、一次コイル11の内腔に、一次コイル11の全長よりも長い芯線38を挿通するのが好ましい。そこで、芯線を用いる場合について説明する。芯線を挿通した後、作業性の観点から、芯線38の一方端をマンドレル30の所望の位置に固定するのが好ましい。図4に示す例では、マンドレル30の第一棒状部31aの周面上の符号39に示す芯線固定位置(第一棒状部31aの図4の配置における最上部)に固定している。固定の仕方は、一次コイル11の巻き回しに支障を来さない限り、特に限定はなく、例えば、テープによる貼り付けによる固定、第一棒状部31a表面に予め設けられたクリップやネジなどの固定具を用いた固定などが挙げられる。次に、第一立体形成部31の所望の位置に一次コイル11の一方端40が位置するように、マンドレル30の第一立体形成部31に芯材38を巻き付ける。図4に示す例では、一次コイル11の一方端40は、第一棒状部31a、31bの周面上の符号35に示す巻き始め位置(符号39で示す芯線固定位置から90度程度、第二立体形成部32側に移動した位置。)に配置されている。
 そして、第一立体形成部31の巻き始め位置35に最も近接する第一棒状部(31a又は31b)に一次コイル11を巻き付ける。本例では、第一棒状部31bの図4下側の周面に沿って一次コイル11を巻き回す。一次コイル11をマンドレル30に巻き付ける際の操作は、一次コイル11の図示しない他方端から外側に延びる芯線38に、例えば錘をつり下げ張力をかけた状態にて、マンドレル30を移動させることで行える。
 第一棒状部31bの図4下側において、巻き始め位置35から第一棒状部31bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部31bと第一棒状部31cとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、第一棒状部31cの図4上側の周面に沿って一次コイル11を巻き回す。
 第一棒状部31cの図4上側において、第一棒状部31bと第一棒状部31cとの連続部分から第一棒状部31cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部31cと第一棒状部31dとの連続部分に到達する。そこで、一次コイル11の巻き付け方向を変え、第一棒状部31dの図4下側の周面に沿って一次コイル11を巻き回した後、続けて、第一棒状部31dの図4上側の周面に沿って一次コイル11を巻き回す。即ち、第一棒状部31dに対しては、第一棒状部31dの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、第一棒状部31dに対して連続して1回転一次コイル11を巻き回すと、第一棒状部31cと第一棒状部31dとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第一棒状部31cの図4下側の周面に沿って一次コイル11を巻き回す。
 第一棒状部31cの図4下側において、第一棒状部31cと第一棒状部31dとの連続部分から第一棒状部31cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部31bと第一棒状部31cとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第一棒状部31bの図4上側の周面に沿って一次コイル11を巻き回す。
 第一棒状部31bの図4上側において、第一棒状部31bと第一棒状部31cとの連続部分から第一棒状部31bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、巻き始め位置35に戻る。そこで、一次コイル11の巻き付け方向を変え、第一棒状部31aの図4下側の周面に沿って一次コイル11を巻き回した後、続けて、第一棒状部31aの図4上側の周面に沿って一次コイル11を巻き回す。即ち、第一棒状部31aに対しては、第一棒状部31aの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。このように、第一棒状部31aに対して連続して1回転一次コイル11を巻き回すと、巻き始め位置35に戻る。このようにして、第一立体形成部31に巻き回され、立体的(本例では立方体状)に配置された一次コイル11により、第一立体51が形成される。図5は、この時の状態を模式的に示した斜視図である。以上で、第一立体形成工程が終了する。
 このように、符号31a及び31dで示す第一棒状部では、1回の一次コイルの巻き回し、符号31b及び31cで示す第一棒状部では、2回の一次コイルの巻き回しが行われており、これらの各第一棒状部に配置されている一次コイル11により、対応する第一立体の各セグメントが形成されることになる。
 以上のようにして、本例では、一次コイル11は、一筆書きになるように第一立体形成部31に巻き回されている。また、第一立体形成部31における最後の巻き回しは、4つの第一棒状部のうち、第二立体形成部32に近接し、かつ、第一立体形成部31と第二立体形成部32が並ぶ方向に直交する軸方向を有する第一棒状部31aにおいて行われる。これにより、第一立体形成部31により形成されることになる第一立体と、第二立体形成部32により形成されることになる第二立体との切り替わり部分及びその近傍部分での一次コイル11の位置ずれが抑制され、第一立体と第二立体の形状を所望の形状に保持したマンドレル30への一次コイル11の巻き回しが容易になる。
 以上のように、一次コイル11が、巻き始め位置35の近接する第一棒状部に巻き回された後、さらに複数の第一棒状部に巻き回される時に、現在巻き付けられている第一棒状部と隣接する第一棒状部の連続部分に到達した時に、(i)隣接する第一棒状部に巻き回す方向を変え、隣接する第一棒状部に一次コイルを巻き付ける、(ii)現在巻いている第一棒状部にそのまま巻き付ける、のいずれかの選択を行い、隣接する第一棒状部又は現在巻いている第一棒状部に一次コイルを巻き付ける。そして、現在巻いている第一棒状部と隣接する第一棒状部の連続部分に一次コイルが到達する度に、上記選択を行い、マンドレル30の第一立体形成部31に一次コイル11を巻き付ける。
 第一立体形成工程が終了した後、第一立体51を形成した一次コイル11の残部を第二立体形成部32の第二棒状部(32a、32b、32c、32d)に巻き回し、この残部に第二立体を形成する第二立体形成工程を行う。図6は、第二立体形成工程を経た後の状態を模式的に示す斜視図である。
 第二立体形成工程では、まず、第一立体形成部31の第一棒状部31aの軸方向と平行な軸方向を有し、第一立体形成部31の巻き始め位置35に近接する、第二立体形成部32の第二棒状部32aに一次コイル11を巻き付ける。一次コイル11を巻き付ける際の操作は、第一立体形成工程と同様に、一次コイル11の図示しない他方端から外側に延びる芯線に張力をかけた状態で行うとよい。図6に示す例では、第一立体形成部31の第一棒状部31aの図4、6上側の周面に沿って一次コイル11を巻き回した後の一次コイル11が、第二立体形成部32の第二棒状部32aの図6下側の周面に沿って巻き回される。そして、第二棒状部32aの図6下側において、第二棒状部32aの軸方向に直交する方向に一次コイル11を巻き回すと、第二棒状部32aと第二棒状部32bとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、第二棒状部32bの図6上側の周面に沿って一次コイル11を巻き回す。
 第二棒状部32bの図6上側において、第二棒状部32aと第二棒状部32bとの連続部分から第二棒状部32bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部32bと第二棒状部32cとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、第二棒状部32cの図6下側の周面に沿って一次コイル11を巻き回す。
 第二棒状部32cの図6下側において、第二棒状部32bと第二棒状部32cとの連続部分から第二棒状部32cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部32cと第二棒状部32dとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、第二棒状部32dの図6上側の周面に沿って一次コイル11を巻き回した後、続けて、第二棒状部32dの図6下側の周面に沿って一次コイル11を巻き回す。即ち、第二棒状部32dに対しては、第二棒状部32dの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、第二棒状部32dに対して連続して1回転一次コイル11を巻き回すと、第二棒状部32cと第二棒状部32dとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部32cの図6上側の周面に沿って一次コイル11を巻き回す。
 第二棒状部32cの図6上側において、第二棒状部32cと第二棒状部32dとの連続部分から第二棒状部32cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部32bと第二棒状部32cとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部32bの図6下側の周面に沿って一次コイル11を巻き回す。
 第二棒状部32bの図6下側において、第二棒状部32bと第二棒状部32cとの連続部分から第二棒状部32bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部32aと第二棒状部32bとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部32aの図6上側の周面に沿って一次コイル11を巻き回した後、続けて、第二棒状部32aの図6下側の周面に沿って一次コイル11を巻き回す。即ち、第二棒状部32aに対しては、第二棒状部32aの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このようにして、第二立体形成部32に巻き回され、立体的(本例では立方体状)に配置された一次コイル11により、第二立体52が形成される。図6は、この時の状態を模式的に示した斜視図である。以上で、第二立体形成工程が終了する。
 このように、符号32a及び32dで示す第二棒状部では、1回の一次コイルの巻き回し、符号32b及び32cで示す第二棒状部では、2回の一次コイルの巻き回しが行われており、これらの各第二棒状部に配置されている一次コイル11により、対応する第二立体の各セグメントが形成されることになる。また、一次コイル11は、一筆書きになるように第二立体形成部32に巻き回されている。
 以上のように、第一立体形成部31に一次コイル11を巻き回して第一立体51を形成した一次コイル11の残部が、その近接する第二棒状部に最初に巻き回された後、さらに複数の第二棒状部に巻き回される時に、現在巻き付けられている第二棒状部と隣接する第二棒状部の連続部分に到達した時に、(i)隣接する第二棒状部に巻き回す方向を変え、隣接する第二棒状部に一次コイルを巻き付ける、(ii)現在巻いている第二棒状部にそのまま巻き付ける、のいずれかの選択を行い、隣接する第二棒状部又は現在巻いている第二棒状部に一次コイルを巻き付ける。そして、現在巻いている第二棒状部と隣接する第二棒状部の連続部分に一次コイルが到達する度に、上記選択を行い、一次コイル11の第二立体終了端43までマンドレル30の第二立体形成部32に一次コイル11を巻き付ける。
 一次コイル11の第一立体51と第二立体52の間には、連結要素部54を設けてもよい。これにより、内側配置工程において、第一立体51の内側の中空部に第二立体52を配置する場合に、第一立体51と第二立体52の変形を防止し易くなる。また、第一立体51の内側の中空部へ第二立体52を配置し易くなる。
 また、連結要素部54の長さは、図3に示すマンドレル30の例では、第一立体形成部31の符号31bの第一棒状部、第二立体形成部32の符号32dの第二棒状部の軸方向長さを調整したり、第一立体形成部31に形成された第一立体51と第二立体形成部32に形成された第二立体52との間の一次コイル11に適当な弛みを設けたりすることで、適宜調整できる。
 第二立体形成工程終了後、必要に応じて芯材38の終端をマンドレル30の第二立体形成部32に固定し(図示せず)、芯材38を含む一次コイル11をマンドレル30とともに加熱することで、マンドレル30に巻き回されている一次コイル11に、第一立体51と第二立体52の形状を固定することができる。加熱条件は、一次コイル11の材質により適宜決定することができる。例えば、加熱温度は、400℃以上が好ましく、加熱時間は、15分以上が好ましい。その後、マンドレル30から芯材38を含む一次コイル11を取り外すと、図7Aに示すような形状が付与された途中形状コイル12が得られる。
 この途中形状コイル12は、以上の工程から分かるように、連続する1つの一次コイル11で形成されており、第一立体51と第二立体52とを有する。また、第一立体51と第二立体52は連結要素部54を介して連接されている。また、第一立体51及び第二立体52の各々については、概ね、図2Aで示した立体20と同様のモデル構造が想定され得ることから、図2Bで示した立方体22と同様の仮想立体モデルが想定され得る。
 第一立体51は、一回の一次コイル11の円形状の巻き回しにより円形状に形成される2つのセグメント51a、51d、二回の一次コイル11の半円形状(半円弧)の巻き回しにより円形状に形成される2つのセグメント51b、51cが、環状に並べられ立方体
状に立体的に配置されている。4つのセグメント(51a、51b、51c、51d)は、筒状になるように並べられて第一立体51の環状部分を形成し、この環状部分は、各セグメント(51a、51b、51c、51d)が環状に並べられる方向に対して直交する方向に中心軸57を有する。また、この環状部分は、その内側に、中心軸57方向の両側で開口する中空部261が形成されている。また、図2A、2Bで示したモデルと同様、環状部分の図7Aの上側の開口部には、上開口面55が仮想される。
 第二立体52は、第一立体51が形成された一次コイル11の残部に対して形成されており、一回の一次コイル11の円形状の巻き回し及び一回の一次コイル11の約3/8円形状(約3/8円弧)の巻き回しにより円形状に形成される1のセグメント52a、一回の一次コイル11の円形状の巻き回しにより円形状に形成される1つのセグメント52d、二回の一次コイル11の半円形状(半円弧)の巻き回しにより円形状に形成される2つのセグメント52b、52cが、環状に並べられ立方体状に立体的に配置されている。4つのセグメント(52a、52b、52c、52d)は、筒状になるように並べられて第二立体52の環状部分を形成し、この環状部分は、各セグメント(52a、52b、52c、52d)が環状に並べられる方向に対して直交する方向に中心軸58を有する。また、この環状部分は、その内側に、中心軸58方向の両側で開口する中空部262が形成されている。また、図2A、2Bで示したモデルと同様、環状部分の図7Aの上側の開口部には、上開口面56が仮想される。
 後述する内側配置工程において途中形状コイル12にその形状を維持させる観点からは、途中形状コイル12から芯材38を抜去しないほうが好ましい。尚、図7Aでは、便宜上、芯材を省略している。
 本発明では、第二立体形成工程が終了した後、第一および第二立体のうち、一方の立体を他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する内側配置工程を行う。本例では、図7Aに示した相似関係にある第一立体51と第二立体52のうち、第一立体51の内側の中空部261に、第一立体51よりも大きさの小さい第二立体52を配置する場合の例について説明する。
 まず、図7Aに示すように途中形状コイル12の第一立体51の上開口面55と第二立体52の上開口面56が図7A上側を向くように途中形状コイル12を配置する。次に、図7Bに示すように、第二立体52の中心軸58が第一立体51の中心軸57と同一直線上になるように第二立体52を第一立体51の上側に移動させる。この時、第一立体51の中心軸57に対して直交する断面方向で把握される形状である正四角形と、第二立体52の中心軸58に対して直交する断面方向で把握される形状である正四角形とにおいて、正四角形の各辺が平行になるように配置される。即ち、第一立体51及び第二立体52の、符号51aと52a、51bと52b、51cと52c、51dと52dで示されるセグメントにより形成される各辺同士が平行になるように配置される。
 そして、図7Cに示すように、第二立体52の中心軸58を中心に所望の角度だけ第二立体52を第一立体51に対して軸回転をさせる。この時、第一立体51の中心軸57に対して直交する断面方向で把握される形状である正四角形と、第二立体52の中心軸58に対して直交する断面方向で把握される形状である正四角形とにおいて、正四角形の各辺が平行ではないように軸回転させるのが好ましい。
 このように第一立体51に対して第二立体52を相対的に軸回転させた状態で、図7Dに示すように、第二立体52を第一立体51の内側の中空部261に配置する。
 以上により、内側配置工程が終了する。
 図7Dにおける第一立体51と第二立体52の位置関係を、図7Eに基づき説明する。
 図7Eは、内側配置工程が終了した時の両立体(51、52)の開口面(55、56)と平行な、即ち、中心軸57、58に直交する面59(図7Dも参照。)に、第一立体51と第二立体52を投影した時に形成される、それぞれ第一正四角形61と第二正四角形62を示した投影図であり、同時に、両立体の中心軸に直交する方向で把握される形状の断面図でもある。第一立体51に対応する正四角形60は、第一立体51の各セグメント(51a、51b、51c、51d)にそれぞれ対応する、辺(60a、60b、60c、60d)を有し、各辺により環状部分が形成されている。第二立体52に対応する正四角形61は、第一立体52の各セグメント(52a、52b、52c、52d)にそれぞれ対応する、辺(61a、61b、61c、61d)を有し、各辺により環状部分が形成されている。そして、正四角形61は、正四角形60より小さく、相似関係にある。両正四角形(60、61)の各辺が平行でないように、両立体(51、52)は配置されている。これにより、平行にした場合より第一立体51に対して第二立体52をより安定して固定しやすくなる傾向にある。平行ではない程度は特に限定はなく、例えば、正四角形60の符号62で示すある頂点と、これに対応する正四角形61の符号63で示す頂点とにおいて、各頂点(62、63)から中心軸57、58に向かって伸ばした2つの線分(62a、63a)のなす角度αは、0度より大きく90度より小さく、90度より大きく180度より小さく、180度より大きく270度より小さく、270度より大きく360度より小さければよいが、第一立体51と第二立体52の連続部分の位置ずれによる両立体の変形を抑制する観点、配置の作業性の観点から、15度より大きく75度より小さいことが好ましい。
 内側配置工程での第一立体51に対する第二立体52の配置の仕方は、図7A~Dに示すように中心軸57、58中心に回転するものに限定されず、中心軸57、58同士が交差又はねじれの位置の関係になるように配置するものであってもよい。図8Aは、内側配置工程終了後において、第一立体51の中心軸57と第二立体52の中心軸58とが交差する位置関係になるように、第一立体51と第二立体52とが配置された場合の例を示したものである。
 図8Aは、図7Bで示す第一立体51と第二立体52の位置関係にした後に、第一立体51の中心軸57を含み、第一立体51の符号51d、51bで示されるセグメントが形成する面に平行な面に沿って、第二立体52の中心軸58を回転させて第一立体51の中心軸57と第二立体52の中心軸58とが交差するようにし、かつ、第二立体52の符号52d、52bで示されるセグメントが形成する面が、第一立体51の中心軸57を含み、1の符号51d、51bで示されるセグメントが形成する面と平行になるようにして、第一立体51の内側の中空部261に第二立体52を配置した時の状態を示したものである。
 図8Bは、第一立体51の符号51d、51bで示されるセグメントが形成する面及び第二立体52の符号52d、52bで示されるセグメントが形成する面に平行な面68(図8Aも参照。)に、第一立体51と第二立体52を投影した時に形成される、それぞれ第一正四角形と第二正四角形を示した投影図である。図8Bでは、便宜上、符号は、図8Aと共通したものを用いる。したがって、第一立体51に対応する第一正四角形は符号51、第二立体52に対応する第二正四角形は符号52で示す。図8Bに示す第一正四角形51は、第一立体51のセグメント51a、51c、上開口面55、下開口面55aに対応する4辺を有し、4辺で囲まれた面が第一立体51のセグメント51b又は51dに対応する。また、第一立体51の中心軸に対応する中心軸57を有する。図8Bに示す第二正四角形52は、第一立体52のセグメント52a、52c、上開口面56、下開口面56aに対応する4辺を有し、4辺で囲まれた面が第二立体52のセグメント52b又は52dに対応する。また、第二立体52の中心軸に対応する中心軸58を有する。
 図8Bに示すように、第一正四角形51の中心軸57と第二正四角形52の中心軸58は、両正四角形の中心点271で交差する関係にあり、かつ、第一立体51と第二立体52の中心点(図示せず)で交差する関係にある。図8Bに示す関係において、中心軸57に対する中心軸58の交差角度βは、両中心軸が一致又は平行関係にならない限り、特に限定はなく、0度より大きく180度より小さく、180度より大きく360度より小さければよいが、第一立体51と第二立体52の連続部分の位置ずれによる両立体の変形を抑制する観点、配置の作業性の観点から、15度より大きく75度より小さいことが好ましい。尚、図8Bに示す場合の交差角度βは、中心軸57(中心点271から図8B上側の部分)を基準とし、これに対して中心点271を中心として中心軸58(中心点271から図8B上側の部分)を時計回りに回転させた時の角度を意味する。
 第一立体と第二立体の各セグメントは、図7Aに示すように、全て、一次コイルが二次元的に配置されたものでも良いが、三次元的に配置されたセグメントを含んでもよい。図9~11は、立体が三次元的に配置された一次コイルで形成されたセグメントを含む場合の例を示したものである。
 図9は、第一立体を構成する4つのセグメントのうちの1つを三次元的に配置されたセグメントにすることが可能なマンドレルの一例を用いて行った第二立体形成工程を経た後の状態を模式的に示す斜視図である。
 図9に示すマンドレル301は、第一立体351(図10参照)を形成する第一立体形成部331と第二立体352(図10参照)を形成する第二立体形成部332とを有し、これらが連設されている。第一立体形成部331は、4つの第一棒状部(331a、331b、331c、331d)を有し、各第一棒状部(331a、331b、331c、331d)は、各第一棒状部の軸方向が放射方向を向くように環状に配置され、交差部分で一体化されている。第二立体形成部332は、4つの第二棒状部(332a、332b、332c、332d)を有し、各第二棒状部(332a、332b、332c、332d)は、各第二棒状部の軸方向が放射方向を向くように環状に配置され、交差部分で一体化されている。そして、本例では、第一立体形成部331の4つの第一棒状部のうちの一つの第一棒状部331dと、第二立体形成部332の4つの第二棒状部のうちの一つの第二棒状部332bとで連結されている。また、両者は、第一棒状部331b、331dと第二棒状部332b、332dの軸方向の中心軸が一致するように連設されている。第一棒状部(331a、331b、331c、331d)及び第二棒状部(332a、332b、332c、332d)は十字状に直交するように配置され、いずれも断面円形である。
 本例では、4つの第一棒状部(331a、331b、331c、331d)のうちの1つの第一棒状部331bが三次元的に配置されたセグメントを形成する部分である。この第一棒状部331bは、第一棒状部の交差部分に近い方から順に、大径部335、テーパー部334、小径部333を有する。大径部335は、他の第一棒状部331a、331c、331dと同じ外径を有し、小径部333は、大径部335より小さい外径を有し、テーパー部334は、大径部335から漸次縮径して小径部333に連続する。このように棒状部の外径を変化させることで、径が変化するように三次元的に一次コイルが配置されたセグメントが形成され得る。
 第一立体形成部及び第二立体形成部の構造は、所望の第一及び第二立体の形状に応じて適宜選択することができる。これらの立体の形状は、上述したとおりである。三次元的に一次コイルが配置されたセグメントを形成するための棒状部の位置も同様であるが、第一立体の一次コイルを最初に巻き始める位置又は第二立体の一次コイルを巻き終わる位置に設けるのが好ましい。一次コイルの一方の端部に三次元的に配置されるセグメントを設けることで、生体管腔の瘤内に生体内留置部材を挿入する時に、三次元的に一次コイルが配置されたセグメントを最初に瘤内に挿入することができ、瘤内に挿入された一次コイルの先端が二次形状に復元した時に瘤内でアンカーの役目を果たし瘤壁に固定されやすくなり、その後の瘤内への一次コイルの挿入がより容易になるためである。
 第一棒状部(331a、331b、331c、331d)及び第二棒状部(332a、332b、332c、332d)の軸方向に直交する方向の幅又は外径は、生体内留置部材の用途、第一立体及び第二立体の形状、構造に応じて適宜選択可能である。
 第一立体形成部と第二立体形成部の大きさ、即ち、棒状部の幅ないし外径及び棒状部の交差部分の大きさは、上述のように、第一および第二立体のうち、一方の立体を他方の環状部分の内側に配置し易くする観点からは、異なることが好ましい。
 また、第一立体形成部と第二立体形成部とは、そこに形成されるそれぞれ第一立体と第二立体が多角形の筒状に形成される場合、第一立体と第二立体の中心軸に対して直交する断面方向で把握される多角形の形状が相似関係になるような構造であるのが好ましい。但し、本例では、第一立体については、その三次元的に配置されたセグメントについては、環状部分の内側に面する部分に想定した仮想面にのみ着目し、多角形の形状を把握するものとする。尚、特段の説明がない場合は、以下の本例の説明でも同様に仮想面のみ着目して説明する。
 図9に示すマンドレル301の例では、第一立体形成部331の3つの第一棒状部(331a、331c、331d)と1つの第一棒状部331bの大径部335はいずれも同じ外径で、第二立体形成部332の4つの第二棒状部(332a、332b、332c、332d)はいずれも同じ外径であるが、第一棒状部(331a、331c、331d)及び第一棒状部331bの大径部335の外径は、第二棒状部(332a、332b、332c、332d)の外径よりも小さくなっている。このため、第一立体形成部31は第二立体形成部32より大きく、したがって、そこに形成される第一立体351及び第二立体352の大きさに関しては、第一立体351のほうが第二立体352より小さくなる。また、第一立体形成部331と第二立体形成部332の一次コイル11が巻き回される部分の形状は、第一及び第二棒状部の中心軸を含む平面において把握される多角形は、正四角形で相似関係になっており、そこに形成される第一立体351及び第二立体352は相似関係になる。
 図9に示すマンドレル301に、例えば図1Cに示す一次コイル11を巻き回す場合を例にして、第一立体形成工程、第二立体形成工程及び内側配置工程の例を説明する。
 第一立体形成工程では、まず、一次コイル11の内腔に、一次コイル11の全長よりも長い芯線(図示せず。)を挿通するのが好ましい。そして、上述のように、芯線の一方端をマンドレル301の所望の位置に固定し、例えば張力をかけながら、一次コイル11をマンドレル301の第一棒状部331bに巻き回す。図9に示す例では、一次コイル11の一方端(符号340、図10参照。)を、第一棒状部331bの小径部333の周面上で、第一棒状部331bと第一棒状部331cとの連続部分に対応する位置(図示せず。
)に配置し、第一棒状部331bの軸方向に直交する方向に小径部333の周面に沿って1周(360度)程度巻き回す。そして、続けてテーパー部334から大径部335にかけて図9下側の周面上を螺旋状に半周程度巻き回すと、第一棒状部331bと第一棒状部331aとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、第一棒状部331aの図9上側の周面に沿って一次コイル11を巻き回す。
 第一棒状部331aの図9上側において、第一棒状部331bと第一棒状部331aとの連続部分から第一棒状部331aの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部331aと第一棒状部331dとの連続部分に到達する。そこで、一次コイル11の巻き付け方向を変え、第一棒状部331dの図9下側の周面に沿って一次コイル11を巻き回した後、続けて、第一棒状部331dの図9上側の周面に沿って一次コイル11を巻き回す。即ち、第一棒状部331dに対しては、第一棒状部331dの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、第一棒状部331dに対して連続して1回転一次コイル11を巻き回すと、第一棒状部331aと第一棒状部331dとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第一棒状部331aの図9下側の周面に沿って一次コイル11を巻き回す。
 第一棒状部331aの図9下側において、第一棒状部331aと第一棒状部331dとの連続部分から第一棒状部331aの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部331aと第一棒状部31bとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第一棒状部331bの大径部335の図9上側の周面に沿って一次コイル11を巻き回す。
 第一棒状部331bの大径部335の図9上側において、第一棒状部331aと第一棒状部31bとの連続部分から第一棒状部331bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部331bと第一棒状部331cとの連続部分に到達する。そこで、一次コイル11の巻き付け方向を変え、第一棒状部331cの図9下側の周面に沿って一次コイル11を巻き回す。
 第一棒状部331cの図9下側において、第一棒状部331bと第一棒状部331cとの連続部分から第一棒状部331cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第一棒状部331cと第一棒状部331dとの連続部分近傍部に到達する。以上で第一立体形成工程が終了する。
 このように、符号331c、331dで示す第一棒状部では、1回の一次コイルの巻き回し、符号331a及び331bで示す第一棒状部では、2回の一次コイルの巻き回しが行われており、これらの各第一棒状部に配置されている一次コイル11により、対応する立体の各セグメントが形成されることになる。本例では、符号331bで示す第一棒状部では、一次コイル11を同一平面上で巻き回す2つの部分の間に螺旋状に巻き回す部分を設けることで、一次コイル11が三次元的に配置されたセグメント351bを形成し得る(図10参照。)。
 以上のようにして、本例でも、一次コイル11は、一筆書きになるように第一立体形成部331に巻き回されている。
 第一立体形成工程が終了した後、第一立体351を形成した一次コイル11の残部を第二立体形成部332の第二棒状部(332a、332b、332c、332d)に巻き回し、この残部に第二立体を形成する第二立体形成工程を行う。
 第二立体形成工程では、まず、第一立体形成部331の第一棒状部331cの軸方向と平行な軸方向を有し、第二立体形成部332に近接する第二棒状部332cに一次コイル11を巻き付ける。一次コイル11を巻き付ける際の操作は、第一立体形成工程と同様に、一次コイル11の図示しない他方端から外側に延びる芯線に張力をかけた状態で行うとよい。
 図9に示す例では、第一立体形成部331の第一棒状部331cの図9下側の周面に沿って一次コイル11を巻き回した後の一次コイル11を、第二棒状部332bと第二棒状部332cの連続部分の近傍部から第二立体形成部332の第二棒状部331cの図9上側の周面に沿って巻き回す。そして、第二棒状部332cの図9上側において、第二棒状部332cの軸方向に直交する方向に一次コイル11を巻き回した後、続けて、第二棒状部332cの図9下側の周面に沿って一次コイル11を巻き回す。即ち、第二棒状部332cに対しては、第二棒状部332cの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、第二棒状部332cに対して連続して1回転一次コイル11を巻き回すと、第二棒状部332cと第二棒状部332bとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部332bの図9上側の周面に沿って一次コイル11を巻き回す。
 第二棒状部332cの図9上側において、第二棒状部332cと第二棒状部332bとの連続部分から第二棒状部332bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部332bと第二棒状部332aとの連続部分に到達する。そこで、一次コイル11の巻き付け方向を変え、第二棒状部332aの図9下側の周面に沿って一次コイル11を巻き回す。
 第二棒状部332aの図9下側において、第二棒状部332bと第二棒状部332aとの連続部分から第二棒状部332aの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部332aと第二棒状部332dとの連続部分に到達する。そこで、一次コイル11の巻き付け方向を変え、第二棒状部332dの図9上側の周面に沿って一次コイル11を巻き回した後、続けて、第二棒状部332dの図9下側の周面に沿って一次コイル11を巻き回す。即ち、第二棒状部332dに対しては、第二棒状部332dの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、第二棒状部332dに対して連続して1回転一次コイル11を巻き回すと、第二棒状部332dと第二棒状部332aとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部332aの図9上側の周面に沿って一次コイル11を巻き回す。
 第二棒状部332aの図9上側において、第二棒状部332dと第二棒状部332aとの連続部分から第二棒状部332aの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、第二棒状部332aと第二棒状部332bとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、第二棒状部332bの図9下側の周面に沿って一次コイル11を巻き回す。
 第二棒状部332bの図9下側において、第二棒状部332aと第二棒状部332bとの連続部分から第二棒状部332bの軸方向に直交する方向に90度程度一次コイル11を巻き回す。
 このようにして、第二立体形成部332に巻き回され、立体的(本例では立方体状)に配置された一次コイル11により、第二立体352が形成される。図9は、この時の状態を模式的に示した斜視図である。以上で、第二立体形成工程が終了する。
 このように、符号332c及び332dで示す第二棒状部では、1回の一次コイルの巻き回し、符号332a及び332bで示す第一棒状部では、2回の一次コイルの巻き回しが行われており、これらの各第二棒状部に配置されている一次コイル11により、対応する第二立体の各セグメントが形成されることになる。また、一次コイル11は、一筆書きになるように第二立体形成部332に巻き回されている。
 図9に示す例でも、一次コイル11の第一立体351と第二立体352の間には、連結要素354を設けてもよい。また、前述のようにして連結要素部354の長さを調整することができる。
 また、第二立体形成工程終了後、前述のようにして、芯材を含む一次コイル11をマンドレル301とともに加熱することで、マンドレル301に巻き回されている一次コイル11に、第一立体351と第二立体352の形状を固定することができる。その後、マンドレル301から芯材を含む一次コイル11を取り外すと、図10に示すような形状が付与された途中形状コイル121が得られる。
 この途中形状コイル121は、以上の工程から分かるように、連続する1つの一次コイル11で形成されており、第一立体351と第二立体352とを有する。また、第一立体351と第二立体352は連結要素部354を介して連接されている。また、第二立体352については、概ね、図2Aで示した立体20と同様のモデル構造が想定され得ることから、図2Bで示した立方体22と同様の仮想立体モデルが想定され得る。また、第一立体351については、第一棒状部331bで形成された三次元的に一次コイル11が配置されたセグメント351bについては、第一棒状部331bの大径部335に巻き回されて形成された部分が含まれる平面を上述した仮想面と想定し、この仮想面にのみ着目し、上述の図2Aで示した立体20と同様のモデル構造を想定するものとする。
 第一立体351は、二回の一次コイル11の半円形状(半円弧)の巻き回しにより円形状に形成される1つのセグメント351a、一回の一次コイル11の円弧とそれに連続する半回転の螺旋形状の巻き回し及び一回の一次コイル11の半円形状(半円弧)の巻き回しにより三次元的な形状に形成される1つのセグメント351b、一回の一次コイル11の約3/8円形状(約3/8円弧)の巻き回しにより約3/8円形状(約3/8円弧)に形成される1つのセグメント351c、一回の一次コイル11の円形状の巻き回しにより円形状に形成される1つのセグメント351dが、環状に並べられ立方体状に立体的に配置されている。セグメント351a、351c、351dは、一次コイルが二次元的に配置されており、セグメント351bは、一次コイルが三次元的に配置されている。4つのセグメント(351a、351b、351c、351d)は、筒状になるように並べられて第一立体351の環状部分を形成し、この環状部分は、各セグメント(351a、351b、351c、351d)が環状に並べられる方向に対して直交する方向に中心軸357を有する。また、この環状部分は、その内側に、中心軸357方向の両側で開口する中空部326が形成されている。また、図2A、2Bで示したモデルと同様、環状部分の図10の上側の開口部には、上開口面355が仮想される。
 第二立体352は、第一立体351が形成された一次コイル11の残部に対して形成されており、二回の一次コイル11の半円形状(半円弧)の巻き回しにより円形状に形成される1つのセグメント352a、一回の一次コイル11の半円形状(半円弧)の巻き回し及び一回の一次コイル11の約1/4円形状(約1/4円弧)の巻き回しにより円弧形状に形成される1のセグメント352b、一回の一次コイル11の円形状の巻き回しにより円形状に形成される2つのセグメント352c、352dが、環状に並べられ立方体状に立体的に配置されている。4つのセグメント(352a、352b、352c、352d)は、筒状になるように並べられて第二立体352の環状部分を形成し、この環状部分は、各セグメント(352a、352b、352c、352d)が環状に並べられる方向に対して直交する方向に中心軸358を有する。また、この環状部分は、その内側に、中心軸358方向の両側で開口する中空部327が形成されている。また、図2A、2Bで示したモデルと同様、環状部分の図10の上側の開口部には、上開口面356が仮想される。
 第二立体形成工程が終了した後、第一立体351および第二立体352のうち、一方の立体を他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する内側配置工程を行う。上述のように、図示しない芯材は途中形状コイル12から抜去しないほうが好ましい。尚、図9、10では便宜上、芯材を省略している。
 本例では、図7A~7Eの場合と同様にして、第二立体352に対して第一立体351を相対的に軸回転させた状態で、図10に示した相似関係にある第一立体351と第二立体352のうち、第二立体352の内側の中空部327に、第二立体352よりも大きさの小さい第一立体351を配置する。図11は、この時の状態を模式的に示した斜視図である。尚、第一立体351と第二立体352との相似関係は、第一立体351のセグメント351bについては、三次元的に配置された一次コイル全体の構造ではなく、上述した仮想面にのみ着目した場合の関係である。
 内側配置工程終了後、図7D、図8A、図11に示すような、第一立体51の内側に第二立体52を配置した状態の途中形状コイル12、121を加熱することで、一次コイル11に、第一立体51の内側に第二立体52が配置された形状を二次形状として固定することができる。加熱条件は、一次コイル11の材質により適宜決定することができる。例えば、加熱温度は、400℃以上が好ましく、上述したように、一次コイル11に途中形状を付与する際の加熱温度より高いことが望ましい。加熱時間は、15分以上が好ましい。
 その後、芯材38を除去することで、図7D、図8A、図11に示すような、一次コイル11に立体的な三次元形状の二次形状が付与され二次コイル13、130、133が得られる。
 [実施の形態2]
 実施の形態2では、実施の形態1で説明したような第一立体形成工程及び第二立体形成工程を行って第一立体及び第二立体を形成することに加え、同様にして追加立体形成工程を行って追加立体を形成した後に、例えば、ある立体の環状に並べられた複数のセグメントの環状部分の内側に、他の立体を配置し、この他の立体の環状に並べられた複数のセグメントの環状部分の内側に、さらに他の立体を配置して、第一立体、第二立体および追加立体を任意の順に3重に配置する第一及び第二内側配置工程を行う。以下では、図12~15に基づき、実施の形態2の例について説明するが、実施の形態2に特有の事項について説明し、実施の形態1と共通する事項については同じ符号を付し、詳細な説明は省略する。
 実施の形態2でも、実施の形態1で説明したのと同じ一次コイルを使用することができ、図2A~Cと同じモデルを適用して説明する。
 実施の形態2でも、実施の形態1の場合と同様に上述したような一次コイルを使用して、まず、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて一次コイルの一部を立体的に配置した第一立体を形成する(第一立体形成工程)。そして、この第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する(第二立体形成工程)。本実施形態では、さらに、少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一および第二立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した追加立体を形成する(追加立体形成工程)。
 図12は、本例で使用可能なマンドレルの一例を模式的に示した斜視図である。図12に示すマンドレル300は、第一立体形成部31と第二立体形成部32と追加立体形成部33とを有し、これらが連設されている。追加立体形成部33は、4つの追加棒状部(33a、33b、33c、33d)を有し、各追加棒状部(33a、33b、33c、33d)は、各追加棒状部の軸方向が放射方向を向くように環状に配置され、交差部分で一体化されている。そして、本例では、第二立体形成部32の4つの第二棒状部(32a、32b、32c、32d)のうちの一つの第二棒状部32bと、追加立体形成部33の4つの追加棒状部(33a、33b、33c、33d)のうちの一つの追加棒状部33dとで連結されている。また、両者は、第二棒状部32bと追加棒状部33dの軸方向の中心軸が一致するように連設されている。追加立体形成部33は、上述したように図2Aに示す立体20の構造を形成する場合の例であり、追加棒状部(33a、33b、33c、33d)は十字状に直交するように配置され、いずれも断面円形である。
 追加立体形成部の構造は、所望の追加立体の形状に応じて適宜選択することができる。この立体の形状は、実施の形態1の第一及び第二立体の説明で述べたとおりである。追加棒状部(33a、33b、33c、33d)の軸方向に直交する方向の幅又は外径は、生体内留置部材の用途、追加立体の形状、構造に応じて適宜選択可能である。例えば、動脈瘤閉塞の治療に用いる場合は、1mm以上30mm以下が好ましい。
 第一立体形成部、第二立体形成部及び追加立体形成部の大きさ、即ち、棒状部の幅ないし外径及び棒状部の交差部分の大きさは、後述するように、第一立体、第二立体及び追加立体を、任意に、何れか一の立体を他の一の立体の環状部分の内側に配置し易くする観点からは、相互に異なることが好ましく、より内側に配置される立体ほど、大きさが小さいのが好ましい。
 また、第一立体形成部31、第二立体形成部32及び追加立体形成部33の構造は、第一立体、第二立体及び追加立体が例えば図15に示すように配置される場合は、各立体が安定して構造を維持できる観点から、相似関係にあるのが好ましい。
 図12に示すマンドレル300の例では、第一立体形成部31及び第二立体形成部32の構成は実施の形態1において述べたとおりであり、追加立体形成部33では、4つの追加棒状部(33a、33b、33c、33d)はいずれも同じ外径であるが、第二棒状部(32a、32b、32c、32d)の外径よりも小さくなっている。このため、第一立体形成部31は第二立体形成部32より大きく、第二立体形成部32は追加立体形成部33より大きく、したがって、そこに形成される第一立体51、第二立体52及び追加立体53の大きさに関しては、第一立体51、第二立体52、追加立体53の順に小さくなる。また、第一立体形成部31、第二立体形成部32及び追加立体形成部33の一次コイル11が巻き回される部分の形状は、第一棒状部、第二棒状部及び追加棒状部の中心軸を含む平面において把握される多角形は、いずれも正四角形で相似関係になっており、そこに形成される第一立体51、第二立体52及び追加立体53は、相互に相似関係になる。
 図12に示すマンドレル300に、例えば図1Cに示す一次コイル11を巻き回す場合を例にして、第一立体形成工程、第二立体形成工程及び追加立体形成行程の例を説明する。
 第一立体形成行程及び第二立体形成行程は、実施の形態1で述べたのと同様にして行う。但し、本実施形態では、第二立体形成行程では、図6に示す場合と異なり、一次コイル11は第二立体終了端43が一次コイル11の他方端ではなく連続する。
 第二立体形成行程が終了した後、第一立体51及び第二立体52を形成した一次コイル11の残部を追加立体形成部33の追加棒状部(33a、33b、33c、33d)に巻き回し、この残部に追加立体を形成する追加立体形成工程を行う。図13は、追加立体形成工程を経た後の状態を模式的に示す斜視図である。
 追加立体形成工程では、まず、第二立体形成部32の第二棒状部32aの軸方向と平行な軸方向を有し、第二立体形成工程を経た直後の一次コイル11の残部に近接する、追加立体形成部33の追加棒状部33aに一次コイル11を巻き付ける。一次コイル11を巻き付ける際の操作は、第一立体形成工程と同様に、一次コイル11の図示しない他方端から外側に延びる芯線に張力をかけた状態で行うとよい。図13に示す例では、第二立体形成部32の第二棒状部32aの図13下側の周面に沿って一次コイル11を巻き回した後の一次コイル11が、追加立体形成部33の第二棒状部33aの図13上側の周面に沿って巻き回される。そして、追加棒状部33aの図13上側において、追加棒状部33aの軸方向に直交する方向に一次コイル11を巻き回すと、追加棒状部33aと追加棒状部33bとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、追加棒状部33bの図13下側の周面に沿って一次コイル11を巻き回す。
 追加棒状部33bの図13下側において、追加棒状部33aと追加棒状部33bとの連続部分から追加棒状部33bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、追加棒状部33bと追加棒状部33cとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、追加棒状部33cの図13上側の周面に沿って一次コイル11を巻き回す。
 追加棒状部33cの図13上側において、追加棒状部33bと追加棒状部33cとの連続部分から第二棒状部33cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、追加棒状部33cと追加棒状部33dとの連続部分に到達する。そこで、一次コイル11の巻き回す方向を変え、追加棒状部33dの図13下側の周面に沿って一次コイル11を巻き回した後、続けて、追加棒状部33dの図13上側の周面に沿って一次コイル11を巻き回す。即ち、追加棒状部33dに対しては、追加棒状部33dの軸方向に直交する方向に連続して1回転一次コイル11を巻き回す。
 このように、追加棒状部33dに対して連続して1回転一次コイル11を巻き回すと、追加棒状部33cと追加棒状部33dとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、追加棒状部33cの図13下側の周面に沿って一次コイル11を巻き回す。
 追加棒状部33cの図13下側において、追加棒状部33cと追加棒状部33dとの連続部分から追加棒状部33cの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、追加棒状部33bと追加棒状部33cとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、追加棒状部33bの図13上側の周面に沿って一次コイル11を巻き回す。
 追加棒状部33bの図13上側において、追加棒状部33bと追加棒状部33cとの連続部分から追加棒状部33bの軸方向に直交する方向に180度程度一次コイル11を巻き回すと、追加棒状部33aと追加棒状部33bとの連続部分に戻る。そこで、一次コイル11の巻き付け方向を変え、追加棒状部33aの図13下側の周面に沿って一次コイル11を巻き回す。
 追加棒状部33aの図13下側において、追加棒状部33aと追加棒状部33bとの連続部分から追加棒状部33aの軸方向に直交する方向に90度程度一次コイル11を巻き回す。
 このようにして、追加立体形成部33に巻き回され、立体的(本例では立方体状)に配置された一次コイル11により、追加立体53が形成される。図13は、この時の状態を模式的に示した斜視図である。以上で、追加立体形成工程が終了する。
 このように、符号33dで示す追加棒状部では、1回の一次コイルの巻き回し、符号33a、33b及び33cで示す追加棒状部では、2回の一次コイルの巻き回しが行われており、これらの各追加棒状部に配置されている一次コイル11により、対応する追加立体の各セグメントが形成されることになる。また、一次コイル11は、一筆書きになるように追加立体形成部33に巻き回されている。
 以上のように、第一立体形成部31及び第二立体形成部32に一次コイル11を巻き回して第一立体51及び第二立体を形成した一次コイル11の残部が、その近接する追加棒状部に最初に巻き回された後、さらに複数の追加棒状部に巻き回される時に、現在巻き付けられている第二棒状部と隣接する追加棒状部の連続部分に到達した時に、(i)隣接する追加棒状部に巻き回す方向を変え、隣接する追加棒状部に一次コイルを巻き付ける、(ii)現在巻いている追加棒状部にそのまま巻き付ける、のいずれかの選択を行い、隣接する追加棒状部又は現在巻いている追加棒状部に一次コイルを巻き付ける。そして、現在巻いている追加棒状部と隣接する追加棒状部の連続部分に一次コイルが到達する度に、上記選択を行い、一次コイル11の追加立体終了端45(図14参照)までマンドレル30の追加立体形成部33に一次コイル11を巻き付ける。
 一次コイル11の第二立体52と追加立体53の間には、連結要素部540を設けてもよい。これにより、追加立体配置工程において、第二立体52の内側の中空部に追加立体53を配置する場合に、第二立体52と追加立体53の変形を防止し易くなる。また、第二立体52の内側の中空部へ追加立体53を配置し易くなる。
 また、連結要素部540の長さは、図12に示すマンドレル300の例では、第二立体形成部32の符号32bの第一棒状部、追加立体形成部33の符号33dの追加棒状部の軸方向長さを調整したり、第二立体形成部32に形成された第二立体52と追加立体形成部33に形成された追加立体53との間の一次コイル11に適当な弛みを設けたりすることで、適宜調整できる。
 第二立体形成工程終了後、必要に応じて芯材の終端をマンドレル300の追加立体形成部33に固定し(図示せず)、芯材を含む一次コイル11をマンドレル300とともに加熱することで、マンドレル300に巻き回されている一次コイル11に、第一立体51、第二立体52及び追加立体53の形状を固定することができる。加熱条件は、実施の形態1の場合と同様に決定することができる。その後、マンドレル300から芯材を含む一次コイル11を取り外すと、図14に示すような形状が付与された途中形状コイル120が得られる。
 この途中形状コイル120は、以上の工程から分かるように、連続する1つの一次コイル11で形成されており、第一立体51、第二立体52、追加立体53を有する。また、第一立体51と第二立体52は連結要素部54を介して連接され、第二立体52と追加立体53は連結要素部540を介して連接されている。また、第一立体51、第二立体52及び追加立体53については、概ね、図2Aで示した立体20と同様のモデル構造が想定され得ることから、図2Bで示した立方体22と同様の仮想立体モデルが想定され得る。
 第一立体51及び第二立体52は、実施の形態1において述べたとおりの構成である。追加立体53は、第一立体51及び第二立体52が形成された一次コイル11の残部に対して形成されており、一回の一次コイル11の約8分の3円形状(約8分の3円弧)の巻き回し及び一回の一次コイル11の約4分の1円形状(約4分の1円弧)の巻き回しにより約8分の5円形状(約8分の5円弧)に形成される1のセグメント53a、二回の一次コイル11の半円形状(半円弧)の巻き回しにより円形状に形成される2つのセグメント53b、53c、一回の一次コイル11の円形状の巻き回しにより円形状に形成される1つのセグメント53dが環状に並べられる方向に対して直交する方向に中心軸272を有する。また、この環状部分は、その内側に、中心軸272方向の両側で開口する中空部263が形成されている。また、図2A、2Bで示したモデルと同様、環状部分の図14上側の開口部には、上開口面241が仮想される。
 実施の形態1の場合と同様に、後述する第一及び第二内側配置工程において、途中形状コイル120から芯材を抜去しないほうが好ましい。尚、図14では、便宜上、芯材を省略している。
 実施の形態2では、上記第一立体、第二立体および追加立体のうち、何れか一の立体を、残りの二の立体のうちの一の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する第一内側配置工程と、第一内側配置工程において内側に配置されている立体の環状に並べられた複数のセグメントの環状部分の内側に、残りの一の立体を配置する、又は、残りの一の立体の環状に並べられた複数のセグメントの環状部分の内側に、第一内側配置工程後の二つの立体を配置する第二内側配置工程とを行う。
 本例では、第一内側配置工程において、図14に示した相似関係にある第二立体52と追加立体53のうち、第二立体52の内側の中空部262に、第二立体52よりも大きさの小さい追加立体53を配置し、第二内側配置工程において、第二立体52及び追加立体53と相似関係にあり、第二立体52よりも大きい第一立体51の内側の中空部261に、第一内側配置工程後の追加立体53を中空部262に配置させた第二立体52を配置する場合の例を説明する。
 第一内側配置工程について説明する。まず、図7Aの場合と同様の位置関係になるように、途中形状コイル120の第二立体52の上開口面56と追加立体53の上開口面241が図14上側を向くように途中形状コイル120を配置する。次に、図7Bの場合と同様の位置関係になるように第二立体52の中心軸58が追加立体53の中心軸272と同一直線上になるように追加立体53を第二立体52の上側に移動させる。この時、第二立体52の中心軸58に対して直交する断面方向で把握される形状である正四角形と、追加立体53の中心軸272に対して直交する断面方向で把握される形状である正四角形とにおいて、正四角形の各辺が平行になるように配置される。即ち、第二立体52及び追加立体53の、符号52aと53a、52bと53b、52cと53c、52dと53dで示されるセグメントにより形成される各辺同士が平行になるように配置される。
 そして、図7Cの場合と同様の位置関係になるように、追加立体53の中心軸272を中心に所望の角度だけ追加立体53を第二立体52に対して軸回転をさせる。この時、第二立体52の中心軸58に対して直交する断面方向で把握される形状である正四角形と、追加立体53の中心軸272に対して直交する断面方向で把握される形状である正四角形とにおいて、正四角形の各辺が平行ではないように軸回転させるのが好ましい。
 このように第二立体52に対して追加立体53を相対的に軸回転させた状態で、図7Dの場合と同様の位置関係になるように、追加立体53を第二立体52の内側の中空部262に配置する。
 以上により、第一内側配置工程が終了する。尚、第二立体52と追加立体53の位置関係は、図7Eで示した場合と同様である。また、図示しないが、追加立体53と第二立体52の配置は、図8A、図8Bで示した場合と同様の配置であってもよい。
 次に、第二内側配置工程を行う。第二内側配置工程では、上述のように、第一立体51の内側の中空部261に、第一内側配置工程終了後の追加立体53を中空部262に配置させた第二立体52を配置する。配置の仕方は、図7A~図7Eの場合と同様に、第一立体51と第二立体52の位置関係で決定することができる。図15は、第二内側配置工程終了後の状態を模式的に示した斜視図である。また、図示しないが、第一立体51と第二立体52の配置は、図8A、図8Bで示した場合と同様の配置であってもよい。
 尚、図示しないが、第一内側配置工程と第二内側配置工程において、一方の工程で、図7A~図7Eの配置とし、他方の工程において図8A、図8Bの配置としても良い。
 図15に示す途中形状コイル120又は二次コイル131は、第一立体51の内側に第二立体52が配置され、第二立体52の内側に追加立体53が配置され、これらの立体の大きさは、各立体の内側、即ち、各立体の環状に並べられたセグメントの環状部分の内側に配置されるものほど小さくなっている。また、各立体の中心軸57、58、272に直交する断面方向で把握される形状が正四角形であり、相互に相似関係にある。さらに、各立体の中心軸57、58、272は同一直線上にあり、各立体におけるその正四角形の各辺が平行ではないように配置されている。
 尚、上記の例以外に、第一内側配置工程において、第一立体51の内側の中空部261に第二立体52を配置し、第二内側配置工程において、第二立体52の内側の中空部262に追加立体53を配置してもよい。
 第二内側配置工程終了後、図15に示すような、第一立体51の内側に第二立体52を配置し、さらに、第二立体52の内側に追加立体53を配置した状態の途中形状コイル120を加熱することで、一次コイル11に、第一立体51の内側に第二立体52が配置され、第二立体52の内側に追加立体53が配置された形状を二次形状として固定することができる。加熱条件は、実施の形態1の場合と同様である。
 その後、芯材を除去することで、図15に示すような、一次コイル11に立体的な三次元形状の二次形状が付与され二次コイル131が得られる。
 [その他の実施の形態]
 本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
 たとえば図12に示すマンドレル300は、第一立体形成部31、第二立体形成部32、追加立体形成部33の順に一列に並んでいる、即ち、この順に各立体形成部の大きさが小さくなるように一列に並んでいるが、これに限定されることなく、例えば、最も大きいものを中央に配置してもよいし、最も小さいものを中央に配置してもよい。
 たとえば、上述の例では、図12に示すマンドレル300において、第一立体形成部31、第二立体形成部32、追加立体形成部33の順に、各立体形成部を一列に並べて、この順に一次コイルを巻き回したが、これに限定されず、第一立体形成部を中央に設けて、この中央の部分から一次コイルを巻き回してもよい。この場合、第二立体形成部から追加立体形成部に移動する時に第一立体形成部を経由することになるが、この部分が連結要素として機能し得る。
 たとえば、第一立体形成工程、第二立体形成工程、追加立体形成工程のいずれの工程においても、一次コイルをマンドレルに巻き回す手順は任意であり、図4から図6、図9および図13に挙げた手順に限定されない。1回の巻き回しで1つの棒状部に巻き回す態様は、図4から図6、図9および図13に挙げたように、8分の3円弧、半円弧、4分の3円弧、一周巻き回して形成される一重の円形に限定されず、他の長さの円弧、一周半巻き回して形成される一重半の円形、二周以上巻き回して形成される2重以上の円形等であってもよい。
 たとえば、上述の例では、第一立体形成工程、第二立体形成工程、追加立体形成工程終了時に、第一立体形成部、第二立体形成部、追加立体形成部を構成する全ての棒状部に一次コイルが巻き回されているが、これに限定することなく、一次コイルが巻き回されていない棒状部が存在しても構わない。この場合、図3、9、12に示すようなマンドレル30、301、300を用いた場合に、ある立体形成部の4つの棒状部のうち1つは一次コイルが巻き回されていないときは、三角筒状の立体が形成されることになる。
 たとえば、上述の例では、図3、図9、図12に示すような第一立体形成部、第二立体形成部、必要により形成される追加立体形成部を有する1つのマンドレルで、第一立体形成工程と第二立体形成工程、あるいは、第一立体形成工程と第二立体形成工程と追加立体形成工程を行うが、これに限定されず、各工程に対応する2つ以上のマンドレルを用いて各立体形成工程を行ってもよい。
 上述の例では、実施の形態1の内側配置工程あるいは実施の形態2の第二内側配置工程終了後の途中形状コイルを加熱する加熱処理を行うことで、途中形状コイルに所望の二次形状を固定している。この時の加熱処理においては、二次形状を固定するための二次形状維持治具を用いてもよい。二次形状維持治具の形状、構造は、内側配置工程又は第二内側配置工程後の二次形状が付与された途中形状コイルの形状を、加熱処理時において維持可能であれば、特に限定はなく、例えば、途中形状コイルに付与された二次形状に対応した内腔部を形成可能な、鋳型が挙げられる。鋳型の内腔部の形状は、二次形状に応じて決定すればよく、例えば、角柱状や正多面体等の多面体、円柱状などが挙げられる。
 [生体内留置部材の使用方法]
 以上のようにして得られた二次形状が付与された二次コイルは、生体内留置部材として好適に使用することができる。以下に、二次コイルを有する生体内留置部材を、母血管に生じた瘤の内部に挿入する時のその使用方法の一例を簡単に説明する。
 図16は、上述した二次コイル(13、130、131、133)を有する生体内留置部材132を搬送する搬送用カテーテル73を用いて、生体内留置部材132を母血管72に生じた動脈瘤71の内部に挿入している時の状態を模式的に示した断面図である。尚、図16では、簡略化のため、生体内留置部材132は、図1Cや図1Dに示すような一次コイル(11、11a)の線材によるコイル形状を省略し、平滑面で示している。
 生体内留置部材132は、搬送用カテーテル73を通じて、生体内の母血管72に生じた動脈瘤71に留置されることで、その動脈瘤71を塞栓する。そのため、生体内留置部材132は、血管塞栓コイルとも称される。
 図16に示すように、生体内留置部材132は、デリバリーワイヤー74の先端部分に分離可能なように連結される。デリバリーワイヤー74と生体内留置部材132との連結方法は、定法により行われる。デリバリーワイヤー74の先端部分に連結された生体内留置部材132は、搬送用カテーテル73の内腔部75に挿通される。この時、生体内留置部材132は、図1Cや図1Dに示すような直線状に伸ばした一次コイル(11、11a)の状態になっている。デリバリーワイヤー74の図示しない基端側を操作して生体内留置部材132が搬送用カテーテル73の先端開口部76から放出され、動脈瘤71の内部に挿入される。生体内留置部材132は、搬送用カテーテル73の先端開口部76から放出されると、動脈瘤71の内部で、放出された部分から順次、図7D、図8A、図11、図15に示すような立体的な三次元形状の二次形状(13、130、131、133)になる。すなわち、生体内留置部材132は、一次形状から二次形状に復元する。この時、例えば図11に示すような二次形状133を有し、第一立体351のうち一次コイルが三次元的に配置されたセグメントが一次コイルの端部に設置されていると、この三次元的に配置されている部分が最初に瘤内に挿入され、マンドレル301の小径部333からテーパー部334にかけて形成された部分に対応する円形から連続する螺旋形状部分が瘤内でアンカーの役目を果たし瘤壁に固定されやすくなり、その残りの一次コイルの瘤内への挿入が容易になる。
 その後、定法によりデリバリーワイヤー74と生体内留置部材132の連結を解除することで、図7D、図8A、図11、図15に示すような立体的な三次元形状の二次形状(13、130、131、133)の生体内留置部材132が動脈瘤71の内部に留置される。
10 ワイヤー
11、11a 一次コイル
12、120、121 途中形状コイル
13、130、131、133 二次コイル
14 マンドレル
20 立体
21 環状部分
21a、21b、21c、21d セグメント
22 立方体
23a、23b、23c、23d 立方体の側面
24 上面
24a 上開口面
25 下面
25a 下開口面
26 中空部
27 中心軸
30、300、301 マンドレル
31、331 第一立体形成部
31a、31b、31c、31d 第一棒状部
32、332 第二立体形成部
32a、32b、32c、32d 第二棒状部
33 追加立体形成部
33a、33b、33c、32d 追加立体棒状部
35 第一立体形成部の巻き始め位置
38 芯線
39 芯線固定位置
40 一方端
45 追加立体終了端
51、351 第一立体
51a、51b、51c、51d セグメント
52、352 第二立体
52a、52b、52c、52d セグメント
53 追加立体
53a、53b、53c、53d セグメント
54、540、354 連結要素部
55、355 第一立体の上開口面
56、356 第二立体の上開口面
57、357 第一立体の開口面の中心軸
58、358 第二立体の開口面の中心軸
59 面
60 第一立体に対応する正四角形
61 第二立体に対応する正四角形
62 第一立体に対応する正四角形の頂点
63 第二立体に対応する正四角形の頂点
62a、63a 線分
68 面
71 動脈瘤
72 母血管
73 搬送用カテーテル
74 デリバリーワイヤー
75 内腔部
76 先端開口部
132 生体内留置部材
261、262、263、326、327 中空部
331a、331b、331c、331d 第一棒状部
332a、332b、332c、332d 第二棒状部
351a、351b、351c、351d セグメント
352a、352b、352c、352d セグメント
α、β  角度
 
 

Claims (18)

  1.  線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材の製造方法にあって、
     少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記一次コイルの一部を立体的に配置した第一立体を形成する第一立体形成工程と、
     少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する第二立体形成工程と、
     上記第一および第二立体のうち、一方の立体を他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する内側配置工程と、
     を含む生体内留置部材の製造方法。
  2.  線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材の製造方法にあって、
     少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記一次コイルの一部を立体的に配置した第一立体を形成する第一立体形成工程と、
     少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した第二立体を形成する第二立体形成工程と、
     少なくとも1回の一次コイルの巻き回しにより形成されるセグメントを複数環状に並べて上記第一および第二立体を形成した一次コイルの残部の少なくとも一部を立体的に配置した追加立体を形成する追加立体形成工程と、
     上記第一立体、第二立体および追加立体のうち、何れか一の立体を、残りの二の立体のうちの一の立体の環状に並べられた複数のセグメントの環状部分の内側に配置する第一内側配置工程と、
     第一内側配置工程において内側に配置されている立体の環状に並べられた複数のセグメントの環状部分の内側に、残りの一の立体を配置する、又は、残りの一の立体の環状に並べられた複数のセグメントの環状部分の内側に、第一内側配置工程後の二つの立体を配置する第二内側配置工程と、
     を含む生体内留置部材の製造方法。
  3.  上記の立体の大きさが上記の環状に並べられたセグメントの環状部分の内側に配置されるものほど小さい請求項1または2に記載の生体内留置部材の製造方法。
  4.  前記の立体が、複数のセグメントを環状に並べた多角形の筒状に形成されており、かつ、その多角形の形状が、筒状に形成された立体の中心軸に対して直交する断面方向で把握される形状において、立体同士で相似関係にある請求項3に記載の生体内留置部材の製造方法。
  5.  上記の多角形の筒状に形成された立体同士を、隣接する立体の中心軸同士が交差又はねじれの位置の関係になるように配置する請求項4に記載の生体内留置部材の製造方法。
  6.  上記の多角形の筒状に形成された立体同士を、その中心軸が同軸または平行になるように配置し、かつ、隣接する立体同士において、上記多角形の各辺が平行ではないように配置する請求項4に記載の生体内留置部材の製造方法。
  7.  上記セグメントを構成する一次コイルの形状が多角形、折れ線、円弧、円形、楕円弧、楕円形および螺旋形状から選択される少なくとも一種である請求項1~6のいずれか1項に記載の生体内留置部材の製造方法。
  8.  上記セグメントを構成する一次コイルが、二次元的又は三次元的に配置される請求項1~7のいずれか1項に記載の生体内留置部材の製造方法。
  9.  上記セグメントは、マンドレルに対する少なくとも1回の一次コイルの巻き回しにより形成される請求項1~8のいずれか1項に記載の生体内留置部材の製造方法。
  10.  上記マンドレルは、一次コイルを巻き回し可能な棒状部が環状に配置されている部分が少なくとも2つ連設された構造を有する請求項9に記載の生体内留置部材の製造方法。
  11.  線材に一次形状が付与された線状の一次コイルに、二次形状が付与された二次コイルを有する生体内留置部材にあって、
     上記一次コイルの一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの一部が立体的に配置された第一立体と、
     上記第一立体が形成された一次コイルの残部の少なくとも一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの当該残部の少なくとも一部が立体的に配置された第二立体とを含み、
     上記第一および第二立体のうち、一方の立体が他方の立体の環状に並べられた複数のセグメントの環状部分の内側に配置されている生体内留置部材。
  12.  上記第一及び第二立体を形成した一次コイルの残部の少なくとも一部に対する少なくとも1回の巻き回しで生じたセグメントが複数環状に並べられて、一次コイルの当該残部の少なくとも一部が立体的に配置された追加立体をさらに含み、
     上記第一、第二および追加立体のうち、いずれかの立体における複数のセグメントを並べて形成された環状部分の内側に残りの一方の立体が配置され、かつ、残りの他方の立体が当該残りの一方の立体の環状部分の内側に配置されている請求項11に記載の生体内留置部材。
  13.  上記の立体の大きさが上記の環状に並べられたセグメントの環状部分の内側に配置されるものほど小さい請求項11または12に記載の生体内留置部材。
  14.  前記の立体が、複数のセグメントを環状に並べた多角形の筒状に形成されており、かつ、その多角形の形状が、筒状に形成された立体の中心軸に対して直交する断面方向で把握される形状において、立体同士で相似関係にある請求項13に記載の生体内留置部材。
  15.  隣接する上記立体の中心軸同士が交差又はねじれの位置の関係にある請求項14に記載の生体内留置部材。
  16.  上記の多角形の筒状に形成された立体同士が、その中心軸が同軸または平行に配置されており、かつ、隣接する立体同士において、上記多角形の各辺が平行ではないように配置されている請求項14に記載の生体内留置部材。
  17.  上記セグメントを構成する一次コイルの形状が多角形、折れ線、円弧、円形、楕円弧、楕円形および螺旋形状から選択される少なくとも一種である請求項11~16のいずれか1項に記載の生体内留置部材。
  18.  上記セグメントを構成する一次コイルが、二次元的又は三次元的に配置されている請求項11~17のいずれか1項に記載の生体内留置部材。
     
PCT/JP2015/063906 2014-05-19 2015-05-14 生体内留置部材およびその製造方法 WO2015178282A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/312,455 US10709453B2 (en) 2014-05-19 2015-05-14 In vivo indwelling member and method for producing same
JP2016521061A JP6418238B2 (ja) 2014-05-19 2015-05-14 生体内留置部材およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014103120 2014-05-19
JP2014-103120 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015178282A1 true WO2015178282A1 (ja) 2015-11-26

Family

ID=54553955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063906 WO2015178282A1 (ja) 2014-05-19 2015-05-14 生体内留置部材およびその製造方法

Country Status (3)

Country Link
US (1) US10709453B2 (ja)
JP (1) JP6418238B2 (ja)
WO (1) WO2015178282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086479A1 (ja) * 2015-11-19 2017-05-26 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
WO2017086477A1 (ja) * 2015-11-19 2017-05-26 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
JP2022504758A (ja) * 2018-10-09 2022-01-13 マイクロポート・ニューロテック(シャンハイ)・カンパニー・リミテッド 塞栓装置およびそのコイル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3463166A1 (en) 2016-06-03 2019-04-10 SOMATEX Medical Technologies GmbH Marking device and implantation system
JP7261160B2 (ja) 2016-11-23 2023-04-19 ホロジック, インコーポレイテッド 生検部位マーカー
CN107550533B (zh) * 2017-09-04 2020-05-01 上海申淇医疗科技有限公司 一种弹簧圈及其制作工艺
US11399840B2 (en) * 2019-08-13 2022-08-02 Covidien Lp Implantable embolization device
WO2021051030A1 (en) * 2019-09-13 2021-03-18 Avantec Vascular Corporation Endovascular coil and method for making the same
US20210137526A1 (en) * 2019-11-11 2021-05-13 Stryker Corporation Embolic devices for occluding body lumens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230564A (ja) * 2002-02-12 2003-08-19 Piolax Medical Device:Kk 血管閉塞具
JP2007525304A (ja) * 2004-03-01 2007-09-06 ボストン サイエンティフィック リミテッド 複合脈管閉塞コイル
JP2010051475A (ja) * 2008-08-27 2010-03-11 Kaneka Corp 血管閉塞用具及びその製造方法
JP2010517689A (ja) * 2007-02-07 2010-05-27 ミクラス エンドバスキュラー コーポレイション 血管閉塞コイル用の巻き取りマンドレル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171326B1 (en) 1998-08-27 2001-01-09 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6638291B1 (en) 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US5645558A (en) * 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
NO962336L (no) * 1995-06-06 1996-12-09 Target Therapeutics Inc Vaso-okklusiv spiral
CA2186768C (en) 1995-09-29 2000-12-12 Pete Phong Pham Anatomically shaped vasoocclusive devices
US6322576B1 (en) * 1997-08-29 2001-11-27 Target Therapeutics, Inc. Stable coil designs
JP3854874B2 (ja) 2002-02-08 2006-12-06 サンデン株式会社 ショーケースの商品棚
CN101394955B (zh) * 2005-11-17 2012-07-18 微排放器公司 三维的复合线圈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230564A (ja) * 2002-02-12 2003-08-19 Piolax Medical Device:Kk 血管閉塞具
JP2007525304A (ja) * 2004-03-01 2007-09-06 ボストン サイエンティフィック リミテッド 複合脈管閉塞コイル
JP2010517689A (ja) * 2007-02-07 2010-05-27 ミクラス エンドバスキュラー コーポレイション 血管閉塞コイル用の巻き取りマンドレル
JP2010051475A (ja) * 2008-08-27 2010-03-11 Kaneka Corp 血管閉塞用具及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086479A1 (ja) * 2015-11-19 2017-05-26 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
WO2017086477A1 (ja) * 2015-11-19 2017-05-26 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
JPWO2017086479A1 (ja) * 2015-11-19 2018-09-06 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
JPWO2017086477A1 (ja) * 2015-11-19 2018-09-13 株式会社カネカ 生体内留置部材及び該生体内留置部材を備える生体内留置部材配置装置
JP2022504758A (ja) * 2018-10-09 2022-01-13 マイクロポート・ニューロテック(シャンハイ)・カンパニー・リミテッド 塞栓装置およびそのコイル
JP7340603B2 (ja) 2018-10-09 2023-09-07 マイクロポート・ニューロテック(シャンハイ)・カンパニー・リミテッド 塞栓装置およびそのコイル

Also Published As

Publication number Publication date
US10709453B2 (en) 2020-07-14
US20170105738A1 (en) 2017-04-20
JPWO2015178282A1 (ja) 2017-04-20
JP6418238B2 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6418238B2 (ja) 生体内留置部材およびその製造方法
JP5580737B2 (ja) 血管治療用ツイストプライマリワインドコイルおよびその形成方法、セカンダリワインドコイル
US10307168B2 (en) Complex coil and manufacturing techniques
JP5227344B2 (ja) インプラント、マンドレル、およびインプラント形成方法
JP2012120869A (ja) 三次元コンプレックスコイル
US9615833B2 (en) Method for producing in-vivo indwelling member
JP2019516425A (ja) 動脈瘤治療コイル
US20180263633A1 (en) In vivo indwelling member, and in vivo indwelling member placement device provided with said in vivo indwelling member
US11103251B2 (en) In vivo indwelling member, and in vivo indwelling member placement device provided with said in vivo indwelling member
JP6761741B2 (ja) マンドレル及び該マンドレルを用いた生体内留置部材の製造方法
US20220378589A1 (en) Stent, stent precursor production device, and stent production method
JP6655558B2 (ja) 生体内留置部材を製造するための型及び該型を用いた生体内留置部材の製造方法
JP6487200B2 (ja) 生体内留置部材用一次形状体、その製造方法、及びマンドレル
JP2016182299A (ja) 生体内留置部材およびその製造方法
JP6072973B1 (ja) テンポラリーステントの製造方法
JP2014083239A (ja) 生体内留置用二次コイルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521061

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15312455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796304

Country of ref document: EP

Kind code of ref document: A1