WO2015170707A1 - せん断加工部品の製造方法及び製造装置 - Google Patents

せん断加工部品の製造方法及び製造装置 Download PDF

Info

Publication number
WO2015170707A1
WO2015170707A1 PCT/JP2015/063215 JP2015063215W WO2015170707A1 WO 2015170707 A1 WO2015170707 A1 WO 2015170707A1 JP 2015063215 W JP2015063215 W JP 2015063215W WO 2015170707 A1 WO2015170707 A1 WO 2015170707A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
punch
workpiece
tool
vickers hardness
Prior art date
Application number
PCT/JP2015/063215
Other languages
English (en)
French (fr)
Inventor
崇 松野
佐藤 浩一
隆 安富
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020167031052A priority Critical patent/KR101903264B1/ko
Priority to JP2016517919A priority patent/JP6237894B2/ja
Priority to MX2016014447A priority patent/MX2016014447A/es
Priority to US15/309,142 priority patent/US10335846B2/en
Priority to CN201580023202.0A priority patent/CN106457348B/zh
Publication of WO2015170707A1 publication Critical patent/WO2015170707A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/14Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides

Definitions

  • the present invention relates to a method and apparatus for manufacturing a sheared part, and more specifically, a method and apparatus for manufacturing a sheared part made of high-strength steel or ultra-high-strength steel used in automobiles, construction machines, various plants, and the like. Relates to the device.
  • This application claims priority based on Japanese Patent Application No. 2014-097044 filed in Japan on May 08, 2014, the contents of which are incorporated herein by reference.
  • FIG. 16A is a cross-sectional view schematically showing a drilling process in which a hole is formed by shearing the workpiece 1.
  • FIG. 16B is a cross-sectional view schematically showing a cutting process in which the workpiece 1 is sheared to form an open cross section.
  • a workpiece 2 is placed on a die 3 and then a punch 2 is shown in the drawing.
  • the workpiece 1 is punched by pushing it in the direction of the white arrow, and the workpiece 1 is punched and sheared.
  • FIG. 17 is a cross-sectional view showing the shearing surface 8 formed on the workpiece 1 that has been sheared.
  • the shearing surface 8 of the workpiece 1 formed by the shearing process has a sagging 4 formed by pressing the workpiece 1 with the punch 2, and a clearance between the punch 2 and the die 3.
  • a shear plane formed by the workpiece 1 being drawn and locally stretched inside hereinafter referred to as “clearance” unless otherwise specified in the present specification).
  • a fracture surface 6 formed by breaking the workpiece 1 drawn into the clearance between the punch 2 and the die 3, and a burr 7 generated on the back surface of the workpiece 1.
  • Shearing has the advantage that it can be processed at low cost.
  • the hardness required for the workpiece 1 tends to increase, and it is difficult to simply apply the conventional shearing method.
  • a high-tensile steel plate having a tensile strength exceeding 780 MPa is used as the work material 1
  • excessive burrs 7 are generated due to chipping of the cutting edge, so the mold must be frequently replaced, and productivity is increased.
  • a decline is inevitable.
  • blade loss is a phenomenon different from “blade wear”. In other words, wear is a phenomenon in which the roundness of the cutting edge increases with an increase in the number of machining operations, whereas the defect is a phenomenon in which the cutting edge is lost due to cracking.
  • Non-Patent Document 1 the wear of the tool blade edge is often suppressed by performing a coating process on the surface of the tool. Further, with respect to chipping of the tool edge, a method for absorbing and mitigating shock when the tool edge comes into contact with the tool fastening portion is made flexible, for example, as disclosed in Non-Patent Document 2, There are known methods for rounding or chamfering only the cutting edge.
  • Non-Patent Document 1 improves the tool life by reducing the frictional resistance between the tool surface and the workpiece.
  • this method when shearing a high-tensile steel plate having a maximum tensile strength of 780 MPa or more, it is impossible to prevent a sudden tool edge defect due to an impact on the tool edge.
  • the method described in Non-Patent Document 2 described above in which the cutting edge is rounded only on the punch, cannot prevent the cutting edge of the die from being lost.
  • the present inventors know empirically that the frequency of occurrence of tool damage increases when the ratio between the hardness of the workpiece and the hardness of the tool (die, punch, etc.) exceeds a certain value.
  • Table 1 shows the results of experiments conducted by the inventors on the ratio. In the tool evaluation shown in Table 1, G indicates Good (good) and NG indicates Not Good (problem). According to the above experimental results, it has been found that the occurrence frequency of tool damage sharply increases in high-strength steel and ultra-high-strength steel in which the Vickers hardness of the workpiece is 0.3 times or more of the Vickers hardness of the tool. In the experiment of Table 1, the experiment was performed using a punch and a die each having an acute tool edge.
  • the clearance between the punch and the die when the plate thickness of the workpiece is t is changed within the range of 0.1 ⁇ t to 0.2 ⁇ t, but the result is not affected. It was confirmed that the ratio between the hardness of the tool and the hardness of the tool was dominant.
  • the present invention has been made in view of the above circumstances, and even if a workpiece made of high-tensile steel or ultra-high-strength steel having a Vickers hardness of 0.3 times or more of the Vickers hardness of the tool is used, It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus for a sheared part, which can manufacture the sheared part at a low cost without causing a typical cutting edge defect.
  • a method of manufacturing a sheared part according to one aspect of the present invention includes a workpiece having a Vickers hardness of 0.3 times to less than 1.0 times, whichever is lower of the Vickers hardness of a punch and the Vickers hardness of a die.
  • a method of manufacturing a plurality of sheared parts by performing a plurality of shearing processes on the material using the punch and the die, the step of fixing the workpiece to the die, Punching the workpiece with the punch and the die relatively close to each other, and performing the shearing process a plurality of times, and facing the workpiece at the start of a series of shearing processes.
  • a punch comprising: a first tip surface; and a first cutting edge including a first receding surface retracted from the first tip surface with reference to a direction of approach to the die; a second tip facing the workpiece Surface and said pad A second cutting edge comprising a second retraction surface recessed from said second distal end surface approaching direction with respect to the switch, and the die comprises a; with performing the shearing.
  • the first receding surface when viewed in a cross section perpendicular to the first tip surface is equal to or higher than Rmin (mm) defined by the following equation 1 and the following equation 2
  • Chamfering having a width dimension equal to or less than ⁇ max (mm) defined
  • the second receding surface when viewed in a cross section perpendicular to the second tip surface is Rmin (mm) defined by the following formula 1
  • either one or both of the first receding surface and the second receding surface is a curved surface having a curvature of 0.05 mm or more and 0.5 mm or less, or C0.05 mm or more and C0. It may be a chamfer of 5 mm or less.
  • the first receding surface of the first tip surface, the first receding surface, and the outer surface of the punch At least a first condition having the highest frictional resistance and a second condition having the highest frictional resistance of the second receding surface among the second tip surface, the second receding surface, and the inner surface of the die. One may be satisfied.
  • the workpiece may be subjected to any one of surface decarburization treatment, plating treatment, and solid lubrication treatment. Good.
  • the apparatus for manufacturing a sheared part according to another aspect of the present invention has a Vickers hardness of not less than 0.3 times and less than 1.0 times of the lower one of the Vickers hardness of the punch and the Vickers hardness of the die.
  • a punch for punching the workpiece, and the punch has a first tip surface facing the workpiece and a first receding surface retracted from the first tip surface with reference to the direction of approach to the die.
  • the die includes a second tip surface facing the workpiece, and a second receding surface retracted from the second tip surface with reference to the approaching direction to the punch. 2 cutting edges.
  • the first receding surface when viewed in a cross section perpendicular to the first tip surface is equal to or greater than Rmin (mm) defined by the following equation 1 and the following equation 2
  • Chamfering having a width dimension equal to or less than ⁇ max (mm) defined
  • the second receding surface when viewed in a cross section perpendicular to the second tip surface is Rmin (mm) defined by the following formula 1
  • either one or both of the first receding surface and the second receding surface is a curved surface having a curvature of 0.05 mm or more and 0.5 mm or less, or C0.05 mm or more and C0. It may be a chamfer of 5 mm or less.
  • the first receding surface of the first tip surface, the first receding surface, and the outer surface of the punch At least a first condition having the highest frictional resistance and a second condition having the highest frictional resistance of the second receding surface among the second tip surface, the second receding surface, and the inner surface of the die. One may be satisfied.
  • each aspect of the present invention even when using a workpiece made of high-strength steel or ultra-high-strength steel having a Vickers hardness of 0.3 times or more of the tool's Vickers hardness, sudden chipping of the cutting edge can be achieved. It is possible to manufacture sheared parts at low cost without the occurrence.
  • FIG. 4 is a diagram for explaining a detailed mechanism when a die blade edge and a punch blade edge are broken when a high-tensile steel plate is sheared as a workpiece, and is a cross-sectional view showing a continuation process of FIG. 3A It is.
  • Sectional drawing which shows the detailed mechanism at the time of carrying out the shearing process using a high-tensile steel plate as a workpiece, and when the cutting edge of a die and the cutting edge of a punch are broken, and shows the process following FIG. 3B It is. It is a figure which shows the result of having calculated
  • FIG. 1 the principal part of the shear processing apparatus which concerns on one Embodiment of this invention is shown.
  • the shearing component manufacturing apparatus 100 in this embodiment is relatively close to the die 120 and the plate presser 130 that sandwich and fix the workpiece 1 from above and below, and the die 120.
  • the shear processing component manufacturing apparatus 100 uses, as a workpiece 1, a high-tensile steel plate having a Vickers hardness that is 0.3 times or more and less than 1.0 times the lower one of the Vickers hardness of the punch 110 and the Vickers hardness of the die 120. This is an apparatus for producing a plurality of sheared parts by performing a plurality of shearing processes.
  • the punch 110 includes a first front end surface 111 that faces the workpiece 1 and a first cutting edge 113 that includes a first retreating surface 112 that retreats from the first front end surface 111 with reference to the approaching direction to the die 120.
  • the die 120 includes a second tip surface 121 that faces the workpiece 1 and a second cutting edge 123 that includes a second receding surface 122 that recedes from the second tip surface 121 with reference to the approaching direction to the punch 110.
  • the die 120 is a pedestal on which the workpiece 1 is placed, and is a through-hole that is an inner surface that forms a predetermined clearance c with respect to the outer surface 114 of the punch 110 in a cross section perpendicular to the axis of the punch 110.
  • the plate retainer 130 is a tool for sandwiching and fixing the workpiece 1 placed on the die 120 between the die 120 and, like the die 120, a through hole 131 coaxial with the punch 110 is formed. ing.
  • high-strength steel When shearing a workpiece made of high-strength steel or ultra-high-strength steel (hereinafter sometimes referred to as “high-strength steel”) whose Vickers hardness is 0.3 times or more of the Vickers hardness of the tool The mechanism for the resulting tool edge failure is not known in detail. Therefore, the present inventors have confirmed the mechanism by experiments. The present invention has been completed based on the knowledge obtained at that time.
  • the present inventors performed a tool durability test when shearing was performed using a high-tensile steel plate having a tensile strength of 780 MPa as a workpiece. As a result of the tool durability test, it was found that even when the tool edge was not damaged, the edge was worn from a substantially acute angle to a radius of 0.05 mm or more by the first 1000 shots.
  • FIGS. 2A and 2B are partial cross-sectional views showing the state of occurrence of burrs during shearing of a steel plate.
  • 2A shows a case where a mild steel plate having a tensile strength of less than 780 MPa is used as the workpiece 1A
  • FIG. 2B shows a case where a high strength steel plate having a tensile strength of 780 MPa or more is used as the workpiece 1.
  • FIG. 3A is a partial cross-sectional view showing an initial process when punching a workpiece (high-tensile steel plate) 1 with a punch 300 and a die 310, and as shown by a white arrow, with respect to the die 310.
  • the situation where the punch 300 is approached is shown.
  • both the cutting edge 301 of the punch 300 and the cutting edge 311 of the die 310 have a cross-sectional shape having a right angle in the initial process.
  • 3B is a partial cross-sectional view showing a state in which the punch 300 is closer to the die 310 than in FIG. 3A.
  • a plastic flow is formed from one side of the workpiece 1 to the other side and from the other side to the other side with a straight line connecting the cutting edges 301 and 311 as a boundary.
  • These plastic flows are particularly high in pressure between the cutting edges 301 and 311 where the flow path becomes narrow, and the cutting edges 301 and 311 are pressed and plastically deformed so as to push them along their own flow. As a result, the blade edges 301 and 311 become protrusions that protrude from the original position.
  • the blade edge 301 receives a pressing force due to plastic flow and is punched. It moves to the outer surface of 300 and finally loses.
  • the cutting edge 311 receives the pressing force due to plastic flow, moves to the inner surface of the die 310, and is lost.
  • the workpiece 1 when the workpiece 1 is a high-strength steel plate, the workpiece 1 cannot move freely including the portions that contact the cutting edges 301 and 311 because of its hardness. Therefore, the portion of the workpiece 1 that hits the cutting edges 301 and 311 remains stopped while maintaining a high pressure, and continues to apply high stress to the cutting edges 301 and 311. It will be plastically deformed so as to push out from its original position. Subsequently, the cutting edge 301 pushed out to the outer surface of the punch 300 is lost due to a shearing force due to relative displacement with the workpiece 1 around the punch 300 this time. Similarly, the cutting edge 311 pushed out to the inner surface of the die 310 is also damaged due to a shearing force due to relative displacement with the workpiece 1 in the die 310.
  • the present inventors tried detailed examination also about the roundness given to a tool blade edge, and the size of chamfering.
  • the examination results are described below.
  • the radius of curvature when rounding the tool edge was studied. Specifically, the Vickers hardness Hw of the workpiece, the Vickers hardness Ht of the tool, and the clearance c between the tools (between the punch and the die) were set, and the amount of plastic deformation generated at the tool edge was calculated by simulation. .
  • An example of the simulation calculation result is shown in FIG. In the example of FIG. 4, the magnitude of the amount of plastic deformation is color-coded, and the amount of plastic deformation is the maximum value at the position indicated by the symbol H, which is the cutting edge.
  • the curvature radius of the roundness at the tool edge is increased and recalculated, and the minimum curvature radius of the roundness satisfying the condition that the plastic deformation amount is within the allowable range is obtained. . Then, the obtained minimum curvature radius of roundness was set as the minimum value Rmin of roundness (R value) in the above setting.
  • Rmin of roundness R value
  • Rmin (0.9 + 0.2e -0.08c ) (0.3571x 2 -0.2595x + 0.0965) .
  • Rmin (0.9 + 0.2e -0.08c ) (0.3571x 2 -0.2595x + 0.0965) .
  • the unit of Rmin is (mm), and e is the base of natural logarithm.
  • c (mm) is a clearance between tools, and in the case of a drilling tool, indicates a clearance between the inner surface of the die and the outer surface of the punch.
  • x represents a dimensionless number obtained by dividing the Vickers hardness Hw (MPa) of the workpiece by the Vickers hardness Ht (MPa) of the tool, and 0.3 ⁇ 0.3 for reasons described later. The value satisfies x ⁇ 1.0.
  • x is a hardness ratio obtained by dividing the Vickers hardness of the workpiece by the Vickers hardness of the punch, and for a die, the Vickers hardness of the workpiece by the Vickers hardness of the die. Is the hardness ratio divided by.
  • the reason why the lower limit value of the hardness ratio x is 0.3 (0.3 ⁇ x) is that, as explained based on the experimental results in Table 1, the present invention has a ratio of 0.3 times or more as the ratio. This is because the material is the target of application.
  • the reason why the upper limit of the hardness ratio x is less than 1.0 (x ⁇ 1.0) is that when the Vickers hardness Hw of the workpiece exceeds the Vickers hardness Ht of the tool, the hardness balance is reversed and the machining cannot be performed. Because. For the above reasons, the hardness ratio is a value satisfying 0.3 ⁇ x ⁇ 1.0.
  • the inventors have determined the cutting edges of both the punch and the die.
  • a mild steel plate having a tensile strength of 270 MPa As the work material, three steel types were used: a mild steel plate having a tensile strength of 270 MPa, a 590 MPa steel plate, and a 780 MPa high strength steel plate.
  • the clearance between the punch and the die is 15% t (% t indicates the ratio of the clearance width to the plate thickness of the workpiece.
  • the plate thickness of the workpiece is t (mm).
  • the clearance 0.15 ⁇ t (mm)), and continuous drilling of 20,000 shots at the maximum was performed.
  • FIG. 5 is a bar graph showing the number of shots until the tool edge is broken.
  • a mild steel plate 270 MPa steel plate
  • a 590 MPa steel plate was used as the work material
  • the tool edge was not damaged under any of the round tool conditions (in FIG. 5).
  • the arrow indicates that there was no damage after 20,000 shots (the same applies to the bar graphs in the other figures).
  • the tool edge was damaged in the case where the tool edge was an acute angle, the case of R0.01 mm, and the case of R0.04 mm. In the case of R0.05 mm to R1.00 mm, the tool edge was not damaged.
  • the Vickers hardness of the used tool was 653 Hv
  • the Vickers hardness of the mild steel plate was 82 Hv
  • the Vickers hardness of the 590 MPa steel plate was 184 Hv
  • the Vickers hardness of the 780 MPa high strength steel plate was 245 Hv.
  • the correspondence relationship between each steel plate and the Vickers hardness value is the same in other experiments described in this embodiment.
  • the roundness is 0.05 mm or more as compared with the above cases (1) to (3) where the radius is 0.04 mm or less.
  • cases (7) to (7) a significant increase in tool life was confirmed. Naturally, no excessive burrs due to sudden chipping of the tool edge occurred.
  • the amount of plastic deformation can be suppressed by setting the radius of rounding to 0.05 mm or more. Therefore, it was confirmed that it is effective to estimate the lower limit value Rmin of the roundness imparted to the cutting edge based on the above formula 1.
  • the upper limit value Rmax of the roundness of the tool edge was examined. If the roundness of the tool edge is too large as necessary, the height of the burr generated on the workpiece after shearing tends to be higher than allowable, so it is based on the roundness corresponding to the allowable burr height.
  • the upper limit was determined. Specifically, in each of the cases (1) to (7), shearing was performed, and the burr height was determined for each predetermined number of shots.
  • FIGS. 6A to 6C are graphs showing how the burr height in the hole formed by continuous drilling changes with the number of shots.
  • FIG. 6A is a graph when a mild steel plate is used as a workpiece.
  • FIG. 6B is a graph when a 590 MPa steel plate is used as a workpiece.
  • FIG. 6C is a graph when a 780 MPa high-tensile steel plate is used as a workpiece. Of these workpieces, the present invention targets the 780 MPa high-tensile steel plate shown in FIG. 6C, and FIGS. 6A and 6B are shown for reference.
  • the burr height is obtained through all the shot numbers except for the case where the tool edge is rounded with an acute angle or R0.01 mm.
  • R0.01 mm was 0.2 mm or more.
  • the burr height when a 780 MPa high-tensile steel plate was used as the work material, the burr height could be suppressed to 0.2 mm or less when the roundness of the tool edge was R0.5 mm or less. It was confirmed that the burr height rapidly increased when the roundness of the cutting edge was R 0.6 mm or more. More specifically, as shown in FIG. 6C, in the cases (6) to (7) in which the radius of curvature of the roundness is 0.6 mm or more, the burr height cannot be suppressed within the allowable range. In the cases of (2) to (5) where the radius of curvature is 0.5 mm or less, it was confirmed that the burr height can be suppressed within an allowable range.
  • a high-strength steel or super-high-strength steel of 780 MPa class or higher is used as a work material, the Vickers hardness Hw of the work material, the Vickers hardness Ht of the tool, and between tools (between the punch and die In the case where the combination of the clearance c) was changed, an experiment was performed to determine the tendency of the maximum value Rmax of the radius of curvature of the roundness of the tool edge that can suppress the burr height.
  • Rmax was calculated
  • Rmax (0.9 + 0.2e -0.08c ) (-9.1856x 4 + 25.17x 3 -24.95x 2 + 11.054x-1.5824) .
  • the unit of Rmax is (mm), and the hardness ratio x, clearance c, and the like are the same as those described in (Equation 1) above.
  • the generated burr height is so small as to be allowed, and the tool blade tip is not suddenly damaged. It was found that the radius of curvature of the tool edge needs to be 0.05 mm to 0.5 mm. Further, when the object of the workpiece is a wider range including the super high-strength steel, the generated burr is allowed by setting the radius of curvature of the tool edge within the range of Rmin to Rmax. It was found that the tool edge was minor and no sudden chipping of the tool edge occurred.
  • a shearing component that includes the punch 110 and the die 120, and mass-produces the shearing component by continuously performing shearing on a plurality of high-tensile steel plates having a maximum tensile strength of 780 MPa, which is the workpiece 1.
  • the tool cutting edges 113 and 123 of both the punch 110 and the die 120 are preferably rounded to a radius of 0.05 mm to 0.5 mm at the start of a series of shearing processes.
  • the radii of the tool cutting edges 113 and 123 be in the range of Rmin to Rmax.
  • the shearing component manufacturing apparatus 100 including the punch 110 and the die 120 having the above-described configuration, a large number of high-tensile steel sheets having a maximum tensile strength of 780 MPa class, or ultra-high-tensile steels having a maximum tensile strength higher than that.
  • shearing is performed continuously on a single sheet, it is possible to mass-produce sheared parts without causing burrs to occur to an acceptable level and without sudden breakage of the tool cutting edges 113 and 123. become.
  • the case of chamfering C on the tool edge was also examined. Specifically, assuming that the Vickers hardness Hw of the workpiece, the Vickers hardness Ht of the tool, and the clearance c between the tools (between the punch and the die) are assumed to be a certain value, Simulation calculation. The result of the simulation calculation was color-coded according to the amount of plastic deformation as in FIG. 4 described above (not shown because it is similar to FIG. 4). Then, if the maximum value of the plastic deformation amount exceeds the allowable range, the chamfer dimension C at the tool edge is increased and recalculated, and the chamfer dimension C that satisfies the condition that the plastic deformation amount is within the allowable range is obtained. . The obtained chamfer dimension C was set as the minimum value ⁇ min in the above setting.
  • a white arrow a indicates the moving direction of the punch 110
  • a symbol l indicates a tangent to the tip surface 111 (first tip surface) of the punch 110
  • a symbol 112 indicates a chamfering that is a first receding surface
  • a symbol 114 indicates a side surface (outer surface).
  • the inclination angle ⁇ with respect to the tangent l of the front end surface 111 is set to 45 °.
  • the ⁇ min was determined as the following (formula 3), which is a function of the hardness ratio x and the clearance c between the tools.
  • ⁇ min 0.0222e 2.0833x (0.9 + 0.1e -0.07c ). . . (Formula 3)
  • e is the base of the natural logarithm.
  • C (mm) indicates a clearance between the inner surface 124 of the die 120 and the outer surface 114 of the punch 110.
  • X represents a dimensionless number obtained by dividing the Vickers hardness Hw (MPa) of the workpiece 1 by the Vickers hardness Ht (MPa) of the tool, and 0.3 for the above-described reason.
  • ⁇ x ⁇ 1.0.
  • x is the hardness ratio obtained by dividing the Vickers hardness of the workpiece 1 by the Vickers hardness of the punch 110 in the case of the punch 110, and the Vickers hardness of the die 120 in the case of the die 120. It is a hardness ratio obtained by dividing the Vickers hardness of the workpiece 1.
  • the work material three types of steel, a mild steel plate having a tensile strength of 270 MPa, a 590 MPa steel plate, and a 780 MPa high strength steel plate, are used, and the clearance between the punch and the die is 15% t (% t is the clearance relative to the plate thickness of the work material) In the case of this example, the clearance is 0.15 ⁇ t (mm) when the thickness of the workpiece is t (mm). Drilling was performed.
  • FIG. 8 is a bar graph showing the number of shots until the tool edge is broken.
  • a mild steel plate or a 590 MPa steel plate was used as the work material, the tool edge was not damaged under any of the chamfering conditions.
  • a 780 MPa grade steel tensile steel plate was used as the work material, tool breakage occurred in the case where the tool edge was an acute angle, the case of C0.01 mm, and the case of C0.04 mm, whereas in the example of the present invention, In a case of C0.05 mm to C1.00 mm, the tool edge was not damaged.
  • the upper limit value ⁇ max of the chamfer dimension of the tool edge was examined.
  • the chamfer dimension of the tool edge is too large than necessary, the height dimension of the burr generated on the workpiece after shearing tends to be higher than allowable, so the chamfer dimension corresponding to the allowable burr height.
  • the upper limit was determined. Specifically, in each of the cases (8) to (14), shearing was performed, and the burr height was determined for each predetermined number of shots.
  • FIGS. 9A to 9C are graphs showing how the burr height at the hole formed by continuous drilling changes with the number of shots.
  • FIG. 9A is a graph when a mild steel plate is used as a workpiece.
  • FIG. 9B is a graph in the case of using a 590 MPa steel plate as a workpiece.
  • FIG. 9C is a graph when a 780 MPa high-tensile steel plate is used as a workpiece. Of these workpieces, the present invention targets the case of the 780 MPa high-tensile steel plate shown in FIG. 9C, and FIGS. 9A and 9B are shown for reference.
  • the burr height is 0 through all the shot numbers except for the case where the tool blade edge is an acute angle or C0.01 mm. .2 mm or more.
  • the chamfer dimension of the tool blade edge was C0.50 mm or less, and the burr height was suppressed to 0.2 mm or less. It was confirmed that the burr height increased rapidly when the chamfering of the tool edge was C0.60 mm or more. More specifically, as shown in FIG. 9C, in the case of (13) to (14) where the chamfer dimension is C0.60 mm or more, the burr height cannot be suppressed within the allowable range, but the chamfer dimension is C0. In the cases of (9) to (12) which are .50 mm or less, it was confirmed that the burr height can be suppressed within an allowable range.
  • ⁇ max was determined as the following (formula 4), which is a function of the hardness ratio x and the clearance c between the tools.
  • ⁇ max (0.9 + 0.1e -0.07c ) (-0.3274x 2 + 0.9768x-0.1457) . .
  • the unit of ⁇ max is (mm), and the hardness ratio x, clearance c, and the like are the same as those described in (Equation 3) above.
  • the burrs that occur are minor enough to be allowed and sudden breakage of the tool edge. Therefore, the chamfer dimension of the tool edge to prevent the occurrence of C is required to be C0.05 mm to C0.5 mm.
  • the chamfer dimension of the tool edge is within the range of the ⁇ min to the ⁇ max, and the generated burr is allowed. The tool edge is required to be as small as possible and not to cause a sudden chipping of the tool edge.
  • a shearing component that includes the punch 110 and the die 120, and mass-produces the shearing component by continuously performing shearing on a plurality of high-tensile steel plates having a maximum tensile strength of 780 MPa, which is the workpiece 1.
  • the tool cutting edges 113 and 123 of both the punch 110 and the die 120 are preferably chamfered to C0.05 mm to C0.5 mm at the start of a series of shearing processes.
  • the chamfer dimensions of the tool cutting edges 113 and 123 are in the range of ⁇ min to ⁇ max.
  • a high-tensile steel plate having a maximum tensile strength of 780 MPa, which is the workpiece 1, or a super-high-strength steel having a maximum tensile strength higher than that is continuously sheared.
  • the shear processing component manufacturing method and manufacturing apparatus has a Vickers hardness of 0.3 times or more and less than 1.0 times, whichever is lower of the Vickers hardness of the punch 110 and the Vickers hardness of the die 120.
  • a method of manufacturing a plurality of sheared parts by performing a plurality of shearing processes on the workpiece 1 using the punch 110 and the die 120, wherein the workpiece 120 is provided on the die 120. 1 is fixed, and the punching process of the workpiece 1 is performed by relatively bringing the punch 110 and the die 120 close to each other.
  • the shearing process is performed using the die 120 including the second cutting edge 123 including the receding surface 122.
  • the first receding surface 112 when viewed in a cross section perpendicular to the first tip surface 111 is equal to or greater than Rmin (mm) defined by the following equation 1 and defined by the following equation 2.
  • Rmin (mm) defined by the following equation 1
  • ⁇ min (mm) defined by the following equation 2.
  • Chamfering having a width dimension equal to or less than ⁇ max (mm) as defined;
  • the second receding surface 122 when viewed in a cross section perpendicular to the second tip surface 121 is Rmin ( mm) and a curved surface having a curvature equal to or less than Rmax (mm) defined by the following formula 2, or an inclination angle of 45 ° with respect to the tangent to the second tip surface 121 and ⁇ min ( mm) and a chamfer having a width dimension not more than ⁇ max (mm
  • one or both of the first receding surface 112 and the second receding surface 122 is a curved surface having a curvature of 0.05 mm or more and 0.5 mm or less; Either one or both of the receding surface 112 and the second receding surface 122 may be chamfered with C0.05 mm or more and C0.5 mm or less.
  • the workpiece 1 is made of high-strength steel or ultra-high-strength steel having a Vickers hardness of 0.3 times or more of the Vickers hardness of the tool, It is possible to manufacture a sheared part at low cost without causing a sudden chipping of the cutting edge.
  • the surface decarburization process, the plating process, and the solid lubrication process are performed on the surface of the workpiece 1 before the shearing process, regardless of whether the tool edge is rounded or chamfered. Any one of the above is preferably applied.
  • the inventors also investigated steel sheets with different surface treatments. The experimental results are shown in FIG. FIG. 10 shows the transition of the burr height in the workpiece for each number of shots when a continuous drilling process is performed on the workpiece using a tool with a radius of curvature of 0.05 mm at the tool edge. It is a graph. And the case where the work material which gave hot-dip galvanization is used as a work material, and the case where an unprocessed work material is used are compared.
  • the burr height can be halved when hot dip galvanizing is applied to the workpiece as compared with the case of no treatment.
  • the hot dip galvanized layer relaxes the impact force applied to the tool edge, and as a result, the wear of the tool edge (increasing the radius of curvature of the roundness) can be suppressed. It was thought that the increase in burr height was suppressed.
  • the surface treatment is not limited to hot dip galvanization.
  • the plastic flow of the material in contact with the other parts can be further suppressed when the workpiece is sheared. Thereby, the burr height can be further reduced.
  • FIG. 11 is an enlarged cross-sectional view of the tool cutting edges of the punch 110 and the die 120 in the sheared component manufacturing apparatus according to the present embodiment.
  • the tool is polished only by the outer surface 114 and the through hole 124 (hereinafter also referred to as the inner surface 124) of the punch 110 and the die 120, respectively.
  • the friction coefficient of the portions 119 and 129 excluding the outer side surface 114 and the inner side surface 124 is set to about 0.2
  • the friction coefficient of the outer side surface 114 and the inner side surface 124 is set to about 0.1. it can. As a result, the burr height can be further reduced.
  • the punch 110 and the die 120 are manufactured in advance with soft tool steel
  • a method of performing nitriding treatment or coating treatment only on the side surface 114 can also be used.
  • the friction coefficient of the portions 119 and 129 other than the outer side surface 114 and the inner side surface 124 can be relatively increased by a surface treatment that provides a coating that increases the friction coefficient and fine irregularities.
  • the friction coefficient is measured by a test (a test generally used as a method for measuring the friction coefficient) in which a tool is pressed against and slides on the steel plate to be processed 1.
  • the value is defined as a value obtained by dividing the sliding resistance by the pressing pressure.
  • a test material for the sliding test in order to simulate the sliding at the time of shearing, the tool itself or a part of the tool is cut out and used so that the area of the contact portion is 1.0 mm 2 or more. be able to. It is desirable that the pressing pressure in the sliding test is about 50 MPa to 300 MPa, and the sliding speed is about 10 mm / second to 400 mm / second.
  • a well-known and conventional tool steel can be used as this type of tool steel.
  • high speed steel such as SKH51, die steel such as SKD11, or super steel of about V40.
  • a tool durability test was conducted for drilling with a diameter of 10 mm.
  • a 780 MPa high-tensile steel plate is used as the workpiece, and the clearance c between the punch 110 and the die 120 is 15% t (% t indicates the ratio of the clearance width to the plate thickness of the workpiece.
  • the clearance is 0.15 ⁇ t (mm).
  • the cutting edge shape of both the punch 110 and the die 120 was made into three cases of acute angle, R0.5 mm, and C0.5 mm, and the entire tool was polished for R0.5 mm and C0.5 mm.
  • Two types of tools were prepared: conditions and conditions where only the tool side was polished. At this time, the coefficient of friction measured by the sliding test was about 0.1 in the portion where polishing was applied, and 0.25 in the portion where polishing was not applied.
  • FIG. 12 is a bar graph showing the number of shots until the tool breaks. As shown in FIG. 12, tool breakage occurred when the tool edge was an acute angle. However, under the conditions of R0.05 mm and C0.05 mm according to the present invention, the tool breakage occurred regardless of the polished state of the tool. There wasn't.
  • FIG. 13 shows, as a graph, the transition of the burr height in the hole after drilling according to the number of shots.
  • the burr height was 0.2 mm or less for any tool, but in the case of a tool that was polished to polish only the side surface, the tool was polished on the entire surface. The burr height was clearly lower than that.
  • the tool is divided into the side portion and the other portion of the tool.
  • the punch 110 includes the first tip surface 111 facing the workpiece 1 and the tool cutting edge 113.
  • the first retreating surface 112 (rounded R portion) and the outer surface 114 the first condition in which the first retreating surface 112 has the highest frictional resistance;
  • the second of the die 120 facing the workpiece 1 Of the tip surface 121, the second receding surface 122 (the rounded R portion) including the tool cutting edge 123, and the inner surface 124, at least one of the second condition in which the second receding surface 122 has the highest frictional resistance; It is desirable to satisfy. More preferably, both the first condition and the second condition are satisfied.
  • the frictional resistance is higher in the order of the first receding surface 112 (rounded R portion), followed by the first tip surface 111, and then the outer surface 114; and the second receding surface 122 (rounded). It is most preferable that the frictional resistance is high in the order of the attached R portion), the second tip surface 121, and then the inner surface 124.
  • the burr height is suppressed to 0.04 mm in the case where the tool edge R portion, the tip surface, and the side surface are in order. It was confirmed that
  • Table 6 shows the experimental results showing the case where the tool edge is rounded, but the same can be said for the case where the tool edge is chamfered. That is, among the first tip surface 111 of the punch 110 facing the workpiece 1, the first receding surface 112 having a chamfered portion, and the outer surface 114, the third receding surface 112 has the highest frictional resistance.
  • the second tip surface 121 of the die 120 facing the workpiece 1, the second receding surface 122 having a chamfered portion, and the inner side surface 124, the fourth receding surface 122 has the highest frictional resistance. It is desirable to satisfy at least one of the conditions; More preferably, both the third condition and the fourth condition are satisfied.
  • the frictional resistance increases in the order of the first receding surface 112, then the first tip surface 111, and then the outer surface 114; and the second receding surface 122, then the second tip surface 121, and further. It is most preferable that the friction resistance is higher in the order of the inner side surface 124.
  • the burr height can be suppressed to 0.04 mm in the case of the order of the chamfered portion, the tip surface, and the side surface. was confirmed.
  • the following (D) may be further adopted.
  • (D) In the aspect described in any one of (A) to (C) above, among the first tip surface 111, the first receding surface 112, and the outer surface 114 of the punch 110, the first The first condition that the frictional resistance of the first receding surface 112 is the highest, and the frictional resistance of the second receding surface 122 among the second tip surface 121, the second receding surface 122, and the inner side surface 124 of the die 120. Satisfies at least one of the second condition with the highest value.
  • the following (E) may be adopted.
  • the tool life can be further extended as compared with the case of no treatment.
  • the workpiece 1 is preliminarily subjected to any one of surface decarburization treatment, plating treatment, and solid lubrication treatment. deep.
  • the present invention is not limited to the configuration in which both the tool cutting edge 113 of the punch 110 and the tool cutting edge 123 of the die 120 are rounded, and the configuration in which chamfering is applied to both the tool cutting edge 113 of the punch 110 and the tool cutting edge 123 of the die 120.
  • the tool edge of the punch 110 may be rounded and the tool edge of the die 120 may be chamfered, or the tool edge of the punch 110 may be chamfered and the tool edge of the die 120 may be rounded.
  • the shapes of the tool cutting edge of the punch 110 and the tool cutting edge of the die 120 are not limited to the above-described forms, and for example, modifications illustrated in FIGS. 14 and 15 can also be employed. That is, in the modified example of FIG. 14, a chamfer C is formed on the tool cutting edge 113 (123), and between the chamfer C and the tool tip surface 111 (121), and between the chamfer C and the tool side surface 114 (124). ) Are provided with roundness R ′. Therefore, there is no corner from the tool tip surface 111 (121) through the chamfer C to the tool side surface 114 (124), and it is smoothly formed. Note that the curvatures of the two rounds R ′ may be the same or different from each other. Further, as the chamfer width dimension ⁇ ′, it is preferable that ⁇ min ⁇ ′ ⁇ max is satisfied based on the above (Expression 3) and (Expression 4).
  • roundness R ′ is provided on both sides of the chamfer C.
  • a roundness R ′ may be provided.
  • a chamfer C is formed on the tool cutting edge 113 (123), and there is an angle E between the chamfer C and the tool tip surface 111 (121), and the chamfer C and the tool side surface 111 (121) It is preferable to provide a roundness R ′ between them.
  • the chamfer width dimension ⁇ ′ it is preferable that ⁇ min ⁇ ′ ⁇ max is satisfied based on the above (Expression 3) and (Expression 4).
  • a roundness R ′ may be provided only between the chamfer C and the tool tip surface 111 (121) (not shown).
  • a chamfer C is formed on the tool cutting edge 113 (123)
  • a roundness R ′ is provided between the chamfer C and the tool tip surface 111 (121)
  • the chamfer C and the tool side surface 111 (121) are provided.
  • An angle E is preferably provided between the two.
  • the workpiece is made of high-strength steel or ultra-high-strength steel having a Vickers hardness of 0.3 times or more of the Vickers hardness of the tool, it is low without causing sudden chipping of the cutting edge. It is possible to manufacture sheared parts at a low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Punching Or Piercing (AREA)
  • Shearing Machines (AREA)

Abstract

このせん断加工部品の製造方法は、ダイに被加工材を固定する工程と、パンチ(110)とダイとを相対的に接近させて前記被加工材の打ち抜き加工を行う工程と、を含むせん断加工を複数回行い、これら一連のせん断加工の開始時に、前記被加工材に対向する第1先端面(111)と、前記ダイへの接近方向を基準として前記第1先端面より後退した第1後退面(112)を含む第1刃先と、を備える前記パンチと;前記被加工材に対向する第2先端面と、前記パンチへの接近方向を基準として前記第2先端面より後退した第2後退面を含む第2刃先と、を備える前記ダイと;を用いて前記せん断加工を行う。

Description

せん断加工部品の製造方法及び製造装置
 本発明は、せん断加工部品の製造方法及び製造装置に関し、具体的には、自動車、建設機械、各種プラント等で用いられる、高張力鋼や超高張力鋼からなるせん断加工部品の製造方法及び製造装置に関する。
 本願は、2014年05月08日に、日本国に出願された特願2014-097044号に基づき優先権を主張し、その内容をここに援用する。
 図16Aは、被加工材1をせん断加工して穴を形成する穴空け加工を模式的に示す断面図である。また、図16Bは、被加工材1をせん断加工して開断面を形成する切断加工を模式的に示す断面図である。
 自動車や建設機械、さらには各種プラント等で用いられるせん断加工部品の製造に際しては、図16A及び図16Bに示すように、ダイ3上に被加工材1を載置した後に、パンチ2を図中の白抜き矢印の方向に押し込むことによって被加工材1を打ち抜く、せん断加工で製造されることが多い。
 図17は、せん断加工された被加工材1に形成されたせん断加工面8を示す断面図である。
 図17に示すように、せん断加工により形成された被加工材1のせん断加工面8は、被加工材1がパンチ2により押し込まれて形成されるダレ4と、パンチ2及びダイ3間のクリアランス内(以下、本明細書において特に断りなく「クリアランス」と表記した場合は、パンチ及びダイ間のクリアランスを意味する)に被加工材1が引き込まれて局所的に引き伸ばされて形成されるせん断面5と、パンチ2及びダイ3間のクリアランス内に引き込まれた被加工材1が破断して形成された破断面6と、被加工材1の裏面に生じるバリ7と、を含む。
 せん断加工は、低コストで加工できる利点がある。しかしながら、近年は被加工材1に求められる硬度が高くなる傾向にあり、単純に今まで通りのせん断加工方法を適用するのが難しい。例えば引張強度が780MPaを超える高張力鋼板を被加工材1として用いる場合には、刃先の欠損により過大なバリ7が生じてしまうため、金型を頻繁に交換しなければならなくなり、生産性の低下が避けられない。
 なお、ここで言う「刃先の欠損」は、「刃先の摩耗」とは異なる現象である。すなわち、摩耗は、刃先の丸みが加工回数の増加とともに増していく現象であるのに対し、欠損は、刃先が割れにより欠けて無くなる現象である。
 工具刃先の摩耗は、例えば非特許文献1に開示されるように、工具の表面にコーティング処理を行うことにより抑制することが多い。
 また、工具刃先の欠損に対しては、工具の締結部を柔軟なものとして、工具刃先が接触する際のショックを吸収及び緩和する方法や、例えば非特許文献2に開示されるようにパンチの刃先のみを丸めたり、面取りしたりする方法が知られている。
型技術、第18巻、第8号、pp.8-9. 平成25年度塑性加工学会春季講演大会予稿集、pp.193-194.
 上記非特許文献1に記載されているような、工具表面にコーティング処理をする方法は、工具表面と被加工材との間の摩擦抵抗を減らすことにより、工具寿命の向上を図るものである。しかしながら、この方法では、最大引張強度が780MPa以上の高張力鋼板をせん断する場合に、工具刃先への衝撃に起因する突発的な工具刃先欠損を防止することができない。
 また、上記非特許文献2に記載されている、パンチのみに刃先の丸みを付ける方法では、ダイの刃先欠損を防止することができない。なお、軟鋼のせん断加工に際しては、被加工材でバリが発生するのを防ぐために、パンチ及びダイの双方の刃先を鋭角にする必要が有り、上記非特許文献2に記載のような丸みや面取りを刃先に付けるとしても、パンチ及びダイの何れか一方のみに限定しないとせん断工具としての機能を十分に果たせない。
 一方、本発明者らは、被加工材の硬度と工具(ダイやパンチなど)の硬度との比率がある値を超えた場合に、工具損傷の発生頻度が高まることを経験的に知っている。本発明者らが前記比率を実験により調べた結果を下表1に示す。なお、表1の工具評価において、GはGood(良好)、NGはNot Good(問題有り)を示す。
 上記実験結果よれば、被加工材のビッカース硬度が工具のビッカース硬度の0.3倍以上となる、高張力鋼や超高張力鋼において、工具損傷の発生頻度が急激に高まることがわかった。なお、表1の実験では、それぞれ鋭角の工具刃先を持つパンチ及びダイを用いて実験を行った。また、被加工材の板厚をtとした場合におけるパンチ及びダイ間のクリアランスを0.1×t~0.2×tの範囲で変更させたが結果に影響はなく、やはり、被加工材の硬度と工具の硬度との比率が支配的であることが確認された。
Figure JPOXMLDOC01-appb-T000001
 以上より、被加工材の硬度と工具の硬度との比率が0.3倍を境として、工具破損のメカニズムが大きく変わっていることが確認された。この点については、上記非特許文献1,2にも開示・示唆されていない。
 よって、従来では、高張力鋼や超高張力鋼からなる高強度の被加工材を工具刃先の欠損なしにせん断加工する手段が確立されていなかった。そのため、上述したような、工具刃先の欠損による過大なバリ7の発生を防ぐためには、金型を頻繁に交換せざるを得なかった。
 本発明は、上記事情に鑑みてなされたものであって、ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼からなる被加工材を用いても、突発的な刃先の欠損を生じることなく低コストでせん断加工部品を製造することが可能な、せん断加工部品の製造方法及び製造装置の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係るせん断加工部品の製造方法は、パンチのビッカース硬度及びダイのビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ被加工材に対して、前記パンチ及び前記ダイを用いて複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する方法であって、前記ダイに前記被加工材を固定する工程と、前記パンチと前記ダイとを相対的に接近させて前記被加工材の打ち抜き加工を行う工程と、を含む前記せん断加工を複数回行い、これら一連のせん断加工の開始時に、前記被加工材に対向する第1先端面と、前記ダイへの接近方向を基準として前記第1先端面より後退した第1後退面を含む第1刃先と、を備える前記パンチと;前記被加工材に対向する第2先端面と、前記パンチへの接近方向を基準として前記第2先端面より後退した第2後退面を含む第2刃先と、を備える前記ダイと;を用いて前記せん断加工を行う。
(2)上記(1)に記載の態様において、前記第1先端面に垂直な断面で見た場合の前記第1後退面が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第1先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りであり;前記第2先端面に垂直な断面で見た場合の前記第2後退面が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第2先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りである;ようにしてもよい。
 Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ...(式1)
 Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ...(式2)
 αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
 αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
 ここで、eは自然対数の底であり、c(mm)は、前記ダイの内側面と前記パンチの外側面との間のクリアランスを示し、xは、前記パンチにあっては前記パンチのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であり、前記ダイにあっては前記ダイのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であって、なおかつ、0.3≦x<1.0を満たす。
(3)上記(2)の場合、前記第1後退面及び前記第2後退面の何れか一方もしくは両方が、0.05mm以上0.5mm以下の曲率を持つ曲面、または、C0.05mm以上C0.5mm以下の面取りであってもよい。
(4)上記(1)~(3)の何れか一項に記載の態様において、前記パンチの、前記第1先端面、前記第1後退面、及び外側面のうち、前記第1後退面の摩擦抵抗が最も高い第1条件と、前記ダイの、前記第2先端面、前記第2後退面、及び内側面のうち、前記第2後退面の摩擦抵抗が最も高い第2条件と、の少なくとも一方を満たすようにしてもよい。
(5)上記(1)~(4)の何れか一項に記載の態様において、前記被加工材に、表面脱炭処理、メッキ処理、及び個体潤滑処理の何れか一つが施されていてもよい。
(6)本発明の他の態様に係るせん断加工部品の製造装置は、パンチのビッカース硬度及びダイのビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ被加工材に対して、複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する装置であって、前記被加工材を固定するダイと、前記ダイに対して相対的に接近させて前記被加工材を打ち抜くパンチと、を備え、前記パンチが、前記被加工材に対向する第1先端面と、前記ダイへの接近方向を基準として前記第1先端面より後退した第1後退面を含む第1刃先とを備え、前記ダイが、前記被加工材に対向する第2先端面と、前記パンチへの接近方向を基準として前記第2先端面より後退した第2後退面を含む第2刃先とを備える。
(7)上記(6)に記載の態様において、前記第1先端面に垂直な断面で見た場合の前記第1後退面が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第1先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りであり;前記第2先端面に垂直な断面で見た場合の前記第2後退面が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第2先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りである;構成を採用してもよい。
 Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ...(式1)
 Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ...(式2)
 αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
 αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
 ここで、eは自然対数の底であり、c(mm)は、前記ダイの内側面と前記パンチの外側面との間のクリアランスを示し、xは、前記パンチにあっては前記パンチのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であり、前記ダイにあっては前記ダイのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であって、なおかつ、0.3≦x<1.0を満たす。
(8)上記(7)の場合、前記第1後退面及び前記第2後退面の何れか一方もしくは両方が、0.05mm以上0.5mm以下の曲率を持つ曲面、または、C0.05mm以上C0.5mm以下の面取りであってもよい。
(9)上記(6)~(8)の何れか一項に記載の態様において、前記パンチの、前記第1先端面、前記第1後退面、及び外側面のうち、前記第1後退面の摩擦抵抗が最も高い第1条件と、前記ダイの、前記第2先端面、前記第2後退面、及び内側面のうち、前記第2後退面の摩擦抵抗が最も高い第2条件と、の少なくとも一方を満たすようにしてもよい。
 本発明の上記各態様によれば、ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼からなる被加工材を用いても、突発的な刃先の欠損を生じることなく低コストでせん断加工部品を製造することが可能となる。
本発明の一実施形態に係るせん断加工装置の要部を示す図であって、ダイと、パンチ及び板押えとの間に被加工材を挟み込んだ状態を示す縦断面図である。 引張強度が780MPa未満の軟鋼板を被加工材としてせん断加工した場合におけるバリの発生状況を示す断面図である。 引張強度が780MPa以上の高張力鋼板を被加工材としてせん断加工した場合におけるバリの発生状況を示す断面図である。 高張力鋼板を被加工材としてせん断加工する際の、ダイの刃先とパンチの刃先とが欠損する際の詳細なメカニズムを説明するための図であって、せん断加工開始時の断面図である。 高張力鋼板を被加工材としてせん断加工する際の、ダイの刃先とパンチの刃先とが欠損する際の詳細なメカニズムを説明するための図であって、図3Aの続きの工程を示す断面図である。 高張力鋼板を被加工材としてせん断加工する際の、ダイの刃先とパンチの刃先とが欠損する際の詳細なメカニズムを説明するための図であって、図3Bの続きの工程を示す断面図である。 工具刃先における塑性変形量の大きさ分布をシミュレーション計算で求めた結果を示す図である。 3種類の鋼材を被加工材として工具刃先が破損するまで連続穴空け加工を行った際のショット数を示す棒グラフであり、横軸が工具刃先の丸みの曲率半径を示し、縦軸がショット数を示す。 軟鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 590MPa鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 780MPa高張力鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 工具刃先に面取りを設けた場合の断面形状を示す図であって、パンチの要部断面図である。 3種類の鋼材を被加工材として工具刃先が破損するまで連続穴空け加工を行った際のショット数を示す棒グラフであり、横軸が工具刃先の面取り寸法を示し、縦軸がショット数を示す。 軟鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 590MPa鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 780MPa高張力鋼板を被加工材として連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 被加工材に表面処理として溶融亜鉛メッキを施した場合におけるバリ高さ低減の効果を示すグラフである。 本実施形態の変形例を示す図であって、パンチ及びダイのそれぞれに磨き分けを行った場合における工具刃先部分の拡大断面図である。 工具刃先が破損するまで連続穴空け加工を行った際のショット数を示す棒グラフであり、横軸が工具刃先の丸みの曲率半径、又は面取り寸法を示し、縦軸が工具破損までのショット数を示す。 連続穴空け加工を行った際のバリ高さの、ショット数に伴う推移を示すグラフである。 工具の他の変形例を示す図であって、工具の先端面に垂直な断面で見た場合の工具刃先部分の断面図である。 工具のさらに他の変形例を示す図であって、工具の先端面に垂直な断面で見た場合の工具刃先部分の断面図である。 被加工材をせん断加工して穴を形成する穴空け加工を模式的に示す図であって、パンチの軸線を含む断面で見た場合の縦断面図である。 被加工材をせん断加工して開断面を形成する切断加工を模式的に示す図であって、被加工材の厚み方向の断面で見た場合の縦断面図である。 せん断加工により形成された被加工材のせん断加工面を示す図であって、被加工材表面に垂直な断面で見た場合の断面図である。
 本発明のせん断加工部品の製造方法及び製造装置に関する実施形態および変形例等について、以下に説明する。
 図1に、本発明の一実施形態に係るせん断加工装置の要部を示す。同図に示すように、本実施形態におけるせん断加工部品の製造装置100は、被加工材1を上下より挟み込んで固定するダイ120及び板押え130と、ダイ120に対して相対的に接近して被加工材1を打ち抜くパンチ110と、を備えている。
 せん断加工部品の製造装置100は、パンチ110のビッカース硬度及びダイ120のビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ高張力鋼板を被加工材1として、複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する装置である。
 パンチ110は、被加工材1に対向する第1先端面111と、ダイ120への接近方向を基準として第1先端面111より後退した第1後退面112を含む第1刃先113とを備える。一方、ダイ120は、被加工材1に対向する第2先端面121と、パンチへ110の接近方向を基準として第2先端面121より後退した第2後退面122を含む第2刃先123とを備えている。
 ダイ120は、被加工材1が載置される台座であり、パンチ110の、同パンチ110の軸線に垂直な断面における外側面114に対して所定のクリアランスcを形成する内側面である貫通孔124が、前記パンチ110と同軸に形成されている。
 板押え130は、ダイ120上に載置された被加工材1をダイ120との間に挟み込んで固定する工具であり、ダイ120と同様に、前記パンチ110と同軸の貫通孔131が形成されている。
 ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼(以下、纏めて「高強度鋼」と呼ぶ場合がある)からなる被加工材をせん断加工した際に生じる工具刃先の欠損に関するメカニズムは、詳しくは知られていない。そこで、本発明者らは実験によりそのメカニズムを確認した。本発明は、その際に得た知見を基に完成させたものである。
 まず、本発明者らは、引張強度が780MPaである高張力鋼板を被加工材としてせん断加工を行った場合の工具耐久試験を行った。この工具耐久試験の結果、工具刃先の損傷が起こらない場合であっても、最初の1000ショットまでに刃先がほぼ鋭角な状態から半径0.05mm以上に摩耗することを知見した。
 この際、工具刃先がこのような大きな丸みを有するにもかかわらず、被加工材のせん断加工部におけるバリは、高さ100μm以下の軽微なものであった。刃先が丸い状態で突発的な欠損を防止できることは、例えば上述の非特許文献2に開示されていたが、これまでに引張強度が780MPa未満の鋼板(以下、便宜的に「軟鋼板」と言う)を被加工材とする場合には、パンチまたはダイのいずれか一方の刃先を必ず鋭角にしなければ、大きなバリが生じることが知られていた。よって、軟鋼板では、パンチおよびダイ両方の刃先を丸めたり、もしくは面取りしたりすると、大きなバリが生じることが当業者の技術常識であり、そのような切れ味の悪い工具刃先を持つ工具をあえて積極的に使用することは行われてこなかった。従来は、高強度鋼からなる被加工材についても同様であると一般的に考えられていたために、切れ味が悪いと思われる工具刃先を使用することは避けられていた。
 鋼板の硬度(又は引張強度)によってせん断加工部のバリ高さが異なる理由は、鋼板の硬度(又は引張強度)に応じて鋼板の延性が異なるためであると考えられた。そこで、被加工材として軟鋼を用いた場合と高強度鋼を用いた場合との双方におけるバリの発生状況を調べるために、図2A及び図2Bに示すせん断加工試験を行った。
 図2A及び図2Bは、鋼板のせん断加工時におけるバリの発生状況を示す部分断面図である。図2Aは、引張強度が780MPa未満の軟鋼板を被加工材1Aとして用いる場合を示し、図2Bは、引張強度が780MPa以上の高張力鋼板を被加工材1として用いる場合を示している。
 図2Aに示すように、被加工材1Aが引張強度780MPa未満の延性の高い軟鋼板である場合には、塑性流動fが充分に起こった後に破断に至るため、工具200の刃先201が丸いときには部分Aにおいて過大なバリが発生した。これに対し、図2Bに示すように、被加工材1Aが引張強度780MPa以上の高張力鋼板のような延性の乏しい材料である場合には、塑性流動が十分に起きず、工具200の刃先201が丸くてもバリ高さがあまり高くならずに軽微なバリが部分Bにおいて発生した。
 以上の試験結果より、せん断加工部のバリ高さが鋼板の硬度(又は引張強度)に応じて異なるのは、鋼板の延性が異なるためであることが推察された。
 高張力鋼板をせん断する際の、ダイの刃先とパンチの刃先とが欠損する際のより詳細なメカニズムを特定すべく、ダイの刃先とパンチの刃先とがどのように欠損するのかを、実験により確認した。
 その結果について図3A~図3Cを用いて説明する。本実験では、引張強度780MPa以上の高張力鋼板からなる被加工材1を、それぞれが鋭角な工具刃先を持つパンチ300及びダイ310によりせん断加工した。
 図3Aは、パンチ300及びダイ310により被加工材(高張力鋼板)1に穴空け加工をする際の初期過程を示す部分断面図であり、白抜き矢印に示すように、ダイ310に対してパンチ300を接近させていく状況を示している。なお、同図に示すように、パンチ300の刃先301及びダイ310の刃先311の両方とも、初期過程では直角な角を持つ断面形状を有している。
 図3Bは、図3Aよりもパンチ300をダイ310に近づけた状態を示す部分断面図である。パンチ300及びダイ310間の被加工材1がせん断される際、刃先301,311間を結ぶ直線を境として、被加工材1の一方から他方、他方から一方に向かう塑性流動が形成される。これら塑性流動は、流路が狭くなる刃先301,311間において特に圧力が高く、刃先301,311を自らの流れに沿って押しやるように加圧して塑性変形させる。
 その結果、刃先301,311は、本来の位置よりも突出した突起となるが、さらにパンチ300をダイ310に近づけて図3Cの過程に至ると、刃先301は塑性流動による押圧力を受けてパンチ300の外側面にまで移動し、ついには欠損する。同様に、刃先311も塑性流動による押圧力を受けてダイ310の内側面まで移動し、そして欠損する。
 このような刃先301,311の欠損が生じる原因としては、次のようなことが推察された。まず、せん断加工の進行に伴って刃先301,311間の間隔が狭まり、上述のような塑性流動が形成される。その際、もし被加工材1が軟鋼であれば、硬くないため、刃先301,311に対して高い応力を負荷する前に、塑性流動が刃先301,311間を通り抜けてしまう。
 しかし、被加工材1が高張力鋼板の場合、その硬さ故、刃先301,311に当たる部分も含めて大きく自由に移動することができない。そのため、被加工材1のうち、刃先301,311に当たる部分は高い圧力を維持して止まったままとなり、刃先301,311に対して高い応力を負荷し続け、ついには刃先301,311のそれぞれを本来の位置よりも押し出すように塑性変形させることとなる。
 続いて、パンチ300の外側面に押し出された刃先301は、今度は、パンチ300周囲の被加工材1との相対変移によるせん断力を受けて欠損する。同様に、ダイ310の内側面に押し出された刃先311も、ダイ310内の被加工材1との相対変移によるせん断力を受けて欠損する。
 以上の実験結果を含めて検討した結果、ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼からなる被加工材をせん断加工する際には、軟鋼では敬遠されていた丸みや面取りを積極的に工具の刃先、すなわちパンチ300の刃先301とダイ310の刃先311との両方に付与することが、工具の突発的な刃先の欠損に起因した過大なバリを抑制する上で効果的であると判断された。
 そして、本発明者らは、工具刃先に付与する丸みや面取りの大きさについても詳細検討を試みた。以下にその検討結果を説明する。
 まず、工具刃先に丸みを付ける場合の曲率半径について検討した。具体的には、被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスcのそれぞれを設定した上で、工具刃先に生じる塑性変形量をシミュレーション計算した。シミュレーション計算結果の一例を、図4に示す。この図4の例では、塑性変形量の大きさを色分けしており、刃先最先端である符合Hの箇所において、塑性変形量が最大値になっている。この塑性変形量が許容範囲を超えるものであれば、工具刃先における丸みの曲率半径を大きくして再計算し、塑性変形量が前記許容範囲内となる条件を満たす丸みの最小曲率半径を求めた。そして、求まった丸みの最小曲率半径を、上記設定における丸み(R値)の最小値Rminとした。
 上記のようなシミュレーション計算を、被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間のクリアランスcそれぞれの組み合わせを変えながら行った。その結果を下表2に示す。
Figure JPOXMLDOC01-appb-T000002
 そして、上表2のシミュレーション計算結果に基づき、前記Rminを、硬度比x及び工具間のクリアランスcの関数である下記(式1)として求めた。
 Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ..(式1)
 ここで、Rminの単位は(mm)であり、eは自然対数の底である。
 また、c(mm)は、工具間のクリアランスであり、穴空け工具の場合には、ダイの内側面とパンチの外側面との間のクリアランスを示す。
 また、xは、被加工材のビッカース硬度Hw(MPa)を工具のビッカース硬度Ht(MPa)で除算した無次元数であるx=Hw/Htを示し、なおかつ、後述の理由により0.3≦x<1.0を満たす値となっている。例えば穴空け工具の場合、xは、パンチにあってはパンチのビッカース硬度で被加工材のビッカース硬度を除算した硬度比であり、ダイにあってはダイのビッカース硬度で被加工材のビッカース硬度を除算した硬度比である。
 前記硬度比xの下限値が0.3(0.3≦x)である理由は、表1の実験結果に基づいて説明したように、本発明が前記比率として0.3倍以上の被加工材を適用対象としているからである。また、前記硬度比xの上限値が1.0未満(x<1.0)である理由は、被加工材のビッカース硬度Hwが工具のビッカース硬度Htを超えると硬度バランスが逆転して加工できないからである。以上の理由より、硬度比は0.3≦x<1.0を満たす値となっている。
 シミュレーション計算結果に基づいて得た上記式1の妥当性を検証するために、本発明者らは、パンチ及びダイ双方の刃先を、
(1)鋭角とした場合と、
(2)半径0.01mmの丸みを付けた場合と、
(3)半径0.04mmの丸みを付けた場合と、
(4)半径0.05mmの丸みを付けた場合と、
(5)半径0.50mmの丸みを付けた場合と、
(6)半径0.60mmの丸みを付けた場合と、
(7)半径1.00mmの丸みを付けた場合と、
のそれぞれについて、直径10mmの穴空け加工を繰り返す工具耐久試験を行った。
 被加工材としては、引張強度が270MPaの軟鋼板、590MPa鋼板、780MPa高張力鋼板の3鋼種を用いた。そして、パンチ及びダイ間のクリアランスを15%t(%tは、被加工材の板厚に対するクリアランス幅の割合を示す。本例の場合には、被加工材の板厚をt(mm)とした場合に、クリアランスは0.15×t(mm)となる)として、最大で2万ショットの連続穴空け加工を行った。
 図5に、工具刃先が破損するまでのショット数を棒グラフで示す。
 図5に示すように、軟鋼板(270MPa鋼板)や590MPa鋼板を被加工材とした場合には、いずれの丸み寸法の工具条件であっても、工具刃先は破損しなかった(図5中の矢印は、2万ショット後でも破損がなかったことを示す。以下、他の図の棒グラフも同様である)。一方、780MPa高張力鋼板を被加工材とした場合には、工具刃先が鋭角のケースとR0.01mmのケースとR0.04mmのケースとにおいて工具刃先の破損が生じたのに対し、本発明例であるR0.05mm~R1.00mmのケースでは工具刃先の破損が生じなかった。なお、使用した工具のビッカース硬度は653Hv、軟鋼板のビッカース硬度は82Hv、590MPa鋼板のビッカース硬度は184Hv、780MPa高張力鋼板のビッカース硬度は245Hvであった。なお、各鋼板とビッカース硬度値との対応関係は、本実施形態に記載の他の実験においても同様である。
 より詳細に言うと、図5に示されるように、丸みが半径0.04mm以下である上記(1)~(3)の場合に比べて、丸みを半径0.05mm以上とした上記(4)~(7)の場合において、工具寿命の顕著な延びが確認された。当然ながら、工具刃先の突発的な欠損に起因する過大なバリも発生しなかった。
 先に示した上記式1を求めたシミュレーション計算結果においても、丸みの半径を0.05mm以上にすることで塑性変形量が抑えられることが確認されている。したがって、上記式1に基づいて、刃先に付与する丸みの下限値Rminを推定することが有効であることが確認された。
 続いて、工具刃先の丸みの上限値Rmaxについて検討した。
 工具刃先の丸み寸法が必要上に大きすぎると、せん断加工後の被加工材に生じるバリの高さ寸法が許容以上に高くなる傾向にあるので、許容できるバリ高さに対応する丸み寸法に基づいて上限値を定めることとした。具体的には、上記(1)~(7)それぞれのケースにおいて、せん断加工を行い、所定のショット数毎にバリ高さを求めた。
 図6A~図6Cに、連続穴空け加工により形成した穴部でのバリ高さがショット数に伴って推移する様子をグラフで示す。図6Aは、軟鋼板を被加工材とした場合のグラフである。図6Bは、590MPa鋼板を被加工材とした場合のグラフである。図6Cは、780MPa高張力鋼板を被加工材とした場合のグラフである。なお、これら被加工材のうちで本発明が対象とするのは、図6Cに示す780MPa高張力鋼板であり、図6A及び図6Bは参考として示したものである。
 図6A及び図6Bのグラフに示すように、軟鋼板や590MPa鋼板を被加工材とした場合は、工具刃先を鋭角やR0.01mmの丸みにしたケースを除き、全てのショット数を通じてバリ高さが0.2mm以上であった。
 一方、図6Cに示すように、780MPa高張力鋼板を被加工材とした場合には、工具刃先の丸みがR0.5mm以下においてバリ高さを0.2mm以下に抑えることが出来たものの、工具刃先の丸みがR0.6mm以上ではバリ高さが急激に高くなっていることが確認された。
 より具体的に言うと、図6Cに示すように、丸みの曲率半径が0.6mm以上である(6)~(7)の場合ではバリ高さを許容範囲内に抑えられないものの、丸みの曲率半径が0.5mm以下である(2)~(5)の場合においてはバリ高さを許容範囲内に抑えられることが確認された。
 図6Cの実験結果を受け、780MPa級鋼以上の高張力鋼や超高張力鋼を被加工材として、同被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスc、の組み合わせを変えた場合について、バリ高さを抑えられる、工具刃先の丸みの曲率半径の最大値Rmaxの傾向を求める実験を行った。
 すなわち、高張力鋼や超高張力鋼を被加工材として、同被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスc、の組み合わせを複数設定した上で、それぞれのケースについて、連続穴空け加工を上限2万ショットとして行った。そして、各設定条件の下、バリ高さを0.2mm以下に抑えられた工具刃先の丸みの曲率半径の最大値を、前記Rmaxとして求めた。その結果を下表3に示す。
Figure JPOXMLDOC01-appb-T000003
 そして、上表3の実験結果に基づき、前記Rmaxを、硬度比x及び工具間のクリアランスcの関数である下記(式2)として求めた。
 Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ..(式2)
 ここで、Rmaxの単位は(mm)であり、硬度比xやクリアランスc等については、上記(式1)において説明したものと同じである。
 以上の実験結果より、780MPa級鋼を含む高張力鋼を被加工材とする場合、発生するバリ高さが許容される程度に軽微であってかつ工具刃先の突発的な欠損を生じないためには、工具刃先の曲率半径を0.05mm~0.5mmとする必要が有ることがわかった。また、被加工材の対象を超高張力鋼も含むより広い範囲とした場合には、工具刃先の曲率半径を前記Rmin以上前記Rmax以下の範囲内とすることで、発生するバリが許容される程度に軽微であってかつ工具刃先の突発的な欠損を生じないことがわかった。
 なお、パンチ及びダイ双方の工具刃先を、一連のせん断加工の開始時に、半径0.05mm~0.5mm、又は前記Rmin以上前記Rmax以下に丸めるための手段としては、NC加工機による研削等が例示される。
 よって、パンチ110及びダイ120を備え、被加工材1である最大引張強度が780MPa級である多数枚の高張力鋼板に連続してせん断加工を行うことによりせん断加工部品を量産するせん断加工部品の製造装置100においては、パンチ110及びダイ120双方の工具刃先113,123が、一連のせん断加工の開始時に、半径0.05mm~0.5mmに丸められていることが好ましい。さらには、被加工材1の対象を超高張力鋼も含むより広い範囲とした場合には、工具刃先113,123の半径が、前記Rmin以上前記Rmax以下の範囲内とすることが好ましい。
 上記構成を持つパンチ110及びダイ120を備える、せん断加工部品の製造装置100によれば、最大引張強度が780MPa級である高張力鋼板、またはそれ以上の最大引張強度を持つ超高張力鋼を多数枚、連続してせん断加工を行った場合、発生するバリが許容される程度に軽微であってかつ工具刃先113,123の突発的な欠損を生じることなく、せん断加工部品を量産することが可能になる。
 続いて、工具刃先に面取りCを付ける場合についても検討した。具体的には、被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスcのそれぞれをある値に仮定した上で、工具刃先に生じる塑性変形量をシミュレーション計算した。シミュレーション計算の結果は先に説明した図4と同様に、塑性変形量の大きさに応じて色分けした(図4と同様であるので図示略)。
 そして、塑性変形量の最大値が許容範囲を超えるものであれば、工具刃先における面取り寸法C大きくして再計算し、塑性変形量が前記許容範囲内となる条件を満たす面取り寸法Cを求めた。そして、求まった面取り寸法Cを、上記設定における最小値αminとした。
 なお、面取りCの各寸法の対応関係は図7に示す通りである。図7において、白抜き矢印aがパンチ110の移動方向を示し、符合lがパンチ110の先端面111(第1先端面)の接線を示し、符合112が第1後退面である面取りを示し、符合114が側面(外側面)を示している。
 先端面111の接線lに対する傾斜角度θとしては45°を設定している。このθについても別途検討したところ、10°<θ<60°の範囲内であれば前記αminへの影響が少ないことが確認されている。したがって、変数を減らしてデータを取り扱いやすくするためにθ=45°に固定の下、被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間のクリアランスcそれぞれの組み合わせを変えながら上記シミュレーション計算を行った。その結果を下表4に示す。
Figure JPOXMLDOC01-appb-T000004
 そして、上表4のシミュレーション結果に基づき、前記αminを、硬度比x及び工具間のクリアランスcの関数である下記(式3)として求めた。
 αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
 ここで、eは自然対数の底である。
 また、c(mm)は、前記ダイ120の内側面124と前記パンチ110の外側面114との間のクリアランスを示す。
 また、xは、被加工材1のビッカース硬度Hw(MPa)を工具のビッカース硬度Ht(MPa)で除算した無次元数であるx=Hw/Htを示し、なおかつ、前述の理由により0.3≦x<1.0を満たす値となっている。例えば、穴空け工具の場合、xは、パンチ110にあってはパンチ110のビッカース硬度で被加工材1のビッカース硬度を除算した硬度比であり、ダイ120にあってはダイ120のビッカース硬度で被加工材1のビッカース硬度を除算した硬度比である。
 シミュレーション計算結果に基づいて得た上記式3の妥当性を検証するために、本発明者らは、パンチ110およびダイ120の双方の刃先を、
(8)鋭角とした場合と、
(9)C0.01mmの面取りを付けた場合と、
(10)C0.04mmの面取りを付けた場合と、
(11)C0.05mmの面取りを付けた場合と、
(12)C0.50mmの面取りを付けた場合と、
(13)C0.60mmの面取りを付けた場合と、
(14)C1.00mmの面取りを付けた場合と、
のそれぞれについて、直径10mmの連続穴空け加工を対象として工具耐久試験を行った。
 被加工材としては、引張強度が270MPaの軟鋼板、590MPa鋼板、780MPa高張力鋼板の3鋼種を用い、パンチ及びダイ間のクリアランスを15%t(%tは、被加工材の板厚に対するクリアランス幅の割合を示す。本例の場合には、被加工材の板厚をt(mm)とした場合に、クリアランスは0.15×t(mm)となる)として最大で2万ショットの連続穴空け加工を行った。
 図8に、工具刃先が破損するまでのショット数を棒グラフで示す。
 図8に示すように、軟鋼板や590MPa鋼板を被加工材とした場合には、いずれの面取り条件であっても工具刃先は破損しなかった。一方、780MPa級鋼張力鋼板を被加工材とした場合には、工具刃先が鋭角のケースとC0.01mmのケースとC0.04mmのケースとにおいて工具破損が生じたのに対し、本発明例であるC0.05mm~C1.00mmのケースでは、工具刃先の破損が生じなかった。
 より詳しく言うと、図8に示されるように、面取りがC0.04mm以下である上記(8)~(10)の場合に比べて、面取りをC0.05mm以上とした上記(11)~(14)の場合において、工具寿命の顕著な延びが確認された。当然ながら、工具刃先の突発的な欠損に起因する過大なバリも発生しなかった。
 先に示した上記式3を求めたシミュレーション計算結果においても、面取りをC0.05mm以上にすることで塑性変形量が抑えられることが確認されている。したがって、上記式3に基づいて、工具刃先に付与する面取り寸法の下限値αminを推定することが有効であることが確認された。
 続いて、工具刃先の面取り寸法の上限値αmaxについて検討した。
 すなわち、工具刃先の面取り寸法が必要以上に大きすぎると、せん断加工後の被加工材に生じるバリの高さ寸法が許容以上に高くなる傾向にあるので、許容できるバリ高さに対応する面取り寸法に基づいて上限値を定めることとした。具体的には、上記(8)~(14)それぞれのケースにおいて、せん断加工を行い、所定のショット数毎にバリ高さを求めた。
 図9A~図9Cは、連続穴空け加工により形成した穴部でのバリ高さがショット数に伴って推移する様子を示すグラフである。図9Aは、軟鋼板を被加工材とした場合のグラフである。図9Bは、590MPa鋼板を被加工材とした場合のグラフである。図9Cは、780MPa高張力鋼板を被加工材とした場合のグラフである。なお、これら被加工材のうちで本発明が対象とするのは、図9Cに示す780MPa高張力鋼板の場合であり、図9A及び図9Bは参考として示したものである。
 図9A及び図9Bのグラフに示すように、軟鋼板や590MPa鋼板を被加工材とした場合は、工具刃先を鋭角やC0.01mmにしたケースを除き、全てのショット数を通じてバリ高さが0.2mm以上であった。
 一方、図9Cに示すように、780MPa高張力鋼板を被加工材とした場合には、工具刃先の面取り寸法がC0.50mm以下においてバリ高さを0.2mm以下に抑えることが出来たものの、工具刃先の面取りがC0.60mm以上ではバリ高さが急激に高くなっていることが確認された。
 より具体的に言うと、図9Cに示すように、面取り寸法がC0.60mm以上である(13)~(14)の場合ではバリ高さを許容範囲内に抑えられないものの、面取り寸法がC0.50mm以下である(9)~(12)の場合においてはバリ高さを許容範囲内に抑えられることが確認された。
 図9Cの実験結果を受け、780MPa級鋼以上の高張力鋼や超高張力鋼を被加工材として、同被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスc、の組み合わせを変えた場合について、面取り寸法の最大値αmaxの傾向を求める実験を行った。
 すなわち、高張力鋼や超高張力鋼を被加工材として、同被加工材のビッカース硬度Hw、工具のビッカース硬度Ht、そして工具間(パンチ及びダイ間)のクリアランスc、の組み合わせを複数設定した上で、それぞれのケースについて、連続穴空け加工を上限2万ショットとして行った。そして、各設定条件の下、バリ高さを0.2mm以下に抑えられた工具刃先の面取り寸法の最大値を、前記αmaxとして求めた。その結果を下表5に示す。
Figure JPOXMLDOC01-appb-T000005
 そして、上表5の実験結果に基づき、前記αmaxを、硬度比x及び工具間のクリアランスcの関数である下記(式4)として求めた。
 αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
 ここで、αmaxの単位は(mm)であり、硬度比xやクリアランスc等については、上記(式3)において説明したものと同じである。
 以上の実験結果より、780MPa級鋼以上の高張力鋼や超高張力鋼を被加工材とする場合には、発生するバリが許容される程度に軽微であってかつ工具刃先の突発的な欠損を生じないための、工具刃先の面取り寸法は、C0.05mm~C0.5mmであることが求められた。また、被加工材の対象を超高張力鋼も含むより広い範囲とした場合には、工具刃先の面取り寸法が、前記αmin以上前記αmax以下の範囲内とすることで、発生するバリが許容される程度に軽微であってかつ工具刃先の突発的な欠損を生じないことが求められた。
 なお、パンチ及びダイ双方の工具刃先を、一連のせん断加工の開始時に、C0.05mm~C0.5mm、又は前記αmin以上前記αmax以下に面取りするための手段としては、NC加工機による研削等が例示される。
 よって、パンチ110及びダイ120を備え、被加工材1である最大引張強度が780MPa級である多数枚の高張力鋼板に連続してせん断加工を行うことによりせん断加工部品を量産するせん断加工部品の製造装置100においては、パンチ110及びダイ120双方の工具刃先113,123が、一連のせん断加工の開始時に、C0.05mm~C0.5mmに面取りされていることが好ましい。さらには、被加工材1の対象を超高張力鋼も含むより広い範囲とした場合には、工具刃先113,123の面取り寸法を、前記αmin以上前記αmax以下の範囲内とすることが好ましい。
 このせん断加工部品の製造装置によれば、被加工材1である最大引張強度が780MPa級である高張力鋼板、またはそれ以上の最大引張強度を持つ超高張力鋼を多数枚、連続してせん断加工を行うことにより、発生するバリが許容される程度に軽微であってかつ工具刃先の突発的な欠損を生じることなく、せん断加工部品を量産することが可能になる。
 以上説明の本実施形態の骨子を以下に纏める。
(A)本実施形態に係るせん断加工部品の製造方法及び製造装置は、パンチ110のビッカース硬度及びダイ120のビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ被加工材1に対して、前記パンチ110及び前記ダイ120を用いて複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する方法であって、前記ダイ120に前記被加工材1を固定する工程と、前記パンチ110と前記ダイ120とを相対的に接近させて前記被加工材1の打ち抜き加工を行う工程と、を含む前記せん断加工を複数回行い、これら一連のせん断加工の開始時に、前記被加工材1に対向する第1先端面111と、前記ダイ120への接近方向を基準として前記第1先端面111より後退した第1後退面112を含む第1刃先113と、を備える前記パンチ110と;前記被加工材1に対向する第2先端面121と、前記パンチ110への接近方向を基準として前記第2先端面121より後退した第2後退面122を含む第2刃先123と、を備える前記ダイ120と;を用いて前記せん断加工を行う。
(B)上記(A)において、前記第1先端面111に垂直な断面で見た場合の前記第1後退面112が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第1先端面111の接線lに対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りであり;前記第2先端面121に垂直な断面で見た場合の前記第2後退面122が、下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、又は、前記第2先端面121の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りである;ようにしてもよい。
 Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ...(式1)
 Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ...(式2)
 αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
 αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
 ここで、eは自然対数の底であり、c(mm)は、前記ダイ120の内側面と前記パンチ110の外側面との間のクリアランスを示し、xは、前記パンチ110にあっては前記パンチ110のビッカース硬度で前記被加工材1のビッカース硬度を除算した硬度比であり、前記ダイ130にあっては前記ダイ130のビッカース硬度で前記被加工材1のビッカース硬度を除算した硬度比であって、なおかつ、0.3≦x<1.0を満たす。
(C)上記(B)の場合、前記第1後退面112及び前記第2後退面122の何れか一方もしくは両方が、0.05mm以上0.5mm以下の曲率を持つ曲面であり;前記第1後退面112及び前記第2後退面122の何れか一方もしくは両方が、C0.05mm以上C0.5mm以下の面取りである;ようにしてもよい。
 そして、上記(A)~(C)の方法によれば、ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼からなる被加工材1であっても、突発的な刃先の欠損を生じることなく低コストでせん断加工部品を製造することが可能となる。
 なお、以下に説明するように、工具刃先に丸みを付ける場合と面取りを付ける場合の何れにおいても、せん断加工前の被加工材1の表面に、表面脱炭処理、メッキ処理、及び個体潤滑処理の何れか一つが施されていることが好ましい。
 本発明者らは、表面処理が異なる鋼板においても調査を行った。その実験結果を図10に示す。図10は、工具刃先に曲率半径0.05mmの丸みを設けた工具を用いて被加工材に連続穴空け加工を行った際の、被加工材におけるバリ高さの推移をショット数毎に示したグラフである。そして、被加工材として、溶融亜鉛メッキを施した被加工材を用いた場合と、無処理の被加工材を用いた場合とを比較している。この比較結果より明らかなように、被加工材に溶融亜鉛メッキを施した場合は無処理の場合に比べてバリ高さを半減できることが確認された。被加工材に溶融亜鉛メッキを施した場合、工具刃先に加わる衝撃力を溶融亜鉛メッキ層が緩和し、その結果、工具刃先の摩耗(丸みの曲率の大径化)を押えることができるので、バリ高さの増加を抑えられていると考えられた。
 以上に示したように、例えば被加工材の表面に溶融亜鉛メッキを施していれば、無処理の場合に比べてさらにバリ高さを抑えられるとの結果が得られた。なお、表面処理としては溶融亜鉛メッキのみに限定されるものではない。
 また、工具刃先に丸みを付ける場合と面取りを付ける場合の何れにおいても、パンチ及びダイのいずれにおいても、工具刃先の全部を丸めたり、あるいは面取りする必要はなく、突発的な欠損が生じるおそれがある部分が経験等により事前に判明している場合には、このような部分の刃先だけを丸めたり、あるいは面取りするようにしてもよい。
 さらに、工具側面に比較して相対的にその他の部位の摩擦係数を高めることにより、被加工材をせん断加工する際の、前記その他の部位に当接する材料の塑性流動をいっそう抑制することができ、これにより、バリ高さをさらに低減することができる。
 図11は、本実施形態に係るせん断加工部品の製造装置における、パンチ110及びダイ120それぞれの工具刃先を拡大して示した断面図である。
 工具側面以外の部位の摩擦係数を相対的に高める手段としては、例えば、工具の磨きを、パンチ110及びダイ120それぞれの外側面114,貫通孔124(以下、内側面124とも言う)のみとすること(以下、「磨き分け」という)が例示される。磨き分けを用いた場合、例えば、外側面114,内側面124を除く部位119,129の摩擦係数を0.2程度、外側面114,内側面124の摩擦係数を0.1程度とすることができる。その結果、バリ高さをさらに低減することができる。
 外側面114,内側面124以外の部位119,129の摩擦係数を相対的に高める他の手段としては、例えば、パンチ110およびダイ120を予め軟質な工具鋼で製作しておき、パンチ110の外側面114のみに窒化処理やコーティング処理を行う方法も用いることができる。また、摩擦係数を増加するコーティングや微細な凹凸を設けるような表面処理により、外側面114,内側面124以外の部位119,129の摩擦係数を相対的に高めることが可能である。
 摩擦係数は、被加工材1となる鋼板に工具を押し付けて摺動させる試験(一般的に、摩擦係数の測定方法として用いられている試験)により測定される。その値は、摺動抵抗を押し付け圧により除算した値として規定される。なお、摺動試験の供試材としては、せん断加工時の摺動を模擬するべく、工具そのもの、または接触部の面積が1.0mm以上となるように工具の一部を切り出して使用することができる。摺動試験の際の押し付け圧は、50MPa~300MPa程度、摺動速度は10mm/秒~400mm/秒程度とすることが望ましい。
 パンチ110及びダイ120の材質は、この種の工具鋼として周知慣用の工具鋼を用いることができる。例えば、SKH51のようなハイスやSKD11のようなダイス鋼、またはV40程度の超鋼等を用いることが望ましい。
 本発明の後退面や磨き分けの効果を検証するべく、直径10mmの穴空け加工を対象として工具耐久試験を行った。被加工材としては、780MPa高張力鋼板を用い、パンチ110及びダイ120間のクリアランスcを15%t(%tは、被加工材の板厚に対するクリアランス幅の割合を示す。本例の場合には、被加工材の板厚をt(mm)とした場合に、クリアランスは0.15×t(mm)となる)の下、最大で2万ショットの連続穴空け加工を行った。
 連続穴空け加工に際しては、パンチ110およびダイ120双方の刃先形状を、鋭角、R0.5mm、C0.5mmの3ケースとし、さらにR0.5mmとC0.5mmに関しては、工具全面に磨きをかけた条件と、工具側面のみに磨きをかけた条件の2種の工具を準備した。
 この際、摺動試験により測定した摩擦係数は、磨きをかけた部位において0.1程度となり、磨きをかけない部分においては0.25となった。
 図12に、工具が破損するまでのショット数を棒グラフで示す。
 図12に示すように、工具刃先が鋭角である場合には工具破損が生じたが、本発明例であるR0.05mmとC0.05mmの条件では、工具の磨き状態に関わらず工具破損は生じなかった。
 図13に、穴空け加工後の穴部におけるバリ高さのショット数に伴う推移を、グラフとして示す。
 図13に示すように、いずれの工具であってもバリ高さは0.2mm以下であったが、側面のみに磨きをかける磨き分けを行った工具の場合は、全面を磨いた工具の場合よりも明らかにバリ高さが低くなった。
 上記説明の磨き分けにおいては、工具の側面部位とその他の部位とに2分したが、さらに好ましくは、パンチ110の、被加工材1に対向する第1先端面111、工具刃先113を含む第1後退面112(丸みを付けたR部)、及び外側面114のうち、前記第1後退面112の摩擦抵抗が最も高い第1条件と;ダイ120の、被加工材1に対向する第2先端面121、工具刃先123を含む第2後退面122(丸みを付けたR部)、及び内側面124のうち、第2後退面122の摩擦抵抗が最も高い第2条件と;の少なくとも一方を満たすことが望ましい。
 また、上記第1条件と上記第2条件との双方を満たすことがより好ましい。さらに言えば、第1後退面112(丸みを付けたR部)、続いて第1先端面111、さらに続いて外側面114、の順に摩擦抵抗が高く;なおかつ、第2後退面122(丸みを付けたR部)、続いて第2先端面121、さらに続いて内側面124、の順に摩擦抵抗が高いことが最も好ましい。
 上記のような摩擦抵抗差を採用することで、パンチ120の第1後退面112及びダイ120の第2後退面122の双方における切れ味を高めることができ、しかも被加工材1でのバリ高さをより低く抑えることが可能となる。この効果を確認するために、工具刃先に丸みを付けた工具について、工具先端面、工具刃先R部、工具側面、のそれぞれの間で摩擦抵抗差を設けて実験を行った。実験に際しては、パンチ110及びダイ120間のクリアランスを15%t(被加工材の板厚をt(mm)とした場合に0.15×t(mm)となるクリアランス)として、最大で1万ショットの連続穴空け加工を行った。実験結果を下表6に示す。
Figure JPOXMLDOC01-appb-T000006
 上表6の例えば番号105に示される通り、摩擦抵抗を大きさ順で並べた場合に、工具刃先R部、先端面、そして側面の順序となるケースにおいて、バリ高さを0.04mmに抑えられることが確認された。
 上記表6は工具刃先に丸みを付けた場合を示す実験結果であったが、工具刃先に面取りを付けた場合についても同様のことが言える。
 すなわち、パンチ110の、被加工材1に対向する第1先端面111、面取り部を有する第1後退面112、及び外側面114のうち、前記第1後退面112の摩擦抵抗が最も高い第3条件と;ダイ120の、被加工材1に対向する第2先端面121、面取り部を有する第2後退面122、及び内側面124のうち、第2後退面122の摩擦抵抗が最も高い第4条件と;の少なくとも一方を満たすことが望ましい。
 また、上記第3条件と上記第4条件との双方を満たすことがより好ましい。さらに言えば、第1後退面112、続いて第1先端面111、さらに続いて外側面114、の順に摩擦抵抗が高く;なおかつ、第2後退面122、続いて第2先端面121、さらに続いて内側面124、の順に摩擦抵抗が高いことが最も好ましい。
 面取りの場合においても、上記のような摩擦抵抗差を採用することで、パンチ110の第1後退面112及びダイ120の第2後退面122の双方における切れ味を高めることができ、しかも被加工材1でのバリ高さをより低く抑えることが可能となる。この効果を確認するために、工具刃先を面取りした工具について、工具先端面、工具刃先面取り部、工具側面、のそれぞれの間で摩擦抵抗差を設けて実験を行った。実験に際しては、パンチ110及びダイ120間のクリアランスを15%t(被加工材の板厚をt(mm)とした場合に0.15×t(mm)となるクリアランス)として、最大で1万ショットの連続穴空け加工を行った。実験結果を下表7に示す。
Figure JPOXMLDOC01-appb-T000007
 上表7の例えば番号122に示される通り、摩擦抵抗を大きさ順で並べた場合に、面取り部、先端面、そして側面の順序となるケースにおいて、バリ高さを0.04mmに抑えられることが確認された。
 以上説明のように、工具刃先形状として前述の(A)~(C)を採用することに加えて、以下の(D)をさらに採用してもよい。
(D)上記(A)~(C)の何れか一項に記載の態様において、前記パンチ110の、前記第1先端面111、前記第1後退面112、及び外側面114のうち、前記第1後退面112の摩擦抵抗が最も高い第1条件と、前記ダイ120の、前記第2先端面121、前記第2後退面122、及び内側面124のうち、前記第2後退面122の摩擦抵抗が最も高い第2条件と、の少なくとも一方を満たす。
 さらには、下記(E)を採用してもよい。この場合、前述の通り、無処理の場合に比べて工具寿命をさらに延ばすことが可能となる。
(E)上記(A)~(D)の何れか一項に記載の態様において、前記被加工材1に、表面脱炭処理、メッキ処理、及び個体潤滑処理の何れか一つを予め施しておく。
 なお、パンチ110の工具刃先113及びダイ120の工具刃先123の双方に丸みを付与する構成や、パンチ110の工具刃先113及びダイ120の工具刃先123の双方に面取りを付与する構成のみに限らず、例えば、パンチ110の工具刃先に丸みを設けてダイ120の工具刃先に面取りを設けたり、または、パンチ110の工具刃先に面取りを設けてダイ120の工具刃先に丸みを設けたりしてもよい。
 また、パンチ110の工具刃先及びダイ120の工具刃先の形状としては、前述した形態のみに限らず、例えば図14及び図15に例示される変形例も採用可能である。
 すなわち、図14の変形例においては、工具刃先113(123)に面取りCが形成されるとともに、この面取りCと工具先端面111(121)との間、及び前記面取りCと工具側面114(124)との間、の双方に、丸みR’が設けられている。よって、工具先端面111(121)から面取りCを経て工具側面114(124)に至るまで角部が無く滑らかに形成されている。なお、上記2つの丸みR’の曲率は、互いに同じであっても良いし、または互いに異なってもよい。
 また、面取りの幅寸法α’としては、上記(式3)及び(式4)に基づいて、αmin<α’<αmaxを満たすことが好ましい。
 また、図14の上記変形例では、面取りCの両側に丸みR’を設けるものとしたが、例えば図15の変形例に示すように、面取りCと工具側面114(124)との間のみに丸みR’を設けてもよい。この場合、工具刃先113(123)に面取りCが形成されるとともに、この面取りCと工具先端面111(121)との間は角Eを有するとともに、前記面取りCと工具側面111(121)との間に丸みR’を設けることが好ましい。
 また、面取りの幅寸法α’としては、上記(式3)及び(式4)に基づいて、αmin<α’<αmaxを満たすことが好ましい。
 さらに言えば、図15の変形例とは逆に、面取りCと工具先端面111(121)との間のみに丸みR’を設けてもよい(図示略)。この場合、工具刃先113(123)に面取りCが形成されるとともに、この面取りCと工具先端面111(121)との間に丸みR’を設けるとともに、前記面取りCと工具側面111(121)との間には角Eを設けることが好ましい。
 本発明によれば、ビッカース硬度が工具のビッカース硬度の0.3倍以上となる高張力鋼や超高張力鋼からなる被加工材であっても、突発的な刃先の欠損を生じることなく低コストでせん断加工部品を製造することが可能となる。
1 被加工材
110 パンチ
111 第1先端面
112 第1後退面
113 第1刃先
120 ダイ
121 第2先端面
122 第2後退面
123 第2刃先

Claims (9)

  1.  パンチのビッカース硬度及びダイのビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ被加工材に対して、前記パンチ及び前記ダイを用いて複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する方法であって、
     前記ダイに前記被加工材を固定する工程と、
     前記パンチと前記ダイとを相対的に接近させて前記被加工材の打ち抜き加工を行う工程と、
    を含む前記せん断加工を複数回行い、
     これら一連のせん断加工の開始時に、
     前記被加工材に対向する第1先端面と、前記ダイへの接近方向を基準として前記第1先端面より後退した第1後退面を含む第1刃先と、を備える前記パンチと;
     前記被加工材に対向する第2先端面と、前記パンチへの接近方向を基準として前記第2先端面より後退した第2後退面を含む第2刃先と、を備える前記ダイと;
    を用いて前記せん断加工を行う
    ことを特徴とするせん断加工部品の製造方法。
  2.  前記第1先端面に垂直な断面で見た場合の前記第1後退面が、
      下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、
      又は、前記第1先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りであり;
     前記第2先端面に垂直な断面で見た場合の前記第2後退面が、
      下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、
      又は、前記第2先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りである;
    ことを特徴とする請求項1に記載のせん断加工部品の製造方法。
     Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ...(式1)
     Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ...(式2)
     αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
     αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
     ここで、
    eは自然対数の底であり、
     c(mm)は、前記ダイの内側面と前記パンチの外側面との間のクリアランスを示し、
     xは、前記パンチにあっては前記パンチのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であり、前記ダイにあっては前記ダイのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であって、なおかつ、0.3≦x<1.0を満たす。
  3.  前記第1後退面及び前記第2後退面の何れか一方もしくは両方が、
     0.05mm以上0.5mm以下の曲率を持つ曲面、または、
     C0.05mm以上C0.5mm以下の面取りである
    ことを特徴とする請求項2に記載のせん断加工部品の製造方法。
  4.  前記パンチの、前記第1先端面、前記第1後退面、及び外側面のうち、前記第1後退面の摩擦抵抗が最も高い第1条件と、
     前記ダイの、前記第2先端面、前記第2後退面、及び内側面のうち、前記第2後退面の摩擦抵抗が最も高い第2条件と、
    の少なくとも一方を満たすことを特徴とする請求項1~3の何れか一項に記載のせん断加工部品の製造方法。
  5.  前記被加工材に、表面脱炭処理、メッキ処理、及び個体潤滑処理の何れか一つが施されていることを特徴とする請求項1~4の何れか一項に記載のせん断加工部品の製造方法。
  6.  パンチのビッカース硬度及びダイのビッカース硬度の何れか低い方の0.3倍以上1.0倍未満のビッカース硬度を持つ被加工材に対して、複数回のせん断加工を行うことにより、複数のせん断加工部品を製造する装置であって、
     前記被加工材を固定するダイと、
     前記ダイに対して相対的に接近させて前記被加工材を打ち抜くパンチと、
    を備え、
     前記パンチが、前記被加工材に対向する第1先端面と、前記ダイへの接近方向を基準として前記第1先端面より後退した第1後退面を含む第1刃先とを備え、
     前記ダイが、前記被加工材に対向する第2先端面と、前記パンチへの接近方向を基準として前記第2先端面より後退した第2後退面を含む第2刃先とを備える
    ことを特徴とするせん断加工部品の製造装置。
  7.  前記第1先端面に垂直な断面で見た場合の前記第1後退面が、
      下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、
      又は、前記第1先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りであり;
     前記第2先端面に垂直な断面で見た場合の前記第2後退面が、
      下式1で規定されるRmin(mm)以上かつ下式2で規定されるRmax(mm)以下の曲率を持つ曲面、
      又は、前記第2先端面の接線に対して45°の傾斜角度と下式3で規定されるαmin(mm)以上かつ下式4で規定されるαmax(mm)以下の幅寸法とを有する面取りである;
    ことを特徴とする請求項6に記載のせん断加工部品の製造装置。
     Rmin=(0.9+0.2e-0.08c)(0.3571x2-0.2595x+0.0965) ...(式1)
     Rmax=(0.9+0.2e-0.08c)(-9.1856x4+25.17x3-24.95x2+11.054x-1.5824) ...(式2)
     αmin=0.0222e2.0833x (0.9+0.1e-0.07c) ...(式3)
     αmax=(0.9+0.1e-0.07c)(-0.3274x2+0.9768x-0.1457) ...(式4)
     ここで、
     eは自然対数の底であり、
     c(mm)は、前記ダイの内側面と前記パンチの外側面との間のクリアランスを示し、
     xは、前記パンチにあっては前記パンチのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であり、前記ダイにあっては前記ダイのビッカース硬度で前記被加工材のビッカース硬度を除算した硬度比であって、なおかつ、0.3≦x<1.0を満たす。
  8.  前記第1後退面及び前記第2後退面の何れか一方もしくは両方が、
     0.05mm以上0.5mm以下の曲率を持つ曲面、または、
     C0.05mm以上C0.5mm以下の面取りである
    ことを特徴とする請求項7に記載のせん断加工部品の製造装置。
  9.  前記パンチの、前記第1先端面、前記第1後退面、及び外側面のうち、前記第1後退面の摩擦抵抗が最も高い第1条件と、
     前記ダイの、前記第2先端面、前記第2後退面、及び内側面のうち、前記第2後退面の摩擦抵抗が最も高い第2条件と、
    の少なくとも一方を満たすことを特徴とする請求項6~8の何れか一項に記載のせん断加工部品の製造装置。
PCT/JP2015/063215 2014-05-08 2015-05-07 せん断加工部品の製造方法及び製造装置 WO2015170707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167031052A KR101903264B1 (ko) 2014-05-08 2015-05-07 전단 가공 부품의 제조 방법 및 제조 장치
JP2016517919A JP6237894B2 (ja) 2014-05-08 2015-05-07 せん断加工部品の製造方法及び製造装置
MX2016014447A MX2016014447A (es) 2014-05-08 2015-05-07 Metodo de fabricacion y dispositivo de fabricacion de componentes cizallados.
US15/309,142 US10335846B2 (en) 2014-05-08 2015-05-07 Manufacturing method and manufacturing device of sheared components
CN201580023202.0A CN106457348B (zh) 2014-05-08 2015-05-07 剪切加工零件的制造方法及制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014097044 2014-05-08
JP2014-097044 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170707A1 true WO2015170707A1 (ja) 2015-11-12

Family

ID=54392557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063215 WO2015170707A1 (ja) 2014-05-08 2015-05-07 せん断加工部品の製造方法及び製造装置

Country Status (6)

Country Link
US (1) US10335846B2 (ja)
JP (1) JP6237894B2 (ja)
KR (1) KR101903264B1 (ja)
CN (1) CN106457348B (ja)
MX (1) MX2016014447A (ja)
WO (1) WO2015170707A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038778A4 (en) * 2013-08-30 2017-03-15 Asko, Inc. Shear knife
WO2020196701A1 (ja) 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板及び部材
JP2021006353A (ja) * 2019-06-28 2021-01-21 本田技研工業株式会社 部材の打ち抜き加工方法およびダイのチャンファの形状設定方法
JP7129048B1 (ja) 2022-01-28 2022-09-01 株式会社小松精機工作所 アモルファス合金箔のせん断加工法
WO2023148899A1 (ja) * 2022-02-03 2023-08-10 日本製鉄株式会社 鋼材、自動車部品、せん断加工装置及び鋼材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102393026B1 (ko) * 2016-12-26 2022-04-29 닛테츠 닛신 세이코 가부시키가이샤 절단 단면을 가지는 표면 처리 강판의 부품 및 그 절단 가공 방법
CN106944545A (zh) * 2017-03-25 2017-07-14 亿森(上海)模具有限公司 造型面不同摩擦系数且可控的成型方法
US20220250177A1 (en) * 2019-03-12 2022-08-11 Nippon Steel Corporation Cutting method and cut article
JP2020175421A (ja) * 2019-04-19 2020-10-29 日本製鉄株式会社 表面処理鋼板の切断加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321021A (ja) * 2001-04-25 2002-11-05 Nisshin Steel Co Ltd 疲労特性,端面耐食性に優れた加工製品及び加工方法
JP2012011393A (ja) * 2010-06-29 2012-01-19 Kobe Steel Ltd せん断用金型及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480912B2 (ja) 2001-03-15 2010-06-16 住友電工ハードメタル株式会社 半導体製品加工用切断刃およびその製造方法
KR101136142B1 (ko) * 2004-09-15 2012-04-17 신닛뽄세이테쯔 카부시키카이샤 고강도 부품 제조 방법
JP2007307616A (ja) 2006-04-20 2007-11-29 Nippon Steel Corp 金属板の剪断方法及び剪断工具及び剪断により得られた金属板加工品
CN202667384U (zh) 2012-07-11 2013-01-16 苏州市世嘉科技股份有限公司 一种冲切质量高且保护冲针的数冲模具

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321021A (ja) * 2001-04-25 2002-11-05 Nisshin Steel Co Ltd 疲労特性,端面耐食性に優れた加工製品及び加工方法
JP2012011393A (ja) * 2010-06-29 2012-01-19 Kobe Steel Ltd せん断用金型及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038778A4 (en) * 2013-08-30 2017-03-15 Asko, Inc. Shear knife
US9789551B2 (en) 2013-08-30 2017-10-17 Asko, Inc. Shear knife
US10220455B2 (en) 2013-08-30 2019-03-05 Andritz Asko Inc. Shear knife
WO2020196701A1 (ja) 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板及び部材
KR20210127737A (ko) 2019-03-26 2021-10-22 닛폰세이테츠 가부시키가이샤 강판 및 부재
US11826857B2 (en) 2019-03-26 2023-11-28 Nippon Steel Corporation Steel sheet and member
JP2021006353A (ja) * 2019-06-28 2021-01-21 本田技研工業株式会社 部材の打ち抜き加工方法およびダイのチャンファの形状設定方法
JP7129048B1 (ja) 2022-01-28 2022-09-01 株式会社小松精機工作所 アモルファス合金箔のせん断加工法
WO2023145228A1 (ja) * 2022-01-28 2023-08-03 株式会社小松精機工作所 アモルファス合金箔のせん断加工法
JP2023110246A (ja) * 2022-01-28 2023-08-09 株式会社小松精機工作所 アモルファス合金箔のせん断加工法
WO2023148899A1 (ja) * 2022-02-03 2023-08-10 日本製鉄株式会社 鋼材、自動車部品、せん断加工装置及び鋼材の製造方法

Also Published As

Publication number Publication date
JP6237894B2 (ja) 2017-11-29
KR20160143759A (ko) 2016-12-14
MX2016014447A (es) 2017-01-23
JPWO2015170707A1 (ja) 2017-04-20
US10335846B2 (en) 2019-07-02
CN106457348B (zh) 2018-08-07
KR101903264B1 (ko) 2018-10-01
US20170080475A1 (en) 2017-03-23
CN106457348A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6237894B2 (ja) せん断加工部品の製造方法及び製造装置
JP6809557B2 (ja) せん断加工方法
JP2010158688A (ja) せん断加工成形方法
Abe et al. Shearing of ultra-high strength steel sheets with step punch
KR102173928B1 (ko) 금속 제품의 표면 처리 방법 및 금속 제품
KR100676333B1 (ko) 초음파 충격 처리에 의한 냉간 가공부의 강도 향상 방법 및파괴 인성 및 피로 강도가 높은 금속 제품
EP3366383A1 (en) Vehicle stabilizer, machining device for eye section of stabilizer, and machining method for eye section
JP5819659B2 (ja) 皿ばねおよびその製造方法
JP2020104143A (ja) 打ち抜き被加工材の打ち抜き加工方法および打ち抜き被加工材の打ち抜き加工型
Yagita et al. Deformation behaviour in shearing of ultra-high strength steel sheets under insufficient blankholding force
JP4943393B2 (ja) 打ち抜き後のコイニング加工方法及びコイニング加工用パンチ
JP2022031207A (ja) せん断加工装置及びせん断加工装置を用いた加工材の製造方法
KR20190032506A (ko) 전단 가공 방법
JP7502622B2 (ja) 加工材の製造方法
WO2023148899A1 (ja) 鋼材、自動車部品、せん断加工装置及び鋼材の製造方法
JP7183036B2 (ja) 打ち抜き被加工材の打ち抜き加工方法および打ち抜き被加工材の打ち抜き加工型
JP2005095960A (ja) 金属材の応力腐食割れ防止方法
CN108098253A (zh) 一种提高金属材料切削性能的加工方法
JP7502620B2 (ja) 加工材の製造方法
JP6992631B2 (ja) せん断加工方法およびせん断加工装置
JP4383191B2 (ja) 金属板の打ち抜き加工用工具
Claver et al. Study and Optimization of the Punching Process of Steel Using the Johnson–Cook Damage Model
EP1838474A1 (en) Method of making cutting tool edges, a device for realizins same, and a striker used in the said device
JP2022188412A (ja) ディンプル加工方法
Alin et al. ON THE CONDITIONS OF QUALITY AND WEAR OF USED TOOLS IN THE CUTTING PROCESS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517919

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309142

Country of ref document: US

Ref document number: MX/A/2016/014447

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167031052

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201607887

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 15789656

Country of ref document: EP

Kind code of ref document: A1