WO2015170686A1 - イソブタノールからイソブチレンを製造する方法 - Google Patents
イソブタノールからイソブチレンを製造する方法 Download PDFInfo
- Publication number
- WO2015170686A1 WO2015170686A1 PCT/JP2015/063110 JP2015063110W WO2015170686A1 WO 2015170686 A1 WO2015170686 A1 WO 2015170686A1 JP 2015063110 W JP2015063110 W JP 2015063110W WO 2015170686 A1 WO2015170686 A1 WO 2015170686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- isobutanol
- catalyst
- less
- alumina
- Prior art date
Links
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 title claims abstract description 298
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 214
- 238000006243 chemical reaction Methods 0.000 claims abstract description 181
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 50
- 239000002245 particle Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000012495 reaction gas Substances 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- 230000018044 dehydration Effects 0.000 description 31
- 239000012071 phase Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 27
- 239000007789 gas Substances 0.000 description 25
- 229910001873 dinitrogen Inorganic materials 0.000 description 22
- 239000002994 raw material Substances 0.000 description 18
- 239000008188 pellet Substances 0.000 description 16
- 239000002028 Biomass Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 239000001282 iso-butane Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 3
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical compound [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 description 2
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/02—Alkenes
- C07C11/08—Alkenes with four carbon atoms
- C07C11/09—Isobutene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/20—Use of additives, e.g. for stabilisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
Definitions
- the present invention relates to a method for producing isobutylene from isobutanol, particularly biomass-derived isobutanol.
- Isobutylene is one of important chemical raw materials that can be converted into ethyl tertiary butyl ether (ETBE), paraxylene, methyl methacrylate (MMA) monomer, and the like.
- MMA monomer is a substance having very high utility value as a raw material of polymethyl methacrylate useful as a transparent resin.
- One method for producing this MMA monomer is a method of synthesizing isobutylene as a starting material.
- Isobutylene as a raw material for MMA monomer is extracted from tertiary butyl by acid-catalyzed hydration reaction from spent BB, which is a residue obtained by fractionating butadiene from C4 fraction obtained by naphtha decomposition, and dehydrated. Is gaining in.
- spent BB which is a residue obtained by fractionating butadiene from C4 fraction obtained by naphtha decomposition, and dehydrated. Is gaining in.
- the current production method of isobutylene uses petroleum as a raw material. Therefore, in a situation where there is a concern about the recent oil depletion problem, it is desired to develop a new method that does not depend on oil.
- Biorefinery is the production of energy and chemicals by producing various gases such as synthesis gas, saccharides such as glucose and aromatic compounds such as lignin by gasification, saccharification and extraction of various biomass. It is what. Examples of products manufactured by biorefinery include ethanol, butanol, and diesel oil in terms of energy.
- gases such as synthesis gas, saccharides such as glucose and aromatic compounds such as lignin by gasification, saccharification and extraction of various biomass. It is what. Examples of products manufactured by biorefinery include ethanol, butanol, and diesel oil in terms of energy.
- chemicals a large number of chemicals can be produced by derivation from sugar-derived succinic acid, 3-hydroxypropionic acid, aspartic acid and other basic compounds (platform compounds) proposed by the US Department of Energy. is there.
- isobutanol can also be produced by fermenting glucose, and can be cited as one of biomass-derived materials.
- Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, and Non-Patent Literature 1 describe that isobutylene can be produced by dehydrating isobutanol.
- Patent Document 1 Patent Document 3, Patent Document 4 and Patent Document 5 use ⁇ -alumina and zeolite
- Non-Patent Document 1 uses ⁇ -alumina
- Patent Document 2 uses silica-containing ⁇ -alumina as a dehydration catalyst.
- Isobutylene is produced by dehydrating isobutanol.
- the isobutylene selectivity in the gas component after the reaction is not always sufficient.
- an object of the present invention is to provide a method capable of producing isobutylene with high yield or high selectivity by dehydration reaction of isobutanol.
- a first invention is a method for producing isobutylene by a dehydration reaction of isobutanol, Using a catalyst having a BET specific surface area in the range of 60 m 2 / g or more and 175 m 2 / g or less, This is a method for producing isobutylene in which isobutanol is reacted at a reaction pressure of 50 kPa or more and 750 kPa or less as an absolute pressure.
- the second invention is a method for producing isobutylene by a dehydration reaction of isobutanol, 90% by mass or more of a catalyst having a particle diameter of 700 ⁇ m or more and 10,000 ⁇ m or less,
- the isobutanol concentration in the supplied reaction gas is 30% by volume or more and 85% by volume or less
- Weight hourly space velocity of isobutanol (WHSV) is 0.175H -1 or more and 20h -1 or less
- This is a method for producing isobutylene in which isobutanol is reacted at a reaction pressure of 50 kPa or more and 750 kPa or less as an absolute pressure.
- WHSV Weight hourly space velocity of isobutanol in the reaction gas to be supplied
- the isobutanol concentration is preferably 55% by volume or more and 80% by volume or less.
- isobutylene can be produced with higher yield or higher selectivity in the isobutanol dehydration reaction. Furthermore, in the present invention, isobutylene can be produced with high selectivity, particularly using isobutanol derived from biomass as a starting material, which is useful from the viewpoint of environmental protection.
- 6 is a graph showing the relationship between the isobutanol concentration in the reaction gas and the isobutylene selectivity in the reaction gas in Examples 1 to 4 and Comparative Examples 1 to 4 (reaction temperature 300 to 301 ° C.).
- 6 is a graph showing the relationship between the concentration of raw isobutanol in reaction gas and the isobutylene selectivity in Examples 5 to 10 and Comparative Examples 5 to 7 (reaction temperature 340 to 341 ° C.). It is a graph which shows the relationship between WHSV and isobutylene selectivity in Example 11, 12 and Comparative Example 8.
- 6 is a graph showing the relationship between the BET specific surface area and isobutylene selectivity in Examples 13 to 15 and Comparative Examples 9 and 10.
- isobutylene is produced by a dehydration reaction of isobutanol.
- the starting material isobutanol is not particularly limited. However, from the viewpoint of environmental protection, it is preferable to use biomass-derived isobutanol.
- Isobutanol derived from biomass includes one purified from organic compounds obtained through the fermentation process using fermentable sugar of biomass, or one or more of catalytic chemical conversion and thermochemical conversion of biomass. Isobutanol obtained by the process. Biomass is broadly divided into those derived from resource crops and those derived from waste. Biomass derived from resource crops is, for example, food crops, wood, flowers, etc., and other unused portions of those crops can also be used. On the other hand, examples of biomass derived from waste include food waste, sludge such as sewage, livestock manure, and waste paper.
- the dehydration reaction of isobutanol may be performed in either a liquid phase or a gas phase.
- a gas phase reaction represented by a fixed bed or a fluidized bed.
- this invention is not limited to this.
- the evaporator for evaporating the raw material is not particularly limited.
- jacket type natural circulation type horizontal pipe type, natural circulation type submerged pipe type, natural circulation type vertical short pipe type, vertical long pipe ascending membrane type, horizontal pipe descending membrane type, forced circulation type horizontal pipe type, forced circulation type vertical type
- Various evaporators such as a tube type and a coil type can be used. It is also possible to simply wrap a heating coil around the piping, evaporate it before entering the reactor in the raw material supply piping, and supply it to the reactor in a gaseous state. Further, when the components other than the raw material are evaporated and supplied to the reactor, the evaporator is not particularly limited.
- the concentration of isobutanol in the reaction gas can be adjusted using a dilution gas.
- the kind of dilution gas is not particularly limited.
- oxygen can be used as a diluent gas as long as the concentration is outside the explosion range and the side reaction is not significantly promoted.
- hydrogen can be used as a diluent gas as long as the side reaction is not significantly promoted within a concentration range where it can be safely operated.
- the BET specific surface area calculated from the N 2 adsorption / desorption isotherm is 60 m 2 / g or more and 175 m 2 / g.
- This is a process for producing isobutylene using a catalyst in the following range and having a reaction pressure of 50 kPa or more and 750 kPa or less as an absolute pressure.
- the lower limit of the BET specific surface area calculated from N 2 adsorption-desorption isotherms of the dehydration catalyst is at 60 m 2 / g or more, preferably at least 65m 2 / g, 69m 2 / g or more is more preferable.
- the upper limit of the BET specific surface area calculated from N 2 adsorption-desorption isotherms of dehydrating catalyst charged to the reactor is less 175 m 2 / g, preferably from 170m 2 / g or less, and more is 162m 2 / g or less preferable.
- the BET specific surface area is less than 60 m 2 / g, since the activity tends to be low as a catalyst, a large amount of catalyst is required. On the other hand, when the BET specific surface area is larger than 175 m 2 / g, the by-production of linear butenes is promoted, and the selectivity of isobutylene decreases.
- the BET specific surface area is a value measured using Tristar 3000 (product name, manufactured by Shimadzu Corporation).
- the lower limit of the reaction pressure during the isobutanol dehydration reaction is 50 kPa or more as an absolute pressure, preferably 75 kPa or more, and more preferably 100 kPa or more.
- the upper limit of the reaction pressure during the isobutanol dehydration reaction is 750 kPa or less as an absolute pressure, preferably 700 kPa or less, and more preferably 650 kPa or less.
- reaction pressure is less than 50 kPa, equipment for reducing the pressure in the reaction system is required, and equipment costs are increased. Further, when the reaction pressure exceeds 750 kPa, the reactivity per mass of the catalyst is lowered, so that it is necessary to increase the amount of the catalyst, and accordingly, a reactor having a large volume is required, which is disadvantageous.
- the range of the reaction pressure is the same in the second invention.
- the lower limit of the particle size range including 90% by mass or more of the catalyst for dehydration is 700 ⁇ m or more, preferably 800 ⁇ m or more, and more preferably 1000 ⁇ m or more.
- the upper limit of the particle diameter range in which 90% by mass or more of the catalyst for dehydration is contained is 10000 ⁇ m or less, preferably 9500 ⁇ m or less, and more preferably 9000 ⁇ m or less.
- the pressure loss in the catalyst layer filled in the reactor becomes high, and the equipment cost and the energy cost for circulating the reaction gas increase. Moreover, since the reaction pressure rises, the reactivity will be lowered. Further, when there are many catalysts having a particle diameter exceeding 10,000 ⁇ m, the catalyst effectiveness factor becomes small, leading to a decrease in activity per catalyst mass, which is disadvantageous.
- the range of the particle diameter is preferably satisfied also in the first embodiment. Whether 90% by mass or more of the catalyst is in the range of 700 ⁇ m or more and 10000 ⁇ m or less is determined by measuring the outer diameter and length of 100 molded articles with calipers. . Moreover, it is preferable that the range of the particle diameter of the catalyst is also satisfied in the first invention.
- the lower limit of the isobutanol concentration in the reaction gas supplied for the reaction is 30% by volume or more, preferably 50% by volume or more, and more preferably 55% by volume or more.
- the upper limit of the isobutanol concentration in the reaction gas supplied for the reaction is 85% by volume or less, preferably 82.5% by volume or less, and more preferably 80% by volume or less. If the concentration of isobutanol exceeds 85% by volume, side reactions are likely to proceed, and the selectivity to isobutylene due to the dehydration reaction of isobutanol will decrease.
- the reaction gas supplied to the reactor preferably contains 0.1% by volume or more and 70% by volume or less of moisture. The presence of moisture in the reaction gas can be expected to reduce the byproduct selectivity by suppressing the acid strength of the catalyst.
- the lower limit of the isobutanol mass space velocity (WHSV) with respect to the dehydration catalyst is 0.175 h ⁇ 1 or more, preferably 0.2 h ⁇ 1 or more, and more preferably 0.25 ⁇ 1 or more.
- the upper limit of the mass space velocity of isobutanol for dehydration catalyst (WHSV) is at 20h -1 or less, preferably 18h -1 or less, 16h -1 or less is more preferable.
- WHSV may be reduced to be less than 0.175 h ⁇ 1 , but in this case, since the amount of processing per hour is too small, the productivity of isobutylene (time And yield per volume).
- WHSV exceeds 20 h ⁇ 1 , the supply amount of isobutanol with respect to the catalyst amount becomes too large, so that unreacted isobutanol is recovered as the conversion rate of isobutanol decreases and recycled as a reaction raw material. This increases costs and is disadvantageous.
- the range of the WHSV is preferably satisfied also in the first embodiment.
- the WHSV is a value defined by an expression described later. Moreover, it is preferable that the range of the WHSV is satisfied also in the first invention.
- the reaction temperature (temperature in the catalyst layer during the reaction) is preferably in the range of 108 to 500 ° C. From the viewpoint of sufficiently obtaining the effects of the present invention, the lower limit of the reaction temperature is more preferably 115 ° C or higher, and further preferably 150 ° C or higher. On the other hand, the upper limit of the reaction temperature is more preferably 415 ° C. or less, and further preferably 400 ° C. or less.
- the reaction temperature is 500 ° C. or lower, the reaction rate of the isomerization reaction is suppressed, and the selectivity to the target product isobutylene is improved. On the other hand, when the reaction temperature is 108 ° C.
- the dehydration reaction of isobutanol is an endothermic reaction, and the method for controlling the reaction temperature is not particularly limited.
- the reaction temperature is defined as the lowest temperature of the catalyst layer that can be confirmed after reaching a steady state. Therefore, when there is a temperature distribution in the catalyst layer, it is desirable to increase the number of measurement points or continuously measure the temperature in the catalyst filling direction.
- the dehydration reaction of isobutanol is preferably performed using a dehydration catalyst such as an acid catalyst.
- a dehydration catalyst such as an acid catalyst.
- the acid catalyst include alumina, silica alumina, solid phosphoric acid, titania, and zirconia. Two or more of these may be used in combination.
- alumina is preferably used from the viewpoint of isobutylene selectivity.
- the crystal form of alumina is not particularly limited. Specific examples thereof include various aluminas such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and alumina hydrate. Two or more of these may be used in combination. When using 2 or more types together, the thing of a different crystal form may be mixed, and the crystal state of a mixed phase may be taken, and it does not specifically limit.
- a catalyst containing ⁇ -alumina is particularly preferred from the viewpoint of activity and selectivity.
- Alumina may be produced by a known method, and the production method is not particularly limited. For example, it can be easily produced by a thermal decomposition method, a precipitation method, a deposition method, a kneading method or a method using these methods in combination.
- the raw material for alumina include nitrates, acetates, alkoxides, sulfates, chlorides, alkali aluminates, and miyoban, and the like materials that produce alumina or alumina hydrate by heating or hydrolysis.
- the alkali used for the hydrolysis reaction include caustic alkali, alkali carbonate, aqueous ammonia, and ammonium carbonate.
- the alumina obtained by the above method may be molded and used as necessary.
- a gas phase fixed bed reaction it is preferable to determine the shape of the compact in consideration of pressure loss in the reactor and gas diffusion.
- any of the gas phase fluidized bed reaction and liquid phase reaction it is preferable to determine the shape of the molded body in consideration of reaction conditions and mass transfer.
- a powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, etc.
- any shape such as a spherical shape, a ring shape, a cylindrical shape, a star shape, etc.
- molding is mentioned.
- the obtained catalyst may be ground and used as a powder.
- additives may be mixed with alumina as necessary.
- the BET specific surface area of alumina can be adjusted by changing the temperature at which the alumina precursor is fired. Therefore, it is possible to adjust the BET specific surface area of the catalyst.
- the firing temperature of the alumina precursor is preferably 400 to 1200 ° C. Lowering the firing temperature increases the BET specific surface area, and increasing the firing temperature decreases the BET specific surface area.
- the catalyst according to the first invention may contain a compound other than alumina.
- the SiO 2 content in the catalyst is preferably less than 1.0% by mass, more preferably less than 0.75% by mass, and even more preferably less than 0.5% by mass.
- the catalyst according to the first invention preferably contains 99.0% by mass or more of the alumina, more preferably 99.25% by mass or more, and further preferably 99.5% by mass or more.
- the contents of SiO 2 and alumina in the catalyst are values measured by ICP emission spectroscopic analysis (ICP-AES) using an Optima 8300 ICP-OES Spectrometer manufactured by Perkin Elmer.
- the raw material gas and the product were analyzed using gas chromatography.
- the conversion rate of isobutanol and the selectivity of isobutylene to be produced are respectively defined as follows.
- WHSV mass space velocity
- Example 18 As the catalyst, 16.0 g of a catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 105 m 2 / g) formed into a cylindrical pellet (diameter: 1600 ⁇ m) was used, and isobutanol and nitrogen The reaction was performed in the same manner as in Example 17 described later, except that the gas flow rates were changed to 40.1 mL / hour and 40 mL (standard state) / minute, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 80.2% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 2.01 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 19 As the catalyst, 16.0 g of a catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 105 m 2 / g) formed into a cylindrical pellet (diameter: 3000 ⁇ m) was used, and isobutanol and nitrogen The reaction was performed in the same manner as in Example 17 described later, except that the gas flow rates were changed to 40.1 mL / hour and 40 mL (standard state) / minute, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 80.2% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 2.01 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 20 As the catalyst, 16.0 g of a catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 105 m 2 / g) formed into a cylindrical pellet (diameter: 4800 ⁇ m) was used, and isobutanol and nitrogen The reaction was performed in the same manner as in Example 17 described later, except that the gas flow rates were changed to 40.1 mL / hour and 40 mL (standard state) / minute, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 80.2% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 2.01 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 21 As a dehydration catalyst, alumina (specific surface area: 105 m 2 / g) containing ⁇ -alumina phase ( ⁇ phase) and ⁇ -alumina phase ( ⁇ phase) having a particle size adjusted to 850 to 1190 ⁇ m after being crushed in an agate mortar was set to 0.0. 909 g was used, and the flow rates of isobutanol and nitrogen gas were changed to 15.8 mL / hour and 16 mL (standard state) / min, respectively, and a reaction pressure was adjusted by attaching a back pressure valve before collecting the reaction gas, Reaction was carried out in the same manner as in Example 18.
- the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C.
- WHSV was 13.92 h ⁇ 1
- the reaction pressure was 105 kPa as an absolute pressure.
- Example 22 The reaction was performed in the same manner as in Example 21 except that the amount of the dehydration catalyst was changed to 0.912 g and the reaction pressure was adjusted to 140 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 339 ° C. The WHSV under this condition was 13.88 h ⁇ 1 .
- Example 23 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 240 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 339 ° C. The WHSV under these conditions was 13.92 h ⁇ 1 .
- Example 24 The reaction was conducted in the same manner as in Example 21 except that the reaction pressure was adjusted to 289 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. The WHSV under these conditions was 13.92 h ⁇ 1 .
- Example 25 The reaction was performed in the same manner as in Example 21 except that the amount of the dehydration catalyst was changed to 0.912 g and the reaction pressure was adjusted to 339 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 339 ° C. The WHSV under this condition was 13.88 h ⁇ 1 .
- Example 26 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 392 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. The WHSV under these conditions was 13.92 h ⁇ 1 .
- Example 27 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 452 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 339 ° C. The WHSV under these conditions was 13.92 h ⁇ 1 .
- Example 28 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 550 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. The WHSV under this condition was 14.04 h ⁇ 1 .
- Example 29 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 600 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. The WHSV under this condition was 14.04 h ⁇ 1 .
- Example 30 The reaction was performed in the same manner as in Example 21 except that the reaction pressure was adjusted to 692 kPa as an absolute pressure. At this time, the concentration of isobutanol supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. The WHSV under these conditions was 13.89 h ⁇ 1 .
- Example 13 A catalyst was packed in a vertical tubular reaction tube having an inner diameter of 1.6 cm and a length of 50 cm.
- a crushed catalyst molded alumina of ⁇ -alumina and ⁇ -alumina, particle diameter: 710 to 850 ⁇ m, BET specific surface area: 69 m 2 / g, which is formed into a cylindrical pellet (diameter: 3000 ⁇ m) And 2.29 g of catalyst A).
- the proportion of the mixed phase alumina in the catalyst A is at least 99.5 wt%, SiO 2 content was less than 0.5% by weight.
- the raw material isobutanol (manufactured by Nacalai Tesque, Inc., purity 99.5% by mass) was supplied to a reactor equipped with a vertical tubular reaction tube filled with the catalyst through a vaporizer set at 200 ° C. Nitrogen gas as a dilution gas was supplied to the vaporizer, and the vaporized isobutanol was supplied to the reactor.
- the WHSV mass space velocity per unit time
- the concentration of isobutanol in the raw material gas supplied to the catalyst layer was 5.3% by volume, and the reaction temperature was 344 ° C.
- the reaction gas discharged from the reactor outlet was separated into a liquid phase part and a gas phase part.
- the gas phase portion was collected, and isobutylene, isobutane, 1-butene, cis-2-butene and trans-2-butene were quantified.
- the liquid phase part was extract
- Example 14 Catalyst crushed material formed into cylindrical pellets (diameter: 3000 ⁇ m) as catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, particle diameter: 710 to 850 ⁇ m, BET specific surface area: 105 m 2 / g, hereinafter, catalyst The reaction was carried out in the same manner as in Example 13 except that 2.24 g of (B) was used and the WHSV of isobutanol was changed to 1.40 h ⁇ 1 . The proportion of the mixed phase alumina in the catalyst B is at least 99.5 wt%, SiO 2 content was less than 0.5% by weight. Further, 90% by mass or more of the catalyst B had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- Example 15 Catalyst crushed material formed into cylindrical pellets (diameter: 1000 ⁇ m) as catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, particle size: 710 to 850 ⁇ m, BET specific surface area: 162 m 2 / g, hereinafter, catalyst The reaction was carried out in the same manner as in Example 13 except that 1.00 g of C) was used and WHSV of isobutanol was changed to 3.14 h ⁇ 1 . The proportion of the mixed phase alumina in the catalyst C is at least 99.5 wt%, SiO 2 content was less than 0.5% by weight. Further, 90% by mass or more of the catalyst C had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the reaction was carried out in the same manner as in Example 13 except that 4.01 g of D) was used and the WHSV of isobutanol was changed to 0.78 h- 1 .
- the proportion of the mixed phase alumina in the catalyst D is at least 99.5 wt%, SiO 2 content was less than 0.5% by weight. Further, 90% by mass or more of the catalyst D had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- Catalyst crushed material ( ⁇ -alumina, particle diameter: 710 to 850 ⁇ m, BET specific surface area: 189 m 2 / g, hereinafter referred to as catalyst E) formed into a cylindrical pellet (diameter: 1600 ⁇ m) as a catalyst
- the reaction was performed in the same manner as in Example 13 except that 00 g was used and the WHSV of isobutanol was changed to 3.14 h ⁇ 1 .
- the ratio of ⁇ -alumina in the catalyst E was 99.5% by mass or more, and the SiO 2 content was less than 0.5% by mass. Further, 90% by mass or more of the catalyst E had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- Example 16 As the catalyst, 20.0 g of a catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 105 m 2 / g) formed into a cylindrical pellet (diameter: 1600 ⁇ m) was used, and isobutanol and nitrogen The reaction was carried out in the same manner as in Example 13 except that the gas flow rates were changed to 23.4 mL / hour and 40 mL (standard state) / minute, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 70.3% by volume, and the temperature of the catalyst layer during the reaction was 320 ° C. Under these conditions, WHSV was 0.94 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 11 As the catalyst, 12.7 g of a catalyst ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 189 m 2 / g) formed into a cylindrical pellet (diameter: 1600 ⁇ m) was used, and isobutanol and nitrogen The reaction was performed in the same manner as in Example 13 except that the gas flow rates were changed to 40.9 mL / hour and 70 mL (standard state) / min, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 70.3% by volume, and the temperature of the catalyst layer during the reaction was 320 ° C. Under these conditions, WHSV was 2.59 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 12 As the catalyst, 15.0 g of a catalyst (alumina containing ⁇ -alumina as a main component of the crystal layer, BET specific surface area: 200 m 2 / g) formed into a cylindrical pellet (diameter: 1600 ⁇ m) is used, and isobutanol is used. The reaction was carried out in the same manner as in Example 13 except that the flow rates of nitrogen gas and nitrogen gas were changed to 58.4 mL / hour and 101 mL (standard state) / minute, respectively. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- a catalyst alumina containing ⁇ -alumina as a main component of the crystal layer, BET specific surface area: 200 m 2 / g
- isobutanol is used.
- the reaction was carried out in the same manner as in Example 13 except that the flow rates of nitrogen gas and nitrogen gas were changed to 58.4 mL / hour
- the concentration of isobutanol supplied to the catalyst layer was 70.3% by volume, and the temperature of the catalyst layer during the reaction was 320 ° C. Under these conditions, WHSV was 3.13 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 17 The catalyst used was 20.0 g of a cylindrical pellet (diameter: 1600 ⁇ m) ( ⁇ -alumina, mixed phase alumina of ⁇ -alumina, BET specific surface area: 105 m 2 / g), and the flow rate of isobutanol.
- the reaction was carried out in the same manner as in Example 13 except that 23.9 mL / hour was changed.
- 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the concentration of isobutanol supplied to the catalyst layer was 100% by volume, and the temperature of the catalyst layer during the reaction was 320 ° C. Under these conditions, WHSV was 0.96 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 14 As the catalyst, 15.1 g of a catalyst (alumina containing ⁇ -alumina as a main component of the crystal layer, BET specific surface area: 200 m 2 / g) formed into a cylindrical pellet (diameter: 1600 ⁇ m) is used, and isobutanol is used. The reaction was performed in the same manner as in Example 17 except that the flow rate of was changed to 58.4 mL / hour. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less. At this time, the concentration of isobutanol supplied to the catalyst layer was 100% by volume, and the temperature of the catalyst layer during the reaction was 320 ° C. Under these conditions, WHSV was 3.11 h ⁇ 1 , and the reaction pressure was 103 kPa as an absolute pressure.
- a catalyst alumina containing ⁇ -alumina as a main component of the crystal layer, BET specific surface area: 200 m 2
- Example 17 The results of Example 17 and Comparative Examples 13 to 14 (reaction temperature of 320 ° C.) are shown in Table 6 and FIG.
- Example 1 As a dehydration catalyst, 0.753 g of alumina (BET specific surface area: 209 m 2 / g) whose main component is a ⁇ -alumina phase ( ⁇ phase) whose particle size is adjusted to 800 to 2000 ⁇ m after being crushed in an agate mortar. Using. In addition, 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less. For the fixed bed reactor, the temperature of the catalyst layer was adjusted using an electric furnace so that the catalyst layer temperature was a predetermined temperature.
- the raw material isobutanol (manufactured by Wako Pure Chemical Industries, purity 99.5% by mass or more, specific gravity 0.803 g / mL) was adjusted to a flow rate of 4.0 mL / hour using a microfeeder, and an evaporator set at 200 ° C. And evaporated. Nitrogen gas as a dilution gas was supplied to the evaporator at a flow rate of 37 mL (standard state) / min using a mass flow meter, and was supplied to the reactor together with evaporated isobutanol.
- the concentration of isobutanol supplied to the catalyst layer was 30.3% by volume, and the catalyst layer temperature (reaction temperature) during the reaction was 300 ° C.
- the gas at the outlet of the reactor was collected, and isobutylene, isobutane, 1-butene, cis-2-butene, and trans-2-butene were quantified using gas chromatography.
- the reaction gas discharged from the reactor outlet side was trapped with ice-cooled acetonitrile, and isobutanol was quantified using gas chromatography.
- the reaction pressure gauge was installed between the evaporator and the reactor inlet, and the pressure loss from the evaporator to the reactor inlet was negligibly small in all flow ranges under the conditions of the present embodiment. Under these conditions, WHSV was 4.27 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 2 The reaction was performed in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 0.301 g and the flow rate of nitrogen gas was changed to 16 mL (standard state) / min. At this time, the concentration of isobutanol supplied to the catalyst layer was 50.1% by volume, and the temperature of the catalyst layer during the reaction was 301 ° C. Under these conditions, WHSV was 10.67 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 3 The reaction was performed in the same manner as in Example 2 except that the flow rate of nitrogen gas was changed to 7 mL (standard state) / min. At this time, the concentration of isobutanol supplied to the catalyst layer was 69.7% by volume, and the temperature of the catalyst layer during the reaction was 301 ° C. Under these conditions, WHSV was 10.67 h ⁇ 1 , and the reaction pressure was 103 kPa as an absolute pressure.
- Example 4 The reaction was performed in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 2.00 g and the flow rates of isobutanol and nitrogen gas were changed to 8.0 mL / hour and 6 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 84.3% by volume, and the temperature of the catalyst layer during the reaction was 300 ° C. Under these conditions, WHSV was 3.21 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 1 The reaction was conducted in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g and the flow rates of isobutanol and nitrogen gas were changed to 3.7 mL / hour and 280 mL (standard state) / min, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 5.05% by volume, and the temperature of the catalyst layer during the reaction was 301 ° C. Under these conditions, WHSV was 2.97 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 2 The reaction was carried out in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g and the flow rates of isobutanol and nitrogen gas were changed to 2.2 mL / hour and 28 mL (standard state) / min, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 24.0% by volume, and the temperature of the catalyst layer during the reaction was 300 ° C. Under these conditions, WHSV was 1.77 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 3 The reaction was conducted in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g and the flow rates of isobutanol and nitrogen gas were changed to 2.4 mL / hour and 26 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 27.1% by volume, and the temperature of the catalyst layer during the reaction was 300 ° C. Under these conditions, WHSV was 1.93 h ⁇ 1 , and the reaction pressure was 103 kPa as an absolute pressure.
- Example 4 The reaction was performed in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g, the flow rate of isobutanol was changed to 3.5 mL / hour, and nitrogen gas was not supplied. At this time, the concentration of isobutanol supplied to the catalyst layer was 100% by volume, and the temperature of the catalyst layer during the reaction was 300 ° C. Under these conditions, WHSV was 2.81 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 5 The reaction was carried out in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 0.366 g and the flow rates of isobutanol and nitrogen gas were changed to 5.0 mL / hour and 16 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 55.7% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 10.97 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 6 The amount of dehydration catalyst was changed to 0.603 g, the flow rates of isobutanol and nitrogen gas were changed to 8.0 mL / hr and 11 mL (standard state) / min, respectively, and pure water was 0.7 mL using a microfeeder.
- the reaction was carried out in the same manner as in Example 1 except that the flow rate was adjusted to the flow rate per hour and supplied to the evaporator set at 200 ° C. At this time, the isobutanol concentration and the water concentration supplied to the catalyst layer were 55.8% by volume and 25.2% by volume, respectively, and the catalyst layer temperature during the reaction was 340 ° C. Under these conditions, WHSV was 10.65 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 7 The reaction was carried out in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 0.345 g and the flow rates of isobutanol and nitrogen gas were changed to 4.0 mL / hour and 9 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 64.1% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 9.31 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 8 The amount of dehydration catalyst was changed to 0.608 g, the flow rates of isobutanol and nitrogen gas were changed to 8.0 mL / hour and 3 mL (standard state) / min, respectively, and pure water was 0.7 mL using a microfeeder.
- the reaction was performed in the same manner as in Example 1 except that the flow rate was adjusted to / h and supplied to the evaporator set to 200 ° C. At this time, the isobutanol concentration and the water concentration supplied to the catalyst layer were 64.8% by volume and 29.2% by volume, respectively, and the catalyst layer temperature during the reaction was 341 ° C. Under these conditions, WHSV was 10.57 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 9 The reaction was conducted in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 0.601 g and the flow rates of isobutanol and nitrogen gas were changed to 8.0 mL / hour and 11 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 74.5% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 10.69 h ⁇ 1 , and the reaction pressure was 103 kPa as an absolute pressure.
- Example 10 The reaction was conducted in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 0.576 g and the flow rates of isobutanol and nitrogen gas were changed to 8.0 mL / hour and 6 mL (standard state) / minute, respectively. went. At this time, the concentration of isobutanol supplied to the catalyst layer was 84.3% by volume, and the temperature of the catalyst layer during the reaction was 341 ° C. Under these conditions, WHSV was 11.15 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 5 The reaction was performed in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g, the flow rate of isobutanol was changed to 3.5 mL / hour, and nitrogen gas was not supplied. At this time, the concentration of isobutanol supplied to the catalyst layer was 21.3% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 2.81 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 7 The reaction was performed in the same manner as in Example 1 except that the amount of the dehydration catalyst was changed to 1.00 g, the flow rate of isobutanol was changed to 3.5 mL / hour, and nitrogen gas was not supplied. At this time, the concentration of isobutanol supplied to the catalyst layer was 100% by volume, and the temperature of the catalyst layer during the reaction was 340 ° C. Under these conditions, WHSV was 2.81 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 11 Alumina (BET specific surface area: 105 m 2 / g) containing ⁇ -alumina phase ( ⁇ phase) and ⁇ -alumina phase ( ⁇ phase) crushed in an agate mortar as a dehydration catalyst and adjusted to a particle size of 850 to 2000 ⁇ m.
- the reaction was carried out in the same manner as in Example 1 except that the flow rate was changed to 00 g and the flow rates of isobutanol and nitrogen gas were changed to 1.0 mL / hour and 4 mL (standard state) / minute, respectively.
- 90% by mass or more of the catalyst had a particle diameter in the range of 700 ⁇ m or more and 10,000 ⁇ m or less.
- the isobutanol concentration supplied to the catalyst layer was 50.0% by volume, and the catalyst layer temperature during the reaction was 340 ° C. Under these conditions, WHSV was 0.20 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Example 12 The reaction was performed in the same manner as in Example 11 except that the amount of the dehydration catalyst was changed to 4.50 g. At this time, the concentration of isobutanol supplied to the catalyst layer was 50.0% by volume, and the catalyst layer temperature during the reaction was 340 ° C. Under these conditions, WHSV was 0.18 h ⁇ 1 , and the reaction pressure was 105 kPa as an absolute pressure.
- Example 8 The reaction was performed in the same manner as in Example 11 except that the amount of the dehydration catalyst was changed to 5.00 g. At this time, the concentration of isobutanol supplied to the catalyst layer was 50.0% by volume, and the catalyst layer temperature during the reaction was 340 ° C. Under this condition, WHSV was 0.16 h ⁇ 1 , and the reaction pressure was 104 kPa as an absolute pressure.
- Isobutylene obtained by the present invention is one of important chemical raw materials that can be converted into, for example, ethyl tertiary butyl ether (ETBE), paraxylene, methyl methacrylate (MMA) monomer, and the like.
- MMA monomer in particular is a highly useful substance as a raw material for polymethyl methacrylate useful as a transparent resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
BET比表面積が、60m2/g以上、175m2/g以下の範囲内である触媒を用いて、
絶対圧として50kPa以上750kPa以下の反応圧力でイソブタノールを反応させるイソブチレンの製造方法である。
90質量%以上が粒子径700μm以上、10000μm以下の範囲内である触媒を用いて、
供給される反応ガス中のイソブタノール濃度が30体積%以上、85体積%以下であり、
イソブタノールの質量空間速度(WHSV)が0.175h-1以上、20h-1以下であり、
絶対圧として50kPa以上750kPa以下の反応圧力でイソブタノールを反応させるイソブチレンの製造方法である。
供給される反応ガス中のイソブタノールの質量空間速度(WHSV)が0.175h-1以上、20h-1以下であることが好ましい。
イソブチレンの選択率(%)=(γ/δ)×100
α=供給したイソブタノールのモル数
β=反応したイソブタノールのモル数
γ=生成したイソブチレンのモル数
δ=ガスクロマトグラフィーで検出された反応生成物(イソブチレン、イソブタン、1-ブテン、シス-2-ブテン及びトランス-2-ブテン)の合計のモル数。
e=イソブタノールの単位時間当たりの供給量(g/h)
f=使用した触媒量(g)。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:105m2/g)を16.0g用い、かつイソブタノール及び窒素ガスの流量を各々40.1mL/時及び40mL(標準状態)/分に変更したこと以外は、後述する実施例17と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は80.2体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは2.01h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:3000μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:105m2/g)を16.0g用い、かつイソブタノール及び窒素ガスの流量を各々40.1mL/時及び40mL(標準状態)/分に変更したこと以外は、後述する実施例17と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は80.2体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは2.01h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:4800μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:105m2/g)を16.0g用い、かつイソブタノール及び窒素ガスの流量を各々40.1mL/時及び40mL(標準状態)/分に変更したこと以外は、後述する実施例17と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は80.2体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは2.01h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒としてメノウ乳鉢で破砕した後850~1190μmに粒子径を整えたγ-アルミナ相(γ相)とθ-アルミナ相(θ相)を含むアルミナ(比表面積:105m2/g)を0.909g用い、かつイソブタノール及び窒素ガスの流量を各々15.8mL/時及び16mL(標準状態)/分に変更し、さらに反応ガス回収前に背圧弁を取り付けて反応圧力を調整したこと以外は、実施例18と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは13.92h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.912gに変更し反応圧力を絶対圧力として140kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は339℃であった。本条件下におけるWHSVは13.88h-1であった。
反応圧力を絶対圧力として240kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は339℃であった。本条件下におけるWHSVは13.92h-1であった。
反応圧力を絶対圧力として289kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは13.92h-1であった。
脱水触媒の量を0.912gに変更し反応圧力を絶対圧力として339kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は339℃であった。本条件下におけるWHSVは13.88h-1であった。
反応圧力を絶対圧力として392kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは13.92h-1であった。
反応圧力を絶対圧力として452kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は339℃であった。本条件下におけるWHSVは13.92h-1であった。
反応圧力を絶対圧力として550kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは14.04h-1であった。
反応圧力を絶対圧力として600kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは14.04h-1であった。
反応圧力を絶対圧力として692kPaに調整したこと以外は、実施例21と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は79.9体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは13.89h-1であった。
[実施例13]
内径1.6cm、長さ50cmの縦型管状反応管に触媒を充填した。触媒には、円柱形ペレット状(直径:3000μm)に成形された触媒の破砕体(θ-アルミナ、γ-アルミナの混相アルミナ、粒子径:710~850μm、BET比表面積:69m2/g、以下、触媒Aと示す)を2.29g用いた。なお、触媒A中の前記混相アルミナの割合は99.5質量%以上であり、SiO2含有量は0.5質量%未満であった。また、触媒Aの90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。原料イソブタノール(ナカライテスク(株)製、純度99.5質量%)を、200℃に設定した気化器を介して前記触媒の充填された縦型管状反応管を備える反応器に供給した。希釈ガスとしての窒素ガスを当該気化器へ供給し、気化したイソブタノールと共に、反応器へ供給した。イソブタノールのWHSV(単位時間当たりの質量空間速度)を1.37h-1、反応器温度を344℃に保持し、反応器圧力は大気圧とした。このとき触媒層に供給した原料ガス中のイソブタノールの濃度は5.3体積%であり、反応温度は344℃であった。反応器出口より排出される反応ガスを液相部と気相部とに分離した。気相部を採取し、イソブチレン、イソブタン、1-ブテン、cis-2-ブテン及びtrans-2-ブテンの定量を行った。また、液相部を採取し、イソブタノールの定量を行った。
触媒として円柱形ペレット状(直径:3000μm)に成形された触媒の破砕体(θ-アルミナ、γ-アルミナの混相アルミナ、粒子径:710~850μm、BET比表面積:105m2/g、以下、触媒Bと示す)を2.24g用い、イソブタノールのWHSVを1.40h-1に変更した以外は、実施例13と同様に反応を行った。なお、触媒B中の前記混相アルミナの割合は99.5質量%以上であり、SiO2含有量は0.5質量%未満であった。また、触媒Bの90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。
触媒として円柱形ペレット状(直径:1000μm)に成形された触媒の破砕体(δ-アルミナ、γ-アルミナの混相アルミナ、粒子径:710~850μm、BET比表面積:162m2/g、以下、触媒Cと示す)を1.00g用い、イソブタノールのWHSVを3.14h-1に変更した以外は、実施例13と同様に反応を行った。なお、触媒C中の前記混相アルミナの割合は99.5質量%以上であり、SiO2含有量は0.5質量%未満であった。また、触媒Cの90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。
触媒として円柱形ペレット状(直径:3000μm)に成形された触媒の破砕体(θ-アルミナ、γ-アルミナの混相アルミナ、粒子径:710~850μm、BET比表面積:44m2/g、以下、触媒Dと示す)を4.01g用い、イソブタノールのWHSVを0.78h-1に変更した以外は、実施例13と同様に反応を行った。なお、触媒D中の前記混相アルミナの割合は99.5質量%以上であり、SiO2含有量は0.5質量%未満であった。また、触媒Dの90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。
触媒として円柱形ペレット状(直径:1600μm)に成形された触媒の破砕体(γ-アルミナ、粒子径:710~850μm、BET比表面積:189m2/g、以下、触媒Eと示す)を1.00g用い、イソブタノールのWHSVを3.14h-1に変更した以外は、実施例13と同様に反応を行った。なお、触媒E中のγ-アルミナの割合は99.5質量%以上であり、SiO2含有量は0.5質量%未満であった。また、触媒Eの90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:105m2/g)を20.0g用い、かつイソブタノール及び窒素ガスの流量を各々23.4mL/時及び40mL(標準状態)/分に変更したこと以外は、実施例13と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は70.3体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは0.94h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:189m2/g)を12.7g用い、かつイソブタノール及び窒素ガスの流量を各々40.9mL/時及び70mL(標準状態)/分に変更したこと以外は、実施例13と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は70.3体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは2.59h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナを結晶層の主成分とするアルミナ、BET比表面積:200m2/g)を15.0g用い、かつイソブタノール及び窒素ガスの流量を各々58.4mL/時及び101mL(標準状態)/分に変更したこと以外は、実施例13と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は70.3体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは3.13h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:105m2/g)を20.0g用い、かつイソブタノールの流量を23.9mL/時に変更したこと以外は、実施例13と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は100体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは0.96h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナ、θ-アルミナの混相アルミナ、BET比表面積:189m2/g)を16.1g用い、かつイソブタノールの流量を32.1mL/時に変更したこと以外は、実施例17と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は100体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは1.60h-1、反応圧力は絶対圧力として104kPaであった。
触媒には、円柱形ペレット状(直径:1600μm)に成形された触媒(γ-アルミナを結晶層の主成分とするアルミナ、BET比表面積:200m2/g)を15.1g用い、かつイソブタノールの流量を58.4mL/時に変更したこと以外は、実施例17と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。このとき触媒層に供給したイソブタノール濃度は100体積%であり、反応中の触媒層温度は320℃であった。本条件下におけるWHSVは3.11h-1、反応圧力は絶対圧力として103kPaであった。
[実施例1]
脱水触媒として、メノウ乳鉢で破砕した後800~2000μmに粒子径を整えたγ-アルミナ相(γ相)を結晶層の主成分とするアルミナ(BET比表面積:209m2/g)を0.753g用いた。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。固定床反応器については触媒層温度が所定温度になるように電気炉を用いて触媒層の温度を調節した。そして原料イソブタノール(和光純薬製、純度99.5質量%以上、比重0.803g/mL)を、マイクロフィーダーを用いて4.0mL/時の流量に調節し、200℃に設定した蒸発器に供給し蒸発させた。希釈ガスとしての窒素ガスを、マスフローメータを用いて流量37mL(標準状態)/分として当該蒸発器へ供給し、蒸発したイソブタノールと共に、反応器へ供給した。このとき触媒層に供給したイソブタノール濃度は30.3体積%であり、反応中の触媒層温度(反応温度)は300℃であった。反応器出口側のガスを採取し、ガスクロマトグラフィーを用いてイソブチレン、イソブタン、1-ブテン、シス-2-ブテン及びトランス-2-ブテンの定量を行った。また反応器出口側から排出される反応ガスを、氷冷したアセトニトリルを用いてトラップし、ガスクロマトグラフィーを用いてイソブタノールの定量を行った。反応圧力計は蒸発器と反応器入口の間に設置されており、本願実施例条件下のあらゆる流量範囲において、蒸発器から反応器入口までの圧力損失は無視できる程度に小さかった。本条件下におけるWHSVは4.27h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.301gに変更し、かつ窒素ガスの流量を16mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は50.1体積%であり、反応中の触媒層温度は301℃であった。本条件下におけるWHSVは10.67h-1、反応圧力は絶対圧力として104kPaであった。
窒素ガスの流量を7mL(標準状態)/分に変更したこと以外は、実施例2と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は69.7体積%であり、反応中の触媒層温度は301℃であった。本条件下におけるWHSVは10.67h-1、反応圧力は絶対圧力として103kPaであった。
脱水触媒の量を2.00gに変更し、かつイソブタノール及び窒素ガスの流量を各々8.0mL/時及び6mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は84.3体積%であり、反応中の触媒層温度は300℃であった。本条件下におけるWHSVは3.21h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を1.00gに変更し、かつイソブタノール及び窒素ガスの流量を各々3.7mL/時及び280mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は5.05体積%であり、反応中の触媒層温度は301℃であった。本条件下におけるWHSVは2.97h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を1.00gに変更し、かつイソブタノール及び窒素ガスの流量を各々2.2mL/時及び28mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は24.0体積%であり、反応中の触媒層温度は300℃であった。本条件下におけるWHSVは1.77h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒の量を1.00gに変更し、かつイソブタノール及び窒素ガスの流量を各々2.4mL/時及び26mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は27.1体積%であり、反応中の触媒層温度は300℃であった。本条件下におけるWHSVは1.93h-1、反応圧力は絶対圧力として103kPaであった。
脱水触媒の量を1.00gに変更し、イソブタノールの流量を3.5mL/時に変更し、かつ窒素ガスを供給しなかったこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は100体積%であり、反応中の触媒層温度は300℃であった。本条件下におけるWHSVは2.81h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.366gに変更し、かつイソブタノール及び窒素ガスの流量を各々5.0mL/時及び16mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は55.7体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは10.97h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.603gに変更し、イソブタノール及び窒素ガスの流量を各々8.0mL/時及び11mL(標準状態)/分に変更し、かつ純水をマイクロフィーダーを用いて0.7mL/時の流量に調節して200℃に設定した蒸発器に供給したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度及び水濃度は各々55.8体積%及び25.2体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは10.65h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒の量を0.345gに変更し、かつイソブタノール及び窒素ガスの流量を各々4.0mL/時及び9mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は64.1体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは9.31h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.608gに変更し、イソブタノール及び窒素ガスの流量を各々8.0mL/時及び3mL(標準状態)/分に変更し、かつ純水をマイクロフィーダーを用いて0.7mL/hの流量に調節して、200℃に設定した蒸発器に供給したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度及び水濃度は各々64.8体積%及び29.2体積%であり、反応中の触媒層温度は341℃であった。本条件下におけるWHSVは10.57h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒の量を0.601gに変更し、かつイソブタノール及び窒素ガスの流量を各々8.0mL/時及び11mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は74.5体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは10.69h-1、反応圧力は絶対圧力として103kPaであった。
脱水触媒の量を0.576gに変更し、かつイソブタノール及び窒素ガスの流量を各々8.0mL/時及び6mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は84.3体積%であり、反応中の触媒層温度は341℃であった。本条件下におけるWHSVは11.15h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を1.00gに変更し、イソブタノールの流量を3.5mL/時に変更し、かつ窒素ガスを供給しなかったこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は21.3体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは2.81h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を0.543gに変更し、イソブタノール及び窒素ガスの流量を各々2.2mL/時及び23mL(標準状態)/分に変更し、かつ純水をマイクロフィーダーを用いて0.5mL/時の流量に調節して200℃に設定した蒸発器に供給したこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度及び水濃度は21.0体積%及び24.6体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは3.25h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒の量を1.00gに変更し、イソブタノールの流量を3.5mL/時に変更し、かつ窒素ガスを供給しなかったこと以外は、実施例1と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は100体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは2.81h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒としてメノウ乳鉢で破砕した後850~2000μmに粒子径を整えたγ-アルミナ相(γ相)とθ-アルミナ相(θ相)を含むアルミナ(BET比表面積:105m2/g)4.00gに変更し、かつイソブタノール及び窒素ガスの流量を各々1.0mL/時及び4mL(標準状態)/分に変更したこと以外は、実施例1と同様に反応を行った。なお、該触媒の90質量%以上は、粒子径が700μm以上、10000μm以下の範囲内であった。触媒層に供給したイソブタノール濃度は50.0体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは0.20h-1、反応圧力は絶対圧力として104kPaであった。
脱水触媒の量を4.50gに変更したこと以外は、実施例11と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は50.0体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは0.18h-1、反応圧力は絶対圧力として105kPaであった。
脱水触媒の量を5.00gに変更したこと以外は、実施例11と同様に反応を行った。このとき触媒層に供給したイソブタノール濃度は50.0体積%であり、反応中の触媒層温度は340℃であった。本条件下におけるWHSVは0.16h-1、反応圧力は絶対圧力として104kPaであった。
表1~6に示すように、実施例1~17においてはイソブタノールから高い選択率でイソブチレンを製造できた。一方、比較例1~14ではイソブチレン選択率が実施例1~17よりも劣っていた。また表7、8に示すように実施例18~30においてはイソブタノールから高い収率でイソブチレンを製造できた。
Claims (4)
- イソブタノールの脱水反応によってイソブチレンを製造する方法であって、
BET比表面積が、60m2/g以上、175m2/g以下の範囲内である触媒を用いて、
絶対圧として50kPa以上750kPa以下の反応圧力でイソブタノールを反応させるイソブチレンの製造方法。 - イソブタノールの脱水反応によりイソブチレンを製造する方法であって、
90質量%以上が粒子径700μm以上、10000μm以下の範囲内である触媒を用いて、
供給される反応ガス中のイソブタノール濃度が30体積%以上、85体積%以下であり、
イソブタノールの質量空間速度(WHSV)が0.175h-1以上、20h-1以下であり、
絶対圧として50kPa以上750kPa以下の反応圧力でイソブタノールを反応させるイソブチレンの製造方法。 - 触媒の90質量%以上が粒子径700μm以上、10000μm以下の範囲内であり、
供給される反応ガス中のイソブタノールの質量空間速度(WHSV)が0.175h-1以上、20h-1以下である請求項1記載のイソブチレンの製造方法。 - イソブタノール濃度が55体積%以上、80体積%以下である請求項2記載のイソブチレンの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167027539A KR101960146B1 (ko) | 2014-05-07 | 2015-05-01 | 아이소뷰탄올로부터 아이소뷰틸렌을 제조하는 방법 |
JP2015524962A JP6485351B2 (ja) | 2014-05-07 | 2015-05-01 | イソブタノールからイソブチレンを製造する方法 |
US15/307,614 US10464860B2 (en) | 2014-05-07 | 2015-05-01 | Method for producing isobutylene from isobutanol |
SG11201607927WA SG11201607927WA (en) | 2014-05-07 | 2015-05-01 | Method for producing isobutylene from isobutanol |
CN201580022725.3A CN106458786B (zh) | 2014-05-07 | 2015-05-01 | 由异丁醇制造异丁烯的方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014095675 | 2014-05-07 | ||
JP2014-095675 | 2014-05-07 | ||
JP2014167032 | 2014-08-20 | ||
JP2014-167032 | 2014-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170686A1 true WO2015170686A1 (ja) | 2015-11-12 |
Family
ID=54392536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063110 WO2015170686A1 (ja) | 2014-05-07 | 2015-05-01 | イソブタノールからイソブチレンを製造する方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10464860B2 (ja) |
JP (1) | JP6485351B2 (ja) |
KR (1) | KR101960146B1 (ja) |
CN (1) | CN106458786B (ja) |
SG (2) | SG11201607927WA (ja) |
WO (1) | WO2015170686A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047773A1 (ja) * | 2016-09-06 | 2018-03-15 | 三菱ケミカル株式会社 | イソブチレンの分離精製方法およびイソブチレンの製造方法 |
JPWO2021200795A1 (ja) * | 2020-03-31 | 2021-10-07 | ||
WO2021200689A1 (ja) | 2020-03-31 | 2021-10-07 | 三菱ケミカル株式会社 | 触媒、イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 |
JP2022541694A (ja) * | 2020-06-19 | 2022-09-27 | エルジー・ケム・リミテッド | アルミナ触媒の製造方法、それから製造されたアルミナ触媒及びそれを用いたプロピレンの製造方法 |
JP2022543942A (ja) * | 2020-06-19 | 2022-10-17 | エルジー・ケム・リミテッド | 脱水反応触媒、その製造方法及びそれを用いたアルケンの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3526183A4 (en) | 2016-10-14 | 2020-06-17 | GEVO, Inc. | CONVERSION OF BLENDS OF C2-C8 OLEFINES INTO NOZZLE FUEL AND / OR DIESEL FUEL IN HIGH YIELD FROM BIOBASED ALCOHOLS |
CN108358740A (zh) * | 2018-02-09 | 2018-08-03 | 安徽海德化工科技有限公司 | 一种用于异丁醇脱水制备异丁烯的助剂 |
CA3145216A1 (en) | 2019-06-27 | 2020-12-30 | Gevo, Inc. | Bio-based olefin oligomerization via chabazite zeolite catalyst |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04247043A (ja) * | 1991-02-04 | 1992-09-03 | Mitsui Petrochem Ind Ltd | 脱水反応用γ−アルミナ触媒およびこの触媒を用いるオレフィン類の製造方法 |
JP2013506717A (ja) * | 2009-10-06 | 2013-02-28 | ジーヴォ,インコーポレイテッド | 再生可能なイソブタノールをp−キシレンに選択的に変換するための総合プロセス |
WO2013057145A1 (de) * | 2011-10-18 | 2013-04-25 | Lanxess Deutschland Gmbh | Lineare butene aus isobutanol |
JP2013516487A (ja) * | 2010-01-08 | 2013-05-13 | ジーヴォ,インコーポレイテッド | 再生可能な化学物質を調製するための統合的方法 |
JP2013522270A (ja) * | 2010-03-15 | 2013-06-13 | トタル リサーチ アンド テクノロジー フエリユイ | 酸触媒上でのイソブタノールの同時脱水・骨格異性化 |
WO2013144491A1 (fr) * | 2012-03-29 | 2013-10-03 | IFP Energies Nouvelles | Procédé de déshydratation et d'isomérisation d'alcools utilisant un solide de type aluminosilicate non zéolithique |
WO2014118484A1 (fr) * | 2013-02-04 | 2014-08-07 | Adisseo France S.A.S. | Procede de preparation d'une olefine par conversion catalytique d'au moins un alcool |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0498573B1 (en) | 1991-02-04 | 1996-08-21 | Mitsui Petrochemical Industries, Ltd. | Process for producing propylene |
CN101300211B (zh) | 2005-11-01 | 2012-10-17 | 旭化成化学株式会社 | 异丁烯和叔丁醇的制造方法 |
KR101337301B1 (ko) * | 2012-03-28 | 2013-12-05 | 서울대학교산학협력단 | 3차원의 열린 기공 구조를 갖는 알루미노실리케이트 구형 나노 입자, 그 제조방법 및 상기 나노 입자를 이용하여 글리세롤로부터 아크릴산을 제조하는 방법 |
FR2988717B1 (fr) | 2012-03-29 | 2014-04-11 | IFP Energies Nouvelles | Procede de deshydratation et d'isomerisation d'alcools utilisant un catalyseur a base d'un materiau mesostructure comprenant du silicium |
-
2015
- 2015-05-01 JP JP2015524962A patent/JP6485351B2/ja active Active
- 2015-05-01 WO PCT/JP2015/063110 patent/WO2015170686A1/ja active Application Filing
- 2015-05-01 SG SG11201607927WA patent/SG11201607927WA/en unknown
- 2015-05-01 KR KR1020167027539A patent/KR101960146B1/ko active IP Right Grant
- 2015-05-01 CN CN201580022725.3A patent/CN106458786B/zh active Active
- 2015-05-01 US US15/307,614 patent/US10464860B2/en active Active
- 2015-05-01 SG SG10201809230YA patent/SG10201809230YA/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04247043A (ja) * | 1991-02-04 | 1992-09-03 | Mitsui Petrochem Ind Ltd | 脱水反応用γ−アルミナ触媒およびこの触媒を用いるオレフィン類の製造方法 |
JP2013506717A (ja) * | 2009-10-06 | 2013-02-28 | ジーヴォ,インコーポレイテッド | 再生可能なイソブタノールをp−キシレンに選択的に変換するための総合プロセス |
JP2013516487A (ja) * | 2010-01-08 | 2013-05-13 | ジーヴォ,インコーポレイテッド | 再生可能な化学物質を調製するための統合的方法 |
JP2013522270A (ja) * | 2010-03-15 | 2013-06-13 | トタル リサーチ アンド テクノロジー フエリユイ | 酸触媒上でのイソブタノールの同時脱水・骨格異性化 |
WO2013057145A1 (de) * | 2011-10-18 | 2013-04-25 | Lanxess Deutschland Gmbh | Lineare butene aus isobutanol |
WO2013144491A1 (fr) * | 2012-03-29 | 2013-10-03 | IFP Energies Nouvelles | Procédé de déshydratation et d'isomérisation d'alcools utilisant un solide de type aluminosilicate non zéolithique |
WO2014118484A1 (fr) * | 2013-02-04 | 2014-08-07 | Adisseo France S.A.S. | Procede de preparation d'une olefine par conversion catalytique d'au moins un alcool |
Non-Patent Citations (3)
Title |
---|
FEELEY,O.C. ET AL.: "Isobutene from isobutanol/methanol mixtures over inorganic acid catalysts", PREPRINTS OF PAPERS, vol. 37, no. 4, 1992, pages 1817 - 24, XP055235735 * |
SIKORA,E. ET AL.: "Study of methanol and isobutanol coupling over acid catalysts", REACTION KINETICS AND CATALYSIS LETTERS, vol. 80, no. 1, 2003, pages 189 - 197, XP055235733 * |
TAYLOR,J.D. ET AL.: "Dehydration of Fermented Isobutanol for the Production of Renewable Chemicals and Fuels", TOPICS IN CATALYSIS, vol. 53, no. 15-18, 2010, pages 1224 - 1230, XP019831608 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047773A1 (ja) * | 2016-09-06 | 2018-03-15 | 三菱ケミカル株式会社 | イソブチレンの分離精製方法およびイソブチレンの製造方法 |
KR20190039276A (ko) * | 2016-09-06 | 2019-04-10 | 미쯔비시 케미컬 주식회사 | 아이소뷰틸렌의 분리 정제 방법 및 아이소뷰틸렌의 제조 방법 |
JPWO2018047773A1 (ja) * | 2016-09-06 | 2019-06-24 | 三菱ケミカル株式会社 | イソブチレンの分離精製方法およびイソブチレンの製造方法 |
US10550052B2 (en) | 2016-09-06 | 2020-02-04 | Mitsubishi Chemical Corporation | Method for separating and purifying isobutylene and method for producing isobutylene |
KR102136521B1 (ko) | 2016-09-06 | 2020-07-22 | 미쯔비시 케미컬 주식회사 | 아이소뷰틸렌의 분리 정제 방법 및 아이소뷰틸렌의 제조 방법 |
KR20220143085A (ko) | 2020-03-31 | 2022-10-24 | 미쯔비시 케미컬 주식회사 | 아이소뷰틸렌의 제조 방법, 메타크릴산의 제조 방법 및 메타크릴산 메틸의 제조 방법 |
WO2021200795A1 (ja) | 2020-03-31 | 2021-10-07 | 三菱ケミカル株式会社 | イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 |
WO2021200689A1 (ja) | 2020-03-31 | 2021-10-07 | 三菱ケミカル株式会社 | 触媒、イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 |
CN115135624A (zh) * | 2020-03-31 | 2022-09-30 | 三菱化学株式会社 | 异丁烯的制造方法、甲基丙烯酸的制造方法和甲基丙烯酸甲酯的制造方法 |
KR20220141340A (ko) | 2020-03-31 | 2022-10-19 | 미쯔비시 케미컬 주식회사 | 촉매, 아이소뷰틸렌의 제조 방법, 메타크릴산의 제조 방법 및 메타크릴산 메틸의 제조 방법 |
JPWO2021200795A1 (ja) * | 2020-03-31 | 2021-10-07 | ||
JP7355226B2 (ja) | 2020-03-31 | 2023-10-03 | 三菱ケミカル株式会社 | イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 |
JP2022541694A (ja) * | 2020-06-19 | 2022-09-27 | エルジー・ケム・リミテッド | アルミナ触媒の製造方法、それから製造されたアルミナ触媒及びそれを用いたプロピレンの製造方法 |
JP2022543942A (ja) * | 2020-06-19 | 2022-10-17 | エルジー・ケム・リミテッド | 脱水反応触媒、その製造方法及びそれを用いたアルケンの製造方法 |
JP7261887B2 (ja) | 2020-06-19 | 2023-04-20 | エルジー・ケム・リミテッド | アルミナ触媒の製造方法、それから製造されたアルミナ触媒及びそれを用いたプロピレンの製造方法 |
JP7261888B2 (ja) | 2020-06-19 | 2023-04-20 | エルジー・ケム・リミテッド | 脱水反応触媒、その製造方法及びそれを用いたアルケンの製造方法 |
US11801488B2 (en) | 2020-06-19 | 2023-10-31 | Lg Chem, Ltd. | Method of preparing alumina catalyst, alumina catalyst prepared using same, and method of preparing propylene using alumina catalyst |
US11975308B2 (en) | 2020-06-19 | 2024-05-07 | Lg Chem, Ltd. | Dehydration catalyst, method for preparing the same, and method of preparing alkene using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015170686A1 (ja) | 2017-04-20 |
KR101960146B1 (ko) | 2019-03-19 |
US10464860B2 (en) | 2019-11-05 |
CN106458786A (zh) | 2017-02-22 |
KR20160130279A (ko) | 2016-11-10 |
CN106458786B (zh) | 2020-05-08 |
US20170050896A1 (en) | 2017-02-23 |
SG10201809230YA (en) | 2018-11-29 |
SG11201607927WA (en) | 2016-11-29 |
JP6485351B2 (ja) | 2019-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6485351B2 (ja) | イソブタノールからイソブチレンを製造する方法 | |
US8624043B2 (en) | Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities | |
JP6191696B2 (ja) | イソブチレンの製造方法、メタクリル酸の製造方法、およびメタクリル酸メチルの製造方法 | |
Vanoye et al. | Methanol dehydration over commercially available zeolites: Effect of hydrophobicity | |
Park et al. | Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6 | |
Zeng et al. | Influence of basicity on 1, 3-butadiene formation from catalytic 2, 3-butanediol dehydration over γ-alumina | |
WO2014185205A1 (ja) | 固体リン酸触媒、及びそれを用いたトリオキサンの製造方法 | |
JP6103149B1 (ja) | イソブチレン製造用触媒およびイソブチレンの製造方法 | |
JP6091310B2 (ja) | ブタジエンの製造方法 | |
WO2015037580A1 (ja) | ブタジエンの製造方法 | |
US11717807B2 (en) | Method for producing conjugated diene | |
JP2017014133A (ja) | ホモアリルアルコールの製造方法 | |
JP7355226B2 (ja) | イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 | |
WO2021200689A1 (ja) | 触媒、イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 | |
JP2022162225A (ja) | 1-アルケン-3-オール類の製造方法 | |
Nagata et al. | Hydrolysis of Tetrafluoromethane (PFC-14) and Hexafluoroethane (PFC-116) over Alumina–Zirconia Catalysts | |
CN106632387A (zh) | 一种工业合成中间体季戊四醇双缩二苯酮的合成工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015524962 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15789557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167027539 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15307614 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15789557 Country of ref document: EP Kind code of ref document: A1 |