WO2015170666A1 - テトラアルコキシシランの製造方法 - Google Patents

テトラアルコキシシランの製造方法 Download PDF

Info

Publication number
WO2015170666A1
WO2015170666A1 PCT/JP2015/063017 JP2015063017W WO2015170666A1 WO 2015170666 A1 WO2015170666 A1 WO 2015170666A1 JP 2015063017 W JP2015063017 W JP 2015063017W WO 2015170666 A1 WO2015170666 A1 WO 2015170666A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetraalkoxysilane
tetramethoxysilane
alcohol
carbon dioxide
metal compound
Prior art date
Application number
PCT/JP2015/063017
Other languages
English (en)
French (fr)
Inventor
訓久 深谷
星集 崔
準哲 崔
堀越 俊雄
佐藤 一彦
弘之 安田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016517892A priority Critical patent/JP6238385B2/ja
Priority to CN201580024399.XA priority patent/CN106459100B/zh
Priority to EP15789345.4A priority patent/EP3141553B1/en
Priority to US15/309,900 priority patent/US10000514B2/en
Publication of WO2015170666A1 publication Critical patent/WO2015170666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids

Definitions

  • the present invention relates to a highly efficient method for producing tetraalkoxysilane, and more particularly to a method for producing tetraalkoxysilane using carbon dioxide.
  • An object of the present invention is to provide a method capable of producing tetraalkoxysilane with energy saving and high yield.
  • the present inventors first reacted alcohol and carbon dioxide, reacted the reaction mixture with silicon oxide, and reacted by using a dehydrating agent and the like.
  • the present invention was completed by finding that tetraalkoxysilane can be produced in an energy saving and high yield by appropriately removing the generated water.
  • the present invention is as follows.
  • ⁇ 1> A method for producing tetraalkoxysilane using alcohol and silicon oxide, A first step of reacting alcohol with carbon dioxide in the presence of a dehydrating agent and / or in a reactor equipped with a dehydrating means, and a second step of reacting the reaction mixture obtained in the first step with silicon oxide.
  • a method for producing tetraalkoxysilane which is characterized in that ⁇ 2>
  • the tetraalkoxy according to ⁇ 1>, wherein the first step is performed in the presence of at least one metal compound selected from the group consisting of a metal alkoxide, an organic metal oxide, and an inorganic metal oxide.
  • a method for producing silane A method for producing silane.
  • ⁇ 3> The method for producing tetraalkoxysilane according to ⁇ 2>, wherein the metal element of the metal compound is titanium, tin, or zirconium.
  • the dehydrating agent is an organic dehydrating agent and / or an inorganic dehydrating agent.
  • the organic dehydrating agent is an acetal represented by the following general formula (1).
  • alkali metal compound according to ⁇ 6> wherein the alkali metal compound is at least one selected from the group consisting of an alkali metal hydroxide, an alkali metal halide, an alkali metal carbonate, and an alkali metal bicarbonate.
  • tetraalkoxysilane can be obtained in high yield using silicon oxide without going through metallic silicon. For this reason, tetraalkoxysilane can be produced at a lower cost, which is more energy efficient than the prior art.
  • a method for producing tetraalkoxysilane which is one embodiment of the present invention is a method for producing tetraalkoxysilane using alcohol and silicon oxide.
  • the first step and the second step are included.
  • the present inventors paid attention to a method using alcohol and silicon oxide as a method for producing tetraalkoxysilane that does not pass through metal silicon, and as a result of studying the method, carbon dioxide is allowed to coexist in reacting alcohol with silicon oxide. It has been found that tetraalkoxysilane is efficiently produced. This is considered to be because alcohol reacts with carbon dioxide and is activated, and this reacts with silicon oxide more efficiently. That is, it is considered that carbon dioxide works as a reaction accelerator. In addition, carbon dioxide can be regenerated and reused, leading to the reduction of unnecessary emissions as much as possible, and also using cheap and familiar materials such as alcohol and silicon oxide as starting materials. It can be said that the method is very suitable industrially.
  • the production method of the present invention including the first step and the second step is a method capable of producing tetraalkoxysilane with energy saving and high yield.
  • the “first step” and the “second step” is not limited to a mode in which the reaction proceeds independently, for example, by the presence of alcohol, silicon oxide, and carbon dioxide in one reaction system, It means that the first step and the second step may proceed in one reaction system. Accordingly, as shown in FIG.
  • FIG. 1 (a) an embodiment in which alcohol, silicon oxide, and carbon dioxide are respectively added to a batch reactor to advance the first step and the second step
  • FIG. As shown in the figure, after reacting alcohol with carbon dioxide in a batch reactor, silicon oxide is further added to react the reaction mixture with silicon oxide, as shown in FIG. A mode in which alcohol and carbon dioxide are sequentially charged into a type reactor, the reaction mixture is transferred to another continuous tank type reactor and reacted with silicon oxide, and tetraalkoxysilane is successively recovered, as shown in FIG.
  • any of the embodiments in which alcohol and carbon dioxide are sequentially charged into a continuous tube reactor and reacted with silicon oxide to sequentially recover tetraalkoxysilane are included in the production method of the present invention.
  • the first step is a step of reacting alcohol with carbon dioxide in the presence of a dehydrating agent and / or in a reactor equipped with a dehydrating means, but the type of alcohol is not particularly limited, and is a tetraalkoxy which is the production purpose. It can be appropriately selected according to silane. For example, when methanol is used as the alcohol, tetramethoxysilane can be produced, and when ethanol is used, tetraethoxysilane can be produced.
  • the alcohol may be either an aliphatic alcohol or an aromatic alcohol, and the hydrocarbon group in the alcohol may have a branched structure, a cyclic structure, a carbon-carbon unsaturated bond, or the like.
  • the carbon number of the alcohol is usually 1 or more, preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less.
  • Specific alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, benzyl alcohol, phenol and the like. It is done. Among these, methanol and ethanol are preferable, and methanol is more preferable.
  • the first step is preferably performed in the presence of at least one metal compound selected from the group consisting of metal alkoxides, organometallic oxides, and inorganic metal oxides.
  • the alcohol is more likely to react with carbon dioxide, and as a result, tetraalkoxysilane can be produced in a higher yield.
  • the alkoxy group of the metal alkoxide preferably has the same hydrocarbon group as that of the alcohol to be reacted with carbon dioxide.
  • the metal element of the metal compound is preferably at least one selected from the group consisting of titanium, tin or zirconium.
  • Specific metal alkoxides include tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, tetrabutoxy titanium, tetramethoxy zirconium, tetraethoxy zirconium, tetramethoxy tin, tetraethoxy tin, tetra-t-butoxy tin, di-n. -Butyldimethoxytin, di-n-butyldiethoxytin, di-n-butyldibutoxytin and the like.
  • the organometallic oxide examples include dimethyltin oxide, diethyltin oxide, diisopropyltin oxide, di-n-butyltin oxide and the like.
  • Specific examples of the inorganic metal oxide include zirconium oxide, tin oxide, and titanium oxide.
  • the amount of the metal compound used is usually 0 mmol or more, preferably 0.01 mmol or more, more preferably 0.1 mmol or more, and usually 1 mol or less, preferably 500 mmol or less, more preferably 100 mmol or less with respect to 1 mol of alcohol. .
  • the reactor for reacting alcohol with carbon dioxide in the presence of a dehydrating agent and / or in a reactor equipped with a dehydrating means, operating procedures, reaction conditions, etc. are not particularly limited, depending on the purpose. It can be selected appropriately.
  • a batch reactor see FIGS. 1A and 1B
  • a continuous tank reactor see FIG. 1C
  • a continuous tube reactor see FIG. 1.
  • the batch reactor is preferably a pressure resistant reactor such as an autoclave.
  • the operation procedure is such that alcohol, a dehydrating agent, a metal compound, or the like is charged into the reactor, the inside of the reaction vessel is scavenged with carbon dioxide gas, then filled with carbon dioxide and sealed, and the reaction temperature
  • the method of heating to is mentioned.
  • the filling pressure of carbon dioxide at 25 ° C. is preferably 0.1 to 10 MPa. Within the above range, tetraalkoxysilane can be produced with higher yield.
  • the reactor is heated to the reaction temperature, and alcohol, dehydrating agent, carbon dioxide, metal compound, etc. are used as gas or liquid, respectively. Can be used.
  • the dehydrating agent in the first step means one that chemically reacts with water or physically adsorbs water to remove water
  • the specific type is not particularly limited, and a known one is appropriately selected. can do.
  • Specific dehydrating agents include organic dehydrating agents such as acetal and acid anhydrides, adsorption of inorganic dehydrating agents such as magnesium sulfate, sodium sulfate, calcium chloride, calcium oxide, phosphorus oxide (V), and aluminum oxide, and molecular sieves. Agents and the like. Among these, from the viewpoint of being able to act uniformly in the reaction system, an organic dehydrating agent is preferable, and an acetal represented by the following general formula (1) is more preferable.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms, and R represents a hydrocarbon group having 1 to 15 carbon atoms, provided that R 1 and R 2 Except when both are hydrogen atoms.
  • the alkoxy group of acetal has the same hydrocarbon group as the alcohol reacted with carbon dioxide.
  • the dehydrating agent is acetal, as shown in the following reaction formula (2), it reacts with water to produce an alcohol, which can be used to react this alcohol with carbon dioxide. Further, after the reaction is completed, the recovered aldehyde and ketone can be easily regenerated into acetal and reused.
  • acetal not only 1 type but in combination of 2 or more types.
  • the amount of acetal used is usually 0 mol or more, preferably 0.001 mol or more, more preferably 0.005 mol or more, usually 1 mol or less, preferably 0.8 mol or less, more preferably 0.5 mol, relative to 1 mol of alcohol. It is as follows. Within the above range, tetraalkoxysilane can be produced with higher yield.
  • the reactor equipped with the dehydrating means in the first step means that the reactor is equipped with a material, a device, or the like that can separate water, and the specific means is not particularly limited, and a known one is appropriately used. You can choose.
  • Specific dehydrating means includes a separation membrane as shown in FIG. 2 (a), a distillation apparatus as shown in FIG. 2 (b), and the like.
  • Specific examples of the separation membrane include a carbon membrane, a silica membrane, a zeolite membrane, and a polymer membrane.
  • hydroxides, halides, oxides, carbonates, hydrogen carbonates, alkoxides, silicates, aluminates, phosphates, organic acid salts, sulfates, nitrates and the like can be mentioned.
  • hydroxides, halides, carbonates and bicarbonates are preferred, and alkali metal hydroxides, alkali metal halides, alkali metal carbonates, and alkali metal bicarbonates are more preferred.
  • alkali metal compound and alkaline earth metal compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, sodium fluoride.
  • an alkali metal compound and an alkaline-earth metal compound not only 1 type but in combination of 2 or more types.
  • the total amount of the alkali metal compound and alkaline earth metal compound used is usually 0 mol or more, preferably 0.001 mol or more, usually 20 mol or less, preferably 10 mol or less, relative to 1 mol of silicon oxide (in the case of silicon dioxide). is there.
  • the reactor for reacting the reaction mixture obtained in the first step with silicon oxide, operating procedures, reaction conditions, etc. are not particularly limited, and can be appropriately selected according to the purpose.
  • a batch reactor see FIGS. 1A and 1B
  • a continuous tank reactor see FIG. 1C
  • a continuous tube reactor see FIG. 1). 1 (d)
  • the batch reactor is preferably a pressure resistant reactor such as an autoclave.
  • the operation procedure is carried out by introducing the reaction mixture obtained in the first step, silicon oxide, alkali metal compound, etc. into the reactor, scavenging the inside of the reaction vessel with an inert gas, and then inactive.
  • the reaction temperature in the second step is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 500 ° C. or lower, preferably 400 ° C. or lower, more preferably 300 ° C. or lower.
  • the reaction pressure in the second step is usually 0.1 MPa or more, preferably 1.0 MPa or more, more preferably 3.0 MPa or more, and usually 60 MPa or less, preferably 30 MPa or less, more preferably 20 MPa or less.
  • the partial pressure of carbon dioxide is usually 0 MPa or more, preferably 0.1 MPa or more, more preferably 0.2 MPa or more, and usually 50 MPa or less, preferably 20 MPa or less, more preferably 10 MPa or less.
  • the reaction time in the second step is usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more, and usually 168 hours or less, preferably 120 hours or less, more preferably 100 hours or less. Within the above range, tetraalkoxysilane can be produced with higher yield.
  • the production method of the present invention includes the first step and the second step.
  • the production method is not limited to the one in which the reaction proceeds independently of each other, for example, alcohol and silicon oxide.
  • carbon dioxide in one reaction system the first step and the second step may proceed in one reaction system.
  • this aspect can be expressed as the following method.
  • a method for producing tetraalkoxysilane comprising a reaction step of reacting alcohol and silicon oxide, wherein the reaction step is a step satisfying the following conditions (a) and (b).
  • A) The reaction is carried out in the presence of carbon dioxide.
  • the reaction is carried out in the presence of a dehydrating agent and / or in a reactor equipped with a dehydrating means.
  • the step is performed in the presence of at least one metal compound selected from the group consisting of metal alkoxides, organometallic oxides, and inorganic metal oxides.
  • metal alkoxides metal alkoxides
  • organometallic oxides metal oxides
  • inorganic metal oxides metal oxides.
  • the details of the metal compound are as described above.
  • it is preferable to carry out in presence of an alkali metal compound and / or an alkaline-earth metal compound it is preferable to carry out in presence of an alkali metal compound and / or an alkaline-earth metal compound.
  • the details of the alkali metal compound and / or alkaline earth metal compound are as described above.
  • the reactor, operating procedure, reaction conditions, etc. for advancing the first step and the second step in one reaction system are not particularly limited, and can be appropriately selected according to the purpose.
  • Examples of the reactor include a batch reactor (see FIG. 1A) and a continuous tube reactor (see FIG. 1D) as described above.
  • the batch reactor is preferably a pressure resistant reactor such as an autoclave.
  • the operation procedure is performed by charging alcohol, silicon oxide, dehydrating agent, metal compound, alkali metal compound, etc. into the reactor, scavenging the reaction vessel with carbon dioxide gas, and then filling with carbon dioxide. And sealing and heating to the reaction temperature.
  • the filling pressure of carbon dioxide at 25 ° C. is preferably 0.1 to 10 MPa.
  • tetraalkoxysilane can be produced with higher yield.
  • silicon oxide, a dehydrating agent, an alkali metal compound, etc. are put into the reactor, and after heating the reaction vessel to the reaction temperature, alcohol, carbon dioxide, metal compound, etc. are gasified.
  • alcohol, carbon dioxide, metal compound, etc. are gasified.
  • a carrier gas may be used for charging alcohol, carbon dioxide, metal compounds, and the like.
  • carrier gas inert gas, such as nitrogen gas and argon gas, and carbon dioxide gas itself can also be used as carrier gas.
  • the supply rate of carrier gas, carbon dioxide and the like can be appropriately selected according to the size of the reactor, reaction conditions, and the like.
  • the reaction temperature is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 500 ° C. or lower, preferably 400 ° C. or lower, more preferably 300 ° C. or lower.
  • the reaction pressure is usually 0.1 MPa or more, preferably 1.0 MPa or more, more preferably 3.0 MPa or more, and usually 60 MPa or less, preferably 30 MPa or less, more preferably 20 MPa or less.
  • the partial pressure of carbon dioxide is usually 0 MPa or more, preferably 0.1 MPa or more, more preferably 0.2 MPa or more, and usually 50 MPa or less, preferably 20 MPa or less, more preferably 10 MPa or less.
  • the reaction time is usually 1 hour or more, preferably 5 hours or more, more preferably 10 hours or more, and usually 168 hours or less, preferably 120 hours or less, more preferably 100 hours or less. Within the above range, tetraalkoxysilane can be produced with higher yield.
  • Example 1 In a 20 mL SUS autoclave (manufactured by Nitto Koatsu Co., Ltd.) containing a magnetic stir bar, 0.18 g of silicon dioxide (Fuji Silysia Chemical CARiACT Q-10), 3.0 g of methanol, acetone dimethyl acetal (2, 2-dimethoxypropane) (5.0 g) and potassium hydroxide (0.02 g) were added, carbon dioxide was discharged from the cylinder at a temperature of 25 ° C., and the pressure in the autoclave was 2 MPa at the pressure indicated by the pressure gauge (PGI-50M-MG10, Swagelok FST). And held for 10 minutes with stirring and sealed.
  • silicon dioxide Fluji Silysia Chemical CARiACT Q-10
  • methanol acetone dimethyl acetal (2, 2-dimethoxypropane)
  • potassium hydroxide 0.02 g
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that the carbon dioxide pressure was 0.4 MPa with respect to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 7%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that the carbon dioxide pressure was 4.8 MPa with respect to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 30%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that sodium hydroxide (0.013 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 32%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that cesium hydroxide (0.045 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 52%.
  • the results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that lithium hydroxide (0.012 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 8%.
  • the results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that lithium carbonate (0.022 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 10%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 2 except that sodium carbonate (0.029 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 2. The yield of tetramethoxysilane based on silicon dioxide was 30%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that potassium carbonate (0.036 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 56%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that cesium carbonate (0.069 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 60%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that sodium fluoride (0.013 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 17%. The results are shown in Table 1-1.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that potassium fluoride (0.018 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 50%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1, except that cesium fluoride (0.04 g) was used instead of potassium hydroxide with respect to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was 53%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 3, except that 1.0 mol% of tetramethoxytitanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 3. The yield of tetramethoxysilane based on silicon dioxide was 51%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 3, except that 1.5 mol% of tetramethoxytitanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 3. The yield of tetramethoxysilane based on silicon dioxide was 43%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 3, except that 0.1 mol% of tetramethoxytitanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 3. The yield of tetramethoxysilane based on silicon dioxide was 33%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 3 except that 0.01 mol% of tetramethoxytitanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 3. The yield of tetramethoxysilane based on silicon dioxide was 37%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 5 except that 0.1 mol% of tetramethoxytitanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 5. The yield of tetramethoxysilane based on silicon dioxide was 18%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1, except that 0.1 mol% of tetramethoxy titanium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 48%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that 0.1 mol% of tetraethoxyzirconium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 23%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1, except that 0.1 mol% of tetra-t-butoxytin (based on 1 mol of alcohol) was further added to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 29%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that 0.1 mol% of pentaethoxyniobium (based on 1 mol of alcohol) was further added to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 66%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 3 except that 0.1 mol% of di-n-butyldimethoxytin (based on 1 mol of alcohol) was further added to the reaction conditions of Example 3. .
  • the yield of tetramethoxysilane based on silicon dioxide was 6%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that the reaction temperature was 200 ° C. with respect to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 17%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that the reaction temperature was 180 ° C. with respect to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 6%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that the silicon dioxide used was 0.18 g of Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.) under the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 48%. The results are shown in Table 1-2.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that potassium hydroxide and 2,2-dimethoxypropane were not added to the reaction conditions of Example 1.
  • the yield of tetramethoxysilane based on silicon dioxide was less than 1%.
  • the results are shown in Table 1-3.
  • Tetramethoxysilane was produced in the same manner as in Example 1 except that 2,2-dimethoxypropane was not added to the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 3%. The results are shown in Table 1-3.
  • Tetramethoxysilane was produced in the same manner as in Example 1, except that carbon dioxide was not introduced under the reaction conditions of Example 1. The yield of tetramethoxysilane based on silicon dioxide was 3%. The results are shown in Table 1-3.
  • Tetramethoxysilane was produced in the same manner as in Example 20 except that carbon dioxide was not introduced and 2,2-dimethoxypropane was not added to the reaction conditions of Example 20.
  • the yield of tetramethoxysilane based on silicon dioxide was less than 1%. The results are shown in Table 1-3.
  • Tetramethoxysilane was produced in the same manner as in Example 20 except that carbon dioxide was not introduced under the reaction conditions of Example 20.
  • the yield of tetramethoxysilane based on silicon dioxide was 3%.
  • the results are shown in Table 1-3.
  • Tetramethoxysilane was produced in the same manner as in Example 23, except that 2,2-dimethoxypropane was not added to the reaction conditions of Example 23.
  • the yield of tetramethoxysilane based on silicon dioxide was 3%. The results are shown in Table 1-3.
  • tetraalkoxysilane used as a raw material for producing various silane compounds, organic silicone polymers, various silylating agents, colloidal silica, ceramics and the like can be produced with high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 テトラアルコキシシランを省エネルギーかつ高収率で製造することができる方法を提供することを目的とする。アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させる第一工程、並びに第一工程で得られた反応混合物を酸化ケイ素と反応させる第二工程を含む製造方法により、省エネルギーかつ高収率でテトラアルコキシシランを製造することができる。

Description

テトラアルコキシシランの製造方法
 本発明は、テトラアルコキシシランの高効率な製造方法に関し、より詳しくは二酸化炭素を利用したテトラアルコキシシランの製造方法に関する。
 テトラアルコキシシランは、各種シラン化合物、有機シリコーンポリマー、各種シリル化剤、コロイダルシリカおよびセラミックス等を製造する為の原料として用いられている。
 従来から知られているアルコキシシラン類の工業的製造方法としては、天然の二酸化ケイ素を出発原料とし、炭素と混合して高温下で還元する事によって金属ケイ素を得て、これを塩素と反応させて四塩化ケイ素を製造した後、さらにアルコールと反応させる方法が知られている(特許文献1参照)。また金属ケイ素とアルコールを直接反応させる製造方法も知られている(特許文献2、3参照)。
 しかし、これらの方法は、いずれも高温を要する金属ケイ素製造過程を経由する必要があり、エネルギー効率が悪い事が問題となっている。
 他方、シリカから直接アルコキシシランを製造する方法として、アルカリ金属元素あるいはアルカリ土類金属元素を触媒としてシリカとアルキルカーボネートとを反応させて、アルコキシシランを製造する方法が知られている(特許文献4、5参照)。これらの方法は上記金属ケイ素を原料としないため、エネルギー効率的には有利である一方、比較的高価な化合物であるアルキルカーボネートを、化学量論としてシリカに対して少なくとも2倍のモル量を投入する必要があり、テトラアルコキシシランの工業的製法としては経済的な課題がある。
特開昭62-114991号公報 米国特許第2473260号 特開2000-430009号公報 特開2001-114786号公報 特許第3026371号公報
 本発明は、テトラアルコキシシランを省エネルギーかつ高収率で製造することができる方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、まずアルコールと二酸化炭素を反応させ、その反応混合物を酸化ケイ素と反応させること、及び脱水剤等を利用して反応によって生じた水を適切に除去することにより、省エネルギーかつ高収率でテトラアルコキシシランを製造できることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> アルコールと酸化ケイ素を用いたテトラアルコキシシランの製造方法であって、
 アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させる第一工程、並びに前記第一工程で得られた反応混合物を酸化ケイ素と反応させる第二工程を含むことを特徴とする、テトラアルコキシシランの製造方法。
<2> 前記第一工程が、金属アルコキシド、有機金属酸化物、及び無機金属酸化物からなる群より選択される少なくとも1種の金属化合物の存在下で行われる、<1>に記載のテトラアルコキシシランの製造方法。
<3> 前記金属化合物の金属元素が、チタン、スズ、又はジルコニウムである<2>に記載のテトラアルコキシシランの製造方法。
<4> 前記脱水剤が、有機脱水剤及び/又は無機脱水剤である、<1>~<3>の何れかに記載のテトラアルコキシシランの製造方法。
<5> 前記有機脱水剤が、下記一般式(1)で表されるアセタールである、<4>に記載のテトラアルコキシシランの製造方法。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRはそれぞれ独立して水素原子又は炭素数1~15の炭化水素基を、Rは炭素数1~15の炭化水素基を表す。但し、R及びRの両方が水素原子である場合を除く。)
<6> 前記第二工程が、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下で行われる、<1>~<5>の何れかに記載のテトラアルコキシシランの製造方法。
<7> 前記アルカリ金属化合物が、アルカリ金属水酸化物、アルカリ金属ハロゲン化物、アルカリ金属炭酸塩、及びアルカリ金属炭酸水素塩からなる群より選択される少なくとも1種である、<6>に記載のテトラアルコキシシランの製造方法。
<8> アルコールと酸化ケイ素と二酸化炭素が1つの反応系に存在することによって、前記第一工程及び前記第二工程が1つの反応系で進行するものである、<1>~<7>の何れかに記載のテトラアルコキシシランの製造方法。
 本発明によれば、金属ケイ素を経由することなく、酸化ケイ素を利用してテトラアルコキシシランを高収率に得ることができる。そのため、従来技術よりもエネルギー効率に優れ、低コストでテトラアルコキシシランを製造することができる。
本発明の一態様であるテトラアルコキシシランの製造方法に使用することができる反応器の概念図である((a)、(b):回分反応器、(c):連続槽型反応器、(d):連続管型反応器)。 第一工程に使用される反応器に備えられた脱水手段の概念図である。((a):分離膜、(b):蒸留装置)。
 本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<テトラアルコキシシランの製造方法>
 本発明の一態様であるテトラアルコキシシランの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、アルコールと酸化ケイ素を用いてテトラアルコキシシランを製造する方法であり、下記の第一工程と第二工程を含むことを特徴とする。
 第一工程:アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させる工程。
 第二工程:第一工程で得られた反応混合物を酸化ケイ素と反応させる工程。
 本発明者らは、金属ケイ素を経由しないテトラアルコキシシランの製造方法としてアルコールと酸化ケイ素を用いる方法に着目し、その検討を進めた結果、アルコールと酸化ケイ素を反応させる上で二酸化炭素を共存させることにより、効率良くテトラアルコキシシランが生成することを見出した。これは、アルコールが二酸化炭素と反応して活性化し、これが酸化ケイ素とより効率的に反応とするためであると考えられる。即ち、二酸化炭素が反応加速剤として働いているものと考えられる。また、二酸化炭素は再生して再利用することができるため、不要な排出物を極力減らすことに繋がり、さらにアルコールと酸化ケイ素という安価で有り触れた材料を出発原料として利用することにもなるため、工業的に非常に適した方法と言えるのである。
 また、本発明者らは、脱水剤等を利用して反応によって生じた水を適切に除去しなければ、テトラアルコキシシランの収率が著しく低下してしまうことも確認している。
 即ち、第一工程と第二工程を含む本発明の製造方法は、省エネルギーかつ高収率でテトラアルコキシシランを製造することができる方法なのである。
 なお、「第一工程」と「第二工程」を含むとは、それぞれ独立して反応が進行する態様に限られず、例えばアルコールと酸化ケイ素と二酸化炭素が1つの反応系に存在することによって、第一工程と第二工程が1つの反応系で進行するものであってもよいことを意味する。従って、図1の(a)に示されるように、回分反応器にアルコールと酸化ケイ素と二酸化炭素をそれぞれ投入して、第一工程と第二工程を進行させる態様、図1の(b)に示されるように、回分反応器でアルコールを二酸化炭素と反応させた後、さらに酸化ケイ素を投入して反応混合物を酸化ケイ素と反応させる態様、図1の(c)に示されるように、連続槽型反応器にアルコールと二酸化炭素を逐次投入し、反応混合物を別の連続槽型反応器に移して酸化ケイ素と反応させて、テトラアルコキシシランを逐次回収する態様、並びに図1の(d)に示されるように、連続管型反応器にアルコールと二酸化炭素を逐次投入し、酸化ケイ素と反応させて、テトラアルコキシシランを逐次回収する態様等の何れもが本発明の製造方法に含まれる。
(第一工程)
 第一工程は、アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させる工程であるが、アルコールの種類は、特に限定されず、製造目的であるテトラアルコキシシランに応じて適宜選択することができる。例えばアルコールとしてメタノールを用いるとテトラメトキシシランが、エタノールを用いるとテトラエトキシシランを製造することができる。
 アルコールは、脂肪族アルコールと芳香族アルコールのどちらでもよく、またアルコール中の炭化水素基は、分岐構造、環状構造、炭素-炭素不飽和結合等のそれぞれを有していてもよい。
 アルコールの炭素数は、通常1以上であり、好ましくは15以下、より好ましくは10以下、さらに好ましくは8以下である。
 具体的なアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、ベンジルアルコール、フェノール等が挙げられる。中でも、メタノール、エタノールが好ましく、メタノールがより好ましい。
 第一工程は、金属アルコキシド、有機金属酸化物、及び無機金属酸化物からなる群より選択される少なくとも1種の金属化合物の存在下で行われることが好ましい。これらの金属化合物の存在下であると、アルコールが二酸化炭素とより反応し易くなり、結果、より高収率でテトラアルコキシシランを製造することができる。なお、金属アルコキシドのアルコキシ基は、二酸化炭素と反応させるアルコールと同一の炭化水素基を有するものであることが好ましい。
 金属化合物の金属元素は、チタン、スズ又はジルコニウムからなる群より選択される少なくとも1種であることが好ましい。
 具体的な金属アルコキシドとしては、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラメトキシスズ、テトラエトキシスズ、テトラ-t-ブトキシスズ、ジ-n-ブチルジメトキシスズ、ジ-n-ブチルジエトキシスズ、ジ-n-ブチルジブトキシスズ等が挙げられる。
 具体的な有機金属酸化物としては、ジメチルスズオキシド、ジエチルスズオキシド、ジイソプロピルスズオキシド、ジ-n-ブチルスズオキシド等が挙げられる。
 具体的な無機金属酸化物としては、酸化ジルコニウム、酸化スズ、酸化チタン等が挙げられる。
 なお、金属化合物は、1種類のみならず、2種類以上を組み合わせて使用してもよい。
 金属化合物の使用量は、アルコール1molに対して、通常0mmol以上、好ましくは0.01mmol以上、より好ましくは0.1mmol以上であり、通常1mol以下、好ましくは500mmol以下、より好ましくは100mmol以下である。
 第一工程において、アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させるための反応器、操作手順、反応条件等は特に限定されず、目的に応じて適宜選択することができる。
 反応器としては、前述のように回分反応器(図1の(a)、(b)参照)、連続槽型反応器(図1の(c)参照)、連続管型反応器(図1の(d)参照)等が挙げられる。なお、回分反応器は、オートクレーブ等の耐圧反応器であることが好ましい。
 操作手順は、例えば回分反応器を用いる場合、反応器にアルコール、脱水剤、金属化合物等を投入し、二酸化炭素ガスで反応容器内を掃気した後、二酸化炭素を充填して密閉し、反応温度まで加熱を行う方法が挙げられる。なお、二酸化炭素の25℃における充填圧力は、0.1~10MPaであることが好ましい。上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 また、連続槽型反応器や連続管型反応器を用いる場合、反応温度に加熱された反応器に、アルコール、脱水剤、二酸化炭素、金属化合物等を気体又は液体として、それぞれ連続的に反応器に投入する方法が挙げられる。なお、アルコール、脱水剤、二酸化炭素、金属化合物等を投入するためにキャリアーガスを用いてもよい。キャリアーガスとしては、窒素ガス、アルゴンガス等の不活性ガスや二酸化炭素ガス自体をキャリアーガスとして用いることもできる。なお、キャリアーガスや二酸化炭素等の供給速度等は、反応器の大きさや反応条件等に応じて適宜選択することができる。
 第一工程の反応温度は、通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上であり、通常500℃以下、好ましくは400℃以下、より好ましくは300℃以下である。
 第一工程の反応圧力は、通常0.1MPa以上、好ましくは1.0MPa以上、より好ましくは3.0MPa以上であり、通常60MPa以下、好ましくは30MPa以下、より好ましくは20MPa以下である。なお、二酸化炭素の分圧は、通常0MPa以上、好ましくは0.1MPa以上、より好ましくは0.2MPa以上であり、通常50MPa以下、好ましくは20MPa以下、より好ましくは10MPa以下である。
 第一工程の反応時間は、通常1時間以上、好ましくは5時間以上、より好ましくは10時間以上であり、通常168時間以下、好ましくは120時間以下、より好ましくは100時間以下である。
 上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 第一工程における脱水剤とは、水と化学的に反応する又は水を物理的に吸着して水を除去するものを意味し、具体的な種類は特に限定されず、公知のものを適宜選択することができる。
 具体的な脱水剤としては、アセタール、酸無水物等の有機脱水剤、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム、酸化カルシウム、酸化リン(V)、酸化アルミニウム等の無機脱水剤、モレキュラーシーブ等の吸着剤等が挙げられる。中でも反応系中で均一に作用できるという観点から、有機脱水剤が好ましく、下記一般式(1)で表されるアセタールがより好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ独立して水素原子又は炭素数1~15の炭化水素基を、Rは炭素数1~15の炭化水素基を表す。但し、R及びRの両方が水素原子である場合を除く。)
 なお、アセタールのアルコキシ基は、二酸化炭素と反応させるアルコールと同一の炭化水素基を有するものであることが好ましい。脱水剤がアセタールであると、下記反応式(2)で示されるように、水と反応してアルコールが生成することになり、このアルコールを二酸化炭素と反応させるために利用することができる。また、反応終了後、回収したアルデヒドやケトンは、容易にアセタールに再生し、再利用することができる。
Figure JPOXMLDOC01-appb-C000004
 具体的な一般式(1)で表されるアセタールとしては、ベンズアルデヒドジメチルアセタール、アセトアルデヒドジメチルアセタール、ホルムアルデヒドジメチルアセタール、アセトンジメチルアセタール(2,2-ジメトキシプロパン)、アセトンジエチルアセタール、アセトンジベンジルアセタール、ジエチルケトンジメチルアセタール、ベンゾフェノンジメチルアセタール、ベンジルフェニルケトンジメチルアセタール、シクロヘキサノンジメチルアセタール、アセトフェノンジメチルアセタール、2,2-ジメトキシ-2-フェニルアセトフェノン、4,4-ジメトキシ-2,5-シクロヘキサジエン-1-オンアセタール、ジメチルアセトアミドジエチルアセタール等が挙げられる。なお、アセタールは、1種類のみならず、2種類以上を組み合わせて使用してもよい。
 アセタールの使用量は、アルコール1molに対して、通常0mol以上、好ましくは0.001mol以上、より好ましくは0.005mol以上であり、通常1mol以下、好ましくは0.8mol以下、より好ましくは0.5mol以下である。上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 第一工程における脱水手段を備えた反応器とは、反応器が水を分離することができる材料や装置等を備えることを意味し、具体的な手段は特に限定されず、公知のものを適宜選択することができる。
 具体的な脱水手段としては、図2(a)に示されるような分離膜、図2(b)に示される蒸留装置等が挙げられる。なお、具体的な分離膜としては、炭素膜、シリカ膜、ゼオライト膜、高分子膜等が挙げられる。
(第二工程)
 第二工程は、第一工程で得られた反応混合物を酸化ケイ素と反応させる工程であるが、酸化ケイ素とは、ケイ素原子(Si)と酸素原子(O)を主要な構成元素として含む化合物を意味し、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、或いはゼオライト等の他の金属との複合酸化物であってもよいことを意味する。
 具体的な酸化ケイ素としては、ケイ石、ケイ砂、ケイ藻土、石英等の天然鉱物、ケイ素含有植物の焼成灰、火山灰、ケイ酸塩類、シリカゾル由来のシリカゲル、ヒュームドシリカ、シリカアルミナ、ゼオライト等が挙げられる。
 第二工程は、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下で行われることが好ましい。アルカリ金属化合物やアルカリ土類金属化合物の存在下であると、酸化ケイ素のケイ素-酸素結合の開裂が促進されて、より高収率でテトラアルコキシシランを製造することができる。
 アルカリ金属化合物及びアルカリ土類金属化合物におけるアルカリ金属及びアルカリ土類金属としては、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、カルシウム(Ca)、セシウム(Cs)等が挙げられる。また、対イオンについては、水酸化物、ハロゲン化物、酸化物、炭酸塩、炭酸水素塩、アルコキシド、ケイ酸塩、アルミン酸塩、リン酸塩、有機酸塩、硫酸塩、硝酸塩等が挙げられる。中でも水酸化物、ハロゲン化物、炭酸塩、炭酸水素塩が好ましく、アルカリ金属水酸化物、アルカリ金属ハロゲン化物、アルカリ金属炭酸塩、及びアルカリ金属炭酸水素塩がより好ましい。
 具体的なアルカリ金属化合物及びアルカリ土類金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等が挙げられる。なお、アルカリ金属化合物及びアルカリ土類金属化合物は、1種類のみならず、2種類以上を組み合わせて使用してもよい。
 アルカリ金属化合物とアルカリ土類金属化合物の総使用量は、酸化ケイ素(二酸化ケイ素の場合)1molに対して、通常0mol以上、好ましくは0.001mol以上であり、通常20mol以下、好ましくは10mol以下である。
 第二工程において、第一工程で得られた反応混合物を酸化ケイ素と反応させるための反応器、操作手順、反応条件等は特に限定されず、目的に応じて適宜選択することができる。
 反応器としては、第一工程と同様に回分反応器(図1の(a)、(b)参照)、連続槽型反応器(図1の(c)参照)、連続管型反応器(図1の(d)参照)等が挙げられる。なお、回分反応器は、オートクレーブ等の耐圧反応器であることが好ましい。
 操作手順は、例えば回分反応器を用いる場合、反応器に第一工程で得られた反応混合物、酸化ケイ素、アルカリ金属化合物等を投入し、不活性ガスで反応容器内を掃気した後、不活性ガスを充填して密閉し、反応温度まで加熱を行う方法が挙げられる。
 また、連続槽型反応器や連続管型反応器を用いる場合、酸化ケイ素、アルカリ金属化合物等を反応器に投入しておき、反応容器を反応温度まで加熱した後、第一工程で得られた反応混合物を気体又は液体として、それぞれ連続的に投入する方法が挙げられる。なお、第一工程で得られた反応混合物を投入するためにキャリアーガスを用いてもよい。
 第二工程の反応温度は、通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上であり、通常500℃以下、好ましくは400℃以下、より好ましくは300℃以下である。
 第二工程の反応圧力は、通常0.1MPa以上、好ましくは1.0MPa以上、より好ましくは3.0MPa以上であり、通常60MPa以下、好ましくは30MPa以下、より好ましくは20MPa以下である。なお、二酸化炭素の分圧は、通常0MPa以上、好ましくは0.1MPa以上、より好ましくは0.2MPa以上であり、通常50MPa以下、好ましくは20MPa以下、より好ましくは10MPa以下である。
 第二工程の反応時間は、通常1時間以上、好ましくは5時間以上、より好ましくは10時間以上であり、通常168時間以下、好ましくは120時間以下、より好ましくは100時間以下である。
 上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 本発明の製造方法は、第一工程及び第二工程を含むものであるが、前述のように、第一工程と第二工程がそれぞれ独立して反応が進行するものに限られず、例えばアルコールと酸化ケイ素と二酸化炭素が1つの反応系に存在することによって、第一工程と第二工程が1つの反応系で進行するものであってもよい。なお、かかる態様は、言い換えれば下記の方法と表現することができる。
 アルコールと酸化ケイ素を反応させる反応工程を含むテトラアルコキシシランの製造方法であって、前記反応工程が下記の(a)及び(b)の条件を満たす工程である、テトラアルコキシシランの製造方法。
 (a)二酸化炭素の存在下で反応させる。
 (b)脱水剤の存在下及び/又は脱水手段を備えた反応器中で反応させる。
 第一工程と第二工程を1つの反応系で進行させる態様においても、金属アルコキシド、有機金属酸化物、及び無機金属酸化物からなる群より選択される少なくとも1種の金属化合物の存在下で行われることが好ましい。なお、金属化合物についての詳細は、前述の通りである。
 また、第一工程と第二工程を1つの反応系で進行させる態様においても、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下で行われることが好ましい。なお、アルカリ金属化合物及び/又はアルカリ土類金属化合物についての詳細は、前述の通りである。
 第一工程と第二工程を1つの反応系で進行させるための反応器、操作手順、反応条件等は特に限定されず、目的に応じて適宜選択することができる。
 反応器としては、前述のように回分反応器(図1の(a)参照)、連続管型反応器(図1の(d)参照)等が挙げられる。なお、回分反応器は、オートクレーブ等の耐圧反応器であることが好ましい。
 操作手順は、例えば回分反応器を用いる場合、反応器にアルコール、酸化ケイ素、脱水剤、金属化合物、アルカリ金属化合物等を投入し、二酸化炭素ガスで反応容器内を掃気した後、二酸化炭素を充填して密閉し、反応温度まで加熱を行う方法が挙げられる。なお、二酸化炭素の25℃における充填圧力は、0.1~10MPaであることが好ましい。上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 また、連続管型反応器を用いる場合、酸化ケイ素、脱水剤、アルカリ金属化合物等を反応器に投入しておき、反応容器を反応温度まで加熱した後、アルコール、二酸化炭素、金属化合物等を気体又は液体として、それぞれ連続的に投入する方法が挙げられる。なお、アルコール、二酸化炭素、金属化合物等を投入するためにキャリアーガスを用いてもよい。キャリアーガスとしては、窒素ガス、アルゴンガス等の不活性ガスや二酸化炭素ガス自体をキャリアーガスとして用いることもできる。なお、キャリアーガスや二酸化炭素等の供給速度等は、反応器の大きさや反応条件等に応じて適宜選択することができる。
 反応温度は、通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上であり、通常500℃以下、好ましくは400℃以下、より好ましくは300℃以下である。
 反応圧力は、通常0.1MPa以上、好ましくは1.0MPa以上、より好ましくは3.0MPa以上であり、通常60MPa以下、好ましくは30MPa以下、より好ましくは20MPa以下である。なお、二酸化炭素の分圧は、通常0MPa以上、好ましくは0.1MPa以上、より好ましくは0.2MPa以上であり、通常50MPa以下、好ましくは20MPa以下、より好ましくは10MPa以下である。
 反応時間は、通常1時間以上、好ましくは5時間以上、より好ましくは10時間以上であり、通常168時間以下、好ましくは120時間以下、より好ましくは100時間以下である。
 上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
 磁気撹拌子を入れた20mL容積のSUS製オートクレーブ(日東高圧社製)に、二酸化ケイ素(富士シリシア化学 CARiACT Q-10)0.18g、メタノール3.0g、有機脱水剤としてアセトンジメチルアセタール(2,2-ジメトキシプロパン)5.0g、水酸化カリウム0.02gを加え、25℃の温度下でボンベから二酸化炭素を、圧力計(スウェージロックFST社 PGI-50M-MG10)が示す圧力でオートクレーブ内が2MPaになるよう充填して10分間撹拌しながら保持し、密封した。その後、オートクレーブ内を1200rpmに攪拌しつつ242℃まで加熱し、24時間反応させた。冷却後、残存する二酸化炭素を放出し、反応混合物をガスクロマトグラフィー(島津製作所 GC-2014ATF/SPL)により分析した。二酸化ケイ素基準のテトラメトキシシランの収率は47%であった。結果を表1-1に示す。
<実施例2>
 実施例1の反応条件に対し、反応時間を96時間とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は88%であった。結果を表1-1に示す。
<実施例3>
 実施例1の反応条件に対し、二酸化炭素圧力を0.8MPaとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は27%であった。結果を表1-1に示す。
<実施例4>
 実施例1の反応条件に対し、二酸化炭素圧力を1.2MPaとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は40%であった。結果を表1-1に示す。
<実施例5>
 実施例1の反応条件に対し、二酸化炭素圧力を0.4MPaとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は7%であった。結果を表1-1に示す。
<実施例6>
 実施例1の反応条件に対し、二酸化炭素圧力を3.0MPaとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は46%であった。結果を表1-1に示す。
<実施例7>
 実施例1の反応条件に対し、二酸化炭素圧力を4.8MPaとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は30%であった。結果を表1-1に示す。
<実施例8>
 実施例1の反応条件に対し、水酸化カリウムの代わりに水酸化ナトリウム(0.013g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は32%であった。結果を表1-1に示す。
<実施例9>
 実施例1の反応条件に対し、水酸化カリウムの代わりに水酸化セシウム(0.045g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は52%であった。結果を表1-1に示す。
<実施例10>
 実施例1の反応条件に対し、水酸化カリウムの代わりに水酸化リチウム(0.012g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は8%であった。結果を表1-1に示す。
<実施例11>
 実施例1の反応条件に対し、水酸化カリウムの代わりに炭酸リチウム(0.022g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は10%であった。結果を表1-1に示す。
<実施例12>
 実施例2の反応条件に対し、水酸化カリウムの代わりに炭酸ナトリウム(0.029g)とした以外は、実施例2と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は30%であった。結果を表1-1に示す。
<実施例13>
 実施例1の反応条件に対し、水酸化カリウムの代わりに炭酸カリウム(0.036g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は56%であった。結果を表1-1に示す。
<実施例14>
 実施例1の反応条件に対し、水酸化カリウムの代わりに炭酸セシウム(0.069g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は60%であった。結果を表1-1に示す。
<実施例15>
 実施例1の反応条件に対し、水酸化カリウムの代わりにフッ化ナトリウム(0.013g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は17%であった。結果を表1-1に示す。
<実施例16>
 実施例1の反応条件に対し、水酸化カリウムの代わりにフッ化カリウム(0.018g)とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は50%であった。結果を表1-2に示す。
<実施例17>
 実施例1の反応条件に対し、水酸化カリウムの代わりにフッ化セシウム(0.04g)とした以外は、実施例1と同様の操作により、テトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は53%であった。結果を表1-2に示す。
<実施例18>
 実施例3の反応条件に対し、さらにテトラメトキシチタン1.0mol%(アルコール1molに対して)を加えた以外は、実施例3と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は51%であった。結果を表1-2に示す。
<実施例19>
 実施例3の反応条件に対し、さらにテトラメトキシチタン1.5mol%(アルコール1molに対して)を加えた以外は、実施例3と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は43%であった。結果を表1-2に示す。
<実施例20>
 実施例3の反応条件に対し、さらにテトラメトキシチタン0.1mol%(アルコール1molに対して)を加えた以外は、実施例3と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は33%であった。結果を表1-2に示す。
<実施例21>
 実施例3の反応条件に対し、さらにテトラメトキシチタン0.01mol%(アルコール1molに対して)を加えた以外は、実施例3と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は37%であった。結果を表1-2に示す。
<実施例22>
 実施例5の反応条件に対し、さらにテトラメトキシチタン0.1mol%(アルコール1molに対して)を加えた以外は、実施例5と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は18%であった。結果を表1-2に示す。
<実施例23>
 実施例1の反応条件に対し、さらにテトラメトキシチタン0.1mol%(アルコール1molに対して)を加えた以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は48%であった。結果を表1-2に示す。
<実施例24>
 実施例1の反応条件に対し、さらにテトラエトキシジルコニウム0.1mol%(アルコール1molに対して)を加えた以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は23%であった。結果を表1-2に示す。
<実施例25>
 実施例1の反応条件に対し、さらにテトラ-t-ブトキシスズ0.1mol%(アルコール1molに対して)を加えた以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は29%であった。結果を表1-2に示す。
<実施例26>
 実施例1の反応条件に対し、さらにペンタエトキシニオブ0.1mol%(アルコール1molに対して)を加えた以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は66%であった。結果を表1-2に示す。
<実施例27>
 実施例3の反応条件に対し、さらにジ-n-ブチルジメトキシスズ0.1mol%(アルコール1molに対して)を加えた以外は、実施例3と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は6%であった。結果を表1-2に示す。
<実施例28>
 実施例1の反応条件に対し、反応温度を200℃とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は17%であった。結果を表1-2に示す。
<実施例29>
 実施例1の反応条件に対し、反応温度を180℃とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は6%であった。結果を表1-2に示す。
<実施例30>
 実施例1の反応条件に対し、用いる二酸化ケイ素をアエロジル200(日本アエロジル社製)0.18gとした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は48%であった。結果を表1-2に示す。
<比較例1>
 実施例1の反応条件に対し、水酸化カリウム及び2,2-ジメトキシプロパンを加えなかった以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は1%未満であった。結果を表1-3に示す。
<比較例2>
 実施例1の反応条件に対し、二酸化炭素を導入せず、2,2-ジメトキシプロパンを加えなかった以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は1%未満であった。結果を表1-3に示す。
<比較例3>
 実施例1の反応条件に対し、2,2-ジメトキシプロパンを加えなかった以外は、実施例1と同様の操作により、テトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は3%であった。結果を表1-3に示す。
<比較例4>
 実施例1の反応条件に対し、二酸化炭素の導入を行わなかった以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は3%であった。結果を表1-3に示す。
<比較例5>
 実施例20の反応条件に対し、二酸化炭素を導入せず、2,2-ジメトキシプロパンを加えなかった以外は、実施例20と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は1%未満であった。結果を表1-3に示す。
<比較例6>
 実施例20の反応条件に対し、二酸化炭素の導入を行わなかった以外は、実施例20と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は3%であった。結果を表1-3に示す。
<比較例7>
 実施例23の反応条件に対し、2,2-ジメトキシプロパンを加えなかった以外は、実施例23と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は3%であった。結果を表1-3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の製造方法によれば、各種シラン化合物、有機シリコーンポリマー、各種シリル化剤、コロイダルシリカ、セラミックス等を製造するための原料として用いられるテトラアルコキシシランを高効率に製造することができる。

Claims (8)

  1.  アルコールと酸化ケイ素を用いたテトラアルコキシシランの製造方法であって、アルコールを脱水剤の存在下及び/又は脱水手段を備えた反応器中で二酸化炭素と反応させる第一工程、並びに前記第一工程で得られた反応混合物を酸化ケイ素と反応させる第二工程を含むことを特徴とする、テトラアルコキシシランの製造方法。
  2.  前記第一工程が、金属アルコキシド、有機金属酸化物、及び無機金属酸化物からなる群より選択される少なくとも1種の金属化合物の存在下で行われる、請求項1に記載のテトラアルコキシシランの製造方法。
  3.  前記金属化合物の金属元素が、チタン、スズ、又はジルコニウムである請求項2に記載のテトラアルコキシシランの製造方法。
  4.  前記脱水剤が、有機脱水剤及び/又は無機脱水剤である、請求項1~3の何れか1項に記載のテトラアルコキシシランの製造方法。
  5.  前記有機脱水剤が、下記一般式(1)で表されるアセタールである、請求項4に記載のテトラアルコキシシランの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R及びRはそれぞれ独立して水素原子又は炭素数1~15の炭化水素基を、Rは炭素数1~15の炭化水素基を表す。但し、R及びRの両方が水素原子である場合を除く。)
  6.  前記第二工程が、アルカリ金属化合物及び/又はアルカリ土類金属化合物の存在下で行われる、請求項1~5の何れか1項に記載のテトラアルコキシシランの製造方法。
  7.  前記アルカリ金属化合物が、アルカリ金属水酸化物、アルカリ金属ハロゲン化物、アルカリ金属炭酸塩、及びアルカリ金属炭酸水素塩からなる群より選択される少なくとも1種である、請求項6に記載のテトラアルコキシシランの製造方法。
  8.  アルコールと酸化ケイ素と二酸化炭素が1つの反応系に存在することによって、前記第一工程及び前記第二工程が1つの反応系で進行するものである、請求項1~7の何れか1項に記載のテトラアルコキシシランの製造方法。
PCT/JP2015/063017 2014-05-09 2015-04-30 テトラアルコキシシランの製造方法 WO2015170666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016517892A JP6238385B2 (ja) 2014-05-09 2015-04-30 テトラアルコキシシランの製造方法
CN201580024399.XA CN106459100B (zh) 2014-05-09 2015-04-30 四烷氧基硅烷的制造方法
EP15789345.4A EP3141553B1 (en) 2014-05-09 2015-04-30 Method for producing tetraalkoxysilane
US15/309,900 US10000514B2 (en) 2014-05-09 2015-04-30 Method for producing tetraalkoxysilane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097748 2014-05-09
JP2014097748 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170666A1 true WO2015170666A1 (ja) 2015-11-12

Family

ID=54392517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063017 WO2015170666A1 (ja) 2014-05-09 2015-04-30 テトラアルコキシシランの製造方法

Country Status (5)

Country Link
US (1) US10000514B2 (ja)
EP (1) EP3141553B1 (ja)
JP (1) JP6238385B2 (ja)
CN (1) CN106459100B (ja)
WO (1) WO2015170666A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131600A1 (ja) * 2017-12-27 2019-07-04 国立研究開発法人産業技術総合研究所 酸化カルシウムを用いるテトラアルコキシシランの製造方法
WO2019131672A1 (ja) * 2017-12-27 2019-07-04 国立研究開発法人産業技術総合研究所 テトラアルコキシシランの製造方法
JP2019196335A (ja) * 2018-05-10 2019-11-14 国立研究開発法人産業技術総合研究所 有機珪素化合物の製造方法
TWI696627B (zh) * 2016-01-26 2020-06-21 德商贏創運營有限公司 含四(2-乙基己氧基)矽烷的組成物之製法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698701C1 (ru) * 2019-03-29 2019-08-29 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ получения тетраалкилортосиликатов из кремнезёма
KR102060081B1 (ko) 2019-04-29 2019-12-30 한국과학기술연구원 테트라알콕시실란의 연속 제조방법
CN115518629A (zh) * 2022-09-27 2022-12-27 中触媒新材料股份有限公司 一种合成四烷氧基硅烷的催化剂及其制备和使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338393A (ja) * 1991-05-16 1992-11-25 Nippon Shokubai Co Ltd アルコキシシランの製造方法
JP2001114786A (ja) * 1999-08-20 2001-04-24 General Electric Co <Ge> テトラオルガノオキシシランの製造方法
JP2006083065A (ja) * 2004-09-14 2006-03-30 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2006188443A (ja) * 2005-01-04 2006-07-20 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2008024593A (ja) * 2005-04-12 2008-02-07 National Institute Of Advanced Industrial & Technology アルコールと二酸化炭素からの炭酸エステルの製造方法
JP2009242306A (ja) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2014051455A (ja) * 2012-09-07 2014-03-20 Sekisui Chem Co Ltd テトラアルコキシシランの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473260A (en) 1946-06-26 1949-06-14 Gen Electric Preparation of tetramethyl silicate
US2881198A (en) 1955-05-17 1959-04-07 Union Carbide Corp Preparation of alkyl orthosilicates by reacting silicon dioxide with an alcohol
FR2332993A1 (fr) * 1975-11-26 1977-06-24 Rhone Poulenc Ind Preparation du silicate de methyle
JPS62114991A (ja) 1985-11-15 1987-05-26 Tonen Sekiyukagaku Kk アルコキシシランの製造方法
US4730074A (en) 1986-12-31 1988-03-08 Union Carbide Corporation Vapor phase alcoholysis of aminosilanes and carbamatosilanes
JP2000178283A (ja) 1998-12-17 2000-06-27 Mitsui Chemicals Inc アルコキシシランの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338393A (ja) * 1991-05-16 1992-11-25 Nippon Shokubai Co Ltd アルコキシシランの製造方法
JP2001114786A (ja) * 1999-08-20 2001-04-24 General Electric Co <Ge> テトラオルガノオキシシランの製造方法
JP2006083065A (ja) * 2004-09-14 2006-03-30 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2006188443A (ja) * 2005-01-04 2006-07-20 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2008024593A (ja) * 2005-04-12 2008-02-07 National Institute Of Advanced Industrial & Technology アルコールと二酸化炭素からの炭酸エステルの製造方法
JP2009242306A (ja) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology 炭酸エステルの製造方法
JP2014051455A (ja) * 2012-09-07 2014-03-20 Sekisui Chem Co Ltd テトラアルコキシシランの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696627B (zh) * 2016-01-26 2020-06-21 德商贏創運營有限公司 含四(2-乙基己氧基)矽烷的組成物之製法
WO2019131600A1 (ja) * 2017-12-27 2019-07-04 国立研究開発法人産業技術総合研究所 酸化カルシウムを用いるテトラアルコキシシランの製造方法
WO2019131672A1 (ja) * 2017-12-27 2019-07-04 国立研究開発法人産業技術総合研究所 テトラアルコキシシランの製造方法
JP2019119736A (ja) * 2017-12-27 2019-07-22 国立研究開発法人産業技術総合研究所 テトラアルコキシシランの製造方法
JPWO2019131600A1 (ja) * 2017-12-27 2020-12-24 国立研究開発法人産業技術総合研究所 酸化カルシウムを用いるテトラアルコキシシランの製造方法
US11028106B2 (en) 2017-12-27 2021-06-08 National Institute Of Advanced Industrial Science And Technology Method for producing tetraalkoxysilane
JP7197829B2 (ja) 2017-12-27 2022-12-28 国立研究開発法人産業技術総合研究所 テトラアルコキシシランの製造方法
JP2019196335A (ja) * 2018-05-10 2019-11-14 国立研究開発法人産業技術総合研究所 有機珪素化合物の製造方法
JP7133801B2 (ja) 2018-05-10 2022-09-09 国立研究開発法人産業技術総合研究所 有機珪素化合物の製造方法

Also Published As

Publication number Publication date
US10000514B2 (en) 2018-06-19
EP3141553A1 (en) 2017-03-15
JPWO2015170666A1 (ja) 2017-04-20
CN106459100A (zh) 2017-02-22
JP6238385B2 (ja) 2017-11-29
EP3141553A4 (en) 2017-12-27
EP3141553B1 (en) 2019-05-22
US20170267701A1 (en) 2017-09-21
CN106459100B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6238385B2 (ja) テトラアルコキシシランの製造方法
JP6161719B2 (ja) 高級シランの製造触媒および高級シランの製造方法
JP6238384B2 (ja) テトラアルコキシシランの製造方法
CN101654436B (zh) 制备ε-己内酰胺的方法和制备五硅环型沸石的方法
JP6693095B2 (ja) Aei型ゼオライト、その製造方法、及びそれを用いた低級オレフィンの製造方法
TW201509930A (zh) 環狀碳酸酯之連續製造方法
TWI688568B (zh) 四烷氧基矽烷的製造方法
JP2016098149A (ja) Aei型ゼオライトの製造方法
JP6624430B2 (ja) テトラメトキシシランの製造方法
JP6934683B2 (ja) 酸化カルシウムを用いるテトラアルコキシシランの製造方法
JP7012382B2 (ja) 助溶媒によるテトラアルコキシシランの製造方法
JP2003252879A (ja) アルコキシシランの製造方法
JP2021127264A (ja) SiO2含有物硬化体の製造方法
JP2001019419A (ja) モノシラン及びテトラアルコキシシランの製造方法
JP2001019418A (ja) モノシラン及びテトラアルコキシシランの製造方法
JPS60251114A (ja) 水素化ケイ素の製造方法
JP6341040B2 (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトンの製造方法
JP2001131187A (ja) モノシランの精製方法
WO2008125016A1 (fr) Procédé de purification du hbr présent dans des hydrocarbures
JP4729749B2 (ja) 炭酸エステルの製造方法
JPS6045629B2 (ja) マロン酸ジアルキルエステルの製造法
JPH0253739A (ja) 第三級オレフィンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15309900

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015789345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015789345

Country of ref document: EP