WO2015155812A1 - ミラー駆動装置、ビーム照射装置およびレーザレーダ - Google Patents
ミラー駆動装置、ビーム照射装置およびレーザレーダ Download PDFInfo
- Publication number
- WO2015155812A1 WO2015155812A1 PCT/JP2014/005698 JP2014005698W WO2015155812A1 WO 2015155812 A1 WO2015155812 A1 WO 2015155812A1 JP 2014005698 W JP2014005698 W JP 2014005698W WO 2015155812 A1 WO2015155812 A1 WO 2015155812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- light source
- light
- laser
- shaft
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/1821—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
Definitions
- the present invention relates to a mirror driving device for scanning laser light in a target region, a beam irradiation device equipped with the mirror driving device, and the state of the target region based on reflected light when the target region is irradiated with laser light.
- the present invention relates to a laser radar to be detected.
- laser radar has been used for security applications such as intrusion detection into buildings.
- radar radar scans a laser beam within a target area, and detects the presence or absence of an object at each scan position from the presence or absence of reflected light at each scan position. Furthermore, the distance to the object at each scan position is detected based on the required time from the laser beam irradiation timing at each scan position to the reflected light reception timing.
- an actuator for scanning laser light for example, a configuration in which a mirror is tilted and mounted on a rotating body rotated by a motor can be used (for example, Patent Document 1).
- the rotating body may be provided with a mechanism for changing the tilt of the mirror and a drive unit that drives the mechanism.
- an object of the present invention is to provide a mirror driving device capable of scanning a laser beam over a wide range, a beam irradiation device on which the mirror driving device is mounted, and a laser radar.
- the first aspect of the present invention relates to a mirror driving device.
- a mirror driving device according to a first aspect is provided with a rotating shaft, a first driving source that rotates the rotating shaft, and a shaft that is pivoted on the rotating shaft via a support shaft that is rotatable in a direction parallel to the rotating shaft.
- a mirror holder supported, a mirror mounted on the mirror holder, a rotating body on which the mirror holder is placed at a position away from the spindle, and the rotation of the mirror holder provided on the rotating body
- a guide portion that guides a contact portion with a body so as to be movable toward and away from the rotation axis; and a direction parallel to the rotation axis in a state where the rotation body is rotatable together with the rotation shaft.
- a second drive source for moving the rotating body via the moving mechanism.
- a beam irradiation apparatus includes a mirror driving apparatus according to the first aspect, a light source that emits laser light, an emission optical system that causes the laser light emitted from the light source to enter the mirror, Is provided.
- a third aspect of the present invention relates to a laser radar.
- a laser radar according to a third aspect includes the beam irradiation device according to the second aspect, and a light receiving optical system that guides the laser light reflected from a target area and incident on the mirror to a photodetector,
- the light receiving optical system includes a reflective portion having a gap through which laser light emitted from the light source and directed toward the mirror passes, and having a reflective surface that reflects the laser light reflected from the target region and incident on the mirror.
- a mirror driving device capable of scanning a laser beam over a wide range, a beam irradiation device on which the mirror driving device is mounted, and a laser radar.
- FIG. 1 is an exploded perspective view of the mirror actuator 1.
- the mirror actuator 1 includes a pan driving unit 10, an outer unit 20, an inner unit 30, a mirror unit 40, and a tilt driving unit 50.
- FIGS. 2A and 2B are perspective views showing the configuration of the pan drive unit 10 of the mirror actuator 1.
- FIG. 2A is perspective views showing the configuration of the pan drive unit 10 of the mirror actuator 1.
- the pan driving unit 10 includes a motor 11, a rotating shaft 12, a pin 13, a support shaft 14, a motor circuit board 15, and a motor frame 16.
- the motor 11 is electrically connected to the motor circuit board 15 and rotates the rotary shaft 12 in accordance with an electric signal from the circuit unit.
- the motor 11 and the motor circuit board 15 are supported by a motor frame 16.
- the motor 11 is, for example, a brushless DC motor.
- the rotating shaft 12 has a cylindrical shape. Step portions 12 a are provided on the Z-axis negative side and the Z-axis positive side above the rotation shaft 12, respectively.
- a shaft hole 12b penetrating in the Z-axis direction is formed in the stepped portion 12a.
- the diameter of the shaft hole 12 b is slightly smaller than the diameter of the support shaft 14.
- a pin hole 12c for fitting the pin 13 is formed on the X axis positive side of the rotary shaft 12.
- the diameter of the pin hole 12c is slightly smaller than that of the pin 13, and the depth of the pin hole 12c (the length in the X-axis direction) is slightly smaller than the length of the pin 13 in the X-axis direction.
- the pin 13 is fitted into the pin hole 12c. In this state, the tip 13 a of the pin 13 is positioned on the X axis positive side with respect to the rotating shaft 12.
- FIG. 3A is an exploded perspective view showing the configuration of the outer unit 20 of the mirror actuator 1.
- FIG. 3B is a perspective view showing the configuration of the outer unit 20.
- the outer unit 20 includes an outer frame 21, a guide shaft 22, a bearing 23, and a bearing plate 24.
- the outer frame 21 includes a holding portion 21a that rotatably holds the inner unit 30 (see FIG. 1) and the mirror unit 40 (see FIG. 1), and the inner unit 30 (see FIG. 1) and the mirror unit 40 (see FIG. 1). ) In the vertical direction.
- a circular opening 21c that penetrates in the Y-axis direction is formed in the holding portion 21a.
- a step portion 21d is formed at a predetermined position in the Y-axis direction on the upper inner surface of the opening 21c. Due to the stepped portion 21d, the opening 21c has a larger diameter on the Y axis positive side than on the Y axis negative side.
- screw holes 21e and 21f are formed in the holding portion 21a.
- the guide part 21b has a substantially rectangular parallelepiped shape, and the width of the guide part 21b in the Z-axis direction is larger than the width of the holding part 21a in the Z-axis direction.
- a circular guide hole 21g penetrating in the Y-axis direction is formed in the guide portion 21b.
- the diameter of the guide hole 21g is slightly larger than the diameter of the guide shaft 22.
- the guide shaft 22 has a cylindrical shape.
- the bearing 23 has an outer frame 23a and an inner frame 23b.
- the bearing 23 is a ball bearing in which a large number of balls are interposed between the outer frame 23a and the inner frame 23b.
- the inner frame 23b is rotatable around an axis parallel to the Y-axis direction with respect to the outer frame 23a.
- the outer frame 23a has a large diameter portion 23c and a small diameter portion 23d.
- the diameter of the large diameter portion 23c is slightly smaller than the diameter on the Y axis positive side of the opening 21c of the outer frame 21, and larger than the diameter on the Y axis negative side of the opening 21c.
- the diameter of the small diameter portion 23d is slightly smaller than the diameter on the Y axis negative side of the opening 21c of the outer frame 21.
- the inner frame 23b has a cylindrical shape in which a circular opening 23e is formed.
- the bearing plate 24 includes a plate portion 24a having a shape along the shape of the holding portion 21a of the outer frame 21 in plan view.
- a circular opening 24b is formed in the center of the plate portion 24a.
- Screw holes 24c and 24d are formed in the plate portion 24a.
- the bearing 23 When assembling the outer unit 20, first, the bearing 23 is inserted into the opening 21 c of the outer frame 21. At this time, the outer frame 23 a is pushed into the opening 21 c of the outer frame 21 until the Y-axis negative side surface of the large-diameter portion 23 c of the outer frame 23 a contacts the stepped portion 21 d of the outer frame 21.
- the screw holes 24c and 24d of the bearing plate 24 are aligned with the screw holes 21e and 21f of the outer frame 21, respectively.
- the screws 26 and 27 are screwed into the screw holes 21e and 21f through the screw holes 24c and 24d.
- the bearing plate 24 is fixed to the outer frame 21.
- the guide shaft 22 is passed through the guide hole 21g, and the outer unit 20 shown in FIG. 3B is assembled.
- FIG. 4A is an exploded perspective view showing the configuration of the inner unit 30 of the mirror actuator 1.
- FIG. 4B is a perspective view showing the configuration of the inner frame 31 as viewed from below.
- FIG. 4C is an exploded perspective view showing the configuration of the mirror unit 40 of the mirror actuator 1.
- FIG. 4D is a perspective view showing the configuration of the mirror unit 40.
- the inner unit 30 includes an inner frame 31 and a pressing spring 32.
- the inner frame 31 includes an upper surface portion 31a and a cylindrical portion 31b. As shown in FIG. 4B, a collar portion 31c is formed on the positive side of the Y axis of the cylindrical portion 31b.
- a step portion 31d that is one step lower than the surrounding portion is formed in the center of the upper surface portion 31a, and the step portion 31d that is one step lower than the surrounding portion is formed on the negative side of the upper surface portion 31a.
- Two convex portions 31e are formed. The upper surface of the convex portion 31e is flat.
- a circular opening 31f penetrating in the Y-axis direction is formed in the step portion 31d, and a rectangular recess 31g is formed on the positive side of the X-axis of the opening 31f so as to extend in the Y-axis direction.
- the diameter of the opening 31f is slightly larger than the rotating shaft 12 (see FIG. 2B) of the motor 11, and the outer diameter of the cylindrical portion 31b is the opening 23e of the inner frame 23b of the outer unit 20 (see FIG. 3A). Is slightly larger than Further, the diameter of the flange portion 31 c is slightly larger than the outer diameter of the inner frame 23 b and smaller than the opening 24 b of the bearing plate 24. Screw holes 31h and 31i are formed in the upper surface portion 31a.
- the holding spring 32 is made of an elastic member.
- the holding spring 32 has a substantially U-shape when viewed from above.
- the holding spring 32 includes a flat portion 32a and two flange portions 32b. Screw holes 32c and 32d are formed in the flat portion 32a.
- the mirror unit 40 includes a mirror holder 41, a roller 42, a support shaft 43, and a mirror 44.
- the mirror holder 41 includes a mirror mounting portion 41a that holds the mirror 44 in an inclined state, a roller holding portion 41b that holds the roller 42, and a rotating shaft holding portion 41c that holds the rotating shaft 12 (see FIG. 2B). Consists of.
- the lower end portion of the mirror mounting portion 41a is a stepped portion.
- the roller holding portion 41b includes two convex portions with rounded tip portions, and shaft holes 41d penetrating in the Z-axis direction are formed in the two convex portions, respectively.
- the interval between the two convex portions of the roller holding portion 41b is slightly wider than the thickness of the roller 42 in the Z-axis direction.
- the rotating shaft holding portion 41c is composed of two convex portions with rounded tips, and the two convex portions are respectively formed with shaft holes 41e penetrating in the Z-axis direction.
- the two convex parts of the rotation shaft holding part 41c are inclined at a predetermined angle with respect to the mounting surface of the mirror 44 of the mirror mounting part 41a.
- the mirror 44 is bonded and fixed to the mirror mounting portion 41a. Then, the roller 42 is inserted between the two convex portions of the roller holding portion 41 b, and the support shaft 43 is passed through the two shaft holes 41 d and the roller 42. Thereby, the mirror unit 40 shown in FIG.4 (d) is assembled.
- FIGS. 5A and 5B are perspective views showing the configuration of the tilt driving unit 50.
- FIG. 5A is a perspective view showing the configuration of the tilt driving unit 50.
- the tilt drive unit 50 includes a motor 51, a lead screw 52, and a gear rack 53.
- the motor 51 is a stepping motor.
- a chassis 51 a is attached to the motor 51.
- One end of a lead screw 52 is attached to the rotating shaft of the motor 51, and the other end of the lead screw 52 is attached to one end of the chassis 51a via a bearing.
- the gear rack 53 includes a flange portion 53a and a guide holding portion 53b.
- a gear portion 53c is formed on the Z-axis negative side surface of the flange portion 53a.
- a spring 53d is disposed between the flange portion 53a and the guide holding portion 53b.
- the gear rack 53 is formed of a flexible material and can be slightly deformed in the Z-axis direction.
- the guide holding part 53b has wall parts 53e and 53f. The interval between the wall portions 53e and 53f is slightly wider than the width of the Y axis of the guide portion 21b shown in FIG.
- the cylindrical portion 31b of the inner frame 31 shown in FIG. 4B is press-fitted into the opening 23e of the outer unit 20 shown in FIG.
- the pin 13 shown in FIG. 2B fits into the recess 31g of the cylindrical portion 31b of the inner frame 31 shown in FIG. 4A, so that the outer unit 20 and the inner unit 30 are shown in FIG. It passes through the rotating shaft 12 shown.
- the structure shown to Fig.6 (a) is assembled.
- FIG. 6A is a perspective view showing a structure in which the outer unit 20 and the inner frame 31 are assembled to the motor 11.
- FIG. 6B is a cross-sectional view of the structure taken along the plane parallel to the XY plane at the center position in the Z-axis direction.
- the tip 13a of the pin 13 is fitted in the recess 31g of the inner frame 31. Therefore, the inner frame 31 can rotate integrally with the rotating shaft 12.
- the outer frame 21 and the inner frame 31 are movable in the Y-axis direction with the pin 13 guided by the recess 31g.
- the rotating shaft 12 of the rotating shaft 12 is passed through the rotating shaft 12 of the structure shown in FIG.
- the shaft hole 12b and the two shaft holes 41e of the rotating shaft holding part 41c are aligned.
- the support shaft 14 shown in FIG. 2B is passed through the two shaft holes 41 e of the rotating shaft holding portion 41 c and the shaft hole 12 b of the rotating shaft 12.
- FIGS. 7A and 7B are perspective views showing a structure in which the mirror unit 40 is attached to a structure in which the outer unit 20 and the inner frame 31 are assembled to the motor 11.
- the roller 42 is positioned between the two convex portions 31 e of the inner frame 31, and the support shaft 43 is positioned on the two convex portions 31 e of the inner frame 31. Yes. In addition, there is a predetermined gap between the lower end of the rotating shaft holding portion 41 c and the step portion 31 d of the inner frame 31. In this state, the mirror holder 41 is supported by the support shaft 14 and supported by the roller 42. Therefore, the roller 42 can move in the front-rear direction (X-axis direction).
- FIG. 8 is a schematic diagram showing a configuration of a laser radar 500 on which the mirror actuator 1 is mounted. In FIG. 8, only main optical members are shown, and the optical member mounting structure, circuit board, and the like are not shown.
- the guide portion 21b is fitted into the guide holding portion 53b of the gear rack 53 shown in FIG.
- the chassis 51a of the motor 51 and the guide shaft 22 are each fixed to the base 500a.
- the gear portion 53c of the gear rack 53 is applied to the lead screw 52 in a state where the flange portion 53a of the gear rack 53 is slightly deformed to the Z axis positive side.
- the gear portion 53c is engaged with the lead screw 52 while being biased by the spring 53d. Thereby, assembling of the mirror actuator 1 is completed as shown in FIG.
- FIG. 9 is a side view showing the mirror actuator 1 when the outer frame 21 is moved downward.
- FIG. 10 is a side view showing the mirror actuator 1 when the outer frame 21 is moved upward.
- the position of the mirror holder 41 supported by the support shaft 14 in the Y-axis direction does not change. For this reason, a clockwise force about the support shaft 14 is applied to the mirror holder 41 as viewed in the positive direction of the Z axis. Thereby, the mirror holder 41 is rotated clockwise around the support shaft 14 as viewed in the positive direction of the Z axis, and the roller holding portion 41b is moved to the X axis negative side by the roller 42 and the support shaft 43. . Therefore, as shown in FIG. 9, the tilt angle of the mirror 44 is reduced.
- the position of the mirror holder 41 supported by the support shaft 14 in the Y-axis direction does not change. For this reason, a counterclockwise force about the support shaft 14 is applied to the mirror holder 41 as viewed in the positive direction of the Z axis. Thereby, the mirror holder 41 is rotated counterclockwise around the support shaft 14 as viewed in the positive Z-axis direction, and the roller holding portion 41b is moved to the X-axis positive side by the roller 42 and the support shaft 43. . Therefore, as shown in FIG. 9, the tilt angle of the mirror 44 is increased.
- the mirror 44 held by the mirror holder 41 is rotated in the tilt direction. Since the support shaft 43 is pressed downward by the pressing spring 32, the backlash of the mirror 44 during rotation in the tilt direction is suppressed.
- the motor 11 that rotates the mirror 44 in the Pan direction and the motor 51 that rotates the mirror 44 in the Tilt direction, one rotation affects the other rotation. There is nothing to do. Therefore, the motor 11 and the motor 51 can be controlled independently. Further, since the motor 51 is disposed on the base side, it is not necessary to pass a signal line to the inner frame 31 that is a rotating portion. For this reason, the mirror 44 can be rotated in a wide range in the Pan direction. In the present embodiment, the mirror 44 is rotated 360 degrees in the Pan direction. The mirror 44 is rotated at an angle of several tens of degrees or more with respect to the tilt direction.
- the laser radar 500 includes an emission optical system 100, a light receiving optical system 200, a PSD 310, and the mirror actuator 1 described above.
- the emission optical system 100 includes a light source 110 and a beam shaping lens 120.
- the light source 110 emits laser light having a wavelength of about 880 nm to 940 nm.
- the beam shaping lens 120 converges the emitted laser light so that the emitted laser light has a predetermined shape in the target region.
- the light source 110 and the beam shaping lens 120 are arranged so as to be aligned in the Y-axis direction.
- the outgoing optical axis of the light source 110 coincides with the optical axis of the beam shaping lens 120.
- the light source 110 is arranged so that the outgoing optical axis passes through the center of rotation of the mirror 44.
- the light source 110 is arranged so that the outgoing optical axis is parallel to the rotation axis 12 (see FIG. 2A).
- the mirror actuator 1 has the mirror 44 on which both the laser beam transmitted through the beam shaping lens 120 and the reflected light from the target region are incident, and the mirror 44 is rotated around two axes.
- the mechanism is provided.
- the mirror 44 rotates, the laser beam is scanned in the target area.
- the laser beam is scanned along a plurality of scanning lines parallel to the XZ plane in the target area.
- the motor 11 is driven and the mirror 44 is rotated in the Pan direction.
- the motor 51 is driven and the mirror 44 is rotated in the tilt direction.
- the light receiving optical system 200 includes bending mirrors 210 and 220, a light receiving lens 230, and a photodetector 240.
- the bending mirrors 210 and 220 reflect the light reflected from the target area and further reflected by the mirror 44 in a direction toward the photodetector 240.
- Each of the bending mirrors 210 and 220 has a substantially rectangular parallelepiped shape.
- the bending mirrors 210 and 220 are arranged so as to be aligned in the Z-axis direction with a predetermined gap therebetween.
- the folding mirrors 210 and 220 are respectively arranged to be inclined at the same angle as the mirror 44 when the mirror 44 is in the neutral position.
- the “neutral position” means a position where the mirror 44 is inclined 45 degrees in the in-plane direction of the YX plane from a state perpendicular to the X axis.
- the gap between the bending mirrors 210 and 220 has a width through which the laser beam emitted from the light source 110 and converged by the beam shaping lens 120 can pass.
- the light receiving lens 230 condenses the light reflected from the target area.
- the photodetector 240 is composed of an APD (avalanche photodiode) or a PIN photodiode, and outputs an electric signal having a magnitude corresponding to the amount of received light to the circuit board.
- the PSD 310 receives the light reflected by the mirror 44 and outputs a position detection signal corresponding to the light receiving position to the circuit board.
- the laser light emitted from the light source 110 passes through the gap between the bending mirrors 210 and 220 after passing through the beam shaping lens 120.
- the laser light that has passed through the gap between the bending mirrors 210 and 220 is incident on the mirror 44 of the mirror actuator 1.
- the laser light incident on the mirror 44 is reflected by the mirror 44 and projected onto the target area.
- the reflected light from the target area enters the mirror 44 by reversing the optical path of the laser beam toward the target area.
- the reflected light incident on the mirror 44 is reflected by the mirror 44 and enters the bending mirrors 210 and 220.
- the gap between the folding mirrors 210 and 220 is significantly smaller than the mirror surface of the mirror 44, and most of the reflected light from the target area is incident on the folding mirrors 210 and 220. Reflected light incident on the bending mirrors 210 and 220 is reflected by the bending mirrors 210 and 220 and travels in the direction toward the light receiving lens 230 (X-axis positive direction).
- the behavior of the reflected light is the same regardless of the rotation position of the mirror 44. That is, regardless of the rotation position of the mirror 44, the reflected light from the target region travels in the optical path of the laser beam at the time of emission and travels parallel to the optical axis of the beam shaping lens 120, thereby receiving the light receiving lens. 230 is incident.
- the reflected light incident on the light receiving lens 230 is converged on the photodetector 240 by the light receiving lens 230.
- the photodetector 240 outputs an electrical signal having a magnitude corresponding to the amount of received light. Based on the signal from the photodetector 240, the presence / absence of the object in the target region and the distance to the object are measured.
- FIG. 11 is a top view showing the rotation range in the Pan direction of the mirror 44 of the laser radar 500 according to the present embodiment.
- the mirror 44 is rotated so that the laser beam is scanned in a wide scanning range W1 in the horizontal direction.
- Laser light is pulsed at predetermined intervals in the scanning range W1.
- the scan in the scan range W1 is completed and the mirror 44 is rotated to the stop range W2, the emission of the laser light from the light source 110 is stopped.
- a position detection signal pulse signal
- the mirror 44 is rotated to the rotation position detection range W3 in a state where the emission of the laser beam is stopped, the emission (pulse emission) of the laser beam from the light source 110 is resumed.
- the mirror 44 faces the PSD 310.
- the laser light emitted from the light source 110 is incident on the PSD 310 via the beam shaping lens 120 (see FIG. 8) and the mirror 44.
- the PSD 310 outputs a position detection signal corresponding to the light receiving position.
- the mirror 44 while the laser radar 500 is operating, the mirror 44 continues to rotate in the same Pan direction over 360 degrees.
- the output of the PSD 310 is used to find the origin of rotation of the mirror 44 in the Pan direction. That is, the light emission timing of the laser beam irradiated to the position closest to the center position of the PSD 310 in the Z-axis direction among the laser beams pulsed in the rotation position detection range W3 is specified.
- the rotation position of the mirror 44 (rotation position of the motor 11) corresponding to this light emission timing is set as the origin of rotation of the mirror 44 in the Pan direction.
- the rotation position of the mirror 44 and the motor 11 is defined with respect to the origin set in this way.
- the rotation position of the mirror 44 detected by the position detection signal (pulse signal) can be matched with the actual rotation position of the mirror 44.
- the position of the mirror 44 in the tilt direction is also corrected based on the output from the PSD 310.
- the mirror 44 When the mirror 44 is rotated to the stop range W4 in a state where the laser light is emitted, the emission of the laser light from the light source 110 is stopped. Then, when the mirror 44 is rotated to the scanning range W1 in a state where the emission of the laser beam is stopped, the emission (pulse emission) of the laser beam from the light source 110 is resumed. At this time, the mirror 44 is rotated in the tilt direction and is aligned with the scanning position of the next scanning line.
- the laser light is projected onto the target area along a plurality of scanning lines.
- the mirror 44 is controlled to rotate again so that the scanning position of the uppermost scanning line is reached.
- the mirror 44 may be controlled to return to the scanning position of the scanning line one level higher than the lowermost stage.
- the rotation control of the mirror 44 can be changed as appropriate.
- the light source 110 is controlled so that the laser light is emitted only in the scanning range W1 necessary for scanning the target area, the power consumption of the light source 110 can be suppressed.
- FIG. 12 is a graph showing a laser beam emission locus according to the present embodiment.
- the horizontal axis is the rotation angle in the Pan direction of the mirror 44 with respect to the neutral position (0 degree)
- the vertical axis is the laser with respect to the horizontal plane (XZ plane) when the mirror 44 is at each rotation angle in the Pan direction.
- the tilt angle of light On the vertical axis, the angle is 0 degrees when the laser light projection direction is parallel to the horizontal plane.
- the rotation range of the mirror 44 in the Pan direction is set to ⁇ 135 degrees with respect to the neutral position.
- a circle plot shows a case where the rotation angle of the mirror in the tilt direction is the same as the rotation angle at the neutral position, and the square plot shows a horizontal plane of the mirror 44 by approximately 30 degrees from the neutral position.
- the triangle plot shows the case where the mirror 44 is inclined in the direction (Tilt direction) away from the horizontal plane by about 30 degrees from the neutral position.
- the emission trajectory is substantially linear in all scanning lines.
- the light source 110 is arranged so that the outgoing optical axis of the light source 110 passes through the center of rotation of the mirror 44 as shown in FIG.
- the laser light is always incident on the center of rotation of the mirror 44 regardless of the angle at which the mirror 44 is tilted in the horizontal direction. Does not displace in the direction. Therefore, the laser beam can be scanned substantially horizontally by changing the mirror 44 only in the Pan direction without changing the tilt of the mirror 44 in the Tilt direction.
- the drive control of the mirror 44 can be simplified.
- FIG. 13A is a diagram for explaining the influence of stray light on the photodetector 240 by the light source 110 and the bending mirrors 210 and 220 according to the present embodiment.
- FIG. 13B is a diagram illustrating the influence of stray light on the photodetector 240 by the light source 110 and the bending mirror 211 according to the modification.
- the folding mirrors 210 and 220 are arranged in the Z-axis direction with a predetermined gap. Since the laser light emitted from the light source 110 is converged by the beam shaping lens 120, most of the laser light passes through the gap between the bending mirrors 210 and 220.
- the bending mirrors 210 and 220 By arranging the bending mirrors 210 and 220 in this way, the size of the laser radar 500 in the Y-axis direction can be made compact. In this configuration, a slight amount of laser light is reflected and scattered by the side surfaces of the bending mirrors 210 and 220 to become stray light.
- a configuration in which the bending mirror 211 is provided with an opening 211a through which laser light can pass can also be used.
- the stray light which is reflected and scattered by the lower edge of the opening 211a, travels in the direction toward the photodetector 240. Therefore, the stray light may enter the photodetector 240. There is. Since the reflected light from the target area is weak, when the stray light is incident on the photodetector 240 in this way, there is a possibility that the reflected light from the target area cannot be detected properly.
- the folding mirrors 210 and 220 are arranged in the Z-axis direction with a gap as in the present embodiment.
- the area of the mirror surface of the folding mirror 211 that receives the reflected light from the target area can be made larger than that of the folding mirrors 210 and 220 of the present embodiment. Therefore, in order to increase the amount of light received by the photodetector 240 as much as possible, a configuration in which an opening 211a is provided in one folding mirror 211 as shown in FIG. 13B is desirable.
- FIG. 14 is a diagram showing a circuit configuration of the laser radar 500.
- the scan LD drive circuit 701 supplies a drive signal to the light source 110 based on a signal from the DSP 705.
- the PD signal processing circuit 702 amplifies and digitizes a voltage signal corresponding to the amount of light received by the photodetector 240 and supplies the amplified signal to the DSP 705.
- the PSD signal processing circuit 703 outputs a position detection signal obtained based on the output signal from the PSD 310 to the DSP 705.
- the actuator drive circuit 704 drives the mirror actuator 1 based on the signal from the DSP 705. Specifically, a drive signal for scanning the laser beam along a predetermined trajectory in the target area is supplied to the mirror actuator 1.
- the DSP 705 detects the scanning position of the laser beam in the target area based on the position detection signal input from the PSD signal processing circuit 703, and executes drive control of the mirror actuator 1, drive control of the light source 110, and the like. Further, the DSP 705 determines whether an object exists at the laser light irradiation position in the target area based on the voltage signal input from the PD signal processing circuit 702, and at the same time, irradiation of the laser light output from the light source 110. The distance to the object is measured based on the time difference between the timing and the light reception timing of the reflected light from the target area received by the photodetector 240.
- FIG. 15 is a flowchart showing the light emission control processing of the light source 110.
- FIG. 15 is executed by the DSP 705.
- the rotation position of the mirror 44 in the Pan direction and the Tilt direction is detected by the position detection signal (pulse signal) from the motors 11 and 51, and the position of the mirror 44 is shifted by the signal from the PSD 310. It is corrected.
- control processing of the light source 110 according to the rotation angle of the mirror 44 in the Pan direction will be described.
- the mirror 44 when the scan of the target area is started, the mirror 44 is positioned at the scan start position.
- the DSP 705 turns on the light source 110 by pulse emission (S102). Then, the DSP 705 determines whether or not the rotation angle of the mirror 44 is positioned in the stop range W2 shown in FIG. 11 (S103). When the rotation angle of the mirror 44 is not positioned in the stop range W2 (S103: NO), the DSP 705 continues lighting the light source 110.
- the rotation angle of the mirror 44 is positioned in the stop range W2 shown in FIG.
- the DSP 705 turns off the light source 110 (S104).
- the DSP 705 determines whether or not the number of scans is a multiple of the predetermined variable n (S105).
- the variable n is appropriately set according to the required rotation accuracy of the mirror 44. For example, when the variable n is set to 1, the rotation position of the mirror 44 is corrected for each scan. Thereby, the mirror 44 can be accurately rotated. For example, when the variable n is set to 3, the rotational position of the mirror 44 is corrected every three scans. Thereby, the lighting time for the correction of the rotation position can be further reduced. In the present embodiment, the correction of the rotational position of the mirror 44 is performed for each of a plurality of scans.
- the DSP 705 determines whether or not the rotation angle of the mirror 44 is positioned in the rotation position detection range W3 shown in FIG. 11 (S106). When the rotation angle of the mirror 44 is not positioned in the rotation position detection range W3 (S106: NO), the DSP 705 continues turning off the light source 110. When the rotation angle of the mirror 44 is positioned in the rotation position detection range W3 (S106: YES), the DSP 705 turns on the light source 110 by pulse emission (S107). As a result, the laser light emitted from the light source 110 enters the PSD 310.
- the DSP 705 Based on the signal from the PSD 310, the DSP 705 performs the origin search in the Pan direction and the angle correction of the mirror 44 in the Tilt direction as described above. If the number of scans is not a multiple of n (S105: NO), the DSP 705 skips the light source 110 turn-on process in the rotation position detection range W3 and the light source 110 turn-off process in the stop range W4, and the process proceeds to S110.
- the DSP 705 determines whether or not the rotation angle of the mirror 44 is positioned in the stop range W4 (S108). When the rotation angle of the mirror 44 is not positioned in the stop range W4 (S108: NO), the DSP 705 continues lighting the light source 110. When the rotation angle of the mirror 44 is positioned in the stop range W4 (S108: YES), the DSP 705 turns off the light source 110 (S109). Then, the DSP 705 determines whether or not the operation is finished (S110). If the operation has not ended (S110: NO), the DSP 705 returns the process to S101 and performs light emission control of the light source 110 in the next scanning line (S101 to S109). When the operation ends (S110: YES), the DSP 705 ends the control process of the light source 110.
- the outer frame 21 and the inner frame 31 rotated by the motor 11 are not provided with a driving source, and the guide portion 21b is moved along the guide shaft 22 by the motor 51 disposed on the base 500a. Moved up and down. By moving the guide portion 21b in the vertical direction, the inner frame 31 integrally connected to the outer frame 21 is moved in the vertical direction, and the roller 42 and the support shaft 43 are moved in the front-rear direction. Thereby, the mirror 44 is rotated in the tilt direction.
- the driving source is not disposed on the outer frame 21 and the inner frame 31 rotated by the motor 11, it is not necessary to supply power to the outer frame 21 and the inner frame 31 rotated. Therefore, since the rotation of the mirror 44 is not limited by the signal line for supplying power, the mirror 44 can be rotated in a wide range. As a result, the laser beam can be scanned over a wide range.
- the inner frame 31 is slidably supported on the rotating shaft 12. Therefore, the rotating shaft 12 for rotating the outer frame 21 and the inner frame 31 also acts as a sliding shaft. Therefore, the number of parts can be reduced, and the mirror actuator 1 can be configured compactly.
- the PSD 310 is arranged on the X axis positive side of the mirror 44, the laser light emitted from the light source 110 is made incident on the PSD 310 by directing the mirror 44 to the X axis positive side. be able to. Thereby, the rotation position of the mirror 44 can be detected.
- the light source 110 and the mirror 44 are also used as an optical system for detecting the rotational position of the mirror 44, the number of parts can be reduced.
- the light source 110 is arranged so as to be parallel to the rotation axis 12 and the emission optical axis of the light source 110 penetrates the rotation center of the mirror 44. Therefore, as shown in FIG. The trajectory can be approximated to a straight line. Further, by arranging the light source 110 on the upper side of the mirror 44, the laser light reflected by the mirror 44 does not go to the light source 110 side. Therefore, the mirror 44 can be rotated within a range of 360 degrees, and the scanning range of the laser beam can be further widened.
- the size of the laser radar 500 in the Y-axis direction is set. It can be configured compactly.
- the laser light is controlled to be emitted only in the scanning range W1 necessary for scanning the target area, the power consumption applied to the light source 110 can be suppressed.
- the light source since the light source is turned on to detect the rotational position of the mirror 44 every plural scans, the power consumption of the light source 110 can be further suppressed.
- the rotary shaft 12 is also used as a slide shaft for sliding the inner frame 31, but a separate slide shaft is provided. Also good. However, as in the above-described embodiment, it is desirable to allow the rotating shaft 12 to act as a sliding shaft because the number of parts can be reduced.
- the light receiving optical system 200 is provided between the light source 110 and the mirror 44 by the bending mirrors 210 and 220, but for example, on the Y axis positive side of the light source 110. It may be provided.
- the folding mirrors 210 and 220 are omitted, the size of the mirror surface of the mirror 44 needs to be larger than that in the above embodiment in order to increase the amount of reflected light received.
- the optical members are arranged in the Y-axis direction, the entire laser radar 500 apparatus is increased in size. Therefore, in order to make the apparatus compact, it is desirable to arrange the folding mirrors 210 and 220 as in the above embodiment.
- the light receiving optical system 200 includes the bending mirrors 210 and 220, the light receiving lens 230, and the photodetector 240.
- the laser light emitted from the light shielding member and the light source 110 is used.
- a band-pass filter or the like for cutting light in a band other than the wavelength band may be provided.
- a light shielding member or a filter can be used as appropriate in the optical path toward the PSD 310.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
広範囲にレーザ光を走査可能なミラー駆動装置および当該ミラー駆動装置が搭載されるビーム照射装置およびレーザレーダを提供する。ミラーアクチュエータ(1)は、回転軸と、回転軸を回転させるモーター(11)と、回転軸に平行な方向に回動可能に支軸(14)を介して回転軸に軸支されたミラーホルダ(41)と、ミラー(44)と、支軸(14)から離れた位置においてミラーホルダ(41)が載置されたインナーフレーム(31)と、インナーフレーム(31)に設けられ、ローラー保持部を、回転軸に接近および離間する方向に移動可能に案内するローラー(42)と、回転軸とともにインナーフレーム(31)が回転可能な状態でインナーフレーム(31)を回転軸に平行な方向に移動させるアウターユニットと、アウターユニットを介してインナーフレーム(31)を移動させるモーター(51)とを備える。
Description
本発明は、目標領域においてレーザ光を走査させるためのミラー駆動装置、当該ミラー駆動装置を備えたビーム照射装置および目標領域にレーザ光を照射したときの反射光をもとに目標領域の状況を検出するレーザレーダに関する。
近年、建物への侵入検知等のセキュリティ用途として、レーザレーダが用いられている。一般に、レーダレーダは、レーザ光を目標領域内でスキャンさせ、各スキャン位置における反射光の有無から、各スキャン位置における物体の有無を検出する。さらに、各スキャン位置におけるレーザ光の照射タイミングから反射光の受光タイミングまでの所要時間をもとに、各スキャン位置における物体までの距離が検出される。
レーザ光を走査させるためのアクチュエータとして、たとえば、モーターによって回転される回転体にミラーを傾けて装着する構成が用いられ得る(たとえば、特許文献1)。また、この構成では、ミラーの傾きを変化させるための機構とこの機構を駆動する駆動部が回転体に設けられ得る。
しかしながら、回転体に駆動源が配されると、駆動源に電力を供給するための信号線をベース側から回転体へと渡す必要がある。この場合、回転体の回転角を大きく取ると、回転体の回転時に信号線が他の部材等に引っ掛かって破断する惧れがある。このため、レーザ光の走査範囲を大きく広げることができなかった。
かかる課題に鑑み、本発明は、広範囲にレーザ光を走査可能なミラー駆動装置および当該ミラー駆動装置が搭載されるビーム照射装置およびレーザレーダを提供することを目的とする。
本発明の第1の態様はミラー駆動装置に関する。第1の態様に係るミラー駆動装置は、回転軸と、前記回転軸を回転させる第1の駆動源と、前記回転軸に平行な方向に回動可能に支軸を介して前記回転軸に軸支されたミラーホルダと、前記ミラーホルダに装着されたミラーと、前記支軸から離れた位置において前記ミラーホルダが載置された回転体と、前記回転体に設けられ、前記ミラーホルダの前記回転体との接触部を、前記回転軸に接近および離間する方向に移動可能に案内する案内部と、前記回転軸とともに前記回転体が回転可能な状態で前記回転体を前記回転軸に平行な方向に移動させる移動機構と、前記移動機構を介して前記回転体を移動させる第2の駆動源とを備える。
本発明の第2の態様はビーム照射に関する。第2の態様に係るビーム照射装置は、第1の態様に係るミラー駆動装置と、レーザ光を出射する光源と、前記光源から出射された前記レーザ光を前記ミラーに入射させる出射光学系と、を備える。
本発明の第3の態様はレーザレーダに関する。第3の態様に係るレーザレーダは、第2の態様に係るビーム照射装置と、目標領域から反射され前記ミラーに入射した前記レーザ光を光検出器へと導く受光光学系と、を備え、
前記受光光学系は、前記光源から出射され前記ミラーへと向かうレーザ光が通過する隙間を有するとともに、前記目標領域から反射され前記ミラーに入射した前記レーザ光を反射する反射面を有する反射部を備える。
前記受光光学系は、前記光源から出射され前記ミラーへと向かうレーザ光が通過する隙間を有するとともに、前記目標領域から反射され前記ミラーに入射した前記レーザ光を反射する反射面を有する反射部を備える。
本発明によれば、広範囲にレーザ光を走査可能なミラー駆動装置および当該ミラー駆動装置が搭載されるビーム照射装置およびレーザレーダを提供することができる。
本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。
以下、本発明の実施の形態について、図面を参照して説明する。
図1は、ミラーアクチュエータ1の分解斜視図である。図示の如く、ミラーアクチュエータ1は、パン駆動部10と、アウターユニット20と、インナーユニット30と、ミラーユニット40と、チルト駆動部50とを備えている。
図2(a)、(b)は、ミラーアクチュエータ1のパン駆動部10の構成を示す斜視図である。
図2(a)を参照して、パン駆動部10は、モーター11と、回転軸12と、ピン13と、支軸14と、モーター回路基板15と、モーターフレーム16とを備えている。
モーター11は、モーター回路基板15に電気的に接続されており、回路部からの電気信号に応じて回転軸12を回動させる。モーター11とモーター回路基板15は、モーターフレーム16によって支えられている。モーター11は、たとえば、ブラシレスDCモーターである。回転軸12は、円柱形状を有する。回転軸12上部のZ軸負側およびZ軸正側には、それぞれ、段部12aが設けられている。段部12aには、Z軸方向に貫通する軸孔12bが形成されている。軸孔12bの径は、支軸14の径よりも僅かに小さい。後述するミラーユニット40(図1参照)を回動可能に回転軸12に装着する際に、軸孔12bに支軸14が通される。また、回転軸12のX軸正側には、ピン13を嵌め込むためのピン穴12cが形成されている。ピン穴12cの径は、ピン13よりも僅かに小さく、ピン穴12cの深さ(X軸方向の長さ)は、ピン13のX軸方向の長さよりもやや小さい。図2(b)に示すように、ピン13は、ピン穴12cに嵌め込まれる。この状態でピン13の先端部13aは、回転軸12よりもX軸正側に位置付けられる。
図3(a)は、ミラーアクチュエータ1のアウターユニット20の構成を示す分解斜視図である。図3(b)は、アウターユニット20の構成を示す斜視図である。
図3(a)を参照して、アウターユニット20は、アウターフレーム21と、ガイドシャフト22と、ベアリング23と、ベアリングプレート24とを備える。
アウターフレーム21は、インナーユニット30(図1参照)およびミラーユニット40(図1参照)を回動可能に保持する保持部21aと、インナーユニット30(図1参照)およびミラーユニット40(図1参照)を上下方向に案内する案内部21bからなる。保持部21aには、Y軸方向に貫通する円形の開口21cが形成されている。開口21cの上部内側面には、Y軸方向の所定の位置に段部21dが形成されている。この段部21dにより、開口21cは、Y軸正側の径がY軸負側のも径よりも大きくなっている。また、保持部21aには、ネジ穴21e、21fが形成されている。案内部21bは、略直方体形状を有し、案内部21bのZ軸方向の幅は、保持部21aのZ軸方向の幅よりも大きい。案内部21bには、Y軸方向に貫通する円形のガイド孔21gが形成されている。ガイド孔21gの径は、ガイドシャフト22の径よりも僅かに大きい。ガイドシャフト22は、円柱状の形状を有する。
ベアリング23は、外枠23aと内枠23bとを有する。ベアリング23は、外枠23aと内枠23bとの間には多数のボールが介在されたボールベアリングである。ベアリング23は、内枠23bが外枠23aに対してY軸方向に平行な軸の周りに回転可能となっている。外枠23aは、大径部23cと、小径部23dを有する。大径部23cの径は、アウターフレーム21の開口21cのY軸正側の径よりもやや小さく、開口21cのY軸負側の径よりも大きい。小径部23dの径は、アウターフレーム21の開口21cのY軸負側の径よりもやや小さい。内枠23bは、円形の開口23eが形成された円筒形状を有する。
ベアリングプレート24は、平面視においてアウターフレーム21の保持部21aの形状に沿った形状の板部24aからなる。板部24aの中央には、円形の開口24bが形成されている。板部24aには、ネジ孔24c、24dが形成されている。
アウターユニット20の組み立て時には、まず、ベアリング23がアウターフレーム21の開口21cに挿入される。このとき、外枠23aの大径部23cのY軸負側の面がアウターフレーム21の段部21dに当接するまで、外枠23aがアウターフレーム21の開口21cに押し込まれる。そして、ベアリングプレート24のネジ孔24c、24dが、それぞれ、アウターフレーム21のネジ穴21e、21fに整合される。この状態で、ネジ孔24c、24dを介して、ネジ穴21e、21fにネジ26、27が螺着される。これにより、ベアリングプレート24がアウターフレーム21に固着される。そして、ガイドシャフト22がガイド孔21gに通され、図3(b)に示すアウターユニット20が組み立てられる。
この状態で、外枠23aの大径部23cは、ベアリングプレート24の下面と、アウターフレーム21の段部21dによって挟まれている。これにより、ベアリング23は、ベアリングプレート24の下面とアウターフレーム21の段部21dによって、上下方向の移動が抑制されている。
図4(a)は、ミラーアクチュエータ1のインナーユニット30の構成を示す分解斜視図である。図4(b)は、インナーフレーム31を下から見た構成を示す斜視図である。図4(c)は、ミラーアクチュエータ1のミラーユニット40の構成を示す分解斜視図である。図4(d)は、ミラーユニット40の構成を示す斜視図である。
図4(a)を参照して、インナーユニット30は、インナーフレーム31と、押さえバネ32とを備える。
インナーフレーム31は、上面部31aと、円筒部31bからなる。図4(b)に示すように、円筒部31bのY軸正側には、鍔部31cが形成されている。図4(a)に戻り、上面部31aの中央には、周囲よりも一段低くなった段部31dが形成されており、上面部31aのX軸負側には、周囲よりも一段高くなった2つの凸部31eが形成されている。凸部31eの上面は、平坦となっている。段部31dには、Y軸方向に貫通する円形の開口31fが形成されており、開口31fのX軸正側には、矩形の凹部31gがY軸方向に延びるように形成されている。開口31fの径は、モーター11の回転軸12(図2(b)参照)よりもやや大きく、円筒部31bの外径は、アウターユニット20の内枠23bの開口23e(図3(a)参照)よりも僅かに大きい。また、鍔部31cの径は、内枠23bの外径よりもやや大きく、ベアリングプレート24の開口24bより小さい。上面部31aには、ネジ穴31h、31iが形成されている。
押さえバネ32は、弾性部材により構成される。押さえバネ32は、上面視において、略U字型の形状を有する。押さえバネ32は、平面部32aと、2つの鉤部32bからなる。平面部32aには、ネジ孔32c、32dが形成されている。
図4(c)を参照して、ミラーユニット40は、ミラーホルダ41と、ローラー42と、支軸43と、ミラー44とを備える。
ミラーホルダ41は、ミラー44を傾けた状態で保持するミラー装着部41aと、ローラー42を保持するローラー保持部41bと、回転軸12(図2(b)参照)を保持する回転軸保持部41cからなる。ミラー装着部41aの下端部は、段部となっている。ローラー保持部41bは、先端部が丸みを帯びた2つの凸部からなり、2つの凸部には、それぞれ、Z軸方向に貫通する軸孔41dが形成されている。ローラー保持部41bの2つの凸部の間の間隔は、ローラー42のZ軸方向の厚みよりもやや広い。回転軸保持部41cは、先端部が丸みを帯びた2つの凸部からなり、2つの凸部には、それぞれ、Z軸方向に貫通する軸孔41eが形成されている。回転軸保持部41cの2つの凸部は、ミラー装着部41aのミラー44の装着面に対して、所定の角度で傾いている。
ミラーユニット40の組み立て時には、ミラー44がミラー装着部41aに接着固定される。そして、ローラー42がローラー保持部41bの2つの凸部の間に挿入され、2つの軸孔41dとローラー42に支軸43が通される。これにより、図4(d)に示すミラーユニット40が組み立てられる。
図5(a)、(b)は、チルト駆動部50の構成を示す斜視図である。
図5(a)、(b)を参照して、チルト駆動部50は、モーター51と、リードスクリュー52と、ギアラック53とを備えている。
モーター51は、ステッピングモータからなっている。モーター51には、シャーシ51aが装着されている。モーター51の回転軸には、リードスクリュー52の一端が装着されており、リードスクリュー52の他端は、軸受けを介してシャーシ51aの一端に装着されている。ギアラック53は、鉤部53aと、ガイド保持部53bからなる。鉤部53aのZ軸負側の面には、ギア部53cが形成されている。鉤部53aとガイド保持部53bの間には、ばね53dが配されている。ギアラック53は、可撓性の材質で形成されており、僅かにZ軸方向に変形可能である。ガイド保持部53bは、壁部53e、53fを有する。壁部53e、53fの間の間隔は、図3(a)に示す案内部21bのY軸の幅よりも僅かに広い。
ミラーアクチュエータ1の組み立て時には、まず、図4(b)に示すインナーフレーム31の円筒部31bが、図3(b)に示すアウターユニット20の開口23eに圧入される。そして、図2(b)に示すピン13が、図4(a)に示すインナーフレーム31の円筒部31bの凹部31gに嵌り込むようにして、アウターユニット20とインナーユニット30が、図2(b)に示す回転軸12に通される。これにより、図6(a)に示す構成体が組み立てられる。
図6(a)は、モーター11にアウターユニット20とインナーフレーム31が組み付けられた構成体を示す斜視図である。図6(b)は、この構成体のZ軸方向における中央位置をX-Y平面に平行な面で切断した断面図である。
図6(b)に示すように、この状態では、ピン13の先端部13aがインナーフレーム31の凹部31gに嵌り込んでいる。したがって、インナーフレーム31は、回転軸12とともに一体的に回転可能となっている。また、アウターフレーム21とインナーフレーム31は、ピン13が凹部31gに案内されてY軸方向に移動可能となっている。
次に、図4(d)に示すミラーユニット40の回転軸保持部41cの2つの凸部の間に、図6(a)に示す構成体の回転軸12に通されて、回転軸12の軸孔12bと、回転軸保持部41cの2つの軸孔41eが整合される。この状態で、図2(b)に示す支軸14が回転軸保持部41cの2つの軸孔41eと、回転軸12の軸孔12bに通される。こうして、図7(a)に示す構成体が組み立てられる。
図7(a)、(b)は、モーター11にアウターユニット20とインナーフレーム31が組み付けられた構成体にミラーユニット40が取り付けられた構成体を示す斜視図である。
図7(a)に示す状態において、ローラー42は、インナーフレーム31の2つの凸部31eの間に位置付けられており、支軸43は、インナーフレーム31の2つの凸部31e上に位置付けられている。また、回転軸保持部41cの下端と、インナーフレーム31の段部31dの間には、所定の隙間がある。この状態で、ミラーホルダ41は、支軸14によって軸支され、且つ、ローラー42によって支えられている。したがって、ローラー42は、前後方向(X軸方向)に移動可能となっている。
この状態で、図7(b)に示すように押さえバネ32の2つの鉤部32bとインナーフレーム31の凸部31eによって、支軸43が挟まれるようにして、押さえバネ32がインナーフレーム31に取り付けられる。そして、ネジ孔32c、32d(図4(a)参照)を介して、ネジ穴31h、31i(図4(a)参照)にネジ33、34(図4(a)参照)が螺着される。これにより、図7(b)に示す構成体が組み立てられる。この状態で、支軸43は、押さえバネ32の鉤部32bにより下方向(Y軸負方向)に押さえられているため、ローラー42がY軸方向に浮き上がることが抑制される。なお、このとき、後述する光源110から出射されるレーザ光がX軸負方向に反射されるように、ミラー44の傾き角度が調整される。
図8は、ミラーアクチュエータ1が搭載されたレーザレーダ500の構成を示す模式図である。なお、図8では、主要な光学部材のみが示されており、光学部材の取り付け構造、回路基板等は、図示省略されている。
図5(b)に示すギアラック53のガイド保持部53bに、案内部21bが嵌め込まれて、接着固定される。モーター51のシャーシ51aと、ガイドシャフト22が、それぞれ、ベース500aに固着される。ギアラック53の鉤部53aがZ軸正側に僅かに変形された状態で、ギアラック53のギア部53cがリードスクリュー52に当てられる。ばね53dによる付勢を受けながら、ギア部53cがリードスクリュー52に噛合される。これにより、図8に示すようにミラーアクチュエータ1の組み立てが完了する。
図8に示すアセンブル状態において、モーター11が駆動されると、回転軸12(図2(a)参照)が回動する。回転軸12は、支軸14によってミラーホルダ41と一体的に接続されているため、回転軸12が回動すると、一体となってミラーホルダ41が回動する。また、図6(b)に示すように、インナーフレーム31の凹部31gにピン13の先端部13aが嵌まり込んでいるため、回転軸12の回動に伴ってインナーフレーム31が回動される。こうして、ミラーホルダ41に保持されたミラー44がPan方向に回動される。
また、図8に示すアセンブル状態において、モーター51が駆動されると、リードスクリュー52が回動する。リードスクリュー52が回動すると、リードスクリュー52に噛合されたギアラック53が上下方向(Y軸方向)に移動する。そして、ギアラック53に固着された案内部21bがガイドシャフト22に沿って、上下方向(Y軸方向)に移動する。これにより、アウターフレーム21が上下方向(Y軸方向)に移動される。
図9は、アウターフレーム21が下方向に移動された場合のミラーアクチュエータ1を示す側面図である。図10は、アウターフレーム21が上方向に移動された場合のミラーアクチュエータ1を示す側面図である。
図9を参照して、アウターフレーム21が下方向(Y軸負方向)に移動されると、これに伴い、ベアリング23(図6(b)参照)が下方向(Y軸負方向)に移動される。これにより、ベアリング23の内枠23b(図6(b)参照)に装着されたインナーフレーム31が下方向に押し下げられる。このとき、図6(b)に示すように、回転軸12のピン13の先端部13aが、インナーフレーム31の凹部31gに沿って移動し、Y軸方向に案内される。また、案内部21bは、ガイドシャフト22に沿って摺動し、Y軸方向に案内される。これにより、図9に示すように、インナーフレーム31とミラーホルダ41のローラー保持部41bが下降される。このとき、支軸14によって軸支されたミラーホルダ41のY軸方向の位置は変わらない。このため、ミラーホルダ41には、Z軸正方向に見て、支軸14を中心とする右回りの力が加わる。これにより、ミラーホルダ41は、Z軸正方向に見て、支軸14を中心とする右回りに回動され、ローラー42および支軸43によりローラー保持部41bがX軸負側に移動される。したがって、図9に示すように、ミラー44の傾き角度が小さくなる。
図10を参照して、アウターフレーム21が上方向(Y軸正方向)に移動されると、これに伴い、ベアリング23(図6(b)参照)が下方向(Y軸正方向)に移動される。これにより、図6(b)に示すように、ベアリング23の内枠23bに装着されたインナーフレーム31が上方向に押し上げられる。このとき、回転軸12のピン13の先端部13aが、インナーフレーム31の凹部31gに沿って移動し、Y軸方向に案内される。また、案内部21bは、ガイドシャフト22に沿って摺動し、Y軸方向に案内される。これにより、図10に示すように、インナーフレーム31とミラーホルダ41のローラー保持部41bが上昇される。このとき、支軸14によって軸支されたミラーホルダ41のY軸方向の位置は変わらない。このため、ミラーホルダ41には、Z軸正方向に見て、支軸14を中心とする左回りの力が加わる。これにより、ミラーホルダ41は、Z軸正方向に見て、支軸14を中心とする左回りに回動され、ローラー42および支軸43によりローラー保持部41bがX軸正側に移動される。したがって、図9に示すように、ミラー44の傾き角度が大きくなる。
なお、アウターフレーム21が最も上方向に移動された場合にも、支軸43が押さえバネ32とインナーフレーム31との間に位置付けられるよう、インナーフレーム31の凸部31eと押さえバネ32の鉤部32bのX軸方向の長さが調整されている。
このようにして、ミラーホルダ41に保持されたミラー44がTilt方向に回動される。支軸43は、押さえバネ32により、下方向に押さえられているため、Tilt方向への回動時のミラー44のガタつきが抑制される。
このように、本実施の形態では、ミラー44をPan方向に回動させるモーター11と、ミラー44をTilt方向に回動させるモーター51は、それぞれ、一方の回動が、他方の回動に影響することがない。したがって、モーター11と、モーター51を、独立に制御することができる。また、モーター51がベース側に配置されているため、回転部であるインナーフレーム31に信号線を渡す必要がない。このため、ミラー44をPan方向に広範囲に回動させることができる。本実施の形態では、ミラー44は、Pan方向に360度回動される。なお、ミラー44は、Tilt方向に対して、数十度以上の角度で回動される。
図8に戻り、ミラーアクチュエータ1が搭載されたレーザレーダ500の構成について説明する。
レーザレーダ500は、出射光学系100と、受光光学系200と、PSD310と、上述のミラーアクチュエータ1を備えている。
出射光学系100は、光源110と、ビーム整形レンズ120とを備えている。
光源110は、波長880nm~940nm程度のレーザ光を出射する。ビーム整形レンズ120は、出射レーザ光が、目標領域において所定の形状となるよう、出射レーザ光を収束させる。光源110とビーム整形レンズ120は、それぞれ、Y軸方向に並ぶように配置されている。光源110の出射光軸は、ビーム整形レンズ120の光軸と一致している。また、光源110は、出射光軸がミラー44の回転中心を貫くように配置されている。光源110は、出射光軸が回転軸12(図2(a)参照)と平行となるように配置されている。
ミラーアクチュエータ1は、前述のように、ビーム整形レンズ120を透過したレーザ光と、目標領域からの反射光の両方が入射するミラー44と、このミラー44を2つの軸の周りに回動させるための機構とを備える。ミラー44が回動することにより、目標領域においてレーザ光が走査される。レーザ光は、目標領域において、XZ平面に平行な複数の走査ラインに沿ってスキャンされる。各走査ラインに沿ってレーザ光を走査させるために、モーター11が駆動され、ミラー44がPan方向に回転される。また、走査ラインを変更するために、モーター51が駆動され、ミラー44がTilt方向に回転される。
受光光学系200は、折り曲げミラー210、220と、受光レンズ230と、光検出器240を備えている。
折り曲げミラー210、220は、目標領域から反射され、さらにミラー44によって反射された光を光検出器240に向かう方向に反射させる。折り曲げミラー210、220は、それぞれ、略直方体形状を有する。折り曲げミラー210、220は、それぞれ、所定の隙間を開けて、Z軸方向に並ぶように配置されている。折り曲げミラー210、220は、それぞれ、ミラー44が中立位置にあるとき、ミラー44と同じ角度で傾くように配置される。
なお、「中立位置」とは、ミラー44がX軸に垂直な状態からY-X平面の面内方向に45度傾いた位置をいう。
また、折り曲げミラー210、220の隙間は、光源110から出射し、ビーム整形レンズ120によって収束されたレーザ光が通過可能な幅を有している。
受光レンズ230は、目標領域から反射された光を集光する。光検出器240は、APD(アバランシェ・フォトダイオード)またはPINフォトダイオードからなり、受光光量に応じた大きさの電気信号を回路基板に出力する。
PSD310は、ミラー44によって反射された光を受光し、受光位置に応じた位置検出信号を回路基板に出力する。
光源110から出射されたレーザ光は、ビーム整形レンズ120を透過した後、折り曲げミラー210、220の隙間を通過する。折り曲げミラー210、220の隙間を通過したレーザ光は、ミラーアクチュエータ1のミラー44に入射する。ミラー44に入射したレーザ光は、ミラー44によって反射され、目標領域に投射される。
目標領域からの反射光は、レーザ光が目標領域へと向かう光路を逆行して、ミラー44に入射する。ミラー44に入射した反射光は、ミラー44により反射され、折り曲げミラー210、220に入射する。折り曲げミラー210、220の隙間は、ミラー44のミラー面に比べて顕著に小さく、目標領域からの反射光の大半の光は、折り曲げミラー210、220に入射する。折り曲げミラー210、220に入射した反射光は、折り曲げミラー210、220により反射され受光レンズ230に向かう方向(X軸正方向)に進行する。
かかる反射光の挙動は、ミラー44がどのような回動位置にあっても同じである。すなわち、ミラー44がどのような回動位置にあっても、目標領域からの反射光は、レーザ光の出射時の光路を逆行し、ビーム整形レンズ120の光軸に平行に進んで、受光レンズ230に入射する。
受光レンズ230に入射した反射光は、受光レンズ230によって、光検出器240に収束される。光検出器240は、受光光量に応じた大きさの電気信号を出力する。光検出器240からの信号に基づいて、目標領域における物体の有無および物体までの距離が測定される。
図11は、本実施の形態に係るレーザレーダ500のミラー44のPan方向の回動範囲を示す上面図である。
図11に示すように、本実施の形態に係るレーザレーダ500では、水平方向に広範囲な走査範囲W1でレーザ光が走査されるようミラー44が回動される。走査範囲W1においてレーザ光が所定間隔でパルス発光される。走査範囲W1におけるスキャンが完了し、停止範囲W2までミラー44が回動されると、光源110のレーザ光の出射が停止される。なお、モーター11(図8参照)から出力される位置検出信号(パルス信号)によって、ミラー44が停止範囲W2まで回動されたかどうかが検出される。レーザ光の出射が停止された状態で、回動位置検出範囲W3までミラー44が回動されると、光源110のレーザ光の出射(パルス発光)が再開される。回動位置検出範囲W3ではミラー44がPSD310の方を向いている。これにより、光源110を出射したレーザ光は、ビーム整形レンズ120(図8参照)とミラー44を介して、PSD310に入射する。PSD310は、受光位置に応じた位置検出信号を出力する。
本実施の形態では、レーザレーダ500が作動している間、ミラー44は、360度を超えて同一のPan方向に回転され続ける。PSD310の出力は、Pan方向におけるミラー44の回転の原点出しに用いられる。すなわち、回動位置検出範囲W3においてパルス発光されるレーザ光のうちPSD310のZ軸方向の中央位置に最も接近した位置に照射されたレーザ光の発光タイミングが特定される。そして、この発光タイミングに対応するミラー44の回動位置(モーター11の回動位置)が、Pan方向におけるミラー44の回転の原点とされる。こうして設定された原点に対して、ミラー44およびモーター11の回動位置が規定される。同一方向にミラー44が回転され続けると、モーター11からの位置検出信号(パルス信号)により検出されるミラー44の回動位置と、ミラー44の実際の回動位置とにずれが生じる。そこで、上記のように原点出しをすることにより、位置検出信号(パルス信号)により検出されるミラー44の回動位置と、ミラー44の実際の回動位置とを整合させることができる。
Tilt方向のミラー44の位置も、PSD310からの出力をもとに修正される。ここでは、パルス発光されたレーザ光のPSD310上における軌跡が、当該走査の際のミラー44のTilt方向の回動位置に対応する軌跡と整合するかが判定される。両軌跡が整合しない場合、両軌跡の差分を求め、差分に応じた角度だけ、ミラー44のTilt方向の角度が調節される。
なお、本実施の形態では、所定回数ミラー44がPan方向に回転する毎に、Pan方向の原点出しとTilt方向の角度調節が行われる。
レーザ光が出射された状態で、停止範囲W4までミラー44が回動されると、光源110のレーザ光の出射が停止される。そして、レーザ光の出射が停止された状態で、走査範囲W1までミラー44が回動されると、光源110のレーザ光の出射(パルス発光)が再開される。このとき、ミラー44がTilt方向に回動され、次の走査ラインの走査位置に合わせられる。
このようにして、レーザ光が複数の走査ラインに沿って、目標領域に投射される。なお、最下段の走査ラインの走査が完了した場合、再度、最上段の走査ラインの走査位置になるよう、ミラー44が回動制御される。この他、最下段の走査ラインの走査が完了した場合、最下段から1つ上の走査ラインの走査位置に戻るよう、ミラー44が回動制御されても良い。このように、ミラー44の回動制御は、適宜変更され得る。
図11に示すように、目標領域の走査に必要な走査範囲W1でのみレーザ光が出射されるよう光源110が制御されるため、光源110にかかる消費電力を抑えることができる。
図12は、本実施の形態に係るレーザ光の出射軌跡を示すグラフである。横軸は、中立位置(0度)に対するミラー44のPan方向の回動角であり、縦軸は、Pan方向の各回動角にミラー44があるときの、水平面(X-Z平面)に対するレーザ光の傾き角である。縦軸では、レーザ光の投射方向が水平面に平行なときに角度が0度とされている。また、横軸において、ミラー44が中立位置から正面左側に回動されると角度に正の符号が付され、ミラー44が中立位置から正面右側に回動されると角度に負の符号が付されている。ここでは、Pan方向のミラー44の回動範囲が、中立位置に対して±135度とされている。
また、図12において、丸のプロットは、Tilt方向のミラーの回動角を中立位置における回動角と同じにした場合を示し、四角のプロットは、ミラー44を中立位置から略30度だけ水平面に近づく方向(Tilt方向)に傾けた場合を示し、三角のプロットは、ミラー44を中立位置から略30度だけ水平面から遠ざかる方向(Tilt方向)に傾けた場合を示している。
図12に示すように、すべての走査ラインにおいて、出射軌跡が略直線状になっていることが判る。これは、図8に示すように、光源110が、光源110の出射光軸がミラー44の回転中心を貫くように、配置されているためである。ミラー44の垂直方向の傾きが一定であるとき、ミラー44を水平方向にどの角度に傾いていたとしても、レーザ光は、常にミラー44の回転中心に入射するため、レーザ光の出射角度は垂直方向に変位しない。したがって、Tilt方向のミラー44の傾きを変化させなくとも、ミラー44をPan方向にのみ変化させることにより、レーザ光を略水平に走査させることができる。このように、ミラー44をPan方向に制御させるだけで、レーザ光を略水平に走査させることができるため、ミラー44の駆動制御を簡素にすることができる。
図13(a)は、本実施の形態に係る光源110と折り曲げミラー210、220による光検出器240への迷光の影響を説明する図である。図13(b)は、変更例に係る光源110と折り曲げミラー211による光検出器240への迷光の影響を説明する図である。
図13(a)を参照して、本実施の形態の場合、折り曲げミラー210、220は、所定の隙間を有した状態でZ軸方向に並んでいる。光源110から出射されたレーザ光は、ビーム整形レンズ120によって収束されるため、レーザ光の大半は、折り曲げミラー210、220の隙間を通過する。このように折り曲げミラー210、220を配置することによって、レーザレーダ500のY軸方向のサイズをコンパクトに構成することができる。この構成では、レーザ光のうち僅かな光が、折り曲げミラー210、220の側面部によって反射および散乱されて迷光となる。
図13(b)の変更例に示すように、折り曲げミラー211にレーザ光を通過可能な開口211aが設けられた構成を用いることもできる。しかしながら、変更例の構成では、開口211aの下側の縁によってレーザ光が反射および散乱された迷光が、光検出器240に向かう方向に進むため、この迷光が光検出器240に入射する惧れがある。目標領域からの反射光が微弱であるため、このように迷光が光検出器240に入射すると、目標領域からの反射光を適正に検出できない惧れがある。これに対し、本実施の形態では、レーザ光がX-Y平面に平行な面によって反射されるため、比較例の場合に比べ、迷光が光検出器240に向かう方向に進むことがない。したがって、光検出器240に対する迷光の影響を抑えるためには、本実施の形態のように、折り曲げミラー210、220が隙間をもって、Z軸方向に並ぶ構成が望ましい。
他方、変更例の場合、目標領域からの反射光を受光する折り曲げミラー211のミラー面の面積を、本実施の形態の折り曲げミラー210、220の場合よりも大きくすることができる。したがって、光検出器240が受光する光量をできるだけ大きくするためには、図13(b)に示すように1つの折り曲げミラー211に開口211aが設けられる構成の方が望ましい。
図14は、レーザレーダ500の回路構成を示す図である。
スキャンLD駆動回路701は、DSP705からの信号をもとに、光源110に駆動信号を供給する。PD信号処理回路702は、光検出器240の受光光量に応じた電圧信号を増幅およびデジタル化してDSP705に供給する。
PSD信号処理回路703は、PSD310からの出力信号をもとに求めた位置検出信号をDSP705に出力する。アクチュエータ駆動回路704は、DSP705からの信号をもとに、ミラーアクチュエータ1を駆動する。具体的には、目標領域においてレーザ光を所定の軌道に沿って走査させるための駆動信号がミラーアクチュエータ1に供給される。
DSP705は、PSD信号処理回路703から入力された位置検出信号をもとに、目標領域におけるレーザ光の走査位置を検出し、ミラーアクチュエータ1の駆動制御や、光源110の駆動制御等を実行する。また、DSP705は、PD信号処理回路702から入力される電圧信号に基づいて、目標領域内のレーザ光照射位置に物体が存在するかを判定し、同時に、光源110から出力されるレーザ光の照射タイミングと、光検出器240にて受光される目標領域からの反射光の受光タイミングの間の時間差をもとに、物体までの距離を測定する。
図15は、光源110の発光制御の処理を示すフローチャートである。図15は、DSP705によって実行される。なお、ミラー44のPan方向、Tilt方向の回動位置は、上記のように、モーター11、51からの位置検出信号(パルス信号)により検出され、PSD310から信号によって、ミラー44の位置のずれが補正される。図15に示すフローチャートでは、ミラー44のPan方向の回動角度に応じた光源110の制御処理について説明する。
図15を参照して、目標領域のスキャンが開始されると、ミラー44が走査開始位置に位置付けられる。そして、ミラー44の回動角度が図11に示す走査範囲W1に位置付けられると(S101:YES)、DSP705は、光源110をパルス発光により点灯させる(S102)。そして、DSP705は、ミラー44の回動角度が図11に示す停止範囲W2に位置付けられたか否かを判定する(S103)。ミラー44の回動角度が停止範囲W2に位置付けられていない場合(S103:NO)、DSP705は、光源110の点灯を継続させる。ミラー44の回動角度が図11に示す停止範囲W2に位置付けられると(S103:YES)、DSP705は、光源110を消灯させる(S104)。DSP705は、走査回数が所定の変数nの倍数であるか否かを判定する(S105)。変数nは、要求されるミラー44の回動精度に応じて適宜設定される。たとえば、変数nを1にすると、1回の走査毎にミラー44の回動位置が補正される。これにより、ミラー44を精度よく回動させることができる。たとえば、変数nを3にすると、3回の走査毎にミラー44の回動位置が補正される。これにより、回動位置の補正のための点灯時間をより削減することができる。本実施の形態では、ミラー44の回動位置の補正は、複数回の走査ごとに行われる。
走査回数がnの倍数の場合(S105:YES)、DSP705は、ミラー44の回動角度が図11に示す回動位置検出範囲W3に位置付けられたか否かを判定する(S106)。ミラー44の回動角度が回動位置検出範囲W3に位置付けられていない場合(S106:NO)、DSP705は、光源110の消灯を継続させる。ミラー44の回動角度が回動位置検出範囲W3に位置付けられると(S106:YES)、DSP705は、光源110をパルス発光により点灯させる(S107)。これにより、光源110から出射したレーザ光がPSD310に入射する。DSP705は、PSD310からの信号に基づき、上記のようにPan方向の原点出しとTilt方向のミラー44の角度補正を行う。走査回数がnの倍数でない場合(S105:NO)、DSP705は、回動位置検出範囲W3における光源110の点灯処理および停止範囲W4における光源110の消灯処理をスキップし、処理をS110に進める。
DSP705は、ミラー44の回動角度が停止範囲W4に位置付けられたか否かを判定する(S108)。ミラー44の回動角度が停止範囲W4に位置付けられていない場合(S108:NO)、DSP705は、光源110の点灯を継続させる。ミラー44の回動角度が停止範囲W4に位置付けられると(S108:YES)、DSP705は、光源110を消灯させる(S109)。そして、DSP705は、動作が終了したか否かを判定する(S110)。動作が終了していない場合(S110:NO)、DSP705は、処理をS101に戻し、次の走査ラインにおける光源110の発光制御を行う(S101~S109)。動作が終了した場合(S110:YES)、DSP705は、光源110の制御処理を終了する。
<実施形態の効果>
以上、本実施の形態によれば、以下の効果が奏される。
以上、本実施の形態によれば、以下の効果が奏される。
図8に示すように、モーター11によって回動されるアウターフレーム21およびインナーフレーム31には、駆動源が配されず、ベース500aに配置されたモーター51によって、案内部21bがガイドシャフト22に沿って上下方向に移動される。案内部21bが上下方向に移動されることによって、アウターフレーム21に一体的に接続されたインナーフレーム31が上下方向に移動され、ローラー42と支軸43が前後方向に移動される。これにより、ミラー44がTilt方向に回動される。このように、モーター11によって回動されるアウターフレーム21およびインナーフレーム31に駆動源が配されないため、回動されるアウターフレーム21およびインナーフレーム31に電力を供給する必要がない。したがって、ミラー44の回動が電力供給のための信号線等によって制限されることがないため、ミラー44を広範囲で回動させることができる。これにより広範囲にレーザ光を走査させることができる。
また、図6(b)に示すように、インナーフレーム31は、回転軸12に摺動可能に支持されている。したがって、アウターフレーム21およびインナーフレーム31を回動させるための回転軸12が摺動軸としても作用される。したがって、部品点数を削減することができ、ミラーアクチュエータ1をコンパクトに構成することができる。
また、図8に示すように、ミラー44のX軸正側にPSD310が配されているため、ミラー44をX軸正側に向けることによって、光源110から出射されるレーザ光をPSD310に入射させることができる。これにより、ミラー44の回動位置を検出することが出来る。このように、光源110とミラー44がミラー44の回動位置を検出するための光学系としても共用されるため、部品点数を削減することができる。
また、図8に示すように、光源110が、回転軸12に平行で光源110の出射光軸がミラー44の回転中心を貫くように、配置されているため、図12に示すように、出射軌跡を略直線状に近付けることができる。また、光源110をミラー44の上側に配置することにより、ミラー44によって反射されたレーザ光が光源110側に向かうことがない。したがって、ミラー44を360度の範囲で回動させることができ、レーザ光の走査範囲をより広くすることができる。
また、図13(a)、(b)に示すように、光源110とミラー44の間に、折り曲げミラー210、220または折り曲げミラー211が配置されるため、レーザレーダ500のY軸方向のサイズをコンパクトに構成することができる。
また、図13(a)に示すように、Z軸方向に並ぶ折り曲げミラー210、220に隙間が設けられるため、光検出器240に対する迷光の影響を抑えるができる。
また、図11に示すように、目標領域の走査に必要な走査範囲W1でのみレーザ光が出射されるよう制御されるため、光源110にかかる消費電力を抑えることができる。
さらに、図15に示すように、複数回数の走査ごとにミラー44の回動位置の検出のため光源の点灯処理が行われるため、光源110にかかる消費電力をさらに抑えることができる。
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記以外に種々の変更が可能である。
たとえば、上記実施の形態では、図6(b)に示すように、回転軸12がインナーフレーム31を摺動させるための摺動軸としても用いられたが、別途、摺動軸が設けられても良い。しかし、上記実施の形態のように、回転軸12を摺動軸としても作用させる方が、部品点数が削減できるため望ましい。
また、上記実施の形態では、図8に示すように、折り曲げミラー210、220により、受光光学系200が光源110とミラー44の間に設けられたが、たとえば、光源110のY軸正側に設けられても良い。この場合、折り曲げミラー210、220が省略されるものの、反射光の受光光量を大きくするため、上記実施の形態よりもミラー44のミラー面のサイズを大きくする必要がある。また、Y軸方向に光学部材が並ぶため、レーザレーダ500装置全体が大型化する。したがって、装置をコンパクトにするためには、上記実施の形態のように、折り曲げミラー210、220が配される方が望ましい。
また、上記実施の形態では、受光光学系200は、折り曲げミラー210、220と、受光レンズ230と、光検出器240から構成されたが、この他、遮光部材や光源110から出射されるレーザ光の波長帯域以外の帯域の光をカットするバンドパスフィルタ等が配されても良い。同様に、PSD310に向かう光路中についても、適宜、遮光部材やフィルタが用いられ得る。
この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
1 … ミラーアクチュエータ(ミラー駆動装置)
11 … モーター(第1の駆動源)
12 … 回転軸
14 … 支軸
20 … アウターユニット(移動機構)
21 … アウターフレーム(移動体)
23 … ベアリング
31 … インナーフレーム(回転体)
41 … ミラーホルダ
41b … ローラー保持部(接触部)
42 … ローラー(案内部)
44 … ミラー
50 … チルト駆動部(移動機構)
51 … モーター(第2の駆動源)
53 … ギアラック(ギア)
100 … 出射光学系
110 … 光源
200 … 受光光学系
210 … 折り曲げミラー(反射部、第1のミラー)
220 … 折り曲げミラー(反射部、第2のミラー)
221 … 折り曲げミラー(反射部)
240 … 光検出器
310 … PSD(受光位置検出器)
705 … DSP(光源制御部)
11 … モーター(第1の駆動源)
12 … 回転軸
14 … 支軸
20 … アウターユニット(移動機構)
21 … アウターフレーム(移動体)
23 … ベアリング
31 … インナーフレーム(回転体)
41 … ミラーホルダ
41b … ローラー保持部(接触部)
42 … ローラー(案内部)
44 … ミラー
50 … チルト駆動部(移動機構)
51 … モーター(第2の駆動源)
53 … ギアラック(ギア)
100 … 出射光学系
110 … 光源
200 … 受光光学系
210 … 折り曲げミラー(反射部、第1のミラー)
220 … 折り曲げミラー(反射部、第2のミラー)
221 … 折り曲げミラー(反射部)
240 … 光検出器
310 … PSD(受光位置検出器)
705 … DSP(光源制御部)
Claims (9)
- 回転軸と、
前記回転軸を回転させる第1の駆動源と、
前記回転軸に平行な方向に回動可能に支軸を介して前記回転軸に軸支されたミラーホルダと、
前記ミラーホルダに装着されたミラーと、
前記支軸から離れた位置において前記ミラーホルダが載置された回転体と、
前記回転体に設けられ、前記ミラーホルダの前記回転体との接触部を、前記回転軸に接近および離間する方向に移動可能に案内する案内部と、
前記回転軸とともに前記回転体が回転可能な状態で前記回転体を前記回転軸に平行な方向に移動させる移動機構と、
前記移動機構を介して前記回転体を移動させる第2の駆動源と、
を備えることを特徴とするミラー駆動装置。 - 請求項1に記載のミラー駆動装置において、
前記移動機構は、
ベアリングを介して前記回転体が回転可能に連結された移動体と、
前記移動体を前記回転軸に平行な方向に送るギアと、を備える、
ことを特徴とするミラー駆動装置。 - 請求項1または2に記載のミラー駆動装置において、
前記回転体は、前記回転軸に摺動可能に支持されている、
ことを特徴とするミラー駆動装置。 - 請求項1ないし3の何れか一項に記載のミラー駆動装置と、
レーザ光を出射する光源と、
前記光源から出射された前記レーザ光を前記ミラーに入射させる出射光学系と、を備える、
ことを特徴とするビーム照射装置。 - 請求項4に記載のビーム照射装置において、
前記ミラーの所定の回転位置において、前記ミラーによって反射された前記レーザ光を受光してその受光位置を検出する受光位置検出器を備える、
ことを特徴とするビーム照射装置。 - 請求項5に記載のビーム照射装置において、
前記光源の点灯/消灯を制御する光源制御部を備え、
前記光源制御部は、前記ミラーが前記レーザ光を目標領域に向かう方向に反射させる回動位置、および前記ミラーが前記レーザ光を前記受光位置検出器に向かう方向に反射させる回動位置において、前記光源を点灯させる、
ことを特徴とするビーム照射装置。 - 請求項4ないし6の何れか一項に記載のビーム照射装置において、
前記レーザ光の光軸が、前記回転軸に平行で、且つ、前記ミラーの回転中心を貫くように、前記レーザ光源と前記出射光学系が構成されている、
ことを特徴とするビーム照射装置。 - 請求項7に記載のビーム照射装置と、
目標領域から反射され前記ミラーに入射した前記レーザ光を光検出器へと導く受光光学系と、を備え、
前記受光光学系は、前記光源から出射され前記ミラーへと向かうレーザ光が通過する隙間を有するとともに、前記目標領域から反射され前記ミラーに入射した前記レーザ光を反射する反射面を有する反射部を備える、
ことを特徴とするレーザレーダ。 - 請求項8に記載のレーザレーダにおいて、
前記反射部は、第1のミラーと、前記第1のミラーに対して前記回転軸に垂直な方向に前記隙間を開けて並ぶように配置された第2のミラーとを備える、
ことを特徴とするレーザレーダ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016512494A JP6371985B2 (ja) | 2014-04-11 | 2014-11-13 | ミラー駆動装置、ビーム照射装置およびレーザレーダ |
CN201480075971.0A CN106030373B (zh) | 2014-04-11 | 2014-11-13 | 镜驱动装置、光束照射装置以及激光雷达 |
US15/229,114 US10191273B2 (en) | 2014-04-11 | 2016-08-05 | Mirror driving device, beam irradiation device, and laser radar |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-082205 | 2014-04-11 | ||
JP2014082205 | 2014-04-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/229,114 Continuation US10191273B2 (en) | 2014-04-11 | 2016-08-05 | Mirror driving device, beam irradiation device, and laser radar |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015155812A1 true WO2015155812A1 (ja) | 2015-10-15 |
Family
ID=54287416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005698 WO2015155812A1 (ja) | 2014-04-11 | 2014-11-13 | ミラー駆動装置、ビーム照射装置およびレーザレーダ |
Country Status (4)
Country | Link |
---|---|
US (1) | US10191273B2 (ja) |
JP (1) | JP6371985B2 (ja) |
CN (1) | CN106030373B (ja) |
WO (1) | WO2015155812A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018180438A (ja) * | 2017-04-20 | 2018-11-15 | パイオニア株式会社 | 光走査装置及び測距装置 |
KR20190001861A (ko) * | 2017-06-28 | 2019-01-07 | 주식회사 에스오에스랩 | 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체 |
WO2019039728A1 (ko) * | 2017-08-21 | 2019-02-28 | (주)유진로봇 | 초소형 3차원 스캐닝 라이다 센서 |
CN109581328A (zh) * | 2018-12-21 | 2019-04-05 | 宁波傲视智绘光电科技有限公司 | 一种激光雷达 |
KR20190044995A (ko) * | 2017-10-23 | 2019-05-02 | 주식회사 유진로봇 | 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체 |
KR20190130921A (ko) * | 2018-05-15 | 2019-11-25 | 현대모비스 주식회사 | 라이다 센서 및 그 제어 방법 |
KR20190131413A (ko) * | 2018-05-16 | 2019-11-26 | 주식회사 유진로봇 | 자체 교정을 수행하는 3차원 스캐닝 라이다 센서 |
JP2021505914A (ja) * | 2017-12-08 | 2021-02-18 | 上海禾賽光電科技有限公司Hesai Photonics Technology Co.,Ltd | レーザレーダシステム及びその制御方法、走査角度の取得方法、車両 |
US10962647B2 (en) | 2016-11-30 | 2021-03-30 | Yujin Robot Co., Ltd. | Lidar apparatus based on time of flight and moving object |
CN113418107A (zh) * | 2021-06-22 | 2021-09-21 | 国网山东省电力公司高唐县供电公司 | 全景实时监控装置 |
US11579298B2 (en) | 2017-09-20 | 2023-02-14 | Yujin Robot Co., Ltd. | Hybrid sensor and compact Lidar sensor |
US11874399B2 (en) | 2018-05-16 | 2024-01-16 | Yujin Robot Co., Ltd. | 3D scanning LIDAR sensor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7035558B2 (ja) * | 2018-01-24 | 2022-03-15 | 株式会社デンソー | ライダー装置 |
WO2019171726A1 (ja) * | 2018-03-08 | 2019-09-12 | パナソニックIpマネジメント株式会社 | レーザレーダ |
EP3835817B1 (en) * | 2018-05-16 | 2024-08-07 | Miele & Cie. KG | 3d scanning lidar sensor |
CN109794688B (zh) * | 2019-02-20 | 2024-05-10 | 广东铭钰科技股份有限公司 | 一种可调节激光方向的激光打标装置 |
US11194236B2 (en) | 2019-11-22 | 2021-12-07 | Ricoh Company, Ltd. | Optical-element angle adjustment device and image projection device |
KR102656294B1 (ko) * | 2020-06-23 | 2024-04-19 | 주식회사 라이드로 | 라이다 장치 |
CN114047496B (zh) * | 2021-10-14 | 2024-10-01 | 中国第一汽车股份有限公司 | 一种多激光雷达可调的耦合系统及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221336A (ja) * | 2004-02-04 | 2005-08-18 | Nippon Densan Corp | スキャニング型レンジセンサ |
JP2011095474A (ja) * | 2009-10-29 | 2011-05-12 | Sanyo Electric Co Ltd | ビーム照射装置 |
JP2013130531A (ja) * | 2011-12-22 | 2013-07-04 | Sanyo Electric Co Ltd | レーザレーダ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4819403B2 (ja) * | 2005-06-06 | 2011-11-24 | 株式会社トプコン | 距離測定装置 |
KR101018135B1 (ko) * | 2008-08-04 | 2011-02-25 | 삼성전기주식회사 | 자율주행체의 공간 스캔 장치 |
KR101046040B1 (ko) * | 2008-09-23 | 2011-07-01 | 삼성전기주식회사 | 자율주행체의 공간 스캔 장치 |
JP2011169730A (ja) | 2010-02-18 | 2011-09-01 | Denso Wave Inc | レーザ測定装置 |
WO2012144341A1 (ja) * | 2011-04-20 | 2012-10-26 | 三洋電機株式会社 | レーザレーダ |
EP3173816B1 (en) * | 2015-11-06 | 2019-01-09 | Aisin Seiki Kabushiki Kaisha | Distance measuring device |
-
2014
- 2014-11-13 WO PCT/JP2014/005698 patent/WO2015155812A1/ja active Application Filing
- 2014-11-13 CN CN201480075971.0A patent/CN106030373B/zh active Active
- 2014-11-13 JP JP2016512494A patent/JP6371985B2/ja active Active
-
2016
- 2016-08-05 US US15/229,114 patent/US10191273B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221336A (ja) * | 2004-02-04 | 2005-08-18 | Nippon Densan Corp | スキャニング型レンジセンサ |
JP2011095474A (ja) * | 2009-10-29 | 2011-05-12 | Sanyo Electric Co Ltd | ビーム照射装置 |
JP2013130531A (ja) * | 2011-12-22 | 2013-07-04 | Sanyo Electric Co Ltd | レーザレーダ |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10962647B2 (en) | 2016-11-30 | 2021-03-30 | Yujin Robot Co., Ltd. | Lidar apparatus based on time of flight and moving object |
JP2018180438A (ja) * | 2017-04-20 | 2018-11-15 | パイオニア株式会社 | 光走査装置及び測距装置 |
KR20190001861A (ko) * | 2017-06-28 | 2019-01-07 | 주식회사 에스오에스랩 | 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체 |
KR102009024B1 (ko) * | 2017-06-28 | 2019-08-08 | 주식회사 에스오에스랩 | 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체 |
WO2019039728A1 (ko) * | 2017-08-21 | 2019-02-28 | (주)유진로봇 | 초소형 3차원 스캐닝 라이다 센서 |
US11579298B2 (en) | 2017-09-20 | 2023-02-14 | Yujin Robot Co., Ltd. | Hybrid sensor and compact Lidar sensor |
KR102076478B1 (ko) * | 2017-10-23 | 2020-04-07 | 주식회사 유진로봇 | 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체 |
KR20190044995A (ko) * | 2017-10-23 | 2019-05-02 | 주식회사 유진로봇 | 이동성 거울을 이용한 광 송수신기, 3차원 거리 측정 장치, 및 이동체 |
JP2021505914A (ja) * | 2017-12-08 | 2021-02-18 | 上海禾賽光電科技有限公司Hesai Photonics Technology Co.,Ltd | レーザレーダシステム及びその制御方法、走査角度の取得方法、車両 |
JP7309743B2 (ja) | 2017-12-08 | 2023-07-18 | 上海禾賽科技有限公司 | レーザレーダシステム及びその制御方法、走査角度の取得方法、車両 |
KR20190130921A (ko) * | 2018-05-15 | 2019-11-25 | 현대모비스 주식회사 | 라이다 센서 및 그 제어 방법 |
KR102393440B1 (ko) * | 2018-05-15 | 2022-05-03 | 현대모비스 주식회사 | 라이다 센서 및 그 제어 방법 |
US11433856B2 (en) | 2018-05-15 | 2022-09-06 | Hyundai Mobis Co., Ltd. | Lidar sensor and control method thereof |
KR20190131414A (ko) * | 2018-05-16 | 2019-11-26 | 주식회사 유진로봇 | 스캔 모드를 변경하는 3차원 스캐닝 라이다 센서 |
KR20190131413A (ko) * | 2018-05-16 | 2019-11-26 | 주식회사 유진로봇 | 자체 교정을 수행하는 3차원 스캐닝 라이다 센서 |
KR102226359B1 (ko) * | 2018-05-16 | 2021-03-11 | 주식회사 유진로봇 | 스캔 모드를 변경하는 3차원 스캐닝 라이다 센서 |
KR102240518B1 (ko) * | 2018-05-16 | 2021-04-15 | 주식회사 유진로봇 | 자체 교정을 수행하는 3차원 스캐닝 라이다 센서 |
US11874399B2 (en) | 2018-05-16 | 2024-01-16 | Yujin Robot Co., Ltd. | 3D scanning LIDAR sensor |
CN109581328A (zh) * | 2018-12-21 | 2019-04-05 | 宁波傲视智绘光电科技有限公司 | 一种激光雷达 |
CN113418107A (zh) * | 2021-06-22 | 2021-09-21 | 国网山东省电力公司高唐县供电公司 | 全景实时监控装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015155812A1 (ja) | 2017-04-13 |
CN106030373B (zh) | 2018-05-29 |
US20160341957A1 (en) | 2016-11-24 |
CN106030373A (zh) | 2016-10-12 |
US10191273B2 (en) | 2019-01-29 |
JP6371985B2 (ja) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6371985B2 (ja) | ミラー駆動装置、ビーム照射装置およびレーザレーダ | |
US7940443B2 (en) | Laser radar and beam irradiation apparatus therefor | |
JP2009014698A (ja) | ビーム照射装置およびレーザレーダ | |
JP2012154806A (ja) | レーザレーダおよび受光装置 | |
TWI453461B (zh) | Optical scanning devices and laser processing devices | |
JP2009058341A (ja) | ビーム照射装置およびレーザレーダ | |
JP5223321B2 (ja) | レーザレーダ装置 | |
WO2017168500A1 (ja) | 光学装置 | |
JP5707092B2 (ja) | レーザ加工装置 | |
JP2015125109A (ja) | レーザレーダおよびビーム照射装置 | |
JP2007309696A (ja) | 表面検査ヘッド装置 | |
US11878367B2 (en) | Optical device and article manufacturing method | |
JP2008299144A (ja) | ビーム照射装置およびレーザレーダ | |
JP2008298652A (ja) | ビーム照射装置およびレーザレーダ | |
JP2008298686A (ja) | ビーム照射装置およびレーザレーダ | |
JP2011047833A (ja) | ビーム照射装置 | |
KR100660112B1 (ko) | 레이저빔의 광폭이 제어되는 레이저와 비전의 동축가공장치 | |
JP2009128014A (ja) | ビーム照射装置 | |
JP2011169730A (ja) | レーザ測定装置 | |
CN111856487A (zh) | 测距装置 | |
US20210149026A1 (en) | Optical distance measuring device | |
KR101941580B1 (ko) | 표면형상 측정장치 | |
JP2004240275A (ja) | レーザ走査装置 | |
WO2014174734A1 (ja) | ビーム照射装置、レーザレーダおよびミラーアクチュエータ | |
JP2005331541A (ja) | 光軸調節装置および光軸自動調節システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14888822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016512494 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14888822 Country of ref document: EP Kind code of ref document: A1 |