WO2014174734A1 - ビーム照射装置、レーザレーダおよびミラーアクチュエータ - Google Patents

ビーム照射装置、レーザレーダおよびミラーアクチュエータ Download PDF

Info

Publication number
WO2014174734A1
WO2014174734A1 PCT/JP2014/000052 JP2014000052W WO2014174734A1 WO 2014174734 A1 WO2014174734 A1 WO 2014174734A1 JP 2014000052 W JP2014000052 W JP 2014000052W WO 2014174734 A1 WO2014174734 A1 WO 2014174734A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
pan
rotation axis
tilt
actuator
Prior art date
Application number
PCT/JP2014/000052
Other languages
English (en)
French (fr)
Inventor
洋 森寺
健一郎 川渕
山口 淳
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015513495A priority Critical patent/JPWO2014174734A1/ja
Publication of WO2014174734A1 publication Critical patent/WO2014174734A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present invention relates to a beam irradiation apparatus that scans a beam in a target area, a laser radar that detects the state of the target area based on reflected light when the target area is irradiated with laser light, and a mirror mounted on the beam irradiation apparatus. It relates to an actuator.
  • laser radar has been used for security applications such as intrusion detection into buildings.
  • radar radar scans a laser beam within a target area, and detects the presence or absence of an object at each scan position from the presence or absence of reflected light at each scan position. Further, the distance to the object at each scan position is detected based on the required time from the laser light irradiation timing at each scan position to the reflected light reception timing (Patent Document 1).
  • a gimbal mirror actuator that rotates a mirror about two axes as rotation axes can be used.
  • the laser light is incident on the mirror from an oblique direction.
  • the mirror is rotated in the horizontal direction and the vertical direction using the two axes as rotation axes, the laser light is oscillated in the horizontal direction and the vertical direction in the target area.
  • laser radar laser light is scanned horizontally in a target area. Further, a plurality of horizontal scanning lines are set in the vertical direction. For this reason, in a scanning line at a position shifted in the vertical direction from the center of the target area, the laser beam is moved in the horizontal direction while being swung in the vertical direction by a predetermined angle (an angle corresponding to the target scanning line) from the horizontal direction. It needs to be scanned.
  • the present invention has been made in view of such a problem, and provides a beam irradiation apparatus, a laser radar, and a mirror actuator mounted on the beam irradiation apparatus that can make the scanning locus of laser light close to the horizontal. Objective.
  • a beam irradiation apparatus includes an emission unit that emits laser light, and a mirror actuator that scans the laser light in a target region.
  • the mirror actuator includes a mirror that reflects the laser light toward a target area, a first rotation axis, and a second rotation axis that is orthogonal to the first rotation axis.
  • a mirror driving section that rotates in the first direction and the second direction.
  • the laser beam is incident on the reflecting surface of the mirror at a predetermined incident angle in a plane perpendicular to the second rotation axis when the mirror is in a neutral position.
  • the target region is used.
  • the reflection surface is inclined at a predetermined angle with respect to the first rotation axis so that the scanning line of the laser beam approaches a straight line.
  • a laser radar according to a second aspect includes a beam irradiation device according to the first aspect, a condensing element that condenses the reflected light reflected by the target region and reflected by the mirror, and the condensing element And a photodetector for receiving the reflected light collected by.
  • the third aspect of the present invention relates to a mirror actuator for scanning a laser beam in a target area.
  • the mirror actuator includes a mirror on which the laser light is incident, a first rotation shaft, and a second rotation shaft orthogonal to the first rotation shaft. And a mirror driving section that rotates in the second direction.
  • the mirror is disposed such that a reflection surface is inclined at a predetermined angle with respect to the first rotation axis.
  • the present invention it is possible to provide a beam irradiation apparatus, a laser radar, and a mirror actuator mounted on the beam irradiation apparatus that can make the scanning locus of the laser light closer to the horizontal.
  • the emission unit 3 including the laser light source 31 corresponds to an “emission part” described in the claims.
  • the light receiving lens 51 corresponds to a “condensing element” recited in the claims.
  • the pan coil 151, the tilt coils 221 and 231, the pan magnet 161, and the tilt magnets 171 and 181 correspond to a “mirror drive unit” described in the claims.
  • the pan shaft 120 corresponds to a “first rotation shaft” recited in the claims.
  • the tilt shafts 260 and 270 correspond to a “second rotating shaft” recited in the claims.
  • the combination of the output unit 3 including the mirror actuator 2 and the laser light source 31 corresponds to a “beam irradiation device” recited in the claims.
  • the description of the correspondence between the above claims and the present embodiment is merely an example, and the invention according to the claims is not limited to the present embodiment.
  • FIG. 1 is an exploded perspective view of a laser radar 1 according to the present embodiment.
  • the laser radar 1 includes a mirror actuator 2, an emission unit 3, a bending mirror unit 4, a light receiving unit 5, a base unit 6, and circuit boards 71 and 72.
  • FIG. 2 is an exploded perspective view of the mirror actuator 2. As illustrated, the mirror actuator 2 includes an inner unit 100 and an outer unit 200.
  • FIG. 3 is an exploded perspective view of the inner unit 100 of the mirror actuator 2 as viewed from the front side.
  • FIG. 4 is an exploded perspective view of the inner unit 100 as seen from the rear side.
  • the inner unit 100 includes an inner unit frame 110, a pan shaft 120, an LED 130, a mirror unit 140, a pan coil unit 150, a pan magnet unit 160, and tilt magnet units 170 and 180. Suspension wires 191 and 192 are provided.
  • the inner unit frame 110 is a frame member that rotatably supports the pan shaft 120.
  • the inner unit frame 110 has a rectangular outline in a front view.
  • the inner unit frame 110 is formed of a lightweight resin or the like. Further, the inner unit frame 110 has a symmetrical shape.
  • magnet mounting grooves 111 and 112 for mounting the pan magnet holder 162 and the tilt magnet holder 172 are provided on the upper side surface and the right side surface of the inner unit frame 110, respectively.
  • a magnet mounting groove 113 for mounting the tilt magnet holder 182 is provided on the left side surface of the inner unit frame 110.
  • circuit board mounting grooves 114 and 115 are provided on the lower surface of the inner unit frame 110.
  • the circuit board mounting grooves 114 and 115 are respectively formed with flanges 114a and 115a protruding rearward.
  • the circuit board mounting grooves 114 and 115 are formed with engaging portions 114b and 115b that engage with the suspension wire fixing boards 193 and 194, respectively.
  • the inner unit frame 110 is formed with shaft holes 116 and 117 arranged vertically and shaft holes 118 and 119 arranged right and left.
  • the shaft holes 116 and 117 are disposed at the center positions of the upper and lower side surfaces, and the shaft holes 118 and 119 are disposed at the center positions of the left and right side surfaces.
  • a step portion 121 for fitting the mirror holder 142 is formed on the front side of the pan shaft 120. Holes 121 a and 121 b that engage with the mirror holder 142 are formed at the upper and lower ends of the stepped portion 121, respectively. Further, as shown in FIG. 4, an LED mounting portion 122 is formed on the rear side of the pan shaft 120. As will be described later, the pan shaft 120 is used as a rotation shaft that rotates the mirror 141 in the Pan direction.
  • the LED 130 is a diffusion type (wide directional type) and can diffuse light over a wide range. As will be described later, the diffused light from the LED 130 is used to detect the scanning position within the target region of the scanning laser light.
  • the LED 130 is attached to the LED circuit board 131.
  • the LED circuit board 131 is attached to the LED mounting portion 122 of the pan shaft 120 from the rear side.
  • the mirror unit 140 includes a mirror 141 and a mirror holder 142.
  • the reflection surface of the mirror 141 is formed of a dielectric multilayer film.
  • the thickness of the dielectric thin film and the number of layers are designed so that the reflecting surface of the mirror 141 has the characteristic of suppressing the dependency of the reflectance on the incident angle of light. That is, the dielectric multilayer film is designed so that a high reflectance can be obtained in substantially the same manner no matter how the mirror 141 rotates.
  • FIG. 5 (a) to 5 (c) are diagrams showing the configuration of the mirror holder 142.
  • FIG. 5 (a) to 5 (c) are diagrams showing the configuration of the mirror holder 142.
  • the mirror holder 142 is a holding member for holding the mirror 141 at a predetermined angle with respect to the pan shaft 120.
  • a mirror holding portion 142a for holding the mirror 141 is formed on the front side of the mirror holder 142.
  • the mirror holding part 142a has a substantially rhombus shape when viewed from the front.
  • the mirror holding part 142a is inclined forward from the longitudinal direction of the pan shaft 120 at a predetermined angle.
  • a pan shaft mounting portion 142b that engages with the step portion 121 of the pan shaft 120 is formed.
  • Convex portions 142c and 142d that engage with the holes 121a and 121b of the pan shaft 120 are formed at the upper and lower ends of the pan shaft mounting portion 142b.
  • FIG. 6 is a diagram showing the configuration of the pan coil unit 150.
  • 6A is an exploded perspective view when the pan coil unit 150 is viewed from the upper side
  • FIG. 6B is a perspective view when the pan coil holder 152 is viewed from the lower side
  • FIG. It is a perspective view when the pan coil unit 150 is seen from the upper side.
  • the pan coil unit 150 includes a pan coil 151, a pan coil holder 152, a yoke 153, and a suspension wire fixing substrate 154.
  • the pan coil holder 152 is made of a resin material. As shown in FIG. 6B, the pan coil holder 152 is provided with four pan coil mounting portions 152a.
  • the pan coil mounting part 152a has a structure in which a wall is formed around a substantially fan-shaped opening penetrating vertically.
  • the pan coil 151 is fixed to each of the four pan coil mounting portions 152a so as to be wound along the wall.
  • the four pan coils 151 have substantially the same fan shape. When the four pan coils 151 are respectively mounted on the corresponding pan coil mounting portions 152a, the outline of the entire pan coil 151 becomes a substantially circular shape in plan view.
  • the four pan coils 151 are evenly arranged in the circumferential direction so that the fan-shaped sides are adjacent to each other.
  • the four pan coils 151 are connected in series, and the winding direction is adjusted so that an electromagnetic driving force in the same rotational direction is generated in each pan coil 151 by flowing current in a state where the mirror actuator 2 is assembled. Has been.
  • a shaft hole 152b through which an end of the pan shaft 120 is passed is provided in the center of the pan coil holder 152.
  • a shaft hole 153 a for allowing the end of the pan shaft 120 to pass is provided in the center of the yoke 153.
  • the yoke 153 strengthens the action of the magnetic field of the opposing pan magnet 161.
  • the corner of the pan coil holder 152 is raised in a trapezoidal shape, and two wire holes 152c for passing the suspension wire 191 and two wire holes 152d for passing the suspension wire 192 are formed in this portion. Yes.
  • the wire holes 152c and 152d penetrate vertically.
  • the suspension wire fixing substrate 154 has a rectangular thin plate shape.
  • the suspension wire fixing substrate 154 is made of glass epoxy resin.
  • two terminal holes 154b for passing the suspension wire 191 and two terminal holes 154c for passing the suspension wire 192 are formed at positions corresponding to the wire holes 152c and 152d. .
  • the terminal holes 154b and 154c penetrate vertically.
  • recesses for placing solder are formed around the terminal holes 154b and 154c on the upper surface of the suspension wire fixing substrate 154.
  • a circuit pattern is arranged on the upper surface of the suspension wire fixing substrate 154 so that terminals connected to a lead wire for supplying current to the pan coil 151 and the LED 130 and terminal holes 154b and 154c are electrically connected.
  • columnar convex portions 152e and 152f are formed on the upper surface of the pan coil holder 152.
  • Two holes 153b are formed in the yoke 153 at positions corresponding to the convex portions 152e.
  • the yoke 153 is positioned on the pan coil holder 152 by passing the hole 153b through the convex portion 152e. In this state, the yoke 153 is bonded and fixed to the upper surface of the pan coil holder 152.
  • the suspension wire fixing substrate 154 In the suspension wire fixing substrate 154, two holes 154a are formed at positions corresponding to the convex portions 152f.
  • the suspension wire fixing substrate 154 is positioned with respect to the pan coil holder 152 by passing the hole 154a through the convex portion 152f. In this state, the suspension wire fixing substrate 154 is bonded and fixed to the upper surface of the pan coil holder 152. Thereby, the pan coil unit 150 shown in FIG. 6C is completed.
  • the position of the shaft hole 152b of the pan coil holder 152 is matched with the position of the shaft hole 153a of the yoke 153. Further, the position of the wire hole 152c of the pan coil holder 152 is aligned with the position of the terminal hole 154b of the suspension wire fixing substrate 154, and the position of the wire hole 152d of the pan coil holder 152 is aligned with the position of the terminal hole 154c of the suspension wire fixing substrate 154. To fit the position.
  • the pan magnet unit 160 includes four pan magnets 161 and a pan magnet holder 162.
  • the four pan magnets 161 have a substantially square shape.
  • the polarity and arrangement of the pan magnet 161 are adjusted so that a rotational force about the pan shaft 120 is generated by applying a current to the pan coil 151 in a state where the mirror actuator 2 is assembled.
  • the pan magnet holder 162 is made of a magnetic material and enhances the action of a magnetic field generated in the pan magnet 161.
  • the pan magnet holder 162 is attracted and fixed to the pan magnet 161.
  • the pan magnet holder 162 is formed with two convex portions 162a to 162d for determining the position of the pan magnet 161.
  • a pan magnet 161 is fitted between the two convex portions 162a to 162d. After the arrangement adjustment of the pan magnet 161 with respect to the pan magnet holder 162 is completed, the pan magnet 161 is bonded and fixed to the pan magnet holder 162.
  • the tilt magnet unit 170 has the same configuration as the pan magnet unit 160.
  • the tilt magnet holder 172 two convex portions 172a to 172d for determining the position of the tilt magnet 171 are formed.
  • a tilt magnet 171 is fitted between the two convex portions 172a to 172d and fixed by adhesion.
  • the tilt magnet unit 180 is configured in the same manner as the tilt magnet unit 170, and includes a tilt magnet 181 and a tilt magnet holder 182.
  • the tilt magnet holder 182 is also formed with two convex portions 182a to 182d for determining the position of the tilt magnet 181.
  • the suspension wires 191 and 192 are made of phosphor bronze, beryllium copper, etc., and have excellent conductivity and spring properties.
  • the suspension wires 191 and 192 have a circular cross section.
  • the suspension wires 191 and 192 have the same shape and characteristics as each other, and are used to apply a stable load when supplying current to the pan coil 151 and the LED 130 and rotating the mirror 141 in the Pan direction. Note that the suspension wires 191 and 192 do not substantially expand and contract even when a force is applied in the longitudinal direction.
  • the suspension wire fixing substrate 193 is a circuit substrate made of glass epoxy resin or the like and has flexibility. A hole 193 a is formed in the suspension wire fixing substrate 193.
  • the suspension wire fixing substrate 193 has two terminal holes 193b through which the suspension wire 191 is passed.
  • the suspension wire fixing substrate 193 is formed with two terminals 193c for connecting a suspension wire 281 described later.
  • the suspension wire fixing board 193 is provided with a circuit pattern so that the two terminal holes 193b and the two terminals 193c are electrically connected.
  • the suspension wire fixing substrate 194 is configured symmetrically with the suspension wire fixing substrate 193.
  • a hole 194a, two terminal holes 194b, and two terminals 194c are formed.
  • the pan shaft 120 is passed through the shaft hole 116 and accommodated in the inner unit frame 110. Then, bearings 116 a and 117 a are attached to the shafts at both ends of the pan shaft 120. In this state, the bearings 116a and 117a are fitted into the shaft holes 116 and 117 formed in the inner unit frame 110, respectively. Further, bearings 118a and 119a for the tilt shafts 260 and 270 are fitted into shaft holes 118 and 119 formed in the inner unit frame 110, respectively. Thereby, the assembly shown in FIG. 7A is completed.
  • the pan magnet holder 162 is fitted into the magnet mounting groove 111 of the inner unit frame 110 and is fixedly bonded.
  • the tilt magnet holder 172 is fitted into the magnet mounting groove 112 of the inner unit frame 110 and is fixedly bonded.
  • the tilt magnet holder 182 is fitted into the magnet mounting groove 113 of the inner unit frame 110 and fixed by adhesion. Thereby, the assembly shown in FIG. 7B is completed.
  • the pan coil unit 150 is passed through the shaft at the upper end of the pan shaft 120, and the pan coil unit 150 is attached to the upper end of the pan shaft 120. Then, nuts 123 and 124 are attached to both ends of the pan shaft 120, respectively, and the pan coil unit 150 is fixed to the upper end of the pan shaft 120 by the nut 123. Thereby, the pan coil unit 150 can be rotated integrally with the pan shaft 120.
  • the suspension wire fixing substrate 193 is bonded and fixed to the bottom surface of the inner unit frame 110 so that the holes 193a are aligned with the engaging portions 114b formed on the bottom surface of the inner unit frame 110.
  • the suspension wire fixing substrate 194 is bonded and fixed to the bottom surface of the inner unit frame 110 so that the hole 194a is aligned with the engaging portion 115b formed on the bottom surface of the inner unit frame 110.
  • the suspension The terminal hole 154b of the wire fixing substrate 154 faces the terminal hole 193b of the suspension wire fixing substrate 193, and the terminal hole 154c of the suspension wire fixing substrate 154 faces the terminal hole 194b of the suspension wire fixing substrate 194.
  • the suspension wire 191 is passed through the terminal hole 154 b of the suspension wire fixing substrate 154 and the terminal hole 193 b of the suspension wire fixing substrate 193 through the wire hole 152 c of the pan coil holder 152.
  • the suspension wire 192 is passed through the terminal hole 154 b of the suspension wire fixing substrate 154 through the terminal hole 154 c of the suspension wire fixing substrate 154 and the wire hole 152 d of the pan coil holder 152.
  • the suspension wires 191 and 192 are soldered to the suspension wire fixing substrates 154, 193, and 194 together with the pan coil 151 and a conductive wire for supplying current to the LED 130. As a result, the assembly shown in FIG. 7C is completed.
  • the mirror 141 is mounted
  • FIG. 8A is a perspective view of the assembled inner unit 100 viewed from the front side
  • FIG. 8B is a perspective view of the assembled inner unit 100 viewed from the rear side.
  • the mirror 141 can be rotated in the Pan direction around the pan shaft 120.
  • the pan coil unit 150 rotates in the Pan direction as the mirror 141 rotates in the Pan direction.
  • the suspension wire fixing substrates 193 and 194 are fixed to the lower surface of the inner unit 100, the rotation of the mirror 141 in the Pan direction does not rotate in the Pan direction.
  • FIG. 9 is an exploded perspective view of the outer unit 200 of the mirror actuator 2 as viewed from the front side.
  • the outer unit 200 includes an actuator frame 210, tilt coil units 220 and 230, a servo unit 240, magnets 251 and 252, tilt shafts 260 and 270, and suspension wires 281 and 282.
  • the actuator frame 210 is made of a frame member that is open at the front. In the center of the left and right side surfaces of the actuator frame 210, shaft holes 211a and 212a for allowing the tilt shafts 260 and 270 to pass are formed. Screw holes 211b, 211c, 212b, and 212c for fixing the tilt coil units 220 and 230 are formed on the left and right side surfaces of the actuator frame 210. In addition, on the rear side surface of the actuator frame 210, an opening 213a for passing the pinhole box 244 of the servo unit 240, screw holes 213b and 213c for fixing the PSD substrate 241, and a pinhole box 244 are fixed. Screw holes 213d and 213e and screw holes 213f and 213g for fixing the mirror actuator 2 to the base unit 6 are formed.
  • the tilt coil unit 220 includes a tilt coil 221 and a tilt coil holder 222.
  • the tilt coil holder 222 is made of a resin material.
  • the tilt coil holder 222 is provided with four tilt coil mounting portions 222a.
  • the tilt coil mounting portion 222a has a structure in which a wall is formed around a substantially fan-shaped opening penetrating left and right.
  • a tilt coil 221 is fixed to each of the four tilt coil mounting portions 222a so as to be wound along the wall.
  • the four tilt coils 221 have substantially the same fan shape.
  • the four tilt coils 221 are respectively mounted on the corresponding tilt coil mounting portions 222a, the entire outline of the tilt coil 221 becomes a substantially circular shape in plan view. In this state, the four tilt coils 221 are evenly arranged in the circumferential direction so that the fan-shaped sides are adjacent to each other.
  • the four tilt coils 221 are connected in series, and an electromagnetic drive force in the same rotational direction is generated between each of the tilt coils 221 and the tilt magnet 171 by flowing a current in a state where the mirror actuator 2 is assembled.
  • the winding direction has been adjusted to occur.
  • a circular shaft hole 222b for allowing the tilt shaft 260 to pass therethrough is provided in the center of the tilt coil holder 222.
  • screw holes 222 c and 222 d for fixing to the actuator frame 210 are formed at both ends of the tilt coil holder 222.
  • the tilt coil unit 230 is configured in the same manner as the tilt coil unit 220. Here, detailed description of each part is omitted.
  • the servo unit 240 includes a PSD substrate 241, a PSD 242, a band pass filter 243, and a pinhole box 244.
  • PSD substrate 241 In the PSD substrate 241, two terminal holes 241a for passing the suspension wire 281 are formed.
  • the PSD substrate 241 has two terminal holes 241b through which the suspension wire 282 is passed.
  • Two screw holes 241 c and 241 d for fixing the PSD substrate 241 to the actuator frame 210 are formed in the PSD substrate 241.
  • a PSD 242 is mounted on the PSD substrate 241. The PSD 242 outputs a signal corresponding to the light receiving position of the servo light.
  • the bandpass filter 243 transmits only light in the wavelength band emitted from the LED 130 and removes stray light in other wavelength bands.
  • the band-pass filter 243 is attached to the concave portion 244a of the pinhole box 244 and fixed by adhesion.
  • the inside of the pinhole box 244 is hollow, and a recess 244a is formed in the center, and a pinhole 244b is formed in the recess 244a.
  • the pinhole 244b transmits part of the diffused light emitted from the LED 130.
  • the pinhole box 244 is made of a light shielding material and prevents stray light other than light transmitted through the pinhole 244b from entering the PSD 242.
  • Screw holes 244 c and 244 d for fixing to the actuator frame 210 are formed at the left and right ends of the pinhole box 244.
  • the magnets 251 and 252 have a substantially square shape, and are bonded and fixed to the left inner surface of the actuator frame 210 facing the tilt magnet holder 182 (see FIG. 8A).
  • the magnets 251 and 252 generate a force that attracts the tilt magnet holder 182 leftward and attracts the inner unit 100 leftward.
  • the tilt shaft 260 is smaller than the large-diameter portion 260a slightly smaller than the diameter of the shaft hole 211a of the actuator frame 210, the medium-diameter portion 260b slightly smaller than the diameter of the bearing 118a of the inner unit frame 110, and smaller than the medium-diameter portion 260b.
  • a small diameter portion 260c is formed.
  • the tilt shaft 270 includes a large-diameter portion 270a slightly smaller than the diameter of the shaft hole 212a of the actuator frame 210, a medium-diameter portion 270b slightly smaller than the diameter of the bearing 119a of the inner unit frame 110, and a medium-diameter portion 270b.
  • a smaller-diameter portion 270c is formed.
  • the tilt shafts 260 and 270 are used as rotation axes that rotate the mirror 141 in the tilt direction.
  • the suspension wires 281 and 282 are made of phosphor bronze, beryllium copper or the like, and have excellent conductivity and spring properties.
  • the suspension wires 281 and 282 have a rectangular cross section.
  • the suspension wires 281 and 282 have the same shape and characteristics as each other, and are used for supplying current to the pan coil 151 and the LED 130.
  • the suspension wires 281 and 282 have a shape that curves backward in a normal state.
  • the tilt coil units 220 and 230 are attached to the left and right side surfaces of the actuator frame 210.
  • the screws 222e and 222f are screwed into the screw holes 211b and 211c through the screw holes 222c and 222d.
  • the tilt coil unit 220 is fixed to the actuator frame 210.
  • the screws 232e and 232f are screwed into the screw holes 212b and 212c through the screw holes 232c and 232d.
  • the tilt coil unit 230 is fixed to the actuator frame 210.
  • the PSD substrate 241 is attached to the back surface of the actuator frame 210.
  • the screws 241e and 241f are screwed into the screw holes 213b and 213c through the screw holes 241c and 241d.
  • the PSD substrate 241 is fixed to the actuator frame 210.
  • the pinhole box 244 is passed through the opening 213a from the front side and attached to the front surface of the actuator frame 210.
  • the screws 244e and 244f are screwed into the screw holes 213d and 213e through the screw holes 244c and 244d.
  • the pinhole box 244 is fixed to the actuator frame 210.
  • the structure shown in FIG. 2 is assembled.
  • the inner unit 100 and the outer unit 200 are assembled, first, the inner unit 100 is accommodated in the outer unit 200. From the right, the large diameter portion 260a of the tilt shaft 260 is passed through the shaft hole 211a of the actuator frame 210, and the medium diameter portion 260b is passed through the bearing 118a of the inner unit frame 110. Thereafter, the nut 261 is attached to the small diameter portion 260 c of the tilt shaft 260.
  • the large diameter portion 270a of the tilt shaft 270 is passed through the shaft hole 212a of the actuator frame 210, and the middle diameter portion 270b is passed through the bearing 119a of the inner unit frame 110. Then, the nut 271 is attached to the small diameter portion 270c of the tilt shaft 270. Then, the tilt shafts 260 and 270 are bonded and fixed to the actuator frame 210.
  • the tilt shafts 260 and 270 are fixed so as not to rotate.
  • the tilt magnet 181 is attracted to the left.
  • a leftward force acts on the inner unit frame 110. That is, the inner unit frame 110 is rotated in the tilt direction in a state where the left bearing 119a is in contact with the nut 271.
  • one end of the suspension wire 281 is soldered to the terminal 193c of the suspension wire fixing substrate 193 as shown in FIG.
  • the other end of the suspension wire 281 is passed through the two terminal holes 241a of the PSD substrate 241 and soldered.
  • suspension wire 282 is soldered to the terminal 194c of the suspension wire fixing substrate 194.
  • the other end of the suspension wire 282 is passed through the two terminal holes 241b of the PSD substrate 241 and soldered.
  • a current is supplied to the pan coil 151 attached to the inner unit frame 110 and the LED 130 by the suspension wire 282.
  • a conductive wire is directly connected to the tilt coils 221 and 231 from the PSD substrate 241 and supplied with current.
  • FIG. 10A is a perspective view of the mirror actuator 2 viewed from the front
  • FIG. 10B is a perspective view of the mirror actuator 2 viewed from the rear.
  • the inner unit frame 110 can rotate around the tilt shafts 260 and 270 in the tilt direction.
  • the pan coil unit 150 and the suspension wire fixing substrates 193 and 194 rotate in the tilt direction as the inner unit frame 110 rotates in the tilt direction.
  • the inner unit frame 110 is driven by the electromagnetic driving force generated in the tilt coils 221 and 231 and the tilt magnets 171 and 181. Rotates in the tilt direction about the tilt shafts 260 and 270, and the mirror 141 rotates in the tilt direction.
  • the mirror 141 can be rotated in the Pan direction and the Tilt direction.
  • the mirror actuator 2 since the mirror 141 is attached to the pan shaft 120 serving as a support shaft in the Pan direction by the mirror holder 142, the mirror 141 can be rotated more in the Pan direction than in the Tilt direction. it can.
  • the mirror 141 is tilted forward by a predetermined angle from the axial direction of the pan shaft 120 by the mirror holder 142.
  • the lower end of the mirror 141 is positioned at the lower end of the step portion 121 of the pan shaft 120. That is, the center of the mirror 141 is positioned slightly in front of the pan shaft 120 that is the center of rotation in the Pan direction.
  • FIG. 11A is an exploded perspective view of the emission unit 3.
  • the emission unit 3 includes a laser light source 31, a laser holder 32, a beam shaping lens 33, and a lens holder 34.
  • the laser light source 31 is a CAN package type laser light source that emits laser light having a wavelength of about 880 nm to 940 nm.
  • a circuit board 31b on which a circuit for driving the laser light source 31 is mounted is connected to the laser light source 31 through a socket 31a.
  • the laser holder 32 is a holding member for holding the laser light source 31 and the beam shaping lens 33.
  • the laser holder 32 is formed with a substantially cylindrical laser holding portion 32a at the front center.
  • the laser holding portion 32 a has a circular opening 32 b for accommodating the lens holder 34 and a circular opening 32 c for accommodating the laser light source 31.
  • the laser light source 31 is fitted into the opening 32c from the rear. In this state, the laser light source 31 is bonded and fixed to the laser holding portion 32a.
  • the laser holding portion 32a is held by a thin plate portion 32f extending from the left and right ends so as to reduce a portion that blocks light incident on the light receiving lens 51 described later.
  • the beam shaping lens 33 converges the emitted laser light so that the emitted laser light has a predetermined shape in the target area.
  • the lens holder 34 has a substantially cylindrical shape with different outer diameters at the front and rear.
  • a beam shaping lens 33 is accommodated, and a circular opening 34a for guiding the laser beam emitted from the laser light source 31 to the beam shaping lens 33 is formed.
  • the beam shaping lens 33 is fitted into the opening 34a from the front. In this state, the beam shaping lens 33 is bonded and fixed to the lens holder 34.
  • FIG. 11B is an exploded perspective view of the bending mirror unit 4.
  • the bending mirror unit 4 includes a bending mirror 41 and a bending mirror holding part 42.
  • the reflecting surface of the bending mirror 41 is formed of a dielectric multilayer film, and the dielectric multilayer film is designed so that a high reflectance can be obtained with respect to light in the wavelength band emitted from the laser light source 31.
  • the bending mirror holding part 42 is formed with a support part 42a composed of a slope inclined by a predetermined angle from a direction perpendicular to the bottom surface and a convex part protruding from the slope.
  • the folding mirror 41 is bonded and fixed to the folding mirror holding portion 42 with the back surface supported by the support portion 42 a of the folding mirror holding portion 42.
  • FIG. 12A is an exploded perspective view of the light receiving unit 5.
  • FIG. 12B is a perspective view of the lens holder 52 as seen from the rear side.
  • the light receiving unit 5 includes a light receiving lens 51, a lens holder 52, a band pass filter 53, and a photodetector 54.
  • the light receiving lens 51 is a resin lens.
  • the light receiving lens 51 condenses the light reflected from the target area.
  • the lens holder 52 is made of a resin material that does not transmit light.
  • the lens holder 52 has an opening 52a formed in front to guide reflected light to the photodetector 54.
  • the light receiving lens 51 is attached to the opening 52 a from the front, and is fixed to the lens holder 52 by adhesion.
  • the lens holder 52 has a recess 52b formed on the rear back surface, and a filter mounting portion 52c for fitting the bandpass filter 53 is formed in the center of the recess 52b.
  • a filter mounting portion 52c for fitting the bandpass filter 53 is formed in the center of the recess 52b.
  • an opening 52d for guiding the reflected light transmitted through the light receiving lens 51 to the photodetector 54 is formed.
  • the band pass filter 53 transmits only light in the wavelength band emitted from the laser light source 31 and removes stray light in other wavelength bands.
  • the band-pass filter 53 is attached to the filter mounting portion 52c of the lens holder 52 and fixed by adhesion.
  • the photodetector 54 is made of an APD (avalanche photodiode) or a PIN photodiode, and is mounted on the circuit board 54a.
  • the photodetector 54 outputs an electrical signal having a magnitude corresponding to the amount of received light to the circuit board 54a.
  • the circuit board 54a is attached to the rear rear surface of the lens holder 52, and is fixed to the lens holder 52 with screws 55a to 55d. In this way, the light receiving unit 5 is assembled.
  • the base unit 6 includes a base 61 and a cover 62.
  • the base 61 is a frame member for assembling the mirror actuator 2, the emission unit 3, the bending mirror unit 4, the light receiving unit 5, and the circuit boards 71 and 72.
  • the circuit boards 71 and 72 include a CPU, a memory, and the like, and are electrically connected to circuit boards such as the mirror actuator 2, the laser light source 31, and the photodetector 54.
  • the emission unit 3 is first placed at the center of the base 61 and fixed to the base 61 with screws 35a to 35d. Further, the bending mirror unit 4 is placed in front of the base 61 and is fixed to the base 61 by screws 43a to 43d. Further, the light receiving unit 5 is placed behind the base 61 and fixed to the base 61 with screws 56a and 56b. Then, the circuit board 71 is fixed to the right side surface of the base 61 with screws 71a to 71d. The circuit board 72 is fixed to the left side surface of the base 61 with screws 72a to 72d.
  • FIG. 13 is a perspective view of a structure in which the emission unit 3, the bending mirror unit 4, the light receiving unit 5, and the circuit boards 71 and 72 are assembled to the base 61, as viewed from the rear side.
  • flange portions 611 a and 611 c are formed on the upper portion of the mirror actuator mounting portion 611 of the base 61. Screw holes 611b and 611d are formed in the flange portions 611a and 611c. Also, flange portions 611e and 611g are formed slightly above and below the mirror actuator mounting portion 611. The flanges 611e and 611g are inclined at a predetermined inclination from the vertical direction to the rear direction. Screw holes 611f and 611h are formed in the flange portions 611e and 611g.
  • the cover 62 is a protective member that protects the mirror actuator 2. Screw holes 62 a and 62 b are formed in the cover 62.
  • the mirror actuator 2 is attached to the flange portions 611e and 611g of the mirror actuator mounting portion 611 in a state where the mirror actuator 2 is inclined by a predetermined angle from the vertical direction. Then, the screws 63a and 63b are screwed into the screw holes 213f and 213g of the mirror actuator 2 through the screw holes 611f and 611h. Thereby, the mirror actuator 2 is fixed to the base 61.
  • the cover 62 is attached to the flange portions 611a and 611c of the mirror actuator mounting portion 611 with screws 64a and 64b. Then, the screws 64a and 64b are screwed into the screw holes 611b and 611d through the screw holes 62a and 62b. As a result, the cover 62 is fixed to the base 61.
  • the position of the beam shaping lens 33 can be adjusted in the front-rear direction by moving the lens holder 34 back and forth. Then, the laser light is emitted from the laser light source 31, and the lens holder 34 is adjusted in the front-rear direction so that the laser light is focused at a predetermined distance (for example, 15 m). Specifically, first, a screen is set up at a target distance (approximately 15 m), and this screen is irradiated with laser light. In this state, the beam shaping lens 33 is moved in the front-rear direction so that the focal point is formed on the screen. Then, the beam shaping lens 33 is positioned at a position where the beam spot diameter is minimum on the screen.
  • the holding screw 32e is screwed into the screw hole 32d formed in the upper part of the laser holding portion 32a, and the lens holder 34 is fixed by the flat tip portion of the holding screw 32e. Is pressed against the laser holding portion 32a. Thereby, the lens holder 34 is fixed to the laser holding portion 32a.
  • FIG. 14 is a perspective view showing the laser radar 1 with the cover removed. Finally, the cover is attached and the assembly of the laser radar 1 is completed. Although not shown, a visible light cut filter 81 (see FIG. 16A) for attenuating light in the visible light wavelength band is attached to the cover.
  • the laser light emitted from the laser light source 31 passes through the beam shaping lens 33 and is reflected by the bending mirror 41. Thereafter, the laser light is reflected by the mirror 141 of the mirror actuator 2. And a laser beam permeate
  • FIG. 15 is a view showing a cross section of the mirror actuator 2 in a state where the mirror actuator 2 is attached to the base 61.
  • the pan shaft 120 is inclined slightly rearward from the vertical direction.
  • the mirror 141 is mounted on the pan shaft 120 by the mirror holder 142 in a state where the reflection surface B is tilted forward from the rotation axis A of the pan shaft 120 by an angle ⁇ .
  • the angle ⁇ formed by the rotation axis A of the pan shaft 120 and the reflection surface B of the mirror 141 is set to an angle of 28 °.
  • the configuration in which the mirror 141 is attached to the pan shaft 120 by the mirror holder 142 and the reflecting surface B is tilted forward from the rotation axis A of the pan shaft 120 by an angle ⁇ is an example of the configuration according to claim 5. It is.
  • the mirror 141 is positioned at a position where the center O of the reflection surface B is farther forward than the rotation axis A of the pan shaft 120. Thereby, the lower end of the mirror 141 is positioned forward. Therefore, the inner unit frame 110 can prevent the reflected light from the bending mirror 141 incident on the mirror 141 from being blocked.
  • the configuration in which the center O of the reflection surface B of the mirror 141 is positioned in front of the rotation axis A of the pan shaft 120 is an example of a configuration according to claim 3.
  • the mirror 141 has the lower end of the reflection surface B positioned in front of the stepped portion 121 of the pan shaft 120, so that the mirror 141 does not penetrate the pan shaft 120 and the mirror actuator 2 is Can be configured. Therefore, the structure for mounting the mirror 141 to the pan shaft 120 can be simplified.
  • the configuration in which the lower end of the reflection surface B of the mirror 141 is positioned in front of the step portion 121 of the pan shaft 120 is an example of a configuration according to claim 4.
  • FIG. 16 (a) is a diagram schematically showing the optical paths of the emitted light and reflected light of the laser light.
  • FIG. 16B is a front view of the light receiving lens 51 as viewed from the bending mirror 41 side.
  • FIG. 16A shows the XYZ axis, the X axis corresponds to the horizontal direction in FIG. 14, the Y axis corresponds to the vertical direction in FIG. 14, and the Z axis corresponds to FIG. This corresponds to the front-rear direction.
  • the mirror actuator 2 of the present embodiment is arranged such that the reflection surface B of the mirror 141 is inclined at an angle ⁇ so as to approach the positive direction of the Z axis in the in-plane direction of the YZ plane from the rotation axis A of the pan shaft 120.
  • the angle ⁇ is set to 28 °.
  • the bending mirror 41 of the present embodiment is arranged so that the reflection surface is inclined at an angle of 15.5 ° so as to approach the positive Z-axis direction from the positive Y-axis direction to the in-plane direction of the YZ plane.
  • the laser light source 31 of the present embodiment is arranged so that the outgoing optical axis is parallel to the Z axis.
  • the incident angle ⁇ 1 of the laser beam emitted from the laser light source 31 with respect to the bending mirror 41 is 15.5 °.
  • the incident angle ⁇ 2 of the laser beam reflected by the bending mirror 41 is also 15.5 °.
  • the “neutral position” refers to a position where the mirror 141 is not rotated by the mirror actuator 2 and the reflecting surface B of the mirror 141 is inclined at an angle ⁇ from the rotation axis A of the pan shaft 120. At the neutral position, the laser beam reflected by the bending mirror 41 is incident on the approximate center of the mirror 141.
  • the laser light source 31 the bending mirror 41 and the mirror actuator 2
  • the laser light emitted from the laser light source 31 when the mirror 141 is in the neutral position is reflected by the bending mirror 41 and the mirror 141.
  • the laser light is incident on the center position of the scanning range on the target area.
  • the configuration in which the laser light emitted from the laser light source 31 is reflected by the bending mirror 41 and the laser light reflected by the bending mirror 41 is incident on the mirror 141 is an example of the configuration according to claim 6.
  • the mirror actuator 2 transmits the beam shaping lens 33 and then reflects the laser beam reflected by the bending mirror 41 and the reflected light from the target region. And a mechanism for rotating around one axis.
  • the mirror 141 rotates, the laser beam is scanned in the target area.
  • the laser beam is scanned along a plurality of scanning lines parallel to the XZ plane in the target area.
  • the mirror 141 is driven in the Pan direction. Further, in order to change the scanning line, the mirror 141 is driven in the tilt direction.
  • Reflected light from the target area travels back along the optical path of the laser beam toward the target area and enters the mirror 141.
  • the reflected light that has entered the mirror 141 is reflected by the mirror 141 and enters the bending mirror 41.
  • the reflected light incident on the bending mirror 41 is reflected by the bending mirror 41 and travels in the direction toward the light receiving lens 51 (Z-axis negative direction).
  • the reflected light passing through the laser holding portion 32a and the plate portion 32f is shielded, and the other portion surrounded by a broken line
  • the reflected light passing through the light enters the light receiving lens 51.
  • the areas of the laser holding portion 32a and the plate portion 32f are smaller than the area of the portion surrounded by the broken line. Therefore, most of the reflected light reflected by the bending mirror 41 is not blocked and enters the light receiving lens 51.
  • the reflected light incident on the light receiving lens 51 is converged on the photodetector 54 by the light receiving lens 51. Since the band pass filter 53 is disposed in front of the photodetector 54, stray light having a wavelength band different from the wavelength band of the laser light emitted from the laser light source 31 is incident on the photodetector 54. Can be prevented.
  • the configuration in which the reflected light from the target area is collected on the photodetector 54 by the light receiving lens 51 is an example of the configuration according to claim 7.
  • the behavior of the reflected light is the same regardless of the rotation position of the mirror 141. That is, regardless of the rotational position of the mirror 141, the reflected light from the target region travels back in the optical path when the laser light is emitted and travels parallel to the optical axis of the beam shaping lens 33, so that the light receiving lens 51 is incident.
  • the photodetector 54 outputs an electrical signal having a magnitude corresponding to the amount of received light to the circuit board 54a, and the circuit board 54a digitizes the signal and outputs it to the circuit boards 71 and 72 in the subsequent stage.
  • the circuit boards 71 and 72 measure the presence / absence of an object in the target region and the distance to the object based on the signal from the photodetector 54. Specifically, the distance to this object is measured from the time difference between the timing when the laser beam is emitted and the timing when the signal is output from the photodetector 54.
  • the circuit configuration of the laser radar 1 will be described later with reference to FIG.
  • the mirror 141 is configured to tilt forward (X-axis positive side) by the tilt angle ⁇ from the rotation axis A of the pan shaft 120.
  • the inventors of the present application change the tilt angle ⁇ of the mirror 141 from the rotation axis A of the pan shaft 120, rotate the mirror 141 only in the Pan direction, and scan the laser beam in the target region.
  • the trajectory of the scanning line was calculated by simulation.
  • the distance to the flat screen in the target area is set to 15 cm.
  • the target area is set to a distance of about 15 m, for example.
  • 17 (a) to 17 (d) are diagrams showing the trajectory of the scanning line in this simulation.
  • the horizontal axis represents the angle of the rotation axis in the Pan direction
  • the vertical axis represents the scanning position (mm) in the tilt direction in the target area.
  • the mirror 141 is rotated in the tilt direction at + 1.25 °, 0 °, and ⁇ 1.25 °, and the mirror 141 is rotated in the range of ⁇ 30 ° to 30 ° in the Pan direction.
  • the trajectories of the scanning lines L1 to L3 are shown.
  • FIG. 17A shows a simulation result when the incident angle ⁇ 2 of the laser beam with respect to the mirror 141 (see FIG. 16A) is 0 °, that is, when the laser beam is incident on the mirror 141 from the front. It is.
  • the tilt angle ⁇ of the mirror 141 with respect to the rotation axis A of the pan shaft 120 is set to 0 °
  • the rotation axis A is set parallel to the vertical direction (Y-axis direction).
  • FIGS. 17B to 17D are diagrams showing simulation results when the incident angle ⁇ 2 of the laser beam with respect to the mirror 141 is 15.5 °.
  • the layout assumed in the simulation of FIG. 17A is set for convenience as a comparative example and cannot be used in an actual apparatus. That is, when the laser beam is incident on the mirror 141 from the front, a part of the light reflected by the mirror 141 is blocked by the emission unit 3 and the like, and the target region is appropriately irradiated with the laser beam. become unable.
  • the scanning line L1 in the target area is substantially horizontal.
  • the scanning lines L2 and L3 when the tilt of the mirror 141 in the tilt direction is ⁇ 1.25 ° are not so greatly curved.
  • the scan position in the tilt direction when the rotation axis angle in the pan direction is 0 ° is 6.5 mm
  • the scan position in the tilt direction when the rotation axis angle in the pan direction is ⁇ 30 ° is 9. 8 mm. That is, the deviation in the tilt direction of the scanning line L2 in the rotation range in the pan direction is 5 mm or less. Similarly, the deviation in the tilt direction of the scanning line L3 in the target area is also 5 mm or less.
  • FIG. 17B is a diagram showing a simulation result when the tilt angle ⁇ of the mirror 141 from the rotation axis A of the pan shaft 120 is 0 °.
  • all of the scanning lines L1 to L3 are greatly curved.
  • the scanning positions in the tilt direction when the rotation axis angles in the pan direction are 0 ° and + 30 ° are 0 mm and 35.8 mm, respectively. That is, the displacement in the tilt direction of the scanning line L1 in the rotation range in the pan direction exceeds 35 mm.
  • the scanning positions in the tilt direction are 6.5 mm and 45 mm, respectively, and the tilt of the scanning line L2 in the rotation range in the Pan direction is respectively.
  • the deviation in direction also exceeds 35 mm.
  • the displacement in the tilt direction on the scanning line L3 exceeds 35 mm.
  • the inclination angle ⁇ of the mirror 141 from the rotation axis A of the pan shaft 120 is set to 0 °, the target region The scanning line is also greatly displaced in the tilt direction.
  • FIG. 17C is a diagram showing a simulation result when the tilt angle ⁇ of the mirror 141 from the rotation axis A of the pan shaft 120 is 14 °.
  • the curves of the scanning lines L1 to L3 are suppressed as compared with the case of FIG.
  • the scan line L1 the scan positions in the tilt direction when the rotation axis angles in the pan direction are 0 ° and + 30 ° are 0 mm and 17.2 mm, respectively, and the scan line L1 in the tilt direction of the scan direction in the pan direction is in the tilt direction.
  • the displacement remains at about 17 mm.
  • the scan positions in the tilt direction when the rotation axis angle in the pan direction is 0 ° and + 30 ° are 6.5 mm and 26 mm, respectively, and the tilt of the scan line L2 in the rotation range in the pan direction is respectively.
  • the deviation in direction is suppressed to about 20 mm.
  • the scan line in the target area is shifted in the tilt direction, but the shift amount is 0 ° as shown in FIG. 17B. Less than sometimes.
  • FIG. 17D is a diagram showing a simulation result when the tilt angle ⁇ of the mirror 141 from the rotation axis A of the pan shaft 120 is 28 °.
  • the scanning lines L1 to L3 are remarkably suppressed in curvature and approach a straight line.
  • the scan position in the tilt direction in the rotation range in the pan direction ( ⁇ 30 °) is maximum when the rotation axis angle in the pan direction is 0 °, and the rotation axis angle in the pan direction is ⁇ 27.5.
  • the minimum value and maximum value of the scanning position in the tilt direction are ⁇ 0.5 mm and 0 mm, respectively, and the deviation in the tilt direction of the scanning line L1 in the rotation range in the pan direction is 0.5 mm or less.
  • the minimum value of the scanning position in the tilt direction is 7.8 mm when the rotation axis angle in the pan direction is ⁇ 30 °, and the maximum value of the scanning position in the tilt direction is the rotation in the pan direction. It is 6.5 mm when the shaft angle is 0 °. Therefore, the displacement in the tilt direction of the scanning line L2 in the rotation range in the pan direction is 1.5 mm or less. Similarly, in the scanning line L3, the deviation in the tilt direction in the rotation range in the pan direction is 1.5 mm or less.
  • the target region is set.
  • the displacement amount of the scanning line in the tilt direction is further suppressed compared to the case of FIG. 17C, and becomes substantially horizontal.
  • the scanning line in the target area has a smaller shift amount in the tilt direction than in the case of front incidence shown in FIG. Is even more horizontal.
  • the laser light travels horizontally toward the target area.
  • the incident angle ⁇ 2 of the laser beam with respect to the mirror 141 is set to a predetermined angle.
  • the tilt angle ⁇ of the mirror 141 with respect to the rotation axis A of the pan shaft 120 is set so that the scanning line in the target region approaches the horizontal. Thereby, the laser beam can be scanned horizontally in the target area.
  • the control of the mirror 141 in the tilt direction during the scanning of the laser beam can be simplified, and the amount of current required to drive the mirror 141 is suppressed. be able to.
  • the tilt angle ⁇ when the tilt angle ⁇ is set so that the scanning line in the target region is substantially horizontal, the mirror 141 is driven and controlled in the tilt direction when scanning each scanning line. There is no need. Therefore, in this case, the control of the mirror 141 in the tilt direction is the simplest, and the amount of current required to drive the mirror 141 can be minimized.
  • the control amount of the mirror 141 in the tilt direction can be reduced to about half compared to the case of FIG.
  • the configuration in which the tilt angle ⁇ from the rotation axis A of the pan shaft 120 of the mirror 141 is set so that the scanning line in the target region approaches horizontal in this way is an example of the configuration according to claim 1. is there.
  • the displacement amount of each scanning line in the tilt direction is equal to or smaller than a predetermined reference value in the rotation range in the pan direction, it is not necessary to drive and control the mirror 141 in the tilt direction in scanning with respect to each scanning line.
  • the incident angle ⁇ 2 of the laser beam with respect to the mirror 141 is set to a predetermined angle
  • the inclination angle ⁇ of the mirror 141 with respect to the rotation axis A of the pan shaft 120 is gradually increased.
  • the tilt angle ⁇ is determined so that the amount of deviation of each scanning line in the tilt direction within the rotation range in the pan direction is equal to or less than a predetermined reference value.
  • the inclination angle ⁇ at which the scanning line in the target area becomes substantially horizontal can be obtained.
  • the predetermined reference value is set to, for example, the amount of deviation in the tilt direction when the angle in the tilt direction is 1 °.
  • the configuration in which the inclination angle ⁇ from A is set is an example of the configuration according to claim 2.
  • the rotation axis A of the pan shaft 120 is inclined at a predetermined angle from the vertical direction (Y-axis direction) to the Z-axis negative side.
  • the tilt direction and tilt angle of the pan shaft 120 are determined by the tilt of the mirror 141 and the incident angle ⁇ 2 of the laser beam with respect to the mirror 141, and if the scanning line in the target area can be brought close to the horizontal, the rotation axis A may be inclined at a direction and angle other than the above with respect to the vertical direction.
  • the rotation axis A of the pan shaft 120 may be set to be parallel to the vertical direction (Y-axis direction), and the rotation axis A is predetermined from the vertical direction (Y-axis direction) to the Z-axis positive side. It may be inclined at an angle of.
  • FIGS. 18A and 18B are diagrams illustrating a servo optical system for detecting the position of the mirror 141.
  • FIG. FIG. 18A shows only a partial sectional view of the mirror actuator 2, the bending mirror 41, and the laser light source 31.
  • the mirror actuator 2 is provided with the LED 130, the pinhole box 244 in which the pinhole 244b is formed, and the PSD substrate 241 on which the PSD 242 is mounted. .
  • the LED 130, the PSD 242 and the pinhole 244b are arranged so that the LED 130 faces the pinhole 244b of the pinhole box 244 and the center of the PSD 242 when the mirror 141 of the mirror actuator 2 is in the neutral position. That is, when the mirror 141 is in the neutral position, the pinhole box 244 and the PSD 242 are arranged so that the servo light emitted from the LED 130 and passing through the pinhole 244b is perpendicularly incident on the center of the PSD 242.
  • the pinhole 244b is disposed at a position closer to the PSD 242 than an intermediate position between the LED 130 and the PSD 242.
  • the PSD 242 outputs a current signal corresponding to the light receiving position of the servo light.
  • the optical path of light passing through the pinhole 244b out of the diffused light (servo light) from the LED 130 is LP1 to LP2. It is displaced to.
  • the incident position of the servo light on the PSD 242 changes, and the position detection signal output from the PSD 242 changes.
  • the servo light emission position from the LED 130 and the servo light incident position on the light receiving surface of the PSD 242 have a one-to-one correspondence. Therefore, the position of the mirror 141 can be detected based on the incident position of the servo light detected by the PSD 242. As a result, the scanning position of the scanning laser light in the target area can be detected.
  • FIG. 19 is a diagram showing a circuit configuration of the laser radar 1. For the sake of convenience, the main configuration of the optical system is also shown in FIG.
  • the laser radar 1 includes a PSD signal processing circuit 701, a servo LED driving circuit 702, an actuator driving circuit 703, a scan LD driving circuit 704, a PD signal processing circuit 705, and a DSP 706.
  • the PSD signal processing circuit 701 outputs a position detection signal obtained based on the output signal from the PSD 242 to the DSP 706.
  • the servo LED drive circuit 702 supplies a drive signal to the LED 130 based on the signal from the DSP 706.
  • the actuator drive circuit 703 drives the mirror actuator 2 based on the signal from the DSP 706. Specifically, a drive signal for scanning the laser beam along a predetermined trajectory in the target area is supplied to the mirror actuator 2.
  • the scan LD drive circuit 704 supplies a drive signal to the laser light source 31 based on a signal from the DSP 706. Specifically, a pulsed drive signal (current signal) is supplied to the laser light source 31 at the timing of irradiating the target region with the laser light.
  • the PD signal processing circuit 705 amplifies and digitizes a voltage signal corresponding to the amount of light received by the photodetector 54 and supplies the amplified signal to the DSP 706.
  • the DSP 706 detects the scanning position of the laser beam in the target area based on the position detection signal input from the PSD signal processing circuit 701, and executes drive control of the mirror actuator 2, drive control of the laser light source 31, and the like. . Further, the DSP 706 determines whether an object is present at the laser light irradiation position in the target area based on the voltage signal input from the PD signal processing circuit 705, and at the same time, the laser light output from the laser light source 31. The distance to the object is measured based on the time difference between the irradiation timing and the light reception timing of the reflected light from the target area received by the photodetector 54.
  • the mirror actuator 2 is configured so that the mirror 141 has the predetermined inclination angle ⁇ with respect to the rotation axis A of the pan shaft 120, the scanning line in the target region is horizontally set. You can get closer. Thereby, the operation control of the mirror 141 can be simplified. Further, the amount of current required for driving the mirror 141 can be suppressed.
  • the scan line in the target area can be made substantially horizontal.
  • the control of the mirror 141 in the tilt direction can be made unnecessary. Therefore, the operation control of the mirror 141 can be further simplified, and the amount of current required for driving the mirror 141 can be further suppressed.
  • the mirror 141 is positioned at a position where the center O of the mirror 141 is away from the rotation axis A of the pan shaft 120, so that it is reflected by the bending mirror and heads toward the mirror 141. It is possible to prevent the laser light from being blocked by the inner unit frame 110.
  • the mirror 141 has the lower end of the mirror 141 positioned in front of the step portion 121 of the pan shaft 120, so that the mirror 141 does not penetrate the pan shaft 120. Can be configured. Therefore, the structure for mounting the mirror 141 to the pan shaft 120 can be simplified.
  • the emission unit 3 and the light receiving unit 5 can be efficiently arranged in the space below the mirror actuator 2. it can. Thereby, size reduction of the laser radar 1 can be achieved.
  • the light receiving optical path of the reflected light from the target area is bent by the bending mirror 41 as shown in FIG. 16A, but the reflected light from the target area is shown in FIG.
  • the light receiving optical path may not be bent.
  • the bending mirror 41 can be omitted, the optical system tends to be large in the Z-axis direction. Accordingly, in this configuration example, the laser radar 1 as a whole is easily increased in size, and in order to make the laser radar 1 compact, the light receiving optical path of the reflected light from the target area is bent by the bending mirror 41 as in the above embodiment. It is desirable to have a configuration that can be used.
  • the incident angle ⁇ 2 of the laser beam with respect to the mirror 141 is set to 15.5 °
  • the tilt angle ⁇ of the mirror 141 with respect to the rotation axis A of the pan shaft 120 is set to 28 °.
  • An angle may be set.
  • the horizontality of the scanning line in the target region is impaired as the incident angle ⁇ 2 increases.
  • the height of the laser radar 1 in the Y-axis direction tends to increase as the incident angle ⁇ 2 increases. Therefore, it is desirable that the incident angle ⁇ 2 be as small as possible as long as the reflected light from the target region is not blocked by the visible light cut filter 81 or the emission unit 3 after being reflected by the mirror 141.
  • the incident angle ⁇ 2 is set to an angle of 15.5 ° or less
  • the inclination angle ⁇ from the rotation axis A at which the scanning line in the target area is substantially horizontal is assumed to be 28 ° or less.
  • the emission unit 3 is disposed between the bending mirror 41 and the light receiving lens 51, but the present invention is not limited to this.
  • the emission unit 3 may be disposed between the bending mirror 41 and the mirror 141.
  • the mirror 141 is mounted on the pan shaft 120 by the mirror holder 142 so that the mirror 141 has a predetermined inclination angle ⁇ with respect to the rotation axis A of the pan shaft 120.
  • An inclined portion having a predetermined inclination may be formed at 120, and the mirror 141 may be directly attached to the inclined portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 レーザ光の走査軌跡を水平に近づけることができるビーム照射装置、レーザレーダおよび該ビーム照射装置に搭載されるミラーアクチュエータを提供する。レーザレーダ(1)は、出射ユニット(3)と、ミラーアクチュエータ(2)を備える。ミラーアクチュエータ(2)は、レーザ光を反射させるミラー(141)を備え、ミラー(141)をPan方向およびTilt方向に回動させる。レーザ光は、ミラー(141)が中立位置にあるときに、所定の入射角(θ2)でミラー(141)の反射面(B)に入射する。ミラー(141)を中立位置からTilt方向に回動させた位置に保ちながら、Pan方向にミラー(141)を回動させて、目標領域内においてレーザ光を走査させる場合に、レーザ光の走査ラインが直線に近づくように、反射面(B)が、パンシャフト(120)に対して、所定の角度(α)だけ傾いている。

Description

ビーム照射装置、レーザレーダおよびミラーアクチュエータ
 本発明は、目標領域においてビームを走査させるビーム照射装置、目標領域にレーザ光を照射したときの反射光をもとに目標領域の状況を検出するレーザレーダおよび該ビーム照射装置に搭載されるミラーアクチュエータに関するものである。
 近年、建物への侵入検知等のセキュリティ用途として、レーザレーダが用いられている。一般に、レーダレーダは、レーザ光を目標領域内でスキャンさせ、各スキャン位置における反射光の有無から、各スキャン位置における物体の有無を検出する。さらに、各スキャン位置におけるレーザ光の照射タイミングから反射光の受光タイミングまでの所要時間をもとに、各スキャン位置における物体までの距離が検出される(特許文献1)。
 目標領域においてレーザ光を走査させるためのアクチュエータとして、たとえば、2つの軸を回動軸としてミラーを回動させるジンバル方式のミラーアクチュエータを用いることができる。このミラーアクチュエータを用いる場合、レーザ光は、斜め方向からミラーに入射される。2つの軸を回動軸としてミラーが水平方向と鉛直方向に回動されると、目標領域内においてレーザ光が水平方向と鉛直方向に振られる。
特開2009-14698号公報
 一般に、レーザレーダでは、レーザ光が目標領域において水平にスキャンされる。また、水平方向の走査ラインは鉛直方向に複数段設定される。このため、目標領域中央から鉛直方向にずれた位置にある走査ラインでは、レーザ光を、水平方向から所定角度(目標の走査ラインに応じた角度)だけ鉛直方向に振った状態で、水平方向に走査させる必要がある。
 しかし、上記ジンバル方式のスキャン機構では、一方の軸を固定軸としてミラーを鉛直方向に固定させた状態で、他方の軸を回動軸としてミラーを水平方向に回動させると、目標領域におけるレーザ光の走査軌跡は水平とはならず、水平から傾いた状態となる。このため、かかるスキャン機構では、各走査ラインに対するスキャン動作時に、スキャン軌跡が水平となるよう、ミラーを、2軸周りに同時に回動させる必要があり、動作制御が複雑になり易く、また、駆動に要する電流量が増加するとの問題が生じる。
 本発明は、かかる課題に鑑みて為されたものであり、レーザ光の走査軌跡を水平に近づけることができるビーム照射装置、レーザレーダおよび該ビーム照射装置に搭載されるミラーアクチュエータを提供することを目的とする。
 本発明の第1の局面はビーム照射装置に関する。第1の局面に係るビーム照射装置は、レーザ光を出射する出射部と、目標領域において前記レーザ光を走査させるミラーアクチュエータと、を備える。前記ミラーアクチュエータは、前記レーザ光を、目標領域に向かって反射させるミラーと、第1の回動軸と前記第1の回動軸に直交する第2の回動軸とによって前記ミラーをそれぞれ第1の方向および第2の方向に回動させるミラー駆動部と、を備える。前記レーザ光は、前記ミラーが中立位置にあるときに、前記第2の回動軸に垂直な平面内において、所定の入射角度で前記ミラーの反射面に入射する。また、前記ミラーを前記中立位置から前記第2の方向に回動させた位置に保ちながら、前記第1の方向に前記ミラーを回動させて、前記レーザ光を走査させる場合に、前記目標領域内において前記レーザ光の走査ラインが直線に近づくように、前記反射面が、前記第1の回動軸に対して、所定の角度だけ傾いている。
 本発明の第2の局面はレーザレーダに関する。第2の局面に係るレーザレーダは、前記第1の局面に係るビーム照射装置と、前記目標領域において反射され、前記ミラーによって反射された反射光を集光する集光素子と、前記集光素子により集光された前記反射光を受光する光検出器と、を備える。
 本発明の第3の局面は目標領域においてレーザ光を走査させるためのミラーアクチュエータに関する。第3の局面に係るミラーアクチュエータは、前記レーザ光が入射するミラーと、第1の回動軸と前記第1の回動軸に直交する第2の回動軸とによって前記ミラーをそれぞれ第1の方向および第2の方向に回動させるミラー駆動部と、を備える。前記ミラーは、反射面が、前記第1の回動軸に対して所定の角度で傾くように配置される。
 本発明によれば、レーザ光の走査軌跡を水平に近づけることができるビーム照射装置、レーザレーダおよび該ビーム照射装置に搭載されるミラーアクチュエータを提供することができる。
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。
実施の形態に係るレーザレーダの分解斜視図を示す図である。 実施の形態に係るミラーアクチュエータの分解斜視図を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの構成を示す図である。 実施の形態に係るレーザレーダの組立過程を示す図である。 実施の形態に係るレーザレーダの組立過程を示す図である。 実施の形態に係るレーザレーダの組立過程を示す図である。 実施の形態に係るレーザレーダの構成を示す図である。 実施の形態に係るレーザレーダの構成を示す図である。 実施の形態に係るレーザ光の出射光と反射光の光路を示す図である。 実施の形態に係るレーザ光の走査ラインの軌跡を示す図である。 実施の形態に係るサーボ光学系の構成および作用を説明する図である。 実施の形態に係るレーザレーダの回路構成を示す図である。 変更例に係るレーザ光の出射光と反射光の光路を示す図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 以下に示す実施の形態において、レーザ光源31を含む出射ユニット3は、特許請求の範囲に記載の「出射部」に相当する。受光レンズ51は、特許請求の範囲に記載の「集光素子」に相当する。パンコイル151、チルトコイル221、231、パンマグネット161およびチルトマグネット171、181は、特許請求の範囲に記載の「ミラー駆動部」に相当する。パンシャフト120は、特許請求の範囲に記載の「第1の回動軸」に相当する。チルトシャフト260、270は、特許請求の範囲に記載の「第2の回動軸」に相当する。ミラーアクチュエータ2とレーザ光源31を含む出射ユニット3の組み合わせは、特許請求の範囲に記載の「ビーム照射装置」に相当する。ただし、上記請求項と本実施の形態との対応の記載はあくまで一例であって、請求項に係る発明を本実施の形態に限定するものではない。
 図1は、本実施の形態に係るレーザレーダ1の分解斜視図である。レーザレーダ1は、ミラーアクチュエータ2と、出射ユニット3と、折り曲げミラーユニット4と、受光ユニット5と、ベースユニット6と回路基板71、72を備えている。
 図2は、ミラーアクチュエータ2の分解斜視図である。図示の如く、ミラーアクチュエータ2は、インナーユニット100と、アウターユニット200とを備えている。
 図3は、ミラーアクチュエータ2のインナーユニット100を前側から見た分解斜視図である。図4は、インナーユニット100を後側から見た分解斜視図である。
 図3を参照して、インナーユニット100は、インナーユニットフレーム110と、パンシャフト120と、LED130と、ミラーユニット140と、パンコイルユニット150と、パンマグネットユニット160と、チルトマグネットユニット170、180と、サスペンションワイヤー191、192とを備えている。
 インナーユニットフレーム110は、パンシャフト120を回動可能に支持する枠部材である。インナーユニットフレーム110は、正面視において長方形の輪郭を有している。インナーユニットフレーム110は、軽量な樹脂等で形成されている。また、インナーユニットフレーム110は、左右対称な形状となっている。
 図3に示すように、インナーユニットフレーム110の上側面と右側面には、それぞれ、パンマグネットホルダ162とチルトマグネットホルダ172を装着するためのマグネット装着溝111、112が設けられている。また、図4に示すように、インナーユニットフレーム110の左側面には、チルトマグネットホルダ182を装着するためのマグネット装着溝113が設けられている。さらに、インナーユニットフレーム110の下側面には、回路基板装着溝114、115が設けられている。回路基板装着溝114、115には、それぞれ、後方に突出する鍔部114a、115aが形成されている。また、回路基板装着溝114、115には、それぞれ、サスペンションワイヤー固定基板193、194と係合する係合部114b、115bが形成されている。
 また、インナーユニットフレーム110には、上下に並ぶ軸孔116、117と、左右に並ぶ軸孔118、119が形成されている。軸孔116、117は、上下の側面の中心位置に配置され、軸孔118、119は、左右の側面の中心位置に配置されている。
 図3に示すように、パンシャフト120の前側には、ミラーホルダ142を嵌め込むための段部121が形成されている。段部121の上下端には、それぞれ、ミラーホルダ142と係合する孔121a、121bが形成されている。また、図4に示すように、パンシャフト120の後側には、LED装着部122が形成されている。パンシャフト120は、後述するように、ミラー141をPan方向に回動させる回転軸として利用される。
 LED130は、拡散タイプ(広指向タイプ)であり、広い範囲に光を拡散させることができる。LED130からの拡散光は、後述するように、走査用のレーザ光の目標領域内での走査位置を検出するために利用される。LED130は、LED回路基板131に取り付けられている。LED回路基板131は、後側から、パンシャフト120のLED装着部122に取り付けられる。
 ミラーユニット140は、ミラー141と、ミラーホルダ142を備えている。ミラー141の反射面は、誘電体多層膜により形成されている。ミラー141の反射面は、光の入射角に対する反射率の依存性を抑制する特性を有するように誘電体薄膜の膜厚、層数が設計されている。すなわち、ミラー141がどのように回動したとしても、略同様に高い反射率が得られるように、誘電体多層膜が設計されている。
 図5(a)~図5(c)は、ミラーホルダ142の構成を示す図である。
 ミラーホルダ142は、パンシャフト120に対して、ミラー141を所定の角度で傾けた状態で保持するための保持部材である。ミラーホルダ142の前側には、ミラー141を保持するためのミラー保持部142aが形成されている。ミラー保持部142aは、正面視において、略菱形の形状を有する。ミラー保持部142aは、パンシャフト120の長手方向から前方に所定の角度で傾いている。
 ミラーホルダ142の後側には、パンシャフト120の段部121と係合するパンシャフト装着部142bが形成されている。パンシャフト装着部142bの上下端には、それぞれ、パンシャフト120の孔121a、121bと係合する凸部142c、142dが形成されている。
 図6は、パンコイルユニット150の構成を示す図である。図6(a)は、パンコイルユニット150を上側から見たときの分解斜視図、図6(b)は、パンコイルホルダ152を下側から見たときの斜視図、図6(c)は、パンコイルユニット150を上側から見たときの斜視図である。
 図6(a)を参照して、パンコイルユニット150は、パンコイル151と、パンコイルホルダ152と、ヨーク153と、サスペンションワイヤー固定基板154を備えている。
 パンコイルホルダ152は、樹脂材料からなっている。図6(b)を示すように、パンコイルホルダ152には、4つのパンコイル装着部152aが設けられている。パンコイル装着部152aは、上下に貫通する略扇形の開口の周りに壁が形成された構成となっている。これら4つのパンコイル装着部152aには、それぞれ、パンコイル151が壁に沿って巻回されるようにして固着される。4つのパンコイル151は、略扇形の同じ形状を有している。4つのパンコイル151が、それぞれ、対応するパンコイル装着部152aに装着されると、パンコイル151全体の輪郭は、平面視において略円形形状になる。この状態で、4つのパンコイル151は、扇形の辺が互いに隣接するように、円周方向に均等に並ぶ。4つのパンコイル151は、一続きとなっており、ミラーアクチュエータ2が組み立てられた状態において電流を流入することにより、それぞれのパンコイル151に同じ回転方向の電磁駆動力が発生するよう、巻き方向が調整されている。
 また、図6(a)を示すように、パンコイルホルダ152の中央には、パンシャフト120の端部を通すための軸孔152bが設けられている。また、ヨーク153の中央には、パンシャフト120の端部を通すための軸孔153aが設けられている。ヨーク153は、対向するパンマグネット161の磁界の作用を強める。
 また、パンコイルホルダ152の隅は台状に盛り上がっており、この部分に、サスペンションワイヤー191を通すための2つのワイヤー孔152cと、サスペンションワイヤー192を通すための2つのワイヤー孔152dが形成されている。ワイヤー孔152c、152dは、上下に貫通している。サスペンションワイヤー固定基板154は、長方形の薄板形状を有している。
 サスペンションワイヤー固定基板154は、ガラスエポキシ樹脂からなっている。サスペンションワイヤー固定基板154には、ワイヤー孔152c、152dに対応する位置に、サスペンションワイヤー191を通すための2つの端子穴154bと、サスペンションワイヤー192を通すための2つの端子穴154cが形成されている。端子穴154b、154cは、上下に貫通している。また、サスペンションワイヤー固定基板154上面の端子穴154b、154cの周りには、半田を載せるための凹部が形成されている。また、サスペンションワイヤー固定基板154上面には、パンコイル151およびLED130に電流を供給するための導線が接続される端子と端子穴154b、154cが電気的に接続されるよう回路パターンが配されている。
 また、パンコイルホルダ152の上面には、円柱状の凸部152e、152fが形成されている。ヨーク153には、凸部152eに対応する位置に、2つの孔153bが形成されている。凸部152eに孔153bが通されることにより、ヨーク153がパンコイルホルダ152に位置決めされる。この状態で、ヨーク153がパンコイルホルダ152の上面に接着固定される。
 サスペンションワイヤー固定基板154には、凸部152fに対応する位置に、2つの孔154aが形成されている。サスペンションワイヤー固定基板154は、凸部152fに孔154aが通されることにより、パンコイルホルダ152に対して位置決めされる。この状態で、サスペンションワイヤー固定基板154が、パンコイルホルダ152の上面に接着固定される。これにより、図6(c)に示すパンコイルユニット150が完成する。
 この状態で、パンコイルホルダ152の軸孔152bの位置は、ヨーク153の軸孔153aの位置に合わされる。また、パンコイルホルダ152のワイヤー孔152cの位置は、サスペンションワイヤー固定基板154の端子穴154bの位置に合わされ、パンコイルホルダ152のワイヤー孔152dの位置は、サスペンションワイヤー固定基板154の端子穴154cの位置に合わされる。
 図3に戻り、パンマグネットユニット160は、4つのパンマグネット161と、パンマグネットホルダ162を備えている。4つのパンマグネット161は、略方形形状である。また、パンマグネット161は、ミラーアクチュエータ2が組み立てられた状態においてパンコイル151に電流を印加することにより、パンシャフト120を軸とする回動力が生じるように極性と配置が調整されている。
 パンマグネットホルダ162は、磁性体で構成されており、パンマグネット161に発生する磁界の作用を強める。パンマグネットホルダ162は、パンマグネット161に引きつけられて固定される。パンマグネットホルダ162には、パンマグネット161の位置を決めるための2つの凸部162a~162dが形成されている。2つの凸部162a~162dの間に、パンマグネット161が嵌め込まれる。パンマグネットホルダ162に対するパンマグネット161の配置調整が完了した後、パンマグネット161がパンマグネットホルダ162に接着固定される。
 チルトマグネットユニット170も、パンマグネットユニット160と同様の構成を有する。チルトマグネットホルダ172には、チルトマグネット171の位置を決めるための2つの凸部172a~172dが形成されている。2つの凸部172a~172dの間に、チルトマグネット171が嵌め込まれ、接着固定される。
 図4に示すように、チルトマグネットユニット180は、チルトマグネットユニット170と同様にして構成され、チルトマグネット181と、チルトマグネットホルダ182とを備えている。チルトマグネットホルダ182にも、チルトマグネット181の位置を決めるための2つの凸部182a~182dが形成されている。
 サスペンションワイヤー191、192は、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー191、192は、断面が円形状となっている。サスペンションワイヤー191、192は、互いに同じ形状および特性を持ち、パンコイル151とLED130への電流供給と、ミラー141のPan方向の回動時において、安定した負荷を与えるために利用される。なお、サスペンションワイヤー191、192は、長手方向に力が加えられたとしても、略伸縮することはない。
 サスペンションワイヤー固定基板193は、ガラスエポキシ樹脂等からなる回路基板であり、可撓性を有している。サスペンションワイヤー固定基板193には、孔193aが形成されている。また、サスペンションワイヤー固定基板193には、サスペンションワイヤー191を通すための2つの端子穴193bが形成されている。また、サスペンションワイヤー固定基板193には、後述するサスペンションワイヤー281を接続するための2つの端子193cが形成されている。また、サスペンションワイヤー固定基板193には、2つの端子穴193bと2つの端子193cが電気的に接続されるよう回路パターンが配されている。
 サスペンションワイヤー固定基板194は、サスペンションワイヤー固定基板193と左右対称に構成されている。サスペンションワイヤー固定基板194には、孔194aと、2つの端子穴194bと、2つの端子194cが形成されている。
 インナーユニット100の組立時には、まず、パンシャフト120が、軸孔116に通され、インナーユニットフレーム110内に収容される。そして、パンシャフト120の両端の軸に軸受け116a、117aが取り付けられる。そして、この状態で、軸受け116a、117aが、それぞれ、インナーユニットフレーム110に形成された軸孔116、117に嵌め込まれる。また、チルトシャフト260、270のための軸受け118a、119aが、それぞれ、インナーユニットフレーム110に形成された軸孔118、119に嵌め込まれる。これにより、図7(a)に示す組立体が完成する。
 その後、パンマグネットホルダ162が、インナーユニットフレーム110のマグネット装着溝111に嵌め込まれ、接着固定される。同様にして、チルトマグネットホルダ172が、インナーユニットフレーム110のマグネット装着溝112に嵌め込まれ、接着固定される。また、同様にして、チルトマグネットホルダ182が、インナーユニットフレーム110のマグネット装着溝113に嵌め込まれ、接着固定される。これにより、図7(b)に示す組立体が完成する。
 次に、パンコイルユニット150が、パンシャフト120上端の軸に通されて、パンコイルユニット150が、パンシャフト120の上端に装着される。そして、パンシャフト120両端に、それぞれ、ナット123、124が装着され、ナット123により、パンコイルユニット150が、パンシャフト120の上端に固着される。これにより、パンコイルユニット150が、パンシャフト120と一体的に回動可能となる。
 その後、サスペンションワイヤー固定基板193が、インナーユニットフレーム110の底面に形成された係合部114bに孔193aが整合するように、インナーユニットフレーム110の底面に接着固定される。同様にして、サスペンションワイヤー固定基板194が、インナーユニットフレーム110の底面に形成された係合部115bに孔194aが整合するように、インナーユニットフレーム110の底面に接着固定される この状態で、サスペンションワイヤー固定基板154の端子穴154bが、サスペンションワイヤー固定基板193の端子穴193bに対向し、サスペンションワイヤー固定基板154の端子穴154cが、サスペンションワイヤー固定基板194の端子穴194bに対向する。そして、サスペンションワイヤー191が、サスペンションワイヤー固定基板154の端子穴154bと、パンコイルホルダ152のワイヤー孔152cを介して、サスペンションワイヤー固定基板193の端子穴193bに通される。同様に、サスペンションワイヤー192が、サスペンションワイヤー固定基板154の端子穴154cと、パンコイルホルダ152のワイヤー孔152dを介して、サスペンションワイヤー固定基板194の端子穴194bに通される。サスペンションワイヤー191、192は、それぞれ、パンコイル151と、LED130に電流を供給するための導線とともにサスペンションワイヤー固定基板154、193、194に半田付けられる。これにより、図7(c)に示す組立体が完成する。
 そして、図7(d)に示すように、ミラー141がミラーホルダ142に装着され、接着固定される。その後、ミラーホルダ142の凸部142c、142dがパンシャフト120の孔121a、121bに通されて、ミラーユニット140がパンシャフト120に装着される。そして、ミラーホルダ142がパンシャフト120に接着固定される。
 これにより、図8(a)、図8(b)に示すように、インナーユニット100の組立が完了する。図8(a)は、組み立てられたインナーユニット100を前側から見た斜視図であり、図8(b)は、組み立てられたインナーユニット100を後側から見た斜視図である。この状態で、ミラー141は、パンシャフト120を軸としてPan方向に回動可能となる。なお、パンコイルユニット150は、ミラー141のPan方向の回動に伴って、Pan方向に回動する。他方、サスペンションワイヤー固定基板193、194は、インナーユニット100の下面に固着されているため、ミラー141のPan方向の回動に伴って、Pan方向に回動しない。
 図9は、ミラーアクチュエータ2のアウターユニット200を前側から見た分解斜視図である。
 アウターユニット200は、アクチュエータフレーム210と、チルトコイルユニット220、230と、サーボユニット240と、マグネット251、252と、チルトシャフト260、270と、サスペンションワイヤー281、282とを備えている。
 アクチュエータフレーム210は、前方が開いた枠部材からなっている。アクチュエータフレーム210の左右の側面の中央には、チルトシャフト260、270を通すための軸孔211a、212aが形成されている。また、アクチュエータフレーム210の左右の側面には、チルトコイルユニット220、230を固定するためのネジ穴211b、211c、212b、212cが形成されている。また、アクチュエータフレーム210の後側面には、サーボユニット240のピンホール箱244を通すための開口213aと、PSD基板241を固定するためのネジ穴213b、213cと、ピンホール箱244を固定するためのネジ穴213d、213eと、ベースユニット6にミラーアクチュエータ2を固定するためのネジ穴213f、213gが形成されている。
 チルトコイルユニット220は、チルトコイル221と、チルトコイルホルダ222とを備えている。
 チルトコイルホルダ222は、樹脂材料からなっている。チルトコイルホルダ222には、4つのチルトコイル装着部222aが設けられている。チルトコイル装着部222aは、左右に貫通する略扇形の開口の周りに壁が形成された構成となっている。これら4つのチルトコイル装着部222aには、それぞれ、チルトコイル221が壁に沿って巻回されるようにして固着される。4つのチルトコイル221は、略扇形の同じ形状を有している。4つのチルトコイル221が、それぞれ、対応するチルトコイル装着部222aに装着されると、チルトコイル221全体の輪郭は、平面視において略円形形状になる。この状態で、4つのチルトコイル221は、扇形の辺が互いに隣接するように、円周方向に均等に並ぶ。4つのチルトコイル221は、一続きとなっており、ミラーアクチュエータ2が組み立てられた状態において電流を流入することによりそれぞれのチルトコイル221とチルトマグネット171との間に同じ回転方向の電磁駆動力が発生するよう、巻き方向が調整されている。
 チルトコイルホルダ222の中央には、チルトシャフト260を通すための円形の軸孔222bが設けられている。また、チルトコイルホルダ222の両端には、アクチュエータフレーム210に固定するためのネジ孔222c、222dが形成されている。
 チルトコイルユニット230は、チルトコイルユニット220と同様にして構成されている。ここでは、各部の詳細な説明は省略する。
 また、サーボユニット240は、PSD基板241と、PSD242と、バンドパスフィルタ243と、ピンホール箱244とを備えている。
 PSD基板241には、サスペンションワイヤー281を通すための2つの端子穴241aが形成されている。また、PSD基板241には、サスペンションワイヤー282を通すための2つの端子穴241bが形成されている。PSD基板241には、PSD基板241をアクチュエータフレーム210に固定するための2つのネジ孔241c、241dが形成されている。PSD基板241には、PSD242が装着されている。PSD242は、サーボ光の受光位置に応じた信号を出力する。
 バンドパスフィルタ243は、LED130から出射される波長帯域の光のみを透過し、それ以外の波長帯域の迷光を除去する。バンドパスフィルタ243は、ピンホール箱244の凹部244aに取り付けられ、接着固定される。
 ピンホール箱244は、内部が空洞となっており、中央に凹部244aが形成されており、凹部244aには、ピンホール244bが形成されている。ピンホール244bは、LED130から出射された拡散光のうち、一部の光を透過させる。ピンホール箱244は、遮光性のある物質からなり、ピンホール244bを透過する光以外の迷光が、PSD242に入射することを防ぐ。ピンホール箱244の左右両端には、アクチュエータフレーム210に固着するためのネジ孔244c、244dが形成されている。
 マグネット251、252は、略方形形状を有し、チルトマグネットホルダ182(図8(a)参照)と対向するアクチュエータフレーム210の左内側面に接着固定される。マグネット251、252は、チルトマグネットホルダ182を左方向に引き付け、インナーユニット100を左方向に引き付ける力を生じさせる。
 チルトシャフト260は、アクチュエータフレーム210の軸孔211aの径よりもやや小さい大径部260aと、インナーユニットフレーム110の軸受け118aの径よりもやや小さい中径部260bと、中径部260bよりも小さい小径部260cが形成されている。同様に、チルトシャフト270は、アクチュエータフレーム210の軸孔212aの径よりもやや小さい大径部270aと、インナーユニットフレーム110の軸受け119aの径よりもやや小さい中径部270bと、中径部270bよりも小さい小径部270cが形成されている。チルトシャフト260、270は、ミラー141をTilt方向に回動させる回転軸として利用される。
 サスペンションワイヤー281、282は、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー281、282は、断面が矩形状となっている。サスペンションワイヤー281、282は、互いに同じ形状および特性を持ち、パンコイル151とLED130への電流供給のために利用される。サスペンションワイヤー281、282は、通常の状態において、後方に湾曲した形状を有している。
 アウターユニット200の組立時には、まず、チルトコイルユニット220、230が、アクチュエータフレーム210の左右側面に取り付けられる。この状態で、ネジ孔222c、222dを介して、ネジ222e、222fをネジ穴211b、211cに螺着する。これにより、チルトコイルユニット220がアクチュエータフレーム210に固着される。同様に、ネジ孔232c、232dを介して、ネジ232e、232fをネジ穴212b、212cに螺着する。これにより、チルトコイルユニット230がアクチュエータフレーム210に固着される。
 次に、PSD基板241が、アクチュエータフレーム210の背面に取り付けられる。この状態で、ネジ孔241c、241dを介して、ネジ241e、241fをネジ穴213b、213cに螺着する。これにより、PSD基板241がアクチュエータフレーム210に固着される。その後、ピンホール箱244が、前側から開口213aに通されて、アクチュエータフレーム210の前面に取り付けられる。この状態で、ネジ孔244c、244dを介して、ネジ244e、244fをネジ穴213d、213eに螺着する。これにより、ピンホール箱244がアクチュエータフレーム210に固着される。こうして、図2に示す構成体が組み立てられる。
 インナーユニット100とアウターユニット200の組立時には、まず、インナーユニット100が、アウターユニット200内に収容される。そして、右から、チルトシャフト260の大径部260aがアクチュエータフレーム210の軸孔211aに通され、中径部260bが、インナーユニットフレーム110の軸受け118aに通される。その後、ナット261が、チルトシャフト260の小径部260cに装着される。
 また、同様にして、左から、チルトシャフト270の大径部270aがアクチュエータフレーム210の軸孔212aに通され、中径部270bが、インナーユニットフレーム110の軸受け119aに通される。そして、ナット271が、チルトシャフト270の小径部270cに装着される。そして、チルトシャフト260、270が、アクチュエータフレーム210に接着固定される。
 これにより、インナーユニットフレーム110がTilt方向に回動しても、チルトシャフト260、270は、回動しないよう固定される。
 アクチュエータフレーム210には、左側のみにマグネット251が配されているため、チルトマグネット181が左方向に引き付けられる。これにより、インナーユニットフレーム110に左方向の力が働く。すなわち、左側の軸受け119aがナット271に当接した状態で、インナーユニットフレーム110がTilt方向に回動される。
 こうして、インナーユニット100がアウターユニット200に回動可能に取り付けられると、図10(b)に示すように、サスペンションワイヤー281の一端が、サスペンションワイヤー固定基板193の端子193cに半田付けられる。また、サスペンションワイヤー281の他端が、PSD基板241の2つの端子穴241aに通され、半田付けられる。
 同様に、サスペンションワイヤー282の一端が、サスペンションワイヤー固定基板194の端子194cに半田付けられる。また、サスペンションワイヤー282の他端が、PSD基板241の2つの端子穴241bに通され、半田付けられる。サスペンションワイヤー282により、インナーユニットフレーム110に取り付けられたパンコイル151、およびLED130に対して、電流が供給される。
 また、図示しないが、チルトコイル221、231には、PSD基板241から、導線が直接接続され、電流が供給される。
 こうして、ミラーアクチュエータ2の組立が完了する。図10(a)は、ミラーアクチュエータ2を前方から見た斜視図、図10(b)は、ミラーアクチュエータ2を後方から見た斜視図である。この状態で、インナーユニットフレーム110は、チルトシャフト260、270の周りにTilt方向に回動可能となる。なお、パンコイルユニット150とサスペンションワイヤー固定基板193、194は、インナーユニットフレーム110のTilt方向の回動に伴って、Tilt方向に回動する。
 図10(a)、図10(b)に示すアセンブル状態において、パンコイル151に電流を流すと、パンコイル151と、パンマグネット161に生じる電磁駆動力によってパンシャフト120が回動し、これにより、ミラー141が、パンシャフト120を軸としてPan方向に回動する。
 ミラー141がPan方向に回動すると、インナーユニットフレーム110の背面に張られたサスペンションワイヤー191、192のばね性により、パンシャフト120を中心とした、ミラー141のPan方向の回動方向と逆向きのトルクが発生する。このように、ミラー141がPan方向に回動した状態では、常に逆向きのトルクが発生するため、パンコイル151への電流の印加を中止すると、ミラー141は、回動前の位置に戻される。
 図10(a)、図10(b)に示すアセンブル状態において、チルトコイル221、231に電流を流すと、チルトコイル221、231と、チルトマグネット171、181に生じる電磁駆動力によってインナーユニットフレーム110がチルトシャフト260、270を軸としてTilt方向に回動し、これにより、ミラー141が、Tilt方向に回動する。
 インナーユニットフレーム110がTilt方向に回動すると、マグネット251、252とチルトマグネット181の間に働く磁力により、インナーユニットフレーム110に、Tilt中立位置へと向かうトルク(抗力)が加わる。このように、ミラー141がインナーユニットフレーム110と一体になってTilt中立位置から回動すると、常に逆向きのトルクが発生するため、チルトコイル221、231への電流の印加を中止すると、ミラー141は、Tilt中立位置に戻される。
 このようにして、ミラー141をPan方向およびTilt方向に回動させることができる。なお、本実施の形態におけるミラーアクチュエータ2は、ミラー141がミラーホルダ142によりPan方向の支軸となるパンシャフト120に取り付けられるため、ミラー141をTilt方向よりもPan方向に大きく回動することができる。
 ミラー141は、ミラーホルダ142により、パンシャフト120の軸方向から所定の角度だけ前方向に傾いている。また、ミラー141は、下端がパンシャフト120の段部121の下端に位置づけられている。すなわち、ミラー141の中心は、Pan方向の回転の中心となるパンシャフト120よりもやや前に位置づけられている。
 図11(a)は、出射ユニット3の分解斜視図である。図11(a)を参照して、出射ユニット3は、レーザ光源31と、レーザホルダ32と、ビーム整形レンズ33と、レンズホルダ34とを備える。
 レーザ光源31は、波長880nm~940nm程度のレーザ光を出射するCANパッケージ型のレーザ光源である。レーザ光源31には、レーザ光源31を駆動させるための回路が搭載された回路基板31bが、ソケット31aを介して接続される。
 レーザホルダ32は、レーザ光源31とビーム整形レンズ33を保持するための保持部材である。レーザホルダ32には、正面中央に略円筒形状のレーザ保持部32aが形成されている。レーザ保持部32aは、内部にレンズホルダ34を収容するための円形の開口32bとレーザ光源31を収容するための円形の開口32cが形成されている。レーザ光源31は、後方から開口32cに嵌め込まれる。この状態で、レーザ光源31がレーザ保持部32aに接着固定される。
 レーザ保持部32aは、後述する受光レンズ51に入射する光を遮る部分を減らせるよう、左右端から延びる薄い板部32fによって、保持されている。
 ビーム整形レンズ33は、出射レーザ光が、目標領域において所定の形状となるよう、出射レーザ光を収束させる。レンズホルダ34は、前後で外周の径が異なる略円筒形状となっている。レンズホルダ34には、内部にビーム整形レンズ33を収容し、レーザ光源31から出射されたレーザ光をビーム整形レンズ33に導くための円形の開口34aが形成されている。ビーム整形レンズ33は、前方からビーム整形レンズ33が開口34aに嵌め込まれる。この状態で、ビーム整形レンズ33がレンズホルダ34に接着固定される。
 図11(b)は、折り曲げミラーユニット4の分解斜視図である。折り曲げミラーユニット4は、折り曲げミラー41と折り曲げミラー保持部42を備えている。
 折り曲げミラー41の反射面は、誘電体多層膜により形成されており、レーザ光源31から出射される波長帯域の光に対して高反射率が得られるよう、誘電体多層膜が設計されている。折り曲げミラー保持部42には、底面に垂直な方向から所定の角度だけ傾いた斜面とこの斜面から突出する凸部からなる支持部42aが形成されている。折り曲げミラー41は、背面が折り曲げミラー保持部42の支持部42aに支持された状態で、折り曲げミラー保持部42に接着固定される。
 図12(a)は、受光ユニット5の分解斜視図である。図12(b)は、レンズホルダ52を後側から見た斜視図である。図12(a)を参照して、受光ユニット5は、受光レンズ51と、レンズホルダ52と、バンドパスフィルタ53と、光検出器54とを備える。
 受光レンズ51は、樹脂製のレンズである。受光レンズ51は、目標領域から反射された光を集光する。
 レンズホルダ52は、光を透過しない樹脂材等により形成されている。レンズホルダ52は、光検出器54に反射光を導くため、前方に開口52aが形成されている。受光レンズ51は、前方から開口52aに装着され、レンズホルダ52に接着固定される。
 また、レンズホルダ52には、後背面に凹部52bが形成されており、凹部52bの中央には、バンドパスフィルタ53を嵌め込むためのフィルタ装着部52cが形成されており、フィルタ装着部52cの奥には、受光レンズ51を透過した反射光を光検出器54に導くための開口52dが形成されている。バンドパスフィルタ53は、レーザ光源31から出射される波長帯域の光のみを透過し、それ以外の波長帯域の迷光を除去する。バンドパスフィルタ53は、レンズホルダ52のフィルタ装着部52cに取り付けられ、接着固定される。
 光検出器54は、APD(アバランシェ・フォトダイオード)またはPINフォトダイオードからなり、回路基板54aに装着されている。光検出器54は、受光光量に応じた大きさの電気信号を回路基板54aに出力する。回路基板54aは、レンズホルダ52の後背面に取り付けられ、ネジ55a~55dにより、レンズホルダ52に固着される。こうして、受光ユニット5が組み立てられる。
 図1に戻り、ベースユニット6は、ベース61と、カバー62を備えている。ベース61は、ミラーアクチュエータ2、出射ユニット3、折り曲げミラーユニット4、受光ユニット5、および回路基板71、72を組付けるための枠部材である。回路基板71、72は、CPUやメモリ等を備え、ミラーアクチュエータ2、レーザ光源31および光検出器54等の回路基板と電気的に接続される。
 レーザレーダ1の組立時には、まず、出射ユニット3が、ベース61の中央に載置され、ネジ35a~35dにより、ベース61に固着される。また、折り曲げミラーユニット4が、ベース61の前方に載置され、ネジ43a~43dにより、ベース61に固着される。さらに、受光ユニット5が、ベース61の後方に載置され、ネジ56a、56bにより、ベース61に固着される。そして、回路基板71が、ネジ71a~71dにより、ベース61の右側面に固着される。また、回路基板72が、ネジ72a~72dにより、ベース61の左側面に固着される。
 図13は、出射ユニット3、折り曲げミラーユニット4、受光ユニット5、回路基板71、72がベース61に組みつけられた構成体を後側から見た斜視図である。
 図13を参照して、ベース61のミラーアクチュエータ装着部611の上部には鍔部611a、611cが形成されている。鍔部611a、611cには、ネジ穴611b、611dが形成されている。また、ミラーアクチュエータ装着部611の上部やや下方には、鍔部611e、611gが形成されている。鍔部611e、611gは、上下方向から後方向に所定の傾きで傾いている。鍔部611e、611gには、ネジ孔611f、611hが形成されている。
 カバー62は、ミラーアクチュエータ2を保護する保護部材である。カバー62には、ネジ孔62a、62bが形成されている。
 ミラーアクチュエータ2が、上下方向から所定の角度だけ傾いた状態でミラーアクチュエータ装着部611の鍔部611e、611gに取り付けられる。そして、ネジ孔611f、611hを介して、ネジ63a、63bが、ミラーアクチュエータ2のネジ穴213f、213gに螺着される。これにより、ミラーアクチュエータ2がベース61に固着される。
 次に、カバー62が、ネジ64a、64bにより、ミラーアクチュエータ装着部611の鍔部611a、611cに取り付けられる。そして、ネジ孔62a、62bを介して、ネジ64a、64bが、ネジ穴611b、611dに螺着される。これにより、カバー62がベース61に固着される。
 この状態で、レンズホルダ34を前後に移動させることにより、ビーム整形レンズ33を前後方向に位置調整することできる。そして、レーザ光源31からレーザ光が出射され、所定の距離(たとえば、15m)において、レーザ光が焦点を結ぶように、レンズホルダ34が前後方向に位置調整される。具体的には、まず、目標の距離(略15m)の位置にスクリーンを立てて、このスクリーンにレーザ光が照射される。この状態でスクリーン上に焦点が結ばれるようにビーム整形レンズ33が前後方向に移動される。そして、スクリーン上におけるビームスポット径が最小となる位置に、ビーム整形レンズ33が位置付けられる。こうして、ビーム整形レンズ33の位置調整がなされた後、レーザ保持部32aの上部に形成されたネジ穴32dに、押さえネジ32eが螺着され、押さえネジ32eの平坦な先端部によって、レンズホルダ34がレーザ保持部32aに押し付けられる。これにより、レンズホルダ34が、レーザ保持部32aに固着される。
 こうして、図14に示す構成体が組み立てられる。図14は、カバーが取り外された状態のレーザレーダ1を示す斜視図である。最後に、カバーが取り付けられ、レーザレーダ1の組立が完了する。なお、図示を省略するが、カバーには、可視光の波長帯域の光を減衰させるための可視光カットフィルタ81(図16(a)参照)が取り付けられる。
 この状態で、レーザ光源31から出射されたレーザ光は、ビーム整形レンズ33を透過し、折り曲げミラー41によって反射される。その後、レーザ光は、ミラーアクチュエータ2のミラー141によって反射される。そして、レーザ光は、カバーに備え付けられた可視光カットフィルタ81を透過し、目標領域に投射される。
 図15は、ミラーアクチュエータ2がベース61に取り付けられた状態のミラーアクチュエータ2の断面を示す図である。
 図15に示すように、ミラーアクチュエータ2がベース61に取り付けられた状態で、パンシャフト120は、上下方向からやや後方向に傾いている。ミラー141は、ミラーホルダ142により、反射面Bがパンシャフト120の回転軸Aから角度αだけ前方に傾いた状態でパンシャフト120に装着されている。本実施の形態では、パンシャフト120の回転軸Aとミラー141の反射面Bがなす角度αは、28°の角度に設定されている。
 なお、ミラー141がミラーホルダ142により、反射面Bがパンシャフト120の回転軸Aから角度αだけ前方に傾いた状態でパンシャフト120に装着される構成は、請求項5に記載の構成の一例である。
 また、ミラー141は、反射面Bの中心Oがパンシャフト120の回転軸Aよりも前方に離れた位置に位置づけられている。これにより、ミラー141の下端が前方に位置づけられる。したがって、インナーユニットフレーム110によって、ミラー141に入射する折り曲げミラー141からの反射光が遮られることを抑えることができる。
 なお、ミラー141の反射面Bの中心Oがパンシャフト120の回転軸Aよりも前方に位置づけられる構成は、請求項3に記載の構成の一例である。
 また、本実施の形態では、ミラー141は、反射面Bの下端がパンシャフト120の段部121よりも前方に位置づけられているため、ミラー141がパンシャフト120を貫くことなく、ミラーアクチュエータ2を構成することができる。したがって、ミラー141をパンシャフト120に装着するための構造を簡素なものとすることができる。
 なお、ミラー141の反射面Bの下端がパンシャフト120の段部121よりも前方に位置づけられる構成は、請求項4に記載の構成の一例である。
 図16(a)は、レーザ光の出射光と反射光の光路を模式的に示した図である。図16(b)は、受光レンズ51を折り曲げミラー41側から見た正面図である。なお、図16(a)には、XYZ軸が示されており、X軸は、図14における左右方向に相当し、Y軸は、図14における上下方向に相当し、Z軸は、図14における前後方向に相当する。
 本実施の形態のミラーアクチュエータ2は、ミラー141の反射面Bが、パンシャフト120の回転軸AからYZ平面の面内方向において、Z軸正方向に近づくように角度αで傾くように配置される。ここでは、角度αが、28°に設定される。また、本実施の形態の折り曲げミラー41は、反射面が、Y軸正方向からYZ平面の面内方向において、Z軸正方向に近づくように15.5°の角度で傾くように配置される。本実施の形態のレーザ光源31は、出射光軸がZ軸に平行となるように配置されている。
 この場合、折り曲げミラー41に対するレーザ光源31から出射されるレーザ光の入射角θ1は、15.5°となる。また、ミラーアクチュエータ2のミラー141が中立位置にあるとき、折り曲げミラー41に反射されたレーザ光の入射角θ2も、15.5°となる。なお、「中立位置」とは、ミラー141がミラーアクチュエータ2によって回動されず、ミラー141の反射面Bがパンシャフト120の回転軸Aから角度αで傾く位置をいう。中立位置において、折り曲げミラー41により反射されたレーザ光は、ミラー141の略中心に入射する。
 このように、レーザ光源31と折り曲げミラー41とミラーアクチュエータ2を配置することにより、ミラー141が中立位置にあるときにレーザ光源31から出射されたレーザ光は、折り曲げミラー41、ミラー141に反射されてZ軸正方向に進むようになる。このとき、レーザ光は、目標領域上において、走査範囲の中心位置に入射する。
 なお、レーザ光源31を出射したレーザ光が折り曲げミラー41によって反射され、折り曲げミラー41によって反射されたレーザ光がミラー141に入射する構成は、請求項6に記載の構成の一例である。
 ミラーアクチュエータ2は、前述のように、ビーム整形レンズ33を透過した後、折り曲げミラー41によって反射されたレーザ光と、目標領域からの反射光の両方が入射するミラー141と、このミラー141を2つの軸の周りに回動させるための機構とを備える。ミラー141が回動することにより、目標領域においてレーザ光が走査される。レーザ光は、目標領域において、XZ平面に平行な複数の走査ラインに沿ってスキャンされる。各走査ラインに沿ってレーザ光を走査させるために、ミラー141は、Pan方向に駆動される。また、走査ラインを変更するために、ミラー141がTilt方向に駆動される。
 目標領域からの反射光は、レーザ光が目標領域へと向かう光路を逆行して、ミラー141に入射する。ミラー141に入射した反射光は、ミラー141により反射され、折り曲げミラー41に入射する。折り曲げミラー41に入射した反射光は、折り曲げミラー41により反射され、受光レンズ51に向かう方向(Z軸負方向)に進行する。
 図16(b)に示すように、折り曲げミラー41により反射された反射光のうち、レーザ保持部32aと板部32fの部分を通過する反射光は遮光され、それ以外の破線に囲まれた部分を通過する反射光が、受光レンズ51に入射する。図示の如く、破線に囲まれた部分の面積に対し、レーザ保持部32aと板部32fの部分の面積は小さい。したがって、折り曲げミラー41により反射された反射光の大半は、遮光されず、受光レンズ51に入射する。受光レンズ51に入射した反射光は、受光レンズ51によって、光検出器54に収束される。なお、光検出器54の前には、バンドパスフィルタ53が配されているため、レーザ光源31から出射されたレーザ光の波長帯域と異なる波長帯域の迷光が光検出器54に入射することを防ぐことができる。
 なお、目標領域からの反射光が受光レンズ51によって光検出器54に集光される構成は、請求項7に記載の構成の一例である。
 かかる反射光の挙動は、ミラー141がどのような回動位置にあっても同じである。すなわち、ミラー141がどのような回動位置にあっても、目標領域からの反射光は、レーザ光の出射時の光路を逆行し、ビーム整形レンズ33の光軸に平行に進んで、受光レンズ51に入射する。
 光検出器54は、受光光量に応じた大きさの電気信号を回路基板54aに出力し、回路基板54aは、その信号をデジタル化して、後段の回路基板71、72に出力する。回路基板71、72は、光検出器54からの信号に基づいて、目標領域における物体の有無および物体までの距離を測定する。具体的には、レーザ光が出射されたタイミングと、光検出器54から信号が出力されたタイミングとの時間差から、この物体までの距離が測定される。レーザレーダ1の回路構成は、追って図19を参照して説明する。
 このように、本実施の形態では、ミラー141は、パンシャフト120の回転軸Aからの傾き角度αだけ前方(X軸正側)に傾くように構成されている。
 本願の発明者らは、ミラー141のパンシャフト120の回転軸Aからの傾き角度αを変化させて、ミラー141をPan方向にのみ回動させてレーザ光を走査させたときの、目標領域における走査ラインの軌跡をシミュレーションによって算出した。なお、本シミュレーションでは、目標領域に平坦なスクリーンまでの距離が、15cmに設定されている。実際には、目標領域は、たとえば、15m程度の距離に設定される。
 図17(a)~図17(d)は、本シミュレーションにおける走査ラインの軌跡を示す図である。各図において、横軸は、Pan方向の回転軸の角度、縦軸は、目標領域におけるTilt方向の走査位置(mm)である。各図には、ミラー141をTilt方向に+1.25°、0°、-1.25°で回動させた状態で、ミラー141をPan方向に-30°~30°の範囲で回動させたときの走査ラインL1~L3の軌跡が示されている。
 図17(a)は、ミラー141に対するレーザ光の入射角θ2(図16(a)参照)が0°すなわち、ミラー141に対して、正面からレーザ光を入射させた場合のシミュレーション結果を示す図である。なお、この場合、パンシャフト120の回転軸Aに対するミラー141の傾き角度αは0°に設定され、回転軸Aは鉛直方向(Y軸方向)に平行に設定される。図17(b)~図17(d)は、ミラー141に対するレーザ光の入射角θ2が15.5°の場合におけるシミュレーション結果を示す図である。
 なお、図17(a)のシミュレーションにおいて想定されたレイアウトは、比較例として便宜上設定されたものであって、実際の装置では用いられ得ないものである。すなわち、ミラー141に対して、レーザ光を正面から入射させる構成とすると、ミラー141により反射された光の一部が、出射ユニット3等によって遮られ、目標領域に対してレーザ光を適正に照射できなくなる。
 図17(a)のシミュレーションでは、ミラー141のTilt方向の傾き0°の場合、目標領域における走査ラインL1は略水平となっている。また、ミラー141のTilt方向の傾きが±1.25°の場合の走査ラインL2、L3も、それほど大きく湾曲していない。走査ラインL2において、Pan方向の回転軸角度が0°のときのTilt方向の走査位置は6.5mmであり、Pan方向の回転軸角度が±30°のときのTilt方向の走査位置は9.8mmである。すなわち、Pan方向の回転範囲における走査ラインL2のTilt方向のずれは、5mm以下である。同様に、目標領域における走査ラインL3のTilt方向のずれも、5mm以下である。
 図17(b)は、ミラー141のパンシャフト120の回転軸Aからの傾き角度αが0°である場合のシミュレーション結果を示す図である。図17(b)のシミュレーションでは、走査ラインL1~L3の何れも大きく湾曲している。走査ラインL1において、Pan方向の回転軸角度が0°、+30°のときのTilt方向の走査位置は、それぞれ、0mm、35.8mmである。すなわち、Pan方向の回転範囲における走査ラインL1のTilt方向のずれは、35mmを超える。また、走査ラインL2において、Pan方向の回転軸角度が0°、+30°のときのTilt方向の走査位置は、それぞれ、6.5mm、45mmであり、Pan方向の回転範囲における走査ラインL2のTilt方向のずれも、35mmを超える。同様に、走査ラインL3におけるTilt方向のずれも、35mmを超える。
 このように、ミラー141に対して、レーザ光を入射角15.5°で入射させた場合、ミラー141のパンシャフト120の回転軸Aからの傾き角度αを0°に設定すると、目標領域における走査ラインは、Tilt方向にも大きくずれることとなる。
 図17(c)は、ミラー141のパンシャフト120の回転軸Aからの傾き角度αが14°である場合のシミュレーション結果を示す図である。
 図17(c)のシミュレーションでは、図17(b)の場合に比べて、走査ラインL1~L3の湾曲が抑えられている。走査ラインL1において、Pan方向の回転軸角度が0°、+30°のときのTilt方向の走査位置は、それぞれ、0mm、17.2mmであり、Pan方向の回転範囲における走査ラインL1のTilt方向のずれは、17mm程度に留まる。また、走査ラインL2において、Pan方向の回転軸角度が0°、+30°のときのTilt方向の走査位置は、それぞれ、6.5mm、26mmであり、Pan方向の回転範囲における走査ラインL2のTilt方向のずれは、20mm程度に抑えられる。
 このように、ミラー141をパンシャフト120の回転軸Aから傾けると、目標領域における走査ラインは、Tilt方向にずれるものの、そのずれ量が、図17(b)に示す傾き角度αが0°のときよりも、抑えられる。
 図17(d)は、ミラー141のパンシャフト120の回転軸Aからの傾き角度αが28°である場合のシミュレーション結果を示す図である。
 図17(d)のシミュレーションでは、走査ラインL1~L3は、湾曲が顕著に抑えられ、直線に近づいている。走査ラインL1において、Pan方向の回動範囲(±30°)におけるTilt方向の走査位置は、Pan方向の回転軸角度が0°のときに最大となり、Pan方向の回転軸角度が±27.5°のときに最小となる。Tilt方向の走査位置の最小値、最大値は、それぞれ、-0.5mm、0mmであり、Pan方向の回転範囲における走査ラインL1のTilt方向のずれは、0.5mm以下である。また、走査ラインL2において、Tilt方向の走査位置の最小値は、Pan方向の回転軸角度が±30°のときの7.8mmであり、Tilt方向の走査位置の最大値は、Pan方向の回転軸角度が0°のときの6.5mmである。よって、Pan方向の回転範囲における走査ラインL2のTilt方向のずれは、1.5mm以下である。同様に、走査ラインL3において、Pan方向の回転範囲におけるTilt方向のずれは、1.5mm以下である。
 このように、ミラー141に対して、レーザ光を入射角15.5°で入射させた場合には、パンシャフト120の回転軸Aに対するミラー141の傾き角度αを28°に設定すると、目標領域における走査ラインのTilt方向のずれ量が、図17(c)の場合に比べて、さらに抑えられ、略水平となる。図17(d)の場合、目標領域における走査ラインは、図17(a)に示す正面入射の場合よりも、さらにTilt方向のずれ量が小さく抑えられており、図17(a)の場合よりもさらに水平性が保たれている。
 図17(b)~図17(d)に示すように、パンシャフト120の回転軸Aに対するミラー141の傾き角度αを大きくするに従って、目標領域における走査ラインを水平に近づけることができることがわかる。また、図17(a)と図17(b)を比較すると、ミラー141に対するレーザ光の入射角θ2が大きくなるに従って、目標領域における走査ラインの湾曲が大きくなることがわかる。
 したがって、光学系のレイアウトを設計する場合には、まず、出射ユニット3と折り曲げミラー41の配置に基づいて、ミラー141が中立位置にあるときに、レーザ光が目標領域に向かって水平に進むように、ミラー141に対するレーザ光の入射角θ2を所定の角度に設定する。その後、目標領域における走査ラインが水平に近づくように、パンシャフト120の回転軸Aに対するミラー141の傾き角度αを設定する。これにより、目標領域においてレーザ光を水平に走査させることができる。
 このようにして、目標領域における走査ラインを水平に近づけることにより、レーザ光の走査時におけるTilt方向のミラー141の制御を簡素にすることができ、また、ミラー141の駆動に要する電流量を抑えることができる。たとえば、図17(d)に示すように、目標領域における走査ラインが略水平になるように、傾き角度αを設定すると、各走査ラインに対する走査の際に、ミラー141をTilt方向に駆動制御する必要がない。よって、この場合には、Tilt方向におけるミラー141の制御が最も簡素となり、ミラー141の駆動に要する電流量を最も抑えることができる。また、図17(c)の場合にも、図17(b)の場合に比べ、Tilt方向に対するミラー141の制御量を半分程度に抑えることができる。
 なお、このように、目標領域における走査ラインが水平に近づくように、ミラー141のパンシャフト120の回転軸Aからの傾き角度αが設定される構成は、請求項1に記載の構成の一例である。
 なお、Pan方向の回動範囲において、各走査ラインのTilt方向のずれ量が所定の基準値以下であれば、各走査ラインに対する走査において、ミラー141をTilt方向に駆動制御する必要がない。この場合、光学系のレイアウト設計は、上記のように、ミラー141に対するレーザ光の入射角θ2を所定の角度に設定した後、パンシャフト120の回転軸Aに対するミラー141の傾き角度αを徐々に大きくして、Pan方向の回動範囲における各走査ラインのTilt方向のずれ量が所定の基準値以下となる傾き角度αを求める。これにより、目標領域における走査ラインが略水平となる傾き角度αを求めることができる。
 ここで、所定の基準値は、たとえば、Tilt方向の角度が1°であるときのTilt方向のずれ量に設定される。こうして求めた傾き角度αとなるように、パンシャフト120とミラー141のレイアウトを設定することにより、目標領域における走査ラインが略水平となるようにレーザレーダ1を構成することができる。
 なお、このように、目標領域における走査ラインが略水平となるように、目標領域における走査ラインのTilt方向のずれ量が所定の基準値以下のずれ量となるミラー141のパンシャフト120の回転軸Aからの傾き角度αが設定される構成は、請求項2に記載の構成の一例である。
 なお、パンシャフト120は、図16(a)に示すように、パンシャフト120の回転軸Aが鉛直方向(Y軸方向)からZ軸負側に所定の角度で傾いているが、鉛直方向に対するパンシャフト120の傾き方向と傾き角は、ミラー141の傾きや、ミラー141に対するレーザ光の入射角θ2によって決定されるものであって、目標領域における走査ラインを水平に近づけることができれば、回転軸Aは、鉛直方向に対して、上記以外の方向と角度に傾いていても良い。たとえば、パンシャフト120の回転軸Aが鉛直方向(Y軸方向)と平行となるように設定されていても良く、また、回転軸Aが鉛直方向(Y軸方向)からZ軸正側に所定の角度で傾いていても良い。
 図18(a)、(b)は、ミラー141の位置を検出するためのサーボ光学系を説明する図である。図18(a)には、ミラーアクチュエータ2の一部断面図と折り曲げミラー41とレーザ光源31のみが示されている。
 図18(a)を参照して、上述のように、ミラーアクチュエータ2には、LED130と、ピンホール244bが形成されたピンホール箱244と、PSD242が搭載されたPSD基板241が配されている。
 LED130、PSD242およびピンホール244bは、ミラーアクチュエータ2のミラー141が上記中立位置にあるときに、LED130がピンホール箱244のピンホール244bとPSD242の中心に向き合うように配置されている。すなわち、ミラー141が中立位置にあるとき、LED130から出射されピンホール244bを通るサーボ光が、PSD242の中心に垂直に入射するよう、ピンホール箱244およびPSD242が配置されている。また、ピンホール244bは、LED130とPSD242の中間位置よりもPSD242に近い位置に配置されている。PSD242は、サーボ光の受光位置に応じた電流信号を出力する。
 たとえば、図18(b)のようにミラー141が破線で示す中立位置から矢印方向に回動すると、LED130からの拡散光(サーボ光)のうちピンホール244bを通る光の光路は、LP1からLP2へと変位する。その結果、PSD242上におけるサーボ光の入射位置が変化し、PSD242から出力される位置検出信号が変化する。この場合、LED130からのサーボ光の発光位置と、PSD242の受光面上におけるサーボ光の入射位置は一対一に対応する。したがって、PSD242にて検出されるサーボ光の入射位置によって、ミラー141の位置を検出することができ、結果、目標領域における走査レーザ光の走査位置を検出することができる。
 図19は、レーザレーダ1の回路構成を示す図である。なお、同図には、便宜上、光学系の主要な構成が併せて示されている。
 図示の如く、レーザレーダ1は、PSD信号処理回路701と、サーボLED駆動回路702と、アクチュエータ駆動回路703と、スキャンLD駆動回路704と、PD信号処理回路705と、DSP706を備えている。
 PSD信号処理回路701は、PSD242からの出力信号をもとに求めた位置検出信号をDSP706に出力する。サーボLED駆動回路702は、DSP706からの信号をもとに、LED130に駆動信号を供給する。アクチュエータ駆動回路703は、DSP706からの信号をもとに、ミラーアクチュエータ2を駆動する。具体的には、目標領域においてレーザ光を所定の軌道に沿って走査させるための駆動信号がミラーアクチュエータ2に供給される。
 スキャンLD駆動回路704は、DSP706からの信号をもとに、レーザ光源31に駆動信号を供給する。具体的には、目標領域にレーザ光を照射するタイミングで、パルス状の駆動信号(電流信号)がレーザ光源31に供給される。PD信号処理回路705は、光検出器54の受光光量に応じた電圧信号を増幅およびデジタル化してDSP706に供給する。
 DSP706は、PSD信号処理回路701から入力された位置検出信号をもとに、目標領域におけるレーザ光の走査位置を検出し、ミラーアクチュエータ2の駆動制御や、レーザ光源31の駆動制御等を実行する。また、DSP706は、PD信号処理回路705から入力される電圧信号に基づいて、目標領域内のレーザ光照射位置に物体が存在するかを判定し、同時に、レーザ光源31から出力されるレーザ光の照射タイミングと、光検出器54にて受光される目標領域からの反射光の受光タイミングの間の時間差をもとに、物体までの距離を測定する。
 <実施の形態の効果>
 以上、本実施の形態によれば、ミラー141がパンシャフト120の回転軸Aに対して、所定の傾き角度αを有するようにミラーアクチュエータ2が構成されるため、目標領域における走査ラインを水平に近づけることができる。これにより、ミラー141の動作制御を簡素なものとすることができる。また、ミラー141の駆動に要する電流量を抑えることができる。
 また、目標領域における走査ラインのTilt方向のずれ量が所定の基準値以下となるように、傾き角度αを設定することにより、目標領域における走査ラインを略水平とすることができ、走査ラインに対する走査において、Tilt方向に対するミラー141の制御を不要とすることができる。したがって、ミラー141の動作制御をさらに簡素なものとすることができ、また、ミラー141の駆動に要する電流量をさらに抑えることができる。
 また、本実施の形態によれば、ミラー141は、ミラー141の中心Oがパンシャフト120の回転軸Aから前方に離れた位置に位置づけられているため、折り曲げミラーによって反射されミラー141へと向かうレーザ光が、インナーユニットフレーム110によって遮られることを抑えることができる。
 また、本実施の形態によれば、ミラー141は、ミラー141の下端がパンシャフト120の段部121よりも前方に位置づけられているため、ミラー141がパンシャフト120を貫くことなくミラーアクチュエータ2を構成することができる。したがって、ミラー141をパンシャフト120に装着するための構造を簡素なものとすることができる。
 また、本実施の形態によれば、目標領域からの反射光の受光光路が折り曲げミラー41により折り曲げられるため、ミラーアクチュエータ2下方のスペースに、出射ユニット3、受光ユニット5を効率よく配置することができる。これにより、レーザレーダ1の小型化を図ることができる。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記以外に種々の変更が可能である。
 たとえば、上記実施の形態では、図16(a)に示すように、目標領域からの反射光の受光光路が折り曲げミラー41により折り曲げられたが、図20に示すように、目標領域からの反射光の受光光路が折り曲げられなくても良い。この場合、折り曲げミラー41を省略できるものの、光学系がZ軸方向に大きくなり易い。したがって、この構成例では、レーザレーダ1全体として大型化し易いため、レーザレーダ1をコンパクトにするためには、上記実施形態のように、目標領域からの反射光の受光光路が折り曲げミラー41により折り曲げられる構成の方が望ましい。
 また、上記実施の形態では、ミラー141に対するレーザ光の入射角θ2は、15.5°、パンシャフト120の回転軸Aに対するミラー141の傾き角度αは、28°に設定されたが、その他の角度に設定されても良い。図17(a)~図17(d)のシミュレーションによって示されたとおり、入射角θ2が大きくなるほど、目標領域における走査ラインの水平性は損なわれる。また、入射角θ2が大きくなるほど、レーザレーダ1のY軸方向の高さが大きくなり易い。したがって、入射角θ2は、目標領域からの反射光が、ミラー141によって反射された後、可視光カットフィルタ81や出射ユニット3によって遮られない範囲で、できるだけ小さい方が望ましい。たとえば、入射角θ2を15.5°以下の角度に設定した場合は、目標領域における走査ラインが略水平となる回転軸Aからの傾き角度αは、28°以下になるものと想定される。
 また、上記実施の形態では、出射ユニット3が折り曲げミラー41と受光レンズ51の間に配置されたが、これに限られるものではない。たとえば、出射ユニット3は、折り曲げミラー41とミラー141の間に配置されても良い。
 また、上記実施の形態では、ミラーホルダ142により、ミラー141がパンシャフト120の回転軸Aに対して所定の傾き角度αを有するように、ミラー141がパンシャフト120に装着されたが、パンシャフト120に所定の傾きを有する傾斜部が形成され、この傾斜部にミラー141が直接装着されても良い。
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
   1 … レーザレーダ
   2 … ミラーアクチュエータ
   3 … 出射ユニット(出射部)
  31 … レーザ光源(出射部)
  41 … 折り曲げミラー
  51 … 受光レンズ(集光素子)
  54 … 光検出器
 120 … パンシャフト(第1の回動軸)
 141 … ミラー
 142 … ミラーホルダ
 151 … パンコイル(ミラー駆動部)
 161 … パンマグネット(ミラー駆動部)
 171 … チルトマグネット(ミラー駆動部)
 181 … チルトマグネット(ミラー駆動部)
 221 … チルトコイル(ミラー駆動部)
 231 … チルトコイル(ミラー駆動部)
 260、270 … チルトシャフト(第2の回動軸)

Claims (8)

  1.  レーザ光を出射する出射部と、
     目標領域において前記レーザ光を走査させるミラーアクチュエータと、を備え、
     前記ミラーアクチュエータは、
     前記レーザ光を、目標領域に向かって反射させるミラーと、
     第1の回動軸と前記第1の回動軸に直交する第2の回動軸とによって前記ミラーをそれぞれ第1の方向および第2の方向に回動させるミラー駆動部と、を備え、
     前記レーザ光は、前記ミラーが中立位置にあるときに、前記第2の回動軸に垂直な平面内において、所定の入射角度で前記ミラーの反射面に入射し、
     前記ミラーを前記中立位置から前記第2の方向に回動させた位置に保ちながら、前記第1の方向に前記ミラーを回動させて、前記レーザ光を走査させる場合に、前記目標領域内において前記レーザ光の走査ラインが直線に近づくように、前記反射面が、前記第1の回動軸に対して、所定の角度だけ傾いている、
    ことを特徴とするビーム照射装置。
  2.  請求項1に記載のビーム照射装置において、
     前記ミラーが、前記第1の方向における所定の回動範囲の中心位置にあるときと、前記回動範囲の最大角度の位置にときとの間の、前記走査ラインのずれ量が、所定の閾値以下となるよう、前記反射面が、前記第1の回動軸に対して傾いている、
    ことを特徴とするビーム照射装置。
  3.  請求項1または2に記載のビーム照射装置において、
     前記ミラーは、前記反射面の中心が、前記第1の回動軸よりも前記目標領域に近づく位置に位置づけられている、
    ことを特徴とするビーム照射装置。
  4.  請求項3に記載のビーム照射装置において、
     前記ミラーは、前記反射面の下端が、前記第1の回動軸よりも前記目標領域に近づく位置に位置づけられている、
    ことを特徴とするビーム照射装置。
  5.  請求項3または4に記載のビーム照射装置において、
     前記ミラーは、前記反射面が、前記第1の回動軸に対して、前記第2の回動軸に垂直な平面内において、所定の角度で傾くように傾斜したミラーホルダによって、前記第1の回動軸に装着される、
    ことを特徴とするビーム照射装置。
  6.  請求項1ないし5の何れか一項に記載のビーム照射装置において、
     前記出射部から出射された前記レーザ光を反射して前記ミラーに入射させる折り曲げミラーをさらに備える、
    ことを特徴とするビーム照射装置。
  7.  請求項1ないし6の何れか一項に記載のビーム照射装置と、
     前記目標領域において反射され、前記ミラーによって反射された反射光を集光する集光素子と、
     前記集光素子により集光された前記反射光を受光する光検出器と、を備える、
    ことを特徴とするレーザレーダ。
  8.  目標領域においてレーザ光を走査させるためのミラーアクチュエータであって、
     前記レーザ光が入射するミラーと、
     第1の回動軸と前記第1の回動軸に直交する第2の回動軸とによって前記ミラーをそれぞれ第1の方向および第2の方向に回動させるミラー駆動部と、を備え、
     前記ミラーは、反射面が、前記第1の回動軸に対して所定の角度で傾くように配置される、
    ことを特徴とするミラーアクチュエータ。
PCT/JP2014/000052 2013-04-25 2014-01-09 ビーム照射装置、レーザレーダおよびミラーアクチュエータ WO2014174734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015513495A JPWO2014174734A1 (ja) 2013-04-25 2014-01-09 ビーム照射装置、レーザレーダおよびミラーアクチュエータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092325 2013-04-25
JP2013-092325 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014174734A1 true WO2014174734A1 (ja) 2014-10-30

Family

ID=51791325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000052 WO2014174734A1 (ja) 2013-04-25 2014-01-09 ビーム照射装置、レーザレーダおよびミラーアクチュエータ

Country Status (2)

Country Link
JP (1) JPWO2014174734A1 (ja)
WO (1) WO2014174734A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186540A (ja) * 2015-03-27 2016-10-27 株式会社豊田中央研究所 光学フィルタおよび光学測定装置
JP2020528550A (ja) * 2017-07-24 2020-09-24 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 送信モジュールと受信モジュールとを装着するための取付要素を有したライダー(lidar)ユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306813A (ja) * 1988-06-04 1989-12-11 Fujitsu Ltd 走査光の歪補正装置
JPH1145398A (ja) * 1997-07-25 1999-02-16 Toyota Motor Corp 自車線物体検出装置及びこれを備えた車両走行制御装置
JP2011095474A (ja) * 2009-10-29 2011-05-12 Sanyo Electric Co Ltd ビーム照射装置
JP2011197575A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 光走査装置及び距離測定装置
JP2012112683A (ja) * 2010-11-19 2012-06-14 Sanyo Electric Co Ltd ビーム照射装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3213194B2 (ja) * 1995-03-03 2001-10-02 インターナショナル・ビジネス・マシーンズ・コーポレーション エネルギー照射装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306813A (ja) * 1988-06-04 1989-12-11 Fujitsu Ltd 走査光の歪補正装置
JPH1145398A (ja) * 1997-07-25 1999-02-16 Toyota Motor Corp 自車線物体検出装置及びこれを備えた車両走行制御装置
JP2011095474A (ja) * 2009-10-29 2011-05-12 Sanyo Electric Co Ltd ビーム照射装置
JP2011197575A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 光走査装置及び距離測定装置
JP2012112683A (ja) * 2010-11-19 2012-06-14 Sanyo Electric Co Ltd ビーム照射装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186540A (ja) * 2015-03-27 2016-10-27 株式会社豊田中央研究所 光学フィルタおよび光学測定装置
JP2020528550A (ja) * 2017-07-24 2020-09-24 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 送信モジュールと受信モジュールとを装着するための取付要素を有したライダー(lidar)ユニット

Also Published As

Publication number Publication date
JPWO2014174734A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP2012154806A (ja) レーザレーダおよび受光装置
WO2012144341A1 (ja) レーザレーダ
US10191273B2 (en) Mirror driving device, beam irradiation device, and laser radar
US20140247440A1 (en) Mirror actuator, beam irradiation device, and laser radar
JP2012154642A (ja) レーザレーダおよび受光装置
JP2012063278A (ja) ビーム照射装置およびレーザレーダ
JP2012159330A (ja) レーザレーダ
JP2014145671A (ja) レーザレーダ
JP2009014639A (ja) ビーム照射装置およびレーザレーダ
JP2013130531A (ja) レーザレーダ
JP2013130422A (ja) レーザレーダ
JP2015125109A (ja) レーザレーダおよびビーム照射装置
WO2014174734A1 (ja) ビーム照射装置、レーザレーダおよびミラーアクチュエータ
WO2013080626A1 (ja) ミラーアクチュエータ、ビーム照射装置およびレーザレーダ
US20100321751A1 (en) Mirror actuator and beam irradiation device
JP2011047833A (ja) ビーム照射装置
JP2011047832A (ja) ビーム照射装置およびレーザレーダ
JP2011153982A (ja) ビーム照射装置および半導体レーザ装置
JP6958383B2 (ja) ライダー装置
JP2012141191A (ja) レーザレーダ
JP7170251B2 (ja) 距離測定装置
JP7035558B2 (ja) ライダー装置
JP2019039722A (ja) 距離測定装置
JP5650438B2 (ja) 光アイソレータおよび光送信モジュール
JP2010032221A (ja) ビーム照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788278

Country of ref document: EP

Kind code of ref document: A1