JP2012154642A - レーザレーダおよび受光装置 - Google Patents

レーザレーダおよび受光装置 Download PDF

Info

Publication number
JP2012154642A
JP2012154642A JP2011011326A JP2011011326A JP2012154642A JP 2012154642 A JP2012154642 A JP 2012154642A JP 2011011326 A JP2011011326 A JP 2011011326A JP 2011011326 A JP2011011326 A JP 2011011326A JP 2012154642 A JP2012154642 A JP 2012154642A
Authority
JP
Japan
Prior art keywords
light
optical element
laser
optical
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011011326A
Other languages
English (en)
Inventor
Masato Yamada
真人 山田
Yoshiaki Maeno
良昭 前納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011011326A priority Critical patent/JP2012154642A/ja
Publication of JP2012154642A publication Critical patent/JP2012154642A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡素な光学フィルタにより目標領域からの反射光を適正に受光することができ、かつ小型化を図ることのできるレーザレーダおよび受光装置を提供する。
【解決手段】レーザレーダは、レーザ光を出射するレーザ光源21と、レーザ光を目標領域において走査させるミラーアクチュエータ24と、目標領域からのレーザ光の反射光を収束させる受光レンズ32と、受光レンズ32により収束された反射光を、受光レンズ32に入射する際の反射光よりも小さいサイズとし、且つ、平行光に近づけるための凹レンズ33と、凹レンズ33を透過した反射光が入射され、レーザ光の波長帯以外の不要な光を除去するためのバンドパスフィルタ34と、バンドパスフィルタ34を透過した反射光を受光する光検出器35と、を備える。
【選択図】図1

Description

本発明は、目標領域にレーザ光を照射したときの反射光をもとに目標領域の状況を検出するレーザレーダおよびレーザレーダに搭載されて好ましい受光装置に関するものである。
近年、走行時の安全性を高めるために、レーザレーダが家庭用乗用車等に搭載されている。一般に、レーザレーダは、レーザ光を目標領域内でスキャンさせ、各スキャン位置における反射光の有無から、各スキャン位置における障害物の有無を検出する。さらに、各スキャン位置におけるレーザ光の照射タイミングから反射光の受光タイミングまでの所要時間をもとに、各スキャン位置における障害物までの距離が検出される。
目標領域からの反射光を受光する受光光学系において、反射光以外の迷光を除去するために、特定波長の光のみを透過するバンドパスフィルタ等の光学フィルタが配置される。この種の光学フィルタは、入射光の角度依存性が高く、通常、平行光となる光路、たとえば、受光光学系の受光レンズの前段などに配置される(特許文献1)。光学フィルタによって、迷光が除去され、反射光が光検出器によって受光される。光検出器からは、受光光量に応じた大きさの信号が出力される。この信号が所定の閾値を超えると、当該スキャン位置に障害物が存在すると判定される。また、この信号が前記閾値を超えたタイミングが反射光の受光タイミングとされて、上記のように、当該スキャン位置における障害物までの距離が計測される。
特開平10−197619号公報
上記のレーザレーダでは、より多くの反射光を受光するために有効径の大きな受光レンズが用いられる。この場合、上記のように受光レンズの前段に光学フィルタが配置されると、受光レンズをカバーするために、大きな径を有する光学フィルタが必要になる。この種の光学フィルタは、複雑な膜構造が必要となるため、非常に高価である。このため、このように光学フィルタが大きくなると、レーザレーダのコスト上昇を招くこととなってしまう。
この場合、入射角に応じて膜厚、膜の層数が調整された光学フィルタを、受光レンズの後段側、たとえば、光検出器の直前に置くことによって、光学フィルタを小さくすることができる。しかし、この種の光学フィルタは、入射角の角度依存性が高く、所定の角度以上の入射角に対応させるのは非常に困難である。そのため、このように光学フィルタを受光レンズの後段側に置く場合には、光学フィルタに対する光の入射角を小さくするために、受光レンズによる反射光の収束角を小さくする必要がある。しかし、こうすると、光検出器を受光レンズから離れた位置に置く必要があり、受光装置の規模が大きくなる。その結果、レーザレーダの大型化を招くこととなってしまう。
本発明は、かかる課題に鑑みて為されたものであり、簡素な光学フィルタにより目標領域からの反射光を適正に受光することができ、かつ小型化を図ることのできるレーザレーダおよび受光装置を提供することを目的とする。
本発明の第1の局面は、レーザレーダに関する。本局面に係るレーザレーダは、レーザ光を出射するレーザ光源と、前記レーザ光を目標領域において走査させる光走査部と、前記目標領域からの前記レーザ光の反射光を収束させる第1の光学素子と、前記第1の光学素子により収束された前記反射光を、前記第1の光学素子に入射する際の前記反射光よりも小さいサイズとし、且つ、平行光に近づけるための第2の光学素子と、前記第2の光学素子を経由した前記反射光が入射され、前記レーザ光の波長帯以外の不要な光を除去するための光学フィルタと、前記光学フィルタを経由した前記反射光を受光する光検出器と、を備える。
本発明の第2の局面は、受光装置に関する。本局面に係る受光装置は、光を収束させる第1の光学素子と、前記第1の光学素子により収束された前記光を、前記第1の光学素子に入射する際の前記光よりも小さいサイズとし、且つ、平行光に近づけるための第2の光学素子と、前記第2の光学素子を経由した前記光が入射され、目標波長帯以外の不要な光を除去するための光学フィルタと、前記光学フィルタによって前記不要な光が除去された光を受光する光検出器と、を備える。
本発明によれば、簡素な光学フィルタにより目標領域からの反射光を適正に受光することができ、かつ小型化を図ることのできるレーザレーダおよび受光装置を提供することができる。
本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。
実施の形態に係るレーザレーダの構成を示す図である。 実施の形態に係るミラーアクチュエータの構成を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るミラーアクチュエータの組立過程を示す図である。 実施の形態に係るレーザレーダの構成を示す図である。 実施の形態に係るサーボ光学系の構成および作用を説明する図である。 実施の形態に係るバンドパスフィルタの構成を示す図である。 実施の形態に係るレーザレーダの光学系を示す図である。 実施の形態に係るレーザレーダの受光光学系を示す図である。 実施の形態に係るレーザレーダの回路構成を示す図である。 変更例に係るレーザレーダの受光光学系を示す図である。
以下、本発明の実施の形態について、図面を参照して説明する。
図1は、実施の形態に係るレーザレーダ1の構成を模式的に示す図である。同図(a)は、レーザレーダ1の内部を上面から透視した図、同図(b)は、投射/受光窓50を装着する前のレーザレーダ1の正面図である。
同図(a)を参照して、レーザレーダ1は、筐体10と、投射光学系20と、受光光学系30と、回路ユニット40と、投射/受光窓50を備える。
筐体10は、一辺の一部が斜めに傾いた立方体形状をしており、内部に、投射光学系20と、受光光学系30と、回路ユニット40とを収容する。同図(b)に示す如く、筐体10の正面には、開口11が形成され、開口11の周囲には、投射/受光窓50を嵌め込むための凹部12が形成されている。投射/受光窓50は、その周囲を凹部12に嵌め込んで接着固定することにより、筐体10の正面に装着される。
投射光学系20は、レーザ光源21と、ビーム整形レンズ22と、孔板23と、ミラーアクチュエータ24とを備える。
受光光学系30は、受光装置31を備える。なお、孔板23と、ミラーアクチュエータ24は、受光光学系30の一部として共用される。受光装置31は、受光レンズ32と、凹レンズ33と、バンドパスフィルタ34と、光検出器35とを備える。
レーザ光源21は、波長900nm程度のレーザ光を出射する。
ビーム整形レンズ22は、出射レーザ光が、目標領域において所定の形状となるよう、出射レーザ光を収束させる。たとえば、目標領域(本実施の形態では、ビーム照射装置のビーム出射口から前方100m程度の位置に設定される)におけるビーム形状が、縦2m、横0.2m程度の楕円形状となるように、ビーム整形レンズ22が設計される。
孔板23は、ミラー69側の面がミラー面23bとなっており、中央に孔23aが形成されている。図示の如く、孔板23は、レーザ光源21の光軸に対してX−Z平面の面内方向に45度傾くように配置されている。孔板23のミラー面23bは、目標領域からの反射光を光検出器35に向かって反射させる。孔23aは、ビーム整形レンズ22により収束された出射レーザ光を通過させる。
ミラーアクチュエータ24は、ビーム整形レンズ22を透過した出射レーザ光と目標領域からの反射光が入射するミラー69と、このミラー69を2つの軸の周りに回動させるための機構とを備える。ミラー69が回動することにより、目標領域において出射レーザ光が走査される。さらに、目標領域からの反射光は、出射レーザ光が目標領域へと向かう光路を逆行して、ミラー69に入射する。ミラー69に入射した反射光は、ミラー69により反射され、出射レーザ光の光路を逆行し、孔板23のミラー面23bに入射する。かかる反射光の挙動は、ミラー69がどのような回動位置にあっても同じである。すなわち、ミラー69がどのような回動位置にあっても、目標領域からの反射光は、出射レーザ光の光路を逆行し、孔板23のミラー面23bに入射する。
受光レンズ32は、凸レンズであり、目標領域から反射された光を集光する。
凹レンズ33は、受光レンズ32とバンドパスフィルタ34の間であって、受光レンズ32の焦点位置よりも受光レンズ32に近づく位置に配置される。また、凹レンズ33は、孔板23側から平行光が入射したときの受光レンズ32の焦点の位置とバンドパスフィルタ34側から平行光が入射したときの凹レンズ33の焦点の位置(この焦点は凹レンズ33から光検出器35側に位置する)が一致する位置に配置される。また、受光レンズ32の光軸に平行に平行光が入射したときの受光レンズ32の収束角と、凹レンズ33の光軸に平行に平行光が入射したときの凹レンズ33の拡散角は同じである。こうして受光レンズ32と凹レンズ33が配置されることにより、略平行光で受光レンズ32に入射した反射光が、受光レンズ32と凹レンズ33の組合せによって、小さいビーム径の略平行光
に絞られる。凹レンズ33を透過した後の反射光のビーム径は、受光レンズ32と凹レンズ33の焦点距離の比率に応じたものとなる。なお、受光レンズ32と凹レンズ33の詳細は、図12を参照して説明する。
バンドパスフィルタ34は、誘電体多層膜が積層された構成を有する。バンドパスフィルタ34は、誘電体膜での多光束干渉の作用によって出射レーザ光の波長帯域の光のみを透過させる。なお、バンドパスフィルタ34は、凹レンズ33によって反射光が略平行光の状態で入射されるため、比較的簡素な膜構造のものが用いられる。また、バンドパスフィルタ34は、光検出器35に近い位置に配置され、サイズの小さいものである。なお、バンドパスフィルタ34の詳細は、追って、図10を参照して説明する。
光検出器35は、APD(アバランシェ・フォトダイオード)またはPINフォトダイオードからなり、受光光量に応じた大きさの電気信号を回路ユニット40に出力する。光検出器35の受光面は、複数の領域に分割されておらず、単一の受光面からなっている。また、光検出器35の受光面は、迷光の影響を抑えるため、縦横の幅が狭く構成されている(例えば1mm前後)。
回路ユニット40は、CPUやメモリ等を備え、レーザ光源21およびミラーアクチュエータ24を制御する。また、回路ユニット40は、光検出器35からの信号に基づいて、目標領域における障害物の有無および障害物までの距離を測定する。具体的には、目標領域における所定の走査位置において、レーザ光源21からレーザ光が出射される。このときに光検出器35から信号が出力されると、この走査位置に障害物が存在することが検出される。また、この走査位置においてレーザ光が出射されたタイミングと、光検出器35から信号が出力されたタイミングの時間差から、この障害物までの距離が測定される。回路ユニット40の構成は、追って図13を参照して説明する。
投射/受光窓50は、均一な厚みを有する透明な平板からなっている。投射/受光窓50は、透明性の高い材料からなり、また、入射面と出射面に反射防止膜(ARコート)が付されている。また、投射/受光窓50は、投射/受光窓50により反射された出射レーザ光が、孔板23から投射/受光窓50までの光路を逆行して光検出器35に迷光として入射することを防ぐため、出射レーザ光の光軸に対して所定角度だけX−Z平面およびY−Z平面の面内方向に傾けられている。なお、投射/受光窓50は、ミラーアクチュエータ24が回動した場合においても、投射/受光窓50により反射された出射レーザ光が、光路を逆行して光検出器35に入射しない角度に傾けられている。
図2は、本実施の形態に係るミラーアクチュエータ24の分解斜視図を示す図である。
ミラーアクチュエータ24は、ミラーユニット60と、マグネットユニット70と、サーボユニット80を備えている。
図3(a)を参照して、ミラーユニット60は、ミラーユニットフレーム61と、パンコイル装着板62、63と、サスペンションワイヤー固定基板64a、64b、65と、サスペンションワイヤー66a〜66dと、支軸67と、LED68と、ミラー69とを備えている。
ミラーユニットフレーム61は、正面視において長方形の輪郭の枠部材からなっている。ミラーユニットフレーム61には、左右の側面にそれぞれ2つのチルトコイル装着部61aが設けられている。各側面のチルトコイル装着部61aは、各側面の中心から上下方向に対称な位置に配置されている。これら4つのチルトコイル装着部61aには、それぞれ、チルトコイル61bが巻回され固着される。
また、ミラーユニットフレーム61には、左右に並ぶ軸孔61cと、上下に並ぶ溝61eが形成されている。軸孔61cは、左右の側面の中心位置に配置され、溝61eは上下の側面の中心位置まで延びている。軸孔61cには、それぞれ、左右から軸受け61dが取り付けられる。
ミラーユニットフレーム61の底面は、櫛歯状となっており、サスペンションワイヤー66a、66bを通すための2つのワイヤー孔61fと、サスペンションワイヤー66c、66dを通すための2つのワイヤー孔61gと、後述するサスペンションワイヤー76a〜76cを通すための3つのワイヤー孔61hと、サスペンションワイヤー76d〜76fを通すための3つのワイヤー孔61iが形成されている。なお、ワイヤー孔61h、61iは、サスペンションワイヤー76a〜76fを斜め後方向に傾けて固定するために、サスペンションワイヤー76a〜76fの径よりもやや大きく形成されている。これにより、サスペンションワイヤー76a〜76fを、ミラー69から離れる方向に曲線状に張ることができる。
パンコイル装着板62には、2つのパンコイル装着部62aと、サスペンションワイヤー66a、66bを通すための2つのワイヤー孔62cと、サスペンションワイヤー66c、66dを通すための2つのワイヤー孔62dと、支軸67を通すための軸孔62eが設けられている。ワイヤー孔62cは、ワイヤー孔61fと上下方向に直線状に並ぶように形成されており、ワイヤー孔62dは、ワイヤー孔61gと上下方向に直線状に並ぶように形成されている。2つのパンコイル装着部62aには、それぞれ、2つのパンコイル62bが巻回され固着される。また、パンコイル装着板63には、2つのパンコイル装着部63aと支軸67を通すための軸孔63cが設けられている。パンコイル装着部63aには、2つのパンコイル63bが巻回され固着される。
サスペンションワイヤー固定基板64a、64bには、それぞれ、サスペンションワイヤー66a、66bを通すための2つの端子穴64cと、サスペンションワイヤー66c、66dを通すための2つの端子穴64dが形成されている(図3(b)参照)。端子穴64c、64dの位置において、後述のように、パンコイル62b、63bと、LED68に電流を供給するための導線が、サスペンションワイヤー66a〜66dに半田等で電気的に接続される。サスペンションワイヤー固定基板64a、64bは、2つの端子穴64c、64dとワイヤー孔62c、62dが整合するように、パンコイル装着板62に接着して固定される。
サスペンションワイヤー固定基板65には、サスペンションワイヤー66a、66bを通すための2つの端子穴65aと、サスペンションワイヤー66c、66dを通すための2つの端子穴65bと、サスペンションワイヤー76a〜76cを通すための3つの端子穴65cと、サスペンションワイヤー76d〜76f(図2参照)を通すため3つの端子穴65dが形成されている。なお、3つの端子穴65c、65dは、ワイヤー孔61h、61iと同様に、サスペンションワイヤー76a〜76fを曲線状に張るために、サスペンションワイヤー76a〜76fの径よりもやや大きく形成されている。
図3(c)を参照して、サスペンションワイヤー固定基板65には、2つの端子穴65aと3つの端子穴65cのうちの2つとを電気的に接続する回路パターンP1、P2が形成されている。また、サスペンションワイヤー固定基板65には、2つの端子穴65bと3つの端子穴65dのうちの2つとを電気的に接続する回路パターンP3、P4が形成されている。これらの端子穴と、各端子穴に通されたサスペンションワイヤー66a〜66dおよびサスペンションワイヤー76a、76b、76d、76eとを半田付けすることにより、サスペンションワイヤー66a〜66dと、サスペンションワイヤー76a、7
6b、76d、76eとが、上記回路パターンを介して、電気的に接続される。3つの端子穴65cの残り一つと、3つの端子穴65dの残り一つの位置において、後述のように、左右のチルトコイル61bと、サスペンションワイヤー76c、76fとが、半田等で電気的に接続される。
図3(a)に戻り、サスペンションワイヤー固定基板65は、端子穴65aとワイヤー孔61f、端子穴65bとワイヤー孔61g、端子穴65cとワイヤー孔61h、および、端子穴65dとワイヤー孔61iが、それぞれ互いに整合するように、ミラーユニットフレーム61に接着して固定される。
サスペンションワイヤー66a〜66dは、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー66a〜66dは、断面が円形状となっている。サスペンションワイヤー66a〜66dは、互いに同じ形状および特性を持ち、パンコイル62b、63bとLED68への電流供給と、ミラー69のPan方向の回動時において、安定した負荷を与えるために利用される。
支軸67には、LED基板固定アーム68bを挿入するための孔67aと、パンコイル63bとLED68を電気的に接続する導線を通すための孔67b、67cと、ミラー69を嵌め込むための段部67dが形成されている。また、支軸67内は、パンコイル63bとLED68を電気的に接続する導線を通すため、空洞となっている。なお、支軸67は、後述するように、ミラー69をPan方向に回動させる回転軸として利用される。
LED68は、拡散タイプ(広指向タイプ)であり、広い範囲に光を拡散させることができる。LED68からの拡散光は、後述するように、走査用のレーザ光の目標領域内での走査位置を検出するために利用される。LED68は、LED基板68aに取り付けられている。LED基板68aは、LED基板固定アーム68bに接着された後、支軸67の孔67aに取り付けられる。
ミラーユニット60の組立時には、支軸67にミラー69が嵌め込まれた後、支軸67の両端の軸に軸受け67e、ポリスライダーワッシャ67fが取り付けられる。そして、この状態で、2つの軸受け67eが、ミラーユニットフレーム61に形成された溝61eに嵌め込まれる。さらに、上下からパンコイル装着板62の軸孔62eとパンコイル装着板63の軸孔63cが、支軸67に通され、支軸67に接着固定される。
その後、サスペンションワイヤー66a、66bが、サスペンションワイヤー固定基板64aの2つの端子穴64cと、2つのワイヤー孔62cと、2つのワイヤー孔61fを介して、サスペンションワイヤー固定基板65の端子穴65aに通される。同様に、サスペンションワイヤー66c、66dが、サスペンションワイヤー固定基板64bの2つの端子穴64dと、2つのワイヤー孔62dと、2つのワイヤー孔61gを介して、サスペンションワイヤー固定基板65の端子穴65bに通される。サスペンションワイヤー66a〜66dは、それぞれ、パンコイル62b、63bと、LED68に電流を供給するための導線とともにサスペンションワイヤー固定基板64a、64b、65に半田付けられる。
これにより、図2に示すように、ミラーユニット60の組立が完了する。この状態で、ミラー69は、支軸67の周りにPan方向に回動可能となる。なお、サスペンションワイヤー固定基板64a、64bは、ミラー69のPan方向の回動に伴って、Pan方向に回動する。組み立てられたミラーユニット60は、マグネットユニットフレーム71の開口に収容される。
図2に戻り、マグネットユニット70は、マグネットユニットフレーム71と、8つのパンマグネット72と、8つのチルトマグネット73と、2つの支軸74と、サスペンションワイヤー固定基板75と、サスペンションワイヤー76a〜76fと、保護カバー77とを備えている。
マグネットユニットフレーム71は、正面視において長方形の輪郭の枠部材からなっている。マグネットユニットフレーム71の左右の側面の中央には、支軸74を通すための軸孔71aと、支軸74を固定するためのネジ穴71bが形成されている。マグネットユニットフレーム71の上面には、サスペンションワイヤー固定基板75を固定するための2つのネジ穴71cが形成されている。また、マグネットユニットフレーム71の上下の内側面の前端には、マグネットユニットフレーム71の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、保護カバー77を固定するためのネジ穴71dが形成されている。さらに、マグネットユニットフレーム71の上下の内側面の後端には、マグネットユニットフレーム71の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、サーボユニットフレーム81を固定するためのネジ穴71eが形成されている。
図4は、マグネットユニットフレーム71を後側から見た斜視図である。図4を参照して、8つのパンマグネット72がマグネットユニットフレーム71の上下の内側面に取り付けられる。さらに、8つのチルトマグネット73がマグネットユニットフレーム71の左右の内側面に取り付けられる。
図2に戻り、2つの支軸74には、それぞれ、2つのネジ孔74bが形成されている。2つの支軸74は、ポリスライダーワッシャ74aが取り付けられた状態で、マグネットユニットフレーム71に形成された軸孔71aを介して、ミラーユニットフレーム61の軸受け61dに嵌め込まれる。この状態で、2つのネジ孔74bを介して2つのネジ74cがマグネットユニットフレーム71の2つのネジ穴71bに螺着される。これにより、2つの支軸74がマグネットユニットフレーム71に固着される。なお、支軸74は、後述するように、ミラー69をTilt方向に回動させる回転軸として利用される。
サスペンションワイヤー固定基板75には、2つのネジ孔75aと、サスペンションワイヤー76a〜76fを通すための3つの端子穴75c、75dが形成されている。なお、3つの端子穴75c、75dは、サスペンションワイヤー76a〜76fを曲線状に張るために、サスペンションワイヤー76a〜76fの径よりもやや大きく形成されている。サスペンションワイヤー固定基板75には、端子穴75c、75dに信号を供給するための回路パターンが形成されている。
サスペンションワイヤー76a〜76fは、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー76a〜76fは、断面が円形状となっている。サスペンションワイヤー76a〜76fは、互いに同じ形状および特性を持ち、チルトコイル61bとパンコイル62b、63bとLED68への電流供給と、ミラー69のTilt方向の回動時において、安定した負荷を与えるために利用される。
マグネットユニット70の組立時には、サスペンションワイヤー固定基板75が、マグネットユニットフレーム71の上面に取り付けられる。この状態で、2つのネジ孔75aを介して、2つのネジ75bを2つのネジ穴71cに螺着する。これにより、サスペンションワイヤー固定基板75がマグネットユニットフレーム71に固着される。
その後、サスペンションワイヤー76a〜76cが、サスペンションワイヤー固定基板75の3つの端子穴75cと、ミラーユニットフレーム61の3つのワイヤー孔61hを介して、サスペンションワイヤー固定基板65の端子穴65c(図3(a)参照)に通さ
れる。同様に、サスペンションワイヤー76d〜76fが、サスペンションワイヤー固定基板75の3つの端子穴75dと、ミラーユニットフレーム61の3つのワイヤー孔61iを介して、サスペンションワイヤー固定基板65の3つの端子穴65d(図3(a)参照)に通される。
しかる後、サスペンションワイヤー76a〜76fは、それぞれ、チルトコイル61bと、パンコイル62b、63bと、LED68に電流を供給するための導線とともに、サスペンションワイヤー固定基板65、75に半田付けられる。なお、サスペンションワイヤー76a〜76fは、ミラー69から離れる方向に曲線状に張られる。すなわち、サスペンションワイヤー76a〜76fの上端部は、端子穴75c、75dから離れるに従って後ろ方向に傾くように端子穴75c、75dに固定される。また、サスペンションワイヤー76a〜76fの下端部は、ワイヤー孔61h、61iおよび端子穴65b、65cから離れるに従って後ろ方向に傾くようにワイヤー孔61h、61iおよび端子穴65b、65c固定される。これにより、図5に示す構成体が完成する。この状態で、ミラーユニットフレーム61は、支軸74の周りにTilt方向に回動可能となる。なお、サスペンションワイヤー固定基板65は、ミラーユニットフレーム61のTilt方向の回動に伴って、Tilt方向に回動する。
図5は、ミラーユニット60がマグネットユニット70に取り付けられた状態の構成体の斜視図である。図5(a)は、この構成体を図2の前方向から見た斜視図であり、図5(b)は、この構成体を図2の後方向から見た斜視図である。
図5(b)を参照して、サスペンションワイヤー66aの両端は、それぞれ、2つの端子穴64cの内側の1つと、2つの端子穴65aの内側の1つに接続されている。同様に、サスペンションワイヤー66cの両端は、2つの端子穴64dの内側の1つと、2つの端子穴65bの内側の1つに接続されている。
サスペンションワイヤー66bの両端は、2つの端子穴64cの外側の1つと、2つの端子穴65aの外側の1つに接続されている。同様に、サスペンションワイヤー66dの両端は、2つの端子穴64dの外側の1つと、2つの端子穴65bの外側の1つに接続されている。
サスペンションワイヤー76aの両端は、3つの端子穴75cの内側の1つと、3つの端子穴65cの内側の1つに接続されている。同様に、サスペンションワイヤー76dの両端は、3つの端子穴75dの内側の1つと、3つの端子穴65dの内側の1つに接続されている。
サスペンションワイヤー76bの両端は、3つの端子穴75cの中央の1つと、3つの端子穴65cの中央の1つに接続されている。同様に、サスペンションワイヤー76eの両端は、3つの端子穴75dの中央の1つと、3つの端子穴65dの中央の1つに接続されている。
サスペンションワイヤー76cの両端は、3つの端子穴75cの外側の1つと、3つの端子穴65cの外側の1つと接続されている。同様に、サスペンションワイヤー76fの両端は、3つの端子穴75dの外側の1つと、3つの端子穴65dの外側の1つに接続されている。
なお、図5(a)において、75eは、端子である。端子75eを介して、ミラー69をPan方向とチルト方向に駆動するための駆動信号と、LED68を点灯するための駆動信号が供給される。各端子75eは、それぞれ、端子穴75c、75dの何れかと、サ
スペンションワイヤー固定基板75上の回路パターンを介して接続されている。
図2に戻り、サーボユニット80は、サーボユニットフレーム81と、ピンホール取り付け金具82と、ピンホール板83と、PSD基板84と、PSD85とを備えている。
サーボユニットフレーム81は、正面視において長方形の輪郭の枠部材からなっている。サーボユニットフレーム81の左右の側面には、ピンホール取り付け金具82を固定するための2つのネジ孔81aが形成されている。また、サーボユニットフレーム81の上下の内側面の前端には、サーボユニットフレーム81の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、それぞれ、ネジ孔81cが形成されている。さらに、サーボユニットフレーム81の左右の内側面の後端には、サーボユニットフレーム81の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、それぞれ、ネジ穴81eが形成されている。
ピンホール取り付け金具82の左右の側面には、2つのネジ穴82aが形成されている。また、ピンホール取り付け金具82の背面には、ピンホール板83を固定するための2つのネジ穴82bと、LED68から出射されたサーボ光をピンホール83aを介してPSD85に導くための開口82cが形成されている。
ピンホール板83には、ピンホール83aと、2つのネジ孔83bが形成されている。ピンホール83aは、LED68から出射された拡散光のうち、一部の光を通過させる。
PSD基板84には、PSD基板84をサーボユニットフレーム81に固定するための4つのネジ孔84aが形成されている。PSD基板84には、PSD85が装着されている。PSD85は、サーボ光の受光位置に応じた信号を出力する。
サーボユニット80の組立時には、ピンホール板83が、ピンホール取り付け金具82の背面に当てられる。この状態で、2つのネジ孔83bを介して2つのネジ83cを2つのネジ穴82bに螺着する。これにより、ピンホール板83がピンホール取り付け金具82に固着される。
次に、ピンホール取り付け金具82が、サーボユニットフレーム81内に収容される。この状態で、4つのネジ孔81aと4つのネジ穴82aとが合わされ、左右から4つのネジ81bをそれぞれネジ孔81aとネジ穴82aに螺着する。これにより、ピンホール取り付け金具82が、サーボユニットフレーム81に固着される。
さらに、PSD基板84が、サーボユニットフレーム81の背部に当てられる。この状態で、4つのネジ孔84aを介して4つのネジ84bを4つのネジ穴81eに螺着する。これにより、PSD基板84が、サーボユニットフレーム81に固着される。こうして、図6に示すサーボユニット80が完成する。図6(a)は、組み立てられたサーボユニット80を前方から見た斜視図、図6(b)は、組み立てられたサーボユニット80を後方から見た斜視図である。
こうしてサーボユニット80が組み立てられた後、サーボユニット80が、図5に示す構成体の背部に当てられる。この状態で、サーボユニットフレーム81の4つのネジ孔81cを介して、後方から4つのネジ81dをマグネットユニットフレーム71の4つのネジ穴71eに螺着する。これにより、サーボユニット80が図5に示す構成体に固着される。こうして、図7に示すように、ミラーアクチュエータ24の組立が完了する。図7(a)は、ミラーアクチュエータ24を前方から見た斜視図、図7(b)は、ミラーアクチュエータ24を後方から見た斜視図である。
図7に示すアセンブル状態において、8つのパンマグネット72(図4参照)は、パンコイル62b、63b(図3(a)参照)に電流を印加することにより、パンコイル装着板62、63に支軸67を軸とする回動力が生じるよう、配置および極性が調整されている。したがって、パンコイル62b、63bに電流を印加すると、パンコイル62b、63bに生じる電磁駆動力によってパンコイル装着板62、63とともに支軸67が回動し、これにより、ミラー69が、支軸67を軸として回動する。支軸67を軸とするミラー69の回動方向をPan方向という。なお、パンコイル62b、63bへの電流の印加を中止すると、ミラー69は、サスペンションワイヤー66a〜66dのばね性により、回動前の位置に戻される。
図7に示すアセンブル状態において、8つのチルトマグネット73(図4参照)は、チルトコイル61b(図3(a)参照)に電流を印加することにより、ミラーユニットフレーム61に支軸74を軸とする回動力が生じるよう、配置および極性が調整されている。したがって、チルトコイル61bに電流を印加すると、チルトコイル61bに生じる電磁駆動力によって、ミラーユニットフレーム61が、支軸74を軸として回動し、ミラーユニットフレーム61と一体的にミラー69が回動する。支軸74を軸とするミラー69の回動方向をTilt方向という。なお、チルトコイル61bへの電流の印加を中止すると、ミラーユニットフレーム61は、サスペンションワイヤー76a〜76fのばね性により、回動前の位置に戻される。
なお、上記のようにミラーアクチュエータ24を構成することにより、大きなミラー69を高レスポンスで駆動することができる。このため、目標領域からの反射光を、大きなミラー69で受光できるようになる。
図8は、ミラーアクチュエータ24が装着された状態の光学系の構成を示す図である。
図8において、500は、光学系を支持するベースである。
ベース500の上面には、レーザ光源21と、ビーム整形レンズ22と、孔板23と、ミラーアクチュエータ24と、受光レンズ32と、凹レンズ33と、バンドパスフィルタ34と、光検出器35が配置されている。レーザ光源21は、ベース500の上面に配されたレーザ光源用の回路基板21aに装着されている。また、光検出器35は、ベース500の上面に配された光検出器35用の回路基板35aに装着されている。
レーザ光源21から出射されたレーザ光は、ビーム整形レンズ22によって水平方向および鉛直方向の収束作用を受け、目標領域において所定の形状に整形される。ビーム整形レンズ22を透過した出射レーザ光は、孔板23に形成された孔23aを通過した後、ミラーアクチュエータ24のミラー69に入射し、ミラー69によって目標領域に向かって反射される。ミラーアクチュエータ24によってミラー69が駆動されることにより、出射レーザ光が目標領域内においてスキャンされる。
ミラーアクチュエータ24は、中立位置にあるときに、ビーム整形レンズ22からの走査レーザ光がミラー69のミラー面に対し水平方向において45度の入射角で入射するよう配置されている。なお、「中立位置」とは、ミラー面が鉛直方向に対し平行で、且つ、走査レーザ光がミラー面に対し水平方向において45度の入射角で入射するときのミラー69の位置をいう。
ベース500の上面には、回路基板21a、35aの他、ミラーアクチュエータ24の背後に、ミラーアクチュエータ24のチルトコイル61b、パンコイル62b、63bに
駆動信号を供給するための回路基板(図示せず)が配置されている。これら回路基板は、図1(a)の回路ユニット40に含まれる。
図9(a)は、ミラー69の位置を検出するためのサーボ光学系を説明する図である。同図は、図8の光学系をベース500の上面側から見たときの模式図である。同図には、ミラーアクチュエータ24の一部断面図とレーザ光源21のみが示されている。
上述の如く、ミラーアクチュエータ24には、LED68と、ピンホール取り付け金具82と、ピンホール板83と、PSD基板84と、PSD85が配されている。
LED68、PSD85およびピンホール83aは、ミラーアクチュエータ24のミラー69が上記中立位置にあるときに、LED68がピンホール板83のピンホール83aとPSD85の中心に向き合うように配置されている。すなわち、ミラー69が中立位置にあるとき、LED68から出射されピンホール83aを通るサーボ光が、PSD85の中心に垂直に入射するよう、ピンホール板83およびPSD85が配置されている。また、ピンホール板83は、LED68とPSD85の中間位置よりもPSD85に近い位置に配置されている。
ここで、LED68から拡散するように発せられたサーボ光は、その一部が、ピンホール83aを通過し、PSD85によって受光される。ピンホール83a以外の領域に入射されたサーボ光は、ピンホール板83によって遮光される。PSD85は、サーボ光の受光位置に応じた電流信号を出力する。
たとえば、図9(b)のようにミラー69が破線で示す中立位置から矢印方向に回動すると、LED68の拡散光(サーボ光)のうちピンホール83aを通る光の光路は、LP1からLP2へと変位する。その結果、PSD85上におけるサーボ光の照射位置が変化し、PSD85から出力される位置検出信号が変化する。この場合、LED68からのサーボ光の発光位置と、PSD85の受光面上におけるサーボ光の入射位置は一対一に対応する。したがって、PSD85にて検出されるサーボ光の入射位置によって、ミラー69の位置を検出することができ、結果、目標領域における走査レーザ光の走査位置を検出することができる。
図10(a)、(b)は、本実施の形態に係るバンドパスフィルタ34のフィルタ作用を説明するための図である。なお、かかるフィルタ作用は、既存の光干渉型バンドパスフィルタにおけるフィルタ作用と同様である。なお、図10(a)、(b)の上下方向が、膜の積層方向である。
図10(a)、(b)において、H、L、2Hは、それぞれ、高屈折率膜、低屈折率膜、高屈折率膜である。高屈折率膜H、2Hの屈折率は、何れも、n1であり、低屈折率膜Lの屈折率は、n2(n2<n1)である。高屈折率膜Hの物理膜厚d1と低屈折率膜Lの物理膜厚d2は、波長λに対する光学的膜厚(物理的な膜厚×膜の屈折率)がλ/4となるように設定され、高屈折率膜2Hの物理膜厚d3は、波長λに対する光学的膜厚がλ/2となるように設定される。
図10(a)に示す膜部分に、波長λの不要な光(不要光)Sa、Sbが入射角0°の状態で入射すると、膜間の境界面A1、A2で反射と透過が繰り返される。R1は、境界面A2で反射された不要光Saの反射光、R2は、この反射光R1の一部が境界面A1で反射された反射光である。また、T1は、境界面A1を透過した不要光Sbの透過光である。
境界面A2に入射するときの反射光R2と透過光T1との間の光路差は、低屈折率膜Lの光学的膜厚(λ/4)の2倍である。この光路差により、境界面A2に入射するときの、反射光R2と透過光T1の位相が互いに半波長(π)分ずれる。このため、反射光R2と透過光T1は、境界面A2を透過した後、干渉により互い相殺され、弱められる。
また、反射光R2の一部は、境界面A2で反射され、さらに境界面A1で反射されて境界面A2に入射する。こうして境界面A2に入射する光と、透過光T1との間の位相差は1波長分(2π)となる。このため、この光と透過光T1は、境界面A2を透過した後、干渉により互い重畳され、強められる。
また、図10(b)の膜部分に、同じく波長λの光(不要光)Sc、Sdが入射角0°の状態で入射すると、上記と同様、膜間の境界面A3、A4で反射と透過が繰り返される。R3は、境界面A4で反射された不要光Scの反射光、R4は、この反射光R3の一部が境界面A3で反射された反射光である。また、T2は、境界面A3を透過した不要光Sdの透過光である。
この場合、境界面A4に入射するときの反射光R4と透過光T2との間の光路差は、高屈折率膜2Hの光学的膜厚(λ/2)の2倍である。この光路差により、境界面A4に入射するときの反射光R4と透過光T2の位相が互いに1波長(2π)分ずれる。このため、反射光R4と透過光T2は、境界面A4を透過した後、干渉により互い重畳され、強められる。
以上のような干渉作用が多重反射に伴って繰り返されることにより、波長λの不要光が徐々に減衰される。ここでは、波長λの不要光を除去するための膜構造を3段としたが、通常、このような膜構造が、波長λの不要光を除去するために、さらに多く配置される。
なお、図10(a)、(b)に示す各膜の光学的膜厚は、波長の変化に応じて変化する。このため、波長λ以外の波長の不要光は、同図に示す光学的膜厚の膜構造により除去されない。このため、バンドパスフィルタ34には、波長λ以外の波長帯の不要光に対応するための、図10(a)、(b)と同様の膜構造が配置される。
以上のようにして、バンドパスフィルタ34に入射する光から不要光が除去され、所期の波長帯の光のみがバンドパスフィルタ34を透過する。
ところで、図10(a)、(b)には、光が入射角0°で入射するときの膜構造が示されたが、0°以外の入射角で入射する光を除去する場合には、入射角の大きさに応じて、各膜の物理膜厚が調整される必要がある。
たとえば、図10(c)、(d)のような状態で不要光が膜部分に入射する場合、低屈折率膜Lの物理膜厚d5は、不要光Scが境界面A1から境界面A2まで進むときの、境界面A1から境界面A2までの不要光Scの光学的光路長(物理的な光路長×膜の屈折率)が、λ/4になるように設定される。同様に、高屈折率膜Hの物理膜厚d4は、不要光Scが高屈折率膜Hを一方の境界面から他方の境界面進むときの不要光Scの光学的光路長が、λ/4になるように設定される。さらに、高屈折率膜2Hの物理膜厚d6は、不要光Seが境界面A4から境界面A3まで進むときの、境界面A4から境界面A5までの不要光Seの光学的光路長が、λ/4になるように設定される。
この場合、低屈折率膜Lを進む不要光Scは、境界面A1に垂直な方向に対して屈折角θ1だけ傾いているため、図示のごとく、物理膜厚d5は、同図(a)の物理膜厚d2よりも小さくなる。同様に、物理膜厚d4、d6も、同図(a)、(b)の物理膜厚d1、
d3よりも小さくなる。
このように、光が斜めに傾いて入射する場合、傾きに応じて各膜の膜厚を調整する必要がある。たとえば、光が収束する光路中にバンドパスフィルタ34が配置されるような場合には、光の収束角の範囲内の様々な角度成分の光が、バンドパスフィルタ34に入射することになる。このため、バンドパスフィルタ34は、想定される種々の角度成分に応じて、各膜の膜厚が細かく調整される必要がある。この調整は、光の収束角が大きくなるほど角度成分のバリエーションが増えるため、難しくなる。よって、大きな収束角に対応可能なバンドパスフィルタを構成するのは、困難である。この点から、大きな収束角で収束する光の光路中にバンドパスフィルタを配置するのは、好ましくない。
また、光が斜めに傾いて入射する場合には、境界面での光の反射率が増加し、透過率が減少する。このため、収束角が大きくなるほど、光の減衰が顕著となる。この点からも、大きな収束角で収束する光の光路中にバンドパスフィルタを配置するのは、好ましくない。
このように、バンドパスフィルタ34は、収束光の光路中よりも、略平行光の光路中に配置される方が望ましい。したがって、本実施の形態では、目標領域からの反射光を受光レンズ32と凹レンズ33により、小さいビーム径の略平行光にして、バンドパスフィルタ34に入射させる。これにより、簡素な膜構造の小さなバンドパスフィルタ34を用いることができる。
図11は、レーザレーダ1の内部を上面側から見たときの一部平面図である。同図には、出射レーザ光が実線の矢印で示され、目標領域からの反射光が点線の矢印で示されている。
図11を参照して、レーザ光源21から出射されるレーザ光は、ビーム整形レンズ22を透過した後、孔板23に形成された孔23aを通過する。孔板23の孔23aを通過した出射レーザ光は、ミラー69によって反射され、筺体10内から目標領域に出射される。
筺体10から出射される出射レーザ光は、拡散光である。すなわち、出射レーザ光は、拡散光の状態で、筺体10内から出射される。これに対し、目標領域で反射され筺体10に入射する反射光は、遠方にある目標領域の障害物(例えば数10m)によって反射された光であるため、略平行光となる。よって、反射光は、略平行光の状態で、ミラー69に入射する。
なお、図11には、便宜上、ミラー69における出射レーザ光の入射領域が反射光の入射領域の半分程度であるように示されているが、実際は、出射レーザ光の入射領域よりも反射光の入射領域の方が数段広くなっている。このため、孔板23のミラー面23bにおける反射光の入射領域は、孔板23のミラー面23bにおける出射レーザ光の通過領域よりも、かなり広くなっている。
このように、反射光は、出射レーザ光の通過領域よりも広い領域において、略平行光の状態で、孔板23のミラー面23bに入射する。これにより、反射光は、大半が孔板23のミラー面23bによって反射される。孔板23のミラー面23bによって反射された目標領域からの反射光は、受光レンズ32によって、集光された後、凹レンズ33によって小さいビーム径の略平行光に整形される。その後、バンドパスフィルタ34を透過して、光検出器35に入射する。これにより、目標領域からの反射光を検出することができる。
また、ミラー69が矢印方向に回動した場合、目標領域からの反射光は、ミラー69によって、ミラー69の回動前と同じ方向に反射される。すなわち、目標領域からの反射光は、ミラー69の回動位置に拘わらず、ミラー69によって、レーザ光源21の光軸に平行な方向に反射される。このため、目標領域からの反射光は、ミラー69の回動位置に拘わらず、同じ光路を通って、略平行光の状態で、受光レンズ32に入射する。よって、受光レンズ32と凹レンズ33の組み合わせをバンドパスフィルタ34の前段に配置することで、目標領域からの反射光を常にビーム径の小さい略平行光に整形することができる。これにより、サイズの小さい簡素なバンドパスフィルタ34で、出射レーザ光以外の波長帯域の迷光(例えば、太陽光や対向車両のライト等)の影響を抑えることができる。
図12は、レーザレーダ1の受光装置31の一部拡大図である。
図12(a)は、受光レンズ32の後段に凹レンズ33を配置しない場合のバンドパスフィルタ34の配置例(比較例)である。
同図のようにバンドパスフィルタ34を光検出器35の前段に配置する場合(図中実線の位置)、反射光は、受光レンズ32によって集光されて、バンドパスフィルタ34に入射する。このため、図10(c)、(d)を参照して説明したように、バンドパスフィルタ34は、反射光の入射角を考慮して、複雑な膜厚設計が行われる必要がある。また、バンドパスフィルタ34の入射角依存性による影響を回避するために、受光レンズ32による反射光の収束角θ2(バンドパスフィルタ34への入射角)をなるべく小さくしようとすると、受光レンズ32と光検出器35の距離L1が長くなってしまう。このため、受光装置31のサイズが大きくなってしまう。
これに対し、バンドパスフィルタ34を受光レンズ32の前段に配置する場合(図中破線の位置)、反射光は、略平行光の状態でバンドパスフィルタ34に入射する。このため、バンドパスフィルタ34は、簡素な膜設計のものを利用することができる。しかし、この場合、受光レンズ32をカバーするために、大きいサイズのバンドパスフィルタ34が必要となる。このため、バンドパスフィルタ34のコストが上昇し、レーザレーダのコストアップに繋がる。
図12(b)は、本実施の形態におけるバンドパスフィルタ34の配置例を示す図である。
前述の如く、凹レンズ33は、受光レンズ32とバンドパスフィルタ34の間であって、受光レンズ32の焦点位置p1よりも受光レンズ32に近づく位置に配置される。また、受光レンズ32の焦点位置p1と凹レンズ33の光検出器35側の焦点位置p2が一致する位置に、凹レンズ33が設置される。受光レンズ32の光軸に平行に平行光が入射したときの受光レンズ32の収束角と、凹レンズ33の光軸に平行に平行光が入射したときの凹レンズ33の拡散角は、同じである。これにより、反射光は、受光レンズ32と凹レンズ33の作用により、小さいビーム径の平行光に絞られる。凹レンズ33を透過した後の反射光のビーム径は、受光レンズ32の焦点距離f1と凹レンズ33の焦点距離f2の比率に応じたものとなる。したがって、バンドパスフィルタ34は、小さいサイズのものを利用でき、かつ、簡素な膜設計のものを利用することができる。
さらに、バンドパスフィルタ34は、反射光が略平行光の状態で入射されるため、受光レンズ32と凹レンズ33の焦点距離と配置位置を調整することによって、受光レンズ32による反射光の収束角θ3を、図12(a)の場合の構成例と比べ、数段大きいものにすることができる。よって、受光レンズ32と光検出器35の距離L2を短くすることができ、受光装置31の小型化を図ることができる。
図13は、レーザレーダ1の回路構成を示す図である。なお、同図には、便宜上、投射光学系20および受光光学系30の主要な構成が併せて示されている。図示の如く、レーザレーダ1は、PD信号処理回路101と、スキャンLD駆動回路102と、アクチュエータ駆動回路103と、サーボLED駆動回路104と、PSD信号処理回路105と、DSP106を備えている。これらの回路は、図1の回路ユニット40に含まれている。
PD信号処理回路101は、光検出器35の受光光量に応じた電圧信号を増幅およびデジタル化してDSP106に供給する。
スキャンLD駆動回路102は、DSP106からの信号をもとに、レーザ光源21に駆動信号を供給する。具体的には、目標領域にレーザ光を照射するタイミングで、パルス状の駆動信号(電流信号)がレーザ光源21に供給される。
PSD信号処理回路105は、PSD85からの出力信号をもとに求めた位置検出信号をDSP106に出力する。サーボLED駆動回路104は、DSP106からの信号をもとに、LED68に駆動信号を供給する。アクチュエータ駆動回路103は、DSP106からの信号をもとに、ミラーアクチュエータ24を駆動する。具体的には、目標領域においてレーザ光を所定の軌道に沿って走査させるための駆動信号がミラーアクチュエータ24に供給される。
DSP106は、PSD信号処理回路105から入力された位置検出信号をもとに、目標領域におけるレーザ光の走査位置を検出し、ミラーアクチュエータ24の駆動制御や、レーザ光源21の駆動制御等を実行する。また、DSP106は、PD信号処理回路101から入力される電圧信号に基づいて、目標領域内のレーザ光照射位置に障害物が存在するかを判定し、同時に、レーザ光源21から出力されるレーザ光の照射タイミングと、光検出器35にて受光される目標領域からの反射光の受光タイミングの間の時間差をもとに、障害物までの距離を測定する。
以上、本実施の形態によれば、バンドパスフィルタ34の前段に、受光レンズ32と凹レンズ33を配置することで、略平行光で入射した目標領域からの反射光をビーム径の小さい略平行光に整形することができる。したがって、サイズの小さい簡素なバンドパスフィルタ34で、出射レーザ光以外の波長帯域の迷光(例えば、太陽光や対向車両のライト等)を除去することできる。よって、目標領域からの反射光の適正な受光を実現しながら、受光装置およびレーザレーダのコスト削減を図ることができる。
また、本実施の形態では、受光レンズ32、凹レンズ33の焦点距離と配置位置を調整することによって、受光レンズ32による反射光の収束角を大きいものにすることができる。したがって、受光レンズ32と光検出器35の距離を短くすることができ、受光装置31の規模を小さくすることができる。よって、レーザレーダの小型化を図ることができる。
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記以外に種々の変更が可能である。
たとえば、上記実施の形態では、反射光のビーム径を絞るために、受光レンズ32と凹レンズ33の互いの焦点位置を合わせて配置したが、凸レンズ2枚の互いの焦点位置を合わせて配置することにより、反射光のビーム径を絞ってもよい。
図14は、凸レンズ2枚により目標領域からの反射光のビーム径を絞る場合の受光装置
31の一部拡大図である。
図示の如く、受光装置31は、受光レンズ32と、ピンホール板36と、凸レンズ37と、バンドパスフィルタ34と、光検出器35とを備える。
受光レンズ32は、凸レンズであり、目標領域から反射された光を集光する。
ピンホール板36は、表面が遮光性のある素材であり、中央にピンホール36aが形成されている。ピンホール板36は、受光レンズ32の焦点位置p3および凸レンズ37の焦点位置p4にピンホール36aが位置付けられるように配置される。ピンホール36aは、受光レンズ32により収束された目標領域からの反射光を通過させる。また、ピンホール板36は、ピンホール36a以外の位置に入射する光を遮光する。さらに、ピンホール36aは、受光レンズ32と組み合わせて、スペイシャルフィルタ(空間フィルタ)として機能し、反射光の空間ノイズを除去する。
凸レンズ37は、受光レンズ32とバンドパスフィルタ34の間であって、受光レンズ32の焦点位置p3よりも受光レンズ32から遠ざかる位置に配置される。また、凸レンズ37は、受光レンズ32の焦点位置p3と凸レンズ37の焦点位置p4が一致する位置に配置される。さらに、受光レンズ32の光軸に平行に平行光が入射したときの受光レンズ32の収束角と、凸レンズ37の光軸に平行に平行光が入射したときの凸レンズ37の収束角は、同じである。これにより、反射光は、受光レンズ32と凸レンズ37の作用により、小さいビーム径の平行光に絞られる。凸レンズ37を透過した後の反射光のビーム径は、受光レンズ32の焦点距離f3と凸レンズ37の焦点距離f4の比率に応じたものとなる。
バンドパスフィルタ34は、上記実施の形態同様、誘電体膜での多光束干渉の作用によって出射レーザ光の波長帯域の光のみを透過させる。バンドパスフィルタ34は、受光レンズ32と凸レンズ37によって、反射光が略平行光の状態で入射されるため、簡素な構成のものが用いられる。また、バンドパスフィルタ34は、光検出器35に近い位置に配置され、サイズの小さいものである。
光検出器35は、上記実施の形態同様、受光光量に応じた大きさの電気信号を出力する。
このように、本変更例においても、上記の実施形態同様、バンドパスフィルタ34は、小さいサイズのものを利用でき、かつ、膜設計が簡素なものを利用することができる。
また、本変更例では、受光レンズ32と凸レンズ37の焦点位置p3、p4の位置にピンホール36aが位置づけられるように配置されたピンホール板36によって、目標領域からの反射光が入射する方向以外の方向から入射する迷光を除去することができる。また、ピンホール板36は、出射レーザ光と同一波長帯域であっても、迷光を除去することができるため、バンドパスフィルタ34と組み合わせて配置することにより、上記実施の形態と比べ、光検出器35に入射する迷光を一層除去することができる。
また、上記実施の形態同様、受光レンズ32と凸レンズ37の焦点距離と配置位置を調整することで、受光レンズ32と光検出器35の距離を短くすることができ、レーザレーダの小型化を図ることができる。
また、上記実施の形態では、反射光が略平行光の状態で入射されたが、バンドパスフィルタ34の膜設計によって対応可能な範囲の入射角度であれば、反射光が平行光からやや
拡散していてもよく、やや収束していてもよい。
また、上記実施の形態では、レーザレーダに用いられるバンドパスフィルタ34を小型化および簡素化するための構成例を示したが、本発明は、他の光学系に用いられるバンドパスフィルタや、ローパスフィルタ、ハイパスフィルタおよびダイクロイックフィルタ等、どのような入射角依存性が高い光学フィルタを含む光学系にも適用可能である。
また、上記実施の形態では、投射光学系20と受光光学系30の光路が一致するタイプのレーザレーダの構成例を示したが、投射光学系と受光光学系が別々に配置され、光路が一致しないタイプのレーザレーダに本発明を用いても良い。この場合、レーザ光の走査に伴い、受光光学系に入射する反射光の入射位置が変化するが、目標物が十分に遠方にあれば、受光光学系に入射する反射光は、略平行光の状態となるため、本発明を適用可能である。
また、上記実施の形態では、受光レンズ32によって収束された反射光を、レンズによって平行光に変換したが、受光レンズ32によって収束された反射光を、曲面ミラーによって平行光に変換しても良い。
さらに、上記実施の形態では、車両等に搭載されるレーザレーダにおける構成例を示したが、本発明の受光装置は、モーションセンサ等、目標領域に光を投射したときの反射光を光検出器等で受光するタイプの装置であれば、どのような装置にも適用可能である。
この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
1 … レーザレーダ
21 … レーザ光源
23 … 孔板(反射板)
23a… 孔
23b… ミラー面(反射面)
24 … ミラーアクチュエータ(光走査部)
31 … 受光装置
32 … 受光レンズ(第1の光学素子、凸レンズ)
33 … 凹レンズ(第2の光学素子)
34 … バンドパスフィルタ(光学フィルタ)
35 … 光検出器

Claims (6)

  1. レーザ光を出射するレーザ光源と、
    前記レーザ光を目標領域において走査させる光走査部と、
    前記目標領域からの前記レーザ光の反射光を収束させる第1の光学素子と、
    前記第1の光学素子により収束された前記反射光を、前記第1の光学素子に入射する際の前記反射光よりも小さいサイズとし、且つ、平行光に近づけるための第2の光学素子と、
    前記第2の光学素子を経由した前記反射光が入射され、前記レーザ光の波長帯以外の不要な光を除去するための光学フィルタと、
    前記光学フィルタを経由した前記反射光を受光する光検出器と、を備える、
    ことを特徴とするレーザレーダ。
  2. 請求項1に記載のレーザレーダにおいて、
    前記第1の光学素子は、凸レンズであり、
    前記第2の光学素子は、凹レンズである、
    ことを特徴とするレーザレーダ。
  3. 請求項2に記載のレーザレーダにおいて、
    前記第1の光学素子の光軸に平行に平行光が入射したときの前記第1の光学素子の収束角と、前記第2の光学素子の光軸に平行に平行光が入射したときの前記第2の光学素子の発散角が同じであり、且つ、前記第1の光学素子の焦点と前記第2の光学素子の焦点とが一致するように、前記第1の光学素子と前記第2の光学素子が配置されている、
    ことを特徴とするレーザレーダ。
  4. 請求項1ないし3の何れか一項に記載のレーザレーダにおいて、
    前記レーザ光源から出射された前記レーザ光が通過するための孔が形成されるとともに、前記レーザ光源と前記光走査部との間に前記レーザ光の光軸に対して傾くように配置され、前記レーザ光源側と反対側の面が反射面である反射板をさらに備え、
    前記目標領域からの反射光は、前記反射面によって反射された後、前記第1の光学素子に入射する、
    ことを特徴とするレーザレーダ。
  5. 光を収束させる第1の光学素子と、
    前記第1の光学素子により収束された前記光を、前記第1の光学素子に入射する際の前記光よりも小さいサイズとし、且つ、平行光に近づけるための第2の光学素子と、
    前記第2の光学素子を経由した前記光が入射され、目標波長帯以外の不要な光を除去するための光学フィルタと、
    前記光学フィルタによって前記不要な光が除去された光を受光する光検出器と、を備える、
    ことを特徴とする受光装置。
  6. 請求項5に記載の受光装置において、
    前記第1の光学素子は、凹レンズであり、
    前記第2の光学素子は、凸レンズである、
    ことを特徴とする受光装置。
JP2011011326A 2011-01-21 2011-01-21 レーザレーダおよび受光装置 Pending JP2012154642A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011326A JP2012154642A (ja) 2011-01-21 2011-01-21 レーザレーダおよび受光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011326A JP2012154642A (ja) 2011-01-21 2011-01-21 レーザレーダおよび受光装置

Publications (1)

Publication Number Publication Date
JP2012154642A true JP2012154642A (ja) 2012-08-16

Family

ID=46836536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011326A Pending JP2012154642A (ja) 2011-01-21 2011-01-21 レーザレーダおよび受光装置

Country Status (1)

Country Link
JP (1) JP2012154642A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071030A (ja) * 2012-09-28 2014-04-21 Denso Wave Inc レーザレーダ装置
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
WO2018183715A1 (en) * 2017-03-29 2018-10-04 Luminar Technologies, Inc. Method for controlling peak and average power through laser receiver
JP2019113377A (ja) * 2017-12-22 2019-07-11 パイオニア株式会社 検知装置
JP2019537708A (ja) * 2016-11-16 2019-12-26 ウェイモ エルエルシー 光検知測距(lidar)装置を保護するための方法およびシステム
US20200041617A1 (en) * 2018-08-01 2020-02-06 Sick Ag Optoelectronic Sensor and Method for Detecting an Object
US20200096614A1 (en) * 2018-09-21 2020-03-26 Sony Semiconductor Solutions Corporation Time-of-flight device and time of flight system
KR20200102900A (ko) * 2019-02-22 2020-09-01 주식회사 에스오에스랩 라이다 장치
JP2022545013A (ja) * 2019-08-22 2022-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ライダー装置用受光ユニット
WO2024070998A1 (ja) * 2022-09-28 2024-04-04 株式会社トプコン 測定装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071030A (ja) * 2012-09-28 2014-04-21 Denso Wave Inc レーザレーダ装置
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
WO2018076600A1 (zh) * 2016-10-28 2018-05-03 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
US10845470B2 (en) 2016-11-16 2020-11-24 Waymo Llc Methods and systems for protecting a light detection and ranging (LIDAR) device
JP2019537708A (ja) * 2016-11-16 2019-12-26 ウェイモ エルエルシー 光検知測距(lidar)装置を保護するための方法およびシステム
US11614523B2 (en) 2016-11-16 2023-03-28 Waymo Llc Methods and systems for protecting a light detection and ranging (lidar) device
WO2018183715A1 (en) * 2017-03-29 2018-10-04 Luminar Technologies, Inc. Method for controlling peak and average power through laser receiver
US11181622B2 (en) 2017-03-29 2021-11-23 Luminar, Llc Method for controlling peak and average power through laser receiver
JP2019113377A (ja) * 2017-12-22 2019-07-11 パイオニア株式会社 検知装置
JP2022119793A (ja) * 2017-12-22 2022-08-17 パイオニア株式会社 検知装置
JP2020034547A (ja) * 2018-08-01 2020-03-05 ジック アーゲー 光電センサ及び物体検出方法
CN110806568A (zh) * 2018-08-01 2020-02-18 西克股份公司 用于检测对象的光电传感器和方法
US20200041617A1 (en) * 2018-08-01 2020-02-06 Sick Ag Optoelectronic Sensor and Method for Detecting an Object
US20200096614A1 (en) * 2018-09-21 2020-03-26 Sony Semiconductor Solutions Corporation Time-of-flight device and time of flight system
KR20200102900A (ko) * 2019-02-22 2020-09-01 주식회사 에스오에스랩 라이다 장치
KR102263183B1 (ko) * 2019-02-22 2021-06-09 주식회사 에스오에스랩 라이다 장치
JP2022545013A (ja) * 2019-08-22 2022-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ライダー装置用受光ユニット
WO2024070998A1 (ja) * 2022-09-28 2024-04-04 株式会社トプコン 測定装置

Similar Documents

Publication Publication Date Title
JP2012154642A (ja) レーザレーダおよび受光装置
JP2012154806A (ja) レーザレーダおよび受光装置
WO2012144341A1 (ja) レーザレーダ
JP2012159330A (ja) レーザレーダ
US10191273B2 (en) Mirror driving device, beam irradiation device, and laser radar
JP2018028555A (ja) 共用伝送/受光経路を備えたlidarプラットフォームを回転させる装置及び方法
JP3960653B2 (ja) 電気光学的装置
JP2009014639A (ja) ビーム照射装置およびレーザレーダ
WO2013080625A1 (ja) ミラーアクチュエータ、ビーム照射装置およびレーザレーダ
JP2014145671A (ja) レーザレーダ
JP2011008177A (ja) 光モジュール
US20100321751A1 (en) Mirror actuator and beam irradiation device
JP2012141191A (ja) レーザレーダ
JP2013130422A (ja) レーザレーダ
JPWO2013080626A1 (ja) ミラーアクチュエータ、ビーム照射装置およびレーザレーダ
JP2013130531A (ja) レーザレーダ
WO2014174734A1 (ja) ビーム照射装置、レーザレーダおよびミラーアクチュエータ
JP2009210557A (ja) ビーム照射装置およびレーザレーダ
US20200348400A1 (en) Lidar device
JP2008298686A (ja) ビーム照射装置およびレーザレーダ
JP7170251B2 (ja) 距離測定装置
JP2009085947A (ja) ビーム照射装置
JP5743925B2 (ja) 受発光装置
JP6182740B2 (ja) ミラーアクチュエータ、ビーム照射装置およびレーザレーダ
JP2010048564A (ja) ビーム照射装置