WO2018076600A1 - 一种基于时间飞行法的激光雷达系统 - Google Patents

一种基于时间飞行法的激光雷达系统 Download PDF

Info

Publication number
WO2018076600A1
WO2018076600A1 PCT/CN2017/077765 CN2017077765W WO2018076600A1 WO 2018076600 A1 WO2018076600 A1 WO 2018076600A1 CN 2017077765 W CN2017077765 W CN 2017077765W WO 2018076600 A1 WO2018076600 A1 WO 2018076600A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
optical path
scanning unit
target object
Prior art date
Application number
PCT/CN2017/077765
Other languages
English (en)
French (fr)
Inventor
王勇
胡小波
段佩华
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Priority to EP17864447.2A priority Critical patent/EP3534175A4/en
Priority to KR1020197011601A priority patent/KR102191592B1/ko
Priority to JP2019542762A priority patent/JP2019532312A/ja
Publication of WO2018076600A1 publication Critical patent/WO2018076600A1/zh
Priority to US16/383,651 priority patent/US11619713B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby

Definitions

  • the present invention belongs to the field of radar technology, and in particular, to a laser radar system based on a daytime flight method.
  • laser radar As a kind of distance measuring device, laser radar has the advantages of high precision, strong anti-interference ability and fast response speed, and is suitable for various environments.
  • laser ranging mainly includes two types of inter-day distance measurement and triangulation, wherein the inter-day distance measurement is an object that projects laser light into a specific direction through an optical structure inside the laser radar.
  • the laser radar can calculate the radar to the radar by calculating the flight time during the process of transmitting the reflected light. The distance between the illuminated objects.
  • the entire laser radar can only be rotated by using a slip ring to measure the object illuminated in the range of rotation.
  • Embodiments of the present invention provide a laser radar system and system based on a daytime flight method, which aims to solve the problem of short life, complicated structure, and high cost caused by the use of a slip ring as a rotating part of the existing laser radar. s solution
  • Embodiments of the present invention are implemented in this manner, a laser radar system based on the daytime flight method, the system comprising:
  • a housing that houses the laser, the optical path scanning unit, and the reflected light receiving unit, and the housing is provided with a filter between the optical path scanning unit and the target object.
  • the optical path scanning unit performs the deflection control of the laser emitting light path, and only needs to control the optical path. That is, the entire laser radar device does not need to be deflected to achieve multi-angle scanning, thus avoiding the complicated slip ring structure driving the entire laser radar device, and only performing the optical path deflection, the radar structure can be realized more simply.
  • the slip ring since the slip ring is not required to rotate the entire laser radar device, the wear degree is reduced and the service life is longer; in addition, the reflected light receiving unit and the laser emitting light path are coaxially arranged, so that the optical path structure of the laser is simpler, thereby The cost of the laser radar device is lower.
  • FIG. 1 is a cross-sectional structural diagram of a laser radar system based on a daytime flight method according to an embodiment of the present invention.
  • FIG. 2 is an overall structural diagram of a laser radar system according to an embodiment of the present invention.
  • FIG. 3 is a first perspective structural view of a laser radar system according to an embodiment of the present invention.
  • FIG. 4 is a first perspective structural diagram of another laser radar system based on the diurnal flight method according to an embodiment of the present invention.
  • FIG. 1-4 shows a specific embodiment of a laser radar system based on the diurnal flight method provided by the present invention, the device comprising: a laser 111 for generating a laser; and an emission path for the laser Performing deflection control to emit a laser light to the target object within a preset range.
  • the optical path scanning unit 10 is coaxial with the laser emission optical path emitted by the laser 1 11 for receiving a target object reflection reflected by the optical path scanning unit 10.
  • the optical path scanning unit 10 includes: a light emitting optical axis disposed to block the scattered light reflected by the laser light to the filter member 109.
  • the light blocking member 110 can reduce laser scattered light generated by the laser during conduction.
  • the light shielding member 110 has a cylindrical structure with one end abutting the emitting port of the laser 111 and the other end abutting the filter member 109 (which may be a circular cylindrical structure) Or a square cylindrical structure, wherein the light blocking member 110 abuts the filter member to reduce a small amount of reflected light generated by the laser light passing through the filter member.
  • the optical path scanning unit 10 further includes: a deflection mirror 108; and a rotation mechanism connected to the deflection mirror 108 for performing rotation control on the deflection mirror 108, wherein
  • the deflection mirror 108 can be a mirror or a prism.
  • the rotating mechanism includes: a controlled drive motor 101 coupled to the mirror or prism, and the controlled drive motor 101 can drive the deflection of the mirror or prism by acquiring an external control signal or other means such as a control signal of a control circuit within the device.
  • the rotation mechanism of the optical path scanning unit 10 includes: a rotation angle encoder 102 for acquiring rotation angle information.
  • the rotation angle encoder 102 may be an encoder disk,
  • the code disk is connected to a photoelectric switch 107 signal.
  • the switch 107 controls the rotation of the controlled drive motor 101 to realize the process of rotating the device.
  • the encoder disc is only an implementable manner as the rotation angle encoder 102.
  • those skilled in the art can also implement the method by other means, for example, by using a gear mechanism.
  • the torque output of the motor, and the angle of the control rotation is achieved by calculating the speed ratio.
  • the filter member 109 is a perfect circular table structure, and the circular circle structure indicates that the structure of the filter member is a cylinder having a diameter smaller than a diameter of the lower portion, and is internally Forming a cavity accommodating the rotation of the optical path scanning unit 10; wherein, at a position of the bottom of the cavity, and/or a geometric reflection angle of the filter 109, is provided for absorbing the emitted laser light
  • the light-receiving first light-absorbing portion 113 reflected by the filter member.
  • the first light absorbing portion 113 can absorb the stray light reflected by the laser light at the filter member 109 by applying a light absorbing material to prevent the stray light from affecting the accuracy of the reflected light receiving unit.
  • the filter member 109 is a round table structure, wherein the round table structure refers to the upper diameter being larger than the lower diameter.
  • a tapered cylindrical structure having a cavity therein for accommodating rotation of the optical path scanning unit; wherein, at a top of the cavity, and/or a geometric reflection angle of the filter member 109 is provided,
  • a second light absorbing portion that absorbs the returned light reflected by the filter member.
  • the second light absorbing portion can be applied with the light absorbing material to absorb the stray light reflected by the laser light at the filter member 109, so as to prevent the stray light from affecting the accuracy of the reflected light receiving unit.
  • the first light absorbing portion or the second light absorbing portion is a groove having a light absorbing layer on the surface
  • the first light absorbing portion is taken as an example, which may be a groove 113 disposed at the bottom of the cavity.
  • the surface of the groove 113 is coated with a light absorbing layer, and the light absorbing layer may be made of a material having better light absorbing ability.
  • the groove 113 should be located on the optical path of the returning light reflected by the filter member.
  • the first light absorbing portion may also be only a portion coated with the light absorbing material.
  • the reflected light receiving unit includes: a concentrating assembly 104 that condenses the reflected light of the target object; and a reflected light of the target object that is condensed by the concentrating assembly 104, and outputs an electrical signal Photodetector 112.
  • the central axis of the concentrating assembly 104 is provided with a through hole for accommodating the laser, and the laser is disposed at the central axis of the concentrating assembly 104, so that the emission path of the laser and the reflected light receiving optical path are ensured to be coaxial. Errors occur on different axes of the light path.
  • the design can reduce the complexity of the laser radar optical path system, greatly reduce the space occupied by the structure, and save manufacturing costs. It is conducive to improving the production efficiency of enterprises.
  • the concentrating assembly 104 includes an aspherical lens 105.
  • the aspherical lens 105 can converge the light to achieve parallel output, improve the light transmission quality, and improve the sensitivity of the photodetector 112 and increase the effective measurement distance of the laser radar.
  • the aspherical lens 105 can be made of a plastic material to reduce weight and cost.
  • the laser radar device in the embodiment of the present invention can be used as the navigation information with the provided ranging information. Therefore, in the embodiment of the present invention, the laser radar device can be applied to various systems, for example, in this embodiment.
  • the laser radar device can be used to provide ranging information on vehicles such as unmanned automobiles, bicycles, and wheelchairs, so as to utilize the characteristics of high precision, wide ranging range, and low delay of the laser radar, and the vehicle is improved.
  • the accuracy and accuracy of the location information obtained during the automatic navigation process enhances the automatic navigation performance of the vehicle.
  • the optical path scanning unit performs the yaw control of the laser light emitting path by using the optical path scanning unit with respect to the device that adopts the slip ring as the rotating mechanism, and only needs to control the optical path, and does not need to
  • the entire Lidar device is deflected for multi-angle scanning, thus avoiding the complex slip ring structure that drives the entire Lidar device, requiring only optical path deflection.
  • the optical path scanning unit can drive the deflection mirror to reflect the laser to different angles through the controlled driving motor, so that the radar structure can be realized more simply, so that the slip ring can be prevented from rotating.
  • the entire laser radar device reduces wear and has a longer service life.
  • the reflected light receiving unit and the laser emitting light path are coaxially arranged, so that the optical path structure of the laser is simpler, so that the cost of the laser radar device is lower.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种基于时间飞行法的激光雷达系统,包括:用于产生激光的激光器(111);对激光的发射光路进行偏转控制,以对预设范围内的目标物体发射激光的光路扫描单元(10);与激光的发射光路同轴,用于接收通过光路扫描单元(10)反射的目标物体反射光,并输出电信号的反射光接收单元(20);根据该电信号,生成激光雷达系统与目标物体之间的距离信息,并将多个距离信息进行处理,生成预设范围内的目标物体位置信息的信号处理单元(106);以及容纳激光器(111)、光路扫描单元(10)及反射光接收单元(20)的壳体(100),该壳体(100)在光路扫描单元(10)与目标物体之间设有滤光件(109)。该激光雷达系统光路结构简单,可靠性强,成本更低。

Description

发明名称:一种基于时间飞行法的激光雷达系统 技术领域
[0001] 本发明属于雷达技术领域, 尤其涉及一种基于吋间飞行法的激光雷达系统。
背景技术
[0002] 激光雷达作为一种测距设备, 具有精度高、 抗干扰能力强, 反应速度快等优点 , 适用于多种使用环境。
[0003] 在实际应用中, 激光测距主要包括飞行吋间测距以及三角测距两种, 其中, 飞 行吋间测距是通过激光雷达内部的光学结构, 将激光投射到特定方向上的物体 , 当激光接触到物体上吋, 会反射回部分光线, 激光雷达接收该反射回的光线 以后, 可以通过计算激光在发射到接收到反射光这个过程中的飞行吋间, 来计 算出雷达到所照射物体之间的距离。 当需要通过单一光路获取多个角度范围的 物体的距离吋, 只能使用滑环将整个激光雷达进行转动, 来实现对转动范围内 所照射到的物体进行测距。
[0004] 但是, 为了对多个角度范围内所照射到的物体进行测距, 采用滑环的方式对雷 达进行转动会产生雷达转动部分使用寿命短的问题, 且现有可转动激光雷达的 光路设计较为复杂, 成本较高。
技术问题
[0005] 本发明实施例提供一种基于吋间飞行法的激光雷达系统、 系统, 旨在解决现有 激光雷达因采用滑环作为转动部分所产生的寿命短、 结构复杂及成本高的问题 问题的解决方案
技术解决方案
[0006] 本发明实施例是这样实现的, 一种基于吋间飞行法的激光雷达系统, 所述系统 包括:
[0007] 用于产生激光的激光器;
[0008] 对所述激光的发射光路进行偏转控制, 以对预设范围内的目标物体发射激光的 光路扫描单元;
[0009] 与所述激光器发射的激光发射光路同轴, 用于接收通过所述光路扫描单元反射 的目标物体反射光, 并输出电信号的反射光接收单元;
[0010] 根据所述电信号, 生成所述装置与所述目标物体之间的距离信息, 并将多个所 述距离信息进行处理, 生成预设范围内的目标物体位置信息的信号处理单元; 以及
[0011] 容纳所述激光器、 光路扫描单元及反射光接收单元的壳体, 所述壳体在所述光 路扫描单元与所述目标物体之间设有滤光件。
发明的有益效果
有益效果
[0012] 本发明相对于现有技术的有益效果是: 本发明相对于传统采用滑环作为转动机 构的装置而言, 利用光路扫描单元对激光的发射光路进行偏转控制, 只需要对 光路进行控制即可, 不需要将整个激光雷达装置进行偏转实现多角度的扫描, 这样, 避免了驱动整个激光雷达装置的复杂滑环结构, 只需进行光路偏转, 其 雷达结构的实现可以更为简单, 同吋, 由于不需要滑环来转动整个激光雷达装 置, 降低了磨损度, 使用寿命更长; 另外, 将反射光接收单元与激光发射光路 进行同轴设置, 使得激光的光路结构更为简单, 从而使得激光雷达装置的成本 更低。
对附图的简要说明
附图说明
[0013] 图 1是本发明实施例提供的一种基于吋间飞行法的激光雷达系统的剖面结构图
[0014] 图 2是本发明实施例提供的激光雷达系统的整体结构图;
[0015] 图 3是本发明实施例提供的激光雷达系统的第一视角结构图;
[0016] 图 4是本发明实施例提供的另一种基于吋间飞行法的激光雷达系统的第一视角 结构图。 本发明的实施方式
[0017] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0018] 如图 1-4所示为本发明提供的一种基于吋间飞行法的激光雷达系统的具体实施 例, 该装置包括: 用于产生激光的激光器 111 ; 对所述激光的发射光路进行偏转 控制, 以对预设范围内的目标物体发射激光的光路扫描单元 10; 与所述激光器 1 11发射的激光发射光路同轴, 用于接收通过所述光路扫描单元 10反射的目标物 体反射光, 并输出电信号的反射光接收单元 20 ; 根据所述电信号, 生成所述 装置与所述目标物体之间的距离信息, 并将多个所述距离信息进行处理, 生成 预设范围内的目标物体位置信息的信号处理单元 106; 以及容纳所述激光器 111 、 光路扫描单元 10及反射光接收单元的壳体 100, 所述壳体 100在所述光路扫描 单元与所述目标物体之间设有滤光件 109。
[0019] 在本发明实施例中, 所述光路扫描单元 10包括: 一沿所述激光发射光轴设置, 用于遮挡所述激光照射到所述滤光件 109所反射回的散杂光的遮光件 110, 该遮 光件 110可以减少激光在传导过程中产生的激光散射光。 作为遮光件 110的一种 具体实施例, 所述遮光件 110为一端抵近所述激光器 111的发射口, 另一端抵近 所述滤光件 109的筒状结构 (可以为圆形筒状结构或方形筒状结构) , 其中, 遮 光件 110抵近滤光件可以减少激光在透过滤光件吋产生的少数反射光。
[0020] 在本发明实施例中, 所述光路扫描单元 10还包括: 偏转镜 108; 以及与所述偏 转镜 108连接, 用于对所述偏转镜 108进行转动控制的转动机构, 其中, 所述偏 转镜 108可以为反射镜或棱镜。 其中, 使用反射镜吋可以简化光路, 减少光路中 的损失。 转动机构包括: 与所述反射镜或棱镜连接的受控驱动电机 101, 受控驱 动电机 101可通过获取外部控制信号或者其它途径如装置内的控制电路的控制信 号驱动反射镜或棱镜的偏转。
[0021] 在本发明实施例中, 光路扫描单元 10的转动机构包括: 用于获取转动角度信息 的转动角度编码器 102, 具体的, 所述转动角度编码器 102可以为一编码盘, 所 述编码盘与一光电幵关 107信号连接。 通过编码盘获取角度信息并控制所述光电 幵关 107以控制所述受控驱动电机 101转动, 实现装置转动扫描的过程。 当然, 编码盘仅是作为转动角度编码器 102的一种可实施的方式, 作为控制受控驱动电 机 101转动的方式, 本领域技术人员还可以通过其它手段实现, 例如, 可利用齿 轮机构实现对电机的转矩输出, 并通过计算速度比来实现控制转动的角度。
[0022] 在本发明实施例中, 结合图 3所示, 所述滤光件 109为正圆台结构, 正圆台结构 表示的是滤光件的结构为部直径小于下部直径的圆柱, 并在内部形成一可容纳 所述光路扫描单元 10转动的腔体; 其中, 在所述腔体的底部、 和 /或滤光件 109的 几何反射角所指向的地方, 设有用于吸收所述发射激光在所述滤光件所反射的 回光的第一吸光部 113。 第一吸光部 113可用涂抹吸光材料的方式, 来达到吸收 激光在滤光件 109所反射回的杂光, 避免杂光影响到反射光接收单元的精确度。
[0023] 结合图 4所示, 作为本实施例中滤光件 109的另一种实施方式, 所述滤光件 109 为倒圆台结构, 其中, 倒圆台结构是指上部直径大于下部直径的倒锥形圆柱结 构, 其内部形成一可容纳所述光路扫描单元转动的腔体; 其中, 在所述腔体的 顶部, 和 /或滤光件 109的几何反射角所指向的地方, 设有用于吸收所述发射激光 在所述滤光件所反射的回光的第二吸光部。 第二吸光部可用涂抹吸光材料的方 式, 来达到吸收激光在滤光件 109所反射回的杂光, 避免杂光影响到反射光接收 单元的精确度。
[0024] 在本发明实施例中, 所述第一吸光部或第二吸光部为表面具有吸光层的凹槽, 以第一吸光部为例, 其可以是设置在腔体底部的凹槽 113, 其中, 凹槽 113的表 面涂有吸光层, 吸光层可以是光吸收能力较好的材料制作。 凹槽 113应位于所述 发射激光在所述滤光件所反射的回光的光路上。 当然, 第一吸光部也可以仅仅 是涂覆有吸光材料的部位。
[0025] 在本发明实施例中, 反射光接收单元包括: 将所述目标物体反射光进行会聚的 聚光组件 104; 以及接收所述聚光组件 104会聚的目标物体反射光, 并输出电信 号的光电探测器 112。 其中, 聚光组件 104的中轴处设有用于容纳所述激光器的 通孔, 将激光器设置在聚光组件 104的中轴处, 可以保证激光器的发射光路与反 射光接收光路同轴, 避免因光路不同轴产生误差。 并且, 该设计可以减少激光 雷达光路系统的复杂度, 大大降低结构所占用空间大小, 还节省了制造成本, 有利于提高企业的生产效益。
[0026] 在本发明实施例中, 所述聚光组件 104包括非球面透镜 105。 其中, 非球面透镜 105可以会聚光线实现平行输出, 提高透光质量, 同吋, 还可以提高光电探测器 112的灵敏度, 增加激光雷达的有效测量距离。 该非球面透镜 105可以采用塑料 材质, 可以降低重量, 节省成本。
[0027] 本发明实施例中的激光雷达装置可以与提供的测距信息作为导航信息, 因此, 本发明实施例中, 所述激光雷达装置可以应用到各种系统中, 例如, 本实施例 中所述的激光雷达装置可以用在例如无人汽车、 自行车、 轮椅等载具上提供测 距信息, 以利用激光雷达所具有的精度高、 测距范围广、 延迟低的特点, 提高 载具在自动导航过程中所获取的位置信息的吋效性及准确性, 增强载具的自动 导航性能。
[0028] 本发明实施例中, 光路扫描单元相对于传统采用滑环作为转动机构的装置而言 , 利用光路扫描单元对激光的发射光路进行偏转控制, 只需要对光路进行控制 即可, 不需要将整个激光雷达装置进行偏转实现多角度的扫描, 这样, 避免了 驱动整个激光雷达装置的复杂滑环结构, 只需进行光路偏转。 例如在本发明实 施例中, 光路扫描单元可以通过受控驱动电机驱动偏转镜将激光反射到不同的 角度即可, 这样, 其雷达结构的实现可以更为简单, 这样, 可避免滑环来转动 整个激光雷达装置, 降低了磨损度, 使用寿命更长; 另外, 将反射光接收单元 与激光发射光路进行同轴设置, 使得激光的光路结构更为简单, 从而使得激光 雷达装置的成本更低。
[0029] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。
[0030]

Claims

权利要求书
[权利要求 1] 一种基于吋间飞行法的激光雷达系统, 其特征在于, 所述系统包括: 用于产生激光的激光器;
对所述激光的发射光路进行偏转控制, 以对预设范围内的目标物体发 射激光的光路扫描单元;
与所述激光器发射的激光发射光路同轴, 用于接收通过所述光路扫描 单元反射的目标物体反射光, 并输出电信号的反射光接收单元; 根据所述电信号, 生成所述装置与所述目标物体之间的距离信息, 并 将多个所述距离信息进行处理, 生成预设范围内的目标物体位置信息 的信号处理单元; 以及
容纳所述激光器、 光路扫描单元及反射光接收单元的壳体, 所述壳体 在所述光路扫描单元与所述目标物体之间设有滤光件。
[权利要求 2] 如权利要求 1所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述光路扫描单元包括:
一沿所述激光发射光轴设置, 用于遮挡所述激光照射到所述滤光件所 反射回的散杂光的遮光件。
[权利要求 3] 如权利要求 2所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述遮光件一端抵近所述激光器的发射口, 另一端抵近所述滤光件。
[权利要求 4] 如权利要求 1所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述光路扫描单元包括:
偏转镜; 以及
与所述偏转镜连接, 用于对所述偏转镜进行转动控制的转动机构。
[权利要求 5] 如权利要求 4所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述偏转镜为反射镜或棱镜。
[权利要求 6] 如权利要求 4所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述转动机构包括:
与所述反射镜或棱镜连接的受控驱动电机。
[权利要求 7] 如权利要求 4所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述转动机构包括:
用于获取转动角度信息的转动角度编码器。
如权利要求 1所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述滤光件为正圆台结构, 并在内部形成一可容纳所述光路扫描单元 转动的腔体;
其中, 在所述腔体的底部, 设有用于吸收所述发射激光在所述滤光件 所反射的回光的第一吸光部。
如权利要求 1所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述滤光件为倒圆台结构, 并在内部形成一可容纳所述光路扫描单元 转动的腔体;
其中, 在所述腔体的顶部, 设有用于吸收所述发射激光在所述滤光件 所反射的回光的第二吸光部。
如权利要求 8或 9所述的基于吋间飞行法的激光雷达系统, 其特征在于 , 所述第一吸光部或第二吸光部为表面具有吸光层的凹槽, 所述凹槽 位于所述发射激光在所述滤光件所反射的回光的光路上。
如权利要求 1所述的基于吋间飞行法的激光雷达系统, 其特征在于, 反射光接收单元包括:
将所述目标物体反射光进行会聚的聚光组件; 以及
接收所述聚光组件会聚的目标物体反射光, 并输出电信号的光电探测 器。
如权利要求 11所述的基于吋间飞行法的激光雷达系统, 其特征在于, 所述聚光组件的中轴处设有用于容纳所述激光器的通孔。
如权利要求 11或 12所述的基于吋间飞行法的激光雷达系统, 其特征在 于, 所述聚光组件为非球面透镜。
PCT/CN2017/077765 2016-10-28 2017-03-22 一种基于时间飞行法的激光雷达系统 WO2018076600A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17864447.2A EP3534175A4 (en) 2016-10-28 2017-03-22 RADAR-LASER SYSTEM BASED ON TIME FLIGHT METHOD
KR1020197011601A KR102191592B1 (ko) 2016-10-28 2017-03-22 비행 시간법을 기반으로 하는 레이저 레이더 시스템
JP2019542762A JP2019532312A (ja) 2016-10-28 2017-03-22 飛行時間法に基づくレーザレーダシステム
US16/383,651 US11619713B2 (en) 2016-10-28 2019-04-14 Laser detection and ranging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610972464.8 2016-10-28
CN201610972464.8A CN106324582A (zh) 2016-10-28 2016-10-28 一种基于时间飞行法的激光雷达系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/383,651 Continuation-In-Part US11619713B2 (en) 2016-10-28 2019-04-14 Laser detection and ranging device

Publications (1)

Publication Number Publication Date
WO2018076600A1 true WO2018076600A1 (zh) 2018-05-03

Family

ID=57815977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077765 WO2018076600A1 (zh) 2016-10-28 2017-03-22 一种基于时间飞行法的激光雷达系统

Country Status (6)

Country Link
US (1) US11619713B2 (zh)
EP (1) EP3534175A4 (zh)
JP (1) JP2019532312A (zh)
KR (1) KR102191592B1 (zh)
CN (1) CN106324582A (zh)
WO (1) WO2018076600A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663670A (zh) * 2018-05-15 2018-10-16 武汉万集信息技术有限公司 激光雷达光机装置
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
CN111279213A (zh) * 2019-01-09 2020-06-12 深圳市大疆创新科技有限公司 测距装置及移动平台
CN113534312A (zh) * 2020-04-15 2021-10-22 信泰光学(深圳)有限公司 光学装置及其棱镜模块
CN109387849B (zh) * 2018-12-04 2024-06-04 珠海码硕科技有限公司 一种同轴激光测距装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964437B2 (en) * 2016-05-03 2018-05-08 Datalogic IP Tech, S.r.l. Laser scanner with reduced internal optical reflection comprising a light detector disposed between an interference filter and a collecting mirror
US10048120B2 (en) 2016-05-03 2018-08-14 Datalogic IP Tech, S.r.l. Laser scanner and optical system
US11585905B2 (en) 2016-05-03 2023-02-21 Datalogic Ip Tech S.R.L. Laser scanner
US10061021B2 (en) 2016-07-06 2018-08-28 Datalogic IP Tech, S.r.l. Clutter filter configuration for safety laser scanner
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
USD871412S1 (en) * 2016-11-21 2019-12-31 Datalogic Ip Tech S.R.L. Optical scanner
WO2018176277A1 (zh) 2017-03-29 2018-10-04 深圳市大疆创新科技有限公司 激光测量装置和移动平台
WO2018195966A1 (zh) * 2017-04-28 2018-11-01 深圳市大疆创新科技有限公司 位置检测装置、方法及转动系统
CN110716188A (zh) * 2018-07-13 2020-01-21 深圳市速腾聚创科技有限公司 抑制前导信号的同轴激光雷达及抑制前导信号的方法
CN107918118B (zh) * 2017-12-20 2020-09-11 武汉万集信息技术有限公司 一种激光雷达
CN107861111A (zh) * 2017-12-25 2018-03-30 杭州隆硕科技有限公司 旋转激光测距传感器
CN108051796A (zh) * 2017-12-29 2018-05-18 合肥嘉东光学股份有限公司 一种基于tof的小型化同轴式激光雷达系统
JP7087415B2 (ja) * 2018-01-31 2022-06-21 株式会社デンソー ライダー装置
CN108828559A (zh) * 2018-07-18 2018-11-16 度亘激光技术(苏州)有限公司 激光雷达装置和激光雷达系统
WO2020062114A1 (zh) * 2018-09-28 2020-04-02 深圳市大疆创新科技有限公司 测距装置、距离探测设备及移动平台
CN109613516B (zh) * 2018-11-16 2021-12-14 上海禾赛科技有限公司 一种激光雷达光学组件安装支架
CN109814084B (zh) 2019-03-11 2021-02-12 上海禾赛科技股份有限公司 激光雷达系统
CN111766586A (zh) * 2019-03-29 2020-10-13 宁波舜宇车载光学技术有限公司 激光雷达探测系统和激光雷达探测方法
CN110133618B (zh) * 2019-04-19 2021-08-17 深圳市速腾聚创科技有限公司 激光雷达及探测方法
CN110133619B (zh) * 2019-04-19 2021-07-02 深圳市速腾聚创科技有限公司 激光雷达
CN110133620B (zh) * 2019-04-19 2021-10-19 深圳市速腾聚创科技有限公司 多线激光雷达
CN110703224A (zh) * 2019-12-16 2020-01-17 杭州辰知光科技有限公司 一种面向无人驾驶的扫描型tof激光雷达
CN111060894A (zh) * 2020-01-15 2020-04-24 深圳玩智商科技有限公司 一种接收透镜、tof同轴雷达激光收发系统结构及产品
CN113655461A (zh) * 2020-05-12 2021-11-16 保定市天河电子技术有限公司 一种具有棱镜反射结构的激光雷达装置
KR102287935B1 (ko) * 2020-06-03 2021-08-06 한국 천문 연구원 우주물체의 각도 데이터를 추출하기 위한 레이저 추적 시스템 및 방법
CN113589258A (zh) * 2021-07-09 2021-11-02 佛山华国光学器材有限公司 一种可监控电机转速的雷达系统及其实现方法和雷达设备
KR102645857B1 (ko) * 2021-11-11 2024-03-11 주식회사 오토닉스 레이저 스캐너
CN116338670A (zh) * 2021-12-22 2023-06-27 睿镞科技(北京)有限责任公司 雷达系统及雷达测距方法
CN114911052B (zh) * 2022-06-07 2024-03-26 西安应用光学研究所 一种光学扫描装置及控制方法
CN115755085A (zh) * 2022-11-21 2023-03-07 深圳市意普兴科技有限公司 一种激光雷达
CN117491976B (zh) * 2023-12-27 2024-04-02 武汉灵途传感科技有限公司 一种收发同轴的激光探测系统及其调节方法、激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779486A (zh) * 2004-11-19 2006-05-31 南京德朔实业有限公司 激光测距装置
CN101446490A (zh) * 2008-12-25 2009-06-03 常州市新瑞得仪器有限公司 激光测距仪
JP2012154642A (ja) * 2011-01-21 2012-08-16 Sanyo Electric Co Ltd レーザレーダおよび受光装置
CN204807689U (zh) * 2015-06-24 2015-11-25 武汉万集信息技术有限公司 一种增加辅助接收透镜的扫描式激光测距传感器
CN105467398A (zh) * 2015-12-31 2016-04-06 上海思岚科技有限公司 扫描测距设备
US20160274222A1 (en) * 2015-03-20 2016-09-22 MSOTEK Co., Ltd LIDAR Apparatus
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412044A1 (de) * 1994-04-08 1995-10-12 Leuze Electronic Gmbh & Co Optoelektronische Vorrichtung zum Erfassen von Gegenständen in einem Überwachungsbereich
DE10216405A1 (de) * 2002-04-12 2003-10-30 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen eines dreidimensionalen Umgebungsbildes
DE10244641A1 (de) * 2002-09-25 2004-04-08 Ibeo Automobile Sensor Gmbh Optoelektronische Erfassungseinrichtung
DE102005043931A1 (de) * 2005-09-15 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laserscanner
JP5428804B2 (ja) * 2009-11-26 2014-02-26 株式会社デンソーウェーブ 物体検出システム
JP5699506B2 (ja) * 2010-09-24 2015-04-15 株式会社デンソーウェーブ レーザレーダ装置
JP5532003B2 (ja) * 2011-03-31 2014-06-25 株式会社デンソーウェーブ レーザレーダ装置
EP2626722B1 (de) * 2012-02-07 2016-09-21 Sick AG Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
DE102012102395B3 (de) * 2012-03-21 2013-01-03 Sick Ag Optoelektronischer Sensor und Verfahren zum Testen der Lichtdurchlässigkeit einer Frontscheibe
JP5886394B1 (ja) * 2014-09-24 2016-03-16 シャープ株式会社 レーザレーダ装置
DE102014118149A1 (de) * 2014-12-08 2016-06-09 Sick Ag Optoelektronischer Sensor und Verfahren zum Erfassen von Objekten
CN204347249U (zh) * 2015-01-30 2015-05-20 济宁科力光电产业有限责任公司 检测物体方向和距离的安全激光扫描装置
US9880263B2 (en) * 2015-04-06 2018-01-30 Waymo Llc Long range steerable LIDAR system
CN205103397U (zh) * 2015-09-23 2016-03-23 上海物景智能科技有限公司 一种激光测距雷达
US10061021B2 (en) * 2016-07-06 2018-08-28 Datalogic IP Tech, S.r.l. Clutter filter configuration for safety laser scanner
CN206411260U (zh) * 2016-10-28 2017-08-15 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779486A (zh) * 2004-11-19 2006-05-31 南京德朔实业有限公司 激光测距装置
CN101446490A (zh) * 2008-12-25 2009-06-03 常州市新瑞得仪器有限公司 激光测距仪
JP2012154642A (ja) * 2011-01-21 2012-08-16 Sanyo Electric Co Ltd レーザレーダおよび受光装置
US20160274222A1 (en) * 2015-03-20 2016-09-22 MSOTEK Co., Ltd LIDAR Apparatus
CN204807689U (zh) * 2015-06-24 2015-11-25 武汉万集信息技术有限公司 一种增加辅助接收透镜的扫描式激光测距传感器
CN105467398A (zh) * 2015-12-31 2016-04-06 上海思岚科技有限公司 扫描测距设备
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534175A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663670A (zh) * 2018-05-15 2018-10-16 武汉万集信息技术有限公司 激光雷达光机装置
CN108663670B (zh) * 2018-05-15 2021-06-01 武汉万集信息技术有限公司 激光雷达光机装置
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
CN109387849B (zh) * 2018-12-04 2024-06-04 珠海码硕科技有限公司 一种同轴激光测距装置
CN111279213A (zh) * 2019-01-09 2020-06-12 深圳市大疆创新科技有限公司 测距装置及移动平台
CN113534312A (zh) * 2020-04-15 2021-10-22 信泰光学(深圳)有限公司 光学装置及其棱镜模块
CN113534312B (zh) * 2020-04-15 2023-09-12 信泰光学(深圳)有限公司 光学装置及其棱镜模块
US11953705B2 (en) 2020-04-15 2024-04-09 Sintai Optical (Shenzhen) Co., Ltd. Optical device and prism module thereof

Also Published As

Publication number Publication date
JP2019532312A (ja) 2019-11-07
KR102191592B1 (ko) 2020-12-16
EP3534175A4 (en) 2020-06-10
US11619713B2 (en) 2023-04-04
EP3534175A1 (en) 2019-09-04
CN106324582A (zh) 2017-01-11
KR20190073380A (ko) 2019-06-26
US20190242982A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2018076600A1 (zh) 一种基于时间飞行法的激光雷达系统
CN206411260U (zh) 一种基于时间飞行法的激光雷达系统
CN106291510A (zh) 一种基于时间飞行法的激光雷达光学系统
AU2019373056B2 (en) LIDAR systems with multi-faceted mirrors
WO2020062301A1 (zh) 距离探测装置
CN210142187U (zh) 一种距离探测装置
US20210341610A1 (en) Ranging device
CN206546432U (zh) 一种基于时间飞行法的激光雷达光学系统
JP7474853B2 (ja) 光リダイレクタデバイス
WO2020223879A1 (zh) 一种测距装置及移动平台
CN215867092U (zh) 光探测器、探测模组和探测装置
CN111766588A (zh) 全景激光雷达
WO2022257558A1 (zh) 飞行时间模组、终端及深度检测方法
WO2022141097A1 (zh) 激光雷达的电加热红外窗口、激光雷达和可移动平台
CN210243829U (zh) 一种激光雷达系统及激光测距装置
WO2020142878A1 (zh) 一种测距装置及移动平台
CN108254734A (zh) 激光测距装置
CN111175723A (zh) 激光雷达光路系统
WO2020142920A1 (zh) 一种信号放大方法及装置、测距装置
CN115825917B (zh) 一种光学接收装置及光学传感装置
CN115825916B (zh) 一种光学接收装置及光学传感装置
WO2023065117A1 (zh) 扫描模组及测距装置
CN217425670U (zh) 激光雷达装置
WO2022252309A1 (zh) 测距装置、激光雷达和移动机器人
WO2022141347A1 (zh) 激光测量装置及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011601

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019542762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017864447

Country of ref document: EP

Effective date: 20190528