WO2020062301A1 - 距离探测装置 - Google Patents

距离探测装置 Download PDF

Info

Publication number
WO2020062301A1
WO2020062301A1 PCT/CN2018/109210 CN2018109210W WO2020062301A1 WO 2020062301 A1 WO2020062301 A1 WO 2020062301A1 CN 2018109210 W CN2018109210 W CN 2018109210W WO 2020062301 A1 WO2020062301 A1 WO 2020062301A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
light
prism
detection device
transmitting
Prior art date
Application number
PCT/CN2018/109210
Other languages
English (en)
French (fr)
Inventor
黄淮
赵进
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18935776.7A priority Critical patent/EP3859377B1/en
Priority to CN201880011145.8A priority patent/CN111263897B/zh
Priority to PCT/CN2018/109210 priority patent/WO2020062301A1/zh
Publication of WO2020062301A1 publication Critical patent/WO2020062301A1/zh
Priority to US17/216,365 priority patent/US20210215825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present application relates to the field of optical detection, and in particular to a distance detection device.
  • the distance detection device plays an important role in many fields, for example, it can be used on a mobile carrier or a non-mobile carrier for remote sensing, obstacle avoidance, mapping, modeling, etc.
  • mobile carriers such as robots, artificially controlled aircraft, unmanned aircraft, cars, and ships, can navigate in a complex environment through distance detection devices to implement path planning, obstacle detection, and avoiding obstacles.
  • the present application provides a distance detection device that can scan a larger range.
  • a distance detection device includes: a light source for emitting a light beam; a scanning module including a first optical module, a second optical module, and a driving device, wherein the first optical module and the second optical module are sequentially located on the light beam emitted by the light source On the optical path, the driving device drives the first optical module and the second optical module to move in order to sequentially project the light beams emitted by the light source in different directions, and form a strip-shaped scan after exiting from the scanning module.
  • a range and a detector for converting at least a portion of the light reflected by the detection object back into an electrical signal, the electrical signal being used to measure the distance between the detection object and the distance detection device.
  • the scanning module of the distance detection device of the present application can scan a strip-shaped scanning range through a first optical module and a second optical module, and can perform horizontal and vertical scanning with a wide scanning range.
  • FIG. 1 is a schematic diagram of an embodiment of a distance detection device of the present application.
  • FIG. 2 is a schematic diagram illustrating an embodiment of the first optical module and the second optical module of the scanning module of the distance detection device shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a scanning pattern scanned by the first optical module and the second optical module shown in FIG. 2.
  • FIG. 4 is a schematic diagram illustrating another scanning pattern scanned by the first optical module and the second optical module shown in FIG. 2.
  • FIG. 5 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 6 is a schematic diagram illustrating another embodiment of the first optical module and the second optical module.
  • FIG. 7 is a schematic diagram illustrating a scanning range scanned by the first optical module and the second optical module shown in FIG. 6.
  • FIG. 8 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 9 is a schematic diagram of a scanning pattern scanned by the first optical module and the second optical module shown in FIG. 8.
  • FIG. 10 is a schematic diagram illustrating another scanning pattern scanned by the first optical module and the second optical module shown in FIG. 8.
  • FIG. 11 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 12 is a schematic diagram of a scanning pattern scanned by the first optical module and the second optical module shown in FIG. 11.
  • FIG. 13 is a schematic diagram illustrating another scanning pattern scanned by the first optical module and the second optical module shown in FIG. 11.
  • FIG. 14 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 15 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 16 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 17 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 18 is a schematic diagram showing another embodiment of the first optical module and the second optical module.
  • FIG. 19 is a schematic diagram showing an embodiment of a reflective element.
  • the distance detection device in the embodiment of the present application includes a light source, a scanning module, and a detector.
  • the light source is used to emit a light beam.
  • the scanning module includes a first optical module, a second optical module, and a driving device.
  • the first optical module and the second optical module are sequentially located on the optical path of the light beam emitted by the light source.
  • the driving device drives the first optical module and the second optical module to move, so that the light beams emitted by the light source are sequentially projected in different directions, and the scanning range is formed after exiting from the scanning module.
  • the detector is used to convert at least part of the reflected light reflected by the detection object into an electrical signal.
  • the electrical signal is used to measure the distance between the detection object and the distance detection device.
  • the first optical module and the second optical module can scan a strip-shaped scanning range, and can perform horizontal and vertical scanning with a wide scanning range.
  • FIG. 1 is a schematic diagram of an embodiment of a distance detection device 100.
  • the distance detection device 100 can be used to measure the distance and orientation of the detection object 101 to the distance detection device 100.
  • the range detection device 100 may include a radar, such as a lidar.
  • the distance detection device 100 can detect the distance between the detection object 101 and the distance detection device 100 by measuring the time of light propagation between the distance detection device 100 and the detection object 101, that is, the time-of-flight (TOF).
  • TOF time-of-flight
  • the distance detection device 100 includes a light source 103, a scanning module 102, and a detector 105.
  • the light source 103 is used to emit a light beam.
  • the light source 103 may emit a laser beam.
  • the laser beam emitted from the light source 103 is a narrow-bandwidth light beam with a wavelength outside the visible light range, for example, a laser light having a wavelength band of about 905 nm.
  • the light source 103 may emit light beams in other wavebands, such as millimeter waves, microwaves, ultrasonic waves, and infrared rays.
  • the scanning module 102 is configured to change the propagation direction of the light beam emitted from the light source 103 and project the light beam into the space around the distance detection device 100.
  • the distance detection device 100 further includes a collimating lens 104.
  • the collimating lens 104 is placed between the light source 103 and the scanning module 102, and is configured to collimate the light beam emitted by the light source 103 to collimate into parallel light. 119 (or near parallel light).
  • the scanning module 102 changes the transmission direction of the parallel light 119 and projects the parallel light 119 to a space around the distance detection device 100.
  • the scanning module 102 includes a first optical module 130, a second optical module 140, and driving devices 150 and 151.
  • the first optical module 130 and the second optical module 140 are sequentially located on an optical path of a light beam emitted by the light source 103.
  • the driving devices 150 and 151 are respectively used to drive the first optical module 130 and the second optical module 140 to move, so as to sequentially project the light beams emitted by the light source 103 in different directions (for example, directions 111 and 113), and scan a strip-shaped scanning range.
  • the space around the distance detection device 100 is scanned.
  • the first optical module 130 and the second optical module 140 can scan a strip-shaped scanning range, and can perform horizontal and vertical scanning with a wide scanning range.
  • the first optical module 130 continuously changes the exit direction of the light beam projected from the side near the light source 103 when it moves.
  • the first optical module 130 changes the exit direction of the light beam so that the emitted light beam follows a straight line (or approximately a straight line, (Or along an arc) to scan back and forth or to repeat the scan, or to make the scan always rotate, in which the angle between the beam and the central axis of the first optical module is kept constant or changed during the rotation.
  • the second optical module 140 When the second optical module 140 is moving, the exit direction of the light beam projected from the side near the light source 103 is continuously changed.
  • the second optical module 140 changes the outgoing direction of the light beam in such a manner that the outgoing light beam follows a straight line (or approximately a straight line, (Or along an arc) to scan back and forth or repeat scanning; or to make the outgoing beam scan continuously, wherein the angle between the beam and the central axis of the first optical module is kept constant or changed during the rotation.
  • the first optical module 130 is close to the light source 103 relative to the second optical module 140.
  • the incident direction of the light beam emitted by the light source 103 to the first optical module 130 is substantially unchanged. The following description is made by taking the first optical module 130 approaching the light source 103 relative to the second optical module 140 as an example.
  • the positions of the first optical module 130 and the second optical module 140 are such that the straight lines (or approximate straight lines, or arcs) corresponding to the two optical modules respectively form a certain angle.
  • the included angle is greater than 20 degrees, or greater than 40 degrees, or greater than 60 degrees, or greater than 80 degrees.
  • the scanning module 102 can change the light beam emitted by the light source 103 so that the light beam can scan a scanning range that is approximately a quadrangle with adjacent sides not perpendicular.
  • the included angle is 90 degrees or close to 90 degrees.
  • the scanning module 102 can change the light beam emitted by the light source 103 so that the light beam can scan a quadrilateral scan that is approximately perpendicular to each other. range.
  • the straight line along which one of the first optical module 130 and the second optical module 140 is scanned is longer than the straight line along which the other optical module is scanned, so that the first optical module 130 When combined with the second optical module 140 to change the direction of the light beam of the light source 103, a scanning range similar to a strip shape can be scanned.
  • one of the first optical module 130 and the second optical module 140 scans along a straight line in the horizontal direction, and the other optical module scans along a straight line in the vertical direction, and the horizontal direction
  • the straight line is longer than the straight line in the vertical direction.
  • the light beam emitted by the first optical module 130 scans a straight line
  • the light beam emitted by the second optical module 140 scans a ring shape.
  • a circular band-shaped scanning range can be scanned.
  • the width of the strip scanning range may be the length of a straight line scanned by the first optical module 130.
  • the light beam emitted by the first optical module 130 scans a straight line
  • the light beam emitted by the second optical module 140 scans an arc.
  • an arc-shaped strip-shaped scanning range can be scanned.
  • the width of the strip scanning range may be the length of a straight line scanned by the first optical module 130.
  • the incident direction of the light beam projected from the side close to the light source 103 toward the first optical module 130 is unchanged
  • the light beam emitted by the first optical module 130 scans a ring
  • the incident direction of the light beam projected by the second optical module 140 is unchanged
  • the light beam emitted by the second optical module 140 scans a straight line.
  • the light beam emitted by the first optical module 130 scans a ring
  • the incident direction of the light beam projected by the second optical module 140 is unchanged
  • the light beam emitted by the second optical module 140 scans a ring shape.
  • the light beam emitted by the first optical module 130 scans a ring
  • the light beam emitted by the second optical module 140 scans an arc.
  • an arc-shaped strip scanning range spirally extending in a plurality of circles can be scanned.
  • the light beam emitted from the first optical module 130 scans an arc
  • the light beam exits from the side close to the light source 103 when the incident direction of the light beam projected to the second optical module 140 is not changed, the light beam emitted from the second optical module 140 scans a straight line.
  • the first optical module 130 and the second optical module 140 are combined, a long strip-shaped scanning range with curved sides can be scanned.
  • the light beam emitted from the first optical module 130 scans an arc
  • the light beam emitted from the second optical module 140 scans a ring shape.
  • the light beam emitted from the first optical module 130 scans an arc
  • the light beam exits from the side close to the light source 103 when the incident direction of the light beam projected to the second optical module 140 is unchanged, the light beam emitted from the second optical module 140 scans an arc.
  • an arc-shaped strip-shaped scanning range in which arc lines are sequentially arranged can be scanned.
  • the first optical module 130 and the second optical module 140 may scan other shapes, respectively.
  • a strip-shaped scanning range of other shapes can be scanned.
  • the second optical module 140 is close to the light source 103 relative to the first optical module 130.
  • the incident direction of the light beam emitted by the light source 103 to the second optical module 140 is substantially unchanged.
  • various strip-shaped scanning ranges described above can also be scanned.
  • the optical elements of the first optical module 130 and the second optical module 140 are respectively driven by respective driving devices 150 and 151. Only two driving devices 150 and 151 are shown in the figure, but it is not limited thereto.
  • the number of driving devices 150 and 151 may be the same as the number of moving optical elements of the first optical module 130 and the second optical module 140.
  • Each driving device corresponds to each moving optical element, and each driving device is used to drive the corresponding optical element to move.
  • the number of driving devices and the number of driving devices are the same and correspond one-to-one. Each driving device is used to drive at least part of the optical elements in the corresponding optical module. motion.
  • optical elements with the same motion may be driven by the same driving device.
  • Optical elements with different movements are driven by different driving devices.
  • the movement modes of the first optical module 130 and the second optical module 140 are different.
  • the driving devices 150 and 151 are connected to the first optical module 130 and the second optical module 140, respectively.
  • the controller 154 can control the driving.
  • the devices 150, 151 control the optical elements in the first optical module 130 and the optical elements in the second optical module 140 to move in different ways.
  • the driving devices 150 and 151 include at least one of a motor, a gear transmission assembly, and a belt transmission assembly.
  • the driving devices 150, 151 include a motor to drive the optical element to rotate or vibrate.
  • the controller 154 may control the speed and / or steering of the motor.
  • the motor may include a hollow motor, and the optical element is placed in the hollow motor and directly driven by the motor.
  • the driving devices 150, 151 are driven by a gear transmission assembly and / or a toothed belt transmission assembly. Gear transmission components and / or belt transmission components can be connected to the motor to transmit the power of the motor to the optical element.
  • the first optical module 130 includes at least one of a transmissive prism and a reflective element
  • the second optical module 140 includes at least one of a transmissive prism and a reflective element.
  • the light-transmitting prism and / or the reflecting element are used to project light to different directions to scan a strip-shaped scanning range, so the cost is low and the scanning accuracy is high.
  • the light-transmitting prism refracts the light beam and changes the direction of the light beam.
  • the reflecting element reflects the light beam.
  • the reflective element includes at least one of a mirror, a reflective prism, a polygon mirror, and a galvanometer. Reflective prisms, such as 45 ° reflective prisms, have reflective surfaces for reflecting light beams.
  • the polygon mirror includes at least two reflecting surfaces extending at an angle, for example, a polygon mirror with five reflecting surfaces surrounding a pentagon.
  • the polygon mirror may be a prism, and a reflective surface is provided on a side of the prism.
  • the polygon mirror may be a prism, and a reflective surface is provided on the side of the prism.
  • the galvanometer may include a MEMS (Micro-Electro-Mechanical System) galvanometer.
  • the scanning length of the strip-shaped scanning range in the horizontal direction is greater than the scanning height in the vertical direction, so that a larger range can be scanned in the horizontal direction.
  • the distance detection device 100 is mounted on a vehicle and is used to scan objects around the vehicle.
  • the distance detection device 100 can be used for vehicles such as driverless cars and mobile carts, and can scan for obstacles around the vehicle.
  • the scanning length in the horizontal direction is long, so that a larger range in the horizontal direction of the vehicle can be scanned.
  • the distance detection device 100 may be mounted on an unmanned aerial vehicle, or other equipment.
  • the second optical module 140 is located on a side of the first optical module 130 away from the light source 103.
  • the light emitted by the light source 103 passes through the first optical module 130, is projected onto the second optical module 140, and is projected into the surrounding space of the distance detection device 100 through the second optical module 140.
  • the second optical module 140 is located on a side of the first optical module 130 near the light source 103.
  • the light emitted by the light source 103 passes through the second optical module 140, is projected to the first optical module 130, and is projected to the surrounding space of the distance detection device 100 through the first optical module 130.
  • the optical modules 130 and 140 include a first optical module 130 and a second optical module 140. At least a part of the returned light passing through the scanning module 102 may be incident on the detector 105 directly or through other optical elements.
  • the scanning module 102 receives a part of the reflected light 112 reflected by the detection object 101. A part of the return light 120 reflected by the probe 101 does not propagate to the scanning module 102 and is not received by the scanning module 102.
  • the detector 105 is used to convert at least part of the reflected light reflected by the detection object 101 into an electrical signal.
  • the electric signal is used to measure the distance between the detection object 101 and the distance detection device 100.
  • at least a part of the returned light passing through the scanning module 102 is converted into an electrical signal by the detector 105.
  • the detector 105 may include an avalanche photodiode.
  • the avalanche photodiode is a high-sensitivity semiconductor device and can use a photocurrent effect to convert an optical signal into an electrical signal.
  • the detector 105 and the light source 103 are placed on the same side of the scanning module 102.
  • the distance detection device 100 further includes a condensing lens 106.
  • the condensing lens 106 is placed upstream of the detector 105 for converging the returned light to the detector 105.
  • the distance detection device 100 includes a reflective element 108.
  • the reflective element 108 is located between the collimating lens 104 and the scanning module 102, and is located between the scanning module 102 and the condensing lens 106.
  • the reflecting element 108 is used to reflect the returning light passing through the scanning module 102 toward the converging lens 106 and allows the light beam 119 collimated by the collimating lens 104 to pass through.
  • an opening or a light-transmitting area corresponding to the positions of the light source 103 and the collimating lens 104 is formed in the middle of the reflective element 108, and the collimated light beam 119 passes through the opening or the light-transmitting area.
  • the positions of the light source 103 and the detector 105 shown in FIG. 1 can be reversed.
  • the reflective element 108 includes a mirror or a reflective prism and the like.
  • the condensing lens 106 and the collimating lens 104 are mutually independent lenses. In another embodiment, the condensing lens 106 and the collimating lens 104 are the same lens, and the lens is located on the side of the reflective element 108 facing the scanning module 102. The lens is used to collimate the light beam emitted from the light source 103 and to converge the returned light passing through the scanning module 102 to the detector 105. In one embodiment, the condensing lens 106 and / or the collimating lens 104 are coated with an AR coating, which can increase the intensity of the transmitted light beam.
  • the detector 105 and the light source 103 are disposed on opposite sides of the scanning module 102.
  • the returned light reflected by the detection object 101 can be converged to the detector 105 through an optical element outside the scanning module 102 and a condensing lens 106.
  • the optical element, the condensing lens 106 and the detector 105 are located on the same side of the scanning module 102.
  • the distance detection device 100 includes a measurement circuit, such as a TOF unit 107, which can be used to measure TOF to measure the distance of the detection object 101.
  • the distance detection device 100 can determine the time t according to the time difference between the light beam 103 emitted by the light source 103 and the return light received by the detector 105, and can further determine the distance D.
  • the distance detection device 100 can also detect the position of the detection object 101 in the distance detection device 100.
  • the distance and orientation detected by the distance detection device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the light source 103 may include a laser diode through which a laser pulse sequence at the nanosecond level is emitted.
  • the laser pulse emitted by the light source 103 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, the laser pulse receiving time is determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse.
  • the electrical signal may be amplified in multiple stages. In this way, the distance detection device 100 can calculate the TOF by using the pulse reception time information and the pulse emission time information, thereby determining the distance from the detection object 101 to the distance detection device 100.
  • the distance detection device 100 includes a window (not shown) located outside the scanning module 102. Light projected by the scanning module 102 is projected through the window to the outside space.
  • the light source 103, the scanning module 102, the detector 105, the collimating lens 104, the condensing lens 106, and the reflective element 108 may be packaged in a packaging device, and a window is formed in the packaging device.
  • the window may include a glass window.
  • the window is plated with a long pass film.
  • the long-pass film has a low transmittance for visible light of about 400 nm to 700 nm and a high transmittance for light in the emission beam band.
  • At least one of the inner surface of the window, the surface of the scanning module 102, the lens of the detector 105, the surface of the collimator lens 104, the surface of the condensing lens 106, and the surface of the reflective element 108 is plated with a positive Water film.
  • the positive water film is a hydrophilic film, and the oil volatilized when the distance detecting device 100 generates heat can be spread on the surface of the positive water film to prevent oil from forming oil droplets on the surface of the optical element, thereby avoiding the influence of the oil droplets on light transmission.
  • the surface of the other optical elements of the distance detection device 100 may be coated with a positive water film.
  • the first optical module 130 is a transparent prism
  • the second optical module 140 is a reflective element.
  • FIG. 2 is a schematic diagram illustrating an embodiment of the first optical module 130 and the second optical module 140 of the scanning module 102 shown in FIG. 1.
  • the second optical module 140 is located on a side of the first optical module 130 away from the light source 103.
  • the reflective element 140 is located on a side of the light-transmitting prism 130 away from the light source 103.
  • the light-transmitting prism 130 rotates around the rotation axis 131.
  • the thickness of the light-transmitting prism 130 changes in a radial direction, such as a wedge-angle prism.
  • the incident surface 132 of the light-transmitting prism 130 receiving the light beam of the light source 103 is perpendicular to the rotation axis 131
  • the exit surface 133 relative to the incidence surface 132 is inclined with respect to the incidence surface 132, and is inclined with respect to the rotation axis 131.
  • the incident surface 132 is inclined with respect to the rotation axis 131.
  • the light beam emitted by the light source 103 can scan the FOV range through the light-transmitting prism 130 rotated by 360 °.
  • the incident surface 132 of the transparent prism 130 is inclined to the rotation axis 131, and the exit surface 133 is perpendicular to the rotation axis 131.
  • the light-transmitting prism 130 is a prism of another shape, for example, a prism with an incident surface and / or an exit surface having a curved surface.
  • the reflecting element 140 is a reflecting mirror or a reflecting prism.
  • the reflective element 140 rotates around the rotation axis 141.
  • the rotating shaft 141 may be coaxial with the rotating shaft 131 or a different shaft.
  • the rotating shaft 141 and the rotating shaft 131 may be parallel, or may form a certain included angle, for example, an included angle of 90 degrees.
  • the reflective element 140 and the light-transmitting prism 130 may be driven by the same driving device, or may be driven by different driving devices.
  • the rotation speed of the reflective element 140 may be different from the rotation speed of the transparent prism 130 and may be driven by different driving devices.
  • the rotation speed of the reflective element 140 is opposite to the rotation speed of the transparent prism 130, so that the scanned point cloud is more uniform.
  • the reflecting element 140 includes a reflecting surface for reflecting the light beam.
  • the reflecting surface is inclined with respect to the rotation axis 141 of the reflecting element 140 and faces the first optical module 130.
  • the reflecting surface may be a flat surface or a curved surface as shown in the figure, or may be a reflecting surface of a polygon mirror.
  • the reflective element 140 can be rotated 360 ° about the rotation axis 141.
  • the reflective element 140 is a flat surface
  • the reflective element 140 scans a ring.
  • the reflecting element 140 is combined with the light-transmitting prism 130, the light beams emitted from the light-transmitting prism 130 are sequentially projected in different directions within a 360 ° circular area, and scan a circular band-shaped scanning range extending spirally in multiple circles.
  • FIG. 3 shows a scanning pattern scanned in this embodiment, which can be scanned in a horizontal direction for a full scan range. Just to see the scan pattern clearly, the scan pattern shown in Figure 3 is relatively sparse.
  • FIG. 3 is only an exemplary scanning pattern, and different patterns can be scanned by changing the rotation speed of the reflective element 140 and / or the light-transmitting prism 130. Similar to FIG. 3, the scanning patterns in subsequent drawings are relatively sparse, and are exemplary scanning patterns.
  • the reflecting element 140 can reciprocate around the rotation axis 141 within an angle less than 360 °, or the reflecting element 140 rotates 360 degrees around the rotation axis 141, and through the setting of the reflecting surface of the reflecting element 140, such as a polygon mirror To scan the arc-shaped scanning range of less than 360 degrees.
  • a horizontal arc-shaped scanning range can be scanned within a certain angle range in the vehicle's forward direction to detect obstacles in the vehicle's forward direction.
  • the reflecting element 140 may vibrate, and the angle of the reflecting element 140 with respect to the rotation axis 131 of the light-transmitting prism 130 is sequentially changed, and a scanning pattern such as that shown in FIG.
  • FIG. 5 is a schematic diagram illustrating another embodiment of the first optical module 230 and the second optical module 240.
  • the first optical module 230 is a transparent prism
  • the second optical module 240 is a reflective element.
  • the light-transmitting prism 230 shown in FIG. 5 is similar to the light-transmitting prism 130 shown in FIG. 2, and is not repeated here.
  • the second optical module 240 is a polygon mirror, and the rotation axis of the polygon mirror 240 is perpendicular to the rotation axis 231 of the first optical module 230.
  • the rotation axis 231 of the transparent prism 230 extends vertically in the paper surface, and the rotation axis of the polygon mirror 240 is perpendicular to the paper surface.
  • the plurality of reflecting surfaces of the polygon mirror 240 are arranged around the rotation axis.
  • the polygon mirror 240 can be rotated in the direction of the arrow in the figure, or in the opposite direction of the arrow.
  • the rotation axis of the polygon mirror 240 is perpendicular to the rotation axis 231 of the light-transmitting prism 230 in the paper plane, or perpendicular to the rotation axis 231 of the light-transmitting prism 230 in other planes. In another embodiment, the rotation axis of the polygon mirror 240 is parallel to the rotation axis 231 of the light-transmitting prism 230 or is coaxial with the rotation axis 231.
  • the polygon mirror 240 is located on a side of the light-transmitting prism 230 away from the light source 103.
  • the polygon mirror 240 is a prism, and its rotation axis is the central axis of the prism. It can be perpendicular to the rotation axis 231 of the light-transmitting prism 230 in a plane perpendicular to the paper surface or other planes.
  • the reflecting surface of the polygon mirror 240 reflects the light beams emitted by the light-transmitting prism 230 alternately and alternately. When the incident direction of the light beam incident on the polygon mirror is unchanged, the polygon mirror 240 scans an arc shape.
  • the polygon mirror 240 reflects the light beam emitted from the light-transmitting prism 230, and can scan an arc-shaped strip-shaped scanning range spirally extending in multiple circles.
  • the polygon mirror 240 having a regular pentagonal cross-section in FIG. 5 scans a strip-shaped scanning range in a 72 ° angle range.
  • the polygon mirror 240 is not limited to a polygon mirror with a regular pentagonal cross-section, but may also be a polygon mirror with other prisms, such as a polygon mirror with a triangular cross-section, a polygon mirror with a square cross-section, Polyhedral mirrors with a hexagonal cross section and the like.
  • the polygon mirror is a prism, the smaller top surface of the prism faces the first optical module 230, the side of the prism is a reflective surface, and the inclined surface faces the first optical module 230.
  • the rotation axis of the polygon mirror is parallel to the rotation axis 231 of the transparent prism 230 or is coaxial with the rotation axis 231.
  • the rotation axis of the polygon mirror can be perpendicular to its top surface or intersect the top surface by less than 90 degrees.
  • the polygon mirror scans an arc shape.
  • the polygon mirror reflects the light beam emitted from the first optical module 230 and can scan an arc-shaped strip scanning range extending spirally in multiple circles.
  • FIG. 6 is a schematic diagram illustrating another embodiment of the first optical module 330 and the second optical module 340.
  • the first optical module 330 is a transparent prism
  • the second optical module 340 is a reflective element.
  • the second optical module 340 is located on a side of the first optical module 330 near the light source 103.
  • the reflective element 340 is located on a side of the light-transmitting prism 330 near the light source 103.
  • the reflective element 340 is a galvanometer, such as a MEMS galvanometer, and the reflective surface of the galvanometer 340 faces the first optical module 330.
  • the galvanometer 340 can vibrate left and right in the paper surface, and vibrate in the direction of the arrow in the figure.
  • the galvanometer 340 may vibrate in a plane perpendicular to the paper surface. The galvanometer 340 reflects the light beam emitted from the light source 103 and scans a straight line.
  • the light beam reflected by the galvanometer 340 is projected onto the light-transmitting prism 330, and the light-transmitting prism 330 rotates around the rotation axis 331 to scan a long strip-shaped scanning range spirally extending in multiple circles, such as the strip-shaped scanning range shown in FIG. 7.
  • the shape and arrangement of the transparent prism 330 shown in FIG. 6 are similar to the transparent prism 130 shown in FIG. 2. In other embodiments, the light-transmitting prism 330 may have other shapes and / or placing manners.
  • the second optical module 340 is located on a side of the first optical module 330 away from the light source 103.
  • the galvanometer 340 is located on the side of the light-transmitting prism 330 away from the light source 103, and can scan a strip-shaped scanning range.
  • the scanning range may be different from the scanning range shown in FIG. 7.
  • the first optical module includes at least two light-transmitting prisms, and the at least two light-transmitting prisms include a first light-transmitting prism and a second light-transmitting prism.
  • FIG. 8 is a schematic diagram showing another embodiment of the first optical module 430 and the second optical module 440.
  • the first optical module 430 includes a first light-transmitting prism 434 and a second light-transmitting prism 435.
  • the first light-transmitting prism 434 and the second light-transmitting prism 435 can rotate around the same rotation axis 431, or respectively rotate about two parallel rotation axes.
  • the first light-transmitting prism 434 and the second light-transmitting prism 435 rotate in opposite directions, and the rotation speed difference is less than the rotation speed threshold, and an approximately straight scanning line can be scanned.
  • the rotation speeds of the first light-transmitting prism 434 and the second light-transmitting prism 435 are equal.
  • the first light-transmitting prism 434 and the second light-transmitting prism 435 are far away from the mirror surface 4341 and the second light-transmitting prism of the second light-transmitting prism 435 at at least one moment during the rotation of the first light-transmitting prism 434 and the second light-transmitting prism 435.
  • the mirror surface 4351 of 435 far from the first light-transmitting prism 434 is symmetrical with respect to a plane perpendicular to the rotation axis 431 of the first light-transmitting prism 434 and the second light-transmitting prism 435.
  • the mirror surface 4342 of the first transparent prism 434 near the second transparent prism 435 and the mirror surface 4352 of the second transparent prism 435 near the first transparent prism 434 are symmetrical with respect to a plane perpendicular to the rotation axis 431.
  • the thickness of the first light-transmitting prism 434 changes in the radial direction
  • the thickness of the second light-transmitting prism 435 changes in the radial direction.
  • the mirror surfaces 4341, 4342 of the first light-transmitting prism 434 and the mirror surfaces 4351, 4352 of the second light-transmitting prism 435 are both planes.
  • the mirror surfaces 4341, 4342 of the first light-transmitting prism 434 and the mirror surfaces 4351, 4352 of the second light-transmitting prism 435 intersect the rotation axis 431.
  • the mirror surface 4341 of the first transparent prism 434 and the mirror surface 4351 of the second transparent prism 435 are inclined to the rotation axis 431, and the mirror surface 4342 of the first transparent prism 434 and the mirror surface 4352 of the second transparent prism 435 are perpendicular to each other. ⁇ ⁇ ⁇ 431.
  • the mirror surface 4341 of the first transparent prism 434 and the mirror surface 4351 of the second transparent prism 435 are curved surfaces, and / or the mirror surface 4342 of the first transparent prism 434 and the mirror surface of the second transparent prism 435.
  • 4352 is a curved surface.
  • the second optical module 440 includes at least one light-transmitting prism.
  • the second optical module 440 is a light-transmitting prism and rotates around the rotation axis 441.
  • the rotation axis 441 of the light-transmitting prism of the second optical module 440, the rotation axis of the first light-transmitting prism 434, and the rotation axis of the second light-transmitting prism 435 may all be coaxial or parallel, or two of them may be coaxial and parallel to the other .
  • the rotation speed of the light-transmitting prism 440 may be different from the rotation speed of the first light-transmitting prism 434 and the second light-transmitting prism 435. In the embodiment shown in FIG.
  • the second optical module 440 is located on a side of the first optical module 430 away from the light source 103.
  • the first optical module 430 and the second optical module 440 can scan a long strip-shaped scanning range spirally extending in a plurality of circles.
  • the patterns shown in FIGS. 9 and 10 can be scanned.
  • the first light-transmitting prism 434 and the second light-transmitting prism 435 rotate at the same speed in opposite directions, and the scanning line scanned is in the horizontal direction, and the first light-transmitting prism 434 and the second light-transmitting prism 435 The speed is higher than the speed of the light-transmitting prism of the second optical module 440.
  • the point clouds thus scanned are mainly arranged in the horizontal direction, as shown in FIG. 9, and can be used in the fields of automatic driving and the like.
  • the rotation speeds of the prisms 434, 435, and 440 can reach very high, the point cloud can be very dense, and the rotation speed of the prisms 434, 435, and 440 can not be limited by the rotation speed limitation conditions under the limited rotation speed of the prism.
  • the wedge angles of the three light-transmitting prisms 434, 435, and 440 are ⁇ 1 to ⁇ 3
  • the refractive indices are n 1 to n 3
  • the rotation angles are ⁇ 1 to ⁇ 3, respectively .
  • the rotation angle of the light-transmitting prism is defined as the angle between the prism wedge angle direction and the x-axis.
  • the parameters of the three light-transmitting prisms 434, 435, and 440 may be the same or different.
  • the light passes through the first light-transmitting prism 434 and the second light-transmitting prism 435 and then exits. Scans horizontally.
  • the light After rotating the third light-transmitting prism 440, the light rotates around the incident direction.
  • the exit direction is equivalent to the superposition of horizontal scanning and circular scanning, so a flat FOV will be formed.
  • the horizontal and vertical FOV ranges are approximately:
  • the shape and arrangement of the transparent prism of the second optical module 440 shown in FIG. 8 are similar to the transparent prism of the first optical module 130 shown in FIG. 2.
  • the light-transmitting prisms of the second optical module 440 may have other shapes and / or placing manners.
  • the second optical module 440 is located on a side of the first optical module 430 near the light source 103.
  • the first light-transmitting prism 434 and the second light-transmitting prism 425 are located on a side of the light-transmitting prism 440 away from the light source 103.
  • the first light-transmitting prism 434 and the second light-transmitting prism 425 rotate at different rotation speeds, and the scanning range of the scanning strip may be different from the first optical module 430 and the second optical lens shown in FIG. 8. Scanning range scanned by module 450.
  • FIG. 11 is a schematic diagram illustrating another embodiment of the first optical module 530 and the second optical module 540.
  • the first optical module 530 includes a first light-transmitting prism 534 and a second light-transmitting prism 535.
  • the first optical module 530 is similar to the first optical module 430 shown in FIG. 8, and details are not described herein again.
  • the second optical module 540 of the embodiment shown in FIG. 11 includes at least two light-transmitting prisms, and the at least two light-transmitting prisms include a third light-transmitting prism 544 and a fourth light-transmitting lens. Prism 545.
  • the third light-transmitting prism 544 and the fourth light-transmitting prism 545 can rotate about the same rotation axis 541, or respectively rotate about two parallel rotation axes.
  • the rotation axes of the third light-transmitting prism 544, the fourth light-transmitting prism 545, the first light-transmitting prism 534, and the second light-transmitting prism 535 may all be coaxial or parallel, or at least two of them may be coaxial and parallel to other rotation axes. .
  • the third light-transmitting prism 544 and the fourth light-transmitting prism 545 rotate in opposite directions, and the rotation speed difference is smaller than the rotation speed threshold.
  • the rotation speeds of the third light-transmitting prism 544 and the fourth light-transmitting prism 545 are equal.
  • the third light-transmitting prism 544 is close to the first optical module 530 and receives the light emitted from the second light-transmitting prism 535 of the first optical module 530.
  • the fourth light-transmitting prism 545 receives the light emitted from the third light-transmitting prism 544.
  • the first optical module 530 shown in FIG. 11 scans approximately a straight line.
  • the second optical module 540 scans an approximately straight line and intersects with the straight line scanned by the first optical module 530.
  • a scanning range of a rectangle or other parallelograms can be scanned, and scanning patterns such as those shown in FIGS. 12 and 13 can be scanned.
  • the thickness of the third light-transmitting prism 544 changes in the radial direction
  • the thickness of the fourth light-transmitting prism 545 changes in the radial direction.
  • the third light-transmitting prism 544 and the fourth light-transmitting prism 545 are far away from the mirror surface 5441 and the fourth light-transmitting prism of the fourth light-transmitting prism 545 at least one moment during the rotation of the third light-transmitting prism 544 and the fourth light-transmitting prism 545.
  • a mirror surface 5451 of 545 far from the third light-transmitting prism 544 is symmetrical with respect to a plane perpendicular to the rotation axis 541 of the third light-transmitting prism 544 and the fourth light-transmitting prism 545.
  • the mirror surface 5442 of the third light-transmitting prism 544 near the fourth light-transmitting prism 545 and the mirror surface 5452 of the fourth light-transmitting prism 545 near the third light-transmitting prism 544 are perpendicular to the third light-transmitting prism 544 and the fourth light-transmitting prism 545
  • the plane of the rotation axis 541 is symmetrical.
  • the mirror surface 5441 of the third light-transmitting prism 544 and the mirror surface 5451 of the fourth light-transmitting prism 545 are flat or curved.
  • the mirror surface 5442 of the third light-transmitting prism 544 and the mirror surface 5452 of the fourth light-transmitting prism 545 are flat or curved.
  • the mirror surface 5441 of the third light-transmitting prism 544 and the mirror surface 5451 of the fourth light-transmitting prism 545 are both curved surfaces.
  • the mirror surface 5452 is flat.
  • the third light-transmitting prism 544 and the fourth light-transmitting prism 545 may be similar to the first light-transmitting prism 534 and the second light-transmitting prism 535.
  • the rotation speeds of the third light-transmitting prism 544 and the fourth light-transmitting prism 545 are different from the speeds of the first light-transmitting prism 534 and the second light-transmitting prism 535.
  • the wedge angles of the four prisms 534, 535, 544, and 555 are ⁇ 1 to ⁇ 4
  • the refractive indices are n 1 to n 4
  • the rotation angles of the four prisms are ⁇ 1 to ⁇ 4 .
  • the rotation angle of the prism is defined as the angle between the prism wedge angle direction and the x-axis.
  • the parameters of the four prisms 534, 535, 544, and 555 may be the same or different.
  • the light passes through the first light-transmitting prism 534 and the second light-transmitting prism 535 and then exits. Scans horizontally.
  • the FOV in the horizontal and vertical directions can be flexibly designed.
  • the third light-transmitting prism 544 and the fourth light-transmitting prism 545 rotate at different rotation speeds, and can scan a scanning range different from that of the first optical module 530 and the second optical module 540 shown in FIG. 11.
  • the second optical module 540 includes three or more light-transmitting prisms.
  • the rotation speeds of the first light-transmitting prism 534 and the second light-transmitting prism 535 are different.
  • FIG. 14 is a schematic diagram illustrating another embodiment of the first optical module 630 and the second optical module 640.
  • the first optical module 630 includes a first light-transmitting prism 634 and a second light-transmitting prism 635.
  • the shape and arrangement of the first optical module 630 are similar to the shape and arrangement of the first optical modules 430 and 530 shown in FIGS. 8 and 11, and details are not described herein again.
  • the second optical module 640 includes a reflective element.
  • the reflective element 640 is a mirror.
  • the reflection mirror 640 shown in FIG. 14 is similar to the reflection mirror 140 shown in FIG. 2.
  • the reflection mirror 640 faces the first optical module 630 and can be rotated about the rotation axis 641.
  • the reflective element 640 is a reflective prism.
  • the reflective element 640 is located on a side of the first optical module 630 away from the light source 103, and reflects light emitted from the second light-transmitting prism 635 of the first optical module 630.
  • the reflective element 640 is located on a side of the first optical module 630 near the light source 103.
  • the rotation speed of one of the first light-transmitting prism 634 and the second light-transmitting prism 635 is equal to the rotation speed of the reflective element 640 plus the set rotation speed, and the rotation speed of the other is equal to the reflection element 640.
  • the rotation speed of the reflective element 640 is a
  • the set rotation speed is w
  • the rotation speed of the first transparent prism 634 is a-w
  • the rotation speed of the second transparent prism 635 is a + w.
  • the speed of the first light-transmitting prism 634 is a + w
  • the speed of the second light-transmitting prism 635 is a-w.
  • the mirror 640 is rotated 360 °, and the scanning range of the endless belt shape can be scanned. In another embodiment, the mirror 640 is repeatedly rotated in an angular range of less than 360 °, or the polygon mirror can be rotated 360 ° to scan an arc-shaped strip-shaped scanning range in a certain angular range. In yet another embodiment, the mirror 640 vibrates and can scan a rectangular strip-shaped scanning range.
  • FIG. 15 is a schematic diagram illustrating another embodiment of the first optical module 730 and the second optical module 740.
  • the first optical module 730 includes a first light-transmitting prism 734 and a second light-transmitting prism 735.
  • the first optical module 730 is similar to the first optical modules 430 and 530 shown in FIGS. 8 and 11, and the rotation speed difference between the first light-transmitting prism 734 and the second light-transmitting prism 735 is smaller than the rotation speed threshold and the directions are reversed. In one embodiment, the rotation speeds of the first light-transmitting prism 734 and the second light-transmitting prism 735 are equal.
  • the second optical module 740 includes a reflective element. In the embodiment shown in FIG.
  • the reflecting element 740 is a polygon mirror, similar to the polygon mirror shown in FIG. 5, and combined with the first optical module 730, it can scan an arc-shaped scanning range.
  • Polyhedral mirrors can be prisms or prisms, as described above.
  • the polygon mirror 740 is located on a side of the first optical module 730 away from the light source 103. In another embodiment, the polygon mirror 740 is located on a side of the first optical module 730 close to the light source 103.
  • FIG. 16 is a schematic diagram illustrating another embodiment of the first optical module 830 and the second optical module 840.
  • the first optical module 830 includes a first light-transmitting prism 834 and a second light-transmitting prism 835.
  • the first light-transmitting prism 834 and the second light-transmitting prism 835 shown in FIG. 16 are similar to the third light-transmitting prism 544 and the second light-transmitting prism 545 shown in FIG. 11.
  • the first light-transmitting prism 834 and the second light-transmitting prism 835 may be similar to the first light-transmitting prism 434, 534, 634, 734, and the second light-transmitting prism shown in FIGS. 8, 11, 14, and 15. Light prisms 435, 535, 635, 735.
  • the first optical module 830 is located on a side of the second optical module 840 away from the light source 103.
  • the second optical module 840 includes a reflective element.
  • the reflecting element 840 is a galvanometer, similar to the galvanometer 340 shown in FIG. 6.
  • the galvanometer 840 reflects the light beam emitted by the light source 103, and the light beam reflected by the galvanometer 840 passes through the first light-transmitting prism 834 and the second light-transmitting prism 835 in order, and can scan a rectangular scanning range.
  • the galvanometer 840 is located on a side of the first optical module 830 away from the light source 103.
  • the light beam emitted by the light source 103 passes through the first light-transmitting prism 834 and the second light-transmitting prism 835 in order, is projected onto the galvanometer 840, and is reflected by the galvanometer 840.
  • the first optical module includes a reflective element and the second optical module includes a reflective element.
  • the first optical module includes a galvanometer, and the second optical module includes at least one of a mirror, a reflective prism, and a polygon mirror.
  • FIG. 17 is a schematic diagram illustrating another embodiment of the first optical module 930 and the second optical module 940.
  • the first optical module 930 is a galvanometer
  • the second optical module 940 is a reflector.
  • the galvanometer 930 is located on the side of the reflector 940 near the light source 103.
  • the reflecting mirror 940 is rotated 360 ° around the rotation axis 941, in combination with the galvanometer mirror 930, the scanning range of the endless belt shape can be scanned.
  • the mirror is repeatedly rotated in an angle range less than 360 °, it can scan an arc-shaped strip-shaped scanning range in a certain angle range.
  • the mirror 640 vibrates, it can scan a rectangular strip-shaped scanning range.
  • the galvanometer mirror 930 is located on a side of the reflector 940 away from the light source 103.
  • the second optical module 940 is a reflective prism.
  • FIG. 18 is a schematic diagram illustrating another embodiment of the first optical module 1030 and the second optical module 1040.
  • the embodiment shown in FIG. 18 is similar to the embodiment shown in FIG. 17, and the first optical module 1030 is a galvanometer.
  • the second optical module 1040 is a polygon mirror.
  • the polygon mirror 1040 is located on a side of the galvanometer 1030 away from the light source 103.
  • the polygon mirror 1040 reflects the light beam reflected by the galvanometer 1030, and scans a scanning range of an arc-shaped band.
  • the polygon mirror 1040 is located on a side of the galvanometer 1030 near the light source 103.
  • the first optical module 1030 and the second optical module 1040 may be one or two or more other combinations of a galvanometer, a mirror, a reflective prism, and a polygon mirror.
  • FIG. 19 is a schematic diagram of an embodiment of the reflective element 190.
  • the reflecting element 190 includes a reflecting mirror or a reflecting prism.
  • the reflection surface of the reflection element 190 extends obliquely with respect to the rotation axis 191 of the reflection element 190.
  • the reflecting element 190 is fixed on the rotating body 192.
  • the rotating body 192 is used to balance the dynamic balance of the reflecting element 190, so that the reflecting element 190 maintains balance when it is rotated at a high speed.
  • the rotating body 192 supplements the mass at the place where the quality is defective.
  • weights 193 and 194 having a higher density than the rotating body 192 can be added to balance the rotating body 192 and the reflecting element 190.
  • the reflecting element 190 is a reflecting mirror.
  • the reflecting mirror 190 extends obliquely from the upper right direction of the rotating body 192 to the lower left.
  • the rotating body 192 has a weight 194 at the lower right and a weight 193 at the upper left to balance the movement.
  • the reflective element 190 may be used in the embodiments described in FIGS. 2, 14 and 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种距离探测装置(100),距离探测装置(100)包括光源(103)、扫描模块(102)和探测器(105)。光源(103)用于发射光束。扫描模块(102)包括第一光学模块(130)、第二光学模块(140)及驱动装置(150、151)。第一光学模块(130)和第二光学模块(140)依次位于光源(103)发射的光束的光路上。驱动装置(150、151)驱动第一光学模块(130)和第二光学模块(140)运动,以将光源(103)发出的光束依次向不同方向投射,从扫描模块(102)出射后形成带状的扫描范围。探测器(105)用于将探测物(101)反射的至少部分回光(112)转换为电信号。电信号用于测量探测物(101)与距离探测装置(100)的距离。

Description

距离探测装置 技术领域
本申请涉及光学探测领域,特别涉及一种距离探测装置。
背景技术
距离探测装置在很多领域发挥很重要的作用,例如可以用于移动载体或非移动载体上,用来遥感、避障、测绘、建模等。尤其是移动载体,例如机器人、人工操控飞机、无人飞机、车和船等,可以通过距离探测装置在复杂的环境下进行导航,来实现路径规划、障碍物探测和避开障碍物等。
发明内容
本申请提供一种距离探测装置,可以扫描更大的范围。
根据本申请实施例的一个方面,提供一种距离探测装置。距离探测装置包括:光源,用于发射光束;扫描模块,包括第一光学模块、第二光学模块及驱动装置,所述第一光学模块和所述第二光学模块依次位于所述光源发射的光束的光路上,所述驱动装置驱动所述第一光学模块和所述第二光学模块运动,以将所述光源发出的光束依次向不同方向投射,从所述扫描模块出射后形成带状的扫描范围;及探测器,用于将探测物反射的至少部分回光转换为电信号,所述电信号用于测量所述探测物与所述距离探测装置的距离。
本申请距离探测装置的扫描模块通过第一光学模块和第二光学模块 可以扫描带状的扫描范围,可以进行横向和纵向扫描,扫描范围广。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请距离探测装置的一个实施例的示意图。
图2所示为图1所示的距离探测装置的扫描模块的第一光学模块和第二光学模块的一个实施例的示意图。
图3所示为图2所示的第一光学模块和第二光学模块扫描的一种扫描图案的示意图。
图4所示为图2所示的第一光学模块和第二光学模块扫描的另一种扫描图案的示意图。
图5所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图6所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图7所示为图6所示的第一光学模块和第二光学模块扫描的扫描范围的示意图。
图8所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图9所示为图8所示的第一光学模块和第二光学模块扫描的一种扫描图案的示意图。
图10所示为图8所示的第一光学模块和第二光学模块扫描的另一种扫描图案的示意图。
图11所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图12所示为图11所示的第一光学模块和第二光学模块扫描的一种扫描图案的示意图。
图13所示为图11所示的第一光学模块和第二光学模块扫描的另一种扫描图案的示意图。
图14所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图15所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图16所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图17所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图18所示为第一光学模块和第二光学模块的另一个实施例的示意图。
图19所示为反射元件的一个实施例的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”表示至少两个。
本申请实施例的距离探测装置包括光源、扫描模块和探测器。光源用于发射光束。扫描模块包括第一光学模块、第二光学模块及驱动装置。第一光学模块和第二光学模块依次位于光源发射的光束的光路上。驱动装置驱动第一光学模块和第二光学模块运动,以将光源发出的光束依次向不同方向投射,从扫描模块出射后形成带状的扫描范围。探测器用于将探测物反射的至少部分回光转换为电信号。电信号用于测量探测物与距离探测装置的距离。通过第一光学模块和第二光学模块可以扫描带状的扫描范围,可以进行横向和纵向扫描,扫描范围广。
下面结合附图,对本申请的距离探测装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1所示为距离探测装置100的一个实施例的示意图。距离探测装置100可以用来测量探测物101到距离探测装置100的距离和方位。在一个实施例中,距离探测装置100可以包括雷达,例如激光雷达。距离探测装置100可以通过测量距离探测装置100和探测物101之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物101到距离探测装置100的距离。
距离探测装置100包括光源103、扫描模块102和探测器105。光源103用于发射光束。在一个实施例中,光源103可发射激光束。光源103发射出的激光束为波长在可见光范围之外的窄带宽光束,例如波段为905nm左右的激光。在其他一些实施例中,光源103可以发射其他一些波段的光束,例如毫米波、微波、超声波、红外线。
扫描模块102用于改变光源103发出的光束的传播方向,向距离探测装置100周围的空间投射。在一些实施例中,距离探测装置100还包括准直透镜104,准直透镜104放置于光源103和扫描模块102之间,用于将光源103发射出的光束进行准直,准直为平行光119(或者接近平行光)。扫描模块102改变平行光119的传输方向,将平行光119向距离探测装置100周围的空间投射。
扫描模块102包括第一光学模块130、第二光学模块140及驱动装置150、151。第一光学模块130和第二光学模块140依次位于光源103发射的光束的光路上。驱动装置150、151分别用于驱动第一光学模块130和第二光学模块140运动,以将光源103发出的光束依次向不同方向(例如方向111和113)投射,扫描带状的扫描范围,如此对距离探测装置100周围的空间进行扫描。通过第一光学模块130和第二光学模块140可以扫描带状的扫描范围,可以进行横向和纵向扫描,扫描范围广。
第一光学模块130运动时不断改变从靠近光源103一侧投射至其上的光束的出射方向。当从靠近光源103一侧向第一光学模块130投射的光 束的入射方向不变时,第一光学模块130改变光束的出射方向的方式为:使得出射的光束沿着一条直线(或近似直线,或沿着一条弧线)来回扫描或重复扫描,或者,使得一直旋转扫描,其中在旋转的过程中光束与第一光学模块的中心轴的夹角保持不变或发生改变。
第二光学模块140运动时不断改变从靠近光源103一侧投射至其上的光束的出射方向。当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140改变光束的出射方向的方式为:使得出射的光束沿着一条直线(或近似直线,或沿着一条弧线)来回扫描或重复扫描;或者,使得出射的光束一直旋转扫描,其中在旋转的过程中光束与第一光学模块的中心轴的夹角保持不变或发生改变。
在一些实施例中,第一光学模块130相对于第二光学模块140靠近光源103。光源103发出的光束投射至第一光学模块130的入射方向基本不变。下面以第一光学模块130相对于第二光学模块140靠近光源103为例进行说明。
在一些实施例中,当第一光学模块130和第二光学模块140改变光束的光路的方式均为使得光束沿着一条直线(或近似直线,或沿着一条弧线)来回扫描或重复扫描时,在扫描模块102中,第一光学模块130和第二光学模块140的摆放位置使得该两个光学模块分别对应的直线(或近似直线,或弧线)呈一定夹角。可选的,该夹角大于20度,或者大于40度,或者大于60度,或者大于80度。这样,扫描模块102可以改变光源103发出的光束,使得该光束可以扫描出近似于相邻边不垂直的四边形的扫描范围。
可选的,该夹角为90度或者接近于90度。这样,从靠近光源103一侧向扫描模块102入射的光束的入射方向不变时,扫描模块102可以改变光源103发出的光束,使得该光束可以扫描出近似于相邻边相互垂直的四边形的扫描范围。
在一些实施例中,第一光学模块130和第二光学模块140中的其中一个光学模块所沿着扫描的直线相比另一个光学模块所沿着扫描的直线长,以使得第一光学模块130和第二光学模块140组合来改变光源103的光束的方向时,可以扫描出近似于带状的扫描范围。
在一些实施例中,第一光学模块130和第二光学模块140中的其中一个光学模块沿着水平方向上的直线扫描,另一个光学模块沿着竖直方向上的直线扫描,且水平方向上的直线相比竖直方向上的直线长。这样,第一光学模块130和第二光学模块140组合来改变光源103的光束的方向时,可以扫描出水平方向上延伸的带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条直线,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描环形。在第一光学模块130和第二光学模块140组合时,可以扫描环形的带状扫描范围。带状扫描范围的宽度可以为第一光学模块130扫描的直线的长度。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条直线,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描弧形。在第一光学模块130和第二光学模块140组合时,可以扫描弧形的带状扫描范围。带状扫描范围的宽度可以为第一光学模块130扫描的直线的长度。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条环形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描直线。在第一光学模块130和第二光学模块140组合时,可以扫描呈多个圈螺旋延伸的长条带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条环形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描环形。在第一光学模块130和第二光学模块140组合时,可以扫描呈多个圈螺旋延伸的环形的带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条环形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描弧形。在第一光学模块130和第二光学模块140组合时,可以扫描呈多个圈螺旋延伸的弧形的带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条弧形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描直线。在第一光学模块130和第二光学模块140组合时,可以扫描一个边为弧形的长条带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条弧形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描环形。在第一光学模块130和第二光学模块140组合时,可以扫描呈弧形线依次排布的环形的带状扫描范围。
在另一些实施例中,当从靠近光源103一侧向第一光学模块130投射的光束的入射方向不变时,第一光学模块130出射的光束扫描一条弧形,当从靠近光源103一侧向第二光学模块140投射的光束的入射方向不变时,第二光学模块140出射的光束扫描弧形。在第一光学模块130和第二光学模块140组合时,可以扫描呈弧形线依次排布的弧形的带状扫描范围。
在其他一些实施例中,在分别入射到第一光学模块130和第二光学模块140的光束的入射方向不变时,第一光学模块130和第二光学模块140还可分别扫描其他形状。第一光学模块130和第二光学模块140结合时,可以扫描其他形状的带状扫描范围。
在其他一些实施例中,第二光学模块140相对于第一光学模块130靠近光源103。光源103发出的光束投射至第二光学模块140的入射方向基本不变。第二光学模块140和第二光学模块130结合时也可以扫描上文所述的各种带状扫描范围。
在一些实施例中,第一光学模块130和第二光学模块140的光学元件分别由各自的驱动装置150、151驱动。图中仅示出两个驱动装置150、151,但并不限于此,驱动装置150、151的个数可以与第一光学模块130和第二光学模块140的运动的光学元件的个数相同,各驱动装置和各运动的光学元件一一对应,每个驱动装置用于驱动对应的光学元件运动。在一些实施例中,每个光学模块中存在运动的光学元件,驱动装置的个数和驱动装置的个数相同且一一对应,各驱动装置用于驱动对应的光学模块中的至少部分光学元件运动。在一些实施例中,运动相同的光学元件可以由同一个驱动装置驱动。具有不同运动的光学元件由不同的驱动装置驱动。例如,在一个实施例中,第一光学模块130和第二光学模块140的运动方式不同,驱动装置150、151分别连接至第一光学模块130和第二光学模块140,控制器154可以控制驱动装置150、151,从而控制第一光学模块130中的光学元件和第二光学模块140中的光学元件以不同的方式运动。
驱动装置150、151包括电机、齿轮传动组件、带传动组件中的至少一种。在一些实施例中,驱动装置150、151包括电机,驱动光学元件转动或振动。控制器154可以控制电机的转速和/或转向。电机可以包括中空电机,光学元件放置于中空电机内,直接由电机带动。在另一些实施例中,驱动装置150、151通过齿轮传动组件和/或齿带传动组件带动。齿轮传动 组件和/或带传动组件可以与电机连接,将电机的动力传递给光学元件。
在一些实施例中,第一光学模块130包括透光棱镜和反射元件中的至少一个,第二光学模块140包括透光棱镜和反射元件中的至少一个。通过运动的透光棱镜和/或反射元件将光投射至不同的方向,来扫描带状的扫描范围,如此成本低,且扫描精度高。透光棱镜折射光束,改变光束的方向。反射元件反射光束。在一些实施例中,反射元件包括反射镜、反射棱镜、多面反射镜和振镜中的至少一个。反射棱镜,例如45°反射棱镜,具有反射面,用来反射光束。多面反射镜包括至少两个成角度延伸的反射面,例如五个反射面围成五边形的多面反射镜。在一些实施例中,多面反射镜可以呈棱柱体,棱柱体的侧面设置反射面。在另一些实施例中,多面反射镜可以呈棱台,棱台的侧面设置反射面。振镜可以包括MEMS(Micro-Electro-Mechanical System,微机电系统)振镜。
在一些实施例中,带状的扫描范围在水平方向上的扫描长度大于竖直方向上的扫描高度,如此在水平方向上可以扫描更大的范围。在一些实施例中,距离探测装置100安装于车辆,用于扫描车辆周围的探测物。距离探测装置100可以用于无人驾驶汽车、移动小车等车辆,可以扫描车辆周围的障碍物。水平方向上的扫描长度长,从而可以扫描车辆水平方向上的更大范围。在其他一些实施例中,距离探测装置100可以安装于无人飞行器,或其他设备上。
在一些实施例中,第二光学模块140位于第一光学模块130远离光源103的一侧。光源103发出的光经过第一光学模块130,投射至第二光学模块140,通过第二光学模块140投射至距离探测装置100的周围空间。在另一些实施例中,第二光学模块140位于第一光学模块130靠近光源103的一侧。光源103发出的光经过第二光学模块140,投射至第一光学模块130,通过第一光学模块130投射至距离探测装置100的周围空间。
在一些实施例中,经探测物101反射的至少部分回光依次经过扫描 模块102中的光学模块130、140回到距离探测装置100内。光学模块130、140包括第一光学模块130和第二光学模块140。经过扫描模块102的回光中的至少一部分可以直接或经过其他光学元件入射到探测器105。当扫描模块102投射出的光111打到探测物101时,一部分光被探测物101沿与投射的光111相反的方向反射至距离探测装置100。扫描模块102接收探测物101反射的一部分回光112。探测物101反射的一部分回光120未传播至扫描模块102,不被扫描模块102接收。
探测器105用于将探测物101反射的至少部分回光转换为电信号。电信号用于测量探测物101与距离探测装置100的距离。在图1所示的实施例中,穿过扫描模块102的回光中的至少一部分被探测器105转换为电信号。在一些实施例中,探测器105可以包括雪崩光电二极管,雪崩光电二极管为高灵敏度的半导体器件,能够利用光电流效应将光信号转换为电信号。
在一些实施例中,探测器105与光源103放置于扫描模块102的同一侧。在一些实施例中,距离探测装置100还包括会聚透镜106,会聚透镜106放置于探测器105的上游,用于将回光会聚到探测器105。在一个实施例中,距离探测装置100包括反射元件108。反射元件108位于准直透镜104和扫描模块102之间,且位于扫描模块102和会聚透镜106之间。反射元件108用于向会聚透镜106反射穿过扫描模块102的回光,且允许准直透镜104准直的光束119穿过。在一个实施例中,反射元件108的中部形成有对应光源103和准直透镜104的位置的开孔或者透光区,准直的光束119从开孔或透光区穿过。在另一个实施例中,图1所示的光源103和探测器105的位置可以对调。在一些实施例中,反射元件108包括反射镜或反射棱镜等。
在一个实施例中,会聚透镜106和准直透镜104为相互独立的透镜。在另一个实施例中,会聚透镜106和准直透镜104为同一个透镜,该透镜 位于反射元件108面向扫描模块102的一侧。该透镜用于准直光源103发出的光束,且将穿过扫描模块102的回光会聚至探测器105。在一个实施例中,会聚透镜106和/或准直透镜104上镀有增透膜,能够增加透射光束的强度。
在另一些实施例中,探测器105与光源103放置于扫描模块102的相对两侧。探测物101反射的回光可以通过扫描模块102之外的光学元件和会聚透镜106会聚到探测器105,该光学元件、会聚透镜106和探测器105位于扫描模块102的同一侧。
在一些实施例中,距离探测装置100包括测量电路,例如TOF单元107,可以用于测量TOF,来测量探测物101的距离。例如,TOF单元107可以通过公式t=2D/c来计算距离,其中,D表示距离探测装置和探测物之间的距离,c表示光速,t表示光从距离探测装置100投射到探测物101和从探测物101返回到距离探测装置100所花的总时间。距离探测装置100可以根据光源103发射光束和探测器105接收到回光的时间差,确定时间t,进而可以确定距离D。距离探测装置100还可以探测探测物101在距离探测装置100的方位。距离探测装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲序列。例如,光源103发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。在一些实施例中,可以对电信号进行多级放大。如此,距离探测装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到距离探测装置100的距离。
在一些实施例中,距离探测装置100包括位于扫描模块102外侧的窗口(未图示),扫描模块102投射出的光穿过窗口投射至外界空间,回光 可以穿过窗口至扫描模块102。光源103、扫描模块102、探测器105、准直透镜104、会聚透镜106和反射元件108可以封装于封装装置中,窗口形成于封装装置。在一个实施例中,窗口可以包括玻璃窗。在一个实施例中,窗口上镀有长波通膜。在一个实施例中,长波通膜对大约400nm-700nm的可见光透过率较低,对发射光束波段的光高透。
在一个实施例中,窗口的内表面、扫描模块102的表面、探测器105的镜片、准直透镜104的表面、会聚透镜106的表面和反射元件108的表面中的至少一个表面上镀有正水膜。正水膜为亲水膜,距离探测装置100发热时挥发的油在正水膜表面可以平铺开,避免油在光学元件的表面形成油滴,从而避免油滴对光传播的影响。在一些实施例中,距离探测装置100的其他光学元件的表面可镀有正水膜。
在一些实施例中,第一光学模块130为一个透光棱镜,第二光学模块140为一个反射元件。图2所示为图1所示的扫描模块102的第一光学模块130和第二光学模块140的一个实施例的示意图。在图2所示的实施例中,第二光学模块140位于第一光学模块130的远离光源103的一侧。反射元件140位于透光棱镜130的远离光源103的一侧。
透光棱镜130绕转轴131转动。在图2所示的实施例中,透光棱镜130的厚度沿径向变化,例如楔角棱镜。在一个实施例中,透光棱镜130接收光源103的光束的入射面132垂直于转轴131,相对于入射面132的出射面133相对于入射面132倾斜,且相对于转轴131倾斜。在另一些实施例中,入射面132相对于转轴131倾斜。光源103发出的光束经过360°转动的透光棱镜130可以扫描FOV范围。在另一个实施例中,透光棱镜130的入射面132倾斜于转轴131,出射面133垂直于转轴131。在其他一些实施例中,透光棱镜130为其他形状的棱镜,例如,入射面和/或出射面为曲面的棱镜。
在图2所示的实施例中,反射元件140为反射镜或反射棱镜。在一 个实施例中,反射元件140绕转轴141转动。转轴141可以与转轴131同轴,或不同轴。转轴141和转轴131可以平行,或者成一定夹角,例如成90度夹角。反射元件140和透光棱镜130可以由同一的驱动装置驱动,或者由不同的驱动装置驱动。在一个实施例中,反射元件140的转速可以与透光棱镜130的转速不同,可以由不同的驱动装置驱动。在一个实施例中,反射元件140的转速和透光棱镜130的转速相反,从而扫描的点云更均匀些。
反射元件140包括反射光束的反射面,反射面相对于反射元件140的转轴141倾斜,面向第一光学模块130。反射面可以是图中所示的一个平面,或者一个曲面,或者可以是多面镜的反射面。
在一个实施例中,反射元件140可以绕转轴141转动360°。反射元件140为一个平面的实施例中,入射至反射元件140的光束的入射方向不变时,反射元件140扫描一个环形。反射元件140与透光棱镜130结合时,将从透光棱镜130出射的光束在360°的环形区域内依次向不同的方向投射,扫描呈多个圈螺旋延伸的环形的带状扫描范围。图3所示为该实施例扫描的一种扫描图案,可以在水平方向上扫描一周,扫描范围大。仅为了看清扫描图案,图3所示的扫描图案比较稀疏。然而实际扫描中,可通过该反射元件140和/或透光棱镜130的转速来实现非常密集的扫描图案,保证距离探测的精度。图3仅是示例性的一种扫描图案,可以通过改变反射元件140和/或透光棱镜130的转速,扫描不同的图案。类似于图3,后续附图中的扫描图案也比较稀疏,且为示例性的一种扫描图案。
在另一个实施例中,反射元件140可以绕转轴141在小于360°的角度内往复转动,或者反射元件140绕转轴141 360度旋转,通过反射元件140的反射面的设置,例如多面反射镜,来扫描小于360度的弧形带状的扫描范围。例如,可以在车辆前进方向上的一定角度范围内扫描水平的弧形带状的扫描范围,探测车辆前进方向上的障碍物。
在另一个实施例中,反射元件140可以振动,反射元件140相对于透光棱镜130的转轴131的角度依次改变,可以扫描例如图4所示的扫描图案,可以扫描大致矩形的扫描范围。
图5所示为第一光学模块230和第二光学模块240的另一个实施例的示意图。第一光学模块230为一个透光棱镜,第二光学模块240为一个反射元件。图5所示的透光棱镜230类似于图2所示的透光棱镜130,在此不再赘述。
在图5所示的实施例中,第二光学模块240为多面反射镜,多面反射镜240的转轴垂直于第一光学模块230的转轴231。在图示实施例中,透光棱镜230的转轴231在纸面内竖直延伸,多面反射镜240的转轴垂直于纸面。多面反射镜240的多个反射面绕转轴排布。多面反射镜240可以按照图中箭头方向,或箭头相反方向转动。在另一个实施例中,多面反射镜240的转轴在纸面内垂直于透光棱镜230的转轴231,或在其他平面内垂直于透光棱镜230的转轴231。在另一个实施例中,多面反射镜240的转轴平行于透光棱镜230的转轴231,或与转轴231共轴。
在图5所示的实施例中,多面反射镜240位于透光棱镜230的远离光源103的一侧。多面反射镜240呈棱柱体,转轴为棱柱体的中心轴,可以在垂直于纸面的平面或其他平面内垂直于透光棱镜230的转轴231。多面反射镜240的反射面循环交替反射透光棱镜230出射的光束,在入射至多面反射镜的光束的入射方向不变时,多面反射镜240扫描弧形。多面反射镜240反射透光棱镜230出射的光束,可以扫描呈多个圈螺旋延伸的弧形的带状扫描范围。例如,图5中横截面为正五边形的多面反射镜240,扫描72°角度范围的带状扫描范围。多面反射镜240并不限于横截面为正五边形的多面反射镜,还可以是其他棱柱体的多面反射镜,例如横截面为三角形的多面反射镜、横截面为方形的多面反射镜、横截面为六边形的多面反射镜等。
在另一些实施例中,多面反射镜呈棱台,棱台较小的顶面面向第一光学模块230,棱台的侧面为反射面,倾斜面向第一光学模块230。多面反射镜的转轴与平行于透光棱镜230的转轴231,或与转轴231共轴。多面反射镜的转轴可以垂直于其顶面,或与顶面相交小于90度。在入射至多面反射镜的光束的入射方向不变时,多面反射镜扫描弧形。多面反射镜反射第一光学模块230出射的光束,可以扫描呈多个圈螺旋延伸的弧形带状扫描范围。
图6所示为第一光学模块330和第二光学模块340的另一个实施例的示意图。第一光学模块330为一个透光棱镜,第二光学模块340为一个反射元件。图6所示的实施例中,第二光学模块340位于第一光学模块330的靠近光源103的一侧。反射元件340位于透光棱镜330的靠近光源103的一侧。
在图6所示的实施例中,反射元件340为振镜,例如MEMS振镜,振镜340的反射面面向第一光学模块330。在一个实施例中,振镜340可以在纸面内左右振动,沿图中箭头方向振动。在另一个实施例中,振镜340可以在垂直于纸面的平面内振动。振镜340反射光源103发出的光束,扫描一条直线。振镜340反射的光束投射到透光棱镜330,透光棱镜330绕转轴331转动,扫描呈多个圈螺旋延伸的长条的带状扫描范围,例如图7所示的带状扫描范围。图6所示的透光棱镜330的形状和摆放方式类似于图2所示的透光棱镜130。在其他实施例中,透光棱镜330可以是其他形状和/或摆放方式。
在另一个实施例中,第二光学模块340位于第一光学模块330的远离光源103的一侧。振镜340位于透光棱镜330的远离光源103的一侧,可以扫描带状的扫描范围。该扫描范围可以不同于图7所示的扫描范围。
在另一些实施例中,第一光学模块包括至少两个透光棱镜,至少两个透光棱镜包括第一透光棱镜和第二透光棱镜。图8所示为第一光学模块 430和第二光学模块440的另一个实施例的示意图。在图8所示的实施例中,第一光学模块430包括第一透光棱镜434和第二透光棱镜435。第一透光棱镜434和第二透光棱镜435可以绕同一转轴431转动,或分别绕平行的两个转轴转动。第一透光棱镜434和第二透光棱镜435以相反转向转动,转速差小于转速阈值,可以扫描一条近似直线的扫描线。在一个实施例中,第一透光棱镜434和第二透光棱镜435的转速相等。
在一些实现方式中,在第一透光棱镜434和第二透光棱镜435转动过程中的至少一个时刻,第一透光棱镜434远离第二透光棱镜435的镜面4341和第二透光棱镜435远离第一透光棱镜434的镜面4351相对于垂直于第一透光棱镜434和第二透光棱镜435的转轴431的平面对称。第一透光棱镜434靠近第二透光棱镜435的镜面4342和第二透光棱镜435靠近第一透光棱镜434的镜面4352相对于垂直于转轴431的平面对称。
第一透光棱镜434的厚度沿径向变化,且第二透光棱镜435的厚度沿径向变化。在图8所示的实施例中,第一透光棱镜434的镜面4341、4342和第二透光棱镜435的镜面4351、4352均为平面。第一透光棱镜434的镜面4341、4342和第二透光棱镜435的镜面4351、4352与转轴431相交。在一个实施例中,第一透光棱镜434的镜面4341和第二透光棱镜435的镜面4351倾斜于转轴431,第一透光棱镜434的镜面4342和第二透光棱镜435的镜面4352垂直于转轴431。在另一些实施例中,第一透光棱镜434的镜面4341和第二透光棱镜435的镜面4351为曲面,和/或第一透光棱镜434的镜面4342和第二透光棱镜435的镜面4352为曲面。
第二光学模块440包括至少一个透光棱镜。在图8所示的实施例中,第二光学模块440为一个透光棱镜,绕转轴441转动。第二光学模块440的透光棱镜的转轴441、第一透光棱镜434的转轴和第二透光棱镜435的转轴可以均共轴,或均平行,或其中两个共轴,与另一个平行。透光棱镜440的转速可以与第一透光棱镜434和第二透光棱镜435的转速不同。图8 所示的实施例中,第二光学模块440位于第一光学模块430的远离光源103的一侧。第一光学模块430和第二光学模块440可以扫描呈多个圈螺旋延伸的长条的带状扫描范围。调节第一光学模块430的转速和/或第二光学模块440的转速,可以扫描例如图9和10所示的图案。
在棱镜转速有限的情况下,第一透光棱镜434和第二透光棱镜435等速反向转动,扫描出的扫描线沿水平方向,而且第一透光棱镜434和第二透光棱镜435的速度大于第二光学模块440的透光棱镜的速度,如此扫描出的点云主要沿水平方向排布,如图9所示,可以用于自动驾驶等领域。当然,在棱镜434、435和440的转速都可以达到非常高时,点云可以非常密集,棱镜434、435和440的转速可以不受棱镜转速有限的情况下的转速限制条件的限制。
在一个实施例中,三个透光棱镜434、435和440的楔角分别为α 1~α 3,折射率分别为n 1~n 3,旋转角度分别为θ 1~θ 3。其中,透光棱镜的旋转角度定义为棱镜楔角方向与x轴之间的夹角。三个透光棱镜434、435和440的参数可以相同,也可以不同。
在一个实施例中,第一透光棱镜434与第二透光棱镜435的几何尺寸与材料折射率均相同,从而α 1=α 2,n 1=n 2。当第一透光棱镜434与第二透光棱镜435旋转,且满足θ 12=2nπ(n为整数)时,光线经过第一透光棱镜434与第二透光棱镜435后出射方向会在水平方向上扫描。扫描的范围与第一透光棱镜434与第二透光棱镜435的楔角与折射率有关,近似于F 1=2(n 1-1)α 1
光线经过旋转第三透光棱镜440后,以入射方向为中心旋转,旋转的偏转角度与棱镜的楔角和折射率有关,偏转角度近似于F 3=(n 3-1)α 3。光线经过三个棱镜434、435和440后出射方向相当于水平扫描与圆形扫描的叠加,故会形成一个扁的FOV。通过控制棱镜的折射率和楔角参数,能够 灵活的调整两个方向的FOV。水平方向和竖直方向的FOV范围分别近似于:
FOV H=F 1+F 3=2(n 1-1)α 1+(n 3-1)α 3
FOV V=F 3=(n 3-1)α 3
图8所示的第二光学模块440的透光棱镜的形状和摆放方式类似于图2所示第一光学模块130的透光棱镜。在其他实施例中,第二光学模块440的透光棱镜可以是其他形状和/或摆放方式。在另一个实施例中,第二光学模块440位于第一光学模块430的靠近光源103的一侧。第一透光棱镜434和第二透光棱镜425位于透光棱镜440远离光源103的一侧。
在另一些实施例中,第一透光棱镜434和第二透光棱镜425以不同的转速转动,扫描带状的扫描范围,可以不同于图8所示的第一光学模块430和第二光学模块450扫描的扫描范围。
图11所示为第一光学模块530和第二光学模块540的另一个实施例的示意图。第一光学模块530包括第一透光棱镜534和第二透光棱镜535。第一光学模块530类似于图8所示的第一光学模块430,在此不再赘述。相比较于图8所示的实施例,图11所示的实施例的第二光学模块540包括至少两个透光棱镜,至少两个透光棱镜包括第三透光棱镜544和第四透光棱镜545。
在图11所示的实施例中,第三透光棱镜544和第四透光棱镜545可以绕同一转轴541转动,或分别绕平行的两个转轴转动。第三透光棱镜544、第四透光棱镜545、第一透光棱镜534和第二透光棱镜535的转轴可以均共轴,或均平行,或其中至少两个共轴,与其他转轴平行。第三透光棱镜544和第四透光棱镜545以相反转向转动,转速差小于转速阈值。在一个实施例中,第三透光棱镜544和第四透光棱镜545的转速相等。第三透光棱镜544靠近第一光学模块530,接收第一光学模块530的第二透光棱镜535的出射光。第四透光棱镜545接收第三透光棱镜544的出射光。图11 所示的第一光学模块530扫描近似一条直线。在入射至第二光学模块540的入射光方向不变时,第二光学模块540扫描近似一条直线,与第一光学模块530扫描的直线相交。第一光学模块530和第二光学模块540结合时,可以扫描矩形或其他平行四边形的扫描范围,可以扫描例如图12和13所示的扫描图案。
类似于第一透光棱镜534和第二透光棱镜535,第三透光棱镜544的厚度沿径向变化,且第四透光棱镜545的厚度沿径向变化。在一些实施例中,在第三透光棱镜544和第四透光棱镜545转动过程中的至少一个时刻,第三透光棱镜544远离第四透光棱镜545的镜面5441和第四透光棱镜545远离第三透光棱镜544的镜面5451相对于垂直于第三透光棱镜544和第四透光棱镜545的转轴541的平面对称。第三透光棱镜544靠近第四透光棱镜545的镜面5442和第四透光棱镜545靠近第三透光棱镜544的镜面5452相对于垂直于第三透光棱镜544和第四透光棱镜545的转轴541的平面对称。
第三透光棱镜544的镜面5441和第四透光棱镜545的镜面5451为平面或曲面,第三透光棱镜544的镜面5442和第四透光棱镜545的镜面5452为平面或曲面。在图11所示的实施例中,第三透光棱镜544的镜面5441和第四透光棱镜545的镜面5451均为曲面,第三透光棱镜544的镜面5442和第四透光棱镜545的镜面5452均为平面。在另一个实施例中,第三透光棱镜544和第四透光棱镜545可以类似于第一透光棱镜534和第二透光棱镜535。在一些实施例中,第三透光棱镜544和第四透光棱镜545的转速与第一透光棱镜534和第二透光棱镜535的转速不同。
四个棱镜534、535、544和555的楔角分别为α 1~α 4,□折射率分别为n 1~n 4,四个棱镜的旋转角度分别为θ 1~θ 4。其中,棱镜的旋转角度定义为棱镜楔角方向与x轴之间的夹角。四个棱镜534、535、544和555的参数可以相同,也可以不同。
在一个实施例中,第一透光棱镜534和第二透光棱镜535的几何尺寸与材料折射率均相同,第三透光棱镜544和第四透光棱镜545的几何尺寸与材料折射率均相同。从而α 1=α 2,α 3=α 4,n 1=n 2,n 3=n 4
当第一透光棱镜534和第二透光棱镜535旋转,且满足θ 12=2nπ(n为整数)时,光线经过第一透光棱镜534和第二透光棱镜535后出射方向会在水平方向上扫描。扫描的范围(即水平方向FOV)与第一透光棱镜534和第二透光棱镜535的楔角与折射率有关,近似于FOV H=2(n 1-1)α 1
当第三透光棱镜544和第四透光棱镜545旋转,且满足θ 34=(2n+1)π(n为整数)时,光线经过第三透光棱镜544和第四透光棱镜545后会在竖直方向上扫描。扫描范围近似于FOV V=2(n 2-1)α 1
因此,通过设计棱镜的楔角和折射率,便可以灵活的对水平和竖直方向的FOV进行设计。
在另一些实施例中,第三透光棱镜544和第四透光棱镜545以不同的转速转动,可以扫描不同于图11所示的第一光学模块530和第二光学模块540的扫描范围。在另一些实施例中,第二光学模块540包括三个或更多个透光棱镜。在另一些实施例中,第一透光棱镜534和第二透光棱镜535的转速不同。
图14所示为第一光学模块630和第二光学模块640的另一个实施例的示意图。第一光学模块630包括第一透光棱镜634和第二透光棱镜635。第一光学模块630的形状和摆放方式类似于图8和11所示的第一光学模块430、530的形状和摆放方式,在此不再赘述。
在图14所示的实施例中,第二光学模块640包括反射元件。在该实施例中,反射元件640为反射镜。图14所示的反射镜640类似于图2所示的反射镜140,反射镜640面向第一光学模块630,可以绕转轴641转动,详细描述参见图2对应的描述,在此不再赘述。在另一个实施例中,反射 元件640为反射棱镜。在图14所示的实施例中,反射元件640位于第一光学模块630远离光源103的一侧,反射第一光学模块630的第二透光棱镜635出射的光。在另一个实施例中,反射元件640位于第一光学模块630靠近光源103的一侧。
在图14所示的实施例中,第一透光棱镜634和第二透光棱镜635中的一者的转速等于反射元件640的转速加上设定转速,另一者的转速等于反射元件640的转速减去设定转速。在一个例子中,反射元件640的转速为a,设定转速为w,第一透光棱镜634的转速为a-w,第二透光棱镜635的转速为a+w。在另一个例子中,第一透光棱镜634的转速为a+w,第二透光棱镜635的转速为a-w。在一个实施例中,反射镜640转动360°,可以扫描环形带状的扫描范围。在另一个实施例中,反射镜640在小于360°的角度范围内反复转动,或通过多面反射镜360°转动,可以扫描一定角度范围的弧形带状扫描范围。在再一个实施例中,反射镜640振动,可以扫描矩形的带状扫描范围。
图15所示为第一光学模块730和第二光学模块740的另一个实施例的示意图。第一光学模块730包括第一透光棱镜734和第二透光棱镜735。第一光学模块730类似于图8和11所示的第一光学模块430、530,第一透光棱镜734和第二透光棱镜735的转速差小于转速阈值且转向相反。在一个实施例中,第一透光棱镜734和第二透光棱镜735的转速相等。第二光学模块740包括反射元件。在图15所示的实施例中,反射元件740为多面反射镜,类似于图5所示的多面反射镜,与第一光学模块730结合,可以扫描弧形带状的扫描范围。多面反射镜可以呈棱柱或棱台,具体描述参见上文。
在图15所示的实施例中,多面反射镜740位于第一光学模块730远离光源103的一侧。在另一个实施例中,多面反射镜740位于第一光学模块730靠近光源103的一侧。
图16所示为第一光学模块830和第二光学模块840的另一个实施例的示意图。第一光学模块830包括第一透光棱镜834和第二透光棱镜835。图16所示的第一透光棱镜834和第二透光棱镜835类似于图11所示的第三透光棱镜544和第二透光棱镜545。在另一些实施例中,第一透光棱镜834和第二透光棱镜835可以类似于图8、11、14和15所示的第一透光棱镜434、534、634、734和第二透光棱镜435、535、635、735。
第一光学模块830位于第二光学模块840远离光源103的一侧。第二光学模块840包括反射元件。在图16所示的实施例中,反射元件840为振镜,类似于图6所示的振镜340。振镜840反射光源103发出的光束,振镜840反射的光束依次经过第一透光棱镜834和第二透光棱镜835,可以扫描矩形的扫描范围。
在另一个实施例中,振镜840位于第一光学模块830远离光源103的一侧。光源103发出的光束依次经过第一透光棱镜834和第二透光棱镜835,投射至振镜840,被振镜840反射。
在一些实施例中,第一光学模块包括反射元件,第二光学模块包括反射元件。在一些实施例中,第一光学模块包括振镜,第二光学模块包括反射镜、反射棱镜和多面反射镜中的至少一个。
图17所示为第一光学模块930和第二光学模块940的另一个实施例的示意图。在图17所示的实施例中,第一光学模块930为振镜,第二光学模块940为反射镜。振镜930位于反射镜940靠近光源103的一侧。反射镜940绕转轴941进行360°转动时,结合振镜930,可以扫描环形带状的扫描范围。反射镜在小于360°的角度范围内反复转动时,可以扫描一定角度范围的弧形带状扫描范围。反射镜640振动时,可以扫描矩形的带状扫描范围。在另一个实施例中,振镜930位于反射镜940远离光源103的一侧。在另一个实施例中,第二光学模块940为反射棱镜。
图18所示为第一光学模块1030和第二光学模块1040的另一个实施例的示意图。图18所示的实施例类似于图17所示的实施例,第一光学模块1030为振镜。相比较于图17所示的实施例,图18的实施例中,第二光学模块1040为多面反射镜。多面反射镜1040位于振镜1030远离光源103的一侧。多面反射镜1040反射振镜1030反射出的光束,扫描弧形带状的扫描范围。在另一个实施例中,多面反射镜1040位于振镜1030靠近光源103的一侧。
在其他一些实施例中,第一光学模块1030和第二光学模块1040可以是振镜、反射镜、反射棱镜和多面反射镜中的一个或两个以上的其他组合。
图19为反射元件190的一个实施例的示意图。反射元件190包括反射镜或反射棱镜。反射元件190的反射面相对于反射元件190的转轴191倾斜延伸。反射元件190固定于转动本体192上,转动本体192用于配平反射元件190的动平衡,使反射元件190高速转动时保持平衡。
在一个实施例中,转动本体192在质量缺陷的地方补充质量,例如可以增加密度比转动本体192的密度高的配重块193、194,使转动本体192和反射元件190动平衡。在图19所示的实施例中,反射元件190为反射镜。反射镜190从转动本体192的右上方向左下方倾斜延伸,转动本体192的右下方具有配重块194,且左上方具有配重块193,使动平衡。反射元件190可以用于图2、14和17所述的实施例中。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、 物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (43)

  1. 一种距离探测装置,其特征在于,其包括:
    光源,用于依次发射脉冲光束;
    扫描模块,包括第一光学模块、第二光学模块及驱动装置,所述第一光学模块和所述第二光学模块依次位于所述光源发射的光束的光路上,所述驱动装置驱动所述第一光学模块和所述第二光学模块运动,以将所述光源发出的光束依次向不同方向投射,从所述扫描模块出射后形成带状的扫描范围。
  2. 根据权利要求1所述的距离探测装置,其特征在于,所述第一光学模块能够将一束固定的光束在不同时刻改变至不同方向出射,形成一个接近锥形的视场;所述第二光学模块能够将一束固定的光束改变方向至沿一段线条偏移;或者,
    所述第一光学模块能够将一束固定的光束改变方向至沿一段线条偏移;所述第二光学模块能够将一束固定的光束在不同时刻改变至不同方向出射,形成一个接近锥形的视场。
  3. 根据权利要求1或2所述的距离探测装置,其特征在于,所述第一光学模块包括透光棱镜和振镜中的至少一个,所述第二光学模块包括透光棱镜和反射元件中的至少一个。
  4. 根据权利要求3所述的距离探测装置,其特征在于,所述反射元件包括反射镜、反射棱镜、多面反射镜和振镜中的至少一个。
  5. 根据权利要求3所述的距离探测装置,其特征在于,所述第一光学模块为一个透光棱镜,所述第二光学模块为一个反射元件;
    所述透光棱镜和所述反射元件的绕相同的转轴或分别绕两个平行的转轴或分别绕两个具有一定夹角的转轴旋转。
  6. 根据权利要求3所述的距离探测装置,其特征在于,所述第一光学模块包括至少两个透光棱镜,至少两个所述透光棱镜包括第一透光棱镜和 第二透光棱镜。
  7. 根据权利要求6所述的距离探测装置,其特征在于,所述第一透光棱镜和所述第二透光棱镜绕同一转轴以相同转速和相反转向转动。
  8. 根据权利要求7所述的距离探测装置,其特征在于,在所述第一透光棱镜和所述第二透光棱镜转动过程中的至少一个时刻,所述第一透光棱镜远离所述第二透光棱镜的镜面和所述第二透光棱镜远离所述第一透光棱镜的镜面相对于垂直于所述第一透光棱镜和所述第二透光棱镜的转轴的平面对称,所述第一透光棱镜靠近所述第二透光棱镜的镜面和所述第二透光棱镜靠近所述第一透光棱镜的镜面相对于垂直于所述转轴的平面对称。
  9. 根据权利要求7所述的距离探测装置,其特征在于,所述第二光学模块包括至少一个透光棱镜。
  10. 根据权利要求9所述的距离探测装置,其特征在于,所述第二光学模块包括至少两个透光棱镜,至少两个所述透光棱镜包括第三透光棱镜和第四透光棱镜。
  11. 根据权利要求10所述的距离探测装置,其特征在于,所述第三透光棱镜和所述第四透光棱镜绕同一转轴以相同转速和相反转向转动。
  12. 根据权利要求11所述的距离探测装置,其特征在于,所述第三透光棱镜和所述第四透光棱镜的转速与所述第一透光棱镜和所述第二透光棱镜的转速不同。
  13. 根据权利要求10所述的距离探测装置,其特征在于,所述第三透光棱镜和所述第四透光棱镜以不同的转速转动。
  14. 根据权利要求7所述的距离探测装置,其特征在于,所述第二光学模块包括反射元件。
  15. 根据权利要求6所述的距离探测装置,其特征在于,所述第一透光棱镜和所述第二透光棱镜以不同的转速转动。
  16. 根据权利要求15所述的距离探测装置,其特征在于,所述第二光学模块包括反射元件,所述反射元件包括反射镜或反射棱镜。
  17. 根据权利要求16所述的距离探测装置,其特征在于,所述第一透光棱镜和所述第二透光棱镜中的一者的转速等于所述反射元件的转速加上设定转速,另一者的转速等于所述反射元件的转速减去所述设定转速。
  18. 根据权利要求3所述的距离探测装置,其特征在于,所述第二光学模块为一个反射元件。
  19. 根据权利要求18所述的距离探测装置,其特征在于,所述反射元件包括反射镜或反射棱镜,所述反射元件包括反射光束的反射面,所述反射面相对于所述反射元件的转轴倾斜,面向所述第一光学模块。
  20. 根据权利要求19所述的距离探测装置,其特征在于,所述反射元件的转轴平行于所述第一光学模块的转轴。
  21. 根据权利要求18所述的距离探测装置,其特征在于,所述反射元件包括多面反射镜,所述多面反射镜的转轴垂直于所述第一光学模块的转轴。
  22. 根据权利要求18所述的距离探测装置,其特征在于,所述反射元件包括振镜,所述振镜的反射面面向所述第一光学模块。
  23. 根据权利要求4所述的距离探测装置,其特征在于,所述第一光学模块包括反射元件,所述第二光学模块包括反射元件。
  24. 根据权利要求23所述的距离探测装置,其特征在于,所述第一光学模块包括所述振镜,所述第二光学模块包括所述反射镜、所述反射棱镜和所述多面反射镜中的至少一个。
  25. 根据权利要求4所述的距离探测装置,其特征在于,所述反射元件包括所述反射镜或所述反射棱镜,所述反射元件的反射面相对于所述反射元件的转轴倾斜延伸,所述反射元件固定于转动本体上,所述转动本体用于配平所述反射元件的动平衡。
  26. 根据权利要求1-25任一项所述的距离探测装置,其特征在于,所述第二光学模块位于所述第一光学模块远离所述光源的一侧。
  27. 根据权利要求1-25任一项所述的距离探测装置,其特征在于, 所述第二光学模块位于所述第一光学模块靠近所述光源的一侧。
  28. 根据权利要求1所述的距离探测装置,其特征在于,所述驱动装置包括电机、齿轮传动组件和齿带传动组件中的至少一种。
  29. 根据权利要求2所述的距离探测装置,其特征在于,所述探测器与所述光源放置于所述扫描模块的同一侧。
  30. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括矩形扫描范围。
  31. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括环形带状的扫描范围。
  32. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括弧形带状的扫描范围。
  33. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括呈多个扁平圈错位排布形成的平直的带状扫描范围。
  34. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括呈多个扁平圈错位排布形成的环形的带状扫描范围。
  35. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围包括呈多个扁平圈错位排布形成的弧形的带状扫描范围。
  36. 根据权利要求1所述的距离探测装置,其特征在于,所述带状的扫描范围在水平方向上的扫描长度大于竖直方向上的扫描高度。
  37. 根据权利要求3至17任一项所述的距离探测装置,其特征在于,所述透光棱镜的厚度不均匀。
  38. 根据权利要求1至36任一项所述的距离探测装置,其特征在于,所述距离探测装置还包括;
    探测器,用于将探测物对所述反射的至少部分回光转换为电信号,所述电信号用于测量所述探测物与所述距离探测装置的距离;
    其中,经探测物反射的至少部分回光依次经过所述扫描模块中的光学模块后入射所述探测器,所述光学模块包括所述第一光学模块和所述第二 光学模块。
  39. 根据权利要求9所述的距离探测装置,所述第一棱镜和第二棱镜的转速大于所述第二光学模块中的棱镜的旋转速度。
  40. 根据权利要求6所述的距离探测装置,其特征在于,所述第一光学模块包括所述第一棱镜和第二棱镜;
    所述第二光学模块包括一个旋转的多面反射镜,所述旋转的多面反射镜的不同发射面依次位于所述第一光学模块的出射光路上。
  41. 根据权利要求6所述的距离探测装置,其特征在于,所述第一光学模块包括所述第一棱镜和第二棱镜;
    所述第二光学模块包括一个旋转的反射镜,所述旋转的反射镜位于所述第一光学模块的出射光路上,用于将来自所述第一光学模块的光束反射出射。
  42. 根据权利要求41所述的距离探测装置,其特征在于,来自所述光源的光束经所述第一光学模块后沿第一路径来回扫描;来自所述第一光学模块的光束经所述第二光学模块后沿第二路径循环扫描,所述第一路径和所述第二路径大致垂直。
  43. 根据权利要求1所述的距离探测装置,其特征在于,所述距离探测装置安装于车辆,用于扫描所述车辆周围的探测物。
PCT/CN2018/109210 2018-09-30 2018-09-30 距离探测装置 WO2020062301A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18935776.7A EP3859377B1 (en) 2018-09-30 2018-09-30 Distance detection device
CN201880011145.8A CN111263897B (zh) 2018-09-30 2018-09-30 距离探测装置
PCT/CN2018/109210 WO2020062301A1 (zh) 2018-09-30 2018-09-30 距离探测装置
US17/216,365 US20210215825A1 (en) 2018-09-30 2021-03-29 Distance detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109210 WO2020062301A1 (zh) 2018-09-30 2018-09-30 距离探测装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/216,365 Continuation US20210215825A1 (en) 2018-09-30 2021-03-29 Distance detection device

Publications (1)

Publication Number Publication Date
WO2020062301A1 true WO2020062301A1 (zh) 2020-04-02

Family

ID=69950997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109210 WO2020062301A1 (zh) 2018-09-30 2018-09-30 距离探测装置

Country Status (4)

Country Link
US (1) US20210215825A1 (zh)
EP (1) EP3859377B1 (zh)
CN (1) CN111263897B (zh)
WO (1) WO2020062301A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231903A1 (en) * 2020-05-15 2021-11-18 Blackmore Sensors & Analytics, Llc Lidar system
US11249192B2 (en) 2016-11-30 2022-02-15 Blackmore Sensors & Analytics, Llc Method and system for automatic real-time adaptive scanning with optical ranging systems
WO2022040937A1 (zh) * 2020-08-25 2022-03-03 深圳市大疆创新科技有限公司 激光扫描装置和激光扫描系统
US11366228B2 (en) 2017-07-10 2022-06-21 Blackmore Sensors & Analytics, Llc Method and system for time separated quadrature detection of doppler effects in optical range measurements
US11500106B2 (en) 2018-04-23 2022-11-15 Blackmore Sensors & Analytics, Llc LIDAR system for autonomous vehicle
US11537808B2 (en) 2016-11-29 2022-12-27 Blackmore Sensors & Analytics, Llc Method and system for classification of an object in a point cloud data set
US11585925B2 (en) 2017-02-03 2023-02-21 Blackmore Sensors & Analytics, Llc LIDAR system to adjust doppler effects
US11624828B2 (en) 2016-11-30 2023-04-11 Blackmore Sensors & Analytics, Llc Method and system for adaptive scanning with optical ranging systems
US11802965B2 (en) 2016-11-30 2023-10-31 Blackmore Sensors & Analytics Llc Method and system for doppler detection and doppler correction of optical chirped range detection
US11822010B2 (en) 2019-01-04 2023-11-21 Blackmore Sensors & Analytics, Llc LIDAR system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075681A (zh) * 2021-03-16 2021-07-06 长沙思木锐信息技术有限公司 一种扫描装置和扫描测量系统
CN114935742B (zh) * 2022-04-18 2023-08-22 深圳阜时科技有限公司 发射模组、光电检测装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170917A (ja) * 2005-12-20 2007-07-05 Hokuyo Automatic Co 光走査装置および被測定物検出装置
CN103576160A (zh) * 2012-08-10 2014-02-12 Lg电子株式会社 距离检测设备和包括其的图像处理装置
CN107024686A (zh) * 2015-12-08 2017-08-08 波音公司 光检测和测距扫描系统和方法
CN108387905A (zh) * 2018-04-27 2018-08-10 长沙学院 举高喷射消防车及其测距系统、测距方法
CN108490420A (zh) * 2018-06-12 2018-09-04 深圳市镭神智能系统有限公司 一种微镜扫描光学系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336407B1 (en) * 2005-07-28 2008-02-26 Lockheed Martin Corporation Scanner/pointer apparatus having super-hemispherical coverage
US7697125B2 (en) * 2007-05-11 2010-04-13 Rosemount Aerospace Inc. Scanning ladar with adjustable operational parameters
JP5568363B2 (ja) * 2010-04-22 2014-08-06 株式会社トプコン レーザスキャナ
DE102011000863A1 (de) * 2011-02-22 2012-08-23 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
WO2013177650A1 (en) * 2012-04-26 2013-12-05 Neptec Design Group Ltd. High speed 360 degree scanning lidar head
CN103278106B (zh) * 2013-05-16 2016-05-11 中国科学院高能物理研究所 一种高精度高空间分辨长程面形检测系统
CN106019296A (zh) * 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN107450060B (zh) * 2017-08-28 2024-03-29 苏州元坤智能科技有限公司 一种激光扫描装置
CN107356930B (zh) * 2017-08-28 2024-05-17 广州市杜格科技有限公司 一种振镜全景扫描装置及其扫描方法
CN107643516A (zh) * 2017-09-27 2018-01-30 北京因泰立科技有限公司 一种基于mems微镜的三维扫描激光雷达
CN108535737B (zh) * 2018-06-08 2024-03-19 上海禾赛科技有限公司 一种激光雷达装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170917A (ja) * 2005-12-20 2007-07-05 Hokuyo Automatic Co 光走査装置および被測定物検出装置
CN103576160A (zh) * 2012-08-10 2014-02-12 Lg电子株式会社 距离检测设备和包括其的图像处理装置
CN107024686A (zh) * 2015-12-08 2017-08-08 波音公司 光检测和测距扫描系统和方法
CN108387905A (zh) * 2018-04-27 2018-08-10 长沙学院 举高喷射消防车及其测距系统、测距方法
CN108490420A (zh) * 2018-06-12 2018-09-04 深圳市镭神智能系统有限公司 一种微镜扫描光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859377A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11537808B2 (en) 2016-11-29 2022-12-27 Blackmore Sensors & Analytics, Llc Method and system for classification of an object in a point cloud data set
US11921210B2 (en) 2016-11-29 2024-03-05 Aurora Operations, Inc. Method and system for classification of an object in a point cloud data set
US11802965B2 (en) 2016-11-30 2023-10-31 Blackmore Sensors & Analytics Llc Method and system for doppler detection and doppler correction of optical chirped range detection
US11624828B2 (en) 2016-11-30 2023-04-11 Blackmore Sensors & Analytics, Llc Method and system for adaptive scanning with optical ranging systems
US11874375B2 (en) 2016-11-30 2024-01-16 Blackmore Sensors & Analytics, LLC. Method and system for automatic real-time adaptive scanning with optical ranging systems
US11249192B2 (en) 2016-11-30 2022-02-15 Blackmore Sensors & Analytics, Llc Method and system for automatic real-time adaptive scanning with optical ranging systems
US11585925B2 (en) 2017-02-03 2023-02-21 Blackmore Sensors & Analytics, Llc LIDAR system to adjust doppler effects
US11366228B2 (en) 2017-07-10 2022-06-21 Blackmore Sensors & Analytics, Llc Method and system for time separated quadrature detection of doppler effects in optical range measurements
US11500106B2 (en) 2018-04-23 2022-11-15 Blackmore Sensors & Analytics, Llc LIDAR system for autonomous vehicle
US11947017B2 (en) 2018-04-23 2024-04-02 Aurora Operations, Inc. Lidar system for autonomous vehicle
US11822010B2 (en) 2019-01-04 2023-11-21 Blackmore Sensors & Analytics, Llc LIDAR system
WO2021231903A1 (en) * 2020-05-15 2021-11-18 Blackmore Sensors & Analytics, Llc Lidar system
CN114503007A (zh) * 2020-08-25 2022-05-13 深圳市大疆创新科技有限公司 激光扫描装置和激光扫描系统
WO2022040937A1 (zh) * 2020-08-25 2022-03-03 深圳市大疆创新科技有限公司 激光扫描装置和激光扫描系统
CN114503007B (zh) * 2020-08-25 2024-05-14 深圳市大疆创新科技有限公司 激光扫描装置和激光扫描系统

Also Published As

Publication number Publication date
EP3859377A1 (en) 2021-08-04
EP3859377A4 (en) 2021-09-01
US20210215825A1 (en) 2021-07-15
CN111263897A (zh) 2020-06-09
EP3859377B1 (en) 2023-02-22
CN111263897B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2020062301A1 (zh) 距离探测装置
KR101966971B1 (ko) 라이다 장치
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
US9086273B1 (en) Microrod compression of laser beam in combination with transmit lens
JP2021131539A (ja) センサーシステム及びその方法
CA2871502C (en) High speed 360 degree scanning lidar head
WO2018082200A1 (zh) 一种二维扫描装置及具有该二维扫描装置的激光雷达装置
CN210142187U (zh) 一种距离探测装置
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
KR102474126B1 (ko) 라이다 광학 장치 및 이를 구비하는 라이다 장치
US20230314571A1 (en) Detection apparatus, scanning unit, movable platform, and control method of detection apparatus
KR20210029108A (ko) 라이다 장치
JP7474853B2 (ja) 光リダイレクタデバイス
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
CN112946666A (zh) 一种激光雷达系统
CN111766588A (zh) 全景激光雷达
KR20180052379A (ko) 광출력 모듈 및 이를 포함하는 라이다 모듈
CN208588825U (zh) 激光雷达、自主移动机器人及智能车辆
WO2021196929A1 (zh) 一种激光雷达接收系统
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
CN210243829U (zh) 一种激光雷达系统及激光测距装置
CN113655462A (zh) 激光雷达收发光路水平对置系统
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质
WO2019227448A1 (zh) 距离探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018935776

Country of ref document: EP