WO2021196929A1 - 一种激光雷达接收系统 - Google Patents

一种激光雷达接收系统 Download PDF

Info

Publication number
WO2021196929A1
WO2021196929A1 PCT/CN2021/077818 CN2021077818W WO2021196929A1 WO 2021196929 A1 WO2021196929 A1 WO 2021196929A1 CN 2021077818 W CN2021077818 W CN 2021077818W WO 2021196929 A1 WO2021196929 A1 WO 2021196929A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
receiving system
lidar
reflected
laser beam
Prior art date
Application number
PCT/CN2021/077818
Other languages
English (en)
French (fr)
Inventor
张瓯
丁鼎
朱亚平
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010255612.0A external-priority patent/CN111308480A/zh
Priority claimed from CN202020466969.9U external-priority patent/CN212111791U/zh
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Priority to US17/916,511 priority Critical patent/US20230152427A1/en
Publication of WO2021196929A1 publication Critical patent/WO2021196929A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • This application relates to a laser radar, and in particular to a receiving system of the laser radar.
  • Lidar is an active distance detection device that uses photoelectric detection technology and is widely used in unmanned driving, unmanned aerial vehicles, robots and other fields.
  • the current lidar basically has a range, at the same time there are the longest range (upper limit) and the nearest range (lower limit).
  • the general lidar has a blind spot in close proximity, for example, targets within a certain distance from the lidar cannot be detected. There are many reasons for the existence of the nearby blind zone. For example, when a beam of parallel light hits the rough surface of the target, the surface will reflect the light in all directions, so although the incident rays are parallel to each other, due to the normal of each point The direction is inconsistent, causing the reflected light to be irregularly reflected in different directions.
  • the existing lidar is equipped with a transmitting channel.
  • the existing lidar has a blind spot for short-range detection.
  • the present application provides a lidar receiving system, wherein the The lidar includes a first reflector, a transmitting channel, a transmitting system, and a basic receiving system.
  • the laser beam emitted by the transmitting system is reflected by the first reflector, and then reaches the target through the transmitting channel, and is reflected back from the target.
  • the laser beam passes through the emission channel, is then reflected by the first reflector, and is finally received by the basic receiving system;
  • the laser radar receiving system further includes: a reflective element
  • the space outside the emission channel includes an area that cannot be reached by the laser beam diffusely reflected back from the target object due to the blocking of the emission channel, and the reflective element is arranged outside the area to diffuse the self-target object.
  • the laser beam reflected back outside the area is reflected to the basic receiving system.
  • the lidar further includes a window cover, the first reflector, the transmitting channel and the reflecting element are arranged in the window cover, and the transmitting system and the basic receiving system are arranged in the Outside the window cover, the space outside the emission channel in the window cover includes a first area, a second area, and a third area, and the first area is diffuse reflection from the target due to the blocking of the emission channel
  • the second area is the area where the laser beam emitted by the emission channel is reflected back into the window cover through the window cover
  • the third area is located in the first area.
  • the reflecting element is arranged in the third area, and is used to reflect the laser beam diffusely reflected from the target back into the third area to the basic receiving system.
  • the spatial size of the first area is negatively related to the distance between the target and the lidar.
  • the reflecting element is a reflecting mirror; the emitting channel is an opaque hollow cylindrical structure.
  • the emission system includes a laser tube for emitting a laser beam and a second reflector, and the laser beam emitted by the laser tube is sequentially reflected by the second reflector and the first reflector, and then passes through the The transmitting channel is transmitted to the target outside the window cover;
  • the basic receiving system includes a third reflector and a receiving tube, and the laser beam diffusely reflected by the target passes through the transmitting channel, and then is sequentially transmitted by the first The reflecting mirror and the second reflecting mirror reflect to the receiving tube.
  • the reflecting surface of the first reflecting mirror and the reflecting surface of the reflecting element are opposite to and parallel to the reflecting surface of the third reflecting mirror.
  • the central axis of the transmitting channel intersects the center of the first reflector
  • the optical axis of the receiving tube intersects the center of the third reflector at an angle of 45°
  • the laser tube The optical axis intersects the center of the second reflector at an angle of 45°
  • the optical axis of the laser tube is parallel to the optical axis of the receiving tube.
  • the transmitting system further includes a transmitting objective lens
  • the basic receiving system further includes a receiving objective lens, the center of the first mirror, the center of the second mirror, the center of the third mirror, and the center of the third mirror.
  • the central axis of the transmitting objective lens and the central axis of the receiving objective lens are on the same straight line.
  • the transmitting objective lens and the receiving objective lens are convex lenses.
  • the center of the reflective element is not on the straight line.
  • the lidar receiving system provided by this application can reflect the laser beam outside the light receiving blind area outside the transmitting channel into the receiving tube through the reflecting element located outside the light receiving blind area caused by the transmitting channel , With the comprehensive collection of the diffuse reflection light of the short-distance target, the information collection rate for the short-distance target is improved, and the short-distance measurement range of the existing lidar is further expanded.
  • the lidar receiving system provided by this application further provides for the reflective element to be located outside the stray light interference area caused by the window cover to avoid the diffuse reflection of the window cover.
  • the interference of light improves the measurement accuracy and further expands the measurement range of the radar.
  • Figure 1 is a schematic diagram of the optical path principle of the lidar of this application.
  • 11-window cover 111- first area, 112- second area, 113- third area, 12- first mirror, 121- reflecting surface of first mirror, 131- side wall, 1311-outer end side Wall, 1312-inner side wall, 141-laser tube, 142-second mirror, 143-transmitting objective lens, 151-third reflective mirror, 152-receiving tube, 153-receiving objective lens, 16-reflection element.
  • the present application provides a lidar receiving system, wherein the lidar includes a first reflector 12, a transmitting channel, a transmitting system, and a basic receiving system.
  • the laser beam emitted by the transmitting system is
  • the first reflector 12 reflects and then reaches the target through the emission channel, the laser beam reflected from the target passes through the emission channel, is then reflected by the first reflector, and is finally received by the basic receiving system;
  • the lidar receiving system further includes: a reflective element 16.
  • the space outside the emission channel includes an area that cannot be reached by the laser beam diffusely reflected back from the target due to the blocking of the emission channel, that is, the light receiving blind zone, and the reflecting element 16 is arranged outside the light receiving blind zone ,
  • the laser beam projected from the target out of the blind area of light receiving can be reflected into the receiving tube 152 to fully collect the diffuse reflected light of the short-distance target, which improves the information collection rate for the short-distance target and further expands the radar.
  • the short-distance measurement range For example, for existing lidars, according to specific environmental requirements, existing lidars will have different shortest ranges.
  • the reflective element 16 is added. It can achieve the function of further expanding the short-distance measurement range.
  • the shortest range of a certain lidar in a particular use environment is 0.8 meters, that is to say, the target within 0.8 meters of the lidar cannot be measured.
  • the radar receiving system of this application can further expand the shortest measurement range of the above-mentioned lidar from 0.8 meters to 0.3 meters by adding a reflective element 16, that is, the target objects within 0.3 meters of the lidar cannot be measured, thus further Expanded the short-range measurement range of lidar.
  • the latest range of the lidar using the lidar receiving system of the present application is 0.1 meters.
  • the lidar receiving system of the present application can be applied to various lidars, including but not limited to triangulation ranging lidar, time-based pulse ranging lidar, and phase method ranging lidar; or coaxial lidar and Non-coaxial lidar; or mechanical lidar or solid-state lidar.
  • the reflecting element 16 is a reflecting mirror, wherein the reflecting mirror has a shape such as a circle, a rectangle, a triangle, and the like.
  • the emission channel is an opaque hollow cylindrical structure, such as an opaque cylindrical cylindrical structure, or Square columnar cylindrical structure and so on.
  • the emission channel has a side wall 131, and the side wall 131 surrounds and forms the cylindrical shape.
  • the side wall 131 has an outer end side wall 1311 and an inner end side wall 1312, wherein the outer end side wall 1311 refers to a side wall close to one end of the window cover 11, and the inner end side wall 1312 refers to A side wall away from one end of the window cover 11. Since the light travels in a straight line, when the distance between the target and the lidar is relatively short, when the target is diffusely reflecting the received laser beam, because the opaque emission channel is blocked, especially the Blocked by the outer end side wall 1311, the laser beam reflected back into the window cover 11 cannot reach a part of the area outside the emission channel, that is, there is a blind spot for receiving light, and it cannot be further blocked by the first reflector 12.
  • the agency radar receiving system of the present application can shorten the blind area of short-range detection by adding the reflective element 16 to further expand the short-range measurement range of the lidar.
  • the lidar further includes a window cover 11, the first reflector 12, the emission channel, and the reflecting element 16 are provided in the window cover 11, and the emission system and
  • the basic receiving system is provided outside the window cover 11, and the space outside the transmitting channel in the window cover 11 includes a first area 111, a second area 112, and a third area 113.
  • the first area 111 In order to make the laser beam diffusely reflected from the target an inaccessible area due to the blocking of the emission channel, the second area 112 is the laser beam emitted by the emission channel which is reflected back to the place via the window cover 11.
  • the third area 113 is located between the first area 111 and the second area 112, that is, the third area 113 is outside the emission channel in the window cover 11
  • the reflective element 16 is provided in the third area 113 for diffusely reflecting the laser light from the target back into the third area 113
  • the light beam is reflected to the basic receiving system. It can not only avoid the blind area of close detection, but also avoid the interference of stray light, so as to improve the measurement accuracy and further expand the measurement range.
  • the laser beam emitted by the emission system is reflected by the first reflector 12, and then reaches the target through the emission channel, and forms a light spot on the target.
  • the laser beam emitted by the lidar will pass through the inner and outer walls of the window cover 11. Since the inner and outer walls are not ideally glossy, the surface of the inner and outer walls of the window cover 11 will emit light on the lidar.
  • the laser beam is diffusely reflected, that is, stray light is formed.
  • the shielding of the emission channel in the window cover 11 specifically, it refers to the blocking of the outer end side wall 1311 of the emission channel, and because the light is along a straight line
  • the laser beam diffusely reflected back from the inner and outer walls of the window cover 11 can only fill the second area 112 (that is, the stray light interference area).
  • the basic receiving system After receiving the stray light signal, the basic receiving system cannot distinguish the effective The effective echo signal reflected on the target causes the blind spot of short distance ranging or reduces the measurement accuracy.
  • the reflective element 16 is added and the reflective element 16 is arranged outside the second area 112 to avoid the interference of stray light caused by the window cover 11.
  • the reflective element 16 is provided in the third area 113, that is, the third area 113 is an area outside the emission channel that is not the first area 111 and the second area 112, so that the Laser thunder; can avoid the blind area of light receiving caused by the emission channel and the stray light interference area caused by the window cover 11 at the same time, so as to fully collect the diffuse reflection light of the close target object, and improve the information of the close target
  • the collection rate further expands the measurement range of the radar and improves the measurement accuracy.
  • the spatial size of the first area 111 is negatively related to the distance between the target and the lidar. Specifically, when the distance between the target and the radar is closer, the area of the first area 111 in FIG. 1 The larger, on the contrary, the smaller.
  • the space size of the second area 112 is positively correlated with the distance between the emission channel and the window cover 11. When the distance between the emission channel and the window cover 11 is farther, the second area 112 The larger, on the contrary, the smaller.
  • the distance between the transmitting channel and the window cover is fixed, and therefore, the second area 112 is a fixed area. Therefore, only the actual size of the first area 111 changes with the distance between the target and the lidar.
  • the optical axis of the transmitting system and the optical axis of the basic receiving system are coaxial or non-coaxial.
  • the optical axis of the emission system refers to the central axis of the laser beam emitted from the laser tube 141 between the laser tube 141 and the second reflecting mirror 142.
  • the optical axis of the basic receiving system refers to the central axis of the laser beam between the third mirror 151 and the receiving tube 152 received by the receiving tube 152.
  • the non-coaxial optical axis of the transmitting system and the optical axis of the basic receiving system may be parallel or perpendicular to the optical axis.
  • the transmitting system includes a laser tube 141 for emitting a laser beam and a second mirror 142.
  • the laser The tube 141 is a laser diode.
  • the laser beam emitted by the laser tube 141 is sequentially reflected by the second reflector 142 and the first reflector 12, and then passes through the emission channel to the target that is transmitted to the outside of the window cover 11.
  • the lidar is a mechanical lidar, the lidar further includes a motor, and the first reflector 12 and the transmitting channel are jointly driven by the motor.
  • the first reflector 12 And the launch channel can be rotated 360°.
  • the basic receiving system includes a third reflector 151 and a receiving tube 152.
  • the laser beam diffusely reflected by the target passes through the emission channel, and then is sequentially reflected by the first reflector 12 and the second reflector 142 to the ⁇ 152 ⁇ Receiving tube 152.
  • the reflecting surface 121 of the first reflecting mirror and the reflecting surface of the reflecting element 16 are opposite to the reflecting surface of the third reflecting mirror 151 and are parallel to each other.
  • the central axis of the transmitting channel intersects the center of the first reflector 12, and the optical axis of the receiving tube 152 intersects the center of the third reflector 151 at an angle of 45°.
  • the transmitting system outside the window cover 11 further includes a transmitting objective lens 143 for collimating the diffused laser beam
  • the basic receiving system further includes a receiving objective lens 153 for converging the parallel laser beams.
  • the transmitting objective lens 143 and the receiving objective lens 153 are convex lenses.
  • the convex lens is a biconvex lens, a plano-convex lens, or a concave-convex (or positive meniscus) lens.
  • the transmitting objective lens 143 and the receiving objective lens 153 are spherical mirrors or aspherical mirrors.
  • the center of the first mirror 12, the center of the second mirror 142, the center of the third mirror 151, the center axis of the transmitting objective lens 143, and the center of the receiving objective lens 153 The axes are on the same straight line, and the center of the reflective element 16 is not on the straight line, as shown in FIG. 1.
  • the principle of the optical path of the laser beam in the present application is: the laser beam emitted from the laser tube 141 is reflected by the second reflector 142, and then collimated into a parallel beam by the emission objective lens 143, and then by the first A reflecting mirror 12 reflects, then passes through the emission channel, and then passes through the window cover 11, and finally is projected onto the target to form a light spot.
  • part of the laser beam from the emission channel is reflected by the window cover 11 or diffusely reflected back into the window cover 11, and is projected to the second area 112 in the window cover 11, that is, the stray light interference area.
  • the parallel laser beam projected on the target is reflected and diffusely reflected on the surface of the target, part of the laser beam is reflected by the target back to the emission channel, and this part of the laser beam reflected back to the emission channel is first reflected by the first mirror 12
  • the reflection then passes through the receiving objective lens 153 and is converged, then is reflected by the third reflecting mirror 151, and finally received by the receiving tube 152.
  • There is also a part of the laser beam that is diffusely reflected by the target to the area outside the emission channel, and the area outside the emission channel that cannot be reached is the first area 111 due to the blocking of the emission channel.
  • the lidar receiving system of the present application adds a reflective element 16, and the reflective element 16
  • the third area 113 between the first area 111 and the second area 112 can simultaneously achieve the functions of further expanding the short-distance measurement range and avoiding the interference of stray light to improve the measurement accuracy.
  • the lidar receiving system of the present application adds a reflective element 16 and arranges the reflective element 16 in an area outside the blind receiving area and the stray light interference area (as shown in the third area in Figure 1). 113), which can simultaneously achieve the technical effects of further expanding the short-distance measurement range and avoiding stray light interference to improve measurement accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达接收系统,其中,激光雷达包括第一反射镜(12)、发射通道、发射系统和基本接收系统,发射系统发射的激光光束由第一反射镜(12)反射,然后通过发射通道达到目标物,自目标物反射回的激光光束通过发射通道,然后由第一反射镜(12)反射,最后被基本接收系统接收;激光雷达接收系统进一步包括:反射元件(16),发射通道外的空间包括因发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域(111),反射元件(16)设于区域(111)之外,用于将自目标物漫反射回区域(111)之外的激光光束反射到基本接收系统。能够同时避免近距离测量盲区和杂光干扰,从而提高测量精度且进一步拓展了雷达的近距离测量范围。

Description

一种激光雷达接收系统 技术领域
本申请涉及一种激光雷达,尤其涉及激光雷达的接收系统。
背景技术
激光雷达是采用光电探测技术手段的主动距离探测设备,被广泛应用于无人驾驶、无人机、机器人等领域。
目前的激光雷达基本都有一个测程范围,同时有最远测程(上限)和最近测程(下限)。一般的激光雷达具有近处盲区,例如,在距离激光雷达一定距离以内的目标物是探测不到的。近处盲区的存在具有多方面的原因,例如,当一束平行的光线射到目标物的粗糙的表面时,表面会把光线向着四面八方反射,所以入射线虽然互相平行,由于各点的法线方向不一致,造成反射光线向不同的方向无规则地反射,而且,现有的激光雷达设置有发射通道,当目标物与激光雷达之间的距离较近时,从目标物的漫反射回来的部分光线由于受到发射通道的阻挡,该部分光线则无法投射到接收管,这样所获得的目标物的二维或三维信息的测量范围难以保证,因此,现有的激光雷达存在近距离探测盲区。
如何进一步扩大现有激光雷达的近距离测量范围一直是激光雷达研究领域的重点问题之一。
发明内容
为解决上述现有技术中激光雷达因为发射通道的阻挡导致的近距离探测盲区,从而导致激光雷达的最近测程依然没有足够近的问题,本申请提供一种激光雷达接收系统,其中,所述激光雷达包括第一反射镜、发射通道、发射系统和基本接收系统,所述发射系统发射的激光光束由所述第一反射镜反射,然后通过所述发射通道达到目标物,自目标物反射回的所述激光光束通过所述发射通道,然后由第一反射镜反射,最后被所述基本接收系统接收;其特征在于,所述激光雷达接收系统进一步包括:反射元件,
所述发射通道外的空间包括因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,所述反射元件设于所述区域之外,用于将自目标物漫反射回所述区域之外的所述激光光束反射到所述基本接收系统。
进一步地,所述激光雷达进一步包括窗罩,所述第一反射镜、所述发射通道和所述反射元件设于所述窗罩内,所述发射系统和所述基本接收系统设于所述窗罩外,所述窗罩内的所述发射通道外的空间包括第一区域、第二区域和第三区域,所述第一区域为因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,所述第二区域为由所述发射通道发射出来的激光光束经由所述窗罩反射回所述窗罩内到达的区域,所述第三区域位于所述第一区域和第二区域之间,所述反射元件设于所述第三区域内,用于将自目标物漫反射回所述第三区域内的所述激光光束反射到所述基本接收系统。
进一步地,所述第一区域的空间大小与所述目标物与所述激光雷达之间的距离呈负相关。
进一步地,所述反射元件为反射镜;所述发射通道为不透明的中空筒状结构。
进一步地,所述发射系统包括用于发射激光光束的激光管和第二反射镜,所述激光管发射的激光光束依次被所述第二反射镜、所述第一反射镜反射,然后通过所述发射通道到传送到所述窗罩外的目标物;所述基本接收系统包括第三反射镜和接收管,由目标物漫反射的激光光束通过所述发射通道,然后依次被所述第一反射镜、第二反射镜反射至所述接收管。
进一步地,所述第一反射镜的反射面和所述反射元件的反射面均与所述第三反射镜的反射面相对且相互平行。
进一步地,所述发射通道的中心轴与所述第一反射镜的中心相交,所述接收管的光轴与所述第三反射镜的中心相交且夹角为45°,所述激光管的光轴与所述第二反射镜的中心相交且夹角为45°,且所述激光管的光轴与所述接收管的光轴平行。
进一步地,所述发射系统进一步包括发射物镜,所述基本接收系统进一步包括接收物镜,所述第一反射镜的中心、所述第二反射镜的中心、所述第三反射镜的中心、所述发射物镜的中心轴、以及所述接收物镜的中心轴在同一直线上。
进一步地,所述发射物镜和所述接收物镜为凸透镜。
进一步地,所述反射元件的中心不在所述直线上。
与现有技术相比较,本申请的优势在于:
1.本申请提供的激光雷达接收系统通过设于因发射通道导致的光线接收盲区之外的反射元件,能够将目标物投射到发射通道外的光线接收盲区之外的激光光束反射到接收管中,以全面的收集近距离目标物的漫反射光线,提高了对近距离目标的信息收集率,进一步拓展了现有激光雷达的近距离测量范围。
2.此外,对于有窗罩的激光雷达,本申请提供的激光雷达接收系统还进一步通过将所述反射元件设于因窗罩导致的杂光干扰区之外以避开窗罩漫反射的杂光的干扰,从而提高测量精度且进一步拓展了雷达的测量范围。
附图说明
图1为本申请激光雷达的光路原理示意图。
附图标记:
11-窗罩、111-第一区域、112-第二区域、113-第三区域、12-第一反射镜、121-第一反射镜的反射面、131-侧壁、1311-外端侧壁、1312-内端侧壁、141-激光管、142-第二反射镜、143-发射物镜、151-第三反射镜、152-接收管、153-接收物镜、16-反射元件。
具体实施方式
下面结合附图及具体实施例,详细阐述本申请的优势。
如图1所示,本申请提供一种激光雷达接收系统,其中,所述激光雷达包括第一反射镜12、发射通道、发射系统和基本接收系统,所述发射系统发射的激光光束由所述第一反射镜12反射,然后通过所述发射通道达到目标物,自目标物反射回的所述激光光束通过所述发射通道,然后由第一反射镜反射,最后被所述基本接收系统接收;所述激光雷达接收系统进一步包括:反射元件16。所述发射通道外的空间包括因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,即光线接收盲区,所述反射元件16设于所述光线接收盲区之外,用于将自目标物漫反射回所述光线接收盲区之外的所述激光光束反射到所述基本接收系统。从而能够将目标物投射到光线接收盲区之外的激光光束反射到接收管152中,以全面的收集近距离目标物的漫反射光,提高了对近距离目标的信息收集率,进一步拓展了雷达的近距离测量范围。例如,对于现有的激光雷达而言,根据特定的环境使用要求,现有的激光雷达都会有不同的最近测程,换句话说,都会有近处测量盲区,本申请通过增加反射元件16,能够实现进一步扩展近距离测量范围的作用。例如,某一激光雷达在某一特定的使用环境中的最近测程为0.8米,也就是说,距离激光雷达0.8米之内的目标物是无法测量的。而本申请的机关雷达接收系统通过增设反射元件16,能够将上述激光雷达的最近测程由0.8米进一步扩展为0.3米,即距离激光雷达0.3米之内的目标物是无法测量的,从而进一步扩大了激光雷达的近距离测量范围。优选地,采用本申请的激光雷达接收系统的激光雷达的最近测程为0.1米。本申请的激光 雷达接收系统可以适用于各种激光雷达,包括但不限于三角法测距激光雷达、基于时间飞行的脉冲测距激光雷达、以及相位法测距激光雷达;或者同轴激光雷达和非同轴激光雷达;或者机械激光雷达或固态激光雷达。优选地,所述反射元件16为反射镜,其中,所述反射镜圆形、矩形、三角形等形状。
当一束平行的激光光线射到目标物的粗糙的表面时,表面会把光线向着四面八方反射,所以入射线虽然互相平行,由于各点的法线方向不一致,造成反射光线向不同的方向无规则地反射,即漫反射,而且,现有的激光雷达的窗罩11内设置有发射通道,一般来说,所述发射通道为不透明的中空筒状结构,例如不透明的圆柱形筒状结构,或者方柱形筒状结构等。所述发射通道具有侧壁131,所述侧壁131环绕构成所述筒状。所述侧壁131具有外端侧壁1311和内端侧壁1312,其中,所述外端侧壁1311是指靠近所述窗罩11的一端的侧壁,所述内端侧壁1312是指远离所述窗罩11的一端的侧壁。由于光线沿直线传播,当目标物与激光雷达之间的距离较近时,当目标物对接收到的所述激光光束进行漫反射时,因为不透明的所述发射通道的阻挡,尤其是所述外端侧壁1311的阻挡,反射回所述窗罩11内的所述激光光束无法到达所述发射通道外的部分区域,即存在光线接受盲区,也无法进一步地被所述第一反射镜12反射到所述基本接收系统,因此,无法获得近距离目标物的二维或三维信息,因此,这是现有的激光雷达存在近距离探测盲区的原因之一。本申请的机关雷达接收系统通过增设反射元件16,能够缩短近距离探测盲区,从而进一步扩大激光雷达的近距离测量范围。
根据本申请的一实施例,所述激光雷达进一步包括窗罩11,所述第一反射镜12、所述发射通道和所述反射元件16设于所述窗罩11内,所述发射系统和所述基本接收系统设于所述窗罩11外,所述窗罩11内的所述发射通道外的空间包括第一区域111、第二区域112和第三区域113,所述第一区域111为因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,所述第二区域112为由所述发射通道发射出来的激光光束经由所述窗罩11反射回所述窗罩11内到达的区域,所述第三区域113位于所述第一区域111和第二区域112之间,即所述第三区域113为所述窗罩11内的所述发射通道外的非第一区域111且非第二区域112的空间,所述反射元件16设于所述第三区域113内,用于将自目标物漫反射回所述第三区域113内的所述激光光束反射到所述基本接收系统。既能够避免近距离探测盲区,又能够避免杂光干扰,从而实现提高测量精度并进一步拓展测量范围的作用。
所述发射系统发射的激光光束由所述第一反射镜12反射,然后通过所述发射通道到达目标物,并在所述目标物上形成光斑。此外,在激光雷达有窗罩11的情况下,激光雷 达发射的激光光束会经过窗罩11的内外壁,由于内外壁不是理想状况的光面,窗罩11内外壁的表面会对激光雷达发射的激光光束进行漫反射,即形成杂光,由于所述窗罩11内的所述发射通道的遮挡,具体地,是指所述发射通道的外端侧壁1311的阻挡,又由于光线沿直线传播,所述窗罩11的内外壁的漫反射回的所述激光光束只能充满第二区域112(即杂光干扰区),基本接收系统收到该杂光信号后无法区分近处的有效目标上反射的有效回波信号,因而导致的近距离测距盲区或者降低测量精度。杂光会对有用的回光信号进行叠加干扰,从而影响了测量的精度;如果是远距离的回光信号,本身信号就弱,而杂光信号是一直等量存在的,就会对远距离的回光信号的干扰更大,甚至导致电路会分辨不出远距的信号,从而影响了测量的范围。本申请通过增加反射元件16,并将所述反射元件16设于所述第二区域112之外,从而避免由所述窗罩11造成的杂光干扰。优选地,所述反射元件16设于所述第三区域113,即所述第三区域113为所述发射通道外的非第一区域111且非第二区域112的区域,从而使本申请的激光雷;达能够同时避开因发射通道导致的光线接收盲区和因窗罩11导致的杂光干扰区,从而能够全面的收集近距离目标物的漫反射光线,提高了对近距离目标的信息收集率,进一步拓展了雷达的测量范围,且提高测量精度。
所述第一区域111的空间大小与所述目标物与所述激光雷达之间的距离呈负相关,具体地,当目标物到雷达的距离越近则图1中的第一区域111的面积越大,反之,则越小。所述第二区域112的空间大小与所述发射通道与所述窗罩11之间的距离呈正相关,当所述发射通道与所述窗罩11之间的距离越远,则第二区域112越大,反之,则越小。但是,对于某一特定的激光雷达而言,所述发射通道与所述窗罩之间的距离是固定不变的,因此,第二区域112是一个固定区域。因此,仅第一区域111的实际大小随着目标物与激光雷达之间的距离远近发生变化。
优选地,所述发射系统的光轴和所述基本接收系统的光轴同轴或非同轴。其中,所述发射系统的光轴是指从激光管141发射出的在所述激光管141和所述第二反射镜142之间的激光光束的中心轴。所述基本接收系统的光轴是指所述接收管152接收的在所述第三反射镜151和所述接收管152之间的激光光束的中心轴。其中,典型地,所述发射系统的光轴和所述基本接收系统的光轴非同轴可以为光轴平行或垂直。
当所述发射系统的光轴和所述基本接收系统的光轴平行时,示例地,所述发射系统包括用于发射激光光束的激光管141和第二反射镜142,优选地,所述激光管141为激光二极管。所述激光管141发射的激光光束依次被所述第二反射镜142、所述第一反射镜12反射,然后通过所述发射通道到传送到所述窗罩11外的目标物。优选地,所述激光雷 达为机械式激光雷达,所述激光雷达进一步包括电机,所述第一反射镜12和所述发射通道共同被所述电机驱动,优选地,所述第一反射镜12和所述发射通道可以360°旋转。所述基本接收系统包括第三反射镜151和接收管152,由目标物漫反射的激光光束通过所述发射通道,然后依次被所述第一反射镜12、第二反射镜142反射至所述接收管152。优选地,第一反射镜的反射面121和所述反射元件16的反射面均与所述第三反射镜151的反射面相对且相互平行。优选地,所述发射通道的中心轴与所述第一反射镜12的中心相交,所述接收管152的光轴与所述第三反射镜151的中心相交且夹角为45°,所述激光管141的光轴与所述第二反射镜142的中心相交且夹角为45°,且所述激光管141的光轴与所述接收管152的光轴平行。优选地,所述窗罩11外发射系统进一步包括用于将扩散状的激光光束进行准直的发射物镜143,所述基本接收系统进一步包括用于将平行的激光光束进行汇聚的接收物镜153。优选地,所述发射物镜143和所述接收物镜153为凸透镜,优选地,所述凸透镜为双凸透镜、平凸透镜或凹凸(或正弯月形)透镜等。所述发射物镜143和所述接收物镜153为球面镜或非球面镜。优选地,所述第一反射镜12的中心、所述第二反射镜142的中心、所述第三反射镜151的中心、所述发射物镜143的中心轴、以及所述接收物镜153的中心轴在同一直线上,所述反射元件16的中心不在所述直线上,如图1所示。
根据本申请的上述实施例,本申请的激光光束的光路原理为:从激光管141发射出的激光光束由第二反射镜142反射,然后通过发射物镜143被准直为平行光束,然后由第一反射镜12反射,然后通过发射通道,然后通过窗罩11,最后投射到目标物上形成光斑。其中,从发射通道出来的部分激光光束被窗罩11反射或漫反射回窗罩11内,并投射到窗罩11内的第二区域112,即杂光干扰区。其中,投射到目标物上的平行激光光束在目标物的表面发生反射和漫反射,部分激光光束被目标物反射回发射通道,这部分被反射回发射通道的激光光束首先被第一反射镜12反射,然后通过接收物镜153并被汇聚,然后被第三反射镜151反射,最后被接收管152接收。还有部分激光光束被目标物漫反射至发射通道之外的区域,由于发射通道的阻挡,无法到达的发射通道之外的区域为第一区域111。为了将目标物漫反射到发射通道外的激光信号也投射到激光管141,同时避开会降低测量精度的杂光,本申请的激光雷达接收系统通过增设反射元件16,并且所述反射元件16在第一区域111和第二区域112之间的第三区域113,从而能够同时实现进一步拓展近距离测量范围和避免杂光干扰以提高测量精度的作用。
综上所述,本申请的激光雷达接收系统通过增加反射元件16,并且将所述反射元件16设于近距离接收盲区和杂光干扰区之外的区域(如图1所示的第三区域113),能够同 时实现进一步拓展近距离测量范围和避免杂光干扰以提高测量精度的技术效果。
以上对本申请的具体实施例进行了详细描述,但其只是作为范例,本申请并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本申请进行的等同修改和替代也都在本申请的范畴之中。因此,在不脱离本申请的精神和范围下所作的均等变换和修改,都应涵盖在本申请的范围内。

Claims (10)

  1. 一种激光雷达接收系统,其中,所述激光雷达包括第一反射镜、发射通道、发射系统和基本接收系统,所述发射系统发射的激光光束由所述第一反射镜反射,然后通过所述发射通道达到目标物,自目标物反射回的所述激光光束通过所述发射通道,然后由第一反射镜反射,最后被所述基本接收系统接收;其特征在于,所述激光雷达接收系统进一步包括:反射元件,
    所述发射通道外的空间包括因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,所述反射元件设于所述区域之外,用于将自目标物漫反射回所述区域之外的所述激光光束反射到所述基本接收系统。
  2. 如权利要求1所述的激光雷达接收系统,其中,所述激光雷达进一步包括窗罩,所述第一反射镜、所述发射通道和所述反射元件设于所述窗罩内,所述发射系统和所述基本接收系统设于所述窗罩外,所述窗罩内的所述发射通道外的空间包括第一区域、第二区域和第三区域,所述第一区域为因所述发射通道的阻挡而使自目标物漫反射回的激光光束无法到达的区域,所述第二区域为由所述发射通道发射出来的激光光束经由所述窗罩反射回所述窗罩内到达的区域,所述第三区域位于所述第一区域和第二区域之间,所述反射元件设于所述第三区域内,用于将自目标物漫反射回所述第三区域内的所述激光光束反射到所述基本接收系统。
  3. 如权利要求2所述的激光雷达接收系统,其特征在于,所述第一区域的空间大小与所述目标物与所述激光雷达之间的距离呈负相关。
  4. 如权利要求1所述的激光雷达接收系统,其特征在于,所述反射元件为反射镜;所述发射通道为不透明的中空筒状结构。
  5. 如权利要求1所述的激光雷达接收系统,其特征在于,所述发射系统包括用于发射激光光束的激光管和第二反射镜,所述激光管发射的激光光束依次被所述第二反射镜、所述第一反射镜反射,然后通过所述发射通道到传送到所述窗罩外的目标物;所述基本接收系统包括第三反射镜和接收管,由目标物漫反射的激光光束通过所述发射通道,然后依次被所述第一反射镜、第二反射镜反射至所述接收管。
  6. 如权利要求5所述的激光雷达接收系统,其特征在于,所述第一反射镜的反射面和所述反射元件的反射面均与所述第三反射镜的反射面相对且相互平行。
  7. 如权利要求6所述的激光雷达接收系统,其特征在于,所述发射通道的中心轴与所述 第一反射镜的中心相交,所述接收管的光轴与所述第三反射镜的中心相交且夹角为45°,所述激光管的光轴与所述第二反射镜的中心相交且夹角为45°,且所述激光管的光轴与所述接收管的光轴平行。
  8. 如权利要求7所述的激光雷达接收系统,其特征在于,所述发射系统进一步包括发射物镜,所述基本接收系统进一步包括接收物镜,所述第一反射镜的中心、所述第二反射镜的中心、所述第三反射镜的中心、所述发射物镜的中心轴、以及所述接收物镜的中心轴在同一直线上。
  9. 如权利要求8所述的激光雷达接收系统,其特征在于,所述发射物镜和所述接收物镜为凸透镜。
  10. 如权利要求8所述的激光雷达接收系统,其特征在于,所述反射元件的中心不在所述直线上。
PCT/CN2021/077818 2020-04-02 2021-02-25 一种激光雷达接收系统 WO2021196929A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/916,511 US20230152427A1 (en) 2020-04-02 2021-02-25 Laser radar receiving system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010255612.0A CN111308480A (zh) 2020-04-02 2020-04-02 一种激光雷达接收系统
CN202020466969.9U CN212111791U (zh) 2020-04-02 2020-04-02 一种激光雷达接收系统
CN202020466969.9 2020-04-02
CN202010255612.0 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021196929A1 true WO2021196929A1 (zh) 2021-10-07

Family

ID=77927602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077818 WO2021196929A1 (zh) 2020-04-02 2021-02-25 一种激光雷达接收系统

Country Status (2)

Country Link
US (1) US20230152427A1 (zh)
WO (1) WO2021196929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494478A (zh) * 2022-11-15 2022-12-20 杭州欧镭激光技术有限公司 一种激光雷达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974677A (zh) * 2019-04-19 2019-07-05 常州华达科捷光电仪器有限公司 一种光路结构和使用该光路结构的激光投线仪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181810A1 (en) * 2006-02-06 2007-08-09 Tan Michael R T Vertical cavity surface emitting laser (VCSEL) array laser scanner
CN201622345U (zh) * 2010-03-24 2010-11-03 北京握奇数据系统有限公司 一种激光测距装置
CN106291510A (zh) * 2016-10-28 2017-01-04 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达光学系统
CN208270762U (zh) * 2018-06-26 2018-12-21 天津杰泰高科传感技术有限公司 激光雷达探测系统及激光雷达
CN109814084A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光雷达系统
CN209248019U (zh) * 2018-11-09 2019-08-13 武汉万集信息技术有限公司 一种激光雷达的光学系统
CN110133620A (zh) * 2019-04-19 2019-08-16 深圳市速腾聚创科技有限公司 多线激光雷达
CN111308480A (zh) * 2020-04-02 2020-06-19 杭州欧镭激光技术有限公司 一种激光雷达接收系统
CN212111791U (zh) * 2020-04-02 2020-12-08 杭州欧镭激光技术有限公司 一种激光雷达接收系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181810A1 (en) * 2006-02-06 2007-08-09 Tan Michael R T Vertical cavity surface emitting laser (VCSEL) array laser scanner
CN201622345U (zh) * 2010-03-24 2010-11-03 北京握奇数据系统有限公司 一种激光测距装置
CN106291510A (zh) * 2016-10-28 2017-01-04 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达光学系统
CN208270762U (zh) * 2018-06-26 2018-12-21 天津杰泰高科传感技术有限公司 激光雷达探测系统及激光雷达
CN209248019U (zh) * 2018-11-09 2019-08-13 武汉万集信息技术有限公司 一种激光雷达的光学系统
CN109814084A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光雷达系统
CN110133620A (zh) * 2019-04-19 2019-08-16 深圳市速腾聚创科技有限公司 多线激光雷达
CN111308480A (zh) * 2020-04-02 2020-06-19 杭州欧镭激光技术有限公司 一种激光雷达接收系统
CN212111791U (zh) * 2020-04-02 2020-12-08 杭州欧镭激光技术有限公司 一种激光雷达接收系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494478A (zh) * 2022-11-15 2022-12-20 杭州欧镭激光技术有限公司 一种激光雷达
CN115494478B (zh) * 2022-11-15 2023-03-10 杭州欧镭激光技术有限公司 一种激光雷达

Also Published As

Publication number Publication date
US20230152427A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
US9086273B1 (en) Microrod compression of laser beam in combination with transmit lens
WO2020062301A1 (zh) 距离探测装置
US8744741B2 (en) Lidars
WO2021196929A1 (zh) 一种激光雷达接收系统
CN109239693B (zh) 收发共路扫描激光雷达
US20210341610A1 (en) Ranging device
CN111308480A (zh) 一种激光雷达接收系统
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
CN112965044B (zh) 一种激光雷达
CN209979845U (zh) 一种测距装置及移动平台
KR102350621B1 (ko) 라이다 장치
CN212111791U (zh) 一种激光雷达接收系统
CN111060891A (zh) 激光雷达
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
EP3579014A1 (en) Measurement device
JP7473067B2 (ja) 光走査装置、物体検出装置及びセンシング装置
CN208588825U (zh) 激光雷达、自主移动机器人及智能车辆
CN113820721B (zh) 一种收发分离的激光雷达系统
CN111670375A (zh) 一种测距装置及移动平台
CN111712734A (zh) 一种激光测距装置及移动平台
JP6676974B2 (ja) 対象物検出装置
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台
CN113655462A (zh) 激光雷达收发光路水平对置系统
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781054

Country of ref document: EP

Kind code of ref document: A1