WO2020237500A1 - 一种测距装置及其扫描视场的控制方法 - Google Patents

一种测距装置及其扫描视场的控制方法 Download PDF

Info

Publication number
WO2020237500A1
WO2020237500A1 PCT/CN2019/088782 CN2019088782W WO2020237500A1 WO 2020237500 A1 WO2020237500 A1 WO 2020237500A1 CN 2019088782 W CN2019088782 W CN 2019088782W WO 2020237500 A1 WO2020237500 A1 WO 2020237500A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
rotation speed
view
optical elements
scanning field
Prior art date
Application number
PCT/CN2019/088782
Other languages
English (en)
French (fr)
Inventor
陈亚林
董帅
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980009041.8A priority Critical patent/CN112313531A/zh
Priority to PCT/CN2019/088782 priority patent/WO2020237500A1/zh
Publication of WO2020237500A1 publication Critical patent/WO2020237500A1/zh
Priority to US17/456,624 priority patent/US20220082665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements

Definitions

  • the invention relates to the technical field of distance measurement, in particular to a distance measurement device and a method for controlling a scanning field of view.
  • Lidar and laser ranging are systems that perceive the outside world and can learn the spatial distance information in the launch direction.
  • the principle is to actively emit a laser pulse signal to the outside, detect the reflected pulse signal, and judge the distance of the measured object according to the time difference between the emission and the reception.
  • the pattern of the scanning range of the distance measuring device is relatively simple, and the scanning density cannot be changed.
  • FOV Filed of View
  • the embodiment of the present invention provides a method for controlling the scanning field of view of a distance measuring device and a distance measuring device to solve the problem that the scanning field of view of the distance measuring device is single and cannot satisfy a specific scanning range.
  • an embodiment of the present invention provides a method for controlling a scanning field of view of a distance measuring device, the method including:
  • the sequence of light pulses are sequentially changed to different propagation directions to exit through at least three optical elements;
  • an embodiment of the present invention provides a distance measuring device, including:
  • Transmitting module used to transmit light pulse sequence
  • At least three optical elements for changing the propagation direction of the light pulse sequence At least three optical elements for changing the propagation direction of the light pulse sequence
  • a control module for controlling the rotation speed of the at least three optical elements to control at least one of the scanning pattern, position, and scanning density of the scanning field of view; and/or, by controlling the initial phase control of the plurality of optical elements Scan the extension direction of the field of view.
  • FIG. 1 is a schematic structural block diagram of a distance measuring device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of the distance measuring device of the present invention adopting a coaxial optical path
  • FIG. 3 is an example of the first scanning field of view of the embodiment of the present invention.
  • FIG. 4 is an example of the third scanning field of view of the embodiment of the present invention.
  • FIG. 5 is an example of the fourth scanning field of view of the embodiment of the present invention.
  • Fig. 6 is an example of a fifth scanning field of view of an embodiment of the present invention.
  • FIG. 7 is an example of the sixth scanning field of view of the embodiment of the present invention.
  • FIG. 8 is an example of the seventh scanning field of view of the embodiment of the present invention.
  • FIG. 9 is an example of the eighth scanning field of view of the embodiment of the present invention.
  • 11 is an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is ⁇ /2;
  • FIG. 13 is an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is 3 ⁇ /2;
  • 14A-14B are examples of adjusting the initial phase of the third optical element to control the scanning field of view according to an embodiment of the present invention.
  • FIG. 15 is a method for controlling the scanning field of view of the distance measuring device according to an embodiment of the present invention.
  • a distance measuring device and a method for controlling the scanning field of view thereof which can be applied to a distance measuring device
  • the distance measuring device may be electronic equipment such as lidar and laser distance measuring equipment.
  • the distance measuring device is used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the distance measuring device can detect the distance from the probe to the distance measuring device by measuring the time of light propagation between the distance measuring device and the probe, that is, the time-of-flight (TOF).
  • the ranging device can also detect the distance from the detected object to the ranging device through other technologies, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement. There is no restriction.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmitting circuit 110 may emit a light pulse sequence (for example, a laser pulse sequence).
  • the receiving circuit 120 may receive the light pulse sequence reflected by the object to be detected, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal. After processing the electrical signal, it may be output to the sampling circuit 130.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150 that can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 1 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam for detection
  • the embodiment of the present application is not limited to this, the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit can also be at least two, which are used to emit at least two light beams in the same direction or in different directions; wherein, the at least two light paths can be simultaneous Shooting can also be shooting at different times.
  • the light-emitting chips in the at least two transmitting circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 100 may further include a scanning module 160 for changing the propagation direction of at least one laser pulse sequence emitted by the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as the measuring circuit.
  • the distance measurement module can be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path can be used in the distance measuring device, that is, the light beam emitted from the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • Fig. 2 shows a schematic diagram of an embodiment in which the distance measuring device of the present invention adopts a coaxial optical path.
  • the ranging device 200 includes a ranging module 210, which includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and Light path changing element 206.
  • the ranging module 210 is used to emit a light beam, receive the return light, and convert the return light into an electrical signal.
  • the transmitter 203 can be used to emit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is arranged on the exit light path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light and output to the scanning module.
  • the collimating element is also used to condense at least a part of the return light reflected by the probe.
  • the collimating element 204 may be a collimating lens or other elements capable of collimating a light beam.
  • the transmitting light path and the receiving light path in the distance measuring device are combined before the collimating element 204 through the light path changing element 206, so that the transmitting light path and the receiving light path can share the same collimating element, so that the light path More compact.
  • the transmitter 203 and the detector 205 may respectively use their own collimating elements, and the optical path changing element 206 is arranged on the optical path behind the collimating element.
  • the optical path changing element can use a small area mirror to The transmitting light path and the receiving light path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the emitted light of the emitter 203 and the reflector is used to reflect the return light to the detector 205. In this way, the shielding of the back light by the bracket of the small mirror in the case of using the small mirror can be reduced.
  • the optical path changing element deviates from the optical axis of the collimating element 204.
  • the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit light path of the distance measuring module 210.
  • the scanning module 202 is used to change the transmission direction of the collimated beam 219 emitted by the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is collected on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refraction, diffracting the light beam, etc., to form Certain scanning field of view.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the foregoing optical elements.
  • the device includes:
  • Transmitting module used to transmit optical pulse signal
  • At least three optical elements for changing the propagation direction of the light pulse sequence At least three optical elements for changing the propagation direction of the light pulse sequence
  • the control module is used to control the rotation speed of the at least three optical elements to control at least one of the scanning pattern, position, and scanning density of the scanning field of view; and/or, by controlling the initial The phase controls the extension direction of the scanning field of view.
  • the scanning module may include the at least three optical elements.
  • the specific structure of the scanning module is described below. It can be understood that the scanning module described below is not limited to the above-mentioned distance measuring device, and can also be used in distance measuring devices of other structures or devices for other purposes, which is not limited here.
  • At least part of the optical elements are moving.
  • a driving module is used to drive the at least part of the optical elements to move.
  • the moving optical elements can reflect, refract, or diffract the light beam to different directions at different times.
  • the multiple optical elements of the scanning module 202 may rotate or vibrate around a common axis 209, and each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the at least three optical elements in the scanning module may rotate around the same rotation axis, and each rotating optical element is used to continuously change the propagation direction of the light pulse sequence; or, each of the at least three optical elements
  • the rotation axes of the at least three optical elements are parallel; or, the angle between the rotation axes of any two adjacent optical elements in the at least three optical elements is less than 10 degrees.
  • the sum of the phase angles of any two adjacent optical elements among the at least three optical elements floats around a fixed value, and the floating range does not exceed 20 degrees
  • the phase angle refers to the zero position of the light refraction element The angle between a reference direction.
  • the zero position of the light refraction element refers to a position on the periphery of the light refraction element on a surface perpendicular to the exit optical path of the light pulse sequence
  • the reference direction refers to the position perpendicular to the exit light path of the light pulse sequence.
  • the sum of the phase angles of any two adjacent optical elements is the fixed value.
  • the at least three optical elements include three light refraction elements arranged side by side along the exit light path of the light pulse sequence, and the light refraction element includes non-parallel light exit surfaces and light entrance surfaces.
  • the multiple optical elements of the scanning module 202 may rotate at different speeds or vibrate at different speeds. In another embodiment, at least part of the optical elements of the scanning module 202 may rotate at substantially the same rotation speed. In some embodiments, the multiple optical elements of the scanning module may also be rotated around different axes. In some embodiments, the multiple optical elements of the scanning module may also rotate in the same direction or in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate around the rotation axis 209 to change the first optical element 214.
  • the direction of the beam 219 is collimated.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated beam 219 changed by the first optical element and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposing non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 214 includes a wedge prism, and the collimated beam 219 is refracted.
  • the scanning module 202 further includes a second optical element 215, the second optical element 215 rotates around the rotation axis 209, and the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by the same or different drivers, so that the rotation speed and/or rotation of the first optical element 214 and the second optical element 215 are different, so that the collimated light beam 219 is projected to the outside space Different directions can scan a larger space.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotational speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in actual applications.
  • the drivers 216 and 217 may include motors or other drivers.
  • the second optical element 215 includes a pair of opposite non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 215 includes a wedge prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposite non-parallel surfaces, and the light beam passes through the pair of surfaces.
  • the third optical element includes a prism whose thickness varies in at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second, and third optical elements rotate at different rotation speeds and/or rotation directions.
  • control module controls the scanning field of view by controlling the rotation speed of the three optical elements, including:
  • the rotation speed of the first optical element is the first rotation speed
  • the rotation speed of the second optical element is a second rotation speed, and the second rotation speed is the sum of a first ratio of a first integer power of the first rotation speed and a first constant;
  • the rotation speed of the third optical element is a third rotation speed, and the third rotation speed is the sum of the second ratio of the second integer power of the first rotation speed and the second constant;
  • the first optical element rotates at the first rotational speed
  • the second optical element rotates at the second rotational speed
  • the third optical element rotates at the third rotational speed to obtain the scanning field of view.
  • the rotation speed (unit: rpm) of the three optical elements adopts the following combination relationship
  • different scanning fields of view can be scanned, including at least one of the scanning pattern, position, and scanning density of the scanning field of view .
  • the rotation speed relationship of the three optical elements is as follows:
  • Rotation speed of the first optical element w1, w1 is an integer
  • the rotational speed of the second optical element has a linear relationship with the exponential power of the rotational speed of the first optical element.
  • the rotational speed of the third optical element has a linear relationship with the exponential power of the rotational speed of the first optical element.
  • FIG. 3 shows an example of the first scanning field of view of the embodiment of the present invention.
  • the first scanning field of view is circular or approximately circular, and is the maximum field of view of the three prisms.
  • the maximum diameter of the circle is the wedge angle of the three prisms.
  • refractive index is the refractive index.
  • control module controls the rotation directions of two adjacent first optical elements and second optical elements among the three optical elements to be opposite, and the rotation speeds of the two adjacent optical elements The difference is less than the first value, and the second scanning field of view is obtained.
  • the control module controls the rotation speeds of two adjacent first optical elements and second optical elements among the at least three optical elements to be equal, and the third optical element among the three optical elements
  • the rotation speed of is different from the rotation speed of the first optical element, and the third scanning field of view is obtained.
  • FIG. 4 shows an example of the third scanning field of view of the embodiment of the present invention.
  • the optical scanning system when the optical scanning system is applied to an automotive radar, because the horizontal target is rich, it needs to cover a large field of view, but the vertical direction has low requirements for the field of view. Therefore, the distance measurement of the present invention
  • the scanning method of the device can achieve the required field of view.
  • the control module controls the rotation speed of the second optical element to be the sum of -1 times the integer power of the rotation speed of the first optical element and the first constant, the first constant being an integer with an absolute value less than 60,
  • FIG. 5 shows an example of the fourth scanning field of view of the embodiment of the present invention.
  • the control module controls the rotation speed of the second optical element to be the sum of -2 times the integral power of the rotation speed of the first optical element and a first constant, the first constant being an integer with an absolute value less than 60,
  • FIG. 6 shows an example of the fifth scanning field of view of the embodiment of the present invention.
  • the control module controls the rotation speed of the second optical element to be the sum of -3 times the integer power of the rotation speed of the first optical element and the first constant, the first constant being an integer with an absolute value less than 60,
  • FIG. 7 shows an example of the sixth scanning field of view of the embodiment of the present invention.
  • control module controls the rotation speed of the second optical element to be the sum of -1 times the integral power of the rotation speed of the first optical element and the first constant, and the first constant has an absolute value greater than or equal to 60 and less than
  • the rotation speed of the first optical element is an integer of the absolute value
  • control module controls the rotation speed of the second optical element to be the sum of an integer multiple of the rotation speed of the first optical element and the first constant
  • the rotation speed of the third optical element is the first optical element
  • control module controlling the scanning field of view by controlling the initial phases of the multiple optical elements includes:
  • the difference between the initial phase of the second optical element and the initial phase of the first optical element is controlled to vary between [0, 2 ⁇ ], and the scanning field of view is rotated 360° with the center of the scanning field of view.
  • the position of the scanning field of view can be controlled.
  • b1 and b2 take different values, the extension direction of the scanning field of view can be controlled, and the value of b3 does not affect the field of view control under the relationship of the speed.
  • FIG. 10 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is 0;
  • FIG. 11 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is ⁇ /2;
  • FIG. 12 shows an example when the initial phase difference between the second optical element and the first optical element in the embodiment of the present invention is ⁇ ;
  • FIG. 12 shows an example when the initial phase difference between the second optical element and the first optical element in the embodiment of the present invention is ⁇ ;
  • control module controlling the scanning field of view by controlling the initial phases of the multiple optical elements includes:
  • FIGS. 14-14B show examples of adjusting the initial phase of the third optical element to control the scanning field of view according to an embodiment of the present invention.
  • the intersection of the small scanning field of view and the large scanning field of view is at the bottom.
  • the intersection of the small scanning field of view and the large scanning field of view is reversed.
  • the hour hand rotates 90°.
  • each optical element in the scanning module 202 can project light to different directions, such as the directions of the lights 211 and 213, so that the space around the distance measuring device 200 is scanned.
  • the light 211 projected by the scanning module 202 hits the detected object 201, a part of the light is reflected by the detected object 201 to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the return light 212 reflected by the detected object 201 is incident on the collimating element 204 after passing through the scanning module 202.
  • the detector 205 and the transmitter 203 are placed on the same side of the collimating element 204, and the detector 205 is used to convert at least part of the return light passing through the collimating element 204 into an electrical signal.
  • an anti-reflection film is plated on each optical element.
  • the thickness of the antireflection coating is equal to or close to the wavelength of the light beam emitted by the emitter 103, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element located on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path for transmitting at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which nanosecond laser pulses are emitted.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 200 can calculate the TOF using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the detected object 201 to the distance measuring device 200.
  • the distance and orientation detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device can be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and an obstacle for obstacle avoidance and other purposes, and for two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body When the ranging device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to a car, the platform body is the body of the car.
  • the car can be a self-driving car or a semi-autonomous car, and there is no restriction here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the distance measuring device When the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the rotating lidar uses a single laser beam to rotate 360° around an axis, and the laser beam scans a plane.
  • the mechanical rotating lidar contains multiple rotating prisms.
  • the wedge angle, refractive index, speed, and relative phase of the prisms are different, and the shape and position of the scanning field of view will also change. Therefore, the measurement can be controlled by controlling the relevant parameters of the prism.
  • the scanning field of view from the device is not limited to control the relevant parameters of the prism.
  • an embodiment of the present invention provides a method for controlling the scanning field of view of a distance measuring device.
  • FIG. 15 which shows a method for controlling the scanning field of view of a distance measuring device according to an embodiment of the present invention.
  • the method 1500 includes:
  • step S1510 a light pulse sequence is emitted
  • step S1520 the sequence of light pulses is sequentially changed to different propagation directions to exit through at least three optical elements
  • step S1530 by controlling the rotation speed of the at least three optical elements to control at least one of the scanning pattern, position, and scanning density of the scanning field of view; and/or by controlling the at least three optical elements
  • the initial phase of the element controls the extension direction of the scanning field of view.
  • At least three optical elements are used to change the propagation direction of the light pulse sequence, then the scanning field of view in the distance measuring device is related to the parameters of the optical elements, such as wedge angle, refractive index, rotation speed, and relative phase.
  • three rotating prisms are included in the mechanical rotating lidar.
  • the wedge angle, refractive index, rotation speed, and relative phase of the prisms are different, and the shape and position of the scanning field of view will also change. Control the parameters of the prism to obtain different scanning fields of view.
  • the at least three optical elements include three light refraction elements arranged side by side, and the light refraction element includes a non-parallel light exit surface and a light entrance surface.
  • the at least three optical elements may be lenses, mirrors, prisms, gratings, optical phased arrays (Optical Phased Array) or any combination of the foregoing optical elements.
  • the at least three optical elements rotate around the same rotation axis, and each rotated optical element is used to continuously change the propagation direction of the light pulse sequence; or, the respective rotation axes of the at least three optical elements are parallel; or, The angle between the rotation axes of any two adjacent optical elements among the at least three optical elements is less than 10 degrees.
  • the sum of the phase angles of any two adjacent optical elements among the at least three optical elements floats around a fixed value, and the floating range does not exceed 20 degrees
  • the phase angle refers to the zero position of the light refraction element and The angle between a reference direction.
  • the zero position of the light refraction element refers to a position on the periphery of the light refraction element on a surface perpendicular to the exit optical path of the light pulse sequence
  • the reference direction refers to the position perpendicular to the exit light path of the light pulse sequence.
  • the sum of the phase angles of any two adjacent optical elements is the fixed value.
  • the at least three optical elements are three wedge prisms.
  • controlling the scanning field of view by controlling the rotation speed of the at least three optical elements includes:
  • the rotation speed of the first optical element is the first rotation speed
  • the rotation speed of the second optical element is a second rotation speed, and the second rotation speed is the sum of a first ratio of a first integer power of the first rotation speed and a first constant;
  • the rotation speed of the third optical element is a third rotation speed, and the third rotation speed is the sum of the second ratio of the second integer power of the first rotation speed and the second constant;
  • the first optical element rotates at the first rotational speed
  • the second optical element rotates at the second rotational speed
  • the third optical element rotates at the third rotational speed to obtain the scanning field of view.
  • FIG. 3 shows an example of the first scanning field of view of the embodiment of the present invention.
  • the first scanning field of view shown in Fig. 3 is circular or approximately circular, which is the maximum field of view of the three prisms rotating. The maximum diameter of the circle is determined by the wedge angle and refractive index of the three prisms.
  • the rotation speeds (unit: rpm) of the three prisms adopt the following combination relationship
  • different scanning fields of view can be scanned, including at least one of the scanning pattern, position, and scanning density of the scanning field of view.
  • the rotation speed relationship of the three prisms is as follows:
  • Prism 1 speed w1, w1 is an integer
  • the rotational speed of the prism 2 has a linear relationship with the exponential power of the rotational speed of the prism 1
  • the rotational speed of the prism 3 has a linear relationship with the exponential power of the rotational speed of the prism 1.
  • the rotation directions of two adjacent first optical elements and second optical elements among the three optical elements are controlled to be opposite, and the difference between the rotation speeds of the two adjacent optical elements Less than the first value, the second scanning field of view is obtained.
  • the rotation speeds of two adjacent first and second optical elements among the at least three optical elements are controlled to be equal, and the rotation speed of the third optical element among the three optical elements is controlled.
  • the rotation speed is equal, the rotation speed of the third optical element is not controlled, and the third scanning field of view shown in FIG. 4 is obtained.
  • FIG. 4 shows an example of the third scanning field of view of the embodiment of the present invention.
  • the optical scanning system when the optical scanning system is applied to an automotive radar, because the horizontal target is rich, it needs to cover a large field of view, but the vertical direction has low requirements for the field of view. Therefore, the distance measurement of the present invention
  • the scanning method of the device can achieve the required field of view.
  • the rotation speed of the second optical element is controlled to be the sum of -1 times the integer power of the rotation speed of the first optical element and the first constant, the first constant being an integer with an absolute value less than 60, and
  • FIG. 5 shows an example of the fourth scanning field of view of the embodiment of the present invention.
  • the rotation speed of the second optical element is controlled to be the sum of -2 times the integer power of the rotation speed of the first optical element and the first constant, the first constant being an integer with an absolute value less than 60, and
  • FIG. 6 shows an example of the fifth scanning field of view of the embodiment of the present invention.
  • the rotation speed of the second optical element is controlled to be the sum of -3 times the integer power of the rotation speed of the first optical element and the first constant, the first constant being an integer with an absolute value less than 60, and
  • FIG. 7 shows an example of the sixth scanning field of view of the embodiment of the present invention.
  • the rotation speed of the second optical element is controlled to be the sum of -1 times the integral power of the rotation speed of the first optical element and a first constant, the first constant being an absolute value greater than or equal to 60 and less than the first constant.
  • the rotation speed of the optical element is an integer of the absolute value
  • the seventh scan field of view Referring to Fig. 8, Fig. 8 shows an example of the seventh scanning field of view of the embodiment of the present invention.
  • the rotation speed of the second optical element is controlled to be the sum of an integer multiple of the rotation speed of the first optical element and the first constant
  • the rotation speed of the third optical element is the rotation of the first optical element
  • controlling the scanning field of view by controlling the initial phases of the multiple optical elements includes:
  • the difference between the initial phase of the second optical element and the initial phase of the first optical element is controlled to vary between [0, 2 ⁇ ], and the scanning field of view is rotated 360° with the center of the scanning field of view.
  • the position of the scanning field of view can be controlled.
  • b1 and b2 take different values, the extension direction of the scanning field of view can be controlled, and the value of b3 does not affect the field of view control under the relationship of the speed.
  • FIG. 9 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is 0;
  • FIG. 10 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is ⁇ /2;
  • FIG. 11 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is ⁇ ;
  • FIG. 11 shows an example when the initial phase difference between the second optical element and the first optical element of the embodiment of the present invention is ⁇ ;
  • controlling the scanning field of view by controlling the initial phases of the multiple optical elements includes:
  • Figs. 14A-14B show examples of adjusting the initial phase of the third optical element to control the scanning field of view according to an embodiment of the present invention.
  • the intersection of the small scanning field of view and the large scanning field of view is at the bottom.
  • the intersection of the small scanning field of view and the large scanning field of view is reversed. The hour hand rotates 90°.
  • the scanning field of view of the lidar can be determined according to actual application scenarios and user requirements, or the scanning field of view can be dynamically adjusted according to actual conditions.
  • Different beam refraction elements can have different wedge angles and refractive indices. By controlling the wedge angle, relative position, tilt angle and material selection of the beam refraction element group, the beam stretching/compression transformation in a specific direction can be realized. Large spot coverage in a specific direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置(100)的扫描视场的控制方法(S1500)及测距装置(100),方法(S1500)包括:发射光脉冲序列(S1510);通过至少三个光学元件(214,215)将光脉冲序列依次改变至不同的传播方向出射(S1520);通过控制至少三个光学元件(214,215)的转动速度以控制扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制至少三个光学元件(214,215)的初始相位控制扫描视场的延伸方向(S1530)。根据该方法(S1500)及装置(100),通过控制多个光学元件(214,215)的转动速度和/或初始相位,以形成不同的扫描视场,可以覆盖各种不同图形的扫描范围,以满足不同的应用需求,可以广泛应用于各种场合。

Description

一种测距装置及其扫描视场的控制方法 技术领域
本发明涉及测距技术领域,尤其涉及测距装置及其扫描视场的控制方法。
背景技术
激光雷达和激光测距是对外界的感知系统,可以获知发射方向上的空间距离信息。其原理为主动对外发射激光脉冲信号,探测到反射回来的脉冲信号,根据发射与接收之间的时间差,判断被测物体的距离。目前,测距装置的扫描范围的图案比较单一,扫描密度也不能变化,虽然可以通过调节光源形状来增大光斑覆盖面积,通过二维方向分开扫描的方式来实现某些方向的大视场(Filed of View,简称FOV)要求,但这些方案对光源及扫描装置的孔径尺寸要求较高,且控制系统复杂,能实现的扫描范围有限,要获得很大视场,整体成本也随之增高,现有技术中测距装置的扫描范围不能满足各种应用场合的需要,不利于广泛应用。
发明内容
本发明实施例提供一种测距装置的扫描视场的控制方法及测距装置,以解决测距装置的扫描视场单一,不能满足特定扫描范围的问题。
第一方面,本发明实施例提供了一种测距装置的扫描视场的控制方法,所述方法包括:
发射光脉冲序列;
通过至少三个光学元件将所述光脉冲序列依次改变至不同的传播方向出射;
通过控制所述至少三个光学元件的转动速度以控制所述扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述至少三个光学元件的初始相位控制所述扫描视场的延伸方向。
另一方面,本发明实施例提供了一种测距装置,包括:
发射模块,用于发射光脉冲序列;
至少三个光学元件,用于改变所述光脉冲序列的传播方向;
控制模块,用于控制所述至少三个光学元件的转动速度控制扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述多个光学元件的初始相位控制扫描视场的延伸方向。
本发明实施例的测距装置的扫描视场的控制方法及测距装置,通过控制所述多个光学元件的转动速度和/或初始相位,以形成不同的扫描视场,可以覆盖各种不同图形的扫描范围,以满足不同的应用需求,可以广泛应用于各种场合。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的测距装置的示意性结构框图;
图2是本发明的测距装置采用同轴光路的一种实施例的示意图;
图3是本发明实施例的第一扫描视场的示例;
图4是本发明实施例的第三扫描视场的示例;
图5是本发明实施例的第四扫描视场的示例;
图6是本发明实施例的第五扫描视场的示例;
图7是本发明实施例的第六扫描视场的示例;
图8是本发明实施例的第七扫描视场的示例;
图9是本发明实施例的第八扫描视场的示例;
图10是本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为0时的示例;
图11是本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π/2时的示例;
图12是本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π时的示例;
图13是本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为3π/2时的示例;
图14A-图14B是本发明实施例的调整所述第三光学元件的初始相位控制所述扫描视场的示例;
图15是本发明实施例的测距装置的扫描视场的控制方法。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各个实施例提供测距装置及其扫描视场的控制方法可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施例中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图1所示的测距装置100对测距的工作流程进行举例描述。
如图1所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电 路进行参数设置等。
应理解,虽然图1示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图1所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图2示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的 元件。
在图2所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图2所示实施例中,由于发射器203出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图2所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202。扫描模块202放置于测距模块210的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径,以形成一定的扫描视场。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。
根据本发明实施例的一种测距装置,所述装置包括:
发射模块,用于发射光脉冲信号;
至少三个光学元件,用于改变所述光脉冲序列的传播方向;
控制模块,用于控制所述至少三个光学元件的转动速度控制所述扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述多个光学元件的初始相位控制所述扫描视场的延伸方向。
其中,扫描模块可以包括所述至少三个光学元件。
下面对扫描模块的具体结构进行描述。可以理解的是,下文所描述的扫描模块并不局限于上述的测距装置中,还可以用在其他结构的测距装置或者其他用途的装置中,在此不做限制。
一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。
在一个示例中,扫描模块中的所述至少三个光学元件可以绕同一旋转轴旋转,每个旋转的光学元件用于不断改变光脉冲序列的传播方向;或者,所述至少三个光学元件各自的旋转轴平行;或者,所述至少三个光学元件中任意相邻两个光学元件的旋转轴的夹角小于10度。通过所述至少三个光学元件的旋转轴的选择性组合,可以实现覆盖范围更全面的扫描视场。
在一个示例中,所述至少三个光学元件中任意相邻两个光学元件的相位角度之和在一固定值附近浮动,浮动范围不超过20度,所述相位角度指光折射元件的零位与一个基准方向之间的夹角。其中,光折射元件的零位指的是,在垂直于光脉冲序列的出射光路的一个面上光折射元件的周缘上的一个位置,基准方向指的是,在垂直于光脉冲序列的出射光路的一个面上光折射元件的其中一个径向。
在一个示例中,在所述至少三个光学元件旋转的过程中,任意相邻两个光学元件的相位角度之和为所述固定值。
可选地,所述至少三个光学元件包括三个沿所述光脉冲序列的出射光路并列排布的光折射元件,所述光折射元件包括不平行的出光面和入光面。
在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件 214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件215与另一驱动器217连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
可选地,控制模块通过控制所述三个光学元件的转动速度控制所述扫描视场,包括:
第一光学元件的转动速度为第一转速;
第二光学元件的转动速度为第二转速,所述第二转速为第一转速的第一整数次幂的第一比例与第一常数之和;
第三光学元件的转动速度为第三转速,所述第三转速为第一转速的第二整数次幂的第二比例与第二常数之和;
所述第一光学元件以所述第一转速转动,所述第二光学元件以所述第二转速转动,所述第三光学元件以所述第三转速转动,得到所述扫描视场。
可选地,当三个光学元件的转动速度(单位:rpm)采用如下的组合关系时,可以扫描得到不同的扫描视场,包括扫描视场的扫描图案、位置、扫描密度中的至少一种。三个光学元件的转动速度关系如下所示:
第一光学元件转速:w1,w1为整数;
第二光学元件转速表示为:w2=k1*w1^n1+dw1,k1、w1、n1、dw1均为整数;
第三光学元件转速表示为:w3=k2*w1^n2+dw2,k2、w2、n2、dw2均为整数。
其中,第二光学元件的转动速度与第一光学元件的转动速度的指数幂成线性关系,同样的,第三光学元件转速的转动速度与第一光学元件的转动速度的指数幂成线性关系,通过设置不同的k1、w1、n1、dw1和k2、w2、n2、dw2,即可以得到不同的扫描视场。
在一个实施例中,参见图3,图3示出了本发明实施例的第一扫描视场的示例。如图3所示的第一扫描视场,所述第一扫描视场为圆形或近似圆形,是三个棱镜旋转的最大视场范围,圆的最大直径是由三个棱镜的楔角及折射率所决定的。
在一个实施例中,控制模块控制所述三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动方向相反,且所述两个相邻的光学元件的转动速度之差小于第一数值,得到第二扫描视场。
在一个实施例中,控制模块控制所述至少三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动速度相等,所述三个光学元件中的第三光学元件的转速与所述第一光学元件的转速不同,得到第三扫描视场。具体包括:控制k1=-1,dw1=0,w1≠0,w3≠0,即控制所述第二光学元件的转动方向与第二光学元件的转动方向相反,转动速度相等,第三光学元件的转动速度不 做控制,得到如图4所示的第三扫描视场。参见图4,图4示出了本发明实施例的第三扫描视场的示例。例如,在将该光学扫描系统应用于汽车雷达时,由于水平方向目标丰富,需要很大的覆盖视场,而在竖直方向对于视场的要求则不高,因此,通过本发明的测距装置的扫描方法可以实现符合要求的视场。
在一个实施例中,控制模块控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-1,0<|dw1|<60,w3≠0,得到如图5所示的第四扫描视场。参见图5,图5示出了本发明实施例的第四扫描视场的示例。
在一个实施例中,控制模块控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-2倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-2,|dw1|<60,w3≠0,得到如图6所示的第五扫描视场。参见图6,图6示出了本发明实施例的第五扫描视场的示例。
在一个实施例中,控制模块控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-3倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-3,|dw1|<60,w3≠0,得到如图7所示的第六扫描视场。参见图7,图7示出了本发明实施例的第六扫描视场的示例。
在一个实施例中,控制模块控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值大于等于60且小于第一光学元件的转动速度绝对值的整数,且第三光学元件的转动速度为非0整数,即控制k1=-1,60≤|dw1|<|w1|,w3≠0,得到如图8所示的第七扫描视场。参见图8,图8示出了本发明实施例的第七扫描视场的示例。
在一个实施例中,控制模块控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第一常数之和,第三光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第二常数之和,所述第一常数和第二常数互为相反数,即控制dw1=-dw2,得到如图9所示的第八扫描视场。参见图9,图9示出了本发明实施例的第八扫描视场的示例。
可选地,控制模块通过控制所述多个光学元件的初始相位控制所述扫描 视场包括:
保持第一光学元件、第二光学元件、和第三光学元件的转速固定;
控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差在[0,2π]之间变化,所述扫描视场以所述扫描视场的中心360°旋转。
在一个实施例中,当三个棱镜的转速组合固定,以转速关系w1,w2=-w1,w3的转速组合为例,各棱镜的旋转角度约束不同时,可以控制扫描视场的位置。如图10-图13所示,位相关系满足:p1=b1,p2=p1+b2,p3+b3,其中b1∈[0,2π],b2∈[0,2π],b3∈[0,2π];当b1、b2取不同值时,可以控制扫描视场的延伸方向,b3的取值对该转速关系下视场控制不影响。具体包括:当b1=0,b2=0时,参见图10,图10示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为0时的示例;当b1=0,b2=π/2时,参见图11,图11示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π/2时的示例;当b1=0,b2=π时,参见图12,图12示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π时的示例;当b1=0,b2=3π/2时,参见图13,图13示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为3π/2时的示例;由此可以看出,当保持第一光学元件、第二光学元件、和第三光学元件的之间的转速组合固定控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差以π/2变化,则扫描视场以中心为基准360°旋转,每次旋转π/2。
可选地,控制模块通过控制所述多个光学元件的初始相位控制所述扫描视场包括:
保持第一光学元件、第二光学元件以任意速度和方向转动,调整所述第三光学元件的初始相位,以改变第一光学元件和第二光学元件形成的小扫描视场在所述第一光学元件、第二光学元件和第三光学元件形成的大扫描视场中的位置。
参见图14A-图14B,图14-图14B示出了本发明实施例的调整所述第三光学元件的初始相位控制所述扫描视场的示例。如图14A所示,小扫描视场与大扫描视场的交点在底部,调整所述第三光学元件的初始相位后,如图14B所示,小扫描视场与大扫描视场的交点逆时针旋转90°。
再次参见图2,扫描模块202中的各光学元件旋转可以将光投射至不同的 方向,例如光211和213的方向,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到被探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至测距装置200。被探测物201反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器103发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定被探测物201到测距装置200的距离。
测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施例中,本发明实施例的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施例中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
旋转式激光雷达通过单束激光绕轴进行360°旋转,该束激光扫描一个平面。机械旋转式激光雷达包含多个旋转的棱镜,棱镜的楔角、折射率、转速、相对相位不同,其扫描视场的形状和位置也会发生改变,因此可以通过控制棱 镜的相关参数来控制测距装置的扫描视场。
基于上述考虑,本发明实施例提供了一种测距装置的扫描视场的控制方法,参见图15,图15示出了本发明实施例的测距装置的扫描视场的控制方法。所述方法1500包括:
在步骤S1510中,发射光脉冲序列;
在步骤S1520中,通过至少三个光学元件将所述光脉冲序列依次改变至不同的传播方向出射;
在步骤S1530中,通过控制所述至少三个光学元件的转动速度以控制所述扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述至少三个光学元件的初始相位控制所述扫描视场的延伸方向。
其中,至少三个光学元件用于改变光脉冲序列的传播方向,那么测距装置中的扫描视场与光学元件的参数有关,如楔角、折射率、转速、相对相位。
在一个实施例中,在机械旋转式激光雷达中包含三个旋转的棱镜,棱镜的楔角、折射率、转速、相对相位不同,其扫描视场的形状和位置也会发生改变,因此可以通过控制棱镜的参数来获得不同的扫描视场。可选地,所述至少三个光学元件包括三个并列排布的光折射元件,所述光折射元件包括不平行的出光面和入光面。
所述至少三个光学元件可以是透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。
可选地,所述至少三个光学元件绕同一转轴旋转,每个旋转的光学元件用于不断改变光脉冲序列的传播方向;或者,所述至少三个光学元件各自的旋转轴平行;或者,所述至少三个光学元件中任意相邻两个光学元件的旋转轴的夹角小于10度。
可选地,所述至少三个光学元件中任意相邻两个光学元件的相位角度之和在一固定值附近浮动,浮动范围不超过20度,所述相位角度指光折射元件的零位与一个基准方向之间的夹角。其中,光折射元件的零位指的是,在垂直于光脉冲序列的出射光路的一个面上光折射元件的周缘上的一个位置,基准方向指的是,在垂直于光脉冲序列的出射光路的一个面上光折射元件的其中一个径向。
可选地,在所述至少三个光学元件旋转的过程中,任意相邻两个光学元 件的相位角度之和为所述固定值。
可选地,所述至少三个光学元件为三个楔形棱镜。
可选地,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
第一光学元件的转动速度为第一转速;
第二光学元件的转动速度为第二转速,所述第二转速为第一转速的第一整数次幂的第一比例与第一常数之和;
第三光学元件的转动速度为第三转速,所述第三转速为第一转速的第二整数次幂的第二比例与第二常数之和;
所述第一光学元件以所述第一转速转动,所述第二光学元件以所述第二转速转动,所述第三光学元件以所述第三转速转动,得到所述扫描视场。
在一个实施例中,假设棱镜1楔角为a1,折射率z1,初始相位p1,转速w1;棱镜2楔角a2,折射率z2,初始相位p2,转速w2;棱镜3楔角a3,折射率z3,初始相位p3,转速w3。参见图3,图3示出了本发明实施例的第一扫描视场的示例。如图3所示的第一扫描视场为圆形或近似圆形,是三个棱镜旋转的最大视场范围,圆的最大直径是由三个棱镜的楔角及折射率所决定的。可选地,当三个棱镜的转速(单位:rpm)采用如下的组合关系时,可以扫描得到不同的扫描视场,包括扫描视场的扫描图案、位置、扫描密度中的至少一种。三个棱镜的转速关系如下所示:
棱镜1转速:w1,w1为整数;
棱镜2转速表示为:w2=k1*w1^n1+dw1,k1、w1、n1、dw1均为整数;
棱镜3转速表示为:w3=k2*w1^n2+dw2,k2、w2、n2、dw2均为整数。
其中,棱镜2的转速与棱镜1的转速的指数幂成线性关系,同样的,棱镜3的转速与棱镜1的转速的指数幂成线性关系。通过设置不同的k1、w1、n1、dw1和k2、w2、n2、dw2,可以得到不同的扫描视场。
在一个实施例中,控制所述三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动方向相反,且所述两个相邻的光学元件的转动速度之差小于第一数值,,得到第二扫描视场。
在一个实施例中,控制所述至少三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动速度相等,所述三个光学元件中的第三光学元 件的转速与所述第一光学元件的转速不同,即控制k1=-1,dw1=0,w1≠0,w3≠0,即控制所述第二光学元件的转动方向与第一光学元件的转动方向相反,转动速度相等,第三光学元件的转动速度不做控制,得到如图4所示的第三扫描视场。参见图4,图4示出了本发明实施例的第三扫描视场的示例。例如,在将该光学扫描系统应用于汽车雷达时,由于水平方向目标丰富,需要很大的覆盖视场,而在竖直方向对于视场的要求则不高,因此,通过本发明的测距装置的扫描方法可以实现符合要求的视场。
在一个实施例中,控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-1,0<|dw1|<60,w3≠0,得到如图5所示的第四扫描视场。参见图5,图5示出了本发明实施例的第四扫描视场的示例。
在一个实施例中,控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-2倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-2,|dw1|<60,w3≠0,得到如图6所示的第五扫描视场。参见图6,图6示出了本发明实施例的第五扫描视场的示例。
在一个实施例中,控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-3倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,即控制k1=-3,|dw1|<60,w3≠0,得到如图7所示的第六扫描视场。参见图7,图7示出了本发明实施例的第六扫描视场的示例。
在一个实施例中,控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值大于等于60且小于第一光学元件的转动速度绝对值的整数,且第三光学元件的转动速度为非0整数,即控制k1=-1,60≤|dw1|<|w1|,w3≠0,得到如图8所示的第七扫描视场。参见图8,图8示出了本发明实施例的第七扫描视场的示例。
在一个实施例中,控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第一常数之和,第三光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第二常数之和,所述第一常数和第二 常数互为相反数,即控制dw1=-dw2,得到如图9所示的第八扫描视场。参见图9,图9示出了本发明实施例的第八扫描视场的示例。
可选地,通过控制所述多个光学元件的初始相位控制所述扫描视场,包括:
保持第一光学元件、第二光学元件、和第三光学元件的转速固定;
控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差在[0,2π]之间变化,所述扫描视场以所述扫描视场的中心360°旋转。
在一个实施例中,当三个棱镜的转速组合固定,以转速关系w1,w2=-w1,w3的转速组合为例,各棱镜的旋转角度约束不同时,可以控制扫描视场的位置。如图10-图13所示,位相关系满足:p1=b1,p2=p1+b2,p3+b3,其中b1∈[0,2π],b2∈[0,2π],b3∈[0,2π];当b1、b2取不同值时,可以控制扫描视场的延伸方向,b3的取值对该转速关系下视场控制不影响。具体包括:当b1=0,b2=0时,参见图9,图9示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为0时的示例;当b1=0,b2=π/2时,参见图10,图10示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π/2时的示例;当b1=0,b2=π时,参见图11,图11示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为π时的示例;当b1=0,b2=3π/2时,参见图12,图12示出了本发明实施例的第二光学元件与所述第一光学元件的初始相位之差为3π/2时的示例;由此可以看出,当保持第一光学元件、第二光学元件、和第三光学元件的之间的转速组合固定控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差以π/2变化,则扫描视场以中心为基准360°旋转,每次旋转π/2。
可选地,通过控制所述多个光学元件的初始相位控制所述扫描视场,包括:
保持第一光学元件、第二光学元件以任意速度和方向转动,调整所述第三光学元件的初始相位,以改变第一光学元件和第二光学元件形成的小扫描视场在所述第一光学元件、第二光学元件和第三光学元件形成的大扫描视场中的位置。
参见图14A-图14B,图14A-图14B示出了本发明实施例的调整所述第三 光学元件的初始相位控制所述扫描视场的示例。如图14A所示,小扫描视场与大扫描视场的交点在底部,调整所述第三光学元件的初始相位后,如图14B所示,小扫描视场与大扫描视场的交点逆时针旋转90°。
需要说明的是,在实际应用中,激光雷达的扫描视场可以根据实际应用场景和用户需求而定,也可以根据实际情况动态调整扫描视场。对于不同的光束折射元件可以具有不同的楔角以及折射率,通过控制光束折射元件组的楔角、相对位置、倾斜角度及材料选择,可以实现某个特定方向的光束拉伸/压缩变换,实现特定方向的大光斑大视场覆盖。
本发明实施例的测距装置的扫描视场的控制方法及测距装置,通过控制所述多个光学元件的转动速度和/或初始相位,以形成不同的扫描视场,可以覆盖各种不同图形的扫描范围,以满足不同的应用需求,可以广泛应用于各种场合。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术 人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (33)

  1. 一种测距装置的扫描视场的控制方法,其特征在于,所述方法包括:
    发射光脉冲序列;
    通过至少三个光学元件将所述光脉冲序列依次改变至不同的传播方向出射;
    通过控制所述至少三个光学元件的转动速度以控制所述扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述至少三个光学元件的初始相位控制所述扫描视场的延伸方向。
  2. 如权利要求1所述的方法,其特征在于,所述至少三个光学元件包括三个沿所述光脉冲序列的出射光路并列排布的光折射元件,所述光折射元件包括不平行的出光面和入光面。
  3. 如权利要求2所述的方法,其特征在于,所述至少三个光学元件绕同一转轴旋转;或者,
    所述至少三个光学元件各自的旋转轴平行;或者,
    所述至少三个光学元件中任意相邻两个光学元件的旋转轴的夹角小于10度。
  4. 如权利要求2所述的方法,其特征在于,所述至少三个光学元件中任意相邻两个光学元件的相位角度之和在一固定值附近浮动,浮动范围不超过20度,所述相位角度指光折射元件的零位与一个基准方向之间的夹角。
  5. 如权利要求4所述的方法,其特征在于,在所述至少三个光学元件旋转的过程中,任意相邻两个光学元件的相位角度之和为所述固定值。
  6. 如权利要求2所述的方法,其特征在于,所述至少三个光学元件分别为三个楔形棱镜。
  7. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制所述至少三个光学元件的转动速度得到圆形或近似圆形的第一扫描视场。
  8. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制所述三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动方向相反,且所述两个相邻的光学元件的转动速度之差小于第一数值,得到第二扫描视场。
  9. 如权利要求8所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制所述两个相邻的第一光学元件和第二光学元件的转动速度相等,所述三个光学元件中的第三光学元件的转速与所述第一光学元件的转速不同,得到第三扫描视场。
  10. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第四扫描视场。
  11. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-2倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第五扫描视场。
  12. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-3倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第六扫描视场。
  13. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值大于等于60且小于第一光学元件的转动速度绝对值的整数,且第三光学元件的转动速度为非0整数,得到第七扫描视场。
  14. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的转动速度控制所述扫描视场,包括:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第一常数之和,第三光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第二常数之和,所述第一常数和第二常数互为相反数,得到第八扫描视场。
  15. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的初始相位控制所述扫描视场,包括:
    保持第一光学元件、第二光学元件、和第三光学元件的转速固定;
    控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差在[0,2π]之间变化,所述扫描视场以所述扫描视场的中心360°旋转。
  16. 如权利要求6所述的方法,其特征在于,通过控制所述至少三个光学元件的初始相位控制所述扫描视场,包括:
    保持第一光学元件、第二光学元件以任意速度和方向转动,调整第三光学元件的初始相位,以改变第一光学元件和第二光学元件形成的小扫描视场在所 述第一光学元件、第二光学元件和第三光学元件形成的大扫描视场中的位置。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述方法还包括:
    接收所述光脉冲序列经物体反射回且依次经过所述至少三个光学元件的光信号;
    根据所述发射的光脉冲序列和所述接收的光信号探测所述物体的距离和/或方位信息。
  18. 一种测距装置,其特征在于,所述装置包括:
    发射模块,用于发射光脉冲序列;
    至少三个光学元件,用于改变所述光脉冲序列的传播方向;
    控制模块,用于控制所述至少三个光学元件的转动速度控制扫描视场的扫描图案、位置、扫描密度中的至少一种;和/或,通过控制所述至少三个光学元件的初始相位控制扫描视场的延伸方向。
  19. 如权利要求18所述的装置,其特征在于,所述至少三个光学元件包括三个并列排布的光折射元件,所述光折射元件包括不平行的出光面和入光面。
  20. 如权利要求18所述的装置,其特征在于,所述至少三个光学元件绕同一转轴旋转;或者,所述至少三个光学元件各自的旋转轴平行;或者,所述至少三个光学元件中任意相邻两个光学元件的旋转轴的夹角小于10度。
  21. 如权利要求18所述的装置,其特征在于,所述至少三个光学元件中任意相邻两个光学元件的相位角度之和在一固定值附近浮动,浮动范围不超过20度,所述相位角度指光折射元件的零位与一个基准方向之间的夹角。
  22. 如权利要求21所述的装置,其特征在于,在所述至少三个光学元件旋转的过程中,任意相邻两个光学元件的相位角度之和为所述固定值。
  23. 如权利要求19所述的装置,其特征在于,所述三个光学元件分别为三个楔形棱镜。
  24. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制所述至少三个光学元件的转动速度得到圆形或近似圆形的第一扫描视场。
  25. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制所述三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动方向相反,且所述两个相邻的光学元件的转动速度之差小于第一数值,得到第二扫描视场。
  26. 如权利要求25所述的装置,其特征在于,控制模块还用于:
    控制所述至少三个光学元件中的其中两个相邻的第一光学元件和第二光学元件的转动速度相等,所述三个光学元件中的第三光学元件的转速与所述第一光学元件的转速不同,得到第三扫描视场。
  27. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第四扫描视场。
  28. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-2倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第五扫描视场。
  29. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的 -3倍与第一常数之和,第一常数为绝对值小于60的整数,且第三光学元件的转动速度为非0整数,得到第六扫描视场。
  30. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的-1倍与第一常数之和,第一常数为绝对值大于等于60且小于第一光学元件的转动速度绝对值的整数,且第三光学元件的转动速度为非0整数,得到第七扫描视场。
  31. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    控制第二光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第一常数之和,第三光学元件的转动速度为第一光学元件的转动速度的整数次幂的整数倍与第二常数之和,所述第一常数和第二常数互为相反数,得到第八扫描视场。
  32. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    保持第一光学元件、第二光学元件、和第三光学元件的转速固定;
    控制所述第二光学元件的初始相位与所述第一光学元件的初始相位之差在[0,2π]之间变化,所述扫描视场以所述扫描视场的中心360°旋转。
  33. 如权利要求23所述的装置,其特征在于,控制模块还用于:
    保持第一光学元件、第二光学元件以任意速度和方向转动,调整第三光学元件的初始相位,以改变第一光学元件和第二光学元件形成的小扫描视场在所述第一光学元件、第二光学元件和第三光学元件形成的大扫描视场中的位置。
PCT/CN2019/088782 2019-05-28 2019-05-28 一种测距装置及其扫描视场的控制方法 WO2020237500A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980009041.8A CN112313531A (zh) 2019-05-28 2019-05-28 一种测距装置及其扫描视场的控制方法
PCT/CN2019/088782 WO2020237500A1 (zh) 2019-05-28 2019-05-28 一种测距装置及其扫描视场的控制方法
US17/456,624 US20220082665A1 (en) 2019-05-28 2021-11-26 Ranging apparatus and method for controlling scanning field of view thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088782 WO2020237500A1 (zh) 2019-05-28 2019-05-28 一种测距装置及其扫描视场的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/456,624 Continuation US20220082665A1 (en) 2019-05-28 2021-11-26 Ranging apparatus and method for controlling scanning field of view thereof

Publications (1)

Publication Number Publication Date
WO2020237500A1 true WO2020237500A1 (zh) 2020-12-03

Family

ID=73552201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088782 WO2020237500A1 (zh) 2019-05-28 2019-05-28 一种测距装置及其扫描视场的控制方法

Country Status (3)

Country Link
US (1) US20220082665A1 (zh)
CN (1) CN112313531A (zh)
WO (1) WO2020237500A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252035A1 (zh) * 2021-05-31 2022-12-08 深圳市大疆创新科技有限公司 一种探测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240020A1 (en) * 2001-08-31 2004-12-02 Holger Schanz Scanning device
CN105022164A (zh) * 2015-08-20 2015-11-04 中国工程物理研究院流体物理研究所 一种基于双折射棱镜的光束扫描角度放大器
CN106526835A (zh) * 2016-11-01 2017-03-22 同济大学 级联棱镜副光束粗精两级扫描装置
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109425324A (zh) * 2017-08-30 2019-03-05 赫克斯冈技术中心 具有扫描功能和接收器的可设定接收范围的全站仪或经纬仪
CN109782254A (zh) * 2019-01-28 2019-05-21 上海禾赛光电科技有限公司 扫描装置及其扫描方法、激光雷达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689251B1 (fr) * 1992-03-27 1994-08-26 Thomson Csf Dispositif de télémétrie et son application à un système de détection d'obstacles.
EP0633541A1 (en) * 1993-07-06 1995-01-11 Opticon Sensors Europe B.V. Scanning device
JP4137410B2 (ja) * 2001-06-15 2008-08-20 三菱電機株式会社 走査型露光装置
WO2018176275A1 (en) * 2017-03-29 2018-10-04 SZ DJI Technology Co., Ltd. System and method for supporting lidar applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240020A1 (en) * 2001-08-31 2004-12-02 Holger Schanz Scanning device
CN105022164A (zh) * 2015-08-20 2015-11-04 中国工程物理研究院流体物理研究所 一种基于双折射棱镜的光束扫描角度放大器
CN106526835A (zh) * 2016-11-01 2017-03-22 同济大学 级联棱镜副光束粗精两级扫描装置
CN109425324A (zh) * 2017-08-30 2019-03-05 赫克斯冈技术中心 具有扫描功能和接收器的可设定接收范围的全站仪或经纬仪
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109782254A (zh) * 2019-01-28 2019-05-21 上海禾赛光电科技有限公司 扫描装置及其扫描方法、激光雷达

Also Published As

Publication number Publication date
US20220082665A1 (en) 2022-03-17
CN112313531A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN111263897B (zh) 距离探测装置
WO2018176275A1 (en) System and method for supporting lidar applications
CN210142187U (zh) 一种距离探测装置
CN210038146U (zh) 测距模组、测距装置及可移动平台
CN210015229U (zh) 一种距离探测装置
US20210341610A1 (en) Ranging device
US20210333370A1 (en) Light emission method, device, and scanning system
CN209356678U (zh) 测距装置
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
CN209979845U (zh) 一种测距装置及移动平台
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
WO2020062256A1 (zh) 一种光束扫描系统、距离探测装置及电子设备
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
WO2020133384A1 (zh) 一种激光测距装置及移动平台
US20210341588A1 (en) Ranging device and mobile platform
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
US20210333374A1 (en) Ranging apparatus and mobile platform
WO2021026766A1 (zh) 扫描模块的电机转速控制方法、装置和测距装置
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
US20210333369A1 (en) Ranging system and mobile platform
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931137

Country of ref document: EP

Kind code of ref document: A1