WO2015152406A1 - アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法 - Google Patents

アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2015152406A1
WO2015152406A1 PCT/JP2015/060628 JP2015060628W WO2015152406A1 WO 2015152406 A1 WO2015152406 A1 WO 2015152406A1 JP 2015060628 W JP2015060628 W JP 2015060628W WO 2015152406 A1 WO2015152406 A1 WO 2015152406A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminosilicate
catalyst
producing
phosphorus
monocyclic aromatic
Prior art date
Application number
PCT/JP2015/060628
Other languages
English (en)
French (fr)
Inventor
泰之 岩佐
小林 正英
柳川 真一朗
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2016511646A priority Critical patent/JP6650391B2/ja
Priority to US15/129,694 priority patent/US10173203B2/en
Priority to EP15772932.8A priority patent/EP3127610A4/en
Priority to CN201580017530.XA priority patent/CN106457231B/zh
Priority to KR1020167026812A priority patent/KR102262792B1/ko
Publication of WO2015152406A1 publication Critical patent/WO2015152406A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a method for producing an aluminosilicate catalyst, an aluminosilicate catalyst, and a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
  • raw material oils containing polycyclic aromatic hydrocarbons such as light cycle oil (hereinafter referred to as “LCO”) which is a cracked light oil produced by fluid catalytic cracking (hereinafter referred to as “FCC”) equipment.
  • LCO light cycle oil
  • FCC fluid catalytic cracking
  • a method for producing BTX from a polycyclic aromatic component there is known a method for obtaining a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms by bringing a feedstock oil into contact with a catalyst and performing a cracking reforming reaction.
  • Various processes such as a fixed bed, a fluidized bed, and a moving bed are known as reaction types for performing the cracking and reforming reaction, but the fixed bed is advantageous in that the construction cost and the operation cost are low.
  • a zeolite catalyst having an acid point (crystalline aluminosilicate catalyst) is usually used as a catalyst.
  • Such a zeolite catalyst is used as it is without adding a binder, for example, in order to maintain its performance in a good state at the laboratory level.
  • a catalyst molded with a binder is used although the catalyst performance is somewhat lowered.
  • the catalyst is pulverized during operation and the oil flowing through the reaction tower drifts, or the pulverized catalyst frequently clogs the filter provided on the outlet side of the reaction tower, thereby hindering operation.
  • Zeolite catalyst molded using a binder or the like is used.
  • Patent Document 1 As a zeolite catalyst molded using such a binder, for example, one described in Patent Document 1 is known.
  • the zeolite catalyst described in Patent Document 1 is mainly used for alkylation of aromatic compounds such as toluene methylation, for example.
  • the zeolite is treated with a phosphorus compound to form a phosphorus-treated zeolite, and the phosphorus treatment
  • the zeolite is heated to a temperature of 300 ° C. to 400 ° C., and the heated phosphorus-treated zeolite is mixed with an alumina-containing binder to form a zeolite / binder mixture, after which the zeolite / binder mixture is heated to 400 ° C. or higher. It was formed by heating at a temperature of.
  • the present invention has been made in view of the above circumstances, and the object thereof is to suppress the production of coke, and to suppress the hydrothermal deterioration of the zeolite itself, thereby suppressing the decrease in the activity of the zeolite catalyst, and
  • An object of the present invention is to provide an aluminosilicate catalyst having improved hydrothermal stability, a method for producing the same, and a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms using the aluminosilicate catalyst.
  • a method for producing an aluminosilicate catalyst according to an aspect of the present invention is obtained by a first phosphorus treatment step of treating a crystalline aluminosilicate with a first phosphorus compound, and the first phosphorus treatment step.
  • a phosphorous-treated crystalline aluminosilicate and a binder are mixed and fired to form an aluminosilicate mixture; and a second phosphorus treatment step of treating the aluminosilicate mixture with a second phosphorus compound. It is characterized by having.
  • the phosphor-treated crystalline aluminosilicate and the binder may be mixed and molded, and then the obtained molded body may be fired.
  • the crystalline aluminosilicate may be mainly composed of at least one selected from the group consisting of medium pore zeolite and large pore zeolite.
  • the crystalline aluminosilicate in the method for producing an aluminosilicate catalyst, may be a pentasil-type zeolite.
  • the crystalline aluminosilicate may be MFI-type zeolite.
  • the binder may contain alumina.
  • phosphoric acid may be used as the second phosphorus compound.
  • heat treatment may be performed in an atmosphere containing water vapor after the second phosphorus treatment step.
  • An aluminosilicate catalyst according to another aspect of the present invention is obtained by the above-described method for producing an aluminosilicate catalyst.
  • the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms is a raw material having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 390 ° C or lower.
  • the cracking and reforming reaction step uses two or more fixed bed reactors, and these are periodically switched while performing the cracking and reforming reaction. And regeneration of the catalyst for producing monocyclic aromatic hydrocarbons may be repeated.
  • the feedstock oil may be cracked gas oil or a partially hydrogenated product of the cracked gas oil.
  • the feedstock oil is a pyrolysis heavy oil obtained from an ethylene production apparatus or a partially hydride of the pyrolysis heavy oil. May be.
  • an aluminosilicate catalyst in which the production of coke is suppressed and the decrease in the activity of the catalyst is suppressed.
  • the aluminosilicate catalyst according to another aspect of the present invention it is possible to suppress the formation of coke, which is excellent in that the decrease in catalyst activity is suppressed.
  • the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to still another aspect of the present invention, by using the aluminosilicate catalyst, the production of coke can be suppressed and the production of coke can be suppressed. Monocyclic aromatic hydrocarbons can be produced efficiently.
  • the present invention will be described in detail below. First, the manufacturing method of the aluminosilicate catalyst which concerns on this embodiment is demonstrated.
  • the aluminosilicate catalyst according to the present embodiment is a catalyst formed by mixing a binder with crystalline aluminosilicate (zeolite) and calcining, and is mainly used for various reactions using the acid sites of crystalline aluminosilicate. Catalyst.
  • Crystall aluminosilicate for example, it is possible to increase the yield of monocyclic aromatic hydrocarbons in the cracking and reforming reaction described later, and the activity to the reaction using the acid point is high, so that the medium pore zeolite and / or It is preferable that the main component is a large pore zeolite.
  • the medium pore zeolite is a zeolite having a 10-membered ring skeleton structure.
  • Examples of the medium pore zeolite include AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, and TON type.
  • zeolite having a WEI type crystal structure Among these, the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the large pore zeolite is a zeolite having a 12-membered ring skeleton structure. Examples of the large pore zeolite include AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, and MOR type.
  • the BEA type, FAU type, and MOR type are preferable in terms of industrial use, and the BEA type is preferable because the yield of monocyclic aromatic hydrocarbons can be further increased.
  • the crystalline aluminosilicate contains small pore zeolite having a skeleton structure of 10-membered ring or less, and ultra-large pore zeolite having a skeleton structure of 14-membered ring or more, in addition to medium pore zeolite and large pore zeolite. May be.
  • examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
  • Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
  • the crystalline aluminosilicate may be mainly composed of pentasil-type zeolite.
  • the pentasil-type zeolite is represented by H-ZSM-5, and is an aluminosilicate constructed with a 5-membered ring (pentacyl skeleton) as a minimum unit.
  • the molar ratio of silicon to aluminum (Si / Al ratio) can be varied in a wide range from 6 to ⁇ , and the solid acid amount and the hydrophilic / hydrophobic balance can be freely controlled.
  • it has excellent performance such that the balance between acid and basicity can be controlled by ion exchange.
  • the crystalline aluminosilicate has a molar ratio of silicon to aluminum (Si / Al ratio) of 100 or less, preferably 50 or less.
  • Si / Al ratio of the crystalline aluminosilicate exceeds 100, the yield of monocyclic aromatic hydrocarbons becomes low.
  • the Si / Al ratio of the crystalline aluminosilicate is preferably 10 or more.
  • a crystalline aluminosilicate (zeolite) is treated with the first phosphoric acid compound to obtain a phosphorous-treated crystalline aluminosilicate. That is, by treating the crystalline aluminosilicate with the first phosphoric acid compound, phosphorus is supported on the crystalline aluminosilicate to form a phosphorus-treated crystalline aluminosilicate (phosphorus-supporting crystalline aluminosilicate).
  • the crystalline aluminosilicate used for the treatment it is preferable to use a crystalline aluminosilicate adjusted to an appropriate particle size so as not to hinder subsequent mixing and molding.
  • the particle size of the crystalline aluminosilicate can be adjusted by, for example, sieving, crystallization, molding, pulverization, or a spray dryer.
  • the first phosphoric acid compound examples include phosphoric acid (H 3 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium dihydrogen phosphate ((NH 4 ) H 2 PO 4 ), and Other water-soluble phosphates (for example, sodium phosphate, potassium phosphate, etc.) can be mentioned, which are appropriately selected and used depending on the properties of the crystalline aluminosilicate to be treated.
  • diammonium hydrogen phosphate is used. These compounds are used by being dissolved in water or the like and adjusted to an appropriate concentration.
  • a method for treating the crystalline aluminosilicate with the first phosphoric acid compound that is, a method for supporting the crystalline aluminosilicate with phosphorus
  • conventionally known wet methods such as an impregnation method and a spray method are employed.
  • a drying process and the baking process are further performed, and a phosphorus treatment crystalline aluminosilicate is obtained.
  • almost all of the water in the aqueous solution of the first phosphate compound is evaporated, so that almost all of the phosphorus component in the first phosphate compound is supported on the crystalline aluminosilicate.
  • the drying temperature is 100 ° C. or higher, preferably 110 ° C. or higher.
  • the upper limit of the drying temperature is 450 ° C. or lower, preferably 400 ° C. or lower, more preferably 350 ° C. or lower.
  • various conventionally known methods such as firing in air and steam firing can be employed.
  • the firing temperature is 500 ° C. or higher, preferably 550 ° C. or higher.
  • the upper limit of the firing temperature is 1000 ° C. or lower, preferably 900 ° C. or lower, more preferably 800 ° C. or lower.
  • the phosphorus content in the phosphorus-treated crystalline aluminosilicate is that when the total amount of the phosphorus-treated crystalline aluminosilicate is 100 mass%, the amount of phosphorus atoms is 0.1 mass% or more and 10.
  • the content is preferably 0% by mass or less, more preferably 0.5% by mass or more and 5.0% by mass or less, and further preferably about 1.0 to 3.0% by mass.
  • reaction ⁇ regeneration ⁇ reaction ⁇ regeneration ⁇ reaction ⁇ regeneration
  • coke is decomposed and removed by firing at a high temperature during regeneration, and water is generated by firing such coke.
  • the activity of the aluminosilicate catalyst deteriorates due to the hydrothermal deterioration in which the acid point disappears due to heat and water at the time of calcination, and the catalyst performance deteriorates.
  • phosphorus supported on crystalline aluminosilicate can suppress hydrothermal deterioration by weakening the acid point of the aluminosilicate catalyst. Moreover, the production
  • phosphorus loading treatment reduces the original catalytic activity due to acid sites when the amount of phosphorus loading increases, so that it is 10.0% by mass or less, preferably 5.0% by mass or less as described above. Is desirable.
  • the acid point of the crystalline aluminosilicate is adjusted, so that the hydrothermal deterioration described above is suppressed.
  • the crystalline aluminosilicate in particular, when the obtained aluminosilicate catalyst is used as a catalyst for producing a monocyclic aromatic hydrocarbon described later, in addition to supporting phosphorus, gallium and / or zinc may be further contained. . By containing gallium and / or zinc, more efficient BTX production can be expected.
  • gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), or zinc is incorporated in the lattice skeleton of crystalline aluminosilicate.
  • crystalline aluminosilicate silicate crystalline aluminosilicate carrying gallium
  • Ga-supporting crystalline aluminosilicate crystalline aluminosilicate carrying zinc
  • Zn-supported crystalline aluminosilicate The thing containing at least 1 or more types is mentioned.
  • the binder is not particularly limited, and various binders can be used as long as they do not impair the activity of the phosphorus-treated crystalline aluminosilicate.
  • inorganic substances such as alumina, silica, and titania and those containing these are preferably used.
  • alumina powder which is powdery alumina, is preferable because it has excellent binder strength (binding strength) and can impart a binding strength that can be molded into the phosphor-treated crystalline aluminosilicate in a relatively small amount. That is, if the addition amount of the binder can be reduced, a decrease in the activity of the aluminosilicate catalyst due to the addition and mixing of the binder can be suppressed.
  • alumina has more acid sites than silica, for example, and therefore coke formation tends to be significant.
  • silica has a lower binder strength than alumina, and therefore it is necessary to increase the amount of addition.
  • titania has more acid sites than alumina and is expensive.
  • the blending ratio with the above-mentioned phosphorus-treated crystalline aluminosilicate is important. That is, as the amount of the binder is increased, better moldability can be obtained, and further, good mechanical strength of the aluminosilicate catalyst to be formed can be obtained. On the other hand, as the amount of the binder increases, the activity of the aluminosilicate catalyst is significantly reduced by adding the binder.
  • the content of the binder (alumina) contained in the aluminosilicate catalyst is preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
  • the compounding ratio of alumina (alumina powder) and phosphorus-treated crystalline aluminosilicate can be arbitrarily set without being limited to the mass ratio.
  • the content of the binder (silica) contained in the aluminosilicate catalyst is preferably 10% by mass or more and 50% by mass or less, and 15% by mass or more and 40% by mass or less. It is more preferable.
  • binders such as an alumina (alumina powder)
  • what contains phosphorus beforehand may be used.
  • the binder is subjected to phosphorus treatment with a phosphorus compound, it is highly possible that the binder will be altered and the binder performance will be reduced. Therefore, the phosphorus treatment with the phosphorus compound as described above for the crystalline aluminosilicate is performed on the binder. This is not preferable.
  • the obtained mixture is molded into a desired shape by a molding machine and dried at 100 ° C. or higher, preferably 110 ° C. or higher in the air.
  • the molding shape of the mixture can be various shapes such as a granular shape and a pellet shape.
  • an extrusion molding machine is used as the molding machine, it can be molded into a cylindrical shape having an arbitrary diameter (for example, a diameter of 0.5 to 3 mm) or a height.
  • the obtained dried product (molded product) is fired in the air at 500 ° C. or higher, preferably 550 ° C. or higher to obtain a molded body of an aluminosilicate mixture.
  • the formed body of the aluminosilicate mixture is treated with the second phosphorus compound to obtain an aluminosilicate catalyst. That is, by treating the aluminosilicate mixture with the second phosphoric acid compound, phosphorus is mainly selectively supported on the binder.
  • the aluminosilicate mixture to be processed it can be used as it is because it has already been molded, but when the aluminosilicate mixture becomes larger in particle size or partly pulverized by baking treatment etc. Is preferably subjected to a pulverization treatment or the like as necessary to obtain an appropriate particle size.
  • phosphoric acid H 3 PO 4
  • diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 )
  • ammonium dihydrogen phosphate (like the first phosphoric acid compound) (NH 4 ) H 2 PO 4 )
  • other water-soluble phosphates for example, sodium phosphate, potassium phosphate, etc.
  • phosphoric acid is preferably used. Since phosphoric acid selectively adheres to alumina as a binder, it is possible to selectively weaken the acid point of the binder while leaving the acid point of the aluminosilicate as it is.
  • wet methods such as an impregnation method and a spraying method are employed as a method of treating the molded article of the aluminosilicate mixture with the second phosphate compound, that is, a method of supporting phosphorus on the aluminosilicate mixture.
  • the aqueous solution of such a 2nd phosphoric acid compound it dries, and also calcinates, The aluminosilicate catalyst which concerns on this embodiment is obtained.
  • almost all of the water in the aqueous solution of the second phosphate compound is evaporated, so that almost all of the phosphorus component in the second phosphate compound is supported on the aluminosilicate mixture.
  • the drying temperature is 100 ° C. or higher, preferably 110 ° C. or higher.
  • the upper limit of the drying temperature is 450 ° C. or lower, preferably 400 ° C. or lower, more preferably 350 ° C. or lower.
  • various conventionally known methods such as firing in air can be employed.
  • the firing temperature is 500 ° C. or higher, preferably 550 ° C. or higher.
  • the upper limit of the firing temperature is 1000 ° C. or lower, preferably 900 ° C. or lower, more preferably 800 ° C. or lower.
  • the obtained fired product is steamed (heat treatment is performed in an atmosphere containing water vapor).
  • the acid sites in the binder can be reduced (partially eliminated) from the calcined product, thereby suppressing the formation and adhesion (deposition) of coke to the catalyst.
  • the heating temperature is preferably 600 ° C. or higher and 900 ° C. or lower, and more preferably 650 ° C. or higher and 850 ° C. or lower.
  • the temperature is lower than 600 ° C., the effect of reducing the acid point is small.
  • the water vapor concentration in the treatment atmosphere at the time of heating is preferably 10% or more and 100% or less, and more preferably 20% or more.
  • air or nitrogen is used as the coexisting gas.
  • Such heating temperature and water vapor concentration are appropriately selected depending on the treatment time. That is, when the heating temperature and the water vapor concentration are increased, the treatment time can be made relatively short. Conversely, when the heating temperature and the water vapor concentration are made low, the treatment time needs to be made relatively long.
  • the treatment time is preferably 10 minutes or more and less than 24 hours. If it is less than 10 minutes, it is difficult to homogenize the hydrothermal treatment conditions, and spending more than 24 hours is inefficient because it occupies the apparatus for a long time.
  • the treatment time can be 15 minutes or longer and 5 hours or less.
  • a multi-stage kiln can be used as an apparatus for performing such heat treatment with water vapor.
  • a catalyst can be continuously processed by performing a drying process and a calcination process in the front
  • the aluminosilicate catalyst thus obtained can be used as it is as a fixed bed catalyst, but in the case where the aluminosilicate catalyst has a large particle size or a part thereof is pulverized by calcination or the like. It is preferable to adjust to an appropriate particle size by performing a pulverization treatment or the like as necessary.
  • the amount of phosphorus newly supported by the second phosphoric acid treatment step is such that when the total amount of the aluminosilicate catalyst obtained after the calcination treatment is 100% by mass, the amount of phosphorus atoms is 0.1% by mass or more and 10.0%.
  • the content is preferably not more than mass%, more preferably not less than 0.25 mass and not more than 3 mass%, and further preferably about 0.5 to 2.5 mass%.
  • the production of coke can be suppressed in various reactions using the acid sites of crystalline aluminosilicate, such as the production of monocyclic aromatic hydrocarbons.
  • An aluminosilicate catalyst that suppresses a decrease in the activity of the catalyst can be produced satisfactorily.
  • the phosphor-treated crystalline aluminosilicate and binder are mixed (kneaded), molded, and then the resulting molded body is fired, so the resulting aluminosilicate catalyst is a good machine. Therefore, it can be used suitably for a fixed bed for performing a decomposition and reforming reaction as described later.
  • the crystalline aluminosilicate an aluminosilicate catalyst obtained by using a medium pore zeolite and / or a large pore zeolite as a main component, a pentasil type zeolite, or an MFI type zeolite is more active. Can be a thing.
  • alumina-containing material is used as the binder (binder)
  • alumina is excellent in binder performance, and therefore the amount added can be reduced, so that the catalyst performance of the obtained aluminosilicate catalyst can be improved. it can.
  • phosphoric acid is selectively attached to alumina as a binder by using phosphoric acid as the second phosphorus compound, so that the acid point of the aluminosilicate remains as it is.
  • the acid point of the binder can be selectively weakened. Therefore, the production
  • the aluminosilicate catalyst according to the present embodiment obtained by such a method for producing an aluminosilicate catalyst can suppress the formation of coke in various reactions using the acid sites of crystalline aluminosilicate.
  • FIG. 1 is a diagram showing an example of a production apparatus used for carrying out a method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the present embodiment.
  • the production apparatus 1 shown in FIG. 1 generates monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (BTX fraction) from raw material oil.
  • the feedstock oil used in the present embodiment is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 390 ° C or lower.
  • the oil has a 10 vol% distillation temperature of less than 140 ° C.
  • the target monocyclic aromatic hydrocarbon is decomposed, and the productivity is lowered.
  • oil having a 90 vol% distillation temperature exceeding 390 ° C. is used, the yield of monocyclic aromatic hydrocarbons is reduced and coke deposition on the catalyst for producing monocyclic aromatic hydrocarbons The amount tends to increase and cause a sharp decrease in catalyst activity.
  • the 10 vol% distillation temperature of the feedstock oil is preferably 150 ° C or higher, and the 90 vol% distillation temperature of the feedstock oil is preferably 360 ° C or lower.
  • the 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”.
  • Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or higher and a 90% by volume distillation temperature of 390 ° C. or lower include cracked light oil (LCO) produced by a fluid catalytic cracking device, hydrorefined oil of LCO, Coal liquefied oil, heavy oil hydrocracked refined oil, straight run kerosene, straight run diesel oil, coker kerosene, coker light oil and oil sand hydrocracked refined oil, pyrolysis heavy oil obtained from ethylene production equipment, ethylene production equipment Hydride of pyrolysis heavy oil obtained from the above, cracked gasoline heavy oil (HCCG) obtained by fluid catalytic cracking equipment, heavy oil (PLAT-BTM) obtained by catalytic reforming equipment, and the like.
  • LCO cracked light oil
  • HCCG cracked gasoline heavy oil
  • PLAAT-BTM heavy oil obtained by catalytic reforming equipment
  • the cracked light oil (LCO) produced by a fluid catalytic cracker also contains many aromatic hydrocarbons.
  • the pyrolytic heavy oil obtained from the ethylene production apparatus is a heavier fraction than the BTX fraction obtained from the ethylene production apparatus, and contains a large amount of aromatic hydrocarbons.
  • a fraction containing a large amount of polycyclic aromatics is used among aromatic hydrocarbons, it becomes a factor of coke formation in the subsequent cracking and reforming reaction.
  • a hydrogenation process is not necessarily required.
  • feedstocks basically, it is desirable to select feedstocks based on the same concept, and to avoid feedstocks where coke is excessively generated by the cracking and reforming reaction.
  • the cracked gasoline heavy oil obtained with the fluid catalytic cracker and the heavy oil obtained with the catalytic reformer are fractions containing few polycyclic aromatics in the raw material, so there is no need to carry out hydroprocessing. good.
  • Polycyclic aromatic hydrocarbons are substances that have low reactivity and are not easily converted to monocyclic aromatic hydrocarbons in the cracking and reforming reaction of this embodiment.
  • polycyclic aromatic hydrocarbons when polycyclic aromatic hydrocarbons are hydrogenated in a hydrogenation reaction, they are converted into naphthenobenzenes, which can then be converted into monocyclic aromatic hydrocarbons by being supplied to cracking and reforming reactions. It is.
  • aromatic hydrocarbons having 3 or more rings consume a large amount of hydrogen in the hydrogenation reaction step, and the reactivity in the cracking and reforming reaction is low even if it is a hydrogenation reaction product. Therefore, it is not preferable to include a large amount. Therefore, the aromatic hydrocarbon of 3 or more rings in the feed oil is preferably 25% by volume or less, and more preferably 15% by volume or less.
  • the polycyclic aromatic component as used herein is measured according to JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”, or FID gas chromatograph method or two-dimensional gas chromatograph. It means the total value of the bicyclic aromatic hydrocarbon content (bicyclic aromatic content) and the tricyclic or higher aromatic hydrocarbon content (tricyclic or higher aromatic content) analyzed by the method. Thereafter, when the content of polycyclic aromatic hydrocarbons, bicyclic aromatic hydrocarbons, tricyclic or higher aromatic hydrocarbons is indicated by volume%, it was measured according to JPI-5S-49. When it is shown by mass%, it is measured based on the FID gas chromatographic method or the two-dimensional gas chromatographic method.
  • the hydrogenation reaction partial hydrogenation is performed without completely hydrogenating the hydrogenated feedstock. That is, mainly the bicyclic aromatic hydrocarbons in the feedstock oil are selectively hydrogenated and converted to monocyclic aromatic hydrocarbons (such as naphthenobenzenes) in which only one aromatic ring is hydrogenated.
  • monocyclic aromatic hydrocarbon examples include indane, tetralin, alkylbenzene, and the like.
  • the hydrogenation treatment is partially performed in this manner, the amount of heat generated during the treatment can be suppressed at the same time as the amount of hydrogen consumed in the hydrogenation reaction step is suppressed.
  • naphthalene which is a typical example of a bicyclic aromatic hydrocarbon
  • the hydrogen consumption per mole of naphthalene is 5 moles, but when hydrogenating to tetralin, the hydrogen consumption is Can be realized at 2 moles.
  • feedstock oil pyrolytic heavy oil
  • the hydrogen consumption required to hydrogenate this fraction to indanes is that hydrogen is converted from naphthalene to decalin. Even less than the amount needed to convert.
  • the hydrogenation reaction apparatus 2 for performing such a hydrogenation treatment a known hydrogenation reactor can be used.
  • the hydrogen partial pressure at the reactor inlet is preferably 1 to 9 MPa.
  • the lower limit is more preferably 1.2 MPa or more, and further preferably 1.5 MPa or more.
  • 7 MPa or less is more preferable, and 5 MPa or less is further more preferable.
  • the LHSV (Liquid Hourly Space Velocity) of the hydrogenation reaction by the hydrogenation reactor 2 is preferably 0.05 to 10 h ⁇ 1 . More preferably at least 0.1 h -1 as the lower limit, 0.2 h -1 or more is more preferable. Further, more preferably 5h -1 or less as the upper limit, 3h -1 or less is more preferable.
  • LHSV is less than 0.05 h ⁇ 1 , there is a concern that the construction cost of the reactor becomes excessive and the economic efficiency is impaired.
  • the LHSV exceeds 10 h ⁇ 1 the hydrotreatment of the feedstock does not proceed sufficiently, and the target hydride may not be obtained.
  • the reaction temperature (hydrogenation temperature) of the hydrogenation reaction by the hydrogenation reactor 2 is preferably 150 ° C. to 400 ° C. As a minimum, 170 degreeC or more is more preferable, and 190 degreeC or more is further more preferable. Moreover, as an upper limit, 380 degrees C or less is more preferable, and 370 degrees C or less is further more preferable.
  • the reaction temperature is lower than 150 ° C., the hydrogenation treatment of the raw material oil tends not to be sufficiently achieved.
  • the reaction temperature exceeds 400 ° C., the generation of gas as a by-product increases, so the yield of the hydrotreated oil decreases, which is not desirable.
  • the hydrogen / oil ratio in the hydrogenation reaction by the hydrogenation reactor 2 is preferably 100 to 2000 NL / L.
  • 110 NL / L or more is more preferable, and 120 NL / L or more is further more preferable.
  • 1800 N / L or less is more preferable, and 1500 NL / L or less is further more preferable.
  • the hydrogen / oil ratio is less than 100 NL / L, coke formation on the catalyst proceeds at the reactor outlet, and the catalyst life tends to be shortened.
  • the hydrogen / oil ratio exceeds 2000 NL / L, there is a concern that the construction cost of the recycle compressor becomes excessive and the economic efficiency is impaired.
  • the reaction mode in the hydrogenation treatment of the hydrogenation reactor 2 is not particularly limited, but can usually be selected from various processes such as a fixed bed and a moving bed. Among them, the fixed bed has low construction costs and operation costs. Therefore, it is preferable. Moreover, it is preferable that the hydrogenation reaction apparatus 2 is columnar.
  • the hydrotreating catalyst used for hydrotreating is a monocyclic aromatic hydrocarbon (naphthenobenzene) in which bicyclic aromatic hydrocarbons in feedstock oil are selectively hydrogenated to hydrogenate only one aromatic ring.
  • the catalyst is not limited as long as it is a catalyst that can be converted into the above.
  • a preferred hydrotreating catalyst contains at least one metal selected from Group 6 metals of the periodic table and at least one metal selected from Group 8 to 10 metals of the periodic table.
  • the Group 6 metal of the periodic table molybdenum, tungsten, and chromium are preferable, and molybdenum and tungsten are particularly preferable.
  • the Group 8-10 metal of the periodic table iron, cobalt, and nickel are preferable, and cobalt and nickel are more preferable. These metals may be used alone or in combination of two or more. As specific examples of metal combinations, molybdenum-cobalt, molybdenum-nickel, tungsten-nickel, molybdenum-cobalt-nickel, tungsten-cobalt-nickel, and the like are preferably used.
  • the periodic table is a long-period type periodic table defined by the International Union of Pure and Applied Chemistry (IUPAC).
  • the hydrotreating catalyst is preferably one in which the metal is supported on an inorganic carrier containing aluminum oxide.
  • the inorganic carrier containing the aluminum oxide include alumina, alumina-silica, alumina-boria, alumina-titania, alumina-zirconia, alumina-magnesia, alumina-silica-zirconia, alumina-silica-titania, and various types.
  • Examples include a carrier in which a porous inorganic compound such as various clay minerals such as zeolite, ceviolite, and montmorillonite is added to alumina, among which alumina is particularly preferable.
  • the catalyst for hydrotreating is an inorganic carrier containing aluminum oxide and at least one selected from Group 6 metals of the periodic table on the basis of the total catalyst mass, which is the total mass of the inorganic carrier and the metal.
  • a catalyst obtained by supporting 10 to 30% by mass of metal and 1 to 7% by mass of at least one metal selected from Group 8 to 10 metals of the periodic table is preferable.
  • the precursor of the metal species used when the metal is supported on the inorganic carrier is not particularly limited, but an inorganic salt of the metal, an organometallic compound, or the like is used, and a water-soluble inorganic salt is preferably used.
  • the In the loading step loading is performed using a solution of these metal precursors, preferably an aqueous solution.
  • a known method such as an immersion method, an impregnation method, a coprecipitation method, or the like is preferably employed.
  • the carrier on which the metal precursor is supported is preferably dried and then calcined in the presence of oxygen, and the metal species is once converted to an oxide. Furthermore, it is preferable to convert the metal species into a sulfide by a sulfidation treatment called pre-sulfidation before performing the hydrogenation treatment of the raw material oil.
  • the conditions for the preliminary sulfidation are not particularly limited, but a sulfur compound is added to a petroleum fraction or pyrolysis heavy oil (hereinafter referred to as a preliminary sulfidation feedstock oil), and the temperature is 200 to 380 ° C., and the LHSV is 1 to It is preferable that the catalyst is continuously brought into contact with the hydrotreating catalyst under the conditions of 2h ⁇ 1 , the pressure being the same as that in the hydrotreating operation, and the treating time being 48 hours or longer.
  • the sulfur compound added to the pre-sulfided raw material oil is not limited, but dimethyl disulfide (DMDS), sulfazole, hydrogen sulfide and the like are preferable. It is preferable to add about mass%.
  • the hydrogenated oil (partially hydride) obtained from the hydrogenation reaction apparatus 2 (hydrogenation reaction) is subjected to the cracking and reforming reaction apparatus after the hydrogen is removed in the subsequent dehydrogenation tower 3 as shown in FIG. 4 is supplied to the cracking reforming reaction.
  • the cracking and reforming reaction apparatus 4 is directly supplied with a fraction mainly composed of hydrocarbons having about 9 to 10 carbon atoms, which does not contain many polycyclic aromatics together with the hydrogenated oil and has a low necessity for hydrogenation. You can also do it.
  • the cracking and reforming reaction apparatus 4 contains a catalyst for producing a monocyclic aromatic hydrocarbon.
  • the raw material oil (hydrogenated oil) supplied to this catalyst is brought into contact with and reacted with it to have 6 to 8 carbon atoms.
  • a product containing monocyclic aromatic hydrocarbons is obtained.
  • Catalyst for monocyclic aromatic hydrocarbon production As the catalyst for producing a monocyclic aromatic hydrocarbon, in this embodiment, the aluminosilicate catalyst described above, that is, the aluminosilicate catalyst obtained by the method for producing an aluminosilicate catalyst of this embodiment is used.
  • reaction mode of the cracking and reforming reaction device 4 that is, a reaction mode when the raw material oil (hydrogenated oil) is brought into contact with the catalyst for monocyclic aromatic hydrocarbon production by the cracking and reforming reaction device 4 and subjected to the cracking and reforming reaction.
  • a fixed floor is used.
  • the fixed bed is much cheaper than the fluidized bed or moving bed. That is, the fixed bed is much cheaper in construction cost and operation cost than the fluidized bed or moving bed. Therefore, in the present embodiment, as shown in FIG. 1, a fixed bed cracking reforming reaction apparatus 4 (fixed bed reactor 4) is used, and two fixed bed reactors 4 are used. Although it is possible to repeat the reaction and regeneration in one fixed bed reactor, in order to carry out the reaction continuously, two or more reactors are installed, and the reaction and regeneration are alternately performed between these reactors. It is preferable to repeat.
  • FIG. 1 shows two fixed bed reactors 4, the present invention is not limited to this, and three or more may be installed. That is, in the cracked reforming reaction apparatus having a fixed bed, as the cracking reforming reaction proceeds, coke adheres particularly to the catalyst surface, and the activity of the catalyst decreases. When the activity decreases in this manner, the yield of the monocyclic aromatic hydrocarbon (BTX) fraction having 6 to 8 carbon atoms decreases in this cracking and reforming reaction. Therefore, it is necessary to regenerate the catalyst.
  • BTX monocyclic aromatic hydrocarbon
  • the fixed bed cracking reforming reaction apparatus 4 fixed bed reactor
  • a regeneration process of the catalyst whose activity is reduced due to adhesion of coke is performed. That is, using two or more cracking reforming reaction apparatuses 4 (fixed bed reactors), the cracking reforming reaction and the regeneration of the catalyst for producing monocyclic aromatic hydrocarbons are repeated while periodically switching them.
  • the operating time for continuous operation by one cracking reforming reaction apparatus 4 is several hours to 10 days, although it varies depending on the size of the apparatus and various operating conditions (reaction conditions). If the number of reactors of the cracking / reforming reactor 4 (fixed bed reactor) is increased, the continuous operation time per reactor can be shortened, and the decrease in the activity of the catalyst can be suppressed. Time can be shortened.
  • the above-mentioned aluminosilicate catalyst is used as a catalyst for producing monocyclic aromatic hydrocarbons, and this aluminosilicate catalyst suppresses the production of coke and suppresses the decrease in the activity of the catalyst. Therefore, in this embodiment, compared with the case of using the conventional catalyst for producing monocyclic aromatic hydrocarbons, the production efficiency (conversion) of BTX by the generation of coke in the continuous operation time in one cracking reforming reaction apparatus 4 Efficiency) can be suppressed. That is, when the continuous operation time in one decomposition reforming reaction apparatus 4 is the same as the conventional one, the production efficiency of BTX can be increased as compared with the conventional one.
  • reaction temperature The reaction temperature for contacting and reacting the feedstock with the catalyst is not particularly limited, but is preferably 350 ° C. to 700 ° C., more preferably 400 ° C. to 650 ° C. When the reaction temperature is less than 350 ° C., the reaction activity is not sufficient. When the reaction temperature exceeds 700 ° C., it is disadvantageous in terms of energy, and at the same time, the production of coke is remarkably increased and the production efficiency of the target product is lowered.
  • reaction pressure The reaction pressure when contacting and reacting the raw material oil with the catalyst is 0.1 MPaG to 2.0 MPaG. That is, the contact between the raw material oil and the catalyst for producing monocyclic aromatic hydrocarbons is performed under a pressure of 0.1 MPaG to 2.0 MPaG.
  • high pressure conditions that are advantageous in hydrocracking are not required at all. Rather, an unnecessarily high pressure is not preferable because it promotes decomposition and by-produces a light gas that is not intended.
  • the fact that the high pressure condition is not required is advantageous in designing the reactor. That is, when the reaction pressure is 0.1 MPaG to 2.0 MPaG, the hydrogen transfer reaction can be performed efficiently.
  • the contact time between the feedstock and the catalyst is not particularly limited as long as the desired reaction proceeds substantially.
  • the gas passage time on the catalyst is preferably 2 to 150 seconds, more preferably 3 to 100 seconds. More preferably, it is ⁇ 80 seconds. If the contact time is less than 2 seconds, substantial reaction is difficult. If the contact time exceeds 150 seconds, the accumulation of carbonaceous matter in the catalyst due to coking or the like will increase, or the amount of light gas generated due to decomposition will increase.
  • the regeneration treatment is performed by removing coke from the catalyst surface. Specifically, air is circulated through the cracking and reforming reaction device 4 to burn the coke adhering to the catalyst surface. Since the cracking and reforming reaction apparatus 4 is maintained at a sufficiently high temperature, the coke adhering to the catalyst surface is easily burned by simply circulating air. However, if normal air is supplied to the cracking reforming reaction apparatus 4 and circulated, there is a risk of rapid combustion. Therefore, it is preferable to supply and circulate air in which nitrogen concentration has been mixed in advance to lower the oxygen concentration to the cracking reforming reaction apparatus 4. That is, as the air used for the regeneration treatment, it is preferable to use, for example, an oxygen concentration reduced to about several to 10%. Further, the reaction temperature and the regeneration temperature are not necessarily the same, and a preferable temperature can be appropriately set.
  • the cracking and reforming reaction product derived from the cracking and reforming reaction apparatus 4 includes a gas containing an olefin having 2 to 4 carbon atoms, a BTX fraction containing benzene, toluene and xylene, and an aromatic hydrocarbon having C9 or more. included. Therefore, the cracking / reforming reaction product is separated into each component by the purification / recovery device 5 provided at the subsequent stage of the cracking / reforming reaction device 4 and purified and recovered.
  • the purification and recovery device 5 includes a BTX fraction recovery tower 6 and a gas separation tower 7.
  • the BTX fraction recovery tower 6 distills the cracking reforming reaction product and separates it into a light fraction having 8 or less carbon atoms and a heavy fraction having 9 or more carbon atoms.
  • the gas separation tower 7 distills the light fraction having 8 or less carbon atoms separated by the BTX fraction collection tower 6 into a BTX fraction containing benzene, toluene and xylene and a gas fraction having a lower boiling point than these. To separate. As a result, a CTX monocyclic aromatic hydrocarbon which is a BTX fraction can be produced with high efficiency.
  • the heavy fraction (bottom fraction) having 9 or more carbon atoms separated in the BTX fraction collection tower 6 is returned to the hydrogenation reactor 2 through the recycle path 8, and kerosene oil (kerosene and Along with light oil fraction), it is again subjected to the hydrogenation reaction process. That is, this heavy fraction (bottom fraction) is returned to the cracking and reforming reaction apparatus 4 via the hydrogenation reaction apparatus 2 and used for the cracking and reforming reaction.
  • the aluminosilicate catalyst since the aluminosilicate catalyst is used as a catalyst for producing a monocyclic aromatic hydrocarbon, the aluminosilicate catalyst comprises: Since the production
  • two or more fixed bed reactors are used as the cracking reforming reaction apparatus 4, and the cracking reforming reaction and the regeneration of the catalyst for producing monocyclic aromatic hydrocarbons are repeated while periodically switching them. Therefore, a BTX fraction can be produced with high production efficiency.
  • a fixed bed reactor having a much lower apparatus cost than that of the fluidized bed reactor is used, the cost of the apparatus configuration used for the cracking and reforming process can be sufficiently reduced.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the aluminosilicate catalyst obtained by the method for producing an aluminosilicate catalyst according to one aspect of the present invention is used as a catalyst for producing a monocyclic aromatic hydrocarbon in a cracking reforming reaction of a BTX production process.
  • the aluminosilicate catalyst according to the present invention can be used for various reactions using the acid point of crystalline aluminosilicate in addition to the decomposition reforming reaction.
  • synthesis of ethylene and propylene from methanol synthesis of propylene from methanol and butene, synthesis of propylene from dimethyl ether, synthesis of propylene by catalytic cracking of C4 to C8 paraffin, synthesis of propylene by catalytic cracking of C4 to C8 olefin, methanol Synthesis from gasoline, ethylene synthesis by dehydrogenation of ethane, propylene synthesis by dehydrogenation of propane, butene synthesis by dehydrogenation of butane, styrene synthesis by dehydrogenation of ethylbenzene, BTX synthesis by cyclodehydrogenation of C2 to C7 paraffins, BTX synthesis by cyclized dehydrogenation of C4-C5 olefins, xylene synthesis by toluene methylation, catalytic dewaxing process to produce lubricating base oil, paraxylene synthesis by iso
  • the obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.
  • An impregnation solution prepared by taking 300 g of the obtained molded carrier, adding molybdenum trioxide, cobalt nitrate (II) hexahydrate, phosphoric acid (concentration 85%) to 150 ml of distilled water and adding malic acid until dissolved. Impregnation while spraying.
  • Catalyst A has a SiO 2 content of 1.9% by mass, a TiO 2 content of 2.0% by mass on a carrier basis, a MoO 3 loading of 22.9% by mass on a catalyst basis, and a CoO carrier.
  • the amount was 2.5% by mass, and the amount of P 2 O 5 supported was 4.0% by mass.
  • a cracked light oil A obtained from the FCC apparatus was prepared. Furthermore, the pyrolysis heavy oil obtained from the ethylene production equipment is separated only by light distillation to prepare pyrolysis heavy oil, which is separated and recovered by the pyrolysis heavy oil and cracked gasoline recovery section. Furthermore, pyrolytic heavy oil B was prepared by mixing with a component having 9 or more carbon atoms (aromatic hydrocarbon). A cracked gasoline heavy oil C obtained by an FCC apparatus and a heavy oil D obtained by a catalytic reformer were prepared. Table 1 shows the properties of each feedstock.
  • the catalyst A was charged into a fixed bed continuous flow reactor, and the catalyst was first presulfided. That is, a density of 851.6 kg / m 3 at 15 ° C., an initial boiling point in a distillation test of 231 ° C., a final boiling point of 376 ° C., a sulfur content of 1.18% by mass as a sulfur atom based on the mass of a pre-sulfurized raw material oil, 1% by mass of DMDS based on the mass of the fraction is added to a fraction corresponding to a straight-run gas oil having a hue of L1.5 (preliminary sulfurized feedstock), and this is continuously added to the catalyst A for 48 hours. Supplied to.
  • the distillation properties in Tables 1 and 2 were measured in accordance with “Petroleum Products—Distillation Test Method” defined in JIS K 2254, respectively.
  • the density (at 15 ° C.) in Table 1 is defined in “Petroleum products-distillation test method” defined in JIS K 2254, and the kinematic viscosity (at 30 ° C., at 40 ° C.) is defined in “Crude oil and petroleum Sulfur content was measured in accordance with “Product—Kinematic viscosity test method and viscosity index calculation method” and “Crude oil and petroleum products—Sulfur content test method” defined in JIS K2541, respectively.
  • the compositions in Tables 1 and 2 are as follows.
  • Mass spectrometry (equipment: manufactured by JEOL Ltd., JMS-700) of the saturated hydrocarbon content and aromatic hydrocarbon content obtained by silica gel chromatography fractionation by EI ionization method. ) And calculated by hydrocarbon type analysis in accordance with ASTM D2425 “Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry”.
  • the solution (B) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under self-pressure under the conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure. Further, the SiO 2 / Al 2 O 3 ratio (molar ratio) was 65 by X-ray fluorescence analysis (model name: Rigaku ZSX101e). In addition, the aluminum element contained in the lattice skeleton calculated from this result was 1.3% by mass.
  • the second phosphorus treatment step 30 g of phosphoric acid aqueous solution is impregnated so that 1.5 mass% of phosphorus (a value in which the total mass of the phosphorus-treated crystalline aluminosilicate / alumina mixture is 100 mass%) is supported. And dried at 120 ° C. Thereafter, it was calcined at 780 ° C. for 3 hours under air flow to obtain an aluminosilicate (MFI zeolite) catalyst B. In this aluminosilicate catalyst, the weight composition of the phosphorus-treated crystalline aluminosilicate / alumina is 90% by mass / 10% by mass.
  • MFI zeolite aluminosilicate
  • a first solution was prepared by dissolving 202 g of tetraethylammonium hydroxide aqueous solution (40% by mass) in 59.0 g of silicic acid (SiO 2 : 89% by mass). This first solution was added to a second solution prepared by dissolving 0.74 g Al-pellets and 2.69 g sodium hydroxide in 17.7 g water. In this way, the first solution and the second solution are mixed, and the composition (molar ratio of oxide) is 2.4Na 2 O-20.0 (TEA) 2 -Al 2 O.
  • diammonium hydrogen phosphate is supported on 30 g of proton-type BEA zeolite so that 2.0% by mass of phosphorus (the total mass of crystalline aluminosilicate is 100% by mass) is supported in the first phosphorus treatment step.
  • 30 g of an aqueous solution was impregnated and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the phosphorus treatment crystalline aluminosilicate (BEA zeolite).
  • Preparation of aluminosilicate including MFI and BEA zeolite
  • Phosphorus-treated crystalline aluminosilicate obtained by mixing 9 parts by mass of phosphorous-treated crystalline aluminosilicate B (MFI zeolite) with 1 part by mass of the phosphorous-treated crystalline aluminosilicate (BEA zeolite) Zeolite) and alumina powder (JGC Catalysts & Chemicals, Cataloid AP-1, Al2O3 content: 71.7 wt%) while kneading while adding an appropriate amount of purified water, and soot-like phosphorus-treated crystalline aluminosilicate / alumina mixture did.
  • Hydrothermal treatment catalyst B-1 and hydrothermal treatment catalyst D- as shown in Table 3 were prepared by using the catalyst B and catalyst D, respectively, at a water vapor concentration of 100%, a heating temperature of 700 ° C., and a treatment time of 15 minutes. 1 was prepared.
  • the catalytic activity at the initial reaction of the obtained catalyst and the catalytic activity after hydrothermal deterioration were evaluated as follows.
  • Examples 7 and 8 using the hydrothermally treated catalysts B-1 and D-1 were more carbon number than Examples 1 and 3 using the non-hydrothermally treated catalysts B and D.
  • 6-8 monocyclic aromatic hydrocarbons (benzene, toluene, xylene) could be produced efficiently. Therefore, it was confirmed that BTX can be produced more efficiently by using a catalyst that has been subjected to appropriate hydrothermal treatment in advance. It was also found that in Examples 9 and 10 using raw materials different from those in Examples 1 to 8, monocyclic aromatic hydrocarbons (benzene, toluene, xylene) having 6 to 8 carbon atoms can be produced efficiently. Therefore, in Examples 1 to 10, it was confirmed that BTX can be produced efficiently by using the aluminosilicate catalyst obtained through the first and second phosphorus treatment steps.
  • the catalyst B, the catalyst B-1 and the catalyst H are each subjected to a pseudo hydrothermal deterioration by hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and steam of 100% by mass. It was.
  • the state after the pseudo hydrothermal degradation is defined as “after hydrothermal degradation”, and the raw material oil is reacted in the same manner as in the above-mentioned [Production of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms at the initial stage of the reaction].
  • the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation. The evaluation results are shown in Table 5.
  • Example 11 and Example 12 reacted with the aluminosilicate catalyst obtained through the first and second phosphorus treatment steps were treated in the first or second phosphorus treatment step.
  • the yield reduction of the BTX fraction after the initial reaction and after hydrothermal deterioration was small, and the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (benzene, toluene, It has been found that xylene) can be produced efficiently. Therefore, in Example 11 and Example 12 of the present invention, hydrothermal stability is increased and catalyst deterioration is suppressed by using the aluminosilicate catalyst obtained through the first and second phosphorus treatment steps. Thus, it was confirmed that BTX can be produced efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 結晶性アルミノシリケートを第1のリン化合物で処理する第1のリン処理工程と、前記第1のリン処理工程で得られたリン処理結晶性アルミノシリケートと結合剤とを混合し、焼成してアルミノシリケート混合物を形成する混合・焼成工程と、前記アルミノシリケート混合物を第2のリン化合物で処理する第2のリン処理工程と、を有することを特徴とするアルミノシリケート触媒の製造方法。

Description

アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法
 本発明は、アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び炭素数6~8の単環芳香族炭化水素の製造方法に関する。
 本願は、2014年4月4日に日本に出願された、特願2014-078010号に基づき優先権主張し、その内容をここに援用する。
 近年、例えば流動接触分解(以下、「FCC」と称する。)装置で生成する分解軽油であるライトサイクル油(以下、「LCO」と称する。)等の多環芳香族炭化水素分を含む原料油から、高オクタン価ガソリン基材や石油化学原料として利用できる、付加価値が高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、粗キシレン。以下、これらをまとめて「BTX」と称する。)を効率よく製造する技術が提案されている。
 多環芳香族分からBTXを製造する方法としては、原料油を触媒に接触させて分解改質反応させ、炭素数6~8の単環芳香族炭化水素を含む生成物を得る方法が知られている。
 分解改質反応を行う反応形式については、固定床、流動床、移動床など種々のプロセスが知られているが、建設コストや運転コストが安価であるなどの点では固定床が有利である。
 ところで、前記した単環芳香族炭化水素を製造する分解改質反応のような処理を行う場合、通常は触媒として、酸点を有するゼオライト触媒(結晶性アルミノシリケート触媒)が用いられる。このようなゼオライト触媒は、例えば実験室レベルではその性能を良好な状態に維持するため、バインダーを添加することなくそのまま用いられる。しかし、固定床の反応塔では、特にプラントの実機レベルの場合、その強度不足を補うため、触媒性能は多少低下するものの、バインダーを用いて成型したものが用いられる。
 すなわち、運転中に触媒が粉化して反応塔を流れる油が偏流することで、あるいは、粉化した触媒が反応塔の出口側に設けられたフィルターを頻繁に目詰まりさせることで、運転に支障を来さないように、バインダー等を用いて成型したゼオライト触媒が用いられる。
 このようなバインダーを用いて成型したゼオライト触媒としては、例えば特許文献1に記載されたものが知られている。特許文献1に記載されたゼオライト触媒は、例えばトルエンのメチル化など、主に芳香族化合物のアルキル化に用いられるもので、ゼオライトをリン化合物で処理してリン処理ゼオライトを形成し、該リン処理ゼオライトを300℃から400℃の温度に加熱し、前記加熱されたリン処理ゼオライトをアルミナ含有結合剤と混合して、ゼオライト・結合剤混合物を形成し、その後該ゼオライト・結合剤混合物を400℃以上の温度で加熱することで、形成されたものである。
特許第5254789号公報
 ところが、バインダーを添加したゼオライト触媒では、バインダーが有する酸点に起因してコークの生成が顕著になる。このようにコークの生成が顕著になると、特に固定床では触媒の「反応・再生」のサイクルを短くする必要があり、運転コストが増大して固定床を用いるメリットが少なくなってしまう。また、再生を頻繁に繰り返すことで、水熱劣化によりアルミノシリケート触媒が有する酸点が失われて、触媒そのものの活性が低下してしまうことから、触媒寿命の観点からも好ましくない。
 本発明は前記事情に鑑みてなされたもので、その目的とするところは、コークの生成を抑え、かつ、ゼオライトそのものの水熱劣化を抑制することで、ゼオライト触媒の活性低下を抑制し、かつ水熱安定性を高めたアルミノシリケート触媒とその製造方法、及びこのアルミノシリケート触媒を用いた炭素数6~8の単環芳香族炭化水素の製造方法を提供することにある。
 本発明の一の態様(aspect)にかかるアルミノシリケート触媒の製造方法は、結晶性アルミノシリケートを第1のリン化合物で処理する第1のリン処理工程と、前記第1のリン処理工程で得られたリン処理結晶性アルミノシリケートと結合剤とを混合し、焼成してアルミノシリケート混合物を形成する混合・焼成工程と、前記アルミノシリケート混合物を第2のリン化合物で処理する第2のリン処理工程と、を有することを特徴とする。
 また、前記アルミノシリケート触媒の製造方法において、前記混合・焼成工程では、リン処理結晶性アルミノシリケートと結合剤とを混合し、成型した後、得られた成型体を焼成してもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記結晶性アルミノシリケートが、中細孔ゼオライト及び大細孔ゼオライトからなる群より選ばれる少なくとも一種を主成分としたものであってもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記アルミノシリケート触媒の製造方法においては、前記結晶性アルミノシリケートが、ペンタシル型ゼオライトであってもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記結晶性アルミノシリケートが、MFI型ゼオライトであってもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記結合剤が、アルミナを含有していてもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記第2のリン化合物としてリン酸を用いてもよい。
 また、前記アルミノシリケート触媒の製造方法においては、前記第2のリン処理工程の後、水蒸気を含む雰囲気で加熱処理を行ってもよい。
 本発明の他の態様にかかるアルミノシリケート触媒は、前記のアルミノシリケート触媒の製造方法によって得られたことを特徴とする。
 本発明の更に他の態様にかかる炭素数6~8の単環芳香族炭化水素の製造方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油を、固定床反応器に充填した前記アルミノシリケート触媒を含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素を含む生成物を得る分解改質反応工程を有する、ことを特徴とする。
 また、前記炭素数6~8の単環芳香族炭化水素の製造方法において、前記分解改質反応工程では、2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応と前記単環芳香族炭化水素製造用触媒の再生とを繰り返す、としてもよい。
 また、前記炭素数6~8の単環芳香族炭化水素の製造方法においては、前記原料油が、分解軽油もしくは該分解軽油の部分水素化物であってもよい。
 また、前記炭素数6~8の単環芳香族炭化水素の製造方法においては、前記原料油が、エチレン製造装置から得られる熱分解重質油もしくは該熱分解重質油の部分水素化物であってもよい。
 本発明の一の態様にかかるアルミノシリケート触媒の製造方法によれば、コークの生成を抑えて触媒の活性低下を抑制したアルミノシリケート触媒を製造することができる。
 本発明の他の態様にかかるアルミノシリケート触媒によれば、コークの生成を抑えることができ、これによって触媒活性の低下が抑制された優れたものとなる。
 本発明の更に他の態様にかかる炭素数6~8の単環芳香族炭化水素の製造方法によれば、前記のアルミノシリケート触媒を用いることにより、コークの生成を抑えて炭素数6~8の単環芳香族炭化水素を効率良く製造することができる。
本実施形態に係る炭素数6~8の単環芳香族炭化水素の製造方法を実施するのに用いられる製造装置の一例を示す図である。
 以下、本発明を詳しく説明する。
 まず、本実施形態に係るアルミノシリケート触媒の製造方法について説明する。
 本実施形態に係るアルミノシリケート触媒は、結晶性アルミノシリケート(ゼオライト)にバインダーを混合し、焼成して形成する触媒であって、主に、結晶性アルミノシリケートの酸点を用いる種々の反応に用いられる触媒である。
[結晶性アルミノシリケート]
 結晶性アルミノシリケートとしては、例えば後述する分解改質反応において単環芳香族炭化水素の収率をより高くできるなど、その酸点を用いる反応に対する活性が高いことから、中細孔ゼオライト及び/又は大細孔ゼオライトを主成分としたものであることが好ましい。
 中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
 大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、単環芳香族炭化水素の収率をより高くできることから、BEA型が好ましい。
 また、結晶性アルミノシリケートは、中細孔ゼオライトおよび大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
 ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
 超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
 また、結晶性アルミノシリケートは、ペンタシル型ゼオライトを主成分としたものであってもよい。ペンタシル型ゼオライトは、H-ZSM-5で代表されるもので、5員環(ペンタシル骨格)を最小単位として構築されたアルミノシリケートである。このようなペンタシル型ゼオライトは、ケイ素とアルミニウムとのモル比率(Si/Al比)を6~∞と広範囲に変えることができ、固体酸量、及び、親水/疎水バランスを自在に制御できる。また、イオン交換によって酸、塩基性のバランスを制御できる等、優れた性能を有する。
 また、結晶性アルミノシリケートは、ケイ素とアルミニウムとのモル比率(Si/Al比)が100以下であり、50以下であることが好ましい。結晶性アルミノシリケートのSi/Al比が100を超えると、単環芳香族炭化水素の収率が低くなる。
 また、単環芳香族炭化水素の十分な収率を得るためには、結晶性アルミノシリケートのSi/Al比は、10以上であることが好ましい。
[第1のリン酸処理工程]
 このような結晶性アルミノシリケート(ゼオライト)を、本実施形態では第1のリン酸化合物で処理してリン処理結晶性アルミノシリケートとする。すなわち、結晶性アルミノシリケートを第1のリン酸化合物で処理することにより、結晶性アルミノシリケートにリンを担持させ、リン処理結晶性アルミノシリケート(リン担持結晶性アルミノシリケート)を形成する。なお、処理に供する結晶性アルミノシリケートとしては、後段の混合、及び成型に支障が無いよう、適宜な粒径に調整されたものを用いるのが好ましい。
 結晶性アルミノシリケートの粒径は、例えば、篩分け、晶析、成型、粉砕、あるいはスプレードライヤー等により調整することができる。
 第1のリン酸化合物としては、リン酸(HPO)、リン酸水素二アンモニウム((NHHPO)、リン酸二水素アンモニウム((NH)HPO)、及びその他の水溶性リン酸塩(例えば、リン酸ナトリウム、リン酸カリウム等)が挙げられ、処理対象である結晶性アルミノシリケートの性状等に応じて適宜選択され、用いられる。好ましくは、リン酸水素二アンモニウムが用いられる。
 また、これら化合物は、水等に溶解されて適宜な濃度に調製されて使用される。
 結晶性アルミノシリケートに対する前記第1のリン酸化合物による処理法、すなわち結晶性アルミノシリケートにリンを担持させる方法としては、含浸法や噴霧法など、従来公知の湿式法が採用される。
 また、このような第1のリン酸化合物の水溶液との接触処理を行った後、乾燥処理し、さらに焼成処理することにより、リン処理結晶性アルミノシリケートを得る。その際、第1のリン酸化合物の水溶液中の水分をほぼ全量蒸発させることで、第1のリン酸化合物中のリン成分のほぼ全量を結晶性アルミノシリケートに担持させる。
 乾燥温度としては、100℃以上、好ましくは110℃以上とする。乾燥温度の上限値は450℃以下、好ましくは400℃以下、さらに好ましくは350℃以下とする。焼成処理法としては、例えば空気中での焼成やスチーム焼成法など、従来公知の種々の方法が採用可能である。焼成温度としては、500℃以上、好ましくは550℃以上とする。焼成温度の上限値は、1000℃以下、好ましくは900℃以下、さらに好ましくは800℃以下とする。
 なお、このような焼成処理後のリン処理結晶性アルミノシリケートをそのまま次工程で用いることも可能であるが、焼成処理等によって結晶性アルミノシリケートが大粒径化したり一部が微粉化する場合には、必要に応じて粉砕処理等を行い、適宜な粒径に調整して次工程に供するのが好ましい。
 リン処理結晶性アルミノシリケート中のリンの含有量、すなわちリンの担持量としては、リン処理結晶性アルミノシリケートの全量を100質量%とした場合、リン原子の量が0.1質量%以上10.0質量%以下であることが好ましく、0.5質量%以上5.0質量%以下であることがより好ましく、1.0~3.0質量%程度とするのがさらに好ましい。
 このように結晶性アルミノシリケートにリンを担持させることにより、この結晶性アルミノシリケートの酸点の強さ(量)を調整し、得られる触媒の水熱劣化を抑制することができる。
 アルミノシリケート触媒は、前述したような単環芳香族炭化水素を製造する分解改質反応などの処理に用いられる場合、コークの生成のため特に固定床では「反応→再生→反応→再生……」を繰り返す。このような反応、再生のサイクルにおいて、再生時には高温での焼成処理によってコークを分解除去するが、このようなコークの焼成によって水が生成する。すると、アルミノシリケート触媒は、焼成時の熱と水とによって酸点が消失する水熱劣化により、活性が劣化し、触媒性能が低下してしまう。
 このような現象に対し、結晶性アルミノシリケートに担持されたリンは、アルミノシリケート触媒の酸点を弱めることで水熱劣化を抑制することができる。また、これによってコークの生成も抑制することができる。ただし、このようなリン担持処理は、リンの担持量が多くなると酸点による本来の触媒活性も低下させるので、前述したように10.0質量%以下、好ましくは5.0質量%以下にするのが望ましい。また、水熱劣化を抑制するためには、0.1質量%以上、好ましくは0.5質量%以上担持させるのが望ましい。
 このようにしてリンを担持させると、結晶性アルミノシリケートはその酸点が調整されることにより、前述した水熱劣化が抑制されるようになる。
 なお、結晶性アルミノシリケートとしては、特に得られるアルミノシリケート触媒を後述する単環芳香族炭化水素製造用触媒として用いる場合、リンを担持する以外に、さらにガリウム及び/又は亜鉛を含有させてもよい。ガリウム及び/又は亜鉛を含有することで、より効率的なBTX製造が期待できる。
 ガリウムおよび/または亜鉛を含む結晶性アルミノシリケートとしては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートにガリウムを担持したもの(Ga担持結晶性アルミノシリケート)、結晶性アルミノシリケートに亜鉛を担持したもの(Zn担持結晶性アルミノシリケート)、それらを少なくとも1種以上含んだものが挙げられる。
[アルミノシリケート混合物を形成する混合・焼成工程]
 次に、形成したリン処理結晶性アルミノシリケートとバインダー(結合剤)とを混合し、さらに乾燥し焼成してアルミノシリケート混合物を形成する。
[バインダー]
 バインダー(結合剤)としては、特に限定されることなく、前記のリン処理結晶性アルミノシリケートの活性を損なわないものであれば種々のものが使用可能である。具体的には、アルミナやシリカ、チタニアなどの無機物質やこれらを含有するものが好適に用いられる。中でも、粉末状のアルミナであるアルミナパウダーはバインダー力(結合力)に優れており、比較的少量でリン処理結晶性アルミノシリケートに成型可能な結合力を付与できるため、好ましい。すなわち、バインダーの添加量を少なくすることができれば、バインダーを添加し、混合することによるアルミノシリケート触媒の活性低下を抑えることができる。
 ただし、アルミナは例えばシリカに比べて酸点が多く、したがってコークの生成が顕著になる傾向にある。なお、シリカはアルミナに比べてバインダー力が低く、したがって添加量を多くする必要がある。また、チタニアはアルミナに比べて酸点が多く、高価である。
 バインダーとしてアルミナ(アルミナパウダー)を用いる場合、前記のリン処理結晶性アルミノシリケートとの配合比が重要である。すなわち、バインダーの量が多いほど良好な成型性を得ることができ、さらに形成するアルミノシリケート触媒の良好な機械的強度を得ることができる。一方で、バインダーの量が多くなるほど、バインダーを添加することによるアルミノシリケート触媒の活性低下が顕著になる。アルミノシリケート触媒に含まれるバインダー(アルミナ)の含有量は5質量%以上50質量%以下であることが好ましく、10質量%以上40質量%以下であることがより好ましい。
 ただし、アルミナ(アルミナパウダー)とリン処理結晶性アルミノシリケートとの配合比は、前記質量比に限定されることなく任意に設定することができる。
 また、バインダーとしてシリカを用いた場合には、アルミノシリケート触媒に含まれるバインダー(シリカ)の含有量は10質量%以上50質量%以下であることが好ましく、15質量%以上40質量%以下であることがより好ましい。
 なお、アルミナ(アルミナパウダー)等のバインダーについては、予めリンを含有したものを用いてもよい。ただし、バインダーに対してリン化合物によるリン処理を行うと、バインダーが変質してそのバインダー性能が低下する可能性が高いため、前記した結晶性アルミノシリケートに対するようなリン化合物によるリン処理をバインダーに対して行うのは好ましくない。
 リン処理結晶性アルミノシリケートとバインダーとの混合については、例えば両者に水や有機溶媒等の液体を加えて混練りする。
 続いて、得られた混合物(混練物)を成型機によって所望の形状に成型し、大気中にて100℃以上、好ましくは110℃以上で乾燥する。混合物の成型形状としては、粒状やペレット状など種々の形状にすることができる。例えば、成型機として押出成型機を用いた場合には、任意の直径(例えば直径0.5~3mm)や高さの円柱形状に成型することができる。
 その後、得られた乾燥物(成型物)を大気中にて500℃以上、好ましくは550℃以上で焼成し、アルミノシリケート混合物の成型体を得る。
[第2のリン酸処理工程]
 次いで、形成したアルミノシリケート混合物の成型体を第2のリン化合物で処理し、アルミノシリケート触媒を得る。
 すなわち、アルミノシリケート混合物を第2のリン酸化合物で処理することにより、主にバインダーに選択的にリンを担持させる。なお、処理に供するアルミノシリケート混合物としては、先に成型を行っているのでそのまま使用することが可能であるが、焼成処理等によってアルミノシリケート混合物が大粒径化したり一部が微粉化する場合には、必要に応じて粉砕処理等を行い、適宜な粒径にするのが好ましい。
 第2のリン酸化合物としては、前記第1のリン酸化合物と同様に、リン酸(HPO)、リン酸水素二アンモニウム((NHHPO)、リン酸二水素アンモニウム((NH)HPO)、及びその他の水溶性リン酸塩(例えば、リン酸ナトリウム、リン酸カリウム等)が挙げられ、処理対象であるアルミノシリケート混合物の性状等に応じて適宜選択され、用いられる。また、これら化合物は、水等に溶解されて適宜な濃度に調製されて使用される。特にバインダーとしてアルミナ(アルミナパウダー)を用いた場合には、リン酸が好適に用いられる。リン酸は、バインダーとしてのアルミナに選択的に付着するため、アルミノシリケートの酸点はそのままにして、バインダーの酸点を選択的に弱めることができる。
 アルミノシリケート混合物の成型体に対する前記第2のリン酸化合物による処理法、すなわちアルミノシリケート混合物にリンを担持させる方法としては、含浸法や噴霧法など、従来公知の湿式法が採用される。
 また、このような第2のリン酸化合物の水溶液との接触処理を行った後、乾燥処理し、さらに焼成処理することにより、本実施形態に係るアルミノシリケート触媒を得る。その際、第2のリン酸化合物の水溶液中の水分をほぼ全量蒸発させることで、第2のリン酸化合物中のリン成分のほぼ全量をアルミノシリケート混合物に担持させる。
 乾燥温度としては、100℃以上、好ましくは110℃以上とする。乾燥温度の上限値は450℃以下、好ましくは400℃以下、さらに好ましくは350℃以下とする。焼成処理法としては、例えば空気中での焼成など、従来公知の種々の方法が採用可能である。焼成温度としては、500℃以上、好ましくは550℃以上とする。焼成温度の上限値は、1000℃以下、好ましくは900℃以下、さらに好ましくは800℃以下とする。
 また、このように焼成処理を行った後、得られた焼成物をスチーミング処理すること(水蒸気を含む雰囲気で加熱処理を行うこと)が好ましい。
 前記スチーミング処理を行うことにより、従来知られているように活性の高い酸点を有するAlを触媒中から減らす(一部消失させる)ことができる。つまり、特に工程初期(反応初期)において反応に寄与するものの、その分コークの生成・付着(堆積)による劣化が顕著な酸点を減らすことができる。
 したがって、このような処理を行った触媒を用いることにより、工程初期における反応効率は若干低下するものの、反応が進むに連れて起こる触媒の劣化を抑制することができる。また、触媒の劣化による収率の低下を抑制できるため、活性の高い酸点を有するAlを触媒中から減らしているにもかかわらず、反応工程全体で見た場合の収率を向上することができる。
 また、特にアルミナをバインダーとしたときのバインダー中の酸点を焼成物中から減らす(一部消失させる)ことができ、これによって触媒へのコークの生成・付着(堆積)を抑制することができる。
 このようなスチーミング処理の具体的条件としては、加熱温度を600℃以上900℃以下とすることが好ましく、650℃以上850℃以下とすることがより好ましい。600℃未満では、酸点を減らす効果が少なく、900℃を超えると、処理に要するコストが大きく増加するため、好ましくない。
 加熱を行う際の処理雰囲気における水蒸気濃度としては、10%以上100%以下とするのが好ましく、20%以上とするのがより好ましい。水蒸気濃度を100%未満とした場合、共存させるガスとしては、空気または窒素が用いられる。
 このような加熱温度や水蒸気濃度は、処理時間によって適宜に選択される。すなわち、加熱温度や水蒸気濃度を高くした場合、処理時間を相対的に短くすることができ、逆に加熱温度や水蒸気濃度を低くした場合、処理時間を相対的に長くする必要がある。処理時間としては、10分以上24時間未満で行う事が望ましい。10分未満では水熱処理条件を均質化することが難しく、また、24時間以上費やす事は、長期間装置を占有してしまう事から非効率である。
 具体的には、加熱温度を650℃以上850℃以下とし、水蒸気濃度を20%以上とした場合、処理時間を15分以上5時間以下程度とすることができる。
 このような水蒸気による加熱処理を行うための装置としては、例えば複数段のキルンを用いることができる。その場合に、前段側で乾燥処理及び焼成処理を行い、後段側で水蒸気による加熱処理を行うことにより、触媒を連続的に処理することができる。なお、反応装置内に触媒を充填した後に水蒸気による加熱処理することも可能であり、また、バッチ式の水熱処理用加熱装置などを用いる事も可能である。
 このようにして得られたアルミノシリケート触媒については、そのまま固定床用触媒として使用することも可能であるが、焼成処理等によってアルミノシリケート触媒が大粒径化したり一部が微粉化する場合には、必要に応じて粉砕処理等を行い、適宜な粒径に調整するのが好ましい。
 第2のリン酸処理工程によって新たに担持させるリンの量としては、焼成処理後に得られるアルミノシリケート触媒の全量を100質量%とした場合、リン原子の量が0.1質量%以上10.0質量%以下であることが好ましく、0.25質量以上3質量%以下であることがより好ましく、0.5~2.5質量%程度とするのがさらに好ましい。このようにアルミノシリケート触媒にリンを担持させると、結晶性アルミノシリケートには第1のリン処理工程でリンが担持されているため、第2のリン処理工程によるリンは主にバインダーに担持される。したがって、バインダーの酸点が選択的にリンと結合し、弱められることにより、得られたアルミノシリケート触媒は、例えば後述する単環芳香族炭化水素の製造においてコークの生成を抑えることができる。
 よって、本実施形態に係るアルミノシリケート触媒の製造方法によれば、単環芳香族炭化水素の製造など、結晶性アルミノシリケートの酸点を用いる種々の反応においてコークの生成を抑えることができ、したがって触媒の活性低下を抑制したアルミノシリケート触媒を良好に製造することができる。
 また、混合・焼成工程では、リン処理結晶性アルミノシリケートとバインダーとを混合(混練)し、成型した後、得られた成型体を焼成しているので、得られたアルミノシリケート触媒が良好な機械強度を有するものとなり、したがって後述するような分解改質反応を行う固定床などに好適に使用可能なものとなる。
 また、前記結晶性アルミノシリケートとして、中細孔ゼオライト及び/又は大細孔ゼオライトを主成分としたものや、ペンタシル型ゼオライト、MFI型ゼオライトを用いることにより、得られるアルミノシリケート触媒をより活性の高いものにすることができる。
 また、バインダー(結合剤)としてアルミナを含有するものを用いれば、アルミナはバインダー性能に優れ、したがってその添加量を少なくすることができるため、得られるアルミノシリケート触媒の触媒性能を良好にすることができる。
 また、バインダーとしてアルミナを含有するものを用いた場合に、第2のリン化合物としてリン酸を用いることにより、リン酸がバインダーとしてのアルミナに選択的に付着するため、アルミノシリケートの酸点はそのままにして、バインダーの酸点を選択的に弱めることができる。よって、得られるアルミノシリケート触媒のコークの生成、堆積を抑制することができる。
 また、このようなアルミノシリケート触媒の製造方法によって得られた本実施形態に係るアルミノシリケート触媒は、結晶性アルミノシリケートの酸点を用いる種々の反応においてコークの生成を抑えることができる。
[炭素数6~8の単環芳香族炭化水素の製造方法]
 次に、前記アルミノシリケート触媒の製造方法によって得られた本実施形態に係るアルミノシリケート触媒を単環芳香族炭化水素製造用触媒として用いた、炭素数6~8の単環芳香族炭化水素の製造方法について説明する。図1は、本実施形態に係る炭素数6~8の単環芳香族炭化水素の製造方法を実施するのに用いられる製造装置の一例を示す図である。図1に示す製造装置1は、原料油から炭素数6~8の単環芳香族炭化水素(BTX留分)の生成を行うものである。
(原料油)
 本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下の油である。10容量%留出温度が140℃未満の油では、目的とする単環芳香族炭化水素が分解してしまい、生産性が低下する。また、90容量%留出温度が390℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低くなる上に、単環芳香族炭化水素製造用触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度は360℃以下であることが好ましい。なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値を意味する。
 10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油としては、例えば、流動接触分解装置で生成する分解軽油(LCO)、LCOの水素化精製油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油、エチレン製造装置から得られる熱分解重質油、エチレン製造装置から得られる熱分解重質油の水素化物、流動接触分解装置で得られる分解ガソリン重質油(HCCG)、接触改質装置で得られる重質油(PLAT-BTM)などが挙げられる。
 流動接触分解装置で生成する分解軽油(LCO)なども多くの芳香族炭化水素を含有する。エチレン製造装置から得られる熱分解重質油は、エチレン製造装置から得られるBTX留分よりも重質な留分であり、芳香族炭化水素を多く含有する。芳香族炭化水素の中でも多環芳香族を多く含有する留分を用いる場合は、後の分解改質反応においてコーク生成の要因となるので、水素化処理を行う事が望ましい。なお、上記熱分解重質油やLCOに由来する留分であっても、単環芳香族炭化水素が多い留分においては、水素化処理は必ずしも必要ない。
 他の原料油においても、基本的には同じ考え方で原料油を選定し、過度に分解改質反応にてコークが生成される原料油は避けることが望ましい。流動接触分解装置で得られる分解ガソリン重質油、接触改質装置で得られる重質油は原料中に含まれる多環芳香族が少ない留分であるため、水素化処理を実施しなくても良い。
 多環芳香族炭化水素は、反応性が低く本実施形態の分解改質反応では、単環芳香族炭化水素に転換されにくい物質ではある。しかし、一方で、多環芳香族炭化水素が水素化反応にて水素化されるとナフテノベンゼン類に転換され、次いで分解改質反応に供給されることで単環芳香族炭化水素に転換可能である。しかしながら、多環芳香族炭化水素の中でも3環以上の芳香族炭化水素は、水素化反応工程において多くの水素を消費し、かつ水素化反応物であっても分解改質反応における反応性が低いため、多く含むことは好ましくない。従って、原料油中の3環以上の芳香族炭化水素は25容量%以下であることが好ましく、15容量%以下であることがより好ましい。
 なお、ここでいう多環芳香族分とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定、あるいはFIDガスクロマトグラフ法または2次元ガスクロマトグラフ法にて分析される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。以降、多環芳香族炭化水素、2環芳香族炭化水素、3環以上の芳香族炭化水素の含有量が容量%で示されている場合は、JPI-5S-49に準拠して測定されたものであり、質量%で示されている場合は、FIDガスクロマトグラフ法または2次元ガスクロマトグラフ法に基づいて測定されたものである。
(原料油の水素化処理)
 原料油をあらかじめ水素化処理する場合は、以下のような指針で水素化反応を行う事が望ましい。水素化反応においては、水素化原料油を完全に水素化することなく、部分水素化を行うようにする。すなわち、主として原料油中の2環芳香族炭化水素を選択的に水素化し、芳香環を1つのみ水素化した1環芳香族炭化水素(ナフテノベンゼン類等)に転換する。ここで、1環芳香族炭化水素(単環芳香族炭化水素)としては、例えばインダン、テトラリン、アルキルベンゼン等が挙げられる。
 このように部分的に水素化処理を行えば、水素化反応工程での水素消費量を抑えると同時に、処理時の発熱量も抑制することができる。例えば、2環芳香族炭化水素の代表例であるナフタレンをデカリンに水素化する際には、ナフタレン1モル当たりの水素消費量は5モルとなるが、テトラリンに水素化する場合には水素消費量が2モルで実現可能となる。また、原料油(熱分解重質油)中にはインデン類を含む留分も多く存在するが、この留分をインダン類に水素化するのに必要な水素消費量は、ナフタレンをデカリンに水素化するのに必要な量よりさらに少ない。したがって、原料油中の2環芳香族炭化水素を、より効率的にナフテノベンゼン類へ転換することが可能になる。
 なお、この水素化反応に用いられる水素については、後述する分解改質反応にて生成する水素を用いる事も可能である。
 このような水素化処理を行う水素化反応装置2としては、公知の水素化反応器で行うことができる。この水素化反応において、反応器入口での水素分圧は、1~9MPaであることが好ましい。下限としては1.2MPa以上がより好ましく、1.5MPa以上がさらに好ましい。また、上限としては7MPa以下がより好ましく、5MPa以下がさらに好ましい。水素分圧が1MPa未満の場合には、触媒上のコーク生成が激しくなり、触媒寿命が短くなる。一方、水素分圧が9MPaを超える場合には、2環芳香族炭化水素の2環ともが水素化されるような完全水素化が増大し、水素消費量が大幅に増大する上、単環芳香族炭化水素の収率が低下すること、水素化反応器や周辺機器の建設費が上昇することから、経済性が損なわれる懸念がある。
 また、水素化反応装置2による水素化反応のLHSV(Liquid Hourly Space Velocity;液空間速度)は、0.05~10h-1であることが好ましい。下限としては0.1h-1以上がより好ましく、0.2h-1以上がさらに好ましい。また、上限としては5h-1以下がより好ましく、3h-1以下がさらに好ましい。LHSVが0.05h-1未満の場合には、反応器の建設費が過大となり経済性が損なわれる懸念がある。一方、LHSVが10h-1を超える場合には、原料油の水素化処理が十分に進行せず、目的とする水素化物が得られない可能性がある。
 水素化反応装置2による水素化反応の反応温度(水素化温度)は、150℃~400℃であることが好ましい。下限としては170℃以上がより好ましく、190℃以上がさらに好ましい。また、上限としては380℃以下がより好ましく、370℃以下がさらに好ましい。反応温度が150℃を下回る場合には、原料油の水素化処理が十分に達成されない傾向にある。一方、反応温度が400℃を上回る場合には、副生成物であるガス分の発生が増加するため、水素化処理油の収率が低下することとなり、望ましくない。
 水素化反応装置2による水素化反応における水素/油比は、100~2000NL/Lであることが好ましい。下限としては110NL/L以上がより好ましく、120NL/L以上がさらに好ましい。また、上限としては1800N/L以下がより好ましく、1500NL/L以下がさらに好ましい。水素/油比が100NL/L未満の場合には、リアクター出口での触媒上のコーク生成が進行し、触媒寿命が短くなる傾向にある。一方、水素/油比が2000NL/Lを超える場合には、リサイクルコンプレッサーの建設費が過大になり、経済性が損なわれる懸念がある。
 水素化反応装置2の水素化処理における反応形式については、特に限定されないものの、通常は固定床、移動床等の種々のプロセスから選ぶことができ、中でも固定床が、建設コストや運転コストが安価であるため好ましい。また、水素化反応装置2は塔状であることが好ましい。
 水素化処理に使用される水素化処理用触媒は、原料油中の2環芳香族炭化水素を選択的に水素化して芳香環を1つのみ水素化した単環芳香族炭化水素(ナフテノベンゼン類等)に転換することが可能な触媒であれば、限定されることはない。好ましい水素化処理用触媒は、周期表第6族金属から選ばれる少なくとも1種の金属、及び周期表第8~10族金属から選ばれる少なくとも1種の金属を含有する。周期表第6族金属としてはモリブデン、タングステン、クロムが好ましく、モリブデン、タングステンが特に好ましい。周期表第8~10族金属としては、鉄、コバルト、ニッケルが好ましく、コバルト、ニッケルがより好ましい。これらの金属はそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。具体的な金属の組み合わせ例としては、モリブデン-コバルト、モリブデン-ニッケル、タングステン-ニッケル、モリブデン-コバルト-ニッケル、タングステン-コバルト-ニッケルなどが好ましく用いられる。なお、ここで周期表とは、国際純正・応用化学連合(IUPAC)により規定された長周期型の周期表をいう。
 前記水素化処理用触媒は、前記金属がアルミニウム酸化物を含む無機担体に担持されたものであることが好ましい。前記アルミニウム酸化物を含む無機担体の好ましい例としては、アルミナ、アルミナ-シリカ、アルミナ-ボリア、アルミナ-チタニア、アルミナ-ジルコニア、アルミナ-マグネシア、アルミナ-シリカ-ジルコニア、アルミナ-シリカ-チタニア、あるいは各種ゼオライト、セビオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機化合物をアルミナに添加した担体などを挙げることができ、中でもアルミナが特に好ましい。
 前記水素化処理用触媒は、アルミニウム酸化物を含む無機担体に、該無機担体と前記金属との合計質量である全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種の金属を10~30質量%と、周期表第8~10族金属から選択される少なくとも1種の金属を1~7質量%と、を担持させて得られる触媒であることが好ましい。周期表第6族金属の担持量や周期表第8~10族金属の担持量が、それぞれの下限未満である場合には、触媒が充分な水素化処理活性を発揮しない傾向にあり、一方、それぞれの上限を超える場合には、触媒コストが上昇する上に、担持金属の凝集等が起こり易くなり、触媒が充分な水素化処理活性を発揮しない傾向にある。
 前記金属を前記無機担体に担持する際に用いられる前記金属種の前駆体については、特に限定されないものの、該金属の無機塩、有機金属化合物等が使用され、水溶性の無機塩が好ましく使用される。担持工程においては、これら金属前駆体の溶液、好ましくは水溶液を用いて担持を行う。担持操作としては、例えば、浸漬法、含浸法、共沈法等の公知の方法が好ましく採用される。
 前記金属前駆体が担持された担体は、乾燥後、好ましくは酸素の存在下にて焼成され、金属種は一旦酸化物とされることが好ましい。さらに、原料油の水素化処理を行う前に、予備硫化と呼ばれる硫化処理により、前記金属種を硫化物とすることが好ましい。
 予備硫化の条件としては、特に限定されないものの、石油留分または熱分解重質油(以下、予備硫化原料油という。)に硫黄化合物を添加し、これを温度200~380℃、LHSVが1~2h-1、圧力は水素化処理運転時と同一、処理時間48時間以上の条件にて、前記水素化処理用触媒に連続的に接触せしめることが好ましい。前記予備硫化原料油に添加する硫黄化合物としては、限定されないものの、ジメチルジスルフィド(DMDS)、サルファゾール、硫化水素等が好ましく、これらを予備硫化原料油に対して予備硫化原料油の質量基準で1質量%程度添加することが好ましい。
 前記水素化反応装置2(水素化反応)から得られる水素化油(部分水素化物)は、図1に示すように後段の脱水素塔3にて水素が除去された後、分解改質反応装置4に供給され、分解改質反応に供される。また、分解改質反応装置4には、前記水素化油とともに多環芳香族を多く含まず水素化の必要性が低い、炭素数9~10程度の炭化水素を主とする留分を直接供給する事もできる。
[分解改質反応]
 分解改質反応装置4は、単環芳香族炭化水素製造用触媒を収容したもので、この触媒に供給された原料油(水素化油)を接触させ、反応させて、炭素数6~8の単環芳香族炭化水素を含む生成物を得る。
(単環芳香族炭化水素製造用触媒)
 単環芳香族炭化水素製造用触媒としては、本実施形態では前記したアルミノシリケート触媒、すなわち本実施形態のアルミノシリケート触媒の製造方法によって得られたアルミノシリケート触媒を用いる。
(反応形式)
 分解改質反応装置4の反応形式、すなわち分解改質反応装置4によって原料油(水素化油)を単環芳香族炭化水素製造用触媒と接触させ、分解改質反応させる際の反応形式としては、本実施形態では固定床が用いられる。
 固定床は、流動床や移動床に比べて装置コストが格段に安価である。すなわち、固定床は建設コストや運転コストが、流動床や移動床に比べて格段に安価である。したがって、本実施形態では、図1に示すように固定床の分解改質反応装置4(固定床反応器4)を用いるとともに、この固定床反応器4を2基用いている。固定床の反応器1基で反応と再生を繰り返す事も可能であるが、反応を連続して行うためには2基以上の反応器を設置し、これら反応器間で反応と再生とを交互に繰り返すのが好ましい。
 なお、図1では固定床反応器4を2基記載しているが、これに限定されることなく、3基以上設置してもよい。すなわち、固定床の分解改質反応装置では、分解改質反応の進行に連れて、特に前記触媒表面にコークが付着し、触媒の活性が低下する。このように活性が低下すると、この分解改質反応では、炭素数6~8の単環芳香族炭化水素(BTX)留分の収率が低下する。そのため、触媒の再生処理が必要となる。
 したがって、固定床の分解改質反応装置4(固定床反応器)では、予め設定された所定時間運転した後、コークの付着によって活性が低下した触媒の再生処理を行う。すなわち、2基以上の分解改質反応装置4(固定床反応器)を用い、これらを定期的に切り替えながら分解改質反応と単環芳香族炭化水素製造用触媒の再生とを繰り返す。
 1基の分解改質反応装置4で連続的に運転する運転時間としては、装置の大きさや各種運転条件(反応条件)によっても異なるものの、数時間~10日程度とされる。分解改質反応装置4(固定床反応器)の反応器数を多くすれば、1反応器あたりの連続運転時間を短くすることができ、触媒の活性低下を抑えることができるため、再生に要する時間も短縮することができる。
 ここで、本実施形態では単環芳香族炭化水素製造用触媒として前記のアルミノシリケート触媒を用いており、このアルミノシリケート触媒はコークの生成を抑えて触媒の活性低下を抑制している。したがって、本実施形態では従来の単環芳香族炭化水素製造用触媒を用いた場合に比べ、1基の分解改質反応装置4での連続運転時間中におけるコークの生成によるBTXの製造効率(転換効率)の低下を抑えることができる。すなわち、1基の分解改質反応装置4における連続運転時間を従来と同様にした場合に、従来に比べてBTXの製造効率を高めることができる。また、一回の連続運転中でのBTXの製造効率を従来と同様にしようとした場合、従来に比べて一回の連続運転を長くすることができる。したがって、「反応→再生」のサイクルを長くすることで、単環芳香族炭化水素製造用触媒の再生に要するコストなどを低減することができ、これによって従来に比べ運転コストを大幅に低減することができる。
(反応温度)
 原料油を触媒と接触、反応させる際の反応温度は、特に制限されないものの、350℃~700℃が好ましく、400℃~650℃がより好ましい。反応温度が350℃未満では、反応活性が十分でない。反応温度が700℃を超えると、エネルギー的に不利になると同時に、コーク生成が著しく増大し目的物の製造効率が低下する。
(反応圧力)
 原料油を触媒と接触、反応させる際の反応圧力は、0.1MPaG~2.0MPaGである。すなわち、原料油と単環芳香族炭化水素製造用触媒との接触を、0.1MPaG~2.0MPaGの圧力下で行う。
 本実施形態では、水素化分解による従来の方法とは反応思想が全く異なるため、水素化分解では優位とされる高圧条件を全く必要としない。むしろ、必要以上の高圧は、分解を促進し、目的としない軽質ガスを副生するため好ましくない。また、高圧条件を必要としないことは、反応装置設計上においても優位である。すなわち、反応圧力が0.1MPaG~2.0MPaGであれば、水素移行反応を効率的に行うことが可能である。
(接触時間)
 原料油と触媒との接触時間は、実質的に所望する反応が進行すれば特に制限されないものの、例えば、触媒上のガス通過時間で2~150秒が好ましく、3~100秒がより好ましく、5~80秒がさらに好ましい。接触時間が2秒未満では、実質的な反応が困難である。接触時間が150秒を超えると、コーキング等による触媒への炭素質の蓄積が多くなる、または分解による軽質ガスの発生量が多くなり、さらには装置も巨大となり好ましくない。
(再生処理)
 分解改質反応装置4によって分解改質反応処理を所定時間行ったら、分解改質反応処理の運転は別の分解改質反応装置4に切り替え、分解改質反応処理の運転を停止した分解改質反応装置4については、活性が低下した単環芳香族炭化水素製造用触媒の再生を行う。
 触媒の活性低下は、主に触媒表面へのコークの付着が原因であるため、再生処理としては、触媒表面からコークを除去する処理を行う。具体的には、分解改質反応装置4に空気を流通させ、触媒表面に付着したコークを燃焼させる。分解改質反応装置4は充分に高温に維持されているため、単に空気を流通させるだけで、触媒表面に付着したコークは容易に燃焼する。ただし、通常の空気を分解改質反応装置4に供給し流通させると、急激な燃焼を生じるおそれがある。そこで、予め窒素を混入して酸素濃度を下げた空気を、分解改質反応装置4に供給し流通させるのが好ましい。すなわち、再生処理に用いる空気としては、例えば酸素濃度を数%~10%程度に下げたものを用いるのが好ましい。また、必ずしも反応温度と再生温度を同一にする必要はなく、適宜好ましい温度を設定する事ができる。
(BTX留分の精製回収)
 分解改質反応装置4から導出された分解改質反応生成物には、炭素数2~4のオレフィンを含有するガス、ベンゼン、トルエン、キシレンを含むBTX留分、C9以上の芳香族炭化水素が含まれる。そこで、分解改質反応装置4の後段に設けられた精製回収装置5により、この分解改質反応生成物を各成分に分離し、精製回収する。
 精製回収装置5は、BTX留分回収塔6と、ガス分離塔7とを有している。
 BTX留分回収塔6は、前記の分解改質反応生成物を蒸留し、炭素数8以下の軽質留分と炭素数9以上の重質留分とに分離する。ガス分離塔7は、BTX留分回収塔6で分離された炭素数8以下の軽質留分を蒸留し、ベンゼン、トルエン、キシレンを含むBTX留分と、これらより低沸点のガス留分とに分離する。これにより、BTX留分である炭素数6~8単環芳香族炭化水素を高効率で製造することができる。
(リサイクル処理)
 また、BTX留分回収塔6で分離された炭素数9以上の重質留分(ボトム留分)については、リサイクル路8によって水素化反応装置2に戻し、原料油としての灯軽油(kerosene and light oil fraction)とともに再度水素化反応工程に供する。すなわち、この重質留分(ボトム留分)は、水素化反応装置2を経て分解改質反応装置4に戻され、分解改質反応に供されるようになる。
 本実施形態の炭素数6~8の単環芳香族炭化水素の製造方法によれば、単環芳香族炭化水素製造用触媒として前記のアルミノシリケート触媒を用いているので、このアルミノシリケート触媒が、コークの生成が抑えられてその活性低下が抑制されているため、従来の単環芳香族炭化水素製造用触媒を用いた場合に比べてBTXの製造効率を高めることができる。あるいは、「反応→再生」のサイクルを長くすることなどにより、従来に比べ運転コストを大幅に低減することができる。
 また、分解改質反応装置4として2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応と単環芳香族炭化水素製造用触媒の再生とを繰り返すようにしているので、BTX留分を高い生産効率で製造することができる。また、流動床反応器に比べて格段に装置コストが安価な固定床反応器を用いているので、分解改質プロセスに用いる装置構成のコストを充分に低く抑えることができる。
 なお、本発明は前記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
 例えば、前記実施形態では本発明の一の態様に係るアルミノシリケート触媒の製造方法で得られたアルミノシリケート触媒を、BTX製造プロセスの分解改質反応における単環芳香族炭化水素製造用触媒として用いる場合について説明したが、前述したように本発明に係るアルミノシリケート触媒はこの分解改質反応以外にも、結晶性アルミノシリケートの酸点を用いる種々の反応に用いることができる。
 具体的には、メタノールからのエチレン・プロピレン合成、メタノールとブテンからのプロピレン合成、ジメチルエーテルからのプロピレン合成、C4~C8パラフィンの接触分解によるプロピレン合成、C4~C8オレフィンの接触分解によるプロピレン合成、メタノールからのガソリン合成、エタンの脱水素によるエチレン合成、プロパンの脱水素によるプロピレン合成、ブタンの脱水素によるブテン合成、エチルベンゼンの脱水素によるスチレン合成、C2~C7パラフィンの環化脱水素によるBTX合成、C4~C5オレフィンの環化脱水素によるBTX合成、トルエンのメチル化によるキシレン合成、潤滑油基油を製造する接触脱ろうプロセス、混合キシレンの異性化によるパラキシレン合成、ベンゼン・トルエン・C9アロマからのトランスアルキル化あるいは不均化によるパラキシレン合成、ベンゼンのアルキル化(ベンゼンとエチレンからのエチルベンゼン合成、ベンゼンとプロピレンからのクメン合成)、ピリジン類の合成、シクロヘキサノールの合成、プロピレンやブテン類の二量化、オレフィンのアルキル化等に用いることができ、その場合にもコークの生成を抑えることができる。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[原料油の水素化処理油の製造方法]
(水素化処理用触媒の調製)
 濃度5質量%のアルミン酸ナトリウム水溶液1kgに水ガラス3号を加え、70℃に保温した容器に入れた。また、濃度2.5質量%の硫酸アルミニウム水溶液1kgに硫酸チタン(IV)水溶液(TiO含有量として24質量%)を加えた溶液を、70℃に保温した別の容器において調製し、この溶液を、上述のアルミン酸ナトリウムを含む水溶液に15分間で滴下した。上記水ガラスおよび硫酸チタン水溶液の量は、所定のシリカ、チタニアの含有量となるように調整した。
 混合溶液のpHが6.9~7.5になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。このケーキ状スラリーを、還流冷却器を取り付けた容器に移し、蒸留水300mlと27%アンモニア水溶液3gとを加え、70℃で24時間加熱撹拌した。撹拌処理後のスラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。
 得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体300gを取り、蒸留水150mlに三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)を加え、溶解するまでリンゴ酸を加えて調製した含浸溶液をスプレーしながら含浸した。
 使用する三酸化モリブデン、硝酸コバルト(II)6水和物およびリン酸の量は、所定の担持量となるよう調整した。含浸溶液に含浸した試料を110℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。触媒Aは、担体基準で、SiOの含有量が1.9質量%、TiOの含有量が2.0質量%、触媒基準でMoOの担持量が22.9質量%、CoOの担持量が2.5質量%、P担持量が4.0質量%であった。
(原料油の調製)
 FCC装置から得られる分解軽油Aを用意した。さらに、エチレン製造装置から得られる熱分解重質油を、蒸留操作により軽質分のみを分離し、熱分解重質油を調製し、前記熱分解重質油と分解ガソリン回収部にて分離回収された炭素数9以上の成分(芳香族炭化水素)とを混合して熱分解重質油Bを調製した。FCC装置で得られる分解ガソリン重質油C、接触改質装置で得られる重質油Dを用意した。各原料油の性状を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(原料油の水素化処理反応)
 固定床連続流通式反応装置に上記触媒Aを充填し、まず触媒の予備硫化を行った。すなわち、15℃における密度851.6kg/m、蒸留試験における初留点231℃、終留点376℃、予備硫化原料油の質量を基準とした硫黄原子としての硫黄分1.18質量%、色相L1.5である直留系軽油相当の留分(予備硫化原料油)に、該留分の質量基準で1質量%のDMDSを添加し、これを48時間前記触媒Aに対して連続的に供給した。
 その後、表1に示した、分解軽油A並びに熱分解重質油Bをそれぞれ原料油として用い、反応温度300℃、LHSV=1.0h-1、水素油比500NL/L、圧力3MPaにて水素化処理を行った。得られた水素化分解軽油A-1並びに、水素化熱分解重質油B-1の性状を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1、2の蒸留性状は、JIS K 2254に規定する「石油製品―蒸留試験方法」にそれぞれ準拠して測定した。また、表1の密度(at 15℃)はJIS K 2254に規定する「石油製品―蒸留試験方法」に、動粘度(at 30℃、at 40℃)はJIS K 2283に規定する「原油及び石油製品―動粘度試験方法及び粘度指数算出方法」に、硫黄分はJIS K 2541に規定する「原油及び石油製品―硫黄分試験方法」に、それぞれ準拠して測定した。
 また、表1、2の各組成は、シリカゲルクロマト分別により得た飽和炭化水素含有量および芳香族炭化水素含有量について、EIイオン化法による質量分析(装置:日本電子(株)製、JMS-700)を行い、ASTM D2425“Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry”に準拠して炭化水素のタイプ分析により算出した。
[芳香族炭化水素の製造方法]
〔単環芳香族炭化水素製造用触媒調製例〕
「リン処理結晶性アルミノシリケート(MFIゼオライト)の調製」
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1705.2gおよび水の2227.6gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.3g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.7gおよび水の2975.7gからなる溶液(B)をそれぞれ調製した。
 次いで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 次いで、この混合物をステンレス製のオートクレーブに入れ、温度を165℃、時間を72時間、撹拌速度を100rpmとする条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、65であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.3質量%であった。
 次いで、得られた焼成物の1g当り5mLの割合で、30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型MFIゼオライトを得た。その後、780℃で3時間焼成を行い、プロトン型MFIゼオライトを得た。
 得られたプロトン型MFIゼオライト30gに、第1のリン処理工程において、1.5質量%のリン(プロトン型MFIゼオライト総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、リン処理結晶性アルミノシリケートAを得た。
 「アルミノシリケート(MFIゼオライト)触媒の調製」
 得られたリン処理結晶性アルミノシリケートAとアルミナ粉末(日揮触媒化成株式会社、カタロイドAP-1、Al含有率71.7wt%)に精製水を適量加えながら混練し、隗状のリン処理結晶性アルミノシリケート/アルミナ混合物とした。押し出し成形器にて円筒状(直径1.8mm)に加工し、120℃で乾燥し、その後、空気流通下、550℃で3時間焼成した。次いで、第2のリン処理工程において、1.5質量%のリン(リン処理結晶性アルミノシリケート/アルミナ混合物総質量を100質量%とした値)が担持されるようにリン酸水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、アルミノシリケート(MFIゼオライト)触媒Bを得た。このアルミノシリケート触媒における、リン処理結晶性アルミノシリケート/アルミナの重量組成は90質量%/10質量%である。
 前記アルミノシリケート触媒Bと同様の製法で、第1のリン処理工程と第2のリン処理工程において、それぞれ所定の添加量を組み合わせることにより、表3に示すようなB、C、D、E、F、G、Hの各触媒を調製した。
「リン処理結晶性アルミノシリケート(BEAゼオライト)の調製」
 59.0gのケイ酸(SiO:89質量%)に四エチルアンモニウムヒドロオキシド水溶液(40質量%)を202gに溶解することにより、第一の溶液を調製した。この第一の溶液を、0.74gのAl-ペレット及び2.69gの水酸化ナトリウムを17.7gの水に溶解して調製した第二の溶液に加えた。このようにして第一の溶液と第二の溶液の二つの溶液を混合して、組成(酸化物のモル比換算)が、2.4NaO-20.0(TEA)-Al-64.0SiO-612HOの反応混合物を得た。
 この反応混合物を0.3Lオートクレーブに入れ、150℃で6日間加熱した。そして、得られた生成物を母液から分離し、蒸留水で洗った。
 得られた生成物のX線回析分析(機種名:Rigaku RINT-2500V)の結果、XRDパターンよりBEA型ゼオライトであることを確認した。
 その後、硝酸アンモニウム水溶液(30質量%)でイオン交換した後、BEA型ゼオライトを550℃で3時間焼成を行い、プロトン型BEAゼオライトを得た。
 次いで、プロトン型BEAゼオライト30gに、第1のリン処理工程において、2.0質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、リン処理結晶性アルミノシリケート(BEAゼオライト)を得た。
「アルミノシリケート(MFIとBEAゼオライトを含む)の調製」
 前記リン処理結晶性アルミノシリケート(BEAゼオライト)1質量部に対して、リン処理結晶性アルミノシリケートB(MFIゼオライト)9質量部を混合する事で得られたリン処理結晶性アルミノシリケート(MFIとBEAゼオライトを含む)とアルミナ粉末(日揮触媒化成株式会社、カタロイドAP-1、Al2O3含有率71.7wt%)に精製水を適量加えながら混練し、隗状のリン処理結晶性アルミノシリケート/アルミナ混合物とした。押し出し成形器にて円筒状(直径1.8mm)に加工し、120℃で乾燥し、その後、空気流通下、550℃で3時間焼成した。次いで、第2のリン処理工程において、1.5質量%のリン(リン処理結晶性アルミノシリケート/アルミナ混合物総質量を100質量%とした値)が担持されるようにリン酸水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、アルミノシリケート(MFIゼオライトとBEAゼオライトを含む)触媒Iを得た。このアルミノシリケート触媒における、リン処理結晶性アルミノシリケート/アルミナの重量組成は90質量%/10質量%である。
 〔単環芳香族炭化水素製造用触媒の水蒸気による加熱処理〕
 前記の触媒Bおよび触媒Dを用い、それぞれ水蒸気濃度100%、加熱温度700℃、処理時間15分にて処理することにより、表3に示すような水熱処理触媒B―1および水熱処理触媒D―1を調製した。
Figure JPOXMLDOC01-appb-T000003
 得られた触媒の反応初期の触媒活性および水熱劣化後の触媒活性を、以下のように評価した。
[反応初期の炭素数6~8の単環芳香族炭化水素の製造]
 前記触媒(10ml)を反応器に充填した流通式反応装置を用い、反応温度を550℃、反応圧力を0.1MPaG、原料と触媒との接触時間を25秒とする条件のもとで、水素化分解軽油A-1または水素化熱分解重質油B-1を反応器内に導入し、各触媒と接触、反応させた。用いた原料油と触媒との組み合わせにより、表4に示すように実施例1~8、および比較例1、2とした。
Figure JPOXMLDOC01-appb-T000004
 表4に示した条件にてそれぞれ24時間反応を行い、炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を製造した。得られた生成物を全量回収し、FIDガスクロマトグラフにより生成物の組成分析を行って、触媒活性(反応初期と記載)を評価した。24時間反応させた際の平均BTX(ベンゼン、トルエン、キシレン)収率の評価結果を表4に示す。
 表4に示す結果より、第1および第2のリン処理工程にて処理した触媒で反応させた実施例1~実施例6は、第1または第2のリン処理工程にて処理していない触媒で反応させた比較例1あるいは比較例2(同じ原料を用いた比較例)に比べ、炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を効率良く製造できることがわかった。
 したがって、第1および第2のリン処理工程において適度なリン処理を行うことで、結晶性アルミノシリケートおよび結合剤であるアルミナにおける顕著なコークの生成・付着(堆積)による劣化を抑制できる。
 また、水熱処理した触媒B-1、D-1を用いた実施例7および実施例8は、水熱処理していない触媒B、触媒Dを用いた実施例1、実施例3に比べ、炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を効率良く製造することができた。したがって、予め適度な水熱処理を実施した触媒を用いることで、BTXを更に効率よく製造できることが確認された。
 また、実施例1~8とは異なる原料を用いた実施例9及び10においても、炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を効率良く製造できることがわかった。
 したがって、実施例1~実施例10では、第1および第2のリン処理工程を経て得られたアルミノシリケート触媒を用いることで、BTXを効率よく製造できることが確認された。
 前記触媒のうち、触媒B、触媒B-1および触媒Hを、各々、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた。このように擬似的に水熱劣化をさせた状態を「水熱劣化後」とし、前記[反応初期の炭素数6~8の単環芳香族炭化水素の製造]と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果より、第1および第2のリン処理工程を経て得られたアルミノシリケート触媒で反応させた実施例11および実施例12は、第1または第2のリン処理工程にて処理していない触媒を用いた比較例3に比べ、反応初期と水熱劣化後でのBTX留分の収率低下の幅が小さく、炭素数6~8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を効率良く製造できることがわかった。
 したがって、本発明の実施例11および実施例12では、第1および第2のリン処理工程を経て得られたアルミノシリケート触媒を用いることで、水熱安定性が高くなって触媒劣化を抑制することができ、これによってBTXを効率よく製造できることが確認された。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
1…炭素数6~8の単環芳香族炭化水素の製造方法、2…水素化反応装置、3…脱水素塔、4…分解改質反応装置、5…精製回収装置、6…BTX留分回収塔、7…ガス分離塔、8…リサイクル路

Claims (13)

  1.  結晶性アルミノシリケートを第1のリン化合物で処理する第1のリン処理工程と、
     前記第1のリン処理工程で得られたリン処理結晶性アルミノシリケートと結合剤とを混合し、焼成してアルミノシリケート混合物を形成する混合・焼成工程と、
     前記アルミノシリケート混合物を第2のリン化合物で処理する第2のリン処理工程と、を有することを特徴とするアルミノシリケート触媒の製造方法。
  2.  前記混合・焼成工程では、リン処理結晶性アルミノシリケートと結合剤とを混合し、成型した後、得られた成型体を焼成することを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  3.  前記結晶性アルミノシリケートが、中細孔ゼオライト及び大細孔ゼオライトからなる群より選ばれる少なくとも一種を主成分としたものであることを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  4.  前記結晶性アルミノシリケートが、ペンタシル型ゼオライトであることを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  5.  前記結晶性アルミノシリケートが、MFI型ゼオライトであることを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  6.  前記結合剤が、アルミナを含有することを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  7.  前記第2のリン化合物としてリン酸を用いることを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  8.  前記第2のリン処理工程の後、水蒸気を含む雰囲気で加熱処理を行うことを特徴とする請求項1記載のアルミノシリケート触媒の製造方法。
  9.  請求項1~8のいずれか一項に記載のアルミノシリケート触媒の製造方法によって得られたアルミノシリケート触媒。
  10.  10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油を、固定床反応器に充填した請求項9記載のアルミノシリケート触媒を含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6~8の単環芳香族炭化水素を含む生成物を得る分解改質反応工程を有する、ことを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法。
  11.  前記分解改質反応工程では、2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応と前記単環芳香族炭化水素製造用触媒の再生とを繰り返す、ことを特徴とする請求項10記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  12.  前記原料油が、分解軽油もしくは該分解軽油の部分水素化物であることを特徴とする請求項10記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  13.  前記原料油が、エチレン製造装置から得られる熱分解重質油もしくは該熱分解重質油の部分水素化物であることを特徴とする請求項10記載の炭素数6~8の単環芳香族炭化水素の製造方法。
PCT/JP2015/060628 2014-04-04 2015-04-03 アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法 WO2015152406A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016511646A JP6650391B2 (ja) 2014-04-04 2015-04-03 アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法
US15/129,694 US10173203B2 (en) 2014-04-04 2015-04-03 Method for producing aluminosilicate catalyst, aluminosilicate catalyst, and method for producing monocyclic aromatic hydrocarbons
EP15772932.8A EP3127610A4 (en) 2014-04-04 2015-04-03 Method for producing aluminosilicate catalyst, aluminosilicate catalyst and method for producing monocyclic aromatic hydrocarbon
CN201580017530.XA CN106457231B (zh) 2014-04-04 2015-04-03 铝硅酸盐催化剂的制造方法、铝硅酸盐催化剂及单环芳香族烃的制造方法
KR1020167026812A KR102262792B1 (ko) 2014-04-04 2015-04-03 알루미노실리케이트 촉매의 제조 방법, 알루미노실리케이트 촉매 및 단환 방향족 탄화수소의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014078010 2014-04-04
JP2014-078010 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015152406A1 true WO2015152406A1 (ja) 2015-10-08

Family

ID=54240713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060628 WO2015152406A1 (ja) 2014-04-04 2015-04-03 アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法

Country Status (6)

Country Link
US (1) US10173203B2 (ja)
EP (1) EP3127610A4 (ja)
JP (1) JP6650391B2 (ja)
KR (1) KR102262792B1 (ja)
CN (1) CN106457231B (ja)
WO (1) WO2015152406A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017187873A1 (ja) * 2016-04-28 2018-11-01 旭化成株式会社 芳香族炭化水素含有化合物の製造方法
KR20190056423A (ko) * 2016-09-30 2019-05-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 플루오라이드 공급원을 사용한 신규한 제올라이트 합성
JP2019085294A (ja) * 2017-11-06 2019-06-06 国立大学法人広島大学 リンを含有するgme型ゼオライトおよびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237941A (zh) * 2019-07-19 2021-01-19 国家能源投资集团有限责任公司 芳构化催化剂及其制备方法和低碳烯烃芳构化方法
CN113275032A (zh) * 2020-02-20 2021-08-20 太原理工大学 用于甲苯甲醇侧链烷基化的分子筛催化剂及其制备方法和应用
KR102556628B1 (ko) * 2020-10-12 2023-07-17 포항공과대학교 산학협력단 높은 실리카 골격조성을 갖는 kfi형 제올라이트 및 그 제조방법, 이를 이용한 프로필렌의 선택적 분리 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036860A (ja) * 1996-07-26 1998-02-10 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製法
JP2010104878A (ja) * 2008-10-29 2010-05-13 National Institute Of Advanced Industrial Science & Technology 低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法
JP2011190306A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 灯軽油基材とアルキルベンゼン類の製造方法
JP2012139641A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254789Y2 (ja) 1971-08-17 1977-12-12
US4128592A (en) * 1977-11-23 1978-12-05 Mobil Oil Corporation Selective production of para dialkyl benzene
US4326994A (en) 1980-02-14 1982-04-27 Mobil Oil Corporation Enhancement of zeolite catalytic activity
CN1176020C (zh) * 2002-06-27 2004-11-17 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
TWI277648B (en) * 2004-07-29 2007-04-01 China Petrochemical Technology A cracking catalyst for hydrocarbons and its preparation
KR101229756B1 (ko) * 2004-12-28 2013-02-06 차이나 페트로리움 앤드 케미컬 코포레이션 탄화수소 분해 촉매 및 탄화수소 분해 방법
CN100497530C (zh) * 2004-12-28 2009-06-10 中国石油化工股份有限公司 一种烃油裂化方法
US7368410B2 (en) * 2005-08-03 2008-05-06 Saudi Basic Industries Corporation Zeolite catalyst and method of preparing and use of zeolite catalyst
EP2082802A1 (en) * 2008-01-25 2009-07-29 Total Petrochemicals Research Feluy Process for obtaining a catalyst composite
US8846559B2 (en) * 2008-11-03 2014-09-30 Saudi Basic Industries Corporation Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
BR112012018012A2 (pt) * 2010-01-20 2016-05-03 Jx Nippon Oil & Energy Corp catalisador para produção de hidrocarbonetos aromáticos monocíclicos e processo de produção de hidrocarbonetos aromáticos monocíclicos
JP2012139640A (ja) 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
DE102011013911A1 (de) * 2011-03-15 2012-09-20 Süd-Chemie AG Verbessertes Verfahren zur Herstellung eines Katalysators auf Zeolithbasis zur Umwandlung von Methanol in Olefine
US9278342B2 (en) * 2012-07-02 2016-03-08 Saudi Basic Industries Corporation Method of modifying a phosphorus-containing zeolite catalyst
US9518229B2 (en) * 2012-07-20 2016-12-13 Inaeris Technologies, Llc Catalysts for thermo-catalytic conversion of biomass, and methods of making and using

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036860A (ja) * 1996-07-26 1998-02-10 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製法
JP2010104878A (ja) * 2008-10-29 2010-05-13 National Institute Of Advanced Industrial Science & Technology 低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法
JP2011190306A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 灯軽油基材とアルキルベンゼン類の製造方法
JP2012139641A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127610A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017187873A1 (ja) * 2016-04-28 2018-11-01 旭化成株式会社 芳香族炭化水素含有化合物の製造方法
KR20190056423A (ko) * 2016-09-30 2019-05-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 플루오라이드 공급원을 사용한 신규한 제올라이트 합성
KR102594931B1 (ko) 2016-09-30 2023-10-30 존슨 맛쎄이 퍼블릭 리미티드 컴파니 플루오라이드 공급원을 사용한 신규한 제올라이트 합성
JP2019085294A (ja) * 2017-11-06 2019-06-06 国立大学法人広島大学 リンを含有するgme型ゼオライトおよびその製造方法
JP7007638B2 (ja) 2017-11-06 2022-02-10 国立大学法人広島大学 リンを含有するgme型ゼオライトおよびその製造方法

Also Published As

Publication number Publication date
CN106457231A (zh) 2017-02-22
EP3127610A1 (en) 2017-02-08
US10173203B2 (en) 2019-01-08
KR20160142297A (ko) 2016-12-12
KR102262792B1 (ko) 2021-06-09
CN106457231B (zh) 2020-03-06
JPWO2015152406A1 (ja) 2017-04-13
EP3127610A4 (en) 2017-11-29
US20170189894A1 (en) 2017-07-06
JP6650391B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6239584B2 (ja) 単環芳香族炭化水素の製造方法
US9446997B2 (en) Method for producing aromatic hydrocarbons
WO2015152406A1 (ja) アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法
JP4740396B2 (ja) 芳香族炭化水素の製造方法
JP5868012B2 (ja) 単環芳香族炭化水素の製造方法
WO2014065419A1 (ja) 単環芳香族炭化水素の製造方法
JP2010235670A (ja) 1環芳香族炭化水素の製造方法
JP5683344B2 (ja) 単環芳香族炭化水素の製造方法
KR20200008136A (ko) 중간 다공성 fau 제올라이트, 이의 생산 및 이들의 중유를 업그레이드하는 용도
JP6082403B2 (ja) オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
JP6130852B2 (ja) オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
JP5587761B2 (ja) 単環芳香族炭化水素の製造方法
JP5813853B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2015152248A1 (ja) 水素化油の製造方法及び単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511646

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015772932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129694

Country of ref document: US

Ref document number: 2015772932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167026812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE