WO2015152124A1 - マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法 - Google Patents

マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2015152124A1
WO2015152124A1 PCT/JP2015/059855 JP2015059855W WO2015152124A1 WO 2015152124 A1 WO2015152124 A1 WO 2015152124A1 JP 2015059855 W JP2015059855 W JP 2015059855W WO 2015152124 A1 WO2015152124 A1 WO 2015152124A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light
pattern
mask
shielding film
Prior art date
Application number
PCT/JP2015/059855
Other languages
English (en)
French (fr)
Inventor
博明 宍戸
野澤 順
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020167030016A priority Critical patent/KR102243419B1/ko
Priority to KR1020217011252A priority patent/KR102366646B1/ko
Priority to US15/300,376 priority patent/US10261409B2/en
Publication of WO2015152124A1 publication Critical patent/WO2015152124A1/ja
Priority to US16/282,699 priority patent/US11231645B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a method for manufacturing a transfer mask used for manufacturing a semiconductor device and a mask blank used for manufacturing the transfer mask.
  • a fine pattern is formed using a photolithography method.
  • a number of transfer masks (usually called photomasks) are usually used for forming this fine pattern.
  • This transfer mask is generally provided with a light-shielding fine pattern made of a metal thin film or the like on a translucent glass substrate, and the photolithographic method is also used in the production of this transfer mask.
  • this transfer mask serves as an original for transferring a large amount of the same fine pattern, the dimensional accuracy of the pattern formed on the transfer mask directly affects the dimensional accuracy of the fine pattern to be produced. As the degree of integration of semiconductor circuits is improved, the size of the pattern is reduced, and a higher transfer mask accuracy is required.
  • a transfer mask a binary mask in which a transfer pattern made of a light shielding film is formed on a light-transmitting substrate such as a glass substrate, a phase shift film, or a phase shift film and a light shielding film are used.
  • a phase shift mask on which a transfer pattern is formed is well known.
  • a halftone phase shift mask in which a light shielding band is formed in the periphery of the transfer pattern forming region.
  • Patent Document 1 As a mask blank for manufacturing a halftone transfer mask, a metal silicide transfer mask film (light translucent film), chromium, and the like are used from the substrate side.
  • a mask blank having a thin film configuration of a light-shielding film made of a base compound and a hard mask film made of a silicon compound is disclosed.
  • a hard mask film made of a silicon compound is formed by dry etching with a fluorine-based gas using a predetermined resist pattern formed on the surface of the mask blank as a mask. Pattern.
  • the light shielding film made of a chromium-based compound is patterned by dry etching using a mixed gas of chlorine and oxygen.
  • a metal silicide-based transfer mask film is patterned by dry etching with a fluorine-based gas.
  • the chromium-based light-shielding film is advantageous in that a high optical density can be obtained even if the film thickness is reduced because the extinction coefficient increases if the ratio of the chromium element contained in the composition is large.
  • the higher the element ratio the slower the etching rate and the more time required for patterning. Therefore, the pattern of the upper hard mask film may disappear before the patterning of the light shielding film is completed.
  • the surface side of the light shielding film is almost the same as the space width of the pattern of the hard mask film, whereas the lower surface is the side wall.
  • the side etching is not sufficiently progressed and is narrower than the space width of the pattern of the hard mask film, and the sectional shape of the side wall is inclined. For this reason, it is necessary to perform additional etching (over-etching) so that the space of the light shielding film pattern is surely formed even on the lower surface.
  • the etching rate becomes fast, but the extinction coefficient becomes low. Therefore, in order to obtain a predetermined optical density, it is necessary to increase the film thickness.
  • the film stress with a small proportion of chromium element shows a compressive stress tendency, if the film thickness is increased in order to obtain an optical density, the surface of the mask blank may be deformed due to the influence of the compressive stress. .
  • the deformation of the mask blank surface affects the position accuracy during pattern formation.
  • the mixed gas of chlorine and oxygen used for dry etching of the chromium-based light-shielding film has the property of isotropic etching.
  • the light-shielding film pattern becomes thinner than the upper hard mask film pattern, and the pattern accuracy of the transfer mask film formed by patterning using this light-shielding film pattern as a mask deteriorates.
  • As a countermeasure there is a method in which the dimension of the line part of the resist pattern is widened and the dimension of the space part is narrowed in consideration of thinness of the light shielding film pattern.
  • the space width dimension of the resist pattern is narrow, there is a problem that development related to the formation of the space becomes difficult.
  • the present invention has been made in view of such a conventional problem.
  • the object of the present invention is to mask a hard mask film pattern even in a mask blank having a chromium-based light shielding film.
  • a mask blank that can be formed with high transfer accuracy, and secondly, a method for manufacturing a transfer mask in which a fine pattern is formed with high accuracy using such a mask blank.
  • a method for manufacturing a high-quality semiconductor device having excellent pattern accuracy using such a transfer mask is provided.
  • the present invention has the following configuration.
  • a mask blank having a structure in which a light semi-transmissive film, a light shielding film, and a hard mask film are sequentially laminated on a light transmissive substrate, wherein the light semi-transmissive film contains at least silicon, and the hard mask The film is formed in contact with the surface of the light shielding film and contains one or both of silicon and tantalum, and the light shielding film has a laminated structure of a lower layer and an upper layer, and contains at least chromium.
  • the upper layer has a chromium content of 65 atomic% or more and an oxygen content of less than 20 atomic%; the lower layer has a chromium content of less than 60 atomic%; and A mask blank, characterized in that the oxygen content is 20 atomic% or more.
  • the upper layer of the light-shielding film containing chromium immediately below the hard mask film has a high chromium content (chromium rich) and a low oxygen content. Side etching is unlikely to occur (the side walls of the pattern are not easily eroded). Since the side etching of the upper layer of the light shielding film hardly occurs, the pattern shape of the hard mask film immediately above is transferred almost accurately to the upper layer of the light shielding film. Since the light-shielding film has an upper layer to which the pattern shape of the hard mask film is transferred almost accurately, the silicon-containing light semi-patterned with a fluorine-based gas that is an anisotropic etching gas using the light-shielding film pattern as a mask. The pattern of the hard mask film can also be formed almost accurately on the permeable film.
  • the structure 1 has the effect of reducing the film
  • the film stress of the chromium-based thin film is difficult to reduce the film stress of the chromium-based thin film by post-treatment such as heat treatment after sputtering film formation.
  • a silicon-based thin film or a tantalum-based thin mask film is formed after forming a chromium thin film, it cannot be heated after forming the silicon-based thin film or the tantalum-based thin film. It becomes difficult.
  • the film stress of a chromium-based thin film shows a weak compressive stress tendency when the ratio of chromium element is small, the compressive stress gradually weakens as the ratio of chromium element increases, and shows a strong tensile stress tendency when the ratio of chromium element further increases. Become.
  • Configuration 1 is a mask blank in which an upper layer having a high chromium element ratio and a tensile stress tendency is formed on a lower layer having a low chromium element ratio and a compressive stress tendency. Therefore, according to the configuration 1, since the chromium-based thin film having a small proportion of the chromium element having a compressive stress tendency can be thinned, the overall film stress imbalance of the light shielding film can be reduced. Furthermore, since the silicon-based thin film exhibits compressive stress if it is not annealed, the thin film formed on the substrate can be integrated by including in the light-shielding film a layer having a high proportion of chromium element that imparts a tensile stress tendency. Film stress can be reduced. As a result, deformation of the mask blank surface can also be effectively suppressed, and a pattern with excellent positional accuracy can be formed.
  • the lower layer of the light shielding film has a lower chromium content than the upper layer and a higher oxygen content than the upper layer. Can be fast. Thereby, the patterning of the light shielding film can be completed without losing the pattern of the hard mask film. As described above, according to Configuration 1, even a fine transfer pattern can be formed with high accuracy on the light semi-transmissive film serving as the transfer mask film of the mask blank of the present invention. It is possible to manufacture a transfer mask excellent in the above.
  • (Configuration 2) The mask blank according to Configuration 1, wherein the lower layer has a chromium content of 40 atomic% or more.
  • the chromium content in the lower layer of the light-shielding film is less than 60 atomic%.
  • the extinction coefficient k in ArF excimer laser light (wavelength 193 nm) becomes low.
  • the extinction coefficient k is increased by setting the chromium content in the lower layer to 40 atomic% or more. Therefore, the light shielding film can be thinned, and the pattern of the light shielding film is The patterning accuracy of the light semi-transmissive film used as a mask can be increased.
  • the lower layer etching rate can be kept fast, and as a result, the etching rate of the entire light-shielding film can also be kept fast, and the side etching of the lower layer part can be performed. The influence by can be suppressed.
  • the oxygen content contained in the lower layer is in the above range, an effect of further improving the adhesion between the light shielding film pattern and the light semi-transmissive film can be obtained. This is because the oxygen element moves at the interface between the light shielding film and the light semi-transmissive film and is bonded with a chemical bond.
  • the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the lower layer is at least three times the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the upper layer.
  • (Configuration 5) The mask blank according to any one of configurations 1 to 4, wherein the lower layer has a structure in which a lowermost layer and an intermediate layer are sequentially laminated from the light semi-transmissive film side.
  • the lower layer has a structure in which the lowermost layer and the intermediate layer are sequentially stacked from the light semi-transmissive film side, whereby an intermediate layer is formed between the upper layer and the lowermost layer of the light shielding film, and three layers Since the light shielding film has a structure, for example, by adjusting the chromium content of each layer and controlling the etching rate of the light shielding film in three stages, a step can be formed on the pattern sidewall of the light shielding film due to the difference in the degree of side etching. Therefore, the cross-sectional shape of the pattern of the light shielding film can be improved as compared with the light shielding film having a two-layer structure.
  • the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the lowermost layer is at least three times the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the upper layer.
  • the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the lowermost layer is greater than and twice the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the intermediate layer.
  • the formation of a step at the boundary between the intermediate layer and the lowermost layer of the pattern side wall can be suppressed. Further, it is preferable that the etching rate of the lowermost layer is fast because the over-etching time can be shortened. On the other hand, if the etching rate of the lowermost layer is too fast, there is a concern that the etching by the etching gas on the pattern side wall becomes deeper in the lowermost layer part and the contact area between the light semi-transmissive film and the light shielding film pattern becomes narrower. If it is the said range, erosion of the pattern side wall in the lowest layer can also be suppressed, shortening the time of overetching.
  • (Configuration 8) The mask blank according to any one of configurations 1 to 7, wherein the upper layer has a thickness of 1.5 nm or more and 8 nm or less.
  • the thickness of the upper layer of the light shielding film in the range of 1.5 nm or more and 8 nm or less as in Configuration 8, it is possible to favorably maintain the patterning accuracy in the upper layer while suitably suppressing the etching time of the upper layer. it can.
  • the preferred thickness of the upper layer is 3 nm or more and 8 nm or less.
  • Configuration 9 The mask blank according to any one of configurations 1 to 8, wherein the light-shielding film has a thickness of 35 nm to 55 nm.
  • the thickness of the light shielding film is not less than 35 nm and not more than 55 nm, the entire thickness of the light shielding film is reduced, and the patterning accuracy of the light semi-transmissive film using the pattern of the light shielding film as a mask is improved. Can be increased.
  • (Configuration 10) 10.
  • the hard mask film needs to be a material having high etching selectivity with respect to the light shielding film directly below, but as in Configuration 10, a material containing oxygen in addition to silicon and tantalum is selected for the hard mask film.
  • Configuration 10 a material containing oxygen in addition to silicon and tantalum is selected for the hard mask film.
  • (Configuration 11) 11 The mask blank according to claim 1, wherein the light semitransmissive film contains silicon and nitrogen.
  • Configuration 11 by applying a material containing silicon and nitrogen to the light semi-transmissive film, etching selectivity with the chromium-based light shielding film can be ensured.
  • the material contains silicon and nitrogen, patterning using an anisotropic fluorine-based gas as an etching gas can be applied. Therefore, a pattern having excellent pattern accuracy can be formed on the light semi-transmissive film by using the light shielding film pattern to which the pattern shape of the hard mask film is transferred almost accurately as a mask.
  • (Configuration 12) 12 The mask blank according to any one of configurations 1 to 11, wherein a transmittance with respect to ArF excimer laser light (wavelength 193 nm) in the laminated structure of the light semitransmissive film and the light shielding film is 0.2% or less.
  • the transmittance for ArF excimer laser light (wavelength 193 nm) in the laminated structure of the light semi-transmissive film and the light shielding film is 0.2% or less, so that the exposure light is well shielded against the ArF excimer laser. This is preferable because it is possible to provide a property (optical density of 2.7 or more).
  • (Configuration 14) 14 The mask blank according to any one of configurations 1 to 13, wherein the hard mask film and the light semitransmissive film are patterned by dry etching using a fluorine-based gas.
  • Configuration 14 since the hard mask film and the light semi-transmissive film are patterned by dry etching using an anisotropic fluorine-based gas, the pattern shape of the hard mask film directly above the light shielding film is almost accurate. In combination with the transfer onto the light semi-transparent film, a transfer pattern having excellent pattern shape accuracy can be formed by patterning using the light shielding film as a mask.
  • (Configuration 15) A method of manufacturing a transfer mask using the mask blank according to any one of Structures 1 to 14, wherein a resist film having a light semi-transmissive film pattern formed on the hard mask film is used as a mask, and a fluorine-based gas.
  • (Configuration 16) A step of transferring a transfer pattern of the transfer mask onto a semiconductor substrate by a lithography method using the transfer mask manufactured by the method of manufacturing a transfer mask according to Structure 15. Production method. As in Structure 16, a high-quality semiconductor device with excellent pattern accuracy can be obtained by using a transfer mask in which the fine pattern is formed with high accuracy.
  • the mask blank of the present invention even a fine transfer pattern can be formed with high accuracy. That is, according to the mask blank of the present invention, the upper layer of the light shielding film has a high chromium content (chromium rich) and a low oxygen content, so the etching rate is slow and the side pattern of the upper layer pattern is low. . Therefore, since the light-shielding film pattern in which the transfer pattern shape formed on the resist film or the hard mask film is almost accurately transferred can be formed, by patterning the light semi-transmissive film using the light-shielding film pattern as a mask, A transfer pattern having excellent pattern accuracy can be formed on the light semi-transmissive film.
  • the etching rate of the lower layer of the light shielding film is high, the etching rate of the entire light shielding film can be increased. Therefore, the formation of the light shielding film pattern can be surely completed before the hard mask film pattern disappears. Further, by using such a mask blank of the present invention, a transfer mask on which a fine pattern is formed with high accuracy can be manufactured. Furthermore, a high-quality semiconductor device with excellent pattern accuracy can be manufactured using such a transfer mask.
  • FIG. 1 is a schematic cross-sectional view of a first embodiment of a mask blank according to the present invention. It is the cross-sectional schematic of 2nd Embodiment of the mask blank which concerns on this invention. It is a cross-sectional schematic diagram of the mask blank etc. which show the manufacturing process of the transfer mask using the mask blank which concerns on this invention. It is a cross-sectional schematic diagram of the mask blank etc. which show the manufacturing process of the transfer mask using the mask blank which concerns on this invention. It is a cross-sectional schematic diagram of the mask blank etc. which show the manufacturing process of the transfer mask using the mask blank which concerns on this invention. It is a cross-sectional schematic diagram of the mask blank etc. which show the manufacturing process of the transfer mask using the mask blank which concerns on this invention. It is a cross-sectional schematic diagram of the mask blank etc. which show the manufacturing process of the transfer mask using the mask blank which concerns on this invention.
  • the inventor of the present invention has a predetermined laminated structure in the mask blank having a structure in which a light semi-transmissive film, a light shielding film, and a hard mask film are sequentially laminated on a light transmissive substrate.
  • a predetermined laminated structure in the mask blank having a structure in which a light semi-transmissive film, a light shielding film, and a hard mask film are sequentially laminated on a light transmissive substrate.
  • the present invention is a mask blank having a structure in which a light semi-transmissive film, a light-shielding film, and a hard mask film are sequentially laminated on a light-transmitting substrate as in the above-described configuration 1, and the light semi-transmissive film Contains at least silicon, the hard mask film is formed in contact with the surface of the light shielding film, contains one or both of silicon and tantalum, the light shielding film comprises a lower layer and
  • the upper layer has a laminated structure and contains at least chromium.
  • the upper layer has a chromium content of 65 atomic% or more and an oxygen content of less than 20 atomic%.
  • the mask blank is characterized in that the chromium content is less than 60 atomic% and the oxygen content is 20 atomic% or more.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a mask blank according to the present invention.
  • the mask blank 10 according to the first embodiment of the present invention includes a light semi-transmissive film 2, a light-shielding film 3, and a hard mask film 4 stacked in this order on a light-transmitting substrate 1. It has a structure.
  • the light shielding film 3 has a laminated structure of a lower layer 31 and an upper layer 33.
  • the light semi-transmissive film 2 contains at least silicon
  • the hard mask film 4 contains one or both of silicon and tantalum.
  • the light-shielding film 3 having the laminated structure contains at least chromium.
  • the translucent substrate 1 in the mask blank 10 is not particularly limited as long as it is a substrate used for a transfer mask for manufacturing a semiconductor device.
  • a synthetic quartz substrate or other various glass substrates for example, soda lime glass, alumino Silicate glass or the like.
  • a synthetic quartz substrate is particularly preferably used because it is highly transparent in an ArF excimer laser (wavelength 193 nm) effective for fine pattern formation or in a shorter wavelength region.
  • the hard mask film 4 can be made of a material containing silicon (Si) or a material containing tantalum (Ta).
  • a material containing silicon (Si) suitable for the hard mask film 4 is selected from silicon (Si), oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H). And a material containing one or more elements.
  • silicon (Si) and transition metals include oxygen (O), nitrogen (N), carbon (C), boron (B And a material containing one or more elements selected from hydrogen (H).
  • transition metal examples include molybdenum (Mo), tungsten (W), titanium (Ti), tantalum (Ta), zirconium (Zr), hafnium (Hf), niobium (Nb), vanadium (V), Examples include cobalt (Co), chromium (Cr), nickel (Ni), ruthenium (Ru), and tin (Sn).
  • Mo molybdenum
  • Ti tungsten
  • Ti titanium
  • Ta tantalum
  • hafnium hafnium
  • Nb zirconium
  • Co cobalt
  • Cr chromium
  • Ni nickel
  • Ru ruthenium
  • Sn tin
  • the material is formed of a material containing oxygen (O) in addition to silicon (Si). Specific examples include SiO 2 , SiON and SiOCN.
  • the thin film When a thin film containing oxygen (O) in addition to silicon (Si) is formed by a sputtering method, the thin film tends to have a compressive stress. In order to reduce the stress, it is effective to perform a heat treatment (annealing) as a post-treatment after film formation. In this embodiment, however, the heat treatment is performed on the surface of the light-shielding film 3 made of a chromium-based material. Heat treatment above °C cannot be performed. This is because the light shielding film 3 made of a chromium-based material may be damaged by the heat treatment. This compressive stress tendency is relatively strong.
  • the surface shape of the substrate has a tensile stress enough to form a convex shape with a deformation amount of about 30 nm. Since the thickness of the hard mask film 4 is at least 1.5 nm, the amount of deformation increases as the thickness increases.
  • the chromium-based thin film shows a compressive stress tendency when the ratio of the chromium element is low, but shows a stronger tensile stress tendency as the ratio of the chromium element becomes higher.
  • the light shielding film 3 has a structure in which a lower layer 31 having a low chromium element ratio and an upper layer 33 having a high chromium element ratio are stacked. Since the upper layer 33 having a high chromium element ratio has a tendency of strong tensile stress, the total film stress of the light shielding film shows a tendency of tensile stress.
  • the light-shielding film 3 having a total film thickness of 55 nm in a film configuration in which the upper layer 31 having a strong tensile stress is the smallest and the lower layer having the compressive stress is the largest is used as a mask blank synthetic quartz glass substrate (152 mm ⁇ 152 mm, When formed directly in a thickness of 6 mm, the substrate has a tensile stress that deforms the surface shape of the substrate into a concave shape with a deformation amount of 30 nm in depth.
  • the total stress varies depending on the ratio of each chromium element and each film thickness, when this embodiment is adopted, the tensile stress is at least as large as the above-described deformation amount.
  • the hard mask film 4 is adjusted by adjusting the film configuration, composition, film thickness, and the like of the hard mask film 4 and the light shielding film 3. And the light shielding film 3 can cancel each stress. As a result, the total film stress of the thin film on the mask blank can be minimized. That is, by applying the hard mask film 4 made of a silicon (Si) -based material, a mask blank having a flatter surface shape can be obtained. By using a mask blank having such a surface shape, a pattern having excellent positional accuracy can be formed.
  • suitable materials containing tantalum (Ta) for the hard mask film 4 include tantalum (Ta), oxygen (O), nitrogen (N), carbon (C), boron (B), and hydrogen (H).
  • Specific examples of such materials include tantalum oxide (TaO), tantalum oxynitride (TaON), tantalum boride oxide (TaBO), and tantalum boride oxynitride (TaBON).
  • Such a hard mask film 4 has sufficient etching selectivity with respect to the light shielding film 3 formed of a material containing chromium (Cr), and the hard mask film 4 is hard without causing any damage to the light shielding film 3.
  • the mask film 4 can be removed by etching.
  • the thickness of the hard mask film 4 need not be particularly limited, but it needs to be at least a thickness that does not disappear before the etching of the light shielding film 3 immediately below is completed. On the other hand, if the hard mask film 4 is thick, it is difficult to reduce the thickness of the resist pattern immediately above. From this point of view, in the present embodiment, the thickness of the hard mask film 4 is preferably in the range of 1.5 nm to 20 nm, particularly preferably 2.5 nm to 6 nm. is there.
  • the light semi-transmissive film 2 is formed of a material containing at least silicon, but the configuration of the light semi-transmissive film 2 applicable to the present invention is not particularly limited, and has been conventionally used, for example.
  • the configuration of the light semitransmissive film in the phase shift mask can be applied.
  • Examples of such a light semi-transmissive film 2 include a metal silicide made of, for example, a transition metal and silicon, or a metal made of a material containing at least one element selected from oxygen, nitrogen, and carbon in the transition metal and silicon.
  • Preferred examples include a silicide-based light semi-transmissive film and a silicon-based light semi-transmissive film made of a material containing oxygen, nitrogen, carbon, boron or the like in silicon.
  • transition metal contained in the metal silicide light semi-transmissive film examples include molybdenum, tantalum, tungsten, titanium, chromium, nickel, vanadium, zirconium, ruthenium, and rhodium. Of these, molybdenum is particularly preferred.
  • the material containing the transition metal and silicon specifically, a material containing transition metal silicide or transition metal silicide nitride, oxide, carbide, oxynitride, carbonate, or carbonitride is preferable. It is. Specific examples of the silicon-containing material include silicon nitride, oxide, carbide, oxynitride (oxynitride), carbonate (carbonized oxide), and carbonitride (carbonized and oxidized). A material containing (nitride) is preferable.
  • the light semi-transmissive film 2 can be applied to either a single layer structure or a laminated structure including a low transmittance layer and a high transmittance layer.
  • the preferable film thickness of the light semi-transmissive film 2 varies depending on the material, it is desirable to adjust appropriately from the viewpoint of the phase shift function and the light transmittance. Usually, it is suitable that the thickness is 100 nm or less, more preferably 80 nm or less.
  • the light-shielding film 3 having the laminated structure is formed of a material containing chromium.
  • the chromium-containing material include Cr compounds such as Cr alone or CrX (where X is at least one selected from N, C, O, etc.) (for example, CrN, CrC, CrO, CrON, CrCN, CrOC, CrOCN etc.).
  • the sputtering film forming method is preferred.
  • the sputtering film forming method is preferable because a uniform film having a constant film thickness can be formed.
  • the light shielding film 3 is a laminated structure of the lower layer 31 and the upper layer 33 as described in the configuration 1, and contains at least chromium.
  • the upper layer 33 has a chromium content of 65 atomic% or more, an oxygen content of less than 20 atomic%
  • the lower layer 31 has a chromium content of less than 60 atomic%, and oxygen.
  • the content is 20 atomic% or more.
  • the upper layer 33 of the light shielding film 3 containing chromium just below the hard mask film 4 has a chromium content of 65 atomic% or more and an oxygen content of less than 20 atomic%. Since the chromium content is high (chromium rich) and the oxygen content is low, the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas (hereinafter simply referred to as “etching rate” for convenience of explanation) Although it may be explained, it means that the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas is slow), and side etching during etching is difficult to occur (in other words, the side wall of the pattern) Is less susceptible to erosion).
  • the pattern shape of the hard mask film 4 immediately above is transferred to the upper layer 33 of the light shielding film 3 almost accurately.
  • the resist pattern having the transfer pattern to be finally formed on the light semi-transmissive film 2 is accurately transferred to the hard mask film 4.
  • the light shielding film 3 Since the light shielding film 3 has the upper layer 33 to which the pattern shape of the hard mask film 4 is transferred almost accurately and has a very small difference from the pattern shape (for example, pattern dimensions) formed on the resist film, the light shielding film 3
  • the pattern of the hard mask film 4 can also be formed almost accurately on the silicon-containing semi-transmissive film 2 patterned by anisotropic etching using the pattern as a mask.
  • the pattern accuracy formed on the light semi-transmissive film 2 can be increased.
  • the lower layer 31 of the light-shielding film 3 has a chromium content of less than 60 atomic% and an oxygen content of 20 atomic% or more as described above, and has a lower chromium content than the upper layer 33.
  • the oxygen content is higher than that of the upper layer 33, the etching rate of the lower layer 31 of the light shielding film 3 is faster than that of the upper layer 33, so that the etching rate of the entire light shielding film 3 can be increased.
  • the lower layer 31 preferably has a thickness of 70% to 97% with respect to the total thickness of the light shielding film 3.
  • the lower layer 31 may have a composition gradient with different chromium content and oxygen content in the film thickness direction.
  • the light shielding film 3 is provided for the purpose of transferring the pattern of the hard mask film 4 to the light semi-transmissive film 2 as faithfully as possible.
  • the final transfer pattern is a pattern formed on the light semi-transmissive film 2, and a pattern formed on the light shielding film 3. Since the pattern does not become a transfer pattern, the cross-sectional shape of the light shielding film pattern itself is not so important.
  • the light shielding film 3 of the laminated structure of the present invention has the pattern of the hard mask film 4 as described above. Since it can be transferred to the light semi-transmissive film 2 as faithfully as possible, there is no problem with the cross-sectional shape of the light shielding film 3.
  • a fine transfer pattern having a pattern dimension of less than 80 nm can be formed with high accuracy on the light semi-transmissive film serving as a transfer mask film.
  • the pattern accuracy is excellent.
  • a transfer mask can be manufactured.
  • the lower layer 31 preferably has a chromium content of 40 atomic% or more (invention of Configuration 2).
  • the chromium content in the lower layer 31 of the light shielding film 3 is less than 60 atomic%.
  • the chromium content in the lower layer 31 is too small, for example, the extinction coefficient k in ArF excimer laser light (wavelength 193 nm). Therefore, in order to obtain a predetermined optical density, it is necessary to increase the thickness of the light shielding film 3 (particularly the lower layer 31).
  • the chromium content in the lower layer 31 of the light-shielding film 3 is preferably 40 atom% or more and less than 60 atom%, and particularly preferably 45 atom% or more and less than 57 atom%.
  • the lower layer 31 preferably has an oxygen content of 30 atomic% or less (Invention of Configuration 3).
  • the oxygen content in the lower layer 31 of the light-shielding film 3 is 20 atomic% or more.
  • the oxygen content in the lower layer 31 is preferably 30 atomic% or less.
  • the oxygen content of the lower layer 31 is in the above range, the etching rate of the lower layer 31 becomes faster, so that the etching rate of the entire light shielding film 3 can be kept high. Further, if the oxygen content contained in the lower layer 31 is in the above range, vacant (holes) are relatively increased in the chromium binding sites in the lower layer 31, and the vacant sites of the chromium and the light semitransmissive film 2 Since oxygen is bonded with a chemical bond, an effect of improving the adhesion between the light shielding film pattern and the light semi-transmissive film 2 can also be obtained.
  • the oxygen content in the lower layer 31 of the light shielding film 3 is preferably 20 atomic% or more and less than 30 atomic%.
  • the etching rate of dry etching using a mixed gas of chlorine gas and oxygen gas in the light shielding film 3 is low for the upper layer 33 and for the lower layer 31.
  • the etching rate in the lower layer 31 is three times or more the etching rate in the upper layer 33 (Invention of Configuration 4).
  • the etching rate in the depth direction is increased when the etching moves from the upper layer 33 to the lower layer 31. This is preferable because the etching in the depth direction of the lower layer 31 can be completed while suppressing the progress of side etching.
  • the adjustment method of the etching rate of each layer of the light shielding film 3 is not specifically limited, It is suitable for this invention to perform by changing the composition of each layer which comprises the light shielding film 3, respectively. Basically, it is possible by adjusting the chromium content and oxygen content of each layer, but by adjusting the addition amount of an element (for example, tin, indium or molybdenum) that can increase the etching rate, The etching rate may be adjusted. Among these, tin is particularly preferable because it has little influence on the optical properties of the chromium-based material film and can increase the etching rate with a small amount.
  • an element for example, tin, indium or molybdenum
  • the over-etching time during etching of the light-shielding film 3 can be shortened. Can be suppressed. Further, since the time during which the side wall of the upper layer 33 is exposed to the etching gas can be shortened, the thinning of the pattern dimension due to the side etching of the upper layer 33 can be suppressed, and a light shielding film pattern with excellent dimensional accuracy is formed. be able to. Further, if tin is added to the upper layer 33, the time required for etching can be further shortened. However, if excessively added, the side etching of the upper layer 33 is also accelerated, which is not preferable.
  • the side etching of the upper layer can be effectively suppressed by adding so that the ratio of tin to the total number of atoms of chromium and tin is higher in the lower layer 31. Etching time for pattern formation can be shortened.
  • the ratio of the tin with respect to the total number of atoms of chromium and tin shall be 0.55 or less. If the ratio of tin exceeds 0.55, the optical characteristics of the light shielding film may deviate from a desired value. In addition, the proportion of tin oxide in the film increases, and the reactivity with the etching gas (specifically, chlorine-based etching gas) for etching the chromium-based thin film becomes worse and the etching rate can be slowed down. There is sex. A more preferable ratio of tin is 0.3 or less. On the other hand, even if the addition amount of tin is small, an appropriate effect is exhibited, but a clear effect is manifested when the ratio of tin is 0.01 or more, and preferably 0.1 or more.
  • the lower layer of the light shielding film may have a structure in which the lowermost layer and the intermediate layer are sequentially laminated from the light semi-transmissive film side (Invention of Configuration 5). That is, the light shielding film has a laminated structure of a lowermost layer, an intermediate layer, and an upper layer.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the mask blank according to the present invention. As shown in FIG. 2, the mask blank 20 according to the second embodiment of the present invention is similar to the first embodiment described above, on the translucent substrate 1, the light semi-transmissive film 2 and the light shielding film. 3 and the hard mask film 4 are sequentially laminated, and the light shielding film 3 has a laminated structure of a lowermost layer 31, an intermediate layer 32, and an upper layer 33.
  • the lower layer has a structure in which the lowermost layer 31 and the intermediate layer 32 are sequentially stacked from the light semi-transmissive film 2 side, so that the upper layer 33 and the lowermost layer 31 of the light shielding film 3 are formed. Since the intermediate layer 32 is formed between them, a light shielding film having a three-layer structure is formed.
  • the etching rate of the light shielding film can be controlled in three stages by adjusting the chromium content of each layer.
  • the chromium content of the intermediate layer 32 is adjusted to be between the chromium contents of the upper layer 33 and the lowermost layer 31, that is, the intermediate layer 32 has a lower chromium content than the upper layer 33 and higher than the lowermost layer 31.
  • the cross-sectional shape of the pattern is further improved as compared with the light shielding film having a two-layer structure as in the first embodiment. be able to.
  • the etching rate in the lowermost layer 31 is three times or more the etching rate in the upper layer 33 (Invention of Configuration 6).
  • the etching rate in the lowermost layer 31 is three times or more than the etching rate in the upper layer 33, so that the side wall portion of the pattern of the upper layer 33 is etched when the lowermost layer 31 is etched. Therefore, the etching of the lowermost layer 31 in the depth direction can be completed while suppressing the progress of the side etching in the upper layer 33.
  • the etching rate in the lowermost layer 31 is larger than the etching rate in the intermediate layer 32 and not more than twice (Invention of Configuration 7).
  • the etching rate in the lowermost layer 31 is relatively faster than that of the intermediate layer 32, the etching rate in the depth direction becomes faster when the etching moves from the intermediate layer 32 to the lowermost layer 31, but the above configuration
  • the etching rate in the lowermost layer 31 is not more than twice the etching rate in the intermediate layer 32, the etching of the lowermost layer 31 and the necessary overshooting before the side etching of the intermediate layer 32 proceeds during the etching of the lowermost layer 31. Since the etching is completed, the formation of a step at the interface between the intermediate layer 32 and the lowermost layer 31 on the side wall of the pattern can be suppressed.
  • the etching rate of the lowermost layer 31 is fast because the over-etching time can be shortened.
  • the etching rate of the lowermost layer 31 is too high, there is a concern that the etching by the etching gas on the pattern side wall portion becomes deeper in the lowermost layer portion and the contact area between the light semitransmissive film and the light shielding film pattern becomes narrower. If it is the said range, erosion of the pattern side wall in the lowest layer 31 can also be suppressed, shortening the time of overetching.
  • the method for adjusting the etching rate of each layer of the light shielding film having the three-layer structure is the same as that for the light shielding film having the two-layer structure.
  • the upper layer 33 of the light shielding film 3 has a thickness of 1.5 nm or more and 8 nm or less (Invention of Configuration 8).
  • the thickness of the upper layer 33 is less than 1.5 nm, the risk of erosion of the pattern side wall of the upper layer 33 during dry etching increases.
  • the thickness of the upper layer 33 exceeds 8 nm, the etching time of the upper layer 33 may be prolonged. Therefore, by setting the thickness of the upper layer 33 of the light-shielding film 3 in the range of 1.5 nm or more and 8 nm or less, the etching time of the upper layer 33 is suitably suppressed, and the patterning accuracy in the upper layer 33 is favorably maintained.
  • the preferred thickness of the upper layer 33 is not less than 3 nm and not more than 8 nm.
  • the thickness of the upper layer 33 is preferably 1.5 nm or more and 8 nm or less as described above.
  • the thickness of the intermediate layer 32 is preferably 3 nm or more and 50 nm or less, and particularly preferably 3 nm or more and 40 nm or less.
  • the film thickness of the lowermost layer 31 is preferably 10 nm or more and 50 nm or less, and particularly preferably in the range of 20 nm or more and 40 nm or less.
  • the step on the pattern side wall can be suppressed, the time required for over-etching can be shortened, and deterioration in dimensional accuracy associated with side etching of the chromium-based light shielding film can be suppressed.
  • the light shielding film 3 preferably has a total thickness of 35 nm to 55 nm (Invention of Configuration 9).
  • the thickness of the light shielding film 3 is not less than 35 nm and not more than 55 nm, the overall thickness of the light shielding film 3 is reduced, and the patterning accuracy of the light semitransmissive film 2 using the pattern of the light shielding film 3 as a mask is increased. Can do.
  • the hard mask film 4 contains at least one or both of silicon and tantalum.
  • the material contains oxygen in addition to silicon and tantalum.
  • the hard mask film 4 needs to be a material having high etching selectivity with the light shielding film 3 immediately below, but by selecting a material containing oxygen in addition to silicon or tantalum for the hard mask film 4 in particular, Since high etching selectivity with the light-shielding film 3 made of a chromium-based material can be ensured, it is possible not only to reduce the thickness of the resist film but also to reduce the thickness of the hard mask film 4. Therefore, the transfer accuracy of the resist pattern having the transfer pattern formed on the mask blank surface to the hard mask film 4 is improved.
  • the material constituting the hard mask film 4 include silicon oxide (SiO 2 ), silicon oxynitride (SiON), tantalum oxide (TaO), tantalum oxynitride (TaON), and tantalum boride oxide (TaBO). And tantalum boride oxynitride (TaBON). Since the hard mask film 4 formed of a material containing silicon and oxygen tends to have low adhesion to a resist film made of an organic material, the surface of the hard mask film 4 is subjected to HMDS (Hexamethyldisilazane) treatment. It is preferable to improve surface adhesion.
  • HMDS Hexamethyldisilazane
  • the light-semitransmissive film 2 contains at least silicon, but is preferably formed of a material containing silicon and nitrogen (structure 11). invention).
  • a material containing silicon and nitrogen By applying a material containing silicon and nitrogen to the light semi-transmissive film 2, etching selectivity with the chromium-based light-shielding film 3 can be ensured.
  • the material contains silicon and nitrogen, patterning using an anisotropic fluorine-based gas as an etching gas can be applied. Therefore, a transfer pattern having excellent pattern accuracy can be formed also in the light semi-transmissive film 2 by anisotropic etching using the pattern of the light shielding film 3 to which the pattern shape of the hard mask film 4 is transferred almost accurately. .
  • the transmittance with respect to ArF excimer laser light (wavelength 193 nm) in the laminated structure of the light semitransmissive film 2 and the light shielding film 3 may be 0.2% or less.
  • the transmittance for ArF excimer laser light (wavelength 193 nm) in the laminated structure of the light semi-transmissive film 2 and the light-shielding film 3 is 0.2% or less. This is preferable because it has good light-shielding properties (optical density of 2.7 or higher) against excimer laser.
  • the light transmittance in at least a part of the wavelength region of 800 to 900 nm in the laminated structure of the light semi-transmissive film 2 and the light shielding film 3 is 50% or less.
  • (Invention of Configuration 13) is preferable.
  • Light in the near-infrared region with a wavelength of 800 to 900 nm is light used for positioning when a mask blank is placed on an exposure machine because the resist is not exposed.
  • the light transmittance in at least a part of the wavelength region of 800 to 900 nm in the laminated structure of the light semi-transmissive film 2 and the light-shielding film 3 is 50% or less. This is preferable because the arrangement of the blank becomes easy.
  • the hard mask film 4 and the light semitransmissive film 2 can be patterned by dry etching using a fluorine-based gas (the invention of Configuration 14).
  • a fluorine-based gas the invention of Configuration 14
  • the light semi-transmission is performed by patterning by anisotropic etching using the light shielding film 3 as a mask.
  • a transfer pattern having excellent pattern shape accuracy can be formed on the film 2.
  • the present invention also provides a method for manufacturing a transfer mask using the above-described mask blank according to the present invention (Invention of Configuration 15).
  • 3A to 3E are schematic cross-sectional views of a mask blank and the like showing a manufacturing process of a transfer mask using the mask blank 10 according to the first embodiment of the present invention or the mask blank 20 according to the second embodiment. is there.
  • 3A to 3E are for facilitating understanding of the manufacturing process, and the cross-sectional shapes of the patterns shown in FIGS. 3A to 3E do not accurately represent the cross-sectional shapes actually formed.
  • a predetermined resist pattern 5 is formed on the surface of the mask blank 10 (see FIG. 3A).
  • This resist pattern 5 has a desired pattern to be formed on the light semi-transmissive film 2 which becomes a final transfer pattern.
  • the manufacturing process is the same when the mask blank 20 is used.
  • the resist pattern 5 having the light semi-transmissive film pattern formed on the hard mask film 4 of the mask blank 10 as a mask the light mask is formed on the hard mask film 4 by dry etching using a fluorine-based gas.
  • a hard mask film pattern 4a corresponding to the pattern of the permeable film is formed (see FIG. 3B).
  • the light shielding film 3 having a laminated structure corresponds to the pattern of the light semi-transmissive film by dry etching using a mixed gas of chlorine gas and oxygen gas.
  • a light shielding film pattern 3a is formed (see FIG. 3C).
  • the light semi-transmissive film pattern 2a is formed on the light semi-transmissive film 2 by dry etching using a fluorine-based gas (see FIG. 3D). In the etching process of the light semitransmissive film 2, the hard mask film pattern 4a exposed on the surface is removed.
  • a resist film is applied to the entire surface of the light shielding film pattern 3a, and a resist pattern (not shown) corresponding to a light shielding pattern (for example, a light shielding band pattern) formed on the light shielding film is formed by predetermined exposure and development processes. .
  • a predetermined light shielding pattern 3b is formed on the light semi-transmissive film pattern 2a by dry etching using a mixed gas of chlorine gas and oxygen gas.
  • the remaining resist pattern is removed to complete a transfer mask (for example, a halftone phase shift mask) 30 (see FIG. 3E).
  • a transfer mask is manufactured according to the above manufacturing process using the mask blank 10 according to the first embodiment of the present invention or the mask blank 20 according to the second embodiment.
  • a transfer mask formed with high pattern accuracy can be obtained even for a fine pattern. That is, according to the mask blank 10 or the mask blank 20 according to the embodiment of the present invention, the upper layer 33 of the light shielding film 3 has a high chromium content (chromium rich) and a low oxygen content. However, there is little side etching of the pattern of the upper layer 33. Therefore, the pattern of the light-shielding film 3 having the upper layer 33 to which the transfer pattern shape formed on the resist film or the hard mask film 4 is almost accurately transferred can be formed.
  • a transfer pattern with excellent pattern accuracy can be formed on the light semi-transmissive film 2.
  • the pattern of the light semi-transmissive film 2 can be formed with high pattern accuracy, and the fine pattern is formed with high pattern accuracy. A transferred transfer mask is obtained.
  • the transfer pattern of the transfer mask is formed by a lithography method. According to the method for manufacturing a semiconductor device including the step of transferring the pattern onto the substrate, a high-quality semiconductor device with excellent pattern accuracy can be obtained.
  • Example 1 This example relates to a mask blank used for manufacturing a halftone type phase shift mask using an ArF excimer laser with a wavelength of 193 nm as exposure light, and corresponds to the first embodiment described above.
  • the mask blank used in the present embodiment has a light semi-transmissive film 2, a light-shielding film 3 having a two-layer structure, and a hard mask film 4 in this order on a light-transmitting substrate (glass substrate) 1 as shown in FIG. It has a laminated structure.
  • This mask blank was produced as follows.
  • a synthetic quartz substrate (size: about 152 mm ⁇ 152 mm ⁇ thickness 6.35 mm) was prepared as a glass substrate.
  • a MoSiN light semi-transmissive film made of molybdenum, silicon, and nitrogen was formed to a thickness of 69 nm on the synthetic quartz substrate.
  • the substrate was taken out from the sputtering apparatus, and the light semi-transmissive film on the synthetic quartz substrate was subjected to heat treatment in the atmosphere. This heat treatment was performed at 450 ° C. for 30 minutes.
  • the transmittance and the phase shift amount at the wavelength (193 nm) of the ArF excimer laser were measured for the light-semitransmissive film after the heat treatment using a phase shift amount measuring device, the transmittance was 6.44% and the phase The shift amount was 174.3 degrees.
  • the substrate on which the light semi-transmissive film is formed is again put into the sputtering apparatus, and a light shielding film having a laminated structure of a lower layer made of a CrOCN film and an upper layer made of a CrN film is formed on the light semi-transmissive film. Formed.
  • a hard mask film made of a SiON film was formed on the light shielding film.
  • Ar argon
  • NO nitric oxide
  • He helium
  • a hard mask film made of a SiON film having a thickness of 15 nm was formed on the light shielding film by performing reactive sputtering.
  • the optical density of the laminated film of the light semi-transmissive film and the light shielding film was 3.0 or more (transmittance of 0.1% or less) at the wavelength (193 nm) of the ArF excimer laser. Further, the transmittance at a wavelength of 880 nm (a wavelength used for positioning a substrate mounted on the exposure apparatus) was 50% or less.
  • a mask blank of this example was produced as described above.
  • a halftone phase shift mask was manufactured according to the manufacturing process shown in FIG.
  • the following reference numerals correspond to those in FIGS. 1 and 3.
  • an HMDS process is performed on the upper surface of the mask blank 10
  • a chemical amplification resist for electron beam drawing PRL009 manufactured by Fuji Film Electronics Materials
  • PRL009 manufactured by Fuji Film Electronics Materials
  • the resist film is a pattern corresponding to a predetermined device pattern (a phase shift pattern to be formed in the light semi-transmissive film 2 (phase shift layer)) and includes a line and space. )),
  • the resist film was developed to form a resist pattern 5 (see FIG. 3A).
  • the hard mask film 4 was dry-etched to form a hard mask film pattern 4a (see FIG. 3B).
  • a fluorine-based gas (SF 6 ) was used as the dry etching gas.
  • the light shielding film 3 composed of the upper and lower laminated films is continuously dry-etched using the hard mask film pattern 4a as a mask to form the light shielding film pattern 3a (see FIG. 3C).
  • the etching rate of the light shielding film 3 was 2.9 ⁇ / sec for the upper layer and 5.1 ⁇ / sec for the lower layer.
  • the light semi-transmissive film 2 was dry-etched using the light shielding film pattern 3a as a mask to form a light semi-transmissive film pattern 2a (phase shift film pattern) (see FIG. 3D).
  • a fluorine-based gas (SF 6 ) was used as the dry etching gas.
  • the hard mask film pattern 4a exposed on the surface was removed.
  • the resist film is formed again on the entire surface of the substrate in the state shown in FIG. 3D by spin coating, and a predetermined device pattern (for example, a pattern corresponding to a light-shielding band pattern) is formed using an electron beam drawing machine. After drawing, development was performed to form a predetermined resist pattern. Subsequently, by using this resist pattern as a mask, the exposed light shielding film pattern 3a is etched to remove, for example, the light shielding film pattern 3a in the transfer pattern formation region, and light shielding is applied to the periphery of the transfer pattern formation region. A band pattern 3b was formed.
  • a predetermined device pattern for example, a pattern corresponding to a light-shielding band pattern
  • the line width of the line and space pattern formed on the resist film was decreased from 200 nm by 10 nm, and the formation state of the light shielding film pattern was confirmed. As a result, it was possible to perform pattern formation up to 50 nm width.
  • Example 2 This example relates to a mask blank used for manufacturing a halftone type phase shift mask using an ArF excimer laser with a wavelength of 193 nm as exposure light, and corresponds to the second embodiment described above.
  • the mask blank used in the present embodiment has a light semi-transmissive film 2, a three-layer structure light shielding film 3, and a hard mask film 4 in this order on a light-transmitting substrate (glass substrate) 1 as shown in FIG. It has a laminated structure.
  • This mask blank was produced as follows.
  • a synthetic quartz substrate (size: about 152 mm ⁇ 152 mm ⁇ thickness 6.35 mm) was prepared as a glass substrate.
  • a MoSiN light semi-transmissive film made of molybdenum, silicon, and nitrogen was formed to a thickness of 69 nm on the synthetic quartz substrate.
  • the substrate was taken out from the sputtering apparatus, and the light semi-transmissive film on the synthetic quartz substrate was subjected to heat treatment in the atmosphere. This heat treatment was performed at 450 ° C. for 30 minutes.
  • the transmittance and the phase shift amount at the wavelength (193 nm) of the ArF excimer laser were measured for the light-semitransmissive film after the heat treatment using a phase shift amount measuring device, the transmittance was 6.44% and the phase The shift amount was 174.3 degrees.
  • the substrate on which the light semi-transmissive film is formed is again put into the sputtering apparatus, and on the light semi-transmissive film, a lower layer (lowermost layer) made of a CrOCN film, an intermediate layer made of a CrOCN film, and a CrN film
  • a hard mask film made of a SiON film was formed on the light shielding film.
  • Ar argon
  • NO nitric oxide
  • He helium
  • a hard mask film made of a SiON film having a thickness of 15 nm was formed on the light shielding film by performing reactive sputtering.
  • the optical density of the laminated film of the light semi-transmissive film and the light shielding film was 3.0 or more (transmittance of 0.1% or less) at the wavelength (193 nm) of the ArF excimer laser. Further, the transmittance at a wavelength of 880 nm (a wavelength used for positioning a substrate mounted on the exposure apparatus) was 50% or less.
  • the mask blank 20 of this example was produced as described above.
  • a halftone phase shift mask was manufactured according to the manufacturing process shown in FIGS. 3A to 3E.
  • the following symbols correspond to those in FIG. 2 and FIGS. 3A to 3E.
  • an HMDS process is performed on the upper surface of the mask blank 20, and a chemical amplification resist for electron beam drawing (PRL009 made by Fuji Film Electronics Materials) is applied by spin coating, and a predetermined baking process is performed.
  • a resist film having a thickness of 150 nm was formed.
  • the resist film is a pattern corresponding to a predetermined device pattern (a phase shift pattern to be formed in the light semi-transmissive film 2 (phase shift layer)) and includes a line and space. )),
  • the resist film was developed to form a resist pattern 5 (see FIG. 3A).
  • the hard mask film 4 was dry-etched to form a hard mask film pattern 4a (see FIG. 3B).
  • a fluorine-based gas (SF 6 ) was used as the dry etching gas.
  • the light shielding film 3 composed of an upper layer, an intermediate layer, and a lower layer was continuously dry-etched using the hard mask film pattern 4 a as a mask to form a light shielding film pattern 3 a ( (See FIG. 3C).
  • the etching rate of the light shielding film 3 was 2.9 ⁇ / sec for the upper layer, 5.1 ⁇ / sec for the intermediate layer, and 9.1 ⁇ / sec for the lower layer.
  • the light semi-transmissive film 2 was dry-etched using the light shielding film pattern 3a as a mask to form a light semi-transmissive film pattern 2a (phase shift film pattern) (see FIG. 3D).
  • a fluorine-based gas (SF 6 ) was used as the dry etching gas.
  • the hard mask film pattern 4a exposed on the surface was removed.
  • the resist film is formed again on the entire surface of the substrate in the state shown in FIG. 3D by spin coating, and a predetermined device pattern (for example, a pattern corresponding to a light-shielding band pattern) is formed using an electron beam drawing machine. After drawing, development was performed to form a predetermined resist pattern. Subsequently, by using this resist pattern as a mask, the exposed light shielding film pattern 3a is etched to remove, for example, the light shielding film pattern 3a in the transfer pattern formation region, and light shielding is applied to the periphery of the transfer pattern formation region. A band pattern 3b was formed.
  • a predetermined device pattern for example, a pattern corresponding to a light-shielding band pattern
  • the cross-sectional shape of the light shielding film pattern was better than that of Example 1. Since the hard mask film pattern 4a is removed at this time, the previous state is indicated by a broken line in FIG. Further, the line width of the line and space pattern formed on the resist film was reduced by 10 nm from 200 nm, and the formation state of the light shielding film pattern was confirmed. As a result, the pattern formation up to 40 nm width could be performed.
  • the light semi-transmissive film and the hard mask film were the same as those in Example 1, and different mask blanks were produced. That is, the light-shielding film of this comparative example is a light-shielding film having a single-layer structure, and is a thin film having the same composition as that of the lower layer in the light-shielding film of Example 1, an optical density of 3.0 or more, and a film thickness of 100 nm.
  • a halftone phase shift mask was produced in the same manner as in Example 1.
  • the light shielding film pattern collapses and patterning of the light translucent film that becomes the final transfer pattern It is difficult.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

 本発明は、クロム系遮光膜を有するマスクブランクであっても、ハードマスク膜パターンをマスクとした場合に高い転写精度で形成することができるマスクブランクを提供する。 本発明のマスクブランクは、透光性基板(1)上に光半透過膜(2)、遮光膜(3)及びハードマスク膜(4)が順に積層されている。光半透過膜(2)はケイ素を含有し、ハードマスク膜(4)はケイ素とタンタルのいずれか一方または両方を含有している。遮光膜(3)は下層(31)及び上層(33)の積層構造であってクロムを含有している。上層(33)はクロムの含有量が65原子%以上で、かつ酸素の含有量が20原子%未満であり、下層(31)はクロムの含有量が60原子%未満で、かつ酸素の含有量が20原子%以上である。

Description

マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
 本発明は、半導体装置の製造に用いられる転写用マスクの製造方法、該転写用マスクの製造に用いられるマスクブランクに関するものである。
 一般に、半導体装置の製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚もの転写用マスク(通常、フォトマスクとも呼ばれている)が使用される。この転写用マスクは、一般に透光性のガラス基板上に、金属薄膜等からなる遮光性の微細パターンを設けたものであり、この転写用マスクの製造においてもフォトリソグラフィー法が用いられている。
 この転写用マスクは同じ微細パターンを大量に転写するための原版となるため、転写用マスク上に形成されたパターンの寸法精度は、作製される微細パターンの寸法精度に直接影響する。半導体回路の集積度が向上するにつれ、パターンの寸法は小さくなり、転写用マスクの精度もより高いものが要求されている。
 従来より、このような転写用マスクとしては、ガラス基板等の透光性基板上に、遮光膜からなる転写パターンが形成されたバイナリマスクや、位相シフト膜、あるいは位相シフト膜及び遮光膜からなる転写パターンが形成された位相シフト型マスクなどがよく知られている。また、転写パターン形成領域の周辺部に遮光帯が形成されているハーフトーン型位相シフトマスクも知られている。
 たとえば、国際公開第2004/090635号公報(特許文献1)には、 ハーフトーン型転写用マスク製造用のマスクブランクとして、基板側から金属シリサイド系の転写用マスク膜(光半透過膜)、クロム系化合物からなる遮光膜及びケイ素化合物からなるハードマスク膜の薄膜構成を有するマスクブランクが開示されている。
国際公開第2004/090635号公報
 特許文献1に開示されているようなマスクブランクをパターニングする場合、まず、マスクブランクの表面に形成した所定のレジストパターンをマスクとして、フッ素系ガスによるドライエッチングにより、ケイ素化合物からなるハードマスク膜をパターニングする。次に、パターニングされたハードマスク膜をマスクとして、塩素と酸素の混合ガスによるドライエッチングにより、クロム系化合物からなる遮光膜をパターニングする。続いて、パターニングされた遮光膜をマスクとして、フッ素系ガスによるドライエッチングにより、金属シリサイド系の転写用マスク膜(光半透過膜)をパターニングする。
 ところで、上記のクロム系遮光膜は、組成に含まれるクロム元素の割合が多ければ、消衰係数が高くなるので膜厚を薄くしても高い光学濃度が得られる点で有利であるが、クロム元素の割合が高いほどエッチングレートが遅くなりパターニングに時間を要するので、遮光膜のパターニングが完了する前に上層のハードマスク膜のパターンが消失してしまうおそれがある。
 また、ドライエッチングによって遮光膜をパターニングする際、エッチングガスが遮光膜の下面まで到達した段階では、遮光膜の表面側はハードマスク膜のパターンのスペース幅とほぼ同じであるに対し、下面は側壁側のエッチングが十分進行せずにハードマスク膜のパターンのスペース幅よりも狭く、側壁の断面形状は傾斜している状態の部分が存在する。このため、遮光膜パターンのスペースが下面においても確実に形成されるよう、追加のエッチング(オーバーエッチング)を行う必要がある。
 しかし、クロム系遮光膜で組成に含まれるクロム元素の割合が多ければ、エッチングレートが遅いため、下面におけるスペース形成を確実に行うにはオーバーエッチングを長く行う必要が生じる。しかし、オーバーエッチングを長く行うと、その下の層である金属シリサイド系の転写用マスク膜の表面にダメージを与えてしまうため、オーバーエッチングをあまり掛けられないという問題もある。
 一方、組成に含まれるクロム元素の割合が少なければ、エッチングレートは速くなるが、消衰係数が低くなるので所定の光学濃度を得るためには膜厚を厚くする必要がある。また、クロム元素の割合が少ない膜は、膜応力が圧縮応力傾向を示すため、光学濃度を得るために膜厚を厚くすると、その圧縮応力の影響でマスクブランクの表面に変形が生じる恐れがある。マスクブランクの表面の変形は、パターン形成時の位置精度に影響を及ぼすことになる。
 また、クロム系遮光膜のドライエッチングに用いる塩素と酸素の混合ガスは等方性エッチングの性質を有するため、クロム成分が少なくエッチングレートが速くて膜厚が厚ければパターンの側壁もエッチングガスによって侵食されてしまい、上層のハードマスク膜パターンよりも遮光膜パターンが細くなり、この遮光膜パターンをマスクとしてパターニングして形成される転写用マスク膜のパターン精度が劣化する。
 この対策として、遮光膜パターンの細りを考慮してレジストパターンのライン部分の寸法を広く、スペース部分の寸法を狭く設定する方法がある。しかし、レジストパターンのスペース幅寸法が狭いと、スペースの形成に係る現像が困難になるという問題もある。
 そこで、本発明は、このような従来の問題に鑑みなされたものであり、その目的とするところは、第1に、クロム系遮光膜を有するマスクブランクであっても、ハードマスク膜パターンをマスクとした場合に高い転写精度で形成することができるマスクブランクを提供することであり、第2に、このようなマスクブランクを用いて、微細パターンが高精度で形成された転写用マスクの製造方法を提供することであり、第3に、かかる転写用マスクを用いて、パターン精度の優れた高品質の半導体装置の製造方法を提供することである。
 本発明者は、透光性基板上に、光半透過膜、遮光膜及びハードマスク膜が順に積層された構造を有するマスクブランクにおいて、上記遮光膜を所定の積層構造とし、遮光膜の各層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチング時のサイドエッチ量に着目して鋭意検討した結果、得られた知見に基づき本発明を完成した。
 すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 透光性基板上に、光半透過膜、遮光膜及びハードマスク膜が順に積層された構造を有するマスクブランクであって、前記光半透過膜は、少なくともケイ素を含有しており、前記ハードマスク膜は、前記遮光膜上の表面に接して形成され、ケイ素とタンタルのいずれか一方または両方を含有しており、前記遮光膜は、下層及び上層の積層構造であって、少なくともクロムを含有しており、前記上層は、クロムの含有量が65原子%以上であり、かつ、酸素の含有量が20原子%未満であり、前記下層は、クロムの含有量が60原子%未満であり、かつ、酸素の含有量が20原子%以上である、ことを特徴とするマスクブランク。
 構成1によれば、ハードマスク膜の直下にあるクロムを含有する遮光膜の上層は、クロムの含有量が多く(クロムリッチ)、かつ酸素の含有量が少ないため、エッチングレートが遅くエッチング中のサイドエッチが生じにくい(パターンの側壁が侵食されにくい)。遮光膜の上層のサイドエッチが生じにくいことで、遮光膜の上層には、直上のハードマスク膜のパターン形状がほぼ正確に転写される。ハードマスク膜のパターン形状がほぼ正確に転写された上層を遮光膜が有することで、遮光膜のパターンをマスクとして、異方性のエッチングガスであるフッ素系ガスでパターニングされるケイ素含有の光半透過膜にも、ハードマスク膜のパターンをほぼ正確に形成することができる。
 また、構成1によれば、マスクブランクに形成されている薄膜の膜応力を軽減し、マスクブランク表面の変形を抑制するという効果も有している。
 構成1の光半透過膜に採用されているケイ素系化合物は加熱処理等による膜の損傷が少ないことから、300℃以上に加熱する処理を行うことができる。スパッタリングによって成膜された金属シリサイド系の薄膜は、前述の加熱処理により膜応力を無視できる程度に軽減することができる。その一方、クロム系薄膜は、成膜後に高温処理を行うと膜質が大きく変化するため、積極的に高温処理されない。このため、クロム系薄膜はスパッタリング成膜後に熱処理等の後処理によって膜応力を軽減することが難しい。さらに、クロム薄膜を形成した後にケイ素系薄膜やタンタル系薄膜のハードマスク膜を形成した場合には、ケイ素系薄膜やタンタル系薄膜を形成後に加熱することができないため、それらの膜応力を軽減させることが困難となる。
 クロム系薄膜の膜応力は、クロム元素の割合が少なければ弱い圧縮応力傾向を示し、クロム元素の割合が増えるにつれて圧縮応力が徐々に弱まり、そしてさらにクロム元素の割合が増えると強い引張応力傾向になる。構成1は、クロム元素の割合が低く圧縮応力傾向の下層の上に、クロム元素の割合が多く引張応力傾向の応力の傾向である上層が形成されるマスクブランクである。従って、構成1によれば、圧縮応力傾向のクロム元素の割合が少ないクロム系薄膜を薄くすることができることから、遮光膜の総合的な膜応力の不均衡を軽減することができる。さらに、ケイ素系薄膜はアニール処理を行わないと圧縮応力を示すことから、遮光膜に引張応力傾向を付与するクロム元素の割合が高い層を含ませることで、基板上に形成された薄膜の総合的な膜応力を軽減することができる。結果、マスクブランク表面の変形も効果的に抑制することができ、位置精度に優れたパターンを形成することができる。
 また、遮光膜の下層は、上層よりもクロムの含有量が少なく、かつ酸素の含有量が上層よりも多いため、下層のエッチングレートが速い膜設計となるので、遮光膜全体としてのエッチングレートを速くすることができる。これにより、ハードマスク膜のパターンが消失することなく、遮光膜のパターニングを完了することができる。
 以上のように、構成1によれば、微細な転写パターンであっても、本発明のマスクブランクの転写用マスク膜となる光半透過膜に高精度で形成することができ、結果、パターン精度に優れた転写用マスクを製造することができる。
(構成2)
 前記下層は、クロムの含有量が40原子%以上であることを特徴とする構成1に記載のマスクブランク。
 上記構成1によると、遮光膜の下層におけるクロム含有量は60原子%未満であるが、クロム含有量が少なすぎると、例えばArFエキシマレーザー光(波長193nm)における消衰係数kが低くなるため、所定の光学濃度を得るためには、遮光膜(特に下層)の膜厚を厚くする必要が生じる。そこで、構成2にあるように、下層のクロム含有量を40原子%以上とすることで、上記消衰係数kが高くなるため、遮光膜を薄膜化することができ、該遮光膜のパターンをマスクとする光半透過膜のパターニング精度を高められる。
(構成3)
 前記下層は、酸素の含有量が30原子%以下であることを特徴とする構成1又は2に記載のマスクブランク。
 構成1によると、遮光膜の下層における酸素の含有量は20原子%以上であるが、構成3のように、下層の酸素含有量は30原子%以下であることが好ましい。下層の酸素含有量が30原子%よりも高くなると、下層のエッチングレートが速くなるものの、下層部分のサイドエッチの進行も速くなり、パターン断面における上層と下層の境界に明らかな段差が生じることがある。このような段差が生じると、より微細なパターンを形成する場合に、遮光膜パターンが倒れることが懸念される。
 本構成のように、下層の酸素含有量が上記の範囲であれば、下層のエッチングレートが速く保たれ、結果、遮光膜全体のエッチングレートも速く保つことができ、かつ、下層部分のサイドエッチによる影響を抑制することができる。
 また、下層に含まれる酸素含有量が上記の範囲であれば、遮光膜パターンと光半透過膜との密着性をより高める効果も得られる。遮光膜と光半透過膜の界面で、酸素元素の移動が生じ、化学結合をもって接合するからである。
(構成4)
 前記下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記上層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートの3倍以上であることを特徴とする構成1乃至3のいずれかに記載のマスクブランク。
 構成4にあるように、遮光膜の下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートが、上層におけるエッチングレートの3倍以上であることにより、上層から下層にエッチングが移行するときに深さ方向のエッチングレートが速まり、上層でのサイドエッチの進行を抑制しつつ下層の深さ方向のエッチングを完結することができる。
(構成5)
 前記下層は、前記光半透過膜側から最下層及び中間層が順に積層された構造からなることを特徴とする構成1乃至4のいずれかに記載のマスクブランク。
 構成5のように、下層を、光半透過膜側から最下層及び中間層が順に積層された構造とすることにより、遮光膜の上層と最下層との間に中間層が形成され、三層構造の遮光膜となるので、たとえば各層のクロム含有量を調整して遮光膜のエッチングレートを三段階にコントロールすることで、遮光膜のパターン側壁にサイドエッチの進行度の相違による段差の形成を抑制し、遮光膜のパターンの断面形状を二層構造の遮光膜よりも向上させることができる。
(構成6)
 前記最下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記上層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートの3倍以上であることを特徴とする構成5に記載のマスクブランク。
 構成6にあるように、3層積層構成の遮光膜の最下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートが、上層におけるエッチングレートの3倍以上であることにより、最下層をエッチングしているときに上層のパターンの側壁部がエッチングされにくいので、上層でのサイドエッチの進行を抑制しつつ最下層の深さ方向のエッチングを完結することができる。
(構成7)
 前記最下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記中間層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートよりも大きくて且つ2倍以下であることを特徴とする構成5又は6に記載のマスクブランク。
 最下層におけるエッチングレートが中間層よりも相対的に速い場合には、中間層から最下層にエッチングが移行するときに深さ方向のエッチングレートが速くなる。構成7にあるように、最下層におけるエッチングレートが中間層におけるエッチングレートの2倍以下であることにより、最下層のエッチング時に、中間層のサイドエッチがより進行する前に最下層のエッチング及びパターンのスペース部分を確実に形成するために必要なオーバーエッチングが完了するため、とくにパターン側壁の中間層と最下層との境界での段差形成を抑制することができる。
 また、最下層のエッチングレートが速いとオーバーエッチングの時間を短縮することができるため好ましい。その一方で、最下層のエッチングレートが速すぎると最下層部分でパターン側壁部分のエッチングガスによる侵食が深くなり、光半透過膜と遮光膜パターンの接触領域が狭くなることが懸念される。上記範囲であれば、オーバーエッチングの時間を短縮しつつ、最下層におけるパターン側壁の侵食も抑制することができる。
(構成8)
 前記上層は、厚さが1.5nm以上8nm以下であることを特徴とする構成1乃至7のいずれかに記載のマスクブランク。
 構成8のように、遮光膜の上層の厚さを1.5nm以上8nm以下の範囲とすることにより、上層のエッチング時間を好適に抑制しつつ、上層でのパターニング精度を良好に維持することができる。なお、上層の好ましい厚さは、3nm以上8nm以下である。
(構成9)
 前記遮光膜は、厚さが35nm以上55nm以下であることを特徴とする構成1乃至8のいずれかに記載のマスクブランク。
 構成9のように、遮光膜の厚さが35nm以上55nm以下であることにより、遮光膜の全体の厚さを薄膜化して、該遮光膜のパターンをマスクとする光半透過膜のパターニング精度を高めることができる。
(構成10)
 前記ハードマスク膜は、酸素を含有することを特徴とする構成1乃至9のいずれかに記載のマスクブランク。
 ハードマスク膜は、直下の遮光膜とエッチング選択性の高い素材であることが必要であるが、構成10にあるように、ハードマスク膜にケイ素やタンタルのほかに酸素を含有する素材を選択することにより、クロム系の素材からなる遮光膜との高いエッチング選択性を確保することができ、レジストの薄膜化のみならずハードマスク膜の膜厚も薄くすることが可能である。したがって、マスクブランク表面に形成されたレジストパターンの転写精度が向上し、遮光膜にパターン精度に優れたパターンを形成することができる。
(構成11)
 前記光半透過膜は、ケイ素と窒素を含有することを特徴とする構成1乃至10のいずれかに記載のマスクブランク。
 構成11にあるように、光半透過膜にケイ素と窒素を含有する素材を適用することで、クロム系の遮光膜とのエッチング選択性を確保することができる。また、ケイ素と窒素を含有する素材であれば、エッチングガスとして異方性のフッ素系ガスを使用したパターニングを適用することができる。したがって、ハードマスク膜のパターン形状がほぼ正確に転写された遮光膜パターンをマスクとすることによって光半透過膜にもパターン精度に優れたパターンを形成することができる。
(構成12)
 前記光半透過膜と前記遮光膜の積層構造におけるArFエキシマレーザー光(波長193nm)に対する透過率が0.2%以下であることを特徴とする構成1乃至11のいずれかに記載のマスクブランク。
 構成12にあるように、光半透過膜と遮光膜の積層構造におけるArFエキシマレーザー光(波長193nm)に対する透過率が0.2%以下であることによって、露光光のArFエキシマレーザーに対する良好な遮光性(光学濃度で2.7以上)を備えることが可能となるため好ましい。
(構成13)
 前記光半透過膜と前記遮光膜の積層構造における800~900nmの波長領域の少なくとも一部の波長における光の透過率が50%以下であることを特徴とする構成1乃至12のいずれかに記載のマスクブランク。
 波長800~900nmの近赤外領域の光はレジストを感光しないため、露光機にマスクブランクを配置する場合の位置決めに使用される光である。構成13にあるように、光半透過膜と遮光膜の積層構造における800~900nmの波長領域の少なくとも一部の波長における光の透過率が50%以下であることによって、露光機へのマスクブランクの配置が容易になるため好ましい。
(構成14)
 前記ハードマスク膜および光半透過膜は、フッ素系ガスを用いたドライエッチングによってパターニングされることを特徴とする構成1乃至13のいずれかに記載のマスクブランク。
 構成14によれば、ハードマスク膜および光半透過膜は、異方性のフッ素系ガスを用いたドライエッチングによってパターニングされるので、遮光膜の上層に直上のハードマスク膜のパターン形状がほぼ正確に転写されることと相俟って、該遮光膜をマスクとするパターニングにより光半透過膜にパターン形状精度に優れた転写パターンを形成することができる。
(構成15)
 構成1乃至14のいずれかに記載のマスクブランクを用いる転写用マスクの製造方法であって、前記ハードマスク膜上に形成された光半透過膜のパターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜に光半透過膜のパターンを形成する工程と、前記光半透過膜のパターンが形成されたハードマスク膜をマスクとし、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、前記遮光膜に光半透過膜のパターンを形成する工程と、前記光半透過膜のパターンが形成された遮光膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記光半透過膜に光半透過膜のパターンを形成する工程と、前記遮光膜上に形成された遮光パターンを有するレジスト膜をマスクとし、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、前記遮光膜に遮光パターンを形成する工程と、を有することを特徴とする転写用マスクの製造方法。
 構成15にあるように、本発明に係るマスクブランクを用いて上記製造工程により転写用マスクを製造することによって、例えば80nm未満の微細パターンが高精度で形成された転写用マスクを得ることができる。
(構成16)
 構成15に記載の転写用マスクの製造方法により製造された転写用マスクを用い、リソグラフィー法により前記転写用マスクの転写パターンを半導体基板上にパターン転写する工程を含むことを特徴とする半導体装置の製造方法。
 構成16にあるように、上記の微細パターンが高精度で形成された転写用マスクを用いて、パターン精度の優れた高品質の半導体装置を得ることができる。
 本発明のマスクブランクによれば、微細な転写パターンであっても高精度で形成することができる。すなわち、本発明のマスクブランクによれば、遮光膜の上層は、クロムの含有量が多く(クロムリッチ)、かつ酸素の含有量が少ないため、エッチングレートが遅く、該上層パターンのサイドエッチが少ない。そのため、レジスト膜ないしはハードマスク膜に形成された転写パターン形状がほぼ正確に転写された遮光膜パターンを形成することができるので、該遮光膜パターンをマスクとして光半透過膜をパターニングすることにより、光半透過膜にパターン精度の優れた転写パターンを形成することができる。また、遮光膜の下層はエッチングレートが速いため、遮光膜全体のエッチングレートを速めることができるので、ハードマスク膜パターンが消失する前に遮光膜パターンの形成を確実に完了することができる。
 また、このような本発明のマスクブランクを用いることにより、微細パターンが高精度で形成された転写用マスクを製造することができる。
 さらに、かかる転写用マスクを用いて、パターン精度の優れた高品質の半導体装置を製造することができる。
本発明に係るマスクブランクの第1の実施の形態の断面概略図である。 本発明に係るマスクブランクの第2の実施の形態の断面概略図である。 本発明に係るマスクブランクを用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。 本発明に係るマスクブランクを用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。 本発明に係るマスクブランクを用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。 本発明に係るマスクブランクを用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。 本発明に係るマスクブランクを用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。 本発明の実施例1における遮光膜パターンの断面形状を示す断面図である。 本発明の実施例2における遮光膜パターンの断面形状を示す断面図である。 本発明の比較例における遮光膜パターンの断面形状を示す断面図である。
 以下、本発明を実施するための形態について図面を参照しながら詳述する。
 前述のように、本発明者は、透光性基板上に、光半透過膜、遮光膜及びハードマスク膜が順に積層された構造を有するマスクブランクにおいて、上記遮光膜を所定の積層構造とし、遮光膜の各層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチング時のサイドエッチ量に着目して鋭意検討した結果、以下の構成を有する本発明によって前記の課題を解決できることを見出したものである。
 すなわち、本発明は、上記構成1にあるとおり、透光性基板上に、光半透過膜、遮光膜及びハードマスク膜が順に積層された構造を有するマスクブランクであって、前記光半透過膜は、少なくともケイ素を含有しており、前記ハードマスク膜は、前記遮光膜上の表面に接して形成され、ケイ素とタンタルのいずれか一方または両方を含有しており、前記遮光膜は、下層及び上層の積層構造であって、少なくともクロムを含有しており、前記上層は、クロムの含有量が65原子%以上であり、かつ、酸素の含有量が20原子%未満であり、前記下層は、クロムの含有量が60原子%未満であり、かつ、酸素の含有量が20原子%以上である、ことを特徴とするマスクブランクである。
 図1は、本発明に係るマスクブランクの第1の実施の形態を示す断面概略図である。
 図1にあるとおり、本発明の第1の実施の形態に係るマスクブランク10は、透光性基板1上に、光半透過膜2、遮光膜3、及びハードマスク膜4が順に積層された構造を有する。また、上記遮光膜3は、下層31及び上層33の積層構造である。
 上記マスクブランク10において、上記光半透過膜2は少なくともケイ素を含有しており、上記ハードマスク膜4はケイ素とタンタルのいずれか一方または両方を含有している。また上記積層構造の遮光膜3は少なくともクロムを含有している。なお、詳しくは後述するが、上記光半透過膜2は、ケイ素と窒素を含有する素材を適用することが特に好ましく、上記ハードマスク膜4は、ケイ素やタンタルのほか、酸素を含有する素材を適用することが特に好ましい。
 ここで、上記マスクブランク10における透光性基板1としては、半導体装置製造用の転写用マスクに用いられる基板であれば特に限定されない。位相シフト型マスク用のブランクに使用する場合、使用する露光波長に対して透明性を有するものであれば特に制限されず、合成石英基板や、その他各種のガラス基板(例えば、ソーダライムガラス、アルミノシリケートガラス等)が用いられる。この中でも合成石英基板は、微細パターン形成に有効なArFエキシマレーザー(波長193nm)又はそれよりも短波長の領域で透明性が高いので、特に好ましく用いられる。
 上記ハードマスク膜4は、ケイ素(Si)を含有する材料やタンタル(Ta)を含有する材料を用いることができる。ハードマスク膜4に好適なケイ素(Si)を含有する材料としては、ケイ素(Si)に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)および水素(H)から選ばれる1以上の元素を含有する材料が挙げられる。また、このほかのハードマスク膜4に好適なケイ素(Si)を含有する材料としては、ケイ素(Si)および遷移金属に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)および水素(H)から選ばれる1以上の元素を含有する材料が挙げられる。また、この遷移金属としては、例えば、モリブデン(Mo)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、バナジウム(V)、コバルト(Co)、クロム(Cr)、ニッケル(Ni)、ルテニウム(Ru)、スズ(Sn)が挙げられる。これらの中でも、ケイ素(Si)の他に、酸素(O)を含有する材料で形成されていることが特に好ましい。具体例としては、SiO、SiON及SiOCNがあげられる。
 ケイ素(Si)の他に、酸素(O)を含有する薄膜をスパッタリング法によって成膜すると、その薄膜は、圧縮応力の傾向となる。応力軽減には、成膜後の後処理として熱処理(アニール処理)を行うことが有効であるが、本実施形態においてはクロム系材料からなる遮光膜3の表面に形成されることから、例えば300℃以上の熱処理を行うことができない。熱処理によって、クロム系材料からなる遮光膜3が損傷する恐れがあるからである。
 この圧縮応力傾向は比較的強く、例えばマスクブランク用合成石英ガラス基板(152mm×152mm、厚さ6mm)の表面に反応性スパッタリングによって1.5nmのSiON膜を直接形成した場合に、基板の表面形状は約30nmの変形量で凸形状になるほどの引張応力を有する。ハードマスク膜4は、厚さが少なくとも1.5nmであるので、厚みが増せば増すほど変形量が大きくなる。
 その一方、クロム系薄膜は、クロム元素の割合が低いと圧縮応力傾向を示すが、クロム元素の割合が高くなるほどに強い引張応力傾向を示す。本実施形態において、遮光膜3は、クロム元素の比率が低い下層31とクロム元素の比率が高い上層33が積層された構造である。クロム元素の比率が高い上層33は、強い引張応力の傾向を有するため、遮光膜の総合的な膜応力は引張応力傾向を示すことになる。たとえば、引張応力の強い上層31の膜厚が最小で、圧縮応力を有する下層が最大となる膜構成でトータル55nmの膜厚を有する遮光膜3をマスクブランク用合成石英ガラス基板(152mm×152mm、厚さ6mm)に直接形成すると、基板の表面形状を深さ30nmの変形量で凹形状に変形させる引張応力を有する。それぞれのクロム元素の割合及びそれぞれの膜厚によってトータルの応力が変動するが、本実施形態を採用した場合には、少なくとも上記程度の変形量の引張応力を有することになる。サイドエッチング防止のために上層31を厚くし、下層33を薄くすると、遮光膜3の引張応力傾向はますます強まり、変形量は増加する。
 本実施形態においてハードマスク膜4にケイ素(Si)系の材料を使用する場合、ハードマスク膜4と遮光膜3のそれぞれの膜構成、組成及び膜厚等を調整することにより、ハードマスク膜4と遮光膜3の間でそれぞれの応力を相殺することができる。その結果、マスクブランク上の薄膜の総合的な膜応力を最小限に抑えることができる。つまり、ケイ素(Si)系の材料からなるハードマスク膜4を適用することで、表面形状がより平坦なマスクブランクを得ることができる。このような表面形状のマスクブランクを使用することで、位置精度に優れたパターンを形成することができる。
 一方、ハードマスク膜4に好適なタンタル(Ta)を含有する材料としては、タンタル(Ta)に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)および水素(H)から選ばれる1以上の元素を含有する材料が挙げられる。これらの中でも、タンタル(Ta)に、酸素(O)を含有する材料が特に好ましい。このような材料の具体例としては、酸化タンタル(TaO)、酸化窒化タンタル(TaON)、ホウ化酸化タンタル(TaBO)、ホウ化酸化窒化タンタル(TaBON)等が挙げられる。
 このようなハードマスク膜4は、クロム(Cr)を含有する材料で形成された遮光膜3との間で十分なエッチング選択性を有しており、遮光膜3にほとんどダメージを与えずにハードマスク膜4をエッチング除去することが可能である。
 上記ハードマスク膜4の膜厚は特に制約される必要はないが、少なくとも直下の遮光膜3のエッチングが完了する前に消失しない程度の膜厚が必要である。一方、ハードマスク膜4の膜厚が厚いと、直上のレジストパターンを薄膜化することが困難である。このような観点から、本実施の形態においては、上記ハードマスク膜4の膜厚は、1.5nm以上20nm以下の範囲であることが好ましく、特に2.5nm以上6nm以下であることが好適である。
 上記光半透過膜2は、少なくともケイ素を含有する材料で形成されるが、本発明に適用可能な上記光半透過膜2の構成は特に限定される必要はなく、例えば従来から使用されている位相シフト型マスクにおける光半透過膜の構成を適用することができる。
 このような光半透過膜2の例としては、例えば遷移金属及びケイ素からなる金属シリサイド、あるいは遷移金属とケイ素に、酸素、窒素及び炭素から選ばれる1以上の元素を含有させた材料からなる金属シリサイド系の光半透過膜、ケイ素に酸素、窒素、炭素、ホウ素等を含有させた材料からなるケイ素系の光半透過膜が好ましく挙げられる。上記金属シリサイド系の光半透過膜に含まれる遷移金属としては、例えばモリブデン、タンタル、タングステン、チタン、クロム、ニッケル、バナジウム、ジルコニウム、ルテニウム、ロジウム等が挙げられる。この中でも特にモリブデンが好適である。
 上記遷移金属とケイ素を含有する材料としては、具体的には、遷移金属シリサイド、または遷移金属シリサイドの窒化物、酸化物、炭化物、酸窒化物、炭酸化物、あるいは炭酸窒化物を含む材料が好適である。また、上記ケイ素を含有する材料としては、具体的には、ケイ素の窒化物、酸化物、炭化物、酸窒化物(酸化窒化物)、炭酸化物(炭化酸化物)、あるいは炭酸窒化物(炭化酸化窒化物)を含む材料が好適である。
 また、本発明においては、上記光半透過膜2が、単層構造、あるいは、低透過率層と高透過率層とからなる積層構造のいずれにも適用することができる。
 上記光半透過膜2の好ましい膜厚は、材質によっても異なるが、特に位相シフト機能、光透過率の観点から適宜調整されることが望ましい。通常は、100nm以下、さらに好ましくは80nm以下の範囲であることが好適である。
 また、上記積層構造の遮光膜3は、クロムを含有する材料で形成される。
 上記クロムを含有する材料としては、例えばCr単体、あるいはCrX(ここでXはN、C、O等から選ばれる少なくとも一種)などのCr化合物(例えばCrN,CrC,CrO,CrON,CrCN,CrOC,CrOCNなど)が挙げられる。
 図1に示すマスクブランク10のような透光性基板1上に光半透過膜2、遮光膜3、及びハードマスク膜4が順に積層された積層膜からなる薄膜を形成する方法は特に制約される必要はないが、なかでもスパッタリング成膜法が好ましく挙げられる。スパッタリング成膜法によると、均一で膜厚の一定な膜を形成することが出来るので好適である。
 本発明の第1の実施の形態に係るマスクブランク10においては、上述の構成1にあるとおり、遮光膜3は、下層31及び上層33の積層構造であって、少なくともクロムを含有しており、上層33は、クロムの含有量が65原子%以上であり、かつ、酸素の含有量が20原子%未満であり、下層31は、クロムの含有量が60原子%未満であり、かつ、酸素の含有量が20原子%以上である、ことを特徴としている。
 上記のように、ハードマスク膜4の直下にあるクロムを含有する遮光膜3の上層33は、クロムの含有量が65原子%以上であり、かつ、酸素の含有量が20原子%未満であり、クロムの含有量が多く(クロムリッチ)、かつ酸素の含有量が少ないため、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレート(以下、説明の便宜上、単に「エッチングレート」と説明することもあるが、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートを意味するものとする。)が遅く、エッチング中のサイドエッチが生じにくい(換言すれば、パターンの側壁が侵食されにくい)。遮光膜3の上層33部分でのサイドエッチが生じにくいことで、遮光膜3の上層33には、直上のハードマスク膜4のパターン形状がほぼ正確に転写される。マスクブランク10の表面に形成するレジスト膜を薄膜化することで、ハードマスク膜4には、最終的に光半透過膜2に形成されるべき転写パターンを有するレジストパターンが正確に転写されるので、ハードマスク膜4のパターン形状がほぼ正確に転写され、レジスト膜に形成されたパターン形状(たとえばパターン寸法)との差異が極めて少ない上層33を遮光膜3が有することで、該遮光膜3のパターンをマスクとして異方性エッチングによりパターニングされるケイ素含有の光半透過膜2にも、ハードマスク膜4のパターンをほぼ正確に形成することができる。要するに、光半透過膜2のパターンをレジストパターンないしはハードマスク膜パターンと寸法の乖離することなく形成することができるので、光半透過膜2に形成するパターン精度を高くすることができる。
 一方、遮光膜3の下層31は、上記のようにクロムの含有量が60原子%未満であり、かつ、酸素の含有量が20原子%以上であり、上層33よりもクロムの含有量が少なく、かつ酸素の含有量が上層33よりも多いため、遮光膜3の下層31のエッチングレートが上層33よりも速い膜設計となるため、遮光膜3全体としてのエッチングレートを速くすることができる。なお、下層31は、遮光膜3の総膜厚に対して、70%~97%の膜厚であることが好ましい。下層31の膜厚が薄すぎると、遮光膜3全体のエッチングレートを速める効果が少なくなり、膜厚が厚すぎると、下層31でのサイドエッチが深くなりすぎてしまう恐れがある。
 なお、上記下層31は、その膜厚方向で、クロム含有量や酸素含有量の異なる組成傾斜としてもよい。
 以上のように、本実施形態のマスクブランク10において、上記遮光膜3は、ハードマスク膜4のパターンを出来るだけ忠実に光半透過膜2に転写する目的で設けられている。上記マスクブランク10を用いて製造される転写用マスク、すなわち位相シフト型マスクにおいては、最終的な転写パターンは光半透過膜2に形成されたパターンであり、上記遮光膜3に形成されるパターンは転写パターンとはならないため遮光膜パターンの断面形状自体は然程重要ではない。遮光膜3のパターンの断面形状において、上記下層31部分において多少サイドエッチによる側壁の侵食があっても、上述したように本発明の上記積層構造の遮光膜3は、ハードマスク膜4のパターンを出来るだけ忠実に光半透過膜2に転写することができるので、遮光膜3の断面形状の問題はない。
 本実施の形態によれば、パターン寸法が80nm未満の微細な転写パターンであっても、転写用マスク膜となる光半透過膜に高い精度で形成することができ、結果、パターン精度に優れた転写用マスクを製造することができる。
 上記遮光膜3において、下層31は、クロムの含有量が40原子%以上であることが好ましい(構成2の発明)。
 上記構成1によると、遮光膜3の下層31におけるクロム含有量は60原子%未満であるが、下層31においてクロム含有量が少なすぎると、例えばArFエキシマレーザー光(波長193nm)における消衰係数kが低くなるため、所定の光学濃度を得るためには、遮光膜3(特に下層31)の膜厚を厚くする必要が生じる。そこで、下層31のクロム含有量を40原子%以上とすることで、上記消衰係数kが高くなるため、遮光膜3全体を薄膜化することができ、その結果、遮光膜3のパターンをマスクとする光半透過膜2のパターニング精度を高められる。
 以上のことから、遮光膜3の下層31におけるクロム含有量は、40原子%以上60原子%未満であることが好ましく、特に好ましくは、45原子%以上57原子%未満である。
 また、上記遮光膜3において、下層31は、酸素の含有量が30原子%以下であることが好ましい(構成3の発明)。
 構成1によると、遮光膜3の下層31における酸素の含有量は20原子%以上であるが、下層31において酸素含有量が多すぎると、エッチングレートが速くなりすぎてしまい、パターン側壁における上層33と下層31の境界に段差が生じてしまうという問題が生じる。従って、下層31の酸素含有量は30原子%以下であることが好ましい。下層31の酸素含有量が上記の範囲であれば、下層31のエッチングレートがより速くなるため、遮光膜3全体のエッチングレートを速く保つことができる。また、下層31に含まれる酸素含有量が上記の範囲であれば、下層31のクロムの結合サイトに空き(正孔)が相対的に多くなり、このクロムの空きサイトと光半透過膜2の酸素が化学的結合を持って接合するため、遮光膜パターンと光半透過膜2との密着性を高める効果も得られる。このように、遮光膜パターンと光半透過膜2との密着性が良いと、例えば、パターン寸法が80nm未満の微細パターンを形成する場合であっても遮光膜パターンの倒れをより効果的に抑制することができる。
 以上のことから、遮光膜3の下層31における酸素の含有量は、20原子%以上30原子%未満であることが好ましい。
 また、第1の実施の形態に係るマスクブランク10においては、上記のとおり、遮光膜3における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、上層33が遅く、下層31が速い膜構成となっているが、この場合、下層31におけるエッチングレートは、上層33におけるエッチングレートの3倍以上であることが好適である(構成4の発明)。
 このように、下層31におけるエッチングレートが、上層33におけるエッチングレートの3倍以上であることにより、上層33から下層31にエッチングが移行するときに深さ方向のエッチングレートが速まり、上層33でのサイドエッチの進行を抑制しつつ下層31の深さ方向のエッチングを完結することができるので好ましい。
 なお、遮光膜3の各層のエッチングレートの調整方法は特に限定されないが、遮光膜3を構成する各層の組成をそれぞれ異ならせることによって行うことが本発明には好適である。基本的には、各層のクロム含有量や酸素含有量を調整することで可能であるが、エッチングレートを速めることができる元素(たとえばスズ、インジウムやモリブデン)の添加量を調整することによって各層のエッチングレートを調整するようにしてもよい。この中でもスズは、クロム系材料膜の光学特性へ与える影響が少なく、また、少量でエッチングレートを速めることができることから特に好ましい。
 遮光膜3にスズを添加する場合、少なくとも下層31にスズを添加することにより、遮光膜3をエッチング時のオーバーエッチングの時間を短縮することができるので、ハードマスク膜の消失をより効果的に抑制することができる。そして、上層33の側壁がエッチングガスに曝される時間を短縮することができるので、上層33のサイドエッチングによるパターン寸法の細りも抑制することができ、寸法精度に優れた遮光膜パターンを形成することができる。
 また、上層33にもスズを添加すると、エッチングにかかる時間はさらに短縮することができるが、過度に添加すると上層33のサイドエッチングの進行も早めるため好ましくない。上層33にスズを添加する場合は、クロムとスズの総和原子数に対するスズの割合が下層31のほうが多くなるように添加することで、上層のサイドエッチングを効果的に抑制でき、かつ、遮光膜パターン形成にかかるエッチング時間を短縮することができる。
 遮光膜3にスズを添加した薄膜を形成する場合、クロムとスズの総和原子数に対するスズの割合は0.55以下とすることが好ましい。スズの割合が0.55を超えると、遮光膜における光学特性が所望の値からずれてしまう恐れがある。また、膜中に占めるスズ酸化物の割合が増加し、クロム系薄膜をエッチングするためのエッチングガス(具体的には、塩素系エッチングガス)との反応性が悪くなりエッチングレートがかえって遅くなる可能性がある。より好ましい前記スズの割合は0.3以下である。
 一方、スズの添加量は少量でも適切な効果を発揮するが、明確な効果が発現されるのは、前記スズの割合が0.01以上であり、好ましくは0.1以上である。
 本発明においては、遮光膜の下層は、光半透過膜側から最下層及び中間層が順に積層された構造としてもよい(構成5の発明)。すなわち、遮光膜が最下層、中間層及び上層の積層構造となる。
 図2は、このような本発明に係るマスクブランクの第2の実施の形態を示す断面概略図である。
 図2に示されるとおり、本発明の第2の実施の形態に係るマスクブランク20は、上述の第1の実施の形態と同様、透光性基板1上に、光半透過膜2、遮光膜3、及びハードマスク膜4が順に積層された構造を有し、上記遮光膜3は、最下層31、中間層32及び上層33の積層構造である。
 第2の実施の形態のように、下層を、光半透過膜2側から最下層31及び中間層32が順に積層された構造とすることにより、遮光膜3の上層33と最下層31との間に中間層32が形成され、三層構造の遮光膜となるので、たとえば各層のクロム含有量を調整して遮光膜のエッチングレートを三段階にコントロールすることが可能になる。たとえば中間層32のクロム含有量を上層33と最下層31のクロム含有量の間となるように調整し、つまり中間層32は、クロム含有量が上層33よりも少なく、最下層31よりも多いと、遮光膜3のパターン側壁にサイドエッチの進行度の相違による段差の形成を抑制できるので、第1の実施の形態のような二層構造の遮光膜よりもパターンの断面形状をより向上させることができる。
 上記第2の実施の形態においては、上記最下層31におけるエッチングレートは、上層33におけるエッチングレートの3倍以上であることが好適である(構成6の発明)。
 三層構造の遮光膜3において、最下層31におけるエッチングレートが、上層33におけるエッチングレートの3倍以上であることにより、最下層31をエッチングしているときに上層33のパターンの側壁部がエッチングされにくいので、上層33でのサイドエッチの進行を抑制しつつ最下層31の深さ方向のエッチングを完結することができる。
 また、上記第2の実施の形態においては、上記最下層31におけるエッチングレートは、中間層32におけるエッチングレートより大きくて且つ2倍以下であることが好適である(構成7の発明)。
 たとえば、最下層31におけるエッチングレートが中間層32よりも相対的に速い場合に、中間層32から最下層31にエッチングが移行するときに深さ方向のエッチングレートが速くなるが、上記構成のように最下層31におけるエッチングレートが中間層32におけるエッチングレートの2倍以下であることにより、最下層31のエッチング時に、中間層32のサイドエッチが進行する前に最下層31のエッチング及び必要なオーバーエッチングが完了するため、とくにパターン側壁の中間層32と最下層31との界面での段差形成を抑制することができる。
 また、最下層31のエッチングレートが速いとオーバーエッチングの時間を短縮することができるため好ましい。その一方で、最下層31のエッチングレートが速すぎると最下層部分でパターン側壁部分のエッチングガスによる侵食が深くなり、光半透過膜と遮光膜パターンの接触領域が狭くなることが懸念される。上記範囲であれば、オーバーエッチングの時間を短縮しつつ、最下層31におけるパターン側壁の侵食も抑制することができる。
 なお、三層構造の遮光膜の各層のエッチングレートの調整方法は前述の二層構造の遮光膜の場合と同様である。
 また、上記第1および第2の実施の形態において、上記遮光膜3の上層33は、厚さが1.5nm以上8nm以下であることが好適である(構成8の発明)。
 上層33の厚さが1.5nmを下回ると、ドライエッチング時の上層33のパターン側壁の侵食のリスクが高くなる。また、上層33の厚さが8nmを超えると、上層33のエッチング時間が長くなる恐れが生じる。したがって、遮光膜3の上層33の厚さを、上記の1.5nm以上8nm以下の範囲とすることにより、上層33のエッチング時間を好適に抑制しつつ、上層33でのパターニング精度を良好に維持することができる。なお、上層33の好ましい厚さは、3nm以上8nm以下である。
 遮光膜3が3層構造の場合、上層33の厚さは上述と同様に1.5nm以上8nm以下であることが好ましい。また、中間層32の膜厚は、3nm以上50nm以下が好ましく、3nm以上40nm以下の範囲が特に好ましい。最下層31の膜厚は、10nm以上50nm以下が好ましく、20nm以上40nm以下の範囲が特に好ましい。このような膜厚の構成であれば、パターン側壁の段差を抑制できるとともに、オーバーエッチングにかかる時間を短縮し、クロム系遮光膜のサイドエッチに係る寸法精度の劣化を抑制することができる。
 また、上記第1および第2の実施の形態において、上記遮光膜3は、全体の厚さが35nm以上55nm以下であることが好適である(構成9の発明)。
 遮光膜3の厚さが35nm以上55nm以下であることにより、遮光膜3の全体の厚さを薄膜化して、該遮光膜3のパターンをマスクとする光半透過膜2のパターニング精度を高めることができる。
 また、上記第1および第2の実施の形態において、上記ハードマスク膜4は、少なくともケイ素とタンタルのいずれか一方または両方を含有しているが、特にケイ素やタンタルのほか、酸素を含有する材料で形成されることが好ましい(構成10の発明)。
 上記ハードマスク膜4は、直下の遮光膜3とエッチング選択性の高い素材であることが必要であるが、とくにハードマスク膜4にケイ素やタンタルに加え酸素を含有する素材を選択することにより、クロム系の素材からなる遮光膜3との高いエッチング選択性を確保することができるため、レジスト膜の薄膜化のみならずハードマスク膜4の膜厚も薄くすることが可能である。したがって、マスクブランク表面に形成された転写パターンを有するレジストパターンのハードマスク膜4への転写精度が向上する。
 このようなハードマスク膜4を構成する材料の具体例としては、酸化シリコン(SiO)、酸化窒化シリコン(SiON)、酸化タンタル(TaO)、酸化窒化タンタル(TaON)、ホウ化酸化タンタル(TaBO)及びホウ化酸化窒化タンタル(TaBON)が挙げられる。
 なお、ケイ素と酸素を含有する材料で形成されたハードマスク膜4は、有機系材料のレジスト膜との密着性が低い傾向があるため、ハードマスク膜4の表面をHMDS(Hexamethyldisilazane)処理を施し、表面の密着性を向上させることが好ましい。
 また、上記第1および第2の実施の形態において、上記光半透過膜2は、少なくともケイ素を含有しているが、特にケイ素と窒素を含有する材料で形成されることが好ましい(構成11の発明)。
 上記光半透過膜2にケイ素と窒素を含有する素材を適用することで、クロム系の遮光膜3とのエッチング選択性を確保することができる。また、ケイ素と窒素を含有する素材であれば、エッチングガスとして異方性のフッ素系ガスを使用したパターニングを適用することができる。したがって、ハードマスク膜4のパターン形状がほぼ正確に転写された遮光膜3のパターンをマスクとする異方性エッチングによって光半透過膜2にもパターン精度に優れた転写パターンを形成することができる。
 また、上記第1および第2の実施の形態において、上記光半透過膜2と上記遮光膜3の積層構造におけるArFエキシマレーザー光(波長193nm)に対する透過率が0.2%以下であることが好ましい(構成12の発明)。
 このように、光半透過膜2と遮光膜3の積層構造におけるArFエキシマレーザー光(波長193nm)に対する透過率が0.2%以下であることによって、たとえば遮光帯に要求される露光光のArFエキシマレーザーに対する良好な遮光性(光学濃度2.7以上)を備えるため好ましい。
 また、上記第1および第2の実施の形態において、上記光半透過膜2と上記遮光膜3の積層構造における800~900nmの波長領域の少なくとも一部の波長における光の透過率が50%以下であることが好ましい(構成13の発明)。
 波長800~900nmの近赤外領域の光はレジストを感光しないため、露光機にマスクブランクを配置する場合の位置決めに使用される光である。本構成のように、光半透過膜2と遮光膜3の積層構造における800~900nmの波長領域の少なくとも一部の波長における光の透過率が50%以下であることによって、露光機へのマスクブランクの配置が容易になるため好ましい。
 また、上記第1および第2の実施の形態においては、上記ハードマスク膜4および光半透過膜2は、いずれもフッ素系ガスを用いたドライエッチングによってパターニングすることができるので(構成14の発明)、遮光膜3の上層33に直上のハードマスク膜4のパターン形状がほぼ正確に転写されることと相俟って、該遮光膜3をマスクとする異方性エッチングによるパターニングによって光半透過膜2にパターン形状精度に優れた転写パターンを形成することができる。
 本発明は、上記の本発明に係るマスクブランクを用いる転写用マスクの製造方法についても提供するものである(構成15の発明)。
 図3A~図3Eは、本発明の第1の実施形態に係るマスクブランク10または第2の実施形態に係るマスクブランク20を用いた転写用マスクの製造工程を示すマスクブランク等の断面概略図である。なお、図3A~図3Eは製造工程の理解を容易にするためのものであり、図3A~図3Eに示すパターンの断面形状は実際に形成される断面形状を正確に現したものではない。
 まず、たとえばマスクブランク10の表面に所定のレジストパターン5を形成する(図3A参照)。このレジストパターン5は最終的な転写パターンとなる光半透過膜2に形成されるべき所望のパターンを有する。なお、マスクブランク20を用いる場合も製造工程は同様である。
 次に、マスクブランク10のハードマスク膜4上に形成された上記の光半透過膜のパターンを有するレジストパターン5をマスクとして、フッ素系ガスを用いたドライエッチングにより、ハードマスク膜4に光半透過膜のパターンに対応するハードマスク膜パターン4aを形成する(図3B参照)。
 次に、上記のように形成されたハードマスク膜パターン4aをマスクとして、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、積層構造の遮光膜3に光半透過膜のパターンに対応する遮光膜パターン3aを形成する(図3C参照)。
 次に、上記のように形成された遮光膜パターン3aをマスクとして、フッ素系ガスを用いたドライエッチングにより、光半透過膜2に光半透過膜パターン2aを形成する(図3D参照)。なお、この光半透過膜2のエッチング工程において、表面に露出しているハードマスク膜パターン4aは除去される。
 次いで、上記遮光膜パターン3a上の全面にレジスト膜を塗布し、所定の露光、現像処理によって遮光膜に形成する遮光パターン(例えば遮光帯パターン)に対応するレジストパターン(図示せず)を形成する。そして、該レジストパターンをマスクとして、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、光半透過膜パターン2a上に所定の遮光パターン3bを形成する。最後に残存するレジストパターンを除去することにより、転写用マスク(たとえばハーフトーン型位相シフトマスク)30が出来上がる(図3E参照)。
 上述の説明からも明らかなように、本発明の第1の実施形態に係るマスクブランク10あるいは第2の実施形態に係るマスクブランク20を用いて上記製造工程にしたがって転写用マスクを製造することにより、微細パターンであっても高いパターン精度で形成された転写用マスクを得ることができる。すなわち、本発明の実施形態に係るマスクブランク10あるいはマスクブランク20によれば、遮光膜3の上層33は、クロムの含有量が多く(クロムリッチ)、かつ酸素の含有量が少ないため、エッチングレートが遅く、該上層33のパターンのサイドエッチが少ない。そのため、レジスト膜ないしはハードマスク膜4に形成された転写パターン形状がほぼ正確に転写された上層33を有する遮光膜3のパターンを形成することができるので、該遮光膜パターンをマスクとして光半透過膜2をパターニングすることにより、光半透過膜2にもパターン精度の優れた転写パターンを形成することができる。
 以上のとおり、微細なパターンを形成しても、遮光膜パターンの倒れなどの不具合はなく、光半透過膜2のパターンも高いパターン精度で形成することができ、微細パターンが高いパターン精度で形成された転写用マスクが得られる。
 また、上述の本発明に係る転写用マスクの製造方法により製造された、上記の微細パターンが高いパターン精度で形成された転写用マスクを用いて、リソグラフィー法により当該転写用マスクの転写パターンを半導体基板上にパターン転写する工程を含む半導体装置の製造方法によれば、パターン精度の優れた高品質の半導体装置を得ることができる。
 以下、本発明を実施例により具体的に説明する。
(実施例1)
 本実施例は、波長193nmのArFエキシマレーザーを露光光として用いるハーフトーン型位相シフトマスクの製造に使用するマスクブランクに関するもので、前述の第1の実施の形態に対応する実施例である。
 本実施例に使用するマスクブランクは、図1に示すような、透光性基板(ガラス基板)1上に、光半透過膜2、二層積層構造の遮光膜3、ハードマスク膜4を順に積層した構造のものである。このマスクブランクは、以下のようにして作製した。
 ガラス基板として合成石英基板(大きさ約152mm×152mm×厚み6.35mm)を準備した。
 次に、枚葉式DCスパッタリング装置内に上記合成石英基板を設置し、モリブデン(Mo)とシリコン(Si)との混合焼結ターゲット(Mo:Si=12原子%:88原子%)を用い、アルゴン(Ar)、窒素(N)およびヘリウム(He)の混合ガス(流量比 Ar:N:He=8:72:100,圧力=0.2Pa)をスパッタリングガスとし、反応性スパッタリング(DCスパッタリング)により、合成石英基板上に、モリブデン、シリコンおよび窒素からなるMoSiN光半透過膜(位相シフト膜)を69nmの厚さで形成した。形成したMoSiN膜の組成は、Mo:Si:N=4.1:35.6:60.3(原子%比)であった。この組成はXPSにより測定した。
 次に、スパッタリング装置から基板を取り出し、上記合成石英基板上の光半透過膜に対し、大気中での加熱処理を行った。この加熱処理は、450℃で30分間行った。この加熱処理後の光半透過膜に対し、位相シフト量測定装置を使用してArFエキシマレーザーの波長(193nm)における透過率と位相シフト量を測定したところ、透過率は6.44%、位相シフト量は174.3度であった。
 次に、上記光半透過膜を成膜した基板を再びスパッタリング装置内に投入し、上記光半透過膜の上に、CrOCN膜からなる下層、およびCrN膜からなる上層の積層構造の遮光膜を形成した。具体的には、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO)と窒素(N)とヘリウム(He)の混合ガス雰囲気(流量比 Ar:CO:N:He=20:24:22:30、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記光半透過膜上に厚さ47nmのCrOCN膜からなる遮光膜下層を形成した。続いて、同じくクロムターゲットを用い、アルゴン(Ar)と窒素(N)の混合ガス雰囲気(流量比 Ar:N=25:5、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記下層の上に厚さ5nmのCrN膜からなる遮光膜上層を形成した。
 形成した遮光膜下層のCrOCN膜の組成は、Cr:O:C:N=49.2:23.8:13.0:14.0(原子%比)、遮光膜上層のCrN膜の組成は、Cr:N=76.2:23.8原子%比)であった。これらの組成はXPSにより測定した。
 次いで、上記遮光膜の上に、SiON膜からなるハードマスク膜を形成した。具体的には、シリコンのターゲットを用い、アルゴン(Ar)と一酸化窒素(NO)とヘリウム(He)の混合ガス雰囲気(流量比 Ar:NO:He=8:29:32、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記遮光膜の上に厚さ15nmのSiON膜からなるハードマスク膜を形成した。形成したSiON膜の組成は、Si:O:N=37:44:19(原子%比)であった。この組成はXPSにより測定した。
 上記光半透過膜と遮光膜の積層膜の光学濃度は、ArFエキシマレーザーの波長(193nm)において3.0以上(透過率0.1%以下)であった。また、波長880nm(露光装置に搭載する基板位置決めに用いられる波長)における透過率は50%以下であった。
 以上のようにして本実施例のマスクブランクを作製した。
 次に、このマスクブランクを用いて、前述の図3に示される製造工程に従って、ハーフトーン型位相シフトマスクを製造した。なお、以下の符号は図1および図3中の符号と対応している。
 まず、上記マスクブランク10の上面にHMDS処理を行い、スピン塗布法によって、電子線描画用の化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を塗布し、所定のベーク処理を行って、膜厚150nmのレジスト膜を形成した。
 次に、電子線描画機を用いて、上記レジスト膜に対して所定のデバイスパターン(光半透過膜2(位相シフト層)に形成すべき位相シフトパターンに対応するパターンで、ラインアンドスペースを含む。)を描画した後、レジスト膜を現像してレジストパターン5を形成した(図3A参照)。
 次に、上記レジストパターン5をマスクとして、ハードマスク膜4のドライエッチングを行い、ハードマスク膜パターン4aを形成した(図3B参照)。ドライエッチングガスとしてはフッ素系ガス(SF)を用いた。
 上記レジストパターン5を除去した後、上記ハードマスク膜パターン4aをマスクとして、上層及び下層の積層膜からなる遮光膜3のドライエッチングを連続して行い、遮光膜パターン3aを形成した(図3C参照)。ドライエッチングガスとしてはClとOの混合ガス(Cl:O=8:1(流量比))を用いた。なお、遮光膜3のエッチングレートは、上層が2.9Å/秒、下層が5.1Å/秒であった。
 続いて、上記遮光膜パターン3aをマスクにして、光半透過膜2のドライエッチングを行い、光半透過膜パターン2a(位相シフト膜パターン)を形成した(図3D参照)。ドライエッチングガスとしてはフッ素系ガス(SF)を用いた。なお、この光半透過膜2のエッチング工程において、表面に露出しているハードマスク膜パターン4aは除去された。
 次に、上記図3Dの状態の基板上の全面に、スピン塗布法により、前記レジスト膜を再び形成し、電子線描画機を用いて、所定のデバイスパターン(たとえば遮光帯パターンに対応するパターン)を描画した後、現像して所定のレジストパターンを形成した。続いて、このレジストパターンをマスクとして、露出している遮光膜パターン3aのエッチングを行うことにより、たとえば転写パターン形成領域内の遮光膜パターン3aを除去し、転写パターン形成領域の周辺部には遮光帯パターン3bを形成した。この場合のドライエッチングガスとしてはClとOの混合ガス(Cl:O=8:1(流量比))を用いた。
 最後に、残存するレジストパターンを除去し、ハーフトーン型位相シフトマスク30を作製した(図3E参照)。
[遮光膜パターンの評価]
 上記の光半透過膜2のエッチング工程(図3Dの工程)終了後の遮光膜パターンの断面形状を確認したところ、図4に示されるような断面形状であった。すなわち遮光膜の上層側壁はハードマスク膜のパターンからわずかに侵食されるものの、ハードマスク膜パターンによって画定された形状が得られ、ハードマスク膜パターンが精度良く転写されていた。なお、この時点でハードマスク膜パターン4aは除去されているため、図4ではその前の状態を破線で示している。
 また、上記レジスト膜に形成するラインアンドスペースパターンのライン幅を、200nmから10nmずつ減少させて遮光膜パターンの形成状態を確認した結果、50nm幅までのパターン形成を行うことができた。
[光半透過膜パターンの評価]
 上記遮光膜パターンをマスクとしたドライエッチングにより形成された光半透過膜パターンについて評価したところ、図4からも明らかなように、遮光膜上層パターンによって画定された形状が得られ、CD特性に優れた光半透過膜パターンを形成することができた。すなわち、微細パターンであっても、ハードマスク膜パターンとの寸法の乖離も少ないパターン精度の優れた転写パターンを形成することができた。
(実施例2)
 本実施例は、波長193nmのArFエキシマレーザーを露光光として用いるハーフトーン型位相シフトマスクの製造に使用するマスクブランクに関するもので、前述の第2の実施の形態に対応する実施例である。
 本実施例に使用するマスクブランクは、図2に示すような、透光性基板(ガラス基板)1上に、光半透過膜2、三層積層構造の遮光膜3、ハードマスク膜4を順に積層した構造のものである。このマスクブランクは、以下のようにして作製した。
 ガラス基板として合成石英基板(大きさ約152mm×152mm×厚み6.35mm)を準備した。
 次に、枚葉式DCスパッタリング装置内に上記合成石英基板を設置し、モリブデン(Mo)とシリコン(Si)との混合焼結ターゲット(Mo:Si=12原子%:88原子%)を用い、アルゴン(Ar)、窒素(N)およびヘリウム(He)の混合ガス(流量比 Ar:N:He=8:72:100,圧力=0.2Pa)をスパッタリングガスとし、反応性スパッタリング(DCスパッタリング)により、合成石英基板上に、モリブデン、シリコンおよび窒素からなるMoSiN光半透過膜(位相シフト膜)を69nmの厚さで形成した。形成したMoSiN膜の組成は、Mo:Si:N=4.1:35.6:60.3(原子%比)であった。この組成はXPSにより測定した。
 次に、スパッタリング装置から基板を取り出し、上記合成石英基板上の光半透過膜に対し、大気中での加熱処理を行った。この加熱処理は、450℃で30分間行った。この加熱処理後の光半透過膜に対し、位相シフト量測定装置を使用してArFエキシマレーザーの波長(193nm)における透過率と位相シフト量を測定したところ、透過率は6.44%、位相シフト量は174.3度であった。
 次に、上記光半透過膜を成膜した基板を再びスパッタリング装置内に投入し、上記光半透過膜の上に、CrOCN膜からなる下層(最下層)、CrOCN膜からなる中間層、CrN膜からなる上層の積層構造の遮光膜を形成した。具体的には、クロムからなるターゲットを用い、アルゴン(Ar)と二酸化炭素(CO)と窒素(N)とヘリウム(He)の混合ガス雰囲気(流量比 Ar:CO:N:He=20:24:22:30、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記光半透過膜上に厚さ15nmのCrOCN膜からなる遮光膜下層を形成した。続いて、同じくクロムターゲットを用い、アルゴン(Ar)と二酸化炭素(CO)と窒素(N)とヘリウム(He)の混合ガス雰囲気(流量比 Ar:CO:N:He=20:25:13:30、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記下層の上に厚さ27nmのCrOCN膜からなる遮光膜中間層を形成し、続いて、同じくクロムターゲットを用い、アルゴン(Ar)と窒素(N)の混合ガス雰囲気(流量比 Ar:N=25:5、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記中間層の上に厚さ3.7nmのCrN膜からなる遮光膜上層を形成した。
 形成した遮光膜下層のCrOCN膜の組成は、Cr:O:C:N=49.2:23.8:13.0:14.0(原子%比)であった。また、遮光膜中間層のCrOCN膜の組成は、Cr:O:C:N=55.2:22:11.6:11.1(原子%比)、遮光膜上層のCrN膜の組成は、Cr:N=76.2:23.8原子%比)であった。これらの組成はXPSにより測定した。
 次いで、上記遮光膜の上に、SiON膜からなるハードマスク膜を形成した。具体的には、シリコンのターゲットを用い、アルゴン(Ar)と一酸化窒素(NO)とヘリウム(He)の混合ガス雰囲気(流量比 Ar:NO:He=8:29:32、圧力0.3Pa)中で、反応性スパッタリングを行うことにより、上記遮光膜の上に厚さ15nmのSiON膜からなるハードマスク膜を形成した。形成したSiON膜の組成は、Si:O:N=37:44:19(原子%比)であった。この組成はXPSにより測定した。
 上記光半透過膜と遮光膜の積層膜の光学濃度は、ArFエキシマレーザーの波長(193nm)において3.0以上(透過率0.1%以下)であった。また、波長880nm(露光装置に搭載する基板位置決めに用いられる波長)における透過率は50%以下であった。
 以上のようにして本実施例のマスクブランク20を作製した。
 次に、このマスクブランクを用いて、前述の図3A~図3Eに示される製造工程に従って、ハーフトーン型位相シフトマスクを製造した。なお、以下の符号は図2および図3A~図3E中の符号と対応している。
 まず、上記マスクブランク20の上面にHMDS処理を行い、スピン塗布法によって、電子線描画用の化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を塗布し、所定のベーク処理を行って、膜厚150nmのレジスト膜を形成した。
 次に、電子線描画機を用いて、上記レジスト膜に対して所定のデバイスパターン(光半透過膜2(位相シフト層)に形成すべき位相シフトパターンに対応するパターンで、ラインアンドスペースを含む。)を描画した後、レジスト膜を現像してレジストパターン5を形成した(図3A参照)。
 次に、上記レジストパターン5をマスクとして、ハードマスク膜4のドライエッチングを行い、ハードマスク膜パターン4aを形成した(図3B参照)。ドライエッチングガスとしてはフッ素系ガス(SF)を用いた。
 上記レジストパターン5を除去した後、上記ハードマスク膜パターン4aをマスクとして、上層、中間層及び下層の積層膜からなる遮光膜3のドライエッチングを連続して行い、遮光膜パターン3aを形成した(図3C参照)。ドライエッチングガスとしてはClとOの混合ガス(Cl:O=8:1(流量比))を用いた。なお、遮光膜3のエッチングレートは、上層が2.9Å/秒、中間層が5.1Å/秒、下層が9.1Å/秒であった。
 続いて、上記遮光膜パターン3aをマスクにして、光半透過膜2のドライエッチングを行い、光半透過膜パターン2a(位相シフト膜パターン)を形成した(図3D参照)。ドライエッチングガスとしてはフッ素系ガス(SF)を用いた。なお、この光半透過膜2のエッチング工程において、表面に露出しているハードマスク膜パターン4aは除去された。
 次に、上記図3Dの状態の基板上の全面に、スピン塗布法により、前記レジスト膜を再び形成し、電子線描画機を用いて、所定のデバイスパターン(たとえば遮光帯パターンに対応するパターン)を描画した後、現像して所定のレジストパターンを形成した。続いて、このレジストパターンをマスクとして、露出している遮光膜パターン3aのエッチングを行うことにより、たとえば転写パターン形成領域内の遮光膜パターン3aを除去し、転写パターン形成領域の周辺部には遮光帯パターン3bを形成した。この場合のドライエッチングガスとしてはClとOの混合ガス(Cl:O=8:1(流量比))を用いた。
 最後に、残存するレジストパターンを除去し、ハーフトーン型位相シフトマスク20を作製した(図3E参照)。
[遮光膜パターンの評価]
 上記の光半透過膜2のエッチング工程(図3Dの工程)終了後の遮光膜パターンの断面形状を確認したところ、図5に示されるような断面形状であった。すなわち遮光膜の上層側壁はハードマスク膜のパターンからほんのわずかに侵食されるものの(実施例1よりも少ない)、ハードマスク膜パターンによって画定された形状がほぼ正確に得られ、ハードマスク膜パターンが精度良く転写されていた。これは、下層のエッチングレートが速いものの、その上の中間層のエッチングレートが遅いため、結果的にエッチングガスによるパターン側壁の侵食を効果的に抑制することができたためである。遮光膜パターンの断面形状は実施例1よりも良好であった。なお、この時点でハードマスク膜パターン4aは除去されているため、図5ではその前の状態を破線で示している。
 また、上記レジスト膜に形成するラインアンドスペースパターンのライン幅を、200nmから10nmずつ減少させて遮光膜パターンの形成状態を確認した結果、40nm幅までのパターン形成を行うことができた。
[光半透過膜パターンの評価]
 上記遮光膜パターンをマスクとしたドライエッチングにより形成された光半透過膜パターンについて評価したところ、図5からも明らかなように、遮光膜上層パターンによって画定された形状が得られ、CD特性に優れた光半透過膜パターンを形成することができた。すなわち、微細パターンであっても、ハードマスク膜パターンとの寸法の乖離も少ないパターン精度の優れた転写パターンを形成することができた。
(比較例)
 光半透過膜とハードマスク膜は実施例1と同様の膜で、遮光膜の構成のみ異なるマスクブランクを作製した。すなわち、本比較例の遮光膜は、単層構造の遮光膜で、実施例1の遮光膜における下層の組成と同じ組成で、光学濃度が3.0以上で、膜厚100nmの薄膜である。
 この比較例のマスクブランクを用いて、実施例1と同様の方法でハーフトーン型位相シフトマスクを作製した。
[遮光膜パターンの評価]
 遮光膜3のパターニング工程(図3Cの工程)終了後の遮光膜パターンの断面形状を確認したところ、図6に示されるような断面形状であった。すなわち遮光膜はパターンの壁面にエッチングの侵食によって大きくえぐれた形状になっていた。また、ハードマスク膜のパターンよりもライン幅が細くなっており、ハードマスク膜パターンとの寸法の乖離が大きい傾向となった。
 また、実施例1と同様に、上記レジスト膜に形成するラインアンドスペースパターンのライン幅を、200nmから10nmずつ減少させて遮光膜パターンの形成状態を確認した結果、80nm幅で遮光膜パターンの倒れが生じた。
 したがって、本比較例のマスクブランクを用いて、例えばラインアンドスペース80nm以下の微細パターンを形成しようとしても、遮光膜パターンの倒れが生じてしまい、最終的な転写パターンとなる光半透過膜のパターニングは困難である。
 以上、本発明の実施形態及び実施例について説明したが、これは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載した技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本出願は、2014年3月30日に出願された、日本国特許出願第2014-070686号からの優先権を基礎として、その利益を主張するものであり、その開示はここに全体として参考文献として取り込む。
1 透光性基板
2 光半透過膜
3 遮光膜
31 遮光膜の下層(最下層)
32 遮光膜の中間層
33 遮光膜の上層
4 ハードマスク膜
5 レジストパターン
10,20 マスクブランク
30 転写用マスク

Claims (16)

  1.  透光性基板上に、光半透過膜、遮光膜及びハードマスク膜が順に積層された構造を有するマスクブランクであって、
     前記光半透過膜は、少なくともケイ素を含有しており、
     前記ハードマスク膜は、前記遮光膜上の表面に接して形成され、少なくともケイ素とタンタルのいずれか一方または両方を含有しており、
     前記遮光膜は、下層及び上層の積層構造であって、少なくともクロムを含有しており、
     前記上層は、前記クロムの含有量が65原子%以上であり、かつ、酸素の含有量が20原子%未満であり、
     前記下層は、前記クロムの含有量が60原子%未満であり、かつ、酸素の含有量が20原子%以上である、ことを特徴とするマスクブランク。
  2.  前記下層は、前記クロムの含有量が40原子%以上であることを特徴とする請求項1に記載のマスクブランク。
  3.  前記下層は、前記酸素の含有量が30原子%以下であることを特徴とする請求項1又は2に記載のマスクブランク。
  4.  前記下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記上層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートの3倍以上であることを特徴とする請求項1乃至3のいずれかに記載のマスクブランク。
  5.  前記下層は、前記光半透過膜側から最下層及び中間層が順に積層された構造からなることを特徴とする請求項1乃至4のいずれかに記載のマスクブランク。
  6.  前記最下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記上層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートの3倍以上であることを特徴とする請求項5に記載のマスクブランク。
  7.  前記最下層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートは、前記中間層における塩素ガスと酸素ガスの混合ガスを用いたドライエッチングのエッチングレートよりも大きくて且つ2倍以下であることを特徴とする請求項5又は6に記載のマスクブランク。
  8.  前記上層は、厚さが1.5nm以上8nm以下であることを特徴とする請求項1乃至7のいずれかに記載のマスクブランク。
  9.  前記遮光膜は、厚さが35nm以上55nm以下であることを特徴とする請求項1乃至8のいずれかに記載のマスクブランク。
  10.  前記ハードマスク膜は、酸素を含有することを特徴とする請求項1乃至9のいずれかに記載のマスクブランク。
  11.  前記光半透過膜は、ケイ素と窒素を含有することを特徴とする請求項1乃至10のいずれかに記載のマスクブランク。
  12.  前記光半透過膜と前記遮光膜の積層構造におけるArFエキシマレーザー光(波長193nm)に対する透過率が0.2%以下であることを特徴とする請求項1乃至11のいずれかに記載のマスクブランク。
  13.  前記光半透過膜と前記遮光膜の積層構造における800~900nmの波長領域の少なくとも一部の波長における光の透過率が50%以下であることを特徴とする請求項1乃至12のいずれかに記載のマスクブランク。
  14.  前記ハードマスク膜および前記光半透過膜は、フッ素系ガスを用いたドライエッチングによってパターニングされることを特徴とする請求項1乃至13のいずれかに記載のマスクブランク。
  15.  請求項1乃至14のいずれかに記載のマスクブランクを用いる転写用マスクの製造方法であって、
     前記ハードマスク膜上に形成された光半透過膜のパターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜に光半透過膜のパターンを形成する工程と、
     前記光半透過膜のパターンが形成されたハードマスク膜をマスクとし、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、前記遮光膜に光半透過膜のパターンを形成する工程と、
     前記光半透過膜のパターンが形成された遮光膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記光半透過膜に光半透過膜のパターンを形成する工程と、
     前記遮光膜上に形成された遮光パターンを有するレジスト膜をマスクとし、塩素ガスと酸素ガスの混合ガスを用いたドライエッチングにより、前記遮光膜に遮光パターンを形成する工程と、
    を有することを特徴とする転写用マスクの製造方法。
  16.  請求項15に記載の転写用マスクの製造方法により製造された転写用マスクを用い、リソグラフィー法により前記転写用マスクの転写パターンを半導体基板上にパターン転写する工程を含むことを特徴とする半導体装置の製造方法。
PCT/JP2015/059855 2014-03-30 2015-03-30 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法 WO2015152124A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167030016A KR102243419B1 (ko) 2014-03-30 2015-03-30 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
KR1020217011252A KR102366646B1 (ko) 2014-03-30 2015-03-30 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
US15/300,376 US10261409B2 (en) 2014-03-30 2015-03-30 Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US16/282,699 US11231645B2 (en) 2014-03-30 2019-02-22 Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070686 2014-03-30
JP2014-070686 2014-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/300,376 A-371-Of-International US10261409B2 (en) 2014-03-30 2015-03-30 Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US16/282,699 Division US11231645B2 (en) 2014-03-30 2019-02-22 Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2015152124A1 true WO2015152124A1 (ja) 2015-10-08

Family

ID=54240447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059855 WO2015152124A1 (ja) 2014-03-30 2015-03-30 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法

Country Status (5)

Country Link
US (2) US10261409B2 (ja)
JP (2) JP6292581B2 (ja)
KR (2) KR102243419B1 (ja)
TW (2) TWI640826B (ja)
WO (1) WO2015152124A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194725A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法
TWI741162B (zh) * 2017-03-10 2021-10-01 日商信越化學工業股份有限公司 半色調相位移型空白光罩
TWI744533B (zh) * 2017-06-14 2021-11-01 日商Hoya股份有限公司 遮罩基板、相移遮罩及半導體元件之製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292581B2 (ja) * 2014-03-30 2018-03-14 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP6601245B2 (ja) * 2015-03-04 2019-11-06 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びマスクパターン形成方法
JP6903878B2 (ja) * 2016-07-07 2021-07-14 凸版印刷株式会社 位相シフトマスクブランクおよび位相シフトマスク
SG10202007863UA (en) * 2016-08-26 2020-10-29 Hoya Corp Mask blank, transfer mask, and method of manufacturing semiconductor device
WO2018181891A1 (ja) * 2017-03-31 2018-10-04 凸版印刷株式会社 位相シフトマスクブランク、位相シフトマスク及び位相シフトマスクの製造方法
JP6753375B2 (ja) * 2017-07-28 2020-09-09 信越化学工業株式会社 フォトマスクブランク、フォトマスクブランクの製造方法及びフォトマスクの製造方法
KR20210118885A (ko) * 2019-03-07 2021-10-01 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
JP7044095B2 (ja) 2019-05-31 2022-03-30 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
JP7154626B2 (ja) * 2019-11-26 2022-10-18 Hoya株式会社 マスクブランク、転写用マスク、及び半導体デバイスの製造方法
JP7329031B2 (ja) * 2020-12-31 2023-08-17 エスケー エンパルス カンパニー リミテッド ブランクマスク及びそれを用いたフォトマスク
KR20240026914A (ko) * 2021-06-29 2024-02-29 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR102537003B1 (ko) 2022-05-13 2023-05-26 에스케이엔펄스 주식회사 블랭크 마스크 및 이를 이용한 포토마스크

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669185A (ja) * 1992-08-20 1994-03-11 Mitsubishi Electric Corp フォトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2010079110A (ja) * 2008-09-27 2010-04-08 Hoya Corp マスクブランク及び転写用マスクの製造方法
JP2013057739A (ja) * 2011-09-07 2013-03-28 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びその製造方法
JP2013238776A (ja) * 2012-05-16 2013-11-28 Shin Etsu Chem Co Ltd ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスクの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685751A (en) * 1979-12-14 1981-07-13 Fujitsu Ltd Photomask
JP2001147516A (ja) * 2000-11-27 2001-05-29 Hoya Corp ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
JP2003195479A (ja) * 2001-12-28 2003-07-09 Hoya Corp ハーフトーン型位相シフトマスクブランク、及びハーフトーン型位相シフトマスクの製造方法
US7166392B2 (en) 2002-03-01 2007-01-23 Hoya Corporation Halftone type phase shift mask blank and halftone type phase shift mask
JP3093632U (ja) * 2002-03-01 2003-05-16 Hoya株式会社 ハーフトーン型位相シフトマスクブランク
WO2004059384A1 (ja) * 2002-12-26 2004-07-15 Hoya Corporation リソグラフィーマスクブランク
KR101161450B1 (ko) 2003-04-09 2012-07-20 호야 가부시키가이샤 포토 마스크의 제조방법 및 포토 마스크 블랭크
JP4443873B2 (ja) * 2003-08-15 2010-03-31 Hoya株式会社 位相シフトマスクの製造方法
EP1746460B1 (en) 2005-07-21 2011-04-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and fabrication method thereof
JP4883278B2 (ja) * 2006-03-10 2012-02-22 信越化学工業株式会社 フォトマスクブランク及びフォトマスクの製造方法
US20110159411A1 (en) * 2009-12-30 2011-06-30 Bennett Olson Phase-shift photomask and patterning method
JP5704754B2 (ja) * 2010-01-16 2015-04-22 Hoya株式会社 マスクブランク及び転写用マスクの製造方法
JP5286455B1 (ja) * 2012-03-23 2013-09-11 Hoya株式会社 マスクブランク、転写用マスクおよびこれらの製造方法
JP6371221B2 (ja) * 2012-11-08 2018-08-08 Hoya株式会社 マスクブランクの製造方法および転写用マスクの製造方法
WO2014112409A1 (ja) * 2013-01-18 2014-07-24 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法及び転写用マスクの製造方法
US9886104B2 (en) 2013-02-17 2018-02-06 Adonit Co., Ltd. Stylus for capacitive touchscreen
JP6101646B2 (ja) * 2013-02-26 2017-03-22 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスク及びその製造方法、並びに表示装置の製造方法
JP6150299B2 (ja) * 2014-03-30 2017-06-21 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP6292581B2 (ja) * 2014-03-30 2018-03-14 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669185A (ja) * 1992-08-20 1994-03-11 Mitsubishi Electric Corp フォトマスク
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2010079110A (ja) * 2008-09-27 2010-04-08 Hoya Corp マスクブランク及び転写用マスクの製造方法
JP2013057739A (ja) * 2011-09-07 2013-03-28 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びその製造方法
JP2013238776A (ja) * 2012-05-16 2013-11-28 Shin Etsu Chem Co Ltd ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスクの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194725A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法
TWI741162B (zh) * 2017-03-10 2021-10-01 日商信越化學工業股份有限公司 半色調相位移型空白光罩
TWI744533B (zh) * 2017-06-14 2021-11-01 日商Hoya股份有限公司 遮罩基板、相移遮罩及半導體元件之製造方法
TWI784733B (zh) * 2017-06-14 2022-11-21 日商Hoya股份有限公司 遮罩基底、轉印用遮罩之製造方法及半導體元件之製造方法

Also Published As

Publication number Publication date
US20170139316A1 (en) 2017-05-18
TWI640826B (zh) 2018-11-11
TW201600921A (zh) 2016-01-01
US20190187550A1 (en) 2019-06-20
JP6292581B2 (ja) 2018-03-14
JP2018087998A (ja) 2018-06-07
KR102366646B1 (ko) 2022-02-23
KR20160138242A (ko) 2016-12-02
US10261409B2 (en) 2019-04-16
US11231645B2 (en) 2022-01-25
TW201903513A (zh) 2019-01-16
JP2015200883A (ja) 2015-11-12
KR20210046823A (ko) 2021-04-28
KR102243419B1 (ko) 2021-04-21
JP6571224B2 (ja) 2019-09-04
TWI673564B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6571224B2 (ja) マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
KR102295453B1 (ko) 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
JP6053836B2 (ja) マスクブランク及び位相シフトマスクの製造方法
WO2015141078A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6389375B2 (ja) マスクブランクおよび転写用マスク並びにそれらの製造方法
KR102046729B1 (ko) 마스크 블랭크, 전사용 마스크, 및 반도체 디바이스의 제조방법
JP6084391B2 (ja) マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP6165871B2 (ja) マスクブランク、転写用マスクおよび転写用マスクの製造方法
JP2016191784A (ja) マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
JP6608613B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法
JP5906143B2 (ja) マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP6430585B2 (ja) マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300376

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167030016

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15772312

Country of ref document: EP

Kind code of ref document: A1