WO2015151932A1 - トロイダル無段変速機 - Google Patents

トロイダル無段変速機 Download PDF

Info

Publication number
WO2015151932A1
WO2015151932A1 PCT/JP2015/058918 JP2015058918W WO2015151932A1 WO 2015151932 A1 WO2015151932 A1 WO 2015151932A1 JP 2015058918 W JP2015058918 W JP 2015058918W WO 2015151932 A1 WO2015151932 A1 WO 2015151932A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
axial
input
rotating shaft
shaft
Prior art date
Application number
PCT/JP2015/058918
Other languages
English (en)
French (fr)
Inventor
晃大 福田
豊田 俊郎
西井 大樹
俊博 齋藤
Original Assignee
日本精工株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社, 本田技研工業株式会社 filed Critical 日本精工株式会社
Priority to US15/301,372 priority Critical patent/US10436294B2/en
Priority to JP2016511566A priority patent/JP6117991B2/ja
Priority to CN201580014984.1A priority patent/CN106104080B/zh
Publication of WO2015151932A1 publication Critical patent/WO2015151932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/09Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Definitions

  • the present invention relates to a toroidal continuously variable transmission used as a transmission for an automobile or a transmission for adjusting the operating speed of various industrial machines such as a pump.
  • Half-toroidal continuously variable transmissions described in JP 2003-214516 A, JP 2007-315595 A, JP 2008-25821 A, JP 2008-275088 A, etc. are used as transmissions for automobiles. in use.
  • Japanese Patent Application Laid-Open No. 2004-169719 discloses a structure in which the adjustment range of the gear ratio is widened by a combination of a toroidal continuously variable transmission and a planetary gear mechanism.
  • FIG. 2 shows a first example of a conventional structure of a toroidal continuously variable transmission.
  • a pair of input-side discs 2a and 2b around the both ends in the axial direction of the input rotary shaft 1 are in a state in which one axial side surfaces that are toroidal curved surfaces are opposed to each other.
  • the ball spline 18 is supported so as to be able to move far and near and to rotate in synchronization with the input rotary shaft 1.
  • An output cylinder 3 is supported around an intermediate portion in the axial direction of the input rotary shaft 1 so as to be rotatable with respect to the input rotary shaft 1.
  • An output gear 4 is fixed at the axial center of the outer peripheral surface of the output cylinder 3, and a pair of output side disks 5 are spline-engaged at both axial ends of the outer peripheral surface of the output cylinder 3. Therefore, the rotation synchronized with the output cylinder 3 is supported. In this state, one axial side surface of each of the pair of output side disks 5 that are toroidal curved surfaces is opposed to one axial side surface of the input side disks 2a and 2b.
  • a plurality of power rollers 6 each having a spherical convex surface are sandwiched between one axial side surface and one axial side surface of the other output side disk 5.
  • the power roller 6 is rotatably supported by a trunnion 7 as a support member, rotates with the rotation of the input side disks 2a and 2b, and transmits power from the input side disks 2a and 2b to the output side disk 5.
  • one input side disk 2a is rotationally driven by the drive shaft 8 via the pressing device 9 which is a loading cam.
  • the pair of input-side disks 2a and 2b supported at both axial ends of the input rotating shaft 1 rotate synchronously while being pressed toward each other.
  • the rotation of the pair of input side disks 2 a and 2 b is transmitted to the pair of output side disks 5 via the power roller 6 and is taken out from the output gear 4.
  • a disc spring or the like is positioned near both ends in the axial direction of the input rotary shaft 1 so as to sandwich the pair of input-side disks 2a and 2b from both sides with respect to the axial direction of the input rotary shaft 1.
  • Preload springs 10a and 10b having a large elasticity are provided. These preload springs 10a and 10b allow the peripheral surface of the power roller 6 and the axial discs of the input side discs 2a and 2b and the output side disc 5 even when the pressing device 9 is not in operation (when the drive shaft 8 is stopped). Only the minimum necessary surface pressure of the rolling contact portion (traction portion) with the side surface is ensured. With such a configuration, the rolling contact portion can start power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission.
  • the elastic force for securing the necessary minimum surface pressure of the rolling contact portion is one of the preload springs 10a and 10b in the axial direction at one end of the input disk 2a and the input rotary shaft 1 (pressing device 9). Is obtained by one preload spring 10a disposed between the two.
  • the other preload spring 10b disposed between the loading nut 11 screwed to the other axial end portion of the input rotating shaft 1 (the right end portion in FIG. 2) and the other input side disk 2b is a pressing device 9. This is to alleviate the impact applied during the sudden operation, and can be omitted.
  • a sufficiently large elasticity that is, an elasticity that does not completely crush even when a large torque is transmitted between the input side disks 2a, 2b and the output side disk 5. And applied to the preload spring 10b.
  • the female spline portion 12 is formed in the range from the axially intermediate portion of the inner peripheral surface of the input side disk 2b to the other axial end portion (the right end portion in FIGS. 3 to 5).
  • a male spline portion 13 is formed on the outer peripheral surface of the other axial end portion (the portion near the right end in FIGS. 3 and 4) of the input rotary shaft 1a.
  • the female spline portion 12 and the male spline portion 13 Are engaged.
  • a locking groove 14 is formed over the entire circumference in a portion adjacent to the other end side (right side in FIGS.
  • a radially inner half portion of a locking ring 15 formed of a plurality (2 to 4) partial arc-shaped elements is locked in the groove 14.
  • the radially outer half of one axial end surface (the left side in FIGS. 3 and 4) of the locking ring 15 is in contact with the radially inner end of the other axial end surface of the input side disk 2b. Touch.
  • the elastic force of the one preload spring 10a for ensuring the necessary surface pressure is determined by the axial thickness of the locking ring 15 (by selecting a locking ring having an appropriate axial thickness dimension). ) Adjusted.
  • a holding ring 16 having an L-shaped cross section is externally fitted to a portion adjacent to the other end side of the locking groove 14 with respect to the axial direction of the input rotary shaft 1a in the other axial end portion of the input rotary shaft 1a.
  • the inner peripheral surface of the retaining ring 16 is brought into contact with or close to the outer peripheral surface of the locking ring 15 to prevent a plurality of elements constituting the locking ring 15 from coming out of the locking groove 14. Yes.
  • the displacement of the restraining ring 16 with respect to the axial direction of the input rotary shaft 1a is stopped at the other end of the input rotational shaft 1a in the axial direction of the input rotational shaft 1a. It is blocked by the ring 17.
  • the overall size and weight of the toroidal continuously variable transmission can be reduced by using the integrated output side disk 5a.
  • the structure and operation relating to the integrated output side disk 5a are not related to the gist of the present invention, and thus the description thereof is omitted.
  • the disk 2b has a portion closer to the outer diameter of the other input side disk 2b on the side of the locking ring 15 as shown exaggeratedly based on the force received from the power roller 6 based on the thrust generated by the pressing device 9. Elastically deforms in the direction approaching (axial direction).
  • the force applied to the other input side disk 2b based on the thrust generated by the pressing device 9 during operation is several tens kN to hundreds tens kN (several tF to several tens tF) at the time of operation of the toroidal continuously variable transmission. ) Therefore, the amount of elastic deformation in the axial direction of the other input-side disk 2b due to the force applied to the other input-side disk 2b based on the thrust generated by the pressing device 9 during operation is about a comma number mm (several tenths of mm). It is an amount that cannot be ignored.
  • the female spline portion 12 is provided in a range extending from the axially intermediate portion to the other end portion of the inner peripheral surface of the input side disc 2b. Is elastically deformed, and the other axial end edge (the right end edge in FIGS. 3 and 4) of the female spline groove constituting the female spline portion 12 and the one axial end face (FIG. 3 and FIG. 3). 4), the other end edge in the axial direction of the female spline groove tends to bite into one end face in the axial direction of the locking ring 15. From this aspect, it is a severe condition in which fretting wear is likely to occur. Fretting wear may become a starting point of damage such as peeling, or the generated wear powder may contaminate the lubricating oil (traction oil), resulting in poor lubrication of each part.
  • lubricating oil traction oil
  • the present invention realizes a structure of a toroidal continuously variable transmission that can prevent fretting wear from occurring between an outer disk and a locking member based on thrust generated by a pressing device.
  • the purpose is to do.
  • a toroidal continuously variable transmission includes a rotating shaft, a pair of outer disks, an inner disk, a plurality of support members, a plurality of power rollers (the same number as the support members), a pressing device, A locking member.
  • Each of the pair of outer disks has an arc cross section and includes one axial side surface facing the inner side in the axial direction of the rotating shaft, supported by one end and the other end of the rotating shaft, Rotate synchronously.
  • Each of the inner disks has an arc-shaped cross section and includes both axial side surfaces facing the outer side in the axial direction of the rotating shaft, and the both axial side surfaces are opposed to one axial side surface of the pair of outer disks. In this state, a relative rotation with respect to the rotation shaft is freely supported around an intermediate portion in the axial direction of the rotation shaft.
  • the inner disk either an integrally formed inner disk or an inner disk formed by coupling a pair of elements can be used.
  • the support member includes a pivot that is in a twisted position with respect to the rotating shaft, and is positioned between both axial sides of the inner disk and one axial side surface of the pair of outer disks with respect to the axial direction of the rotating shaft. A plurality of each of them are freely provided with a swing displacement about the pivot axis.
  • Each of the power rollers is rotatably supported by the support member, and includes a circumferential surface made of a spherical convex surface, and the circumferential surfaces are formed on both axial sides of the inner disk and axial pieces of the pair of outer disks. It is in contact with the side.
  • the pressing device is provided between the rotating shaft and one outer disk disposed at one end of the rotating shaft of the pair of outer disks. It presses toward the other outer disk arrange
  • a mechanical pressing device such as a loading cam and a hydraulic pressing device can be used.
  • the locking member is configured to prevent the other outer disk from being displaced in a direction away from the one outer disk, and the other end of the rotating shaft from the other outer disk to the other end. It is locked to the part protruding to the side.
  • a female spline portion is formed in the axially intermediate portion of the inner peripheral surface of the other outer disk, and on the other end side of the female spline portion of the inner peripheral surface of the other outer disc.
  • a disc-side fitting surface portion whose cross-sectional shape is a regular circle is formed in an adjacent portion.
  • a male spline portion is formed at the other axial end portion of the rotating shaft in the outer peripheral surface of the rotating shaft, and the other end side of the male spline portion in the outer peripheral surface of the rotating shaft.
  • a shaft-side fitting portion having a circular cross section is formed in a portion adjacent to the shaft.
  • the female spline portion and the male spline portion are spline-engaged, and the disc-side fitting surface portion and the shaft-side fitting surface portion are fitted with an interference fit, whereby the other outer disc is
  • the rotary shaft is supported so as to freely rotate in synchronization with the rotary shaft (allowing transmission of power between the other outer disk and the rotary shaft).
  • a locking ring called a cotter can be used as the locking member.
  • the locking ring is formed in an annular shape as a whole by combining a plurality of (for example, 2 to 4) partial arc-shaped elements, and out of the other end of the rotating shaft in the axial direction. It is locked in a locking groove formed in a portion protruding from the disk to the other end side in the axial direction. The outer half of the one end surface in the axial direction of the locking ring (the portion exposed from the locking groove) abuts on the other axial end surface of the other outer disk, so that the other outer disk is Displacement away from one outer disk is prevented.
  • a loading nut can be used as the locking member.
  • the loading nut is screwed and tightened to a male screw portion formed at a portion of the other axial end portion of the rotating shaft that protrudes from the other outer disk toward the other axial end side.
  • the leading end of the loading nut is brought into contact with the other axial end surface of the other outer disk directly or via another member such as a preload spring, so that the other outer disk is in contact with the one of the other outer disks. Displacement away from the outer disk is prevented.
  • fretting wear is prevented from occurring between the outer disk (the other outer disk) and the locking member based on the thrust generated by the pressing device. That is, of the engaging portion (fitting portion) between the inner peripheral surface of the outer disk and the outer peripheral surface of the rotating shaft, the portion adjacent to the locking member in the axial direction is formed on the inner peripheral surface of the outer disk.
  • a disc-side fitting surface portion having a regular circular cross-sectional shape and a shaft-side fitting surface portion having a regular circular cross-sectional shape formed on the outer peripheral surface of the rotating shaft are fitted with an interference fit.
  • the support rigidity with respect to the rotating shaft of the end part (the other end part in the axial direction) on the locking member side of the outer disk can be increased.
  • the rigidity of the diameter reduction direction of the edge part by the side of a locking member among the internal peripheral surfaces of an outer side disk can be improved. Therefore, based on the thrust generated by the pressing device, it is possible to prevent elastic deformation in the direction in which the end on the locking member side of the inner peripheral surface of the outer disk is reduced in diameter.
  • the portion near the outer diameter is restrained from being elastically deformed in the axial direction (the amount of elastic deformation of the outer disk in the axial direction can be reduced).
  • the other end surface in the axial direction of the outer disk and the one end surface in the axial direction of the locking member are rubbed against each other to prevent significant fretting wear between the outer disk and the locking member.
  • the other axial end edge of the female spline groove constituting the female spline portion formed on the inner peripheral surface of the outer disk and the one axial end surface of the locking member are separated from each other with respect to the axial direction of the rotating shaft. Therefore, even if the outer disk is elastically deformed in the axial direction based on the thrust generated by the pressing device, the other axial end edge of the female spline groove will bite into the one axial end surface of the locking member. None. Also from this surface, the occurrence of fretting wear between the outer disk and the locking member is prevented.
  • FIG. 1A is an enlarged cross-sectional view of a main part showing an example of an embodiment of a toroidal continuously variable transmission according to the present invention
  • FIG. 1B shows the other input side disk, an input rotary shaft
  • FIG. 1C is a cross-sectional view of a portion corresponding to one axial end portion of the other input-side disk
  • FIG. 1C is a cross-sectional view of a portion corresponding to the axial intermediate portion of the other input-side disc
  • FIG. 1D is a cross-sectional view of a portion corresponding to the other axial end of the other input side disk.
  • FIG. 2 is a cross-sectional view showing a first example of a conventional structure of a toroidal continuously variable transmission.
  • FIG. 1B shows the other input side disk, an input rotary shaft
  • FIG. 1C is a cross-sectional view of a portion corresponding to one axial end portion of the other input-side disk
  • FIG. 1C is a cross-sectional view of
  • FIG. 3 is a cross-sectional view showing a second example of a conventional structure of a toroidal continuously variable transmission.
  • 4A is an enlarged view of the upper right half portion of FIG. 3
  • FIG. 4B is an enlarged view of a portion X of FIG. 4A.
  • FIG. 5 is a perspective view showing the other input side disk of the second example of the conventional structure of the toroidal continuously variable transmission.
  • FIG. 6 is a cross-sectional view showing an engaging portion between the other input side disk and the input rotation shaft in the second example of the conventional structure of the toroidal continuously variable transmission.
  • FIG. 7 is a schematic diagram exaggeratingly showing elastic deformation of the other input side disk in the second example of the conventional structure of the toroidal continuously variable transmission.
  • FIG. 1 shows an example of an embodiment of a toroidal continuously variable transmission according to the present invention.
  • the toroidal continuously variable transmission of the present example includes an input rotating shaft 1b that is a rotating shaft and a pair of outer disks.
  • a stop ring 15 is provided.
  • the pair of input-side disks 2a and 2c includes one input-side disk 2a disposed around one end of the input rotating shaft 1b and the other input side disposed around the other end of the input rotating shaft 1b. And a disk 2c.
  • One input-side disk 2a and the other input-side disk 2c are toroidal curved surfaces having a circular arc cross section, and each has one axial side surface facing the axially inner side of the input rotation shaft 1b.
  • the pair of input-side disks 2a and 2c are supported so that they can move in a near-far direction and can rotate in synchronization with the input rotating shaft 1b in a state where one side surfaces in the axial direction face each other.
  • An integrated output-side disk 5a is supported around the intermediate portion in the axial direction of the input rotary shaft 1b so as to freely rotate relative to the input rotary shaft 1b.
  • Each of the output side disks 5a is a toroidal curved surface having an arc cross section, and includes both axial side surfaces facing the axially outer side of the rotation shaft.
  • one axial side surface facing one end is the one axial side surface of one input side disk 2a and the both axial side surfaces of the output side disk 5a.
  • the other axial side surface facing the other end faces the axial one side surface of the other input side disk 2c.
  • An output gear 4a is formed on the outer peripheral surface of the output side disk 5a.
  • a pair of output side disks 5 each formed by coupling a pair of output side disk elements each having one axial side surface is also applicable.
  • Each trunnion 7 includes a pivot that is twisted with respect to the input rotary shaft 1b. With respect to the axial direction of the input rotary shaft 1b, both axial sides of the output-side disk 5a and a pair of input-side disks 2a, 2b, each of which is supported by a member constituting the toroidal continuously variable transmission or a member fixed to the housing so as to be freely oscillating and displaced about the pivot axis at a position between each axial side surface of 2b. has been.
  • a power roller 6 (see FIG. 2) is rotatably supported on each trunnion 7.
  • Each of the power rollers 6 has a circumferential surface formed of a spherical convex surface, and these circumferential surfaces are sandwiched between both axial side surfaces of the output side disk 5a and one axial side surface of the input side disks 2a and 2c. .
  • the pressing device 9a is provided between the input rotating shaft 1b and one outer disk 2a disposed at one end of the input rotating shaft 1b of the pair of outer disks 2a and 2c.
  • both a mechanical pressing device such as a loading cam and a hydraulic pressing device can be used.
  • one input side disk 2a is rotationally driven by the drive shaft 8 (see FIG. 2) via the pressing device 9a.
  • one input side disk 2a is pressed toward the other outer disk 2c disposed at the other end of the input rotation shaft 1b of the pair of input side disks 2a and 2c.
  • the pair of input side disks 2a and 2c rotate synchronously while being pressed in a direction approaching each other.
  • the rotation of the pair of input side disks 2a and 2c is transmitted to the output side disk 5a via the power roller 6 and is taken out from the output gear 4a.
  • a preload spring 10a is provided between the one input side disk 2a and the input rotary shaft 1b (or the pressing device 9a). Thereby, even when the pressing device 9a is not in operation, the rolling contact portion (traction portion) between the circumferential surface of the power roller 6 and one side surface in the axial direction of the input side discs 2a and 2c and both side surfaces in the axial direction of the output side disc 5a.
  • the surface pressure is ensured only to the minimum necessary, and power transmission can be started without causing excessive slippage at the rolling contact portion immediately after the operation of the toroidal continuously variable transmission is started.
  • a center hole 19 is provided at the center of the other input side disk 2c so as to penetrate the other input side disk 2c in the axial direction.
  • a female spline portion 12 a is formed only in the axially intermediate portion of the inner peripheral surface of the center hole 19. Further, the other axial end portion of the inner peripheral surface of the center hole 19 (the portion adjacent to the other end side of the female spline portion 12a; the right end portion in FIG. 1) is orthogonal to the central axis of the other input side disk 2c.
  • a disk-side cylindrical surface portion 21 is formed in which the cross-sectional shape related to the imaginary plane is a perfect circle centered on the central axis of the other input-side disk 2c and the inner diameter does not change in the axial direction.
  • An inner diameter d 21 of the disk-side cylindrical surface portion 21 is larger than a root diameter (maximum inner diameter) d max of the female spline portion 12a (d 21 > d max ).
  • a virtual direction orthogonal to the central axis of the other input side disk 2c is formed at one axial end portion (a portion adjacent to one end side of the female spline portion 12; left end portion in FIG. 1) of the inner peripheral surface of the center hole 19.
  • a disc-side fitting surface portion 22 is formed in which the cross-sectional shape with respect to the plane is a regular circle centered on the central axis of the other input-side disc 2c and the inner diameter does not change in the axial direction.
  • the inner diameter d 22 of the disk-side fitting surface portion 22 is smaller than the tip diameter (minimum inner diameter) d min of the female spline portion 12a (d 22 ⁇ d min) .
  • a male spline portion 13a that is spline-engaged with the female spline portion 12a of the other input side disk 2c is formed at a part of the other axial end portion of the input rotating shaft 1b (a portion closer to the right end in FIG. 1). Is provided.
  • a portion of the outer peripheral surface of the input rotary shaft 1b adjacent to the other end side of the male spline portion 13a is a perfect circle centered on the central axis of the input rotary shaft 1b and the outer diameter does not change in the axial direction.
  • a fitting surface portion 23 is provided.
  • Outer diameter D 23 of the shaft-side fitting surface portion 23 is smaller than the root circle diameter of the male spline portion 13a (minimum outer diameter) D min (D 23 ⁇ D min). Further, the outer diameter of the shaft-side fitting surface portion 23 in a free state (a state before the other input-side disk 2c is assembled to the input rotary shaft 1b) is slightly smaller than the inner diameter of the disk-side fitting surface portion 22 in the free state. Is getting bigger.
  • a portion of the outer peripheral surface of the input rotating shaft 1b adjacent to the other end side of the shaft-side fitting surface portion 23 is engaged with a radially inner half portion of the engagement ring 15 that is an engagement member.
  • a groove 14 is provided.
  • the other input side disk 2c When the other input side disk 2c is assembled to the input rotary shaft 1b, the other axial end of the input rotary shaft 1b is inserted into one end of the input side disk 2c in the center hole 19 of the other input side disk 2c. Insert from the side. Then, the male spline portion 13a is spline-engaged with the female spline portion 12a, and the shaft-side fitting surface portion 23 and the disk-side fitting surface portion 23 are fitted into the disk-side fitting surface portion 22 by press fitting. The mating surface portion 22 is fitted with an interference fit.
  • the locking ring 15 is locked to the locking groove 14, and a portion of the one end surface in the axial direction of the locking ring 15 that protrudes radially outward from the locking groove 14 (radial outer half) Is brought into contact with the other axial end surface of the other input side disk 2c. Further, the retaining ring 16 and the retaining ring 17 prevent the retaining ring 15 from coming out of the retaining groove 14.
  • the other input side disk 2c is prevented from displacing in the direction away from the one input side disk 2a, that is, the other end side in the axial direction of the input rotating shaft 1b, and the other input side disk
  • the side disk 2c is supported with respect to the input rotary shaft 1b so as to freely rotate in synchronization with the input rotary shaft 1b (allowing transmission of power between the other input side disk 2c and the input rotary shaft 1b).
  • the portion adjacent to one end side of the male spline portion 13a and the disc-side cylindrical surface portion 21 are fitted by gap fitting.
  • the female spline portion 12 is provided in a range extending from the axially intermediate portion to the other end portion of the inner peripheral surface of the input side disk 2b.
  • the spline portion 12 is engaged with a male spline portion 13 formed on a part of the outer peripheral surface of the other axial end portion of the input rotary shaft 1a. Further, as exaggeratedly shown in FIG.
  • the other input side disk is the engagement part (fitting part) between the inner peripheral surface of the center hole 19 of the other input side disk 2c and the outer peripheral surface of the input rotation shaft 1b.
  • the disk side fitting surface portion 22 and the axial side are both circular in cross section.
  • the fitting surface portion 23 is fitted with an interference fit. Therefore, the support rigidity of the other axial end of the other input side disk 2c with respect to the input rotation shaft 1b is higher than that in the second example of the conventional structure.
  • the rigidity in the diameter reducing direction of the other axial end portion of the inner peripheral surface of the center hole 19 of the other input side disk 2c is increased, and the other input side disk is based on the thrust generated by the pressing device 9a. It is suppressed that the other axial end of 2c is elastically deformed in the direction of reducing the diameter, and further, the portion near the outer diameter of the other input side disk 2c is also prevented from elastically deforming toward the other end in the axial direction. (The amount of elastic deformation in the axial direction of the portion near the outer diameter of the other input side disk 2c can be reduced).
  • the female spline portion 12a is formed in the axially intermediate portion of the inner peripheral surface of the center hole 19, and the other axial end edge of the female spline groove constituting the female spline portion 12a
  • the one end surface in the axial direction of the locking ring 15 is separated from each other in the axial direction. For this reason, even if the portion near the outer diameter of the input side disk 2c is elastically deformed toward the other side in the axial direction based on the thrust generated by the pressing device 9a, the female spline groove constituting the female spline portion 12a.
  • the other end edge in the axial direction of the engagement ring 15 does not bite into one end face in the axial direction of the locking ring 15. Also from this surface, the occurrence of fretting wear between the input side disk 2c and the locking ring 15 is prevented.
  • the disk-side cylindrical surface portion 21 is provided having an inner diameter larger than the root circle diameter d max of the female spline portion 12a.
  • the disk side cylindrical surface portion 21 formed at one end in the axial direction is the outer peripheral surface of the input rotary shaft 1b.
  • the male spline portion 13a is externally fitted with a gap fit to a portion adjacent to one end side in the axial direction.
  • a shaft-shaped cylindrical surface portion having a circular shape centered on the central axis of the input rotation shaft 1b and having an outer diameter that does not change in the axial direction is formed, and the outer diameter of the shaft-side cylindrical surface portion in a free state is set.
  • the disc-side cylindrical surface portion 21 may be slightly larger than the inner diameter in the free state so that the disc-side cylindrical surface portion 21 is externally fitted to the shaft-side cylindrical surface portion by press-fitting.
  • the concentricity of the other input-side disc 2c and the input rotating shaft 1b can be improved (the amount of eccentricity and the inclination angle between the central shafts).
  • Various performances of the toroidal continuously variable transmission can be further improved. For example, it is possible to reduce the swinging motion of the other input side disk 2c, thereby reducing the vibration and improving the accuracy of the gear ratio control.
  • a loading nut 11 can also be used.
  • the present invention is not limited to a half toroidal continuously variable transmission, but can be applied to a full toroidal continuously variable transmission.

Abstract

押圧装置の推力による入力側ディスク(2c)の軸方向の弾性変形に基づくフレッチング摩耗が防止される。入力側ディスク(2c)の中心孔(19)の内周面の軸方向中間部に形成された雌スプライン部(13a)と、入力回転軸(1b)の軸方向一端部の外周面に形成された雄スプライン部(12a)とがスプライン係合している。入力側ディスク(2c)の中心孔(19)の内周面のうちの雌スプライン部(13a)の他端側に隣接する部分に形成されたディスク側嵌合面部(22)と、入力回転軸(1b)の外周面のうちの雄スプライン部(12a)の他端側に隣接する部分に形成された軸側嵌合面部(23)とが締り嵌めで嵌合している。

Description

トロイダル無段変速機
 この発明は、自動車用変速装置、あるいは、ポンプなどの各種産業用機械の運転速度を調節するための変速装置として使用される、トロイダル無段変速機に関する。
 特開2003-214516号公報、特開2007-315595号公報、特開2008-25821号公報、特開2008-275088号公報などに記載されているハーフトロイダル無段変速機が、自動車用変速装置として使用されている。また、特開2004-169719号公報などには、トロイダル無段変速機と遊星歯車機構との組み合わせにより、変速比の調整幅を広くする構造が記載されている。
 図2は、トロイダル無段変速機の従来構造の第1例を示している。この従来構造の第1例では、入力回転軸1の軸方向両端部の周囲に、1対の入力側ディスク2a、2bが、トロイド曲面である軸方向片側面同士を互いに対向させた状態で、ボールスプライン18を介して、遠近動可能に、かつ、入力回転軸1と同期した回転を可能に支持されている。入力回転軸1の軸方向中間部周囲に、出力筒3が、入力回転軸1に対する回転を可能に支持されている。出力筒3の外周面の軸方向中央部に、出力歯車4が固設されており、また、出力筒3の外周面の軸方向両端部に、1対の出力側ディスク5が、スプライン係合により、出力筒3と同期した回転を可能に支持されている。この状態で、トロイド曲面である、1対の出力側ディスク5のそれぞれの軸方向片側面は、入力側ディスク2a、2bの軸方向片側面に対向する。
 一方(図2の左方)の入力側ディスク2aの軸方向片側面と一方の出力側ディスク5の軸方向片側面との間、および、他方(図2の右方)の入力側ディスク2bの軸方向片側面と他方の出力側ディスク5の軸方向片側面との間には、周面を球状凸面とした複数のパワーローラ6がそれぞれ挟持されている。パワーローラ6は、支持部材であるトラニオン7に回転自在にそれぞれ支持されており、入力側ディスク2a、2bの回転に伴って回転し、入力側ディスク2a、2bから出力側ディスク5に動力を伝達する。すなわち、トロイダル無段変速機の運転時には、駆動軸8により、一方の入力側ディスク2aが、ローディングカムである押圧装置9を介して回転駆動される。この結果、入力回転軸1の軸方向両端部に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、1対の入力側ディスク2a、2bの回転は、パワーローラ6を介して1対の出力側ディスク5に伝わり、出力歯車4から取り出される。
 従来構造の第1例の場合には、入力回転軸1の軸方向両端部近傍で、1対の入力側ディスク2a、2bを入力回転軸1の軸方向に関して両側から挟む位置に、皿ばねなどにより構成される、大きな弾力を有する予圧ばね10a、10bが設けられている。これらの予圧ばね10a、10bにより、押圧装置9の非作動時(駆動軸8の停止時)にも、パワーローラ6の周面と、入力側ディスク2a、2bおよび出力側ディスク5の軸方向片側面との転がり接触部(トラクション部)の面圧が、必要最低限だけ確保される。このような構成により、前記転がり接触部は、トロイダル無段変速機の運転開始直後から、過大な滑りを生じることなく、動力伝達を開始することができる。
 なお、前記転がり接触部の必要最低限の面圧を確保するための弾力は、予圧ばね10a、10bのうち、一方の入力側ディスク2aと入力回転軸1の軸方向一端部(押圧装置9)との間に配置された、一方の予圧ばね10aにより得られる。入力回転軸1の軸方向他端部(図2の右端部)に螺着されたローディングナット11と他方の入力側ディスク2bとの間に配置された、他方の予圧ばね10bは、押圧装置9の急な作動時に加わる衝撃を緩和するものであって、省略することもできる。他方の予圧ばね10bを設ける場合には、十分に大きな弾力、すなわち、入力側ディスク2a、2bと出力側ディスク5との間で大きなトルクを伝達する際にも完全に押し潰されない程度の弾力が、予圧ばね10bに付与される。
 このようなトロイダル無段変速機の場合、前記転がり接触部の必要最低限の面圧を確保するための、一方の予圧ばね10aの弾力を調整する作業が面倒である。具体的には、従来構造の第1例の場合、一方の予圧ばね10aの弾力を、入力回転軸1の軸方向他端部に螺着したローディングナット11の締め付け量を変更することにより調整する必要があり、面倒である。これに対し、特開2000-205361号公報、特開2009-041715号公報などには、ローディングナットに代えてコッタと呼ばれる係止環を用いた構造が記載されている。
 図3~図6は、このような係止環が組み込まれた従来構造の第2例を示している。従来構造の第2例の場合、入力側ディスク2bの内周面の軸方向中間部から軸方向他端部(図3~図5の右端部)にわたる範囲に、雌スプライン部12が形成されており、また、入力回転軸1aの軸方向他端部(図3および図4の右端寄り部分)の外周面に、雄スプライン部13が形成されており、雌スプライン部12と雄スプライン部13とが係合している。また、入力回転軸1aの外周面のうちの雄スプライン部13の他端側(図3および図4の右側)に隣接する部分に、全周にわたって係止溝14が形成されており、係止溝14に、複数(2個~4個)の部分円弧状の素子から構成される係止環15の径方向内半部が係止されている。そして、係止環15の軸方向一端面(図3および図4の左側面)のうちの径方向外半部は、入力側ディスク2bの軸方向他端面のうちの径方向内端部に当接する。
 油圧式の押圧装置9aの非作動時に、パワーローラ6(図2参照)の周面と、入力側ディスク2a、2bの軸方向片側面および出力側ディスク5aの軸方向片側面との転がり接触部の面圧を必要最低限確保するための、一方の予圧ばね10aの弾力は、係止環15の軸方向厚さにより(適正な軸方向の厚さ寸法を有する係止環を選択することにより)調整される。また、入力回転軸1aの軸方向他端部のうち、入力回転軸1aの軸方向に関して、係止溝14の他端側に隣接する部分に、断面L字形の抑え環16が外嵌されており、抑え環16の内周面を、係止環15の外周面に当接または近接対向させることにより、係止環15を構成する複数の素子が係止溝14から抜け出ることが防止されている。入力回転軸1aの軸方向に関する抑え環16の変位は、入力回転軸1aの軸方向他端部のうち、入力回転軸1aの軸方向に関して、抑え環16の他端側に係止された止め輪17により、阻止される。なお、従来構造の第2例の場合には、一体型の出力側ディスク5aを使用することにより、トロイダル無段変速機全体としての小型化および軽量化が図られている。ただし、一体型の出力側ディスク5aに関する構造および作用については、本発明の要旨とは関係しないため、その説明を省略する。
 従来構造の第2例に係るトロイダル無段変速機の場合、運転時に、1対の入力側ディスク2a、2bのうち、入力回転軸1aの軸方向他端側に配置された、他方の入力側ディスク2bは、押圧装置9の発生する推力に基づくパワーローラ6から受ける力に基づいて、図7に誇張して示すように、他方の入力側ディスク2bの外径寄り部分が係止環15側に近づく方向(軸方向)に弾性変形する。すなわち、運転時に押圧装置9の発生する推力に基づいて他方の入力側ディスク2bに加わる力は、トロイダル無段変速機の運転時に最大で数十kN~百数十kN(数tF~十数tF)程度となる。したがって、運転時に押圧装置9の発生する推力に基づいて他方の入力側ディスク2bに加わる力による他方の入力側ディスク2bの軸方向に関する弾性変形量は、コンマ数mm(10分の数mm)程度と無視できない量となる。そして、他方の入力側ディスク2bが軸方向に弾性変形すると、他方の入力側ディスク2bの軸方向他端面と係止環15の軸方向一端面とが断続的に繰り返し当接することで互いに擦れ合い、他方の入力側ディスク2bの軸方向他端面と係止環15の軸方向一端面との当接部でフレッチング摩耗が生じる可能性がある。特に、他方の入力側ディスク2bが弾性変形する円周方向位置は、パワーローラ6により押し付けられる部分が変化するのに伴って常に変化する。このため、他方の入力側ディスク2bの軸方向他端面と係止環15の軸方向一端面と擦れ合いの周波数は相当に高く(百数十Hz程度に)なり、フレッチング摩耗発生の面からはかなり厳しい条件となる。
 さらに、従来構造の第2例の場合には、入力側ディスク2bの内周面の軸方向中間部から他端部にわたる範囲に雌スプライン部12が設けられているため、他方の入力側ディスク2bが弾性変形するのに伴って、雌スプライン部12を構成する雌スプライン溝の軸方向他端縁(図3および図4の右端縁)と、係止環15の軸方向一端面(図3および図4の左側面)とが断続的に繰り返し当接して互いに擦れ合い、雌スプライン溝の軸方向他端縁が係止環15の軸方向一端面に食い込もうとする。この面からもフレッチング摩耗が発生しやすい厳しい条件となる。フレッチング摩耗は、剥離などの損傷の起点となったり、発生した摩耗粉が潤滑油(トラクションオイル)を汚染し、各部の潤滑状態を不良にしたりする可能性がある。
特開2003-214516号公報 特開2007-315595号公報 特開2008-25821号公報 特開2008-275088号公報 特開2004-169719号公報 特開2000-205361号公報 特開2009-041715号公報
 本発明は、上述のような事情に鑑み、押圧装置の発生する推力に基づいて、外側ディスクと係止部材との間でフレッチング摩耗が発生することを防止できるトロイダル無段変速機の構造を実現することを目的としている。
 本発明のトロイダル型無段変速機は、回転軸と、1対の外側ディスクと、内側ディスクと、複数の支持部材と、複数の(前記支持部材と同数の)パワーローラと、押圧装置と、係止部材とを備える。
 前記1対の外側ディスクは、それぞれ断面円弧形で、前記回転軸の軸方向内側を向いた軸方向片側面を備え、前記回転軸の一端部および他端部に支持され、該回転軸と同期して回転する。前記内側ディスクは、それぞれが断面円弧形で、前記回転軸の軸方向外側を向いた軸方向両側面を備え、前記軸方向両側面を前記1対の外側ディスクの軸方向片側面に対向させた状態で、前記回転軸の軸方向中間部の周囲に、前記回転軸に対する相対回転を自在に支持されている。なお、前記内側ディスクとしては、一体型に形成された内側ディスク、もしくは、1対の素子を結合することにより構成された内側ディスクのいずれも用いることができる。
 前記支持部材は、前記回転軸に対し捩れの位置にある枢軸を備え、該回転軸の軸方向に関して前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、前記枢軸を中心とする揺動変位を自在に設けられている。前記パワーローラは、それぞれ前記支持部材に回転自在に支持され、それぞれ球状凸面からなる周面を備え、該周面を、前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向片側面とに当接させている。
 前記押圧装置は、前記回転軸と、前記1対の外側ディスクとのうちの前記回転軸の一端部に配置された一方の外側ディスクとの間に設けられ、該一方の外側ディスクを、前記1対の外側ディスクのうちの前記回転軸の他端部に配置された他方の外側ディスクに向けて押圧する。前記押圧装置としては、ローディングカムなどの機械式押圧装置と油圧式押圧装置とのいずれも用いることができる。前記係止部材は、前記他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位することを阻止するために、前記回転軸の軸方向他端部のうち、前記他方の外側ディスクから他端側に突出した部分に係止されている。
 前記他方の外側ディスクの内周面のうちの軸方向中間部に、雌スプライン部が形成されており、かつ、前記他方の外側ディスクの内周面のうちの前記雌スプライン部の他端側に隣接する部分に、断面形状が正円形である、ディスク側嵌合面部が形成されている。また、前記回転軸の外周面のうち、該回転軸の軸方向他端部に、雄スプライン部が形成されており、かつ、前記回転軸の外周面のうち、前記雄スプライン部の他端側に隣接する部分に、断面形状が正円形である、軸側嵌合部が形成されている。そして、前記雌スプライン部と前記雄スプライン部とがスプライン係合し、かつ、前記ディスク側嵌合面部と前記軸側嵌合面部とが締り嵌めで嵌合することにより、前記他方の外側ディスクは、前記回転軸に対し、該回転軸と同期した回転を自在に(前記他方の外側ディスクと前記回転軸との間での動力の伝達を可能に)支持されている。
 なお、本発明のトロイダル無段変速機を実施する場合、前記係止部材として、コッタと呼ばれる係止環を使用することができる。該係止環は、複数(たとえば2個~4個)の部分円弧状の素子を組み合わせることにより、全体を円環状に構成され、前記回転軸の軸方向他端部のうち、前記他方の外側ディスクから軸方向他端側に突出した部分に形成された、係止凹溝に係止される。そして、前記係止環の軸方向一端面の外半部(係止凹溝から露出した部分)が、前記他方の外側ディスクの軸方向他端面に当接することにより、該他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位することが阻止される。
 または、前記係止部材として、ローディングナットを使用することもできる。該ローディングナットは、前記回転軸の軸方向他端部のうち、前記他方の外側ディスクから軸方向他端側に突出した部分に形成された、雄ねじ部に螺合および緊締される。そして、前記ローディングナットの先端部が、直接、もしくは、予圧ばねなどの他の部材を介して、前記他方の外側ディスクの軸方向他端面に当接することにより、該他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位することが阻止される。
 本発明のトロイダル無段変速機では、押圧装置の発生する推力に基づいて、外側ディスク(他方の外側ディスク)と係止部材との間でフレッチング摩耗が発生することが防止される。すなわち、外側ディスクの内周面と回転軸の外周面との係合部(嵌合部)のうち、係止部材と軸方向に隣接する部分では、外側ディスクの内周面に形成された、断面形状が正円形である、ディスク側嵌合面部と、回転軸の外周面に形成された、断面形状が正円形である、軸側嵌合面部とが締り嵌めで嵌合している。したがって、外側ディスクのうち、係止部材側の端部(軸方向他端部)の回転軸に対する支持剛性を高めることができる。また、外側ディスクの内周面のうち、係止部材側の端部の縮径方向の剛性を高めることができる。したがって、押圧装置の発生する推力に基づいて、外側ディスクの内周面のうち、係止部材側の端部が縮径する方向に弾性変形しようとすることが抑止され、さらには、外側ディスクの外径寄り部分が軸方向に弾性変形することが抑制される(外側ディスクの軸方向への弾性変形量を小さくすることができる)。この結果、外側ディスクの軸方向他端面と係止部材の軸方向一端面とが互いに擦れ合って、外側ディスクと係止部材との間で著しいフレッチング摩耗が発生することが防止される。
 また、外側ディスクの内周面に形成された雌スプライン部を構成する雌スプライン溝の軸方向他端縁と、係止部材の軸方向一端面とが、回転軸の軸方向に関して互いに離隔する。したがって、仮に押圧装置の発生する推力に基づいて、外側ディスクが軸方向に弾性変形した場合であっても、雌スプライン溝の軸方向他端縁が係止部材の軸方向一端面に食い込もうとすることはない。この面からも、外側ディスクと係止部材との間でのフレッチング摩耗の発生が防止される。
図1(A)は、本発明のトロイダル無段変速機の実施の形態の1例を示す、要部拡大断面図であり、図1(B)は、他方の入力側ディスクと入力回転軸との係合部のうち、他方の入力側ディスクの軸方向一端部に相当する部分の断面図であり、図1(C)は、他方の入力側ディスクの軸方向中間部に相当する部分の断面図であり、図1(D)は、他方の入力側ディスクの軸方向他端部に相当する部分の断面図である。 図2は、トロイダル無段変速機の従来構造の第1例を示す断面図である。 図3は、トロイダル無段変速機の従来構造の第2例を示す断面図である。 図4(A)は、図3の右上半部拡大図であり、図4(B)は、図4(A)のX部拡大図である。 図5は、トロイダル無段変速機の従来構造の第2例の他方の入力側ディスクを示す斜視図である。 図6は、トロイダル無段変速機の従来構造の第2例における、他方の入力側ディスクと入力回転軸との係合部を示す断面図である。 図7は、トロイダル無段変速機の従来構造の第2例における、他方の入力側ディスクの弾性変形を誇張して示す模式図である。
 図1は、本発明のトロイダル無段変速機の実施の形態の1例を示している。本例のトロイダル無段変速機は、図3~図6に示した従来のトロイダル型無段変速機の第2例と同様に、回転軸である入力回転軸1bと、1対の外側ディスクである1対の入力側ディスク2a、2cと、内側ディスクである出力側ディスク5aと、複数の支持部材であるトラニオン7と、複数のパワーローラ6と、押圧装置9aと、係止部材である係止環15とを備える。
 1対の入力側ディスク2a、2cは、入力回転軸1bの一端部の周囲に配置された一方の入力側ディスク2aと、入力回転軸1bの他端部の周囲に配置された他方の入力側ディスク2cとにより構成される。一方の入力側ディスク2aと他方の入力側ディスク2cは、断面円弧形のトロイド曲面であって、入力回転軸1bの軸方向内側を向いた軸方向片側面をそれぞれ備える。1対の入力側ディスク2a、2cは、軸方向片側面同士を向き合わせた状態で、遠近動可能に、かつ、入力回転軸1bと同期した回転を可能に支持されている。
 入力回転軸1bの軸方向中間部の周囲には、一体型の出力側ディスク5aが、入力回転軸1bに対する相対回転を自在に支持されている。出力側ディスク5aは、それぞれが断面円弧形のトロイド曲面であって、前記回転軸の軸方向外側を向いた軸方向両側面を備える。出力側ディスク5aの軸方向両側面のうち、一端側を向いた一方の軸方向片側面は、一方の入力側ディスク2aの軸方向片側面と、出力側ディスク5aの軸方向両側面のうち、他端側を向いた他方の軸方向片側面は、他方の入力側ディスク2cの軸方向片側面と、それぞれ対向する。出力側ディスク5aの外周面には、出力歯車4aが形成されている。なお、一体型の出力側ディスク5aに代替して、それぞれが軸方向片側面を備える1対の出力側ディスク素子を結合することにより構成された1対の出力側ディスク5も適用可能である。
 それぞれのトラニオン7は、入力回転軸1bに対して捩れの位置にある枢軸を備え、入力回転軸1bの軸方向に関して、出力側ディスク5aの軸方向両側面と、1対の入力側ディスク2a、2bのそれぞれの軸方向片側面との間位置に、それぞれ複数個ずつ、前記枢軸を中心とする揺動変位を自在に、トロイダル無段変速機を構成するハウジングまたはこのハウジングに固定の部材により支持されている。それぞれのトラニオン7には、パワーローラ6(図2参照)が回転自在に支持されている。それぞれのパワーローラ6は、球状凸面からなる周面を備え、これらの周面は、出力側ディスク5aの軸方向両側面と入力側ディスク2a、2cの軸方向片側面との間に挟持される。
 押圧装置9aは、入力回転軸1bと、1対の外側ディスク2a、2cとのうちの入力回転軸1bの一端部に配置された一方の外側ディスク2aとの間に設けられている。押圧装置9aとしては、ローディングカムなどの機械式押圧装置と油圧式押圧装置とのいずれも用いることができる。本例のトロイダル無段変速機の運転時には、駆動軸8(図2参照)により一方の入力側ディスク2aが、押圧装置9aを介して回転駆動される。この結果、一方の入力側ディスク2aは、1対の入力側ディスク2a、2cのうちの入力回転軸1bの他端部に配置された他方の外側ディスク2cに向けて押圧される。すなわち、1対の入力側ディスク2a、2cが、互いに近づく方向に押圧されつつ同期して回転する。そして、1対の入力側ディスク2a、2cの回転は、パワーローラ6を介して出力側ディスク5aに伝達され、出力歯車4aから取り出される。
 一方の入力側ディスク2aと入力回転軸1b(または押圧装置9a)との間に、予圧ばね10aが設けられている。これにより、押圧装置9aの非作動時にも、パワーローラ6の周面と、入力側ディスク2a、2cの軸方向片側面および出力側ディスク5aの軸方向両側面との転がり接触部(トラクション部)の面圧が、必要最低限だけ確保されており、トロイダル無段変速機の運転開始直後から、前記転がり接触部で過大な滑りを生じることなく、動力伝達を開始できるようになっている。
 本例の場合、他方の入力側ディスク2cの中心部に、他方の入力側ディスク2cを軸方向に貫通する状態で、中心孔19が設けられている。中心孔19の内周面のうちの軸方向中間部にのみ、雌スプライン部12aが形成されている。また、中心孔19の内周面のうちの軸方向他端部(雌スプライン部12aの他端側に隣接する部分;図1の右端部)に、他方の入力側ディスク2cの中心軸に直交する仮想平面に関する断面形状が、他方の入力側ディスク2cの中心軸を中心とする正円形で、軸方向にわたって内径が変化しない、ディスク側円筒面部21が形成されている。ディスク側円筒面部21の内径d21は、雌スプライン部12aの歯底円直径(最大内径)dmaxよりも大きくなっている(d21>dmax)。一方、中心孔19の内周面のうちの軸方向一端部(雌スプライン部12の一端側に隣接する部分;図1の左端部)に、他方の入力側ディスク2cの中心軸に直交する仮想平面に関する断面形状が、他方の入力側ディスク2cの中心軸を中心とする正円形で、軸方向にわたって内径が変化しない、ディスク側嵌合面部22が形成されている。ディスク側嵌合面部22の内径d22は、雌スプライン部12aの歯先円直径(最小内径)dminよりも小さくなっている(d22<dmin)。
 これに対して、入力回転軸1bの軸方向他端部の一部(図1の右端寄り部分)に、他方の入力側ディスク2cの雌スプライン部12aとスプライン係合する、雄スプライン部13aが設けられている。入力回転軸1bの外周面のうち、雄スプライン部13aの他端側に隣接する部分に、入力回転軸1bの中心軸を中心とする正円形で、軸方向にわたって外径が変化しない、軸側嵌合面部23が設けられている。軸側嵌合面部23の外径D23は、雄スプライン部13aの歯底円直径(最小外径)Dminよりも小さくなっている(D23<Dmin)。また、軸側嵌合面部23の自由状態(他方の入力側ディスク2cを入力回転軸1bに組み付ける以前の状態)での外径は、ディスク側嵌合面部22の自由状態での内径よりも僅かに大きくなっている。
 入力回転軸1bの外周面のうち、軸側嵌合面部23の他端側に隣接する部分には、係止部材である、係止環15の径方向内半部が係止される係止溝14が設けられている。
 他方の入力側ディスク2cを入力回転軸1bに組み付ける際には、入力回転軸1bの軸方向他端部を、他方の入力側ディスク2cの中心孔19内に、入力側ディスク2cの軸方向一端側から挿通する。そして、雄スプライン部13aを雌スプライン部12aにスプライン係合させ、かつ、軸側嵌合面部23をディスク側嵌合面部22に内嵌圧入することにより、軸側嵌合面部23とディスク側嵌合面部22とを締り嵌めで嵌合させる。この状態で、係止溝14に係止環15を係止し、係止環15の軸方向一端面のうちで係止溝14から径方向外方に突出した部分(径方向外半部)を、他方の入力側ディスク2cの軸方向他端面に当接させる。また、抑え環16および止め輪17により、係止環15が係止溝14から抜け出ることが防止される。このような構成により、他方の入力側ディスク2cが、一方の入力側ディスク2aから離れる方向に、すなわち、入力回転軸1bの軸方向他端側に変位することが阻止され、かつ、他方の入力側ディスク2cが、入力回転軸1bと同期した回転を自在に(他方の入力側ディスク2cと入力回転軸1bとの間で動力の伝達を可能に)、入力回転軸1bに対して支持される。なお、本例の場合、入力回転軸1bの外周面のうちで、雄スプライン部13aの一端側に隣接する部分と、ディスク側円筒面部21とは、隙間嵌により嵌合している。
 本例のトロイダル無段変速機によれば、押圧装置9aの発生する推力に基づいて、入力側ディスク2cと係止環15との間でフレッチング摩耗が発生することが防止される。すなわち、図3~図6に示した従来構造の第2例の場合、入力側ディスク2bの内周面の軸方向中間部から他端部にわたる範囲に雌スプライン部12が設けられており、雌スプライン部12と、入力回転軸1aの軸方向他端部の一部の外周面に形成された雄スプライン部13とが係合している。また、図7に誇張して示すように、他方の入力側ディスク2bは、押圧装置9aの発生する推力に基づいてパワーローラ6から力が加わると、他方の入力側ディスク2bの外径寄り部分が軸方向他端側(図7の右側)に弾性変形する。この際、他方の入力側ディスク2bの中心部に設けられた中心孔19aのうち、他方の入力側ディスク2bの軸方向他端部が、入力回転軸1aの外周面に対し押し付けられて、その内径を縮める方向(縮径方向)に弾性変形しようとする。
 これに対し、本例の場合、他方の入力側ディスク2cの中心孔19の内周面と入力回転軸1bの外周面との係合部(嵌合部)のうちで、他方の入力側ディスク2cの軸方向他端面と係止環15の軸方向一端面との当接部に一端側に隣接する部分については、何れも断面形状が正円形である、ディスク側嵌合面部22と軸側嵌合面部23とが締り嵌めで嵌合している。したがって、他方の入力側ディスク2cの軸方向他端部の、入力回転軸1bに対する支持剛性が、従来構造の第2例の場合と比較して高くなる。また、他方の入力側ディスク2cの中心孔19の内周面のうちの軸方向他端部の縮径方向の剛性が高くなり、押圧装置9aの発生する推力に基づいて、他方の入力側ディスク2cの軸方向他端部が縮径する方向に弾性変形しようとすることが抑止され、さらには、他方の入力側ディスク2cの外径寄り部分が軸方向他端側に弾性変形することも抑制される(他方の入力側ディスク2cの外径寄り部分の軸方向への弾性変形量を小さくできる)。このため、他方の入力側ディスク2cの軸方向他端面と係止環15の軸方向一端面とが互いに擦れ合って、他方の入力側ディスク2cの軸方向他端面と係止環15の軸方向一端面との間で、著しいフレッチング摩耗が発生することが防止される。
 また、本例の場合には、雌スプライン部12aが、中心孔19の内周面の軸方向中間部に形成されており、雌スプライン部12aを構成する雌スプライン溝の軸方向他端縁と、係止環15の軸方向一端面とが軸方向に関して互いに離隔している。このため、仮に押圧装置9aの発生する推力に基づいて、入力側ディスク2cの外径寄り部分が軸方向他側に向け弾性変形した場合であっても、雌スプライン部12aを構成する雌スプライン溝の軸方向他端縁が、係止環15の軸方向一端面に食い込もうとすることはない。この面からも入力側ディスク2cと係止環15との間でフレッチング摩耗が発生することが防止される。
 さらに、本例の場合には、入力側ディスク2cの中心孔19の内周面のうち、入力回転軸1bに他方の入力側ディスク2cに組み付ける際に、入力回転軸1bの挿通方向前側となる軸方向一端部には、雌スプライン部12aの歯底円直径dmaxよりも大きな内径を有するディスク側円筒面部21が設けられている。このため、組み付け作業の初期段階で、ディスク側円筒面部21にたいして、軸側嵌合面部23および雄スプライン部13aを隙間嵌で内嵌することにより、他方の入力側ディスク2cと入力回転軸1bとの心合わせを行うことができる。このため、トロイダル無段変速機の組み立て作業が容易化される。
 なお、本例の場合、他方の入力側ディスク2cの中心孔19の内周面のうちで、軸方向一端部に形成された、ディスク側円筒面部21は、入力回転軸1bの外周面のうち、雄スプライン部13aの軸方向一端側に隣接する部分に、隙間嵌めで外嵌される。ただし、当該部分に、入力回転軸1bの中心軸を中心とする正円形で、軸方向に関して外径が変化しない軸側円筒面部を形成し、この軸側円筒面部の自由状態での外径を、ディスク側円筒面部21の自由状態での内径よりも僅かに大きくして、ディスク側円筒面部21を軸側円筒面部に圧入により締り嵌めで外嵌するように構成することもできる。これらのディスク側円筒面部21と軸側円筒面部とを締り嵌めで嵌合すれば、他方の入力側ディスク2cと入力回転軸1bとの同心性を向上でき(中心軸同士の偏心量および傾斜角度を低減でき)、トロイダル無段変速機の各種性能をより一層向上させることができる。たとえば、他方の入力側ディスク2cの振れ回り運動を低減して、振動の低減および変速比制御の精度向上を図ることが可能となる。
 本発明を実施する場合、他方の入力側ディスク2cが、入力回転軸1bの軸方向に関して他端側に向けて変位することを阻止するための係止部材として、図2に示したような、ローディングナット11も使用することができる。また、本発明は、ハーフトロイダル無段変速機に限られず、フルトロイダル無段変速機にも適用可能である。
  1、1a、1b 入力回転軸
  2a~2c 入力側ディスク
  3  出力筒
  4、4a 出力歯車
  5、5a 出力側ディスク
  6  パワーローラ
  7  トラニオン
  8  駆動軸
  9、9a 押圧装置
 10a、10b 予圧ばね
 11  ローディングナット
 12、12a 雌スプライン部
 13、13a 雄スプライン部
 14  係止溝
 15  係止環
 16  抑え環
 17  止め輪
 18  ボールスプライン
 19、19a 中心孔
 20  支柱
 21  ディスク側円筒面部
 22  ディスク側嵌合面部
 23  軸側嵌合面部

Claims (1)

  1.  回転軸と、
     それぞれ断面円弧形で、前記回転軸の軸方向内側を向いた軸方向片側面を備え、前記回転軸の一端部および他端部に支持され、該回転軸と同期して回転する、1対の外側ディスクと、
     それぞれが断面円弧形で、前記回転軸の軸方向外側を向いた軸方向両側面を備え、前記軸方向両側面を前記1対の外側ディスクの軸方向片側面に対向させた状態で、前記回転軸の軸方向中間部の周囲に、前記回転軸に対する相対回転を自在に支持された、内側ディスクと、
     前記回転軸に対し捩れの位置にある枢軸を備え、前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、前記枢軸を中心とする揺動変位を自在に設けられた、複数の支持部材と、
     それぞれ前記支持部材に回転自在に支持され、それぞれ球状凸面からなる周面を備え、該周面を、前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向片側面とに当接させた、複数のパワーローラと、
     前記回転軸と、前記1対の外側ディスクとのうちの前記回転軸の一端部に配置された一方の外側ディスクとの間に設けられ、該一方の外側ディスクを、前記1対の外側ディスクのうちの前記回転軸の他端部に配置された他方の外側ディスクに向けて押圧する、押圧装置と、
     前記回転軸の軸方向他端部のうち、前記他方の外側ディスクから他端側に突出した部分に係止され、前記他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位することを阻止する、係止部材と、
    を備え、
     前記他方の外側ディスクの内周面のうちの軸方向中間部に、雌スプライン部が形成されており、かつ、前記他方の外側ディスクの内周面のうちの前記雌スプライン部の他端側に隣接する部分に、断面形状が正円形である、ディスク側嵌合面部が形成されており、
     前記回転軸の外周面のうちの該回転軸の軸方向他端部に、雄スプライン部が形成されており、かつ、前記回転軸の外周面のうちの前記雄スプライン部の他端側に隣接する部分に、断面形状が正円形である、軸側嵌合面部が形成されており、
     前記雌スプライン部と前記雄スプライン部とがスプライン係合しており、かつ、前記ディスク側嵌合面部と前記軸側嵌合面部とが締り嵌めで嵌合している、
    トロイダル型無段変速機。
PCT/JP2015/058918 2014-04-02 2015-03-24 トロイダル無段変速機 WO2015151932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/301,372 US10436294B2 (en) 2014-04-02 2015-03-24 Toroidal continuously variable transmission
JP2016511566A JP6117991B2 (ja) 2014-04-02 2015-03-24 トロイダル無段変速機
CN201580014984.1A CN106104080B (zh) 2014-04-02 2015-03-24 环形无级变速器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076346 2014-04-02
JP2014076346 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015151932A1 true WO2015151932A1 (ja) 2015-10-08

Family

ID=54240259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058918 WO2015151932A1 (ja) 2014-04-02 2015-03-24 トロイダル無段変速機

Country Status (4)

Country Link
US (1) US10436294B2 (ja)
JP (1) JP6117991B2 (ja)
CN (1) CN106104080B (ja)
WO (1) WO2015151932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096983A1 (ja) * 2016-11-24 2018-05-31 日本精工株式会社 トロイダル無段変速機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104080B (zh) * 2014-04-02 2018-09-25 日本精工株式会社 环形无级变速器
JP6748558B2 (ja) * 2016-10-27 2020-09-02 川崎重工業株式会社 トロイダル無段変速機
WO2018174099A1 (ja) * 2017-03-21 2018-09-27 日本精工株式会社 トロイダル無段変速機用押圧装置
US11333225B2 (en) * 2017-03-21 2022-05-17 Nsk Ltd. Pressing device for toroidal continuously variable transmission
EP3913250B1 (en) * 2020-05-21 2023-06-28 Hamilton Sundstrand Corporation Generator shaft assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066789U (ja) * 1992-06-29 1994-01-28 日本精工株式会社 トロイダル型無段変速機用ディスク
JP2002021961A (ja) * 2000-07-04 2002-01-23 Koyo Seiko Co Ltd トロイダル型無段変速機
JP2003021206A (ja) * 2001-07-05 2003-01-24 Nsk Ltd トロイダル型無段変速機
JP2013221569A (ja) * 2012-04-17 2013-10-28 Nsk Ltd トロイダル型無段変速機

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672656B2 (ja) * 1989-03-31 1994-09-14 日産自動車株式会社 トロイダル無段変速機のローディングカム装置
US5368529A (en) 1992-06-29 1994-11-29 Nsk Ltd. Toroidal type continuously variable transmission
JP3711688B2 (ja) * 1997-03-22 2005-11-02 マツダ株式会社 トロイダル式無段変速機
JP4032547B2 (ja) 1999-01-11 2008-01-16 日本精工株式会社 トロイダル型無段変速機の組立方法
JP4196486B2 (ja) * 1999-06-29 2008-12-17 日本精工株式会社 トロイダル形無段変速装置
JP3624367B2 (ja) * 1999-12-09 2005-03-02 日産自動車株式会社 トロイダル型無段変速機
JP2003214516A (ja) 2002-01-24 2003-07-30 Honda Motor Co Ltd トロイダル変速機構
JP2004169719A (ja) 2002-11-15 2004-06-17 Nsk Ltd トロイダル型無段変速機及び無段変速装置
US20050043137A1 (en) * 2003-08-19 2005-02-24 Nsk Ltd. Toroidal type continuously variable transmission
JP4164680B2 (ja) * 2004-03-29 2008-10-15 日本精工株式会社 トロイダル型無段変速機のディスクの加工方法
CN101103213A (zh) * 2005-01-15 2008-01-09 卢克摩擦片和离合器两合公司 用于无级变速器的变速机构
JP2006308037A (ja) * 2005-05-02 2006-11-09 Nsk Ltd トロイダル型無段変速機
JP4831427B2 (ja) 2006-04-28 2011-12-07 日本精工株式会社 トロイダル型無段変速機
JP4905012B2 (ja) 2006-06-02 2012-03-28 日本精工株式会社 トロイダル型無段変速機
JP5007600B2 (ja) 2007-05-01 2012-08-22 日本精工株式会社 トロイダル型無段変速機
US9188206B2 (en) * 2007-06-06 2015-11-17 Nsk Ltd. Toroidal continuously variable transmission
JP4947492B2 (ja) 2007-08-10 2012-06-06 日本精工株式会社 トロイダル型無段変速機
JP4539765B2 (ja) * 2008-08-08 2010-09-08 トヨタ自動車株式会社 トロイダル式無段変速機
US20130035200A1 (en) * 2011-02-03 2013-02-07 Nsk Ltd Toroidal continuously variable transmission
JP2012172685A (ja) * 2011-02-17 2012-09-10 Nsk Ltd トロイダル型無段変速機
JP2013204604A (ja) * 2012-03-27 2013-10-07 Honda Motor Co Ltd トロイダル型無段変速機構
JP6427899B2 (ja) * 2013-08-02 2018-11-28 日本精工株式会社 トロイダル型無段変速機
JP2015083864A (ja) * 2013-09-20 2015-04-30 日本精工株式会社 トロイダル型無段変速機及び無段変速装置
JP6331449B2 (ja) * 2014-02-17 2018-05-30 日本精工株式会社 トロイダル型無段変速機
CN106104080B (zh) * 2014-04-02 2018-09-25 日本精工株式会社 环形无级变速器
JP6359319B2 (ja) * 2014-04-14 2018-07-18 川崎重工業株式会社 トロイダル型無段変速機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066789U (ja) * 1992-06-29 1994-01-28 日本精工株式会社 トロイダル型無段変速機用ディスク
JP2002021961A (ja) * 2000-07-04 2002-01-23 Koyo Seiko Co Ltd トロイダル型無段変速機
JP2003021206A (ja) * 2001-07-05 2003-01-24 Nsk Ltd トロイダル型無段変速機
JP2013221569A (ja) * 2012-04-17 2013-10-28 Nsk Ltd トロイダル型無段変速機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096983A1 (ja) * 2016-11-24 2018-05-31 日本精工株式会社 トロイダル無段変速機

Also Published As

Publication number Publication date
CN106104080B (zh) 2018-09-25
US10436294B2 (en) 2019-10-08
JPWO2015151932A1 (ja) 2017-04-13
US20170114876A1 (en) 2017-04-27
JP6117991B2 (ja) 2017-04-19
CN106104080A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6117991B2 (ja) トロイダル無段変速機
JP3714226B2 (ja) トロイダル型無段変速機
WO2012111562A1 (ja) トロイダル型無段変速機
WO2011114494A1 (ja) 無段変速機
US9005066B2 (en) Motor assembly with speed reducer
WO2018079506A1 (ja) トロイダル無段変速機
JP5935473B2 (ja) トロイダル型無段変速機
JP4079691B2 (ja) トロイダル型無段変速機
JP2019027533A (ja) トルクリミッタ
JP6252227B2 (ja) トロイダル型無段変速機
JP6110215B2 (ja) トロイダル型無段変速機
JP2006112524A (ja) 逆入力遮断クラッチ
JP6277833B2 (ja) トロイダル型無段変速機
JP6561572B2 (ja) トロイダル型無段変速機
JP6705735B2 (ja) トロイダル型無段変速機
WO2021070816A1 (ja) トロイダル無段変速機
JP5982326B2 (ja) トロイダル型無段変速機
JP2019163789A (ja) 動力伝達装置
JP5982291B2 (ja) トロイダル型無段変速機
JP6413383B2 (ja) トロイダル型無段変速機
JP5953977B2 (ja) トロイダル型無段変速機
JP6528358B2 (ja) トロイダル型無段変速機
JP4524743B2 (ja) トロイダル型無段変速機
WO2015052950A1 (ja) シングルキャビティ式トロイダル型無段変速機
JP2018084282A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15301372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773124

Country of ref document: EP

Kind code of ref document: A1