WO2015151358A1 - エアバッグ用コート基布 - Google Patents

エアバッグ用コート基布 Download PDF

Info

Publication number
WO2015151358A1
WO2015151358A1 PCT/JP2014/083964 JP2014083964W WO2015151358A1 WO 2015151358 A1 WO2015151358 A1 WO 2015151358A1 JP 2014083964 W JP2014083964 W JP 2014083964W WO 2015151358 A1 WO2015151358 A1 WO 2015151358A1
Authority
WO
WIPO (PCT)
Prior art keywords
base fabric
coating
silicone resin
fabric
resin
Prior art date
Application number
PCT/JP2014/083964
Other languages
English (en)
French (fr)
Inventor
務 明智
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP14888155.0A priority Critical patent/EP3127759B1/en
Priority to CN201480075636.0A priority patent/CN106029452B/zh
Priority to JP2016511329A priority patent/JP6350650B2/ja
Priority to PL14888155T priority patent/PL3127759T3/pl
Priority to ES14888155T priority patent/ES2721443T3/es
Priority to BR112016022862A priority patent/BR112016022862B8/pt
Priority to US15/300,311 priority patent/US10889259B2/en
Priority to KR1020167026661A priority patent/KR102286173B1/ko
Publication of WO2015151358A1 publication Critical patent/WO2015151358A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/268Airbags
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags

Definitions

  • the present invention relates to a coated fabric used for an automotive airbag, and more particularly to a coated fabric for an airbag in which the tensile strength of the coated fabric is improved without increasing the yarn strength.
  • airbags which have been rapidly installed as one of the safety parts of automobiles, detect high-pressure, high-pressure gas from the inflator when a car crash occurs. It is used for the purpose of preventing and protecting the body of a driver or passenger, particularly the head, from colliding with a handle, a windshield, a door glass or the like by rapidly deploying an airbag.
  • automobile airbags are not only used for driver seats and passenger seats, but also practically used for knee airbags, side airbags, curtain airbags, etc., and it is common to install a plurality of airbags. ing.
  • the fineness of the filament used for the coating base fabric for the airbag has been reduced from 940 dtex to 470 dtex, and in recent years has been changed to a base fabric using a filament with a fineness of 350 dtex.
  • An object of the present invention is to provide a coated fabric for an air bag that has improved the tensile strength of the coated fabric without using a high strength fiber of 9 cN / dtex or more, which cannot be solved by the prior art.
  • the present inventor in an airbag base fabric in which a thermoplastic resin is coated on one side of a woven fabric, causes the resin to exist from the coated surface side to the uncoated surface side warp and weft meshes when coating the resin.
  • the present invention has been completed.
  • the present invention is typically as follows.
  • An airbag coating base fabric in which a silicone resin is applied to one side of a woven fabric composed of synthetic fiber filaments, and the silicone resin is present at the mesh between warp and weft on an uncoated surface Coating base fabric.
  • the viscosity before coating of the silicone resin is 15 Pa ⁇ sec or less, the film strength of the resin is 5 MPa or more, the film elongation is 150% or less, and the hardness is 45 or more.
  • the coating base fabric for airbags as described.
  • [4] The coating base fabric for an air bag according to any one of [1] to [3], wherein the coating amount of the silicone resin is 5 g / m 2 or more and 35 g / m 2 or less.
  • [5] The air according to any one of [1] to [4], wherein the application method of the silicone resin is a knife-on-air method, and the knife is pressed by 1 to 6 mm. Coating base fabric for bags.
  • [6] The coated fabric for airbags according to any one of [1] to [5], wherein the total fineness of the filaments constituting the woven fabric is 200 to 600 dtex.
  • [7] The coating base fabric for an air bag according to any one of [1] to [6], wherein the cover factor of the woven fabric is 1,800 to 2,500.
  • this invention provides the manufacturing method of the coating base fabric for airbags as follows.
  • a method for producing a coating base fabric for an air bag which synthesizes a silicone resin having a viscosity of 15 Pa ⁇ sec or less, a resin film strength of 5 MPa or more, a film elongation of 150% or less, and a hardness of 45 or more.
  • a method for producing a coating base fabric for an air bag which is applied to only one side of a woven fabric composed of fiber filaments.
  • the coated fabric for airbags of the present invention maintains its strength even when the fineness is lowered. Therefore, even airbags that require particularly high internal pressure retention performance are excellent in quality and reliability, and can be stored compactly. This has the advantage that design constraints can be reduced.
  • the present invention provides an airbag coating base fabric in which a silicone resin is applied to one side of a woven fabric composed of synthetic fiber filaments, and the coated silicone resin is present at the meshed portion of the warp and weft on the uncoated side. It is characterized by doing.
  • Siliconone resin is present refers to a state in which the silicone resin can be visually confirmed at the intersection of the uncoated surface of the uncoated surface and the weft, that is, the joint, as shown in FIG. Specifically, a surface photograph of an uncoated surface can be taken using a scanning electron microscope (SEM) and judged visually.
  • SEM scanning electron microscope
  • a woven fabric composed of synthetic fiber filaments means a woven fabric woven using synthetic fiber filament yarns.
  • the woven fabric is excellent in that it is excellent in mechanical strength and can be reduced in thickness.
  • plain weave, twill weave, satin weave, and these changed weaves, multiaxial weaves, etc. can be applied, and plain fabrics that are superior in mechanical strength are particularly preferable.
  • Examples of synthetic fibers include aliphatic polyamide fibers such as nylon 66, nylon 6, nylon 46, and nylon 12, aromatic polyamide fibers such as aramid fibers, and polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. used.
  • Other examples include wholly aromatic polyester fibers, polyparaphenine / benzobis / oxazole fibers (PBO fibers), ultrahigh molecular weight polyethylene fibers, polyphenylene sulfide fibers, and polyether ketone fibers.
  • polyester fibers and polyamide fibers are preferable, and polyamides 6 and 6 are particularly preferable. Further, these fibers may be obtained from raw materials that are partially or wholly reused.
  • these synthetic fibers may contain various additives in order to improve process passability in the raw yarn manufacturing process and the post-processing process.
  • the additive include an antioxidant, a heat stabilizer, a smoothing agent, an antistatic agent, a thickener, a flame retardant, and the like.
  • the synthetic fiber may be an original yarn or dyed after yarn production. Further, the cross section of the single yarn may be an irregular cross section in addition to a normal round cross section. As the synthetic fiber, it is preferable to use a multifilament yarn of 72 filaments or more from the viewpoint of flexibility and smoothness of the coated surface.
  • the coating resin is preferably an elastomer resin having heat resistance, cold resistance and flame retardancy, but the silicone resin is most effective.
  • silicone resins include addition polymerization type silicone rubber.
  • dimethyl silicone rubber, methyl vinyl silicone rubber, methyl phenyl silicone rubber, trimethyl silicone rubber, fluoro silicone rubber, methyl silicone resin, methyl phenyl silicone resin, methyl vinyl silicone resin, epoxy modified silicone resin, acrylic modified silicone resin, polyester modified A silicone resin etc. are mentioned.
  • methyl vinyl silicone rubber is preferable because it has rubber elasticity after curing, is excellent in strength and elongation, and is advantageous in terms of cost.
  • the resin viscosity of the silicone resin used is very important.
  • the viscosity of the silicone resin is preferably 15 Pa ⁇ sec or less, more preferably 12 Pa ⁇ sec or less.
  • the resin viscosity is higher than 15 Pa ⁇ sec, the resin cannot be present at the meshed portion of the warp and weft on the non-coated surface, which is essential for improving the tensile strength of the coated base fabric. Since the resin exists up to the uncoated surface side at the joint between the warp and weft where the yarn can move freely, the yarn is constrained and the entire yarn breaks at one time during normal tensile testing.
  • the lower limit is not particularly limited, but is preferably 5 Pa ⁇ sec or more. Any solvent-based or solvent-free system may be used as long as the viscosity can be adjusted within the above range, but a solvent-free system is preferable in consideration of the influence on the environment.
  • the viscosity of the resin composition is also defined as “resin viscosity”.
  • the film strength of the resin is preferably 5 MPa or more and the film elongation is 150% or less.
  • film strength and film elongation are linked physical properties, but when the film elongation is 150% or less, the resin extends when the resin is present at the uncoated surface warp and weft meshes.
  • the yarn is restrained by restraining the yarn and the yarn is constrained and the yarn is broken all at once, so that a high tensile strength can be achieved as the base fabric.
  • a more preferable range of film elongation is 120% or less.
  • the upper limit of the film strength is not particularly limited, but is preferably 10 MPa or less.
  • the film elongation is preferably 50% or more from the viewpoint of the flexibility of the coating base fabric.
  • the sample for measuring the film strength and elongation of the silicone resin is prepared by actually coating the airbag fabric and adjusting the conditions (temperature, time, pressure) when forming the film. Specifically, a resin film having a constant thickness of 0.5 mm made of silicone resin is produced, and cured by heating at 190 ° C. for 2 minutes by a hot air irradiation method, and a tensile test is performed.
  • the hardness of the resin is preferably measured according to ASTM D2240, and the hardness measured using a Shore A hardness meter is preferably 45 or more. More preferably, it is 47 or more.
  • the hardness is 45 or more, the tensile strength of the base fabric is high because the yarn is restrained by the deformation of the resin during the tensile test, as well as the elongation of the resin, and the yarn is constrained and the whole yarn is broken at once. Strength can be achieved.
  • an upper limit is not specifically limited, Usually, it is 70 or less.
  • the alkenyl group-containing polysiloxane which is a main component constituting the coat layer of the coated cloth of the present invention, is bonded to silicon atoms in one molecule in order to form a silicone resin film having rubber elasticity after the resin is cured.
  • the viscosity at 25 ° C. of the alkenyl group-containing polysiloxane component is preferably 10,000 to 30,000 mPa ⁇ sec from the viewpoint of physical properties such as adhesion of the cured product to fibers, rubber strength, blocking resistance, and workability. Particularly preferred is 13,000 to 27,000 mPa ⁇ sec.
  • the organohydrogenpolysiloxane that constitutes the silicone resin reacts with the alkenyl group-containing polysiloxane by a hydrosilylation addition reaction and acts as a crosslinking agent.
  • the molecular structure of the organohydrogenpolysiloxane may be, for example, a linear, cyclic, branched, or three-dimensional network structure.
  • Organohydrogenpolysiloxane has at least two (usually about 2 to 300) or more hydrogen atoms bonded to silicon atoms in one molecule.
  • the hydrogen atoms bonded to these silicon atoms are located only at either the molecular chain end or in the middle of the molecular chain (ie, the molecular chain non-terminal). Or both.
  • the organohydrogenpolysiloxane (B) preferably has a viscosity at 25 ° C. of 0.1 to 1,000 mPa ⁇ sec, particularly preferably 0.1 to 500 mPa ⁇ sec.
  • the compounding amount of the organohydrogenpolysiloxane (B) is usually 1 to 1 hydrogen atoms bonded to the silicon atoms in the component (B) with respect to one alkenyl group bonded to the silicon atoms in the component (A).
  • the amount is in the range of 20, more preferably 1 to 10, particularly preferably 1 to 5.
  • the film strength and elongation of the resin can be adjusted by the molecular weight of the alkenyl group-containing polysiloxane and the structure and mixing amount of the organohydrogenpolysiloxane.
  • a reaction curing agent may be used, and a typical example is platinum or a platinum compound catalyst (platinum catalyst).
  • platinum catalyst platinum catalyst
  • Known materials can be used, and specific examples include platinum black, chloroplatinic acid, alcohol-modified products of chloroplatinic acid, complexes of chloroplatinic acid and olefins, aldehydes, vinyl siloxanes or acetylene alcohols.
  • platinum black platinum black
  • chloroplatinic acid chloroplatinic acid
  • alcohol-modified products of chloroplatinic acid complexes of chloroplatinic acid and olefins
  • aldehydes aldehydes
  • vinyl siloxanes or acetylene alcohols acetylene alcohols.
  • the silicone resin contains an adhesion assistant.
  • the adhesion assistant for example, at least selected from the group consisting of an amino silane coupling agent, an epoxy-modified silane coupling agent, a vinyl silane coupling agent, a chloro silane coupling agent, and a mercapto silane coupling agent Although 1 or more types are mentioned, it is not limited to these.
  • reinforcing inorganic fillers such as fumed silica and dry silica, cross-linkable silicone (silicone resin) with adjusted end groups, non-reinforcing inorganic such as calcium carbonate, calcium silicate, and titanium dioxide Fillers can be added.
  • the amount of these inorganic fillers used is 0.1 to 200 parts by weight, particularly preferably 0.1 to 100 parts by weight of the alkenyl group-containing polysiloxane component.
  • an inorganic pigment or an organic pigment may be added as a colorant.
  • the inorganic pigment include carbon black, titanium oxide, red bengara, black bengara, titanium yellow, and cobalt blue.
  • Series yellow, red
  • isoindolinone yellow, orange
  • quinacridone red, purple
  • diketopyrrolopyrrole Orange, red, purple
  • anthraquinone yellow, red, blue
  • Dioxazine purple
  • benzimidazolone Orange
  • copper phthalocyanine blue
  • allylamide yellow
  • the resin coating amount of the airbag coating base fabric of the present invention is preferably 5 to 45 g / m 2 . More preferably, it is 10 to 35 g / m 2 .
  • the amount of the resin applied is 5 g / m 2 or less, the thickness of the resin layer applied to the surface of the fabric is reduced, so that the required resin thickness on the surface of the coated fabric cannot be obtained and airflow suppression can be achieved. Disappear.
  • the coating amount is 45 g / m 2 or more, the flexibility of the coated fabric deteriorates, so that not only the storage property is impaired, but also the weight of the entire bag is increased.
  • the background average resin thickness at the top of the coated fabric surface is preferably 4 ⁇ m or more, more preferably 6 ⁇ m or more.
  • the top of the head means a portion of the warp or weft where the film pressure of the resin is thinned.
  • the resin coating method is very important in order for the resin to be present at the portion where the uncoated surface warps and wefts meet.
  • a method for applying the resin a conventionally known method is used.
  • knife coating particularly coating by knife-on-air method is the most. preferable.
  • the resin can easily penetrate into the inside of the fabric, but it becomes difficult for the resin to be present at the top of the fabric on the coated surface, and the airflow suppression originally required for the coated fabric cannot be achieved.
  • the knife used for knife coating can use a semicircular shape, a square shape, or the like as the tip shape of the blade.
  • the base fabric tension in the traveling direction is preferably 300 to 800 N / m, and particularly preferably 400 to 750 N / m.
  • the base fabric tension in the traveling direction is less than 400 N / m, the bulk of the ear portion of the base fabric becomes high, and a large difference is likely to occur between the application amount of the central portion and the end portion of the base fabric.
  • the base fabric tension in the advancing direction exceeds 800 N / m, the gap between the warp and the weft is filled, and the resin cannot exist in the meshed portion of the uncoated surface between the warp and the weft.
  • the pushing amount of the knife is 1 to 6 mm.
  • the knife push-in amount corresponds to the amount the knife is pushed downward from the height of the upper surface of the bed located immediately before the height (FIG. 2). More preferably, it is 1.5 to 4.5 mm.
  • the resin cannot be present in the meshed portion of the uncoated surface warp and weft which is the object of the present invention.
  • the resin can easily penetrate into the inside of the fabric, but it becomes difficult for the resin to be present at the top of the fabric on the coated surface, and the airflow suppression originally required for the coated fabric cannot be achieved.
  • a general heating method such as hot air, infrared light, microwave, or the like can be used.
  • the heating temperature and time it is sufficient that the silicone resin has reached a temperature sufficient for curing.
  • the heating temperature is 150 to 220 ° C.
  • the heating time is 0.2 to 5 minutes.
  • the total fineness of the filament yarn constituting the woven fabric is preferably 200 to 600 dtex.
  • the total fineness exceeds 600 dtex, the thickness of the base fabric increases, and the storage capacity of the airbag tends to deteriorate.
  • the mechanical properties during the operation of the airbag such as the tearing mechanical properties of the coating base fabric, are likely to deteriorate.
  • the cover factor of the woven fabric serving as the base fabric is preferably 1,800 to 2,500, and particularly preferably 1,900 to 2,450.
  • the cover factor is less than 1,800, physical properties (such as tear strength) required for an airbag are lowered.
  • the cover factor exceeds 2,500, there are limitations due to weaving and storage properties.
  • the prepared resin film was subjected to a tensile test at a speed of 10 mm / min with a chuck of 10 mm using a constant-speed tension type tensile tester, and the strength and elongation at break were measured. (7) Hardness Using the method described in ASTM D2240, the hardness was measured using a Shore A hardness meter. (8) Amount of coating The coated fabric after the resin is cured is accurately sampled at 5 cm square, and dipped in a solvent (hexafluoroisopropanol in the case of polyamide 66) that dissolves only the fiber that is the base fabric. Was dissolved. Next, only the silicone coating layer, which is an insoluble material, was collected and washed with acetone.
  • a solvent hexafluoroisopropanol in the case of polyamide 66
  • Example 1 A polyamide 66 multifilament yarn having an original yarn strength of 8.2 cN / dtex and a total fineness of 470 dtex and 144 filaments was woven in a water jet loom as a plain weave. Next, after shrinking with boiling water, it was dried at 110 ° C. to obtain a woven fabric having a warp density of 46 / 2.54 cm, a weft density of 46 / 2.54 cm, and a cover factor of 1,994. The tensile strength of this base fabric was 635 N / cm in the warp direction and 658 N / cm in the weft direction.
  • a solventless silicone resin composition comprising the following composition and having a viscosity at 25 ° C. of 9 Pa ⁇ sec was prepared.
  • the film strength of the silicone resin was 6.0 MPa
  • the film elongation was 97%
  • the hardness was 55.
  • the silicone resin composition was applied to one side of the woven fabric by using a knife-on-air knife having a tip radius R of 0.3 mm, adjusting the base fabric tension to 500 N / m and the knife pressing amount to 1 mm. . Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 20 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the uncoated surface, and the tensile strength was improved by 9% after coating.
  • Example 2 A polyamide 66 multifilament yarn having an original yarn strength of 8.0 cN / dtex, a total fineness of 470 dtex, and 72 filaments was woven in a water jet loom as a plain weave. Next, after shrinking with boiling water, it was dried at 110 ° C. to obtain a woven fabric having a warp density of 46 / 2.54 cm, a weft density of 46 / 2.54 cm, and a cover factor of 1,994. The tensile strength of this base fabric was 638 N / cm in the warp direction and 619 N / cm in the weft direction.
  • a solventless silicone resin composition having a viscosity of 8 Pa ⁇ sec at 25 ° C. was prepared. At this time, the film strength of the silicone resin was 5.5 MPa, the film elongation was 111%, and the hardness was 51.
  • the silicone resin composition was applied to one side of the woven fabric by using a knife-on-air knife having a tip radius R of 1.2 mm, adjusting the base fabric tension to 550 N / m and the knife pushing amount to 2 mm. . Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 35 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the non-coated surface, and the tensile strength was improved by 11% after coating.
  • Example 3 Using the same raw yarn as in Example 1, through the same process, a woven fabric having a warp density of 51 / 2.54 cm, a weft density of 51 / 2.54 cm and a cover factor of 2,211 was obtained.
  • the tensile strength of this base fabric was 699 N / cm in the warp direction and 716 N / cm in the weft direction.
  • a solventless silicone resin composition having a viscosity of 8 Pa ⁇ sec at 25 ° C. was prepared. At this time, the film strength of the silicone resin was 5.2 MPa, the film elongation was 120%, and the hardness was 47.
  • This silicone resin composition was applied to one side of the woven fabric by using a knife-on-air knife having a tip radius R of 0.3 mm, adjusting the base fabric tension to 650 N / m and the knife pushing amount to 2 mm. . Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 15 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the non-coated surface, and the tensile strength was improved by 5% after coating.
  • Example 4 A polyamide 66 multifilament yarn having an original yarn strength of 8.5 cN / dtex, a total fineness of 235 dtex, and 72 filaments was woven in a water jet loom as a plain weave. Next, after shrinkage processing with boiling water, drying finish was performed at 110 ° C. to obtain a woven fabric having a warp density of 73 / 2.54 cm, a weft density of 73 / 2.54 cm, and a cover factor of 2,238. The tensile strength of this base fabric was 492 N / cm in the warp direction and 493 N / cm in the weft direction.
  • Example 2 a resin having the same composition as in Example 1 was adjusted on one side of the woven fabric with a knife having a tip radius R of 0.6 mm, a base fabric tension of 450 N / m, and a knife push-in amount of 5 mm. Applied. Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 25 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the non-coated surface, and the tensile strength was improved by 5% after coating.
  • Example 5 A polyamide 66 multifilament yarn having an original yarn strength of 8.3 cN / dtex, a total fineness of 350 dtex, and 108 filaments was woven in a water jet loom as a plain weave. Next, after shrinking with boiling water, it was dried at 110 ° C. to obtain a woven fabric having a warp density of 55 / 2.54 cm, a weft density of 55 / 2.54 cm, and a cover factor of 2,058. The tensile strength of this base fabric was 570 N / cm in the warp direction and 560 N / cm in the weft direction.
  • Example 3 a resin having the same composition as that of Example 3 was adjusted on one side of the woven fabric with a knife having a tip radius R of 0.2 mm, a base fabric tension of 450 N / m, and a knife pushing amount of 3 mm. Applied. Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 35 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the non-coated surface, and the tensile strength was improved by 7% after coating.
  • Example 6 A polyester multifilament yarn having an original yarn strength of 7.2 cN / dtex, a total fineness of 570 dtex, and 192 filaments was woven in a water jet loom as a plain weave. Next, after shrinking with boiling water, it was dried at 110 ° C. to obtain a woven fabric having a warp density of 46 / 2.54 cm, a weft density of 46 / 2.54 cm, and a cover factor of 2,196. The tensile strength of this base fabric was 626 N / cm in the warp direction and 620 N / cm in the weft direction.
  • Example 2 a resin having the same composition as that of Example 1 was adjusted on one side of the woven fabric using a knife having a tip radius R of 0.6 mm, a base fabric tension of 400 N / m, and a knife pushing amount of 4 mm. Applied. Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 25 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with resin up to the non-coated surface, and the tensile strength was improved by 5% after coating.
  • the silicone resin composition was applied to one side of the woven fabric by using a knife-on-air knife with a tip radius R of 0.5 mm, adjusting the base fabric tension to 500 N / m and the knife push-in amount to 3 mm. . Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 25 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was not impregnated with the resin up to the non-coated surface, and the tensile strength was not improved after coating.
  • This silicone resin composition was applied to one side of the woven fabric by using a knife-on-air knife having a tip radius R of 0.3 mm, adjusting the base fabric tension to 650 N / m and the knife pushing amount to 7 mm. . Furthermore, it was cured at 190 ° C. for 2 minutes to obtain a coated base fabric having an application amount of 15 g / m 2 . The properties of the resulting coated base fabric were evaluated and are shown in Table 1. The obtained base fabric was impregnated with the resin up to the non-coated surface, but the tensile strength was not improved after coating.
  • the coated fabric for airbags of the present invention maintains its strength even when the fineness is lowered. Therefore, even airbags that require particularly high internal pressure retention performance are excellent in quality and reliability, and can be stored compactly.
  • the industrial contribution is significant because it has the advantage of reducing design constraints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Air Bags (AREA)
  • Woven Fabrics (AREA)

Abstract

 原糸強度を上げる事なく、コート布の引張強度を向上させたエアバッグ用コーティング基布を提供する。合成繊維フィラメントから構成された織物の片面にシリコーン樹脂が塗布されてなるエアバッグ用コーティング基布であり、非コート面の経糸と緯糸の目合い部分に前記シリコーン樹脂が存在するエアバッグ用コーティング基布。

Description

エアバッグ用コート基布
 本発明は、自動車用エアバッグに用いるコート布に関し、詳しくは、原糸強度を上げる事なく、コート布の引張強度が向上したエアバッグ用コート布に関する。
 近年、自動車安全部品の一つとして急速に装着率が向上しているエアバッグは、自動車の衝突事故の際、衝撃をセンサーが感知し、インフレーターから高温、高圧のガスを発生させ、このガスによってエアバッグを急激に展開させて、運転者や同乗者の身体、特に頭部がハンドル、フロントガラス、ドアガラス等に衝突することを防止し保護する目的で使用される。近年、自動車用エアバッグは、運転席、助手席用のみならず、ニーエアバッグ、サイドエアバッグ、カーテンエアバッグ等の実用化が進み、複数のエアバッグが装着されることが一般的となっている。
 搭載されるエアバッグの部位、数量が増えるにつれ、エアバッグシステムの更なる軽量化、コンパクト化の要求が高まり、システムの各部品は小型化、軽量化を目指して設計されてきている。このような背景から、主にエアバッグについては細繊度糸を使用した基布を用いる方策が検討されてきた。
 例えば、エアバッグ用コーティング基布に使用するフィラメントの繊度は、940dtexから470dtexへと細くなり、近年では繊度が350dtexのフィラメントを用いた基布へと変更されている。
 しかし、軽量化の為に織物を構成する合成繊維の繊度を小さくすると、絶対的な引張強度が低くなり、エアバッグとしてのバースト性能が低下する問題が発生する。この解決の為、通常広くエアバッグ用原糸で用いられる原糸の強度である7~9cN/dtexを超えた高強度繊維を用いる提案がされている。(例えば、特許文献1、2)
 しかしながら9cN/dtexを超えた高強度繊維は、延伸倍率を高める事で原糸を構成する単糸が切れる、いわゆる毛羽の発生が多くなり、特にコートを実施した基布では実質的に引張強度の向上に寄与せず、結果としてバースト性能が向上しなかった。
特開2009-167551号公報 特開2010-106375号公報
 本発明の目的は、従来技術では解決できていない、9cN/dtex以上の高強度繊維を用いなくてもコート布の引張強度を向上させたエアバッグ用コート布を提供することである。
 本発明者は、熱可塑性樹脂を織物の片面にコーティングするエアバッグ用基布において、樹脂をコーティングする際にコート面側から非コート面側の経糸と緯糸の目合い部にまで樹脂を存在させるという新規な技術思想を見出した。これにより、経糸と緯糸が動く自由度が制限されて糸が拘束され、基布の通常引張試験時に一度に全体で糸が破断される為に基布として高い引張強度を達成することが出来、本発明を完成した。
 すなわち、本発明は代表的には以下の通りである。
 [1]合成繊維フィラメントから構成された織物の片面にシリコーン樹脂が塗布されてなるエアバッグ用コーティング基布であり、非コート面の経糸と緯糸の目合い部分に前記シリコーン樹脂が存在するエアバッグ用コーティング基布。
 [2]コーティング後の基布の引張強度がコーティング前の基布の引張強度より5%以上高い[1]記載のエアバッグ用コーティング基布。
 [3]前記シリコーン樹脂のコーティング前の粘度が15Pa・sec以下であり、該樹脂の膜強度が5MPa以上、膜伸度が150%以下、硬度が45以上である[1]又は[2]に記載のエアバッグ用コーティング基布。
 [4]前記シリコーン樹脂の塗布量が5g/m以上35g/m以下である[1]~[3]のいずれかに記載のエアバッグ用コーティング基布。
 [5]前記シリコーン樹脂の塗布方法がナイフオンエアー方式であり、その時のナイフの押し込み量が1~6mmである塗布方法により製造された、[1]~[4]のいずれかに記載のエアバッグ用コーティング基布。
 [6]織物を構成するフィラメントの総繊度が200~600dtexである請求項[1]~[5]のいずれかに記載のエアバッグ用コーティング基布。
 [7]織物のカバーファクターが1,800~2,500である[1]~[6]のいずれかに記載のエアバッグ用コーティング基布。
 さらに本発明は以下のようなエアバッグ用コーティング基布の製造方法を提供する。
 [8]エアバッグ用コーティング基布の製造方法であって、粘度が15Pa・sec以下、樹脂の膜強度が5MPa以上、膜伸度が150%以下、硬度が45以上であるシリコーン樹脂を、合成繊維フィラメントから構成された織物の片面のみに塗布することを特徴とするエアバッグ用コーティング基布の製造方法。
 [9]前記シリコーン樹脂の塗布方法がナイフオンエアー方式であり、ナイフ押し込み量が1~6mmである[8]記載のエアバッグ用コーティング基布の製造方法。
 [10]前記シリコーン樹脂の塗布量が5~35g/mである[8]又は[9]に記載のエアバッグ用コーティング基布の製造方法。
 本発明のエアバッグ用コート布は、繊度を下げても強度が維持されるため、とりわけ高い内圧保持性能を要求されるエアバッグであっても品位・信頼性に優れ、コンパクトに収納でき、車内デザインの制約を少なくできるという利点を有する。
非コート面の経糸と緯糸の目合い部分を示した図である。 本発明のナイフオンエアー方式による塗布工程を示した図である。
 以下本発明を詳述する。
 本発明は、合成繊維フィラメントから構成された織物の片面にシリコーン樹脂が塗布されてなるエアバッグ用コーティング基布において、非コート面の経糸と緯糸の目合い部分に前記コーティングされたシリコーン樹脂が存在することを特徴とする。「シリコーン樹脂が存在する」とは、図1に示すようにコーティングを行っていない非コート面の経糸と緯糸の交点部すなわち目合い部にシリコーン樹脂を目視で確認できる状態のことをいう。具体的には走査型電子顕微鏡(SEM)を用いて非コート面の表面写真を撮影し、目視で判断することができる。経糸と緯糸の目合い部において非コート面側まで樹脂が存在することで、コーティング後の基布の引張強度をコーティング前の基布の引張強度より5%以上高くすることができた。本発明によって、比較的低繊度の合成繊維フィラメントからなるエアバッグ用基布であっても、高強度繊維を用いることなく引張強度を向上させることができ、品位の向上や軽量、コンパクト化に資する。
 本発明において、合成繊維フィラメントから構成された織物とは、合成繊維フィラメント糸条を用いて製織される織物を意味する。織物は、機械的強度に優れ、厚さを薄くできるという点で優れている。織物の組織は、例えば、平織、綾織、朱子織およびこれらの変化織、多軸織などが適用でき、なかでも機械的強度により優れる平織物が特に好ましい。
 合成繊維としては、特にナイロン66、ナイロン6、ナイロン46、ナイロン12等の脂肪族ポリアミド繊維、アラミド繊維のような芳香族ポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル繊維が使用される。他には、全芳香族ポリエステル繊維、ポリパラフェニン・ベンゾビス・オキサゾール繊維(PBO繊維)、超高分子量ポリエチレン繊維、ポリフェニレンサルファイド繊維、ポリエーテルケトン繊維等が挙げられる。ただし、経済性を勘案すると、ポリエステル繊維、ポリアミド繊維が好ましく、特に好ましくはポリアミド6,6である。また、これらの繊維はその一部または全部が再利用された原材料より得られるものでもよい。
 また、これらの合成繊維には、原糸製造工程や後加工工程での工程通過性を向上させるために、各種添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、熱安定剤、平滑剤、帯電防止剤、増粘剤、難燃剤等が挙げられる。また、この合成繊維は原着糸や製糸後染色したものでもよい。また、単糸の断面は、通常の丸断面のほか、異形断面であってもよい。合成繊維は、72フィラメント以上のマルチフィラメント糸を用いることが、柔軟性、コート面の平滑性の点から好ましい。
 コーティング樹脂は、耐熱性、耐寒性、難燃性を有するエラストマー樹脂が好ましいが、最も効果的であるのはシリコーン系樹脂である。シリコーン系樹脂の具体例としては付加重合型シリコーンゴム等が挙げられる。例えば、ジメチルシリコーンゴム、メチルビニルシリコーンゴム、メチルフェニルシリコーンゴム、トリメチルシリコーンゴム、フロロシリコーンゴム、メチルシリコーンレジン、メチルフェニルシリコーンレジン、メチルビニルシリコーンレジン、エポキシ変性シリコーンレジン、アクリル変性シリコーンレジン、ポリエステル変性シリコーンレジンなどが挙げられる。なかでも、硬化後にゴム弾性を有し、強度や伸びに優れ、コスト面でも有利な、メチルビニルシリコーンゴムが好適である。
 本発明において、使用するシリコーン樹脂の樹脂粘度は非常に重要である。シリコーン樹脂の粘度は15Pa・sec以下が好ましく、より好ましくは12Pa・sec以下である。樹脂粘度が15Pa・secより大きくなるとコート後の基布の引張強度を向上させる上で必須である非コート面の経糸と緯糸の目合い部分に樹脂を存在する事が出来ない。糸が動く自由度が生まれる経糸と緯糸の目合い部に非コート面側まで樹脂が存在する事で、糸が拘束されて通常引張試験時に一度に全体で糸が破断される為に、基布として高い引張強度を達成する事が出来るという、従来技術では解決できていなかった新規な技術思想を本発明者らは見出した。下限は特に限定されないが、好ましくは5Pa・sec以上である。上記の粘度の範囲内に調整できるのであれば、溶剤系、無溶剤系どちらでも構わないが、環境への影響を考慮すると、無溶剤系が好適である。
 なお、本発明では、樹脂以外の添加剤を含有する樹脂組成物の場合、該樹脂組成物の粘度も「樹脂の粘度」と定義する。
 また該樹脂の膜強度が5MPa以上、膜伸度が150%以下である事が好ましい。一般的に膜強度と膜伸度は連動した物性値になるが、特に膜伸度が150%以下にすると非コート面の経糸と緯糸の目合い部分に樹脂が存在した場合に、樹脂が伸びる事により発生する糸の自由度を抑制し糸が拘束されて一度に全体で糸が破断される為に、基布として高い引張強度を達成する事が出来る。膜伸度のより好ましい範囲は120%以下である。膜強度の上限は特に限定されないが、10MPa以下が好ましい。膜伸度はコーティング基布の柔軟性の観点から、50%以上が好ましい。
 なお、シリコーン樹脂の膜強伸度測定用の試料は、実際にエアバッグ用布帛にコーティングし、被膜を形成する時の条件(温度、時間、圧力)に合わせて作製する。具体的には、シリコーン樹脂の0.5mmの一定厚みの樹脂膜を作製し、熱風照射方式にて190℃2分間硬化処理し、引張試験を行う。
 また該樹脂の硬度はASTM D2240に準拠して測定し、ショアーAの硬さ計を用いて測定した硬度が45以上である事が好ましい。より好ましくは47以上である。硬度が45以上の場合、樹脂の伸度同様に引張試験時に樹脂が変形する事による糸の動きを抑制し糸が拘束されて一度に全体で糸が破断される為に、基布として高い引張強度を達成する事が出来る。上限は特に限定されないが、通常は70以下である。
 本発明のコート布のコート層を構成する主剤となる成分であるアルケニル基含有ポリシロキサンは、樹脂が硬化後、ゴム弾性を有するシリコーン樹脂膜になるために、1分子中にケイ素原子に結合したアルケニル基を2個以上含有する。アルケニル基含有ポリシロキサン骨格中におけるアルケニル基が結合するケイ素原子の位置としては、例えば、分子鎖末端及び/又は分子鎖途中(分子鎖非末端)が挙げられるが、両方にケイ素原子に結合したアルケニル基を含有する直鎖状のものが好ましい。
 アルケニル基含有ポリシロキサン成分の25℃における粘度は、硬化物の繊維に対する接着性、ゴム強度、耐ブロッキング性等の物理的特性や作業性の点から、10,000~30,000mPa・secが好ましく、特に好ましくは13,000~27,000mPa・secである。
 シリコーン樹脂を構成するオルガノハイドロジェンポリシロキサンは、アルケニル基含有ポリシロキサンとヒドロシリル化付加反応し、架橋剤として作用する。オルガノハイドロジェンポリシロキサンの分子構造は、例えば、直鎖状、環状、分岐鎖状、または三次元網目構造のいずれでも良い。
 オルガノハイドロジェンポリシロキサンは、1分子中に少なくとも2個(通常、2~300個程度)以上のケイ素原子に結合した水素原子を有する。オルガノハイドロジェンポリシロキサンが直鎖状構造を有する場合、これらのケイ素原子に結合した水素原子は、分子鎖末端及び分子鎖途中(すなわち、分子鎖非末端)のどちらか一方にのみ位置していても、その両方に位置していてもよい。
 また、オルガノハイドロジェンポリシロキサン(B)は、25℃における粘度が0.1~1,000mPa・secであることが好ましく、特に好ましくは0.1~500mPa・secである。
 オルガノハイドロジェンポリシロキサン(B)の配合量は、(A)成分中のケイ素原子に結合するアルケニル基1個に対して、(B)成分中のケイ素原子に結合する水素原子が、通常1~20個、より好ましくは1~10個、特に好ましくは1~5個の範囲となる量である。
 アルケニル基含有ポリシロキサンの分子量とオルガノハイドロジェンポリシロキサンの構造や混合量、により、樹脂の膜強伸度を調整する事が出来る。
 シリコーン樹脂を使用する場合には、反応硬化剤を用いても良く、その代表例は、白金又は白金化合物触媒(白金系触媒)である。公知のものが使用できるが、具体的には、白金ブラック、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類等との錯体などが例示される。白金化合物触媒は混合すればするほどヒドロシリル化反応が促進されるが、一般的に組成物に対して白金金属量で100~2000ppm添加しているのが一般的である。
 シリコーン樹脂と基布との接着性を向上させるために、シリコーン樹脂に接着助剤を含有させることが好ましい。接着助剤としては、例えば、アミノ系シランカップリング剤、エポキシ変性シランカップリング剤、ビニル系シランカップリング剤、クロル系シランカップリング剤、およびメルカプト系シランカップリング剤よりなる群から選ばれる少なくとも1種以上が挙げられるが、これらに限定されるものではない。
 また必要に応じて、例えば、ヒュームドシリカ、乾式シリカ等の補強性無機質充填剤、末端基を調整した架橋性シリコーン(シリコーンレジン)、炭酸カルシウム、ケイ酸カルシウム、二酸化チタン等の非補強性無機充填剤を添加する事が出来る。これらの無機充填剤の使用量は、アルケニル基含有ポリシロキサン成分の0.1~200質量部、特に好ましくは0.1~100質量部である。
 更に着色剤として無機顔料や有機顔料を添加してもよく、無機顔料ならば例えばカーボンブラック、酸化チタン、赤ベンガラ、黒ベンガラ、チタンイエロー、コバルトブルー等が挙げられ、有機顔料ならば例えば縮合アゾ系(黄色、茶色、赤色)、イソインドリノン系(黄色、橙色)、キナクリドン系(赤色、紫色)、ジケトピロロピロール系(橙色、赤色、紫色)、アンスラキノン系(黄色、赤色、青色)、ジオキサジン系(紫色)、ベンズイミダゾロン系(橙色)、銅フタロシアニン系(青色)、アリルアマイド系(黄色)等が挙げられる。
 本発明のエアバッグ用コーティング基布の樹脂塗布量は、5~45g/mの塗布量が好ましい。より好ましくは、10~35g/mである。5g/m以下の樹脂の塗布量では、織物表面に塗布されている樹脂層の厚みが低くなる為に、必要とするコート布表面における樹脂厚みが得られず通気抑制を達成することができなくなる。一方で45g/m以上の塗布量では、コート織物の柔軟性が悪化する為に、収納性を損なうだけでなく、バッグ全体の重量が大きくなる。
 本発明のエアバッグ用コート布は、コート布表面における頭頂部の経緯平均樹脂厚みが4μm以上であることが好ましく、より好ましくは6μm以上である。なお、頭頂部とは、経糸もしくは緯糸におけるもっとも樹脂の膜圧が薄くなる部分をいう。本発明においては、樹脂を織物内部まであまり浸透させず、コート面の織物全体、特に織物頭頂部にも比較的均一な膜厚で樹脂を存在させることが好ましい。4μm未満であると、通気抑制及び難燃性を満たさない可能性がある。上限は特に設けていないが、25μm以上ではナイフコートによる塗布が困難になる。
 本発明において、非コート面の経糸と緯糸の目合い部分に樹脂が存在させるためには、樹脂の塗布方法が大変重要である。樹脂を塗布する方法としては、従来の公知の方法が用いられるが、コート量の調整の容易さや異物(突起物)混入時の影響の点から、ナイフコート、特にナイフオンエアー方式によるコートが最も好ましい。ナイフオンベッド方式では、樹脂が織物内部まで浸透させ易いが、コート面の織物頭頂部に樹脂を存在させにくくなり、本来コート布に求められる通気抑制を達成する事が出来なくなる。本発明において、ナイフコートの際に使用されるナイフは、その刃の先端形状として、半円状、角状等が使用できる。
 ナイフオンエアー方式によるナイフコートでは、進行方向の基布張力は300~800N/mが好ましく、特に好ましくは400~750N/mである。進行方向の基布張力が400N/m未満の場合、ベース織物の耳部の嵩が高くなり、基布中央部と端部の塗布量に大きな差が生じやすくなる。一方、進行方向の基布張力が800N/mを超える場合、経糸と緯糸にある空隙を埋めてしまい、非コート面の経糸と緯糸の目合い部分に樹脂が存在出来なくなる。
 本発明において、ナイフの押し込み量が1~6mmである事が重要である。ナイフの押し込み量は、ナイフオンエアー方式において、直前に位置するベッドの上面の高さを0mmとし、その高さから下側方向にナイフを押し込んだ量に相当する(図2)。より好ましくは1.5~4.5mmである。ナイフ押し込み量が1mm未満の場合、本発明の目的である非コート面の経糸と緯糸の目合い部分に樹脂が存在させる事が出来ない。6mm以上の場合、樹脂が織物内部まで浸透させ易いが、コート面の織物頭頂部に樹脂を存在させにくくなり、本来コート布に求められる通気抑制を達成する事が出来なくなる。
 塗布後のコーティング剤を乾燥、硬化させる方法としては、熱風、赤外光、マイクロウェーブ等など、一般的な加熱方法を使用することができる。加熱温度、時間については、シリコーン樹脂が硬化するのに十分な温度に達していればよく、好ましくは加熱温度が150~220℃であり、加熱時間が0.2~5分である。
 織物を構成するフィラメント糸条の総繊度は、200~600dtexであることが好ましい。総繊度が600dtexを超えると、基布の厚さが増大し、エアバッグの収納性が悪化しやすくなる。一方、総繊度が200dtex未満では、コーティング基布の引裂機械特性などのエアバッグ作動時の機械特性が低下しやすくなる。
 基布となる織物のカバーファクターは、1,800~2,500が好ましく、特に好ましくは1,900~2,450である。カバーファクターが1,800未満であると、エアバッグとして必要な物理特性(引裂強力等)が低下する。一方、カバーファクターが2,500を超える場合には、製織時、並びに収納性による限界がある。また織物のカバーファクターが高い場合には、経糸と緯糸にある空隙が小さくなる為に、非コート面の経糸と緯糸の目合い部分に樹脂が存在させにくくなる。
 なお、カバーファクターCFは、下式により算出する。
 CF=√(経糸の総繊度)×経糸密度+√(緯糸の総繊度)×緯糸密度
 なお、総繊度の単位はdtex、織密度の単位は本/2.54cmである。
 以下、実施例を用いて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例中における各種評価は、下記の方法にしたがって評価した。
(1)総繊度
JIS L-1095 9.4.1記載の方法で測定する。
(2)フィラメント数
フィラメント糸条の断面写真よりフィラメント数を数える。
(3)織物の密度
 JIS L-1096 8.6.1記載の方法で測定する。
(4)引張強度
 JIS K6404-3記載の方法で測定する。
(5)樹脂の粘度
 JIS K-7117記載の方法を用い、B型粘度計で測定する。
(6)樹脂膜強伸度
 樹脂の0.5mmの一様な厚さの膜を作製し、熱風照射方式にて190℃2分間硬化処理した。作製した樹脂膜を、定速緊張型の引張試験機を用いチャック間10mmにて10mm/minの速度で引張試験を行い、破断時の強度及び伸度を測定した。
(7)硬度
  ASTM D2240記載の方法を用い、ショアーAの硬さ計を用いて測定した。
(8)塗布量
 樹脂を硬化させた後のコーティング布を正確に5cm角で採取し、ベース基布である繊維のみを溶かす溶剤(ポリアミド66の場合は、ヘキサフルオロイソプロパノール)に浸漬して基布を溶解させた。次に、不溶物であるシリコーンコート層のみを回収してアセトン洗浄を行い、真空乾燥後、試料の秤量を行った。なお、塗布量は、1mあたりの質量(g/m)で表した。
(9)非コート面樹脂含浸
コート布の非コート面の表面写真を任意に選んだ5箇所で撮影し、経糸と緯糸の交点部分4隅すべてで樹脂が確認出来た場合を○、すべてで確認出来なかった場合を×とした。
(10)コート前後引張強伸比
 コート後の基布の引張強度測定値の経方向と緯方向を足した値をコート前の基布の引張強度測定値の経方向と緯方向を足した値で割って算出した数値を記載した。小数点3桁目を丸めた。
(実施例1)
 原糸強度が8.2cN/dtexで総繊度が470dtex、144フィラメントのポリアミド66マルチフィラメント糸を、平織りにてウォータージェットルームにて製織した。次いで、沸水にて収縮加工した後、110℃で乾燥仕上げをし、経密度46本/2.54cm、緯密度46本/2.54cm、カバーファクターが1,994の織物を得た。この基布の引張強度は、経方向が635N/cm、緯方向が658N/cmであった。
 次に、下記組成物からなり、25℃における粘度が9Pa・secである無溶剤系シリコーン樹脂組成物を調合した。この時のシリコーン樹脂の膜強度は6.0MPa、膜伸度が97%、硬度が55であった。
 (無溶剤系シリコーン樹脂組成物の配合)
(A)ビニル基含有ジメチルポリシロキサン(重量平均分子量31000):78質量部
 
(B)メチルハイドロジェンポリシロキサン(重量平均分子量2800、ケイ素原子に結合する水素原子数:10個):5質量部
(C)乾式シリカ粒子:0.5質量%(シリコーン樹脂組成物に対して)
     (日本アエロジル社製、AEROSIL(R) NX90;平均一次粒径:20nm、比表面積:90m/g、トリメチルシラン処理品)
 (D) エポキシ基を有する有機ケイ素化合物:1.1質量部
    (3個のメトキシ基と1個のエポキシ基を有する、重量平均分子量:240)
 (E) ケイ素原子結合ビニル基を有する有機ケイ素化合物:0.4質量部
   (3個のメトキシ基と1個のビニル基を有する、重量平均分子量:150)
(F)架橋性シリコーン:末端トリメチルシラン/ビニルジメチルシラン=86/14モル比:14.5質量部
(G)白金触媒:20ppm(シリコーン樹脂組成物に対して)
 (H) ベンガラ顔料:0.5質量部
 前記の織物の片面に、このシリコーン樹脂組成物を、ナイフオンエアー方式で先端部半径Rが0.3mmのナイフを用い、基布張力500N/m、ナイフ押し込み量を1mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が20g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が9%向上した。
(実施例2)
 原糸強度が8.0cN/dtexで総繊度が470dtex、72フィラメントのポリアミド66マルチフィラメント糸を、平織りにてウォータージェットルームにて製織した。次いで、沸水にて収縮加工した後、110℃で乾燥仕上げをし、経密度46本/2.54cm、緯密度46本/2.54cm、カバーファクターが1,994の織物を得た。この基布の引張強度は、経方向が638N/cm、緯方向が619N/cmであった。
(A)ビニル基含有ジメチルポリシロキサン(重量平均分子量31000):78質量部の代わりに、(A1)ビニル基含有ジメチルポリシロキサン(分子量33000):78質量部を添加した以外は実施例1の組成である、25℃における粘度が8Pa・secである無溶剤系シリコーン樹脂組成物を調合した。この時のシリコーン樹脂の膜強度は5.5MPa、膜伸度が111%、硬度が51であった。
 前記の織物の片面に、このシリコーン樹脂組成物を、ナイフオンエアー方式で先端部半径Rが1.2mmのナイフを用い、基布張力550N/m、ナイフ押し込み量を2mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が35g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が11%向上した。
(実施例3)
 実施例1と同様の原糸を用い、同様の工程を経て、経密度51本/2.54cm、緯密度51本/2.54cm、カバーファクターが2,211の織物を得た。この基布の引張強度は、経方向が699N/cm、緯方向が716N/cmであった。
(A)ビニル基含有ジメチルポリシロキサン(重量平均分子量31000):78質量部の代わりに、(A2)ビニル基含有ジメチルポリシロキサン(重量平均分子量35000):78質量部を添加した以外は実施例1の組成である、25℃における粘度が8Pa・secである無溶剤系シリコーン樹脂組成物を調合した。この時のシリコーン樹脂の膜強度は5.2MPa、膜伸度が120%、硬度が47であった。
 前記の織物の片面に、このシリコーン樹脂組成物を、ナイフオンエアー方式で先端部半径Rが0.3mmのナイフを用い、基布張力650N/m、ナイフ押し込み量を2mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が15g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が5%向上した。
(実施例4)
 原糸強度が8.5cN/dtexで総繊度が235dtex、72フィラメントのポリアミド66マルチフィラメント糸を、平織りにてウォータージェットルームにて製織した。次いで、沸水にて収縮加工した後、110℃で乾燥仕上げをし、経密度73本/2.54cm、緯密度73本/2.54cm、カバーファクターが2,238の織物を得た。この基布の引張強度は、経方向が492N/cm、緯方向が493N/cmであった。
 次に、実施例1と同一の組成である樹脂を前記の織物の片面に、先端部半径Rが0.6mmのナイフを用い、基布張力450N/m、ナイフ押し込み量を5mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が25g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が5%向上した。
(実施例5)
 原糸強度が8.3cN/dtexで総繊度が350dtex、108フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織した。次いで、沸水にて収縮加工した後、110℃で乾燥仕上げをし、経密度55本/2.54cm、緯密度55本/2.54cm、カバーファクターが2,058の織物を得た。この基布の引張強度は、経方向が570N/cm、緯方向が560N/cmであった。
 次に、実施例3と同一の組成である樹脂を前記の織物の片面に、先端部半径Rが0.2mmのナイフを用い、基布張力450N/m、ナイフ押し込み量を3mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が35g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が7%向上した。
(実施例6)
 原糸強度が7.2cN/dtexで 総繊度が570dtex、192フィラメントのポリエステルマルチフィラメント糸を、平織りにてウォータージェットルームにて製織した。次いで、沸水にて収縮加工した後、110℃で乾燥仕上げをし、経密度46本/2.54cm、緯密度46本/2.54cm、カバーファクターが2,196の織物を得た。この基布の引張強度は、経方向が626N/cm、緯方向が620N/cmであった。
 次に、実施例1と同一の組成である樹脂を前記の織物の片面に、先端部半径Rが0.6mmのナイフを用い、基布張力400N/m、ナイフ押し込み量を4mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が25g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しており、コート後に引張強度が5%向上した。
(比較例1)
 実施例2の織物に、(A)ビニル基含有ジメチルポリシロキサン(重量平均分子量31000):78質量部の代わりに、(A3)ビニル基含有ジメチルポリシロキサン(重量平均分子量45000):19質量部、(A4)ビニル基含有ジメチルポリシロキサン(重量平均分子量23000):59質量部添加し、また(C)の乾式シリカ粒子の添加量を14.6質量%に変更し、(F)成分を添加しない以外は実施例1の組成である、25℃における粘度が22Pa・secである無溶剤系シリコーン樹脂組成物を調合した。この時のシリコーン樹脂の膜強度は3.8MPa、膜伸度が367%、硬度が42であった。
 前記の織物の片面に、このシリコーン樹脂組成物を、ナイフオンエアー方式で先端部半径Rが0.5mmのナイフを用い、基布張力500N/m、ナイフ押し込み量を3mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が25g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しておらず、コート後に引張強度が向上しなかった。
(比較例2)
 実施例3の織物に、(A)ビニル基含有ジメチルポリシロキサン(重量平均分子量31000):78質量部の代わりに、(A3)ビニル基含有ジメチルポリシロキサン(重量平均分子量45000):9質量部、(A4)ビニル基含有ジメチルポリシロキサン(重量平均分子量23000):69質量部添加し、また(C)の乾式シリカ粒子の添加量を5.2質量%に変更した以外は実施例1の組成である、25℃における粘度が15Pa・secである無溶剤系シリコーン樹脂組成物を調合した。この時のシリコーン樹脂の膜強度は2.7MPa、膜伸度が415%、硬度が31であった。
 前記の織物の片面に、このシリコーン樹脂組成物を、ナイフオンエアー方式で先端部半径Rが0.3mmのナイフを用い、基布張力650N/m、ナイフ押し込み量を7mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が15g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸していたが、コート後に引張強度が向上しなかった。
(比較例3)
 実施例4と同一の織物、樹脂を用い、織物の片面に、先端部半径Rが0.6mmのナイフを用い、基布張力450N/m、ナイフ押し込み量を0.5mmに調整して塗布した。さらに、190℃で2分間硬化処理し、塗布量が28g/mであるコーティング基布を得た。得られたコーティング基布の特性を評価し、表1に示した。得られた基布は、非コート面まで樹脂が含浸しておらず、コート後に引張強度が1%しか向上しなかった。
Figure JPOXMLDOC01-appb-T000001
 
 本発明のエアバッグ用コート布は、繊度を下げても強度が維持されるため、とりわけ高い内圧保持性能を要求されるエアバッグであっても品位・信頼性に優れ、コンパクトに収納でき、車内デザインの制約を少なくできるという利点を有する為、産業上の寄与は大きい。
  1 非コート面側の基布
  2 樹脂
  3 基布
  4  ベッド
  5  樹脂
  6 ナイフ
  7 ナイフ押し込み量

Claims (10)

  1.  合成繊維フィラメントから構成された織物の片面にシリコーン樹脂が塗布されてなるエアバッグ用コーティング基布であり、非コート面の経糸と緯糸の目合い部分に前記シリコーン樹脂が存在するエアバッグ用コーティング基布。
  2.  コーティング後の基布の引張強度がコーティング前の基布の引張強度より5%以上高い請求項1記載のエアバッグ用コーティング基布。
  3.  前記シリコーン樹脂のコーティング前の粘度が15Pa・sec以下であり、該樹脂の膜強度が5MPa以上、膜伸度が150%以下、硬度が45以上である請求項1又は2に記載のエアバッグ用コーティング基布。
  4.  前記シリコーン樹脂の塗布量が5g/m以上35g/m以下である請求項1~3のいずれか一項に記載のエアバッグ用コーティング基布。
  5.  前記シリコーン樹脂の塗布方法がナイフオンエアー方式であり、その時のナイフの押し込み量が1~6mmである塗布方法により製造された、請求項1~4のいずれか一項に記載のエアバッグ用コーティング基布。
  6.  織物を構成するフィラメントの総繊度が200~600dtexである請求項1~5のいずれか一項に記載のエアバッグ用コーティング基布。
  7.  織物のカバーファクターが1,800~2,500である請求項1~6のいずれか一項に記載のエアバッグ用コーティング基布。
  8.  エアバッグ用コーティング基布の製造方法であって、粘度が15Pa・sec以下、樹脂の膜強度が5MPa以上、膜伸度が150%以下、硬度が45以上であるシリコーン樹脂を、合成繊維フィラメントから構成された織物の片面のみに塗布することを特徴とするエアバッグ用コーティング基布の製造方法。
  9.  前記シリコーン樹脂の塗布方法がナイフオンエアー方式であり、ナイフ押し込み量が1~6mmである請求項8記載のエアバッグ用コーティング基布の製造方法。
  10.  前記シリコーン樹脂の塗布量が5~35g/mである請求項8又は9に記載のエアバッグ用コーティング基布の製造方法。
PCT/JP2014/083964 2014-03-31 2014-12-22 エアバッグ用コート基布 WO2015151358A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14888155.0A EP3127759B1 (en) 2014-03-31 2014-12-22 Coated fabric for airbag
CN201480075636.0A CN106029452B (zh) 2014-03-31 2014-12-22 气囊用涂层基布
JP2016511329A JP6350650B2 (ja) 2014-03-31 2014-12-22 エアバッグ用コート基布
PL14888155T PL3127759T3 (pl) 2014-03-31 2014-12-22 Powlekana tkanina do poduszki powietrznej
ES14888155T ES2721443T3 (es) 2014-03-31 2014-12-22 Tejido recubierto para airbag
BR112016022862A BR112016022862B8 (pt) 2014-03-31 2014-12-22 Tecido revestido para airbag e método de produção do mesmo
US15/300,311 US10889259B2 (en) 2014-03-31 2014-12-22 Coated fabric for airbag
KR1020167026661A KR102286173B1 (ko) 2014-03-31 2014-12-22 에어백용 코팅 기포

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014071445 2014-03-31
JP2014-071445 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151358A1 true WO2015151358A1 (ja) 2015-10-08

Family

ID=54239715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083964 WO2015151358A1 (ja) 2014-03-31 2014-12-22 エアバッグ用コート基布

Country Status (10)

Country Link
US (1) US10889259B2 (ja)
EP (1) EP3127759B1 (ja)
JP (1) JP6350650B2 (ja)
KR (1) KR102286173B1 (ja)
CN (1) CN106029452B (ja)
BR (1) BR112016022862B8 (ja)
ES (1) ES2721443T3 (ja)
PL (1) PL3127759T3 (ja)
PT (1) PT3127759T (ja)
WO (1) WO2015151358A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127759A1 (en) 2014-03-31 2017-02-08 Toyobo Co., Ltd. Coated base fabric for airbags
WO2017104529A1 (ja) * 2015-12-16 2017-06-22 東洋紡株式会社 エアバッグ用コーティング基布及びその製造方法
CN108699763A (zh) * 2016-03-16 2018-10-23 东洋纺株式会社 气囊用涂层基底织物及其制造方法
JP2022173039A (ja) * 2021-05-06 2022-11-17 ウォンプン コーポレーション 防炎性が強化され、デジタル印刷が可能な防炎素材、及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861161B2 (ja) * 2015-09-30 2021-04-21 セーレン株式会社 エアバッグ用基布、エアバッグ、及びエアバッグ用基布の製造方法
CN110997995B (zh) * 2017-08-21 2022-05-31 东洋纺株式会社 安全气囊用织物、安全气囊用涂层织物和使用其的安全气囊
US11358562B2 (en) 2017-09-29 2022-06-14 Toyobo Co., Ltd. Airbag base cloth and airbag including same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068779A (ja) * 1992-06-26 1994-01-18 Toray Ind Inc エアバッグ
JPH08225772A (ja) * 1994-12-06 1996-09-03 Dow Corning Sa 硬化可能なコーティング組成物およびコーティング方法
JP2006273110A (ja) * 2005-03-29 2006-10-12 Seiren Co Ltd エアバッグ用基布及びエアバッグ
WO2013118755A1 (ja) * 2012-02-07 2013-08-15 東洋紡株式会社 エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387451B1 (en) 1994-12-06 2002-05-14 Dow Corning Limited Curable coating compositions
US20010046823A1 (en) 1998-12-08 2001-11-29 Toyo Tire & Rubber Co., Ltd. Fabric for air bag
JP4423853B2 (ja) * 2002-12-26 2010-03-03 東レ株式会社 エアバッグ用基布およびエアバッグ
WO2004031472A1 (ja) * 2002-10-04 2004-04-15 Toray Industries, Inc. コーティングエアバッグ基布およびエアバッグ
US20050244596A1 (en) 2004-04-30 2005-11-03 Highland Industries, Inc. Coated airbag fabric
JP5003378B2 (ja) * 2007-09-25 2012-08-15 東レ株式会社 エアバッグ用コート布帛、エアバッグおよびエアバッグ用コート布帛の製造方法
CN101883890B (zh) * 2007-12-07 2012-11-21 东洋纺织株式会社 气囊用织物
JP5532377B2 (ja) * 2007-12-07 2014-06-25 東洋紡株式会社 エアバッグ用布帛
JP2009167551A (ja) 2008-01-15 2009-07-30 Seiren Co Ltd エアバッグ用織物
JP5335369B2 (ja) 2008-10-28 2013-11-06 セーレン株式会社 エアバッグ用織物およびエアバッグ
SE532148C2 (sv) * 2008-11-07 2009-11-03 Anders Westerlind Ab Vävt krockkuddetyg
JP5568240B2 (ja) * 2009-02-02 2014-08-06 東レ・ダウコーニング株式会社 硬化性シリコーンゴム組成物
PL2436836T3 (pl) * 2009-05-29 2017-08-31 Toyobo Co., Ltd. Powlekana tkanina bazowa na poduszkę powietrzną i sposób jej wytwarzania
US8815757B2 (en) * 2010-10-26 2014-08-26 Toyobo Co., Ltd. Coated base fabric for air bags
KR101947220B1 (ko) * 2012-05-11 2019-02-12 도요보 가부시키가이샤 비코팅 에어백용 직물
CN104583486B (zh) * 2012-08-28 2016-06-01 东丽株式会社 涂层布及其制造方法
WO2014046159A1 (ja) * 2012-09-20 2014-03-27 東洋紡株式会社 エアバッグ用コート布及びその製造方法
KR20140043005A (ko) * 2012-09-28 2014-04-08 코오롱인더스트리 주식회사 에어백용 코팅 원단
US9868413B2 (en) * 2012-12-17 2018-01-16 Asahi Kasei Kabushiki Kaisha Fabric for an air bag that maintains air permeability during high-pressure deployment at high speed
PL3040246T3 (pl) * 2013-08-26 2018-08-31 Toyobo Co., Ltd. Materiał powlekany na poduszkę powietrzną
ES2721443T3 (es) 2014-03-31 2019-07-31 Toyo Boseki Tejido recubierto para airbag
US10655248B2 (en) * 2014-06-24 2020-05-19 Kolon Industries, Inc. Method of preparing polyester fabric for airbag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068779A (ja) * 1992-06-26 1994-01-18 Toray Ind Inc エアバッグ
JPH08225772A (ja) * 1994-12-06 1996-09-03 Dow Corning Sa 硬化可能なコーティング組成物およびコーティング方法
JP2006273110A (ja) * 2005-03-29 2006-10-12 Seiren Co Ltd エアバッグ用基布及びエアバッグ
WO2013118755A1 (ja) * 2012-02-07 2013-08-15 東洋紡株式会社 エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127759A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3127759A1 (en) 2014-03-31 2017-02-08 Toyobo Co., Ltd. Coated base fabric for airbags
EP3392401A4 (en) * 2015-12-16 2019-07-03 Toyobo Co., Ltd. COATED BASE FABRIC FOR INFLOW CUSHION AND METHOD FOR MANUFACTURING THE SAME
CN108368672A (zh) * 2015-12-16 2018-08-03 东洋纺株式会社 气囊用涂层基底织物及其制造方法
JPWO2017104529A1 (ja) * 2015-12-16 2018-10-04 東洋紡株式会社 エアバッグ用コーティング基布及びその製造方法
WO2017104529A1 (ja) * 2015-12-16 2017-06-22 東洋紡株式会社 エアバッグ用コーティング基布及びその製造方法
US20200024798A1 (en) * 2015-12-16 2020-01-23 Toyobo Co., Ltd. Coated base fabric for airbag and method for manufacturing same
US11060239B2 (en) 2015-12-16 2021-07-13 Toyobo Co., Ltd. Coated base fabric for airbag and method for manufacturing same
CN108699763A (zh) * 2016-03-16 2018-10-23 东洋纺株式会社 气囊用涂层基底织物及其制造方法
JPWO2017159583A1 (ja) * 2016-03-16 2019-01-24 東洋紡株式会社 エアバッグ用コーティング基布およびその製造方法
EP3431653A4 (en) * 2016-03-16 2019-09-04 Toyobo Co., Ltd. COATED BASE FABRIC FOR INFLATABLE SAFETY CUSHION AND METHOD FOR MANUFACTURING THE SAME
US10940825B2 (en) 2016-03-16 2021-03-09 Toyobo Co., Ltd. Coated base fabric for airbag and method for manufacturing same
JP2022173039A (ja) * 2021-05-06 2022-11-17 ウォンプン コーポレーション 防炎性が強化され、デジタル印刷が可能な防炎素材、及びその製造方法
JP7300758B2 (ja) 2021-05-06 2023-06-30 ウォンプン コーポレーション 防炎性が強化され、デジタル印刷が可能な防炎素材、及びその製造方法

Also Published As

Publication number Publication date
US20170136982A1 (en) 2017-05-18
CN106029452B (zh) 2020-06-05
PL3127759T3 (pl) 2019-07-31
EP3127759A1 (en) 2017-02-08
BR112016022862B8 (pt) 2022-02-15
KR20160138066A (ko) 2016-12-02
CN106029452A (zh) 2016-10-12
EP3127759B1 (en) 2019-02-06
ES2721443T3 (es) 2019-07-31
JP6350650B2 (ja) 2018-07-04
KR102286173B1 (ko) 2021-08-06
EP3127759A4 (en) 2017-11-29
BR112016022862A2 (ja) 2018-05-15
BR112016022862B1 (pt) 2021-01-12
JPWO2015151358A1 (ja) 2017-04-13
US10889259B2 (en) 2021-01-12
PT3127759T (pt) 2019-05-14

Similar Documents

Publication Publication Date Title
JP6350650B2 (ja) エアバッグ用コート基布
JP5403150B2 (ja) エアバッグ用コーティング基布
JP5994792B2 (ja) エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法
JP3727310B2 (ja) シリコーンコーティング布帛およびエアバッグ
JP4756407B2 (ja) エアバッグ用コーティング基布及びその製造方法
EP3619078B1 (en) Low permeability and high strength woven fabric and methods of making the same
KR101072150B1 (ko) 에어백용 직물
US20210122323A1 (en) Coated Fabric for Airbag
JP5549172B2 (ja) エアバッグ用コート布
JP6973373B2 (ja) エアバッグ用コーティング基布およびその製造方法
EP3916139A1 (en) Coated base fabric for airbag and airbag including same
JP6919571B2 (ja) エアバッグ用コーティング基布及びその製造方法
JP2011080158A (ja) エアバッグ用コート布
JP2010013770A (ja) エアバッグ用織物およびエアバッグ
JP7357510B2 (ja) エアバッグ用耐熱補強布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511329

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014888155

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888155

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167026661

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022862

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022862

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160930