WO2015147108A1 - 作業車両の制御装置 - Google Patents

作業車両の制御装置 Download PDF

Info

Publication number
WO2015147108A1
WO2015147108A1 PCT/JP2015/059258 JP2015059258W WO2015147108A1 WO 2015147108 A1 WO2015147108 A1 WO 2015147108A1 JP 2015059258 W JP2015059258 W JP 2015059258W WO 2015147108 A1 WO2015147108 A1 WO 2015147108A1
Authority
WO
WIPO (PCT)
Prior art keywords
work vehicle
control device
headland turning
work
vehicle
Prior art date
Application number
PCT/JP2015/059258
Other languages
English (en)
French (fr)
Inventor
敏史 平松
中川 渉
青木 英明
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020207015841A priority Critical patent/KR20200067919A/ko
Priority to KR1020217009173A priority patent/KR20210037740A/ko
Priority to CN201580016515.3A priority patent/CN106132187B/zh
Priority to EP15769551.1A priority patent/EP3123850A4/en
Priority to KR1020167029848A priority patent/KR102121098B1/ko
Priority to US15/128,837 priority patent/US10198010B2/en
Publication of WO2015147108A1 publication Critical patent/WO2015147108A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0027Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling

Definitions

  • the present invention relates to a control device for a work vehicle, and in the case of performing work by an unmanned autonomous traveling work vehicle that autonomously travels and a manned accompanying traveling work vehicle that travels alongside the autonomous traveling work vehicle,
  • the present invention relates to a control technique for maintaining an autonomous traveling work vehicle and an accompanying traveling working vehicle in parallel traveling when turning at a turn.
  • the master vehicle is operated by an operator
  • the slave vehicle is an unmanned vehicle
  • the master vehicle and the slave vehicle are each equipped with a control device, and communication between the vehicles is possible by radio
  • the slave vehicle is operated in parallel to the master vehicle.
  • a program that can do this is provided.
  • the technique which adjusts so that the distance between a master vehicle and a slave vehicle may be provided with a distance measuring apparatus in a master vehicle and a slave vehicle may become well-known (for example, refer patent document 1).
  • the present invention has been made in view of the situation as described above.
  • an autonomous traveling work vehicle that autonomously travels reaches the end of the field, the headland turns, and after the turn ends, the heading stops and the manned accompanying traveling work vehicle becomes a pillow. Waiting for the turn to finish on the ground, and when the turn of the accompanying traveling work vehicle is finished, the autonomous traveling work vehicle tries to resume the work.
  • the present invention relates to control of a work vehicle in a work system for performing work by reciprocating a travel route set in an agricultural field by a manned or unmanned preceding work vehicle and a manned or unmanned subsequent work vehicle running together.
  • a preceding work vehicle and a subsequent work vehicle each comprising a control device, a communication device capable of communicating with each other, a means for detecting headland turning, a means for stopping running and work, and a running and work
  • a means for restarting the vehicle is provided, and travel and work of the succeeding work vehicle are restricted until the preceding work vehicle leaves the headland turning area.
  • the present invention relates to a control device for a work vehicle in a work system for performing a work by reciprocating a travel route set in an agricultural field by a manned or unmanned preceding work vehicle and a manned or unmanned subsequent work vehicle running together.
  • Each of the preceding work vehicle and the succeeding work vehicle includes a control device, a communication device capable of communicating with each other, a headland turning start detecting means, and a headland turning end detecting means.
  • the control device detects the start of headland turning, a headland turning start signal is transmitted to the succeeding work vehicle, and the control device of the succeeding work vehicle stops traveling / working.
  • the control device for the preceding work vehicle when the control device for the preceding work vehicle detects the end of the headland turning, the control device for the subsequent work vehicle resumes running and work. In the present invention, when the control device for the succeeding work vehicle detects the start of the headland turning, the control device for the preceding work vehicle stops traveling and working. In the present invention, when the control device for the succeeding work vehicle detects the end of the headland turning, the control device for the preceding work vehicle restarts running / working.
  • the present invention includes a position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating the steering device, an engine rotation control means, a speed change means, and a control device for controlling these.
  • the autonomous traveling work vehicle is autonomously traveled along the set traveling route stored in the control device and autonomously operated by a remote control device mounted on the accompanying traveling work vehicle that performs work while traveling along with the autonomous traveling work vehicle.
  • the present invention includes a position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating the steering device, an engine rotation control means, a speed change means, and a control device for controlling these.
  • the autonomous traveling work vehicle is autonomously traveled along the set traveling route stored in the control device and autonomously operated by a remote control device mounted on the accompanying traveling work vehicle that performs work while traveling along with the autonomous traveling work vehicle.
  • a control device for a work vehicle in a control system for a parallel work vehicle capable of operating a travel work vehicle wherein the control device for the autonomous travel work vehicle is capable of communicating with a remote operation device provided in the accompanying travel work vehicle,
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are steering sensors, and the control device sets the detected value of the steering sensor from straight ahead. When the angle exceeds the angle, it is determined that the headland turns have started, and when the head is returned to the straight angle and continues for the set time or longer, it is determined that the headland turns have ended.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are azimuth sensors, and the control device performs the headland turning when the azimuth changes more than a set value.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means is a camera mounted on an autonomous traveling work vehicle, and the camera photographs a subsequent accompanying work vehicle. Then, the control device performs image processing on the video of the camera and determines that the headland turning starts when the image of the accompanying work vehicle changes by a predetermined amount or more, and the image of the accompanying work vehicle approximates the image before the turning. It is determined that the headland turning has ended.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are means for detecting the elevation height of the work implement. It is determined that the headland turning starts when the height is raised above the set height, and the headland turning ends when the work implement is lowered below the set height.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are PTO on / off detecting means, and the control device detects that the PTO is turned off. When the headland turning is determined to be started and the entry of the PTO is detected, it is determined that the headland turning is finished.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are means for detecting the traveling speed
  • the control device has the traveling speed equal to or lower than the set speed. When the speed is lowered, it is determined that the headland turns start, and when the traveling speed is increased beyond the set speed after the decrease, it is determined that the headland turns have ended.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means is a shift position detecting means, and the control device decelerates the shift position to the turning speed.
  • the headland turning is determined to be started, and when the work speed is increased, the headland turning is determined to be finished.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are engine speed detecting means, and the control device is configured such that the engine speed is equal to or lower than the set speed. When the speed is lowered, it is determined that the headland turning starts, and when the engine speed is increased more than the set rotation, it is determined that the headland turning ends.
  • the means for detecting the headland turning, or the headland turning start detecting means and the headland turning end detecting means are position detecting means using a satellite positioning system, and the control device is set by the vehicle.
  • the control device is set by the vehicle.
  • the present invention includes a position calculating means for positioning the position of the aircraft using a satellite positioning system, a steering actuator for operating the steering device, an engine rotation control means, a speed change means, and a control device for controlling these.
  • the preceding work vehicle is provided with position calculating means for autonomously traveling along the set travel route stored in the control device and positioning the body using a satellite positioning system.
  • the vehicle travels while turning around and works, and when it reaches a passing position with the following work vehicle, it controls to stop the travel and work.
  • the control device for the preceding work vehicle controls to resume running and work when the succeeding work vehicle turns in a direction substantially orthogonal to the traveling direction of the preceding work vehicle by headland turning. It is.
  • the preceding work vehicle is equipped with the first satellite positioning system
  • the remote operation device brought into the succeeding work vehicle is equipped with the second satellite positioning system that is less accurate than the first satellite positioning system. Then, the first satellite positioning system and the second satellite positioning system are used to measure the current positions of the preceding work vehicle and the subsequent work vehicle, and display the positions of the preceding work vehicle and the subsequent work vehicle on the display device.
  • the unmanned preceding work vehicle reaches the end of the field, turns, automatically waits for the subsequent work vehicle, confirms the turn of the subsequent work vehicle, and resumes the work. There is no need to switch to an unmanned preceding work vehicle and manually turn the preceding work vehicle, and the work can be performed efficiently, and the two units do not work apart.
  • Control block diagram. The flowchart figure which shows headland turning control. The figure which shows the state before the agricultural field end of parallel running. The figure which shows the turning state in the agricultural field end of parallel running. The figure which shows the standby state in the agricultural field end of parallel operation. The figure which shows the state of a front-rear work vehicle and a succeeding work vehicle in front and back one line work. The figure which similarly shows the turning state in the field end.
  • the figure which shows the state of the headland turning start of a subsequent work vehicle The figure which shows the state of the headland turning end of a subsequent work vehicle.
  • the preceding work vehicle is an autonomous traveling work vehicle 1 that can automatically travel unattended
  • the subsequent working vehicle is a manned accompanying traveling work vehicle 100 that is steered by an operator accompanying the autonomous traveling work vehicle 1.
  • the traveling work vehicle 1 and the accompanying traveling work vehicle 100 are tractors, and the autonomous tilling working vehicle 1 and the accompanying traveling work vehicle 100 are equipped with rotary tillers 24 and 224 as work machines, respectively.
  • the work vehicle is not limited to a tractor, and may be a combine.
  • the work machine is not limited to a rotary tiller.
  • the steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device.
  • the steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20.
  • the steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected.
  • the detection value obtained by the steering sensor 20 is input to the control device 30.
  • the control device 30 includes a CPU (central processing unit), a storage device 30m such as a RAM and a ROM, an interface, and the like, and the storage device 30m stores a program, data, and the like for operating the autonomous traveling work vehicle 1.
  • a driver seat 5 is disposed behind the steering handle 4, and a mission case 6 is disposed below the driver seat 5.
  • Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles.
  • the power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven.
  • the transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed.
  • the speed change means 44 is connected to the control device 30.
  • the rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 as a traveling speed detecting means, and is input to the control device 30 as the traveling speed.
  • the traveling speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
  • the rear axle cases 8 and 8 are provided with a braking device 46, and the braking device 46 is connected to the control device 30 so that braking control is possible.
  • the transmission case 6 houses a PTO clutch and a PTO transmission.
  • the PTO clutch is turned on and off by a PTO on / off means 45.
  • the PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
  • a front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured.
  • the front wheels 9 and 9 are steered wheels, which can be turned by turning the steering handle 4, and the front wheels 9 and 9 are steered left and right by a steering actuator 40 comprising a power steering cylinder as a driving means of the steering device. It can be turned.
  • the steering actuator 40 is connected to the control device 30 and is controlled and driven by automatic traveling means.
  • the controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected.
  • the engine controller 60 detects the load from the set rotational speed and the actual rotational speed and controls it so as not to be overloaded, and transmits the state of the engine 3 to the remote operation device 112 described later so that it can be displayed on the display 113. Yes.
  • the fuel tank 15 disposed below the step is provided with a level sensor 29 for detecting the fuel level and is connected to the control device 30.
  • the display means 49 provided on the dashboard of the autonomous traveling work vehicle 1 has a fuel supply.
  • a fuel gauge for displaying the remaining amount is provided and connected to the control device 30. Then, information regarding the remaining amount of fuel is transmitted from the control device 30 to the remote operation device 112, and the remaining fuel amount and workable time are displayed on the display 113 of the remote operation device 112.
  • display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., a monitor indicating an abnormality, a set value, and the like are arranged.
  • a rotary tiller 24 is installed as a work implement on the rear side of the tractor body via the work implement mounting device 23 so as to be able to move up and down to perform the tilling work.
  • An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24.
  • the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
  • an angle sensor 21 is provided on the lift arm of the work implement mounting device 23 as means for detecting the lift position to detect the lift height of the work implement, and the angle sensor 21 is connected to the control device 30.
  • a mobile communication device 33 constituting a satellite positioning system is connected to the control device 30.
  • a mobile GPS antenna 34 and a data receiving antenna 38 are connected to the mobile communication device 33, and the mobile GPS antenna 34 and the data receiving antenna 38 are provided on the cabin 11.
  • the mobile communicator 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped.
  • GPS United States
  • high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
  • the autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30.
  • the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
  • the gyro sensor 31 detects an angular velocity of a tilt (pitch) in the longitudinal direction of the autonomous traveling work vehicle 1, an angular velocity of a tilt (roll) in the lateral direction of the aircraft, and an angular velocity of turning (yaw).
  • the gyro sensor 31 By integrating and calculating the three angular velocities, it is possible to obtain the tilt angle in the front-rear direction and the left-right direction and the turning angle of the body of the autonomous traveling work vehicle 1.
  • Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor.
  • the gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
  • the direction sensor 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1.
  • a specific example of the direction sensor 32 includes a magnetic direction sensor.
  • the direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
  • control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude of the autonomous traveling work vehicle 1 (orientation, forward / backward direction of the body, left / right direction of the body, turning direction) )
  • GPS global positioning system
  • GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user communication device that performs positioning.
  • Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used.
  • the RTK-GPS positioning method (first satellite positioning system) with high measurement accuracy is adopted, and the current position of the autonomous traveling work vehicle 1 is measured.
  • an operator travels on the accompanying traveling work vehicle 100 with a remote control device 112, and the remote control device 112 includes a communication device 333, a GPS antenna 334, and a data communication antenna 338, and relative positioning (D-GPS positioning, A second satellite positioning system), and an inexpensive D-GPS sensor can detect the relative position between the autonomous traveling work vehicle 1 and the remote control device 112 although the accuracy is lower than that of the RTK-GPS positioning method.
  • the remote control device 112 While operating the remote control device 112 so that it can be displayed on the display device 113 of the remote control device 112, the relative position between the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 is grasped, and too close or separated. It makes it easy to recognize the past.
  • RTK-GPS real-time kinematics-GPS positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
  • a mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data receiving antenna 38 are arranged in the autonomous traveling work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna. 39 is disposed at a predetermined position that does not interfere with the work in the field.
  • the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
  • the mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 for positioning. At the same time, signals from GPS satellites 37, 37... Are received by a fixed GPS antenna 36 serving as a reference station, measured by a fixed communication device 35, transmitted to the mobile communication device 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
  • the control device 30 in the autonomous traveling work vehicle 1 includes automatic traveling means for automatically traveling.
  • the automatic traveling means receives radio waves transmitted from the GPS satellites 37, 37.
  • the position information of the aircraft is obtained at time intervals, the displacement information and the orientation information of the aircraft are obtained from the gyro sensor 31 and the orientation sensor 32, and along the set route R preset by the aircraft based on the position information, the displacement information, and the orientation information.
  • the steering actuator 40, the speed change means 44, the lifting / lowering actuator 25, the PTO on / off means 45, the engine controller 60, etc. are controlled so as to automatically run and work automatically.
  • position information (map information) on the outer periphery of the field H which is the work range, is also set in advance by a known method and stored in the storage device 30m.
  • the D-GPS positioning between the remote control device 112 and the mobile station is performed at both points independently, the positioning error is obtained at the reference station, and the correction information is sent to the remote control device 112 via the data communication antenna 38.
  • the position of the remote control device 112 is obtained by correction.
  • the position of the remote operation device 112 and the position of the autonomous traveling work vehicle 1 can be displayed on the display device 113 or the display means 49, and the distance between them is calculated.
  • the relative position of 100 can be easily recognized.
  • the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control device 30 so as not to come into contact with the obstacle.
  • the obstacle sensor 41 is composed of a laser sensor or an ultrasonic sensor, and is arranged at the front, side, or rear of the aircraft and connected to the control device 30, and there are obstacles at the front, side, or rear of the aircraft Whether or not an obstacle approaches within a set distance is controlled to stop traveling.
  • the autonomous traveling work vehicle 1 is mounted with a camera 42 that photographs the front, rear, and work machine, and is connected to the control device 30.
  • the video imaged by the camera 42 is displayed on the display 113 of the remote control device 112 provided in the accompanying traveling work vehicle 100.
  • the display screen of the display 113 is small, it is displayed on another large display, the camera image is always or selectively displayed on another dedicated display, or the display means 49 provided in the autonomous traveling work vehicle 1 is used. It is also possible to display it.
  • a plurality of cameras 42 are arranged at the front, rear, or four corners of the aircraft. The configuration for photographing the surroundings is not limited.
  • the remote control device 112 sets the travel route R of the autonomous traveling work vehicle 1, remotely operates the autonomous traveling work vehicle 1, monitors the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement, It stores work data.
  • the accompanying traveling work vehicle 100 which is a manned traveling vehicle, is operated and operated by an operator, and the associated traveling working vehicle 100 is equipped with a remote control device 112 so that the autonomous traveling work vehicle 1 can be operated. Since the basic configuration of the accompanying traveling work vehicle 100 is substantially the same as that of the autonomous traveling work vehicle 1, detailed description thereof is omitted.
  • the remote operation device 112 can be attached to and detached from an operation unit such as a dashboard of the accompanying traveling work vehicle 100 and the autonomous traveling work vehicle 1.
  • the remote control device 112 can be operated while attached to the dashboard of the accompanying traveling work vehicle 100, or can be taken out of the accompanying traveling work vehicle 100 to be carried and operated, or attached to the dashboard of the autonomous traveling work vehicle 1.
  • the remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
  • the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with communication devices 110 and 111 for communication, respectively.
  • the communication device 111 is configured integrally with the remote operation device 112.
  • the communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi.
  • the remote operation device 112 is provided with a display 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and the CPU, storage device, battery, etc. as the communication device 111 and the control device 119 are accommodated in the housing. is doing.
  • the display 113 can display surrounding images taken by the camera 42, the state of the autonomous traveling work vehicle 1, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor.
  • the autonomous traveling work vehicle 1 travels along the set traveling route R, and the accompanying traveling working vehicle 100 travels obliquely behind (or may be on the side of) the traveling traveling vehicle 1. 100 performs work while monitoring the autonomous traveling work vehicle 1.
  • the autonomous traveling work vehicle 1 can be remotely operated by a remote operation device 112.
  • the emergency traveling work vehicle 1 can be operated to emergency stop, temporary stop, re-start, change of vehicle speed, change of engine speed, raising / lowering of work equipment, turning on / off of the PTO clutch, etc. Yes.
  • the operator can easily operate the autonomous traveling work vehicle by controlling the accelerator actuator, the shifting means 44, the PTO on / off means 45, the braking device 46, and the like from the remote control device 112 via the communication device 111, the communication device 110, and the control device 30. 1 can be remotely controlled.
  • the accompanying traveling work vehicle 100 is provided with a control device 130, and the control device 130 can communicate with the remote operation device 112 via the communication device 133.
  • the accompanying traveling work vehicle 100 is provided with a steering sensor 120 configured similarly to the steering sensor 20 of the autonomous traveling work vehicle, and is connected to the control device 130.
  • the steering operation of the steering handle of the accompanying traveling work vehicle 100 is detected by the steering sensor 120 and input to the control device 130.
  • a steering operation signal from the steering sensor 120 is transmitted to the remote operation device 112 via the communication device 133, and the control device 119 of the remote operation device 112 turns the headland from the steering operation signal.
  • the steering sensor 120 is composed of an angle sensor such as a rotary encoder, similar to the steering sensor 20 of the autonomous traveling work vehicle, and rotates the steering device such as a front wheel, a knuckle arm or a steering handle. It is configured to detect or detect the operation amount of the power steering, and is not limited as long as the steering direction can be recognized.
  • the end of the headland turning of the accompanying traveling work vehicle 100 may be determined by the control device 30 or the control device 130.
  • the accompanying traveling work vehicle 100 may be configured to include the direction sensor 132 (when the headland turning is determined by the detection value of the direction sensor as a means for detecting the headland turning).
  • the second embodiment The direction sensor 132 is connected to the control device 130.
  • the direction sensor 132 is connected to the control device 130.
  • An azimuth signal is transmitted from the control device 130 to the remote operation device 112 via the communication means, and the control device 119 of the remote operation device 112 determines whether the aircraft has turned the headland from the azimuth signal.
  • the direction sensor 132 can easily recognize that the direction of the machine body has been changed gradually and the direction has been changed by 180 degrees as headland turning.
  • the accompanying traveling work vehicle 100 may be photographed by the camera 42 provided in the autonomous traveling work vehicle 1, and it may be determined from the video whether the headland has turned (headland turning).
  • the case where the headland turning is determined based on the detection value of the camera as means for detecting the movement is a third embodiment).
  • the camera 42 may be provided at the upper part of the cabin 11 of the autonomous traveling work vehicle 1 so as to photograph obliquely rearward, or the camera 42 may be disposed at the center of the body and rotated to photograph the outer periphery.
  • the control device 30 determines whether the accompanying traveling work vehicle 100 exists diagonally backward by image processing. Then, after the autonomous traveling work vehicle 1 finishes the headland turning, when the image of the accompanying work vehicle 100 approximates the image before the turning, the control device 30 of the autonomous traveling work vehicle 1 causes the accompanying traveling work vehicle 100 to turn the headland. Judge that it is finished.
  • the working machine lifting / lowering detecting means for detecting the lifting / lowering of the working machine (rotary tiller 224) of the accompanying traveling work vehicle 100 is provided, and the working machine is lowered after the headland turning. It is also possible to determine that the headland turning has ended (the case where the headland turning is determined based on the detection value of the work implement raising / lowering detecting means as means for detecting the headland turning is referred to as a fourth embodiment).
  • the work implement lifting detection means of the accompanying traveling work vehicle 100 includes an elevation switch and an angle sensor 121 that detects the rotation of the work implement mounting device (lift arm or lower link).
  • a PTO on / off detecting means 124 for detecting the on / off of the PTO of the work implement is provided instead of raising and lowering the work implement, and the end of the headland turn is determined by the on / off signal. You may judge (the case where headland turning is judged by the detection value of a PTO on / off detection means as a means to detect headland turning is made into 5th Example).
  • a vehicle speed sensor 127 is provided as a traveling speed detecting means for detecting the traveling speed of the accompanying traveling work vehicle 100, and the end of the headland turning is determined from the increase or decrease of the vehicle speed or the vehicle speed.
  • Good the case where the headland turning is determined based on the detection value of the traveling speed detecting means as means for detecting the headland turning is the sixth embodiment. That is, when the accompanying traveling work vehicle 100 approaches the field edge, the traveling speed is reduced (or further stopped), the working machine is raised and turned at a low speed (set headland turning speed), and stopped when the headland turning ends. Then lower the work equipment and accelerate to work speed to resume work.
  • the end of the headland turning can be determined.
  • a speed change position detecting means 122 for detecting the speed change position of the accompanying traveling work vehicle 100 is provided in place of the travel speed detecting means, and the headland turning is ended by a change in the speed change position signal.
  • an engine speed detecting means 123 that detects the engine speed of the accompanying traveling work vehicle 100 instead of the work speed is provided, and the headland is increased or decreased by increasing or decreasing the speed.
  • the end of the turning may be determined (the case where the headland turning is determined based on the detection value of the engine speed detecting means as means for detecting the headland turning is the eighth embodiment).
  • the same control is performed for stopping the work and raising the work machine (both the autonomous traveling work vehicle 1 and the accompanying traveling working vehicle 100).
  • the work machine is lowered and straightened while working (S5), and as shown in FIG. (S6).
  • the traveling and work are stopped (S7).
  • This standby position may be a work start position in an adjacent stroke. In this case, after the turn is finished, the vehicle travels straight by a set distance L without working, and the work machine is lowered and stands by.
  • the travel stop is a control in which the control device 30 operates the speed change means 44 and the braking device 46 to reduce the travel speed to 0, and the lowering of the work implement is performed by the control device 30 operating the lift actuator 25.
  • This is control for reducing the cylinder 26, and the same control is performed for stopping traveling and lowering the work implement (both the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100).
  • the autonomous traveling work vehicle 1 waits for the end of turning of the accompanying traveling work vehicle 100 at the standby position where the traveling is stopped (S8). That is, the judgment of the turn of the accompanying traveling work vehicle 100 is detected by the steering sensor 120 provided in the accompanying traveling work vehicle 100 in the headland turning of the first embodiment. In this case, a signal from the steering sensor 120 is transmitted to the remote operation device 112 via the control device 130 and communication means, and it is determined whether the control device 119 of the remote operation device 112 has turned the headland. When the headland turning is completed, a work resumption signal is transmitted, and the work is resumed simultaneously with the start of traveling of the autonomous traveling work vehicle 1 (S10).
  • the turning end confirmation switch 114 is provided on the dashboard of the accompanying traveling work vehicle 100 or the remote control device 112, and when the operator turns on the turning end confirmation switch 114, a restart signal is transmitted to the autonomous traveling work vehicle 1.
  • the control device 30 of the traveling work vehicle 1 determines that the headland turning has ended, and resumes the work (S10).
  • the turning end confirmation switch 114 is an operation that can be arbitrarily operated by the operator and can be resumed. For example, even before the accompanying traveling work vehicle 100 finishes turning or during turning.
  • resuming work includes resuming traveling.
  • the travel start is control in which the control device 30 releases the braking of the braking device 46 and operates the speed change means 44 to increase the travel speed to the set work speed. Is a control for operating the PTO on / off means 45 to transmit power to the PTO shaft.
  • the same control is performed for the start of travel and the start / restart of work (both the autonomous travel work vehicle 1 and the accompanying travel work vehicle 100). Is done.
  • FIGS. 7 and 8 illustrate an embodiment in which the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 travel side by side (run side by side in the left-right direction), perform the same work, and work twice the width at a time.
  • the autonomous traveling work vehicle 1 turns first as described above. It is also possible to perform control so that the vehicle travels by the set distance L and waits for the accompanying traveling work vehicle 100 to finish the headland turning as shown in FIG. If you do this same work, skip one line and turn.
  • the position calculation means for positioning the position of the airframe using the satellite positioning system the steering actuator 40 for operating the steering device, the engine controller 60 as the engine rotation control means, the speed change means 44, and these
  • the autonomous traveling work vehicle 1 including the control device 30 for controlling the vehicle autonomously travels along the set traveling route R stored in the control device 30 and performs work while traveling along with the autonomous traveling work vehicle 1.
  • a control system for a parallel running work vehicle 1 that allows the autonomous running work vehicle 1 to be operated by a remote operation device 112 mounted on the accompanying running work vehicle 100, wherein the control device 30 of the autonomous running work vehicle 1 Can be communicated with the remote control device 112 provided in the vehicle, and when the headland turns and travels a set distance, the vehicle temporarily stops, and the accompanying traveling work vehicle 10
  • the restart signal of the turning end confirmation switch 114 provided in the vehicle is received via the remote operation device 112
  • the detected value of the steering sensor 120 provided on the accompanying traveling work vehicle 100 is autonomously traveled via the remote operation device 112.
  • control is performed so that the work is resumed.
  • the work can be continued while maintaining a predetermined distance without leaving the accompanying traveling work vehicle 100, and it is not necessary for the operator to change to the autonomous traveling work vehicle 1 every time the headland turns and to improve work efficiency.
  • the tractor that has been conventionally owned is hardly changed, and by adding the autonomous traveling work vehicle 1 and the remote control device 112, two can be operated by one person and work efficiency can be improved. it can.
  • whether or not the accompanying traveling work vehicle 100 has finished turning depends on whether the detected value of the azimuth sensor 132 provided on the accompanying traveling work vehicle 100 is determined by the autonomous traveling working vehicle 1 via the remote control device 112. It is input to the control device 30, and it is determined in the control device 30 whether the accompanying traveling work vehicle 100 has turned the headland. That is, when the traveling direction of the accompanying traveling work vehicle 100 is detected by the direction sensor 132 and it is determined that the accompanying traveling working vehicle 100 makes a U-turn at the end of the field and the headland turns are finished, the autonomous traveling working vehicle 1 And the work by the accompanying traveling work vehicle 100 is resumed.
  • the work can be continued while maintaining a predetermined distance without leaving the accompanying traveling work vehicle 100, and the operator changes to the autonomous traveling work vehicle 1 each time the headland turns. There is no need to swivel, and work efficiency can be improved.
  • the camera 42 is attached to the autonomous traveling work vehicle 1 so as to photograph the accompanying traveling work vehicle 100 that performs work by traveling along an oblique rear side of the autonomous traveling work vehicle 1.
  • the camera 42 is attached to the right rear and the left rear of the ceiling of the cabin 11 so that an oblique rear side is photographed. Then, when the autonomous traveling work vehicle 1 reaches the end of the field and makes a headland turn, the accompanying traveling work vehicle 100 is out of the imaging range. The headland turns.
  • the control device 30 of the autonomous traveling work vehicle 1 can communicate with a remote control device 112 provided in the accompanying traveling work vehicle 100, and temporarily stops when the headland turns and travels a set distance.
  • the detected value of the work implement lifting detection means (angle sensor 121) provided in the accompanying traveling work vehicle 100 is transmitted to the control device 30 of the autonomous traveling work vehicle 1 via the remote control device 112, and the accompanying traveling work vehicle turns.
  • the work implement lifting detection means uses a lift switch provided on the handle post or a lift arm angle sensor 121 used when working machine plowing depth control is performed, so that the number of parts can be increased without increasing the number of parts. It can be realized in addition.
  • the control apparatus 30 of the said autonomous traveling work vehicle 1 can communicate with the remote control apparatus 112 provided in the accompanying traveling work vehicle 100, and once stops when headland turns and it runs a set distance. Then, the detected value of the traveling speed detecting means provided in the accompanying traveling work vehicle 100 is transmitted to the control device 30 of the autonomous traveling working vehicle 1 via the remote control device 112, and the accompanying traveling working vehicle 100 turns at a reduced speed. Then, when the stop is recognized as the end of the headland turning, control is performed so as to resume the work.
  • the traveling speed detecting means can be realized by adding software without increasing the number of parts by using the vehicle speed sensor 27 used in traveling control.
  • the fifth, seventh, and eighth embodiments also detect the headland turning of the accompanying traveling work vehicle 100 in the same manner as described above, and recognize that it is the end of the headland turning, the autonomous traveling work vehicle It is possible to control to resume one work.
  • ⁇ Second embodiment> In the first embodiment, when the autonomous traveling work vehicle 1 is turning the headland, the traveling speed is reduced, and the subsequent accompanying traveling work vehicle 100 enters the headland at the working speed. If the inter-vehicle distance between 1 and the accompanying traveling work vehicle 100 is short, there is a risk of interfering with the work equipment at the rear end of the autonomous traveling working vehicle 1 that starts turning when the accompanying traveling work vehicle 100 enters the headland. Therefore, when the preceding work vehicle starts turning on the headland, the subsequent vehicle stops and waits, and when the preceding work vehicle finishes turning on the headland, the preceding work vehicle moves when turning. It is also possible to control to stop and wait.
  • the control device 130 of the accompanying traveling work vehicle 100 uses a travel stop unit 143, a transmission unit 144, a lift actuator 125, a PTO on / off unit 245, and a satellite positioning system.
  • a mobile GPS antenna 234 and a data receiving antenna 238 are connected to the mobile communication device 233.
  • the control device 130 can communicate with each other via the remote control device 112, the control device 30, and the communication devices 133, 110, and 111.
  • region U is set to the memory
  • the accompanying work vehicle 100 may be unmanned or manned.
  • the autonomous traveling work vehicle 1 is manned, the accompanying traveling work vehicle 100 is unmanned and monitors two vehicles by one person. It can be operated.
  • the preceding work vehicle will be described as an unmanned autonomous traveling work vehicle 1, and the subsequent work vehicle as a manned accompanying traveling work vehicle 100.
  • the headland turning control is performed via the communication devices 110 and 133.
  • a turning area input signal is transmitted to the control device 130 of the accompanying traveling work vehicle 100. Whether the headland turning area U is entered or exited can be easily recognized because the position of the aircraft can be measured using a satellite positioning system.
  • the controller 130 of the accompanying traveling work vehicle 100 Upon receiving this turning area entry signal, the controller 130 of the accompanying traveling work vehicle 100 operates the traveling stop means 143 to stop traveling and also stop the work (the working machine is not raised).
  • the control device 30 operates the PTO on / off means 45 to stop the operation, raises the rotary tiller 24, operates the transmission means 44, and decelerates. Turn the headland while driving (at the headland turning speed).
  • the control device 30 operates the PTO on / off means 45 to drive the work implement and move up and down.
  • the actuator 25 is actuated to lower the rotary tiller 24 and the speed change means 44 is actuated to return to the working traveling speed.
  • a headland turning end signal is transmitted to the control device 130 of the accompanying traveling work vehicle 100, and the control device 130 activates the PTO on / off means 245 to start work, and at the same time activates the speed change means 144 to travel. Start.
  • this headland turning start signal is transmitted to the control device 30 of the autonomous traveling work vehicle 1, and autonomous traveling similarly to the above.
  • the control device 130 activates the PTO on / off means 245 to stop the work of the accompanying travel work vehicle 100 and activates the lift actuator 125 to activate the rotary tiller 24.
  • the headland is turned up while the speed change means 144 is operated and the vehicle decelerates.
  • the headland turning end signal is sent to the control device 30 of the autonomous traveling working vehicle 1 as shown in FIG. Send.
  • the control device 30 of the autonomous traveling work vehicle 1 resumes traveling and working.
  • the work is performed up to the next field end, and the turning control is performed in the same manner as described above (the case where the headland turning is determined based on the satellite positioning information and the map information is the ninth embodiment).
  • the start and end of the headland turning may be determined by the detecting means of the first to eighth examples instead of determining by satellite positioning information and map information.
  • the detection of the headland turning start is detected by the steering sensors 20 and 120 as the headland turning start detecting means and the headland turning end detecting means, and is input to the control devices 30 and 130.
  • the start and end of headland turning of the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 are determined from the detection values of the direction sensors 20 and 120.
  • the start of headland turning of the accompanying traveling work vehicle 100 is determined to be the start of headland turning when the steering handle is rotated more than a set angle from the straight position, and after returning to the straight position, the headland is returned to the straight position. If the state continues for a predetermined time or more, it is determined that the headland turning has ended.
  • the start and end of the headland turn of the autonomous traveling work vehicle 1 are also determined in the same manner. However, the start / end of the headland turning of the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 may be determined by the control device 30, the control device 130, or the control device 119.
  • the start and end of headland turning is determined based on the detection values of the headland turning start detecting means and the direction sensors 32 and 132 serving as headland turning end detecting means.
  • the direction of the traveling direction is detected by the direction sensors 32 and 132 and input to the control devices 30 and 130.
  • the direction sensor 132 of the accompanying traveling work vehicle 100 changes the direction of the body from the straight direction by a predetermined angle or more, it determines that the headland turns start, and the traveling direction is the reverse direction (about 180 from the start direction of the headland turns).
  • the direction of travel is changed to the direction of the head has been changed)
  • the start and end of the headland turning of the autonomous traveling work vehicle 1 are similarly determined.
  • the start and end of headland turning is determined by images from the camera 42 serving as headland turning start detecting means and headland turning end detecting means provided in the autonomous traveling work vehicle 1.
  • the camera 42 is provided on the cabin 11 of the autonomous traveling work vehicle 1 to photograph the surroundings, and when the autonomous traveling work vehicle 1 starts turning on the headland, the image of the accompanying traveling work vehicle 100 traveling diagonally backward gradually Slip.
  • the amount of deviation is equal to or greater than the set value, it is determined that the headland turning of the autonomous traveling work vehicle 1 is started.
  • the autonomous traveling work vehicle 1 finishes the headland turning the accompanying traveling work vehicle 100 turns in the reverse direction.
  • the accompanying traveling work vehicle 100 starts turning on the headland
  • the amount of change in shape increases.
  • the shape approximates that before the turning starts.
  • the start and end of the headland turning based on the image is not limited to the shape change of the accompanying traveling work vehicle 100, and may be determined by the shape change of the image of the boundary between the farm field and the straw.
  • a camera may be mounted on the accompanying traveling work vehicle 100 to determine the start and end of headland turning, respectively.
  • the start and end of the headland turning is determined by the angle sensor 121 that detects the lifting and lowering of the work machine (the rotary tiller 24).
  • the angle sensor 121 detects the lifting and lowering of the work machine (the rotary tiller 24).
  • the detected values of the headland turning start detecting means and the headland turning end detecting means of the accompanying traveling work vehicle 100 are equal to or larger than the set angle, the work implement is lifted, and the headland turning starts.
  • the detected value of the angle sensor 121 is equal to or smaller than the set angle, the work implement is lowered and it is determined that the headland turning is finished.
  • the start and end of the headland turning may be detected by detecting the on / off of the PTO of the work implement and determining the start and end of the headland turning based on the on / off signal.
  • the headland turning start detecting means 124 of the accompanying traveling work vehicle 100 and the headland turning end detecting means 124 as the headland turning end detecting means are turned off, it is determined that the headland turning starts and the PTO on / off detecting means 124 is detected. It is determined that the headland turning is finished when the on-state is detected.
  • the determination of the start and end of headland turning may be determined from the increase or decrease of the traveling speed.
  • the accompanying traveling work vehicle 100 approaches the end of the field and the traveling speed is detected by the vehicle speed sensor 127 as the headland turning start detecting means and the headland turning end detecting means, and the speed is equal to or lower than the set speed (headland turning speed).
  • the headland turning starts the work implement is raised and turned at a low speed, the work implement is lowered and accelerated to the work speed, and when the traveling speed exceeds the set speed (work speed), the headland turn is finished.
  • the start and end of the headland turning may be determined based on the shift position. For example, when the shift position of the accompanying traveling work vehicle 100 is detected by the shift position detection means 122 as the headland turn start detection means and the headland turn end detection means, and the shift position is decelerated from the work shift position, When the headland turning is determined to be started and the work shift position (acceleration) is detected, it is determined that the headland turning is finished.
  • the start or end of headland turning may be determined based on the engine speed in the eighth embodiment. For example, when the detection values of the headland turning start detecting means and the headland turning end detecting means 123 of the accompanying traveling work vehicle 100 decrease from the work speed to the set speed or less, the headland turning starts. If it is determined that the rotation speed is increased, it is determined that the headland turns have ended. The determination of the start and end of headland turning of the accompanying traveling work vehicle 100 is similarly determined for the start and end of headland turning of the autonomous traveling work vehicle 1.
  • the autonomous traveling work vehicle 1 serving as a manned or unmanned preceding working vehicle and the accompanying traveling working vehicle 100 serving as a manned or unmanned subsequent working vehicle reciprocate along the traveling route R set in the field.
  • a working system for traveling and performing work, the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 include a control device 30/130, a communication device 110/133, a headland turning start detection means, The headland turning end detecting means and the remote control device 112 communicable with the control devices 30 and 130, and the traveling and working of the accompanying traveling work vehicle 100 until the autonomous traveling working vehicle 1 exits the headland turning region U. Is limited.
  • control device 30 of the autonomous traveling work vehicle 1 detects the start of the headland turning, it transmits a turning start signal to the accompanying traveling work vehicle 100, and the control device 130 of the accompanying traveling work vehicle 100 stops traveling / working. To make it happen. Therefore, when the autonomous traveling work vehicle 1 is turning at the headland at a reduced speed, there is no possibility that the following accompanying traveling work vehicle 100 catches up and comes into contact with the working machine or the like of the autonomous traveling work vehicle 1.
  • control device 30 of the preceding autonomous traveling work vehicle 1 detects the end of the headland turning
  • the control device 130 of the subsequent accompanying traveling work vehicle 100 resumes traveling / working.
  • the accompanying traveling work vehicle 100 does not enter the headland turning region U.
  • control device 130 of the subsequent accompanying traveling work vehicle 100 detects the start of headland turning, the control device 30 of the preceding autonomous traveling work vehicle 1 stops traveling / working. While the vehicle 100 is turning at a reduced speed, the autonomous traveling work vehicle 1 does not move far away.
  • control device 130 of the subsequent accompanying traveling work vehicle 100 detects the end of the headland turning, the control device 30 of the preceding autonomous traveling work vehicle 1 resumes traveling / working. It is possible to work while running in parallel, and can monitor unmanned vehicles from manned vehicles.
  • ⁇ Third embodiment> when the preceding work vehicle enters the headland turning area U, the work is stopped while traveling, and when the preceding work vehicle exits the headland turning area U, the work is started while traveling. Similarly to the preceding work vehicle, when the subsequent work vehicle enters the headland turning area U, the work is stopped while traveling, and when it exits the headland turning area U, the work is started while traveling. In such a work mode, there is not much problem in operations such as rough plowing and plowing, but seeds and seedlings do not enter the soil at the start and end of the seeding and transplanting operations and are not grown. Further, in the fertilization work, fertilizer is scattered at the work start part and the end part.
  • the autonomous traveling work vehicle 1 that is the preceding work vehicle and the accompanying traveling work vehicle 100 that is the succeeding work vehicle are each provided with the headland turning start detecting means and the headland turning end detecting means, respectively.
  • the traveling work vehicle 1 and the accompanying traveling work vehicle 100 enter the headland turning area U, the traveling is temporarily stopped, the work is stopped at the same time, the work machine is raised and the headland turning is performed.
  • the vehicle is temporarily stopped, and the work implement is lowered to control to resume the traveling operation and the operation at the same time.
  • the autonomous traveling work vehicle 1 enters the headland turning region U (FIG. 10)
  • the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 stop traveling and work
  • the autonomous traveling work vehicle 1 The elevating actuator 25 is actuated to raise the work implement and start traveling at the headland turning speed.
  • the headland turning of the autonomous traveling work vehicle 1 is completed (FIG. 11)
  • the accompanying traveling work vehicle 100 resumes traveling and working
  • the autonomous traveling work vehicle 1 stops traveling and working, and the accompanying traveling work vehicle 100 also stops traveling and working, After raising it, headland turning starts.
  • the accompanying traveling work vehicle 100 finishes the headland turning FIG. 13
  • the autonomous traveling working vehicle 1 starts traveling and working
  • the accompanying traveling working vehicle 100 stops traveling, lowers the work implement, and then descends. After confirming, start running and work.
  • Other steps are controlled in the same manner as in the second embodiment. In this way, the work implement is lowered onto the ground surface at the start of the work after the headland turns, so that the work can be reliably performed.
  • ⁇ Fourth embodiment> when the preceding work vehicle is unmanned and the succeeding work vehicle is manned, the succeeding work vehicle can work while confirming the traveling state and working state of the preceding work vehicle.
  • the preceding work vehicle starts running after the preceding work vehicle has finished the headland turn, it must be turned to the rear when checking the preceding work vehicle because it passes the preceding work vehicle in the middle. It will be difficult to confirm.
  • the autonomous traveling work vehicle 1 ends the headland turning and is accompanied.
  • the traveling work vehicle 100 starts traveling (FIG. 11). Then, as shown in FIG. 14, when the autonomous traveling work vehicle 1 and the accompanying traveling working vehicle 100 pass each other and are out of the field of view of the operator of the autonomous traveling working vehicle 1, that is, the autonomous traveling working vehicle 1 serving as a preceding working vehicle.
  • the control device 30 communicates with a remote control device 112 provided in the accompanying traveling work vehicle 100 that is a subsequent traveling working vehicle, and positions the autonomous traveling working vehicle 1 and the accompanying traveling working vehicle 100 using the satellite positioning system.
  • the passing position is when the autonomous traveling work vehicle 1 and the accompanying traveling work vehicle 100 are lined up in the opposite direction from side to side.
  • the autonomous traveling work vehicle 1 enters the field of view while the accompanying traveling work vehicle 100 is turning the headland, that is, the accompanying traveling working vehicle 100 is turned sideways (the headland turning)
  • the accompanying traveling work vehicle 100 is in a substantially orthogonal direction with respect to the traveling direction of the autonomous traveling work vehicle 1 in the region U
  • control is performed so that the traveling and work of the autonomous traveling work vehicle 1 are resumed.
  • the autonomous traveling work vehicle 1 is controlled to stop when the autonomous traveling work vehicle 1 is out of the operator's field of view, and to start traveling and work when the autonomous traveling work vehicle 1 enters the field of view.
  • work can be performed safely.
  • the detection of the passing between the autonomous traveling work vehicle 1 and the accompanying traveling working vehicle 100 is performed by photographing the side using the camera of the third embodiment or by detecting the position of the autonomous traveling work vehicle 1 by the satellite positioning of the ninth embodiment.
  • the position of the accompanying work vehicle 100 can be detected, or the position of the remote control device 112 can be measured to detect the passing position with the autonomous traveling work vehicle 1.
  • the detection that the autonomous traveling work vehicle 1 enters the field of view is the steering sensor 120 of the first embodiment, the direction sensor 132 of the second embodiment, Using the camera of the third embodiment and the satellite positioning of the ninth embodiment, a position that enters the field of view can be obtained.
  • the present invention can be used for a control device such as a construction machine or an agricultural work vehicle in which two work vehicles work together in a predetermined work area such as a farm field.

Abstract

 随伴走行作業車両の旋回が終了すると、自律走行作業車両が作業を再開できるように、自律走行作業車両1の制御装置30は、随伴走行作業車両100に設けた遠隔操作装置112と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、随伴走行作業車両100に設けた旋回終了確認スイッチ114の再開始信号が遠隔操作装置112を介して受信すると、あるいは、随伴走行作業車両100に設けた操向センサ120の検出値が遠隔操作装置112を介して自律走行作業車両1の制御装置30に送信され、随伴走行作業車両100が旋回して枕地旋回を終了したと認識すると、作業を再開する。

Description

作業車両の制御装置
 本発明は、作業車両の制御装置に関し、自律走行する無人の自律走行作業車両と、この自律走行作業車両に随伴して併走走行する有人の随伴走行作業車両とにより作業を行う場合において、枕地等で旋回するときに自律走行作業車両と随伴走行作業車両が併走走行を維持するための制御技術に関する。
 従来、マスター車両がオペレータにより運転操作され、スレーブ車両が無人車両として、マスター車両及びスレーブ車両はそれぞれ制御装置を備え、無線により車両間の連絡を可能とし、スレーブ車両はマスター車両に対して平行運転が可能なプログラムが備えられている。そして、マスター車両とスレーブ車両には距離測定装置を備え、マスター車両とスレーブ車両の間の距離が所定距離となるように調整される技術が公知となっている(例えば、特許文献1参照)。
特表2001-507843号公報
 前記技術において、マスター車両とスレーブ車両が圃場端に至ると、スレーブ車両は手動操作に切り替えて、オペレータがスレーブ車両を運転して次の作業路に移動するようにしていた。従って、圃場端に至る毎に両車両を停止させて、乗り換えて一台ずつ旋回させる必要があった。そのため作業効率が悪くなっていた。
 本発明は以上の如き状況に鑑みてなされたものであり、自律走行する自律走行作業車両が圃場端に至ると枕地旋回し、旋回終了後に一端停止して、有人の随伴走行作業車両が枕地で旋回を終了するのを待ち、随伴走行作業車両の旋回が終了すると、自律走行作業車両は作業を再開するようにしようとする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明は、有人または無人の先行作業車両と、有人または無人の後続作業車両が併走して圃場内を設定した走行経路を往復走行して作業を行うための作業システムにおける作業車両の制御装置であって、先行作業車両と後続作業車両には、それぞれ制御装置と、相互に通信可能な通信装置と、枕地旋回を検知する手段と、走行及び作業を停止する手段と、走行及び作業を再開する手段が設けられ、先行作業車両が枕地旋回領域を出るまで、後続作業車両の走行及び作業が制限されるものである。
 本発明は、有人または無人の先行作業車両と、有人または無人の後続作業車両が併走して圃場内を設定した走行経路を往復走行して作業を行うための作業システムにおける作業車両の制御装置であって、先行作業車両と後続作業車両には、それぞれ制御装置と、相互に通信可能な通信装置と、枕地旋回開始検出手段と、枕地旋回終了検出手段とを備え、前記先行作業車両の制御装置が枕地旋回の開始を検出すると、後続作業車両に枕地旋回開始信号を送信し、後続作業車両の制御装置は走行・作業を停止させるものである。
 本発明は、前記先行作業車両の制御装置が枕地旋回の終了を検出すると、後続作業車両の制御装置は走行・作業を再開させるものである。
 本発明は、前記後続作業車両の制御装置が、枕地旋回の開始を検出すると、前記先行作業車両の制御装置は走行・作業を停止させるものである。
 本発明は、前記後続作業車両の制御装置が、枕地旋回の終了を検出すると、前記先行作業車両の制御装置は走行・作業を再開させるものである。
 本発明は、衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業車両の制御システムにおける作業車両の制御装置であって、自律走行作業車両の制御装置は、随伴走行作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、随伴走行作業車両の遠隔操作装置からの再開始信号を受信すると、作業を再開するように制御するものである。
 本発明は、衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業車両の制御システムにおける作業車両の制御装置であって、前記自律走行作業車両の制御装置は、随伴走行作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、前記随伴走行作業車両に設けた枕地旋回を検知する手段により随伴走行作業車両が旋回して枕地旋回を終了したと検知すると、その信号は遠隔操作装置を介して自律走行作業車両の制御装置に送信されて作業を再開するように制御するものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、操向センサとされ、制御装置は、操向センサの検出値が直進から設定角度以上となると、枕地旋回の開始と判断し、直進角度に戻され設定時間以上続くと枕地旋回の終了と判断するものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、方位センサとされ、制御装置は、方位が設定値以上変化すると枕地旋回の開始と判断し、方位が枕地旋回開始前と前後逆となると枕地旋回の終了と判断する。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、自律走行作業車両に搭載したカメラとし、該カメラは後続の随伴作業車両を撮影し、制御装置は、前記カメラの映像を画像処理して、随伴作業車両の画像が設定量以上変化すると、枕地旋回の開始と判断し、随伴作業車両の映像が旋回前の映像に近似すると、枕地旋回の終了と判断するものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、作業機の昇降高さを検知する手段とされ、制御装置は、作業機が設定高さ以上上昇されると枕地旋回の開始と判断し、作業機が設定高さ以下に下降されると枕地旋回の終了と判断するものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、PTO入切検知手段とされ、制御装置は、PTOの切が検出されると、枕地旋回の開始と判断され、PTOの入りが検出されると枕地旋回の終了と判断されるものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、走行速度を検出する手段とされ、制御装置は、走行速度が設定速度以下に低下されると枕地旋回の開始と判断し、走行速度が前記低下後に設定速度以上に増加されると枕地旋回の終了と判断するものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、変速位置検出手段とされ、制御装置は、変速位置が旋回速度に減速されると枕地旋回の開始と判断され、作業速度に増速されると枕地旋回の終了と判断されるものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、エンジン回転数検出手段とされ、制御装置は、エンジン回転数が設定回転以下に低下されると枕地旋回の開始と判断され、エンジン回転数が設定回転以上に増加されると枕地旋回の終了と判断されるものである。
 本発明は、前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、衛星測位システムを利用した位置検出手段とされ、制御装置は、車両が設定した枕地旋回領域に入ると枕地旋回の開始と判断し、設定した枕地旋回領域から出ると枕地旋回の終了と判断するものである。
 本発明は、衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた先行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、衛星測位システムを利用して機体の位置を測位する位置算出手段を備えた後続作業車両が前記先行作業車両に随伴走行しながら作業を行う併走作業車両の制御システムにおける作業車両の制御装置であって、前記先行作業車両の制御装置は、後続作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して作業しながら走行し、後続作業車両とすれ違い位置に到達すると、走行と作業を一旦停止するように制御するものである。
 本発明は、前記先行作業車両の制御装置は、後続作業車両が枕地旋回で先行作業車両の進行方向に対して略直交方向の向きに旋回すると、走行と作業を再開するように制御するものである。
 前記作業車両の制御装置において、先行作業車両には第一衛星測位システムを搭載し、後続作業車両に持ち込む遠隔操作装置には前記第一衛星測位システムよりも精度の低い第二衛星測位システムを搭載し、第一衛星測位システムと第二衛星測位システムにより、先行作業車両と後続作業車両の現在位置を測位して、先行作業車両と後続作業車両の位置を表示装置に表示するものである。
 以上のような手段を用いることにより、無人の先行作業車両が圃場端に至り、旋回して、自動的に後続作業車両を待ち、後続作業車両の旋回を確認して作業を再開するので、オペレータは無人の先行作業車両に乗り換えて、手動で先行作業車両を旋回操作する必要がなく、効率よく作業ができ、二台がバラバラに作業することもない。
自律走行作業車両とGPS衛星と基準局を示す概略側面図。 制御ブロック図。 枕地旋回制御を示すフローチャート図。 併走作業の圃場端前の状態を示す図。 併走作業の圃場端での旋回状態を示す図。 併走作業の圃場端での待機状態を示す図。 先行作業車両と後続作業車両が前後一列作業の状態を示す図。 同じく圃場端での旋回状態を示す図。 他の実施形態の制御ブロック図。 先行作業車両の枕地旋回開始の状態を示す図。 先行作業車両の枕地旋回終了の状態を示す図。 後続作業車両の枕地旋回開始の状態を示す図。 後続作業車両の枕地旋回終了の状態を示す図。 自律走行作業車両と随伴走行作業車両がすれ違う状態を示す図。 随伴走行作業車両から自律走行作業車両が視界に入った状態を示す図。
 有人または無人の先行作業車両と、有人または無人の後続作業車両とが併走して、圃場内を設定した走行経路Rに沿って往復走行して作業を行うための併走作業車両の制御システムについて説明する。
 まず、先行作業車両を無人で自動走行可能な自律走行作業車両1とし、後続作業車両は、前記自律走行作業車両1に随伴してオペレータが操向操作する有人の随伴走行作業車両100とし、自律走行作業車両1と随伴走行作業車両100はトラクタとし、自律走行作業車両1及び随伴走行作業車両100には作業機としてロータリ耕耘装置24・224がそれぞれ装着されている実施例について説明する。但し、作業車両はトラクタに限定するものではなく、コンバイン等でもよく、また、作業機はロータリ耕耘装置に限定するものではなく、畝立て機や草刈機やレーキや播種機や施肥機やワゴン等であってもよい。
 図1、図2において、自律走行作業車両1となるトラクタの全体構成について説明する。ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操舵装置を介して前輪9・9の向きが回動される。自律走行作業車両1の操舵方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御装置30に入力される。制御装置30はCPU(中央演算処理装置)やRAMやROM等の記憶装置30mやインターフェース等を備え、記憶装置30mには自律走行作業車両1を動作させるためのプログラムやデータ等が記憶される。
 前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御装置30と接続されている。後輪10の回転数は走行速度検知手段として車速センサ27により検知され、走行速度として制御装置30に入力される。但し、走行速度の検知方法や車速センサ27の配置位置は限定するものではない。
 また、リアアクスルケース8・8には制動装置46が設けられ、制動装置46は制御装置30と接続され、制動制御可能としている。
 ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は制御装置30と接続され、PTO軸への動力の断接を制御可能としている。
 前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操舵輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操舵装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操舵回動可能となっている。操舵アクチュエータ40は制御装置30と接続され、自動走行手段により制御されて駆動される。
 制御装置30にはエンジン回転制御手段となるエンジンコントローラ60が接続され、エンジンコントローラ60にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ60では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御するとともに、後述する遠隔操作装置112にエンジン3の状態を送信してディスプレイ113で表示できるようにしている。
 また、ステップ下方に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて制御装置30と接続され、自律走行作業車両1のダッシュボードに設ける表示手段49には燃料の残量を表示する燃料計が設けられ制御装置30と接続されている。そして、制御装置30から遠隔操作装置112に燃料残量に関する情報が送信されて、遠隔操作装置112のディスプレイ113に燃料残量と作業可能時間が表示される。
 前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。
 また、トラクタ機体後方に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降自在に装設させて耕耘作業を行うように構成している。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御装置30と接続されている。また、作業機装着装置23の昇降アームには昇降位置を検知して作業機の昇降高さを検知する手段として角度センサ21が設けられ、角度センサ21は制御装置30と接続されている。
 制御装置30には衛星測位システムを構成する移動通信機33が接続されている。移動通信機33には移動GPSアンテナ34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。該移動通信機33には、位置算出手段を備えて緯度と経度を制御装置30に送信し、現在位置を把握できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。
 自律走行作業車両1は、機体の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位センサ32を具備し制御装置30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位センサ32を省くことができる。
 ジャイロセンサ31は自律走行作業車両1の機体前後方向の傾斜(ピッチ)の角速度、機体左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の機体の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御装置30に接続され、当該三つの角速度に係る情報を制御装置30に入力する。
 方位センサ32は自律走行作業車両1の向き(進行方向)を検出するものである。方位センサ32の具体例としては磁気方位センサ等が挙げられる。方位センサ32は制御装置30に接続され、機体の向きに係る情報を制御装置30に入力する。
 こうして制御装置30は、上記ジャイロセンサ31、方位センサ32から取得した信号を姿勢・方位演算手段により演算し、自律走行作業車両1の姿勢(向き、機体前後方向及び機体左右方向の傾斜、旋回方向)を求める。
 次に、自律走行作業車両1の位置情報をGPS(グローバル・ポジショニング・システム)を用いて取得する方法について説明する。
 GPSは、元来航空機・船舶等の航法支援用として開発されたシステムであって、上空約二万キロメートルを周回する二十四個のGPS衛星(六軌道面に四個ずつ配置)、GPS衛星の追跡と管制を行う管制局、測位を行うための利用者の通信機で構成される。
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式(第一衛星測位システム)を採用し、自律走行作業車両1の現在位置を測位する。また、随伴走行作業車両100にはオペレータが遠隔操作装置112を持って乗り込み、遠隔操作装置112には通信機333とGPSアンテナ334とデータ通信アンテナ338が備えられ、相対測位(D-GPS測位、第二衛星測位システム)を可能として、安価なD-GPSセンサで前記RTK-GPS測位方式より精度は落ちるが自律走行作業車両1と遠隔操作装置112との間の相対位置を検出できるようにし、遠隔操作装置112の表示装置113で表示できるようにして、遠隔操作装置112を操作しながら、自律走行作業車両1と随伴走行作業車両100との間の相対位置を把握して、近づき過ぎや離れ過ぎ等を容易に認識できるようにしている。
 RTK-GPS測位の方法について図1、図2より説明する。
 RTK-GPS(リアルタイムキネマティック-GPS)測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。
 本実施形態においては、自律走行作業車両1に移動局となる移動通信機33と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が圃場の作業の邪魔にならない所定位置に配設される。本実施形態のRTK-GPS(リアルタイムキネマティック-GPS)測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。
 自律走行作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は移動通信機33に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定通信機35で測位し移動通信機33に送信し、観測されたデータを解析して移動局の位置を決定する。こうして得られた位置情報は制御装置30に送信される。
 こうして、この自律走行作業車両1における制御装置30は自動走行させる自動走行手段を備えて、自動走行手段はGPS衛星37・37・・・から送信される電波を受信して移動通信機33において設定時間間隔で機体の位置情報を求め、ジャイロセンサ31及び方位センサ32から機体の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて機体が予め設定した設定経路Rに沿って走行するように、操舵アクチュエータ40、変速手段44、昇降アクチュエータ25、PTO入切手段45、エンジンコントローラ60等を制御して自動走行し自動で作業できるようにしている。なお、作業範囲となる圃場Hの外周の位置情報(地図情報)も周知の方法によって予め設定され、記憶装置30mに記憶されている。
 また、遠隔操作装置112と移動局との間でのD-GPS測位は、両点で単独測位が行われ、基準局において測位誤差を求め、その補正情報を遠隔操作装置112にデータ通信アンテナ38を介して送信し、補正して遠隔操作装置112の位置を求める。この遠隔操作装置112の位置と自律走行作業車両1の位置を表示装置113や表示手段49で表示できるようにし、相互の離間距離を演算するようにして、自律走行作業車両1と随伴走行作業車両100の相対位置を容易に認識できるようにしている。
 また、自律走行作業車両1には障害物センサ41が配置されて制御装置30と接続され、障害物に当接しないようにしている。例えば、障害物センサ41はレーザセンサや超音波センサで構成して機体の前部や側部や後部に配置して制御装置30と接続し、機体の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。
 また、自律走行作業車両1には前方や後方や作業機を撮影するカメラ42が搭載され制御装置30と接続されている。カメラ42で撮影された映像は随伴走行作業車両100に備えられた遠隔操作装置112のディスプレイ113に表示されるようにしている。ただし、ディスプレイ113の表示画面が小さい場合は大きい別のディスプレイで表示したり、カメラ映像は別の専用のディスプレイで常時または選択的に表示したり、自律走行作業車両1に設けた表示手段49で表示したりすることも可能である。また、前記カメラ42は一つのカメラ42を機体中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を機体の前部や後部または四隅に配置して機体周囲を撮影する構成であってもよく限定するものではない。
 遠隔操作装置112は前記自律走行作業車両1の走行経路Rを設定したり、自律走行作業車両1を遠隔操作したり、自律走行作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりするものである。
 有人走行車両となる随伴走行作業車両100はオペレータが乗車して運転操作するとともに、随伴走行作業車両100に遠隔操作装置112を搭載して自律走行作業車両1を操作可能としている。随伴走行作業車両100の基本構成は自律走行作業車両1と略同じ構成であるので詳細な説明は省略する。
 遠隔操作装置112は、随伴走行作業車両100及び自律走行作業車両1のダッシュボード等の操作部に着脱可能としている。遠隔操作装置112は随伴走行作業車両100のダッシュボードに取り付けたまま操作することも、随伴走行作業車両100の外に持ち出して携帯して操作することも、自律走行作業車両1のダッシュボードに取り付けて操作可能としている。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータで構成することができる。本実施形態ではタブレット型のコンピュータで構成している。
 さらに、遠隔操作装置112と自律走行作業車両1は無線で相互に通信可能に構成しており、自律走行作業車両1と遠隔操作装置112には通信するための通信装置110・111がそれぞれ設けられている。通信装置111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面としたディスプレイ113を筐体表面に設け、筐体内に通信装置111や制御装置119としてのCPUや記憶装置やバッテリ等を収納している。該ディスプレイ113には、前記カメラ42で撮影した周囲の画像や自律走行作業車両1の状態や作業の状態やGPSに関する情報や操作画面等を表示できるようにし、オペレータが監視できるようにしている。
 図4に示すように、自律走行作業車両1は設定走行経路Rに沿って走行し、その斜め後方(側方であってもよい)を随伴走行作業車両100が走行して、随伴走行作業車両100が自律走行作業車両1を監視しながら作業を行う。
 また、前記自律走行作業車両1は遠隔操作装置112により遠隔操作可能としている。例えば、遠隔操作装置112の操作により自律走行作業車両1の緊急停止や一時停止や再発進や車速の変更やエンジン回転数の変更や作業機の昇降やPTOクラッチの入り切り等を操作できるようにしている。つまり、遠隔操作装置112から通信装置111、通信装置110、制御装置30を介してアクセルアクチュエータや変速手段44やPTO入切手段45や制動装置46等を制御し作業者が容易に自律走行作業車両1を遠隔操作できるのである。
 また、随伴走行作業車両100には、制御装置130が備えられ、該制御装置130は遠隔操作装置112と通信装置133を介して通信可能としている。また、随伴走行作業車両100には前記自律走行作業車両の操向センサ20と同様に構成した操向センサ120が設けられ制御装置130と接続されている。こうして、随伴走行作業車両100のステアリングハンドルの操向操作が操向センサ120により検知され、制御装置130に入力される。制御装置130からは、通信装置133を介して遠隔操作装置112に操向センサ120からの操向操作信号が送信され、遠隔操作装置112の制御装置119は操向操作信号から機体が枕地旋回したか判断する(枕地旋回を検知する手段として操向センサの検出値で枕地旋回を判断する場合を第一実施例とする)。例えば、枕地旋回は、ステアリングハンドルを最大限回動して所定距離走行すると戻しながら180度機体の方向を変更するので、容易に枕地旋回と認識できる。なお、この操向センサ120は、前記自律走行作業車両の操向センサ20と同様に、ロータリエンコーダ等の角度センサで構成して、前輪やナックルアームやステアリングハンドル等の操向装置の回動を検知したり、パワーステアリングの作動量を検知するように構成しており、操舵方向が認識されるものであれば限定するものではない。ただし、随伴走行作業車両100の枕地旋回の終了の判断は制御装置30が行っても制御装置130が行ってもよい。
 また、枕地旋回を判断するために、随伴走行作業車両100に方位センサ132を備える構成であってもよい(枕地旋回を検知する手段として方位センサの検出値で枕地旋回を判断する場合を第二実施例とする)。方位センサ132は制御装置130と接続されている。こうして、随伴走行作業車両100が旋回して進行方向が変更されると、方位センサ132により進行方向の方位が検知され、制御装置130に入力される。制御装置130からは、通信手段を介して遠隔操作装置112に方位信号が送信され、遠隔操作装置112の制御装置119は方位信号から機体が枕地旋回したか判断する。例えば、機体の方向が徐々に変更されて180度向きが変更されたことが方位センサ132により容易に枕地旋回と認識できる。
 また、枕地旋回を判断するために、自律走行作業車両1に設けたカメラ42により、随伴走行作業車両100を撮影し、その映像から枕地旋回したかを判断してもよい(枕地旋回を検知する手段としてカメラの検出値で枕地旋回を判断する場合を第三実施例とする)。カメラ42は、自律走行作業車両1のキャビン11上部に設けて斜め後方を撮影するように配置し、または、カメラ42を機体中心に配置して回転させて外周を撮影するようにしてもよい。こうして、自律走行作業車両1が枕地旋回した後に、カメラ42により撮影した画像が制御装置30に入力され、制御装置30は斜め後方に随伴走行作業車両100が存在しているか画像処理して判断し、自律走行作業車両1が枕地旋回終了した後に、随伴作業車両100の映像が旋回前の映像に近似すると、自律走行作業車両1の制御装置30は随伴走行作業車両100の枕地旋回が終了したと判断する。
 また、枕地旋回を判断するために、随伴走行作業車両100の作業機(ロータリ耕耘装置224)の昇降を検知する作業機昇降検知手段を設けて、枕地旋回後に作業機を下げたことを枕地旋回終了と判断することも可能である(枕地旋回を検知する手段として作業機昇降検知手段の検出値で枕地旋回を判断する場合を第四実施例とする)。つまり、随伴走行作業車両100の作業機昇降検知手段としては、昇降スイッチや作業機装着装置(リフトアームやロアリンク)の回動を検知する角度センサ121等であり、随伴走行作業車両100が圃場端に至ると作業機を上昇させ、枕地旋回後に作業機を下げる。この作業機の上昇信号と下降信号を自律走行作業車両1の制御装置30に送信し、自律走行作業車両1が随伴走行作業車両100の作業機の下げにより枕地旋回が終了したと判断する。
 また、枕地旋回を判断するために、作業機の昇降の代わりに作業機のPTOの入切を検知するPTO入切検知手段124を設けて、その入切の信号により枕地旋回の終了を判断してもよい(枕地旋回を検知する手段としてPTO入切検知手段の検出値で枕地旋回を判断する場合を第五実施例とする)。
 また、枕地旋回を判断するために、随伴走行作業車両100の走行速度を検知する走行速度検知手段として車速センサ127を設けて、車速または車速の増減から枕地旋回の終了を判断してもよい(枕地旋回を検知する手段として走行速度検知手段の検出値で枕地旋回を判断する場合を第六実施例とする)。つまり、随伴走行作業車両100が圃場端に近づくと走行速度を落とし(または更に停止し)、作業機を上げて低速(設定した枕地旋回速度)で旋回し、枕地旋回が終了すると停止して作業機を下げて作業速度に加速して作業を再開する。こうして、枕地旋回の終了を判断できる。
 また、枕地旋回を判断するために、走行速度検知手段の代わりに随伴走行作業車両100の変速位置を検知する変速位置検出手段122を設けて、その変速位置信号の変化により枕地旋回の終了を判断してもよい(枕地旋回を検知する手段として変速位置検出手段の検出値で枕地旋回を判断する場合を第七実施例とする)。
 また、枕地旋回を判断するために、作業走行速度の代わりに随伴走行作業車両100のエンジン回転数を検知するエンジン回転数検知手段123を設けて、その回転数または回転数の増減により枕地旋回の終了を判断してもよい(枕地旋回を検知する手段としてエンジン回転数検知手段の検出値で枕地旋回を判断する場合を第八実施例とする)。
 次に、併走作業時の枕地旋回の制御について図3乃至図6より説明する。
 まず、図3、図4に示すように、自律走行作業車両1が圃場端に至ると(図10の枕地旋回領域Uに入ると)(S1)、作業を停止して、作業機を上昇させ(S2)、旋回動作に入る(S3)。なお、前記作業の停止は、制御装置30がPTO入切手段45を作動させてPTO軸への動力を絶つ制御であり、前記作業機の上昇は制御装置30が昇降アクチュエータ25を作動させて昇降シリンダ26を伸長させる制御であり、以下作業の停止と作業機の上昇は(自律走行作業車両1も随伴走行作業車両100も)同様の制御が行われる。
 図5に示すように、旋回が終了すると(S4)作業機を下降して作業しながら直進し(S5)、図6に示すように、設定距離Lだけ進行して待機位置に至ったか判断する(S6)。待機位置まで進行すると走行と作業を停止する(S7)。この待機位置は隣接行程の作業開始位置であってもよく、この場合は旋回終了後、作業することなく設定距離Lだけ直進して、作業機を下降して待機する。なお、前記走行停止は、制御装置30が変速手段44及び制動装置46を作動させて走行速度を0にする制御であり、作業機の下降は、制御装置30が昇降アクチュエータ25を作動させて昇降シリンダ26を縮小させる制御であり、以下走行停止と作業機の下降は(自律走行作業車両1も随伴走行作業車両100も)同様の制御が行われる。
 自律走行作業車両1は、走行を停止した前記待機位置において随伴走行作業車両100の旋回終了を待つ(S8)。つまり、随伴走行作業車両100の旋回終了の判断は、第一実施例の枕地旋回を随伴走行作業車両100に設けた操向センサ120により検知する。この場合、操向センサ120からの信号は制御装置130、通信手段を介して遠隔操作装置112に送信され、遠隔操作装置112の制御装置119が枕地旋回したか判断する。枕地旋回が終了すると作業再開信号が送信されて自律走行作業車両1の走行開始と同時に作業が再開される(S10)。枕地旋回していない場合は随伴走行作業車両100のオペレータが終了信号を発したか判断する(S9)。つまり、随伴走行作業車両100のダッシュボードまたは遠隔操作装置112に旋回終了確認スイッチ114が設けられ、オペレータが旋回終了確認スイッチ114をオンすることにより再開信号が自律走行作業車両1に送信されて自律走行作業車両1の制御装置30は枕地旋回が終了したと判断し、作業を再開する(S10)。なお、旋回終了確認スイッチ114は、オペレータが任意に操作して作業を再開できるようにするものであり、例えば、随伴走行作業車両100が旋回終了する前であっても、旋回途中であっても、旋回終了確認スイッチ114をオンすることで、強制的に旋回終了と判断させ、作業を再開させる。こうして自律走行作業車両1が待つ時間を省き作業時間の短縮化を図ることができる。なお、作業再開は走行再開も含むものである。なお、走行開始は、制御装置30が制動装置46の制動を解除して変速手段44を作動させて走行速度を設定作業速度まで増速させる制御であり、作業の開始または再開は、制御装置30がPTO入切手段45を作動させてPTO軸への動力を伝達する制御であり、以下、走行開始と作業の開始・再開は(自律走行作業車両1も随伴走行作業車両100も)同様の制御が行われる。
 また、図4乃至図6は自律走行作業車両1と随伴走行作業車両100が併走し(左右方向に並んで走行し)、同じ作業を行い一度に二倍の幅を作業する実施形態について説明したが、図7、図8に示すように、自律走行作業車両1と随伴走行作業車両100が前後に並んで別々の作業を行う場合でも前記同様に、自律走行作業車両1が先に旋回して、設定距離Lだけ進行して待機し、図8に示すように、随伴走行作業車両100が枕地旋回を終了するのを待つように制御することも可能である。この同じ作業をする場合、1条飛ばして旋回する。
 以上のように、衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータ40と、エンジン回転制御手段となるエンジンコントローラ60と、変速手段44と、これらを制御する制御装置30とを備えた自律走行作業車両1を、前記制御装置30に記憶させた設定走行経路Rに沿って自律走行させるとともに、該自律走行作業車両1に随伴走行しながら作業を行う随伴走行作業車両100に搭載する遠隔操作装置112により自律走行作業車両1を操作可能とする併走作業車両の制御システムであって、自律走行作業車両1の制御装置30は、随伴走行作業車両100に設けた遠隔操作装置112と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、随伴走行作業車両100に設けた旋回終了確認スイッチ114の再開始信号が遠隔操作装置112を介して受信すると、あるいは、随伴走行作業車両100に設けた操向センサ120の検出値が遠隔操作装置112を介して自律走行作業車両1の制御装置30に送信され、随伴走行作業車両100が旋回して枕地旋回を終了したと認識すると、作業を再開するように制御するので、自律走行作業車両1が旋回した後に、随伴走行作業車両100と離れることなく、所定の距離を維持したまま作業が続行でき、枕地旋回の度にオペレータが自律走行作業車両1に乗り換えて旋回操作する必要がなく、作業効率を向上できる。また、従来から所有するするトラクタは殆ど変更することなく、自律走行作業車両1及び遠隔操作装置112を追加するだけで、一人で二台を操作することができ、作業の効率を向上することができる。
 また、第二実施例として、随伴走行作業車両100が旋回を終了したかどうかは、随伴走行作業車両100に設けた方位センサ132の検出値が遠隔操作装置112を介して自律走行作業車両1の制御装置30に入力され、制御装置30において随伴走行作業車両100が枕地旋回したか判断される。つまり、方位センサ132により随伴走行作業車両100の進行方向を検知して、その方位から随伴走行作業車両100が圃場端でUターンして枕地旋回が終了したと判断すると、自律走行作業車両1及び随伴走行作業車両100による作業が再開される。こうして、自律走行作業車両1が旋回した後に、随伴走行作業車両100と離れることなく、所定の距離を維持したまま作業が続行でき、枕地旋回の度にオペレータが自律走行作業車両1に乗り換えて旋回操作する必要がなく、作業効率を向上できる。
 また、第三実施例として、自律走行作業車両1の斜め後方を随伴走行して作業を行う随伴走行作業車両100を撮影するようにカメラ42を自律走行作業車両1に取り付ける。例えば、キャビン11の天井の右後及び左後にカメラ42を取り付けて斜め後方を撮影するようにする。そして、自律走行作業車両1が圃場端に至り枕地旋回しているときは随伴走行作業車両100は撮影範囲外となる。枕地旋回状態とする。枕地旋回が終了し設定距離走行した後に停止した状態で、カメラ42で撮影した画像に随伴走行作業車両100が所定の範囲内の所定の位置に写っているか画像処理して判断する。つまり、随伴走行作業車両100が所定の撮影範囲内に写っていると、枕地旋回が終了したと判断でき、作業を再開することができる。こうして、自律走行作業車両1が旋回した後に、随伴走行作業車両100と離れることなく、所定の距離を維持したまま作業が続行でき、枕地旋回の度にオペレータが自律走行作業車両1に乗り換えて旋回操作する必要がなく、作業効率を向上できる。
 また、第四実施例として、前記自律走行作業車両1の制御装置30は、随伴走行作業車両100に設けた遠隔操作装置112と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、前記随伴走行作業車両100に設けた作業機昇降検知手段(角度センサ121)の検出値が遠隔操作装置112を介して自律走行作業車両1の制御装置30に送信され、随伴走行作業車両が旋回する前に作業機を上昇し、枕地旋回を終了して作業機を下げたときに枕地旋回の終了と認識すると、作業を再開するように制御する。こうして、自律走行作業車両1が旋回した後に、随伴走行作業車両100と離れることなく、所定の距離を維持したまま作業が続行でき、枕地旋回の度にオペレータが自律走行作業車両1に乗り換えて旋回操作する必要がなく、作業効率を向上できる。また、作業機昇降検知手段はハンドルポストに設けた昇降スイッチ、または、作業機耕深制御を行うときに利用するリフトアームの角度センサ121を利用することで、部品点数を増加することなく、ソフトの追加で実現することができる。
 また、前記第六実施例では、前記自律走行作業車両1の制御装置30は、随伴走行作業車両100に設けた遠隔操作装置112と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、前記随伴走行作業車両100に設けた走行速度検知手段の検出値が遠隔操作装置112を介して自律走行作業車両1の制御装置30に送信され、随伴走行作業車両100が速度を落として旋回し停止したときを枕地旋回の終了として認識すると、作業を再開するように制御する。こうして、自律走行作業車両1が旋回した後に、随伴走行作業車両100と離れることなく、所定の距離を維持したまま作業が続行でき、枕地旋回の度にオペレータが自律走行作業車両1に乗り換えて旋回操作する必要がなく、作業効率を向上できる。また、走行速度検知手段は走行制御で利用する車速センサ27を利用することで、部品点数を増加することなく、ソフトの追加で実現することができる。なお、詳述していないが、第五、第七、第八実施例も前記同様に随伴走行作業車両100の枕地旋回を検知して、枕地旋回の終了として認識すると、自律走行作業車両1の作業を再開するように制御することができる。
<第二実施形態>
 前記第一実施形態では自律走行作業車両1が枕地旋回を行っているときは、走行速度が低下され、後続の随伴走行作業車両100は作業速度のまま枕地に入るため、自律走行作業車両1と随伴走行作業車両100との車間距離が短いと、随伴走行作業車両100が枕地に入るときに旋回始めの自律走行作業車両1の後端の作業機と干渉するおそれがある。そこで、先行作業車両が枕地旋回開始する時は、後続車両が走行を停止して待ち、先行作業車両が枕地旋回を終了した時に後続作業車両を走行させて旋回するときに先行作業車両を停止させて待つように制御することも可能である。
 具体的に説明すると、図9に示すように、随伴走行作業車両100の制御装置130には、走行停止手段143と変速手段144と昇降アクチュエータ125とPTO入切手段245と衛星測位システムを利用するためのGPS用の移動通信機233と接続し、移動通信機233には移動GPSアンテナ234とデータ受信アンテナ238が接続される。制御装置130は遠隔操作装置112と制御装置30と通信装置133・110・111を介して相互に通信可能としている。そして、図10に示すように、制御装置30の記憶装置30mには、設定走行経路Rの圃場端側に枕地旋回領域Uが設定されている。なお、自律走行作業車両1が無人のとき随伴作業車両100は無人でも有人であってもよく、自律走行作業車両1が有人のとき随伴走行作業車両100は無人とし、一人で2台を監視・操作できるようにしている。第二実施形態では、先行作業車両を無人の自律走行作業車両1、後続作業車両を有人の随伴走行作業車両100として説明する。
 このような構成において、枕地旋回制御は、図10に示すように、先行作業車両となる自律走行作業車両1が枕地旋回領域Uに入ると、通信装置110・133を介して後続作業車両となる随伴走行作業車両100の制御装置130に旋回領域入信号が送信される。この枕地旋回領域Uに入るか出るかは、衛星測位システムを利用して機体の位置を測位できるため容易に認識できる。
 この旋回領域入信号を受信すると、随伴走行作業車両100の制御装置130は走行停止手段143を作動させて、走行を停止するとともに、作業も停止する(作業機は上昇させない)。
 自律走行作業車両1は枕地旋回領域Uに入ると、制御装置30はPTO入切手段45を作動させて作業を停止し、ロータリ耕耘装置24を上昇させ、変速手段44を作動させて減速して(枕地旋回速度で)走行しながら枕地旋回を行う。
 図11に示すように、自律走行作業車両1が枕地旋回を終了すると(枕地旋回領域Uを出ると)、制御装置30はPTO入切手段45を作動させて作業機を駆動し、昇降アクチュエータ25を作動させてロータリ耕耘装置24を下降させて、変速手段44を作動させて作業走行速度に戻して走行する。そして同時に、枕地旋回終了信号を随伴走行作業車両100の制御装置130に送信し、制御装置130はPTO入切手段245を作動させて作業を開始すると同時に、変速手段144を作動させて走行を開始する。
 そして、図12に示すように、随伴走行作業車両100が枕地旋回領域Uに入ると、この枕地旋回開始信号が自律走行作業車両1の制御装置30に送信されて、前記同様に自律走行作業車両1の走行及び作業が停止されると同時に、制御装置130はPTO入切手段245を作動させて随伴走行作業車両100の作業を停止し、昇降アクチュエータ125を作動させてロータリ耕耘装置24を上昇させ、変速手段144を作動させて減速走行しながら枕地旋回を行う。
 随伴走行作業車両100が枕地旋回を終了すると、図13に示すように、作業速度に戻して走行して作業を再開すると同時に、枕地旋回終了信号を自律走行作業車両1の制御装置30に送信する。この信号を受けた自律走行作業車両1の制御装置30は走行及び作業を再開させる。こうして、次の圃場端まで作業し、前記同様に旋回制御が行われる(この衛星測位情報と地図情報で枕地旋回を判断する場合を第九実施例とする)。
 前記枕地旋回の開始と終了は、衛星測位情報と地図情報で判断する代わりに前記第一実施例から第八例の検出手段で判断してもよい。
 つまり、第一実施例では、枕地旋回開始の検知は、枕地旋回開始検出手段と枕地旋回終了検出手段として操向センサ20・120により検知し、制御装置30・130に入力され、操向センサ20・120の検出値から自律走行作業車両1と随伴走行作業車両100の枕地旋回の開始や終了を判断する。例えば、随伴走行作業車両100の枕地旋回の開始は、ステアリングハンドルが直進位置から設定角度以上回転されると枕地旋回の開始と判断し、設定角度以上回転された後に直進位置に戻され直進状態が所定時間以上続くと枕地旋回が終了したと判断するのである。なお、自律走行作業車両1の枕地旋回の開始と終了も同様に判断される。ただし、自律走行作業車両1、随伴走行作業車両100の枕地旋回の開始・終了の判断は制御装置30が行っても制御装置130が行っても制御装置119が行ってもよい。
 また、枕地旋回の開始や終了の判断は、第二実施例では枕地旋回開始検出手段と枕地旋回終了検出手段としての方位センサ32・132の検出値により行う。自律走行作業車両1または随伴走行作業車両100が旋回して進行方向が変更されると、方位センサ32・132により進行方向の方位が検知され、制御装置30・130に入力される。例えば、随伴走行作業車両100の方位センサ132が機体の方向が直進方向から設定角度以上変更されると枕地旋回の開始と判断し、進行方向が枕地旋回の開始方向から逆方向(約180度向きが変更されたこと)に進行方向が変更されると枕地旋回の終了と判断する。また、自律走行作業車両1の枕地旋回の開始と終了も同様に判断される。
 また、枕地旋回の開始や終了の判断は、第三実施例では、自律走行作業車両1に設けた枕地旋回開始検出手段と枕地旋回終了検出手段としてのカメラ42からの映像により行う。例えば、自律走行作業車両1のキャビン11上部にカメラ42を設けて周囲を撮影し、自律走行作業車両1が枕地旋回を開始すると、斜め後方を走行する随伴走行作業車両100の画像は徐々にズレる。このズレ量が設定値以上になると、自律走行作業車両1の枕地旋回開始と判断する。自律走行作業車両1が枕地旋回を終了すると、随伴走行作業車両100は前後逆向きとなる。随伴走行作業車両100が枕地旋回を開始すると、形状の変化量が大きくなる。随伴走行作業車両100が枕地旋回を終了すると、旋回開始前と近似した形状となる。但し、画像による枕地旋回の開始と終了の判断は、随伴走行作業車両100の形状変化に限定せず、圃場と畦の境界の画像の形状変化で判断してもよい。また、随伴走行作業車両100にカメラを搭載して、それぞれ枕地旋回の開始と終了を判断してもよい。
 また、枕地旋回の開始や終了の判断は、第四実施例では、作業機(ロータリ耕耘装置24)の昇降を検知する角度センサ121により判断する。例えば、随伴走行作業車両100の枕地旋回開始検出手段と枕地旋回終了検出手段としての角度センサ121の検出値が設定角度以上となると、作業機が上昇されたこととなり、枕地旋回の開始と判断する。角度センサ121の検出値が設定角度以下となると、作業機が下降されたこととなり、枕地旋回の終了と判断する。なお、角度センサ121の検出値で枕地旋回の開始や終了を判断する代わりに上昇スイッチや下降スイッチの操作で判断してもよい。
 また、枕地旋回の開始や終了の判断は、第五実施例では、作業機のPTOの入切を検知して、その入切の信号により枕地旋回の開始と終了を判断してもよい。例えば、随伴走行作業車両100の枕地旋回開始検出手段と枕地旋回終了検出手段としてのPTO入切検知手段124のオフを検知すると、枕地旋回の開始と判断し、PTO入切検知手段124のオンを検知すると枕地旋回の終了と判断する。
 また、枕地旋回の開始や終了の判断は、第六実施例では、走行速度の増減から判断してもよい。例えば、随伴走行作業車両100が圃場端に近づき走行速度を枕地旋回開始検出手段と枕地旋回終了検出手段としての車速センサ127で検知して、その速度が設定速度以下(枕地旋回速度)となると、枕地旋回の開始と判断し、作業機を上げて低速で旋回し、作業機を下げて作業速度に加速して走行速度が設定速度以上(作業速度)となると枕地旋回の終了と判断する。
 また、枕地旋回の開始や終了の判断は、第七実施例では、変速位置で判断してもよい。例えば、随伴走行作業車両100の変速位置を枕地旋回開始検出手段と枕地旋回終了検出手段としての変速位置検出手段122より検出して、その変速位置が作業変速位置から減速した位置になると、枕地旋回の開始と判断し、作業変速位置(増速)を検知すると枕地旋回の終了と判断する。
 また、枕地旋回の開始や終了の判断は、第八実施例では、エンジン回転数により判断してもよい。例えば、随伴走行作業車両100の枕地旋回開始検出手段と枕地旋回終了検出手段としてのエンジン回転数検知手段123の検出値が作業回転数から設定回転数以下に減少すると、枕地旋回の開始と判断し、作業回転数に増加されると、枕地旋回の終了と判断する。
 前記随伴走行作業車両100の枕地旋回の開始や終了の判断は、自律走行作業車両1の枕地旋回の開始と終了も同様に判断される。
 以上のように、有人または無人の先行作業車両となる自律走行作業車両1と、有人または無人の後続作業車両となる随伴走行作業車両100が、併走して圃場内を設定した走行経路Rを往復走行して作業を行うための作業システムであって、自律走行作業車両1と随伴走行作業車両100には、それぞれ制御装置30・130と、通信装置110・133と、枕地旋回開始検出手段と、枕地旋回終了検出手段と、前記制御装置30・130と通信可能な遠隔操作装置112を備え、自律走行作業車両1が枕地旋回領域Uを出るまで、随伴走行作業車両100の走行及び作業が制限される。つまり、前記自律走行作業車両1の制御装置30が枕地旋回の開始を検出すると、随伴走行作業車両100に旋回開始信号を送信し、随伴走行作業車両100の制御装置130は走行・作業を停止させるのである。よって、自律走行作業車両1が速度を落として枕地旋回をしているときに、後続の随伴走行作業車両100が追い付いて自律走行作業車両1の作業機等と接触するおそれがないのである。
 また、前記先行の自律走行作業車両1の制御装置30が枕地旋回の終了を検出すると、後続の随伴走行作業車両100の制御装置130は走行・作業を再開させるので、自律走行作業車両1が旋回中は随伴走行作業車両100が枕地旋回領域Uに入ることがない。
 また、前記後続の随伴走行作業車両100の制御装置130が、枕地旋回の開始を検出すると、前記先行の自律走行作業車両1の制御装置30は走行・作業を停止させるので、随伴走行作業車両100が速度を落として旋回している間に自律走行作業車両1が遠く離れることがない。
 また、前記後続の随伴走行作業車両100の制御装置130が、枕地旋回の終了を検出すると、前記先行の自律走行作業車両1の制御装置30は走行・作業を再開させるので、一定の距離を保って併走して作業ができ、有人車両から無人車両を監視できる。
<第三実施形態>
 前記第二実施形態では、先行作業車両が枕地旋回領域Uに入るとき、走行しながら作業を中止し、枕地旋回領域Uを出る時も走行しながら作業を開始している。また、後続作業車両も先行作業車両と同様に、枕地旋回領域Uに入るとき、走行しながら作業を中止し、枕地旋回領域Uを出る時も走行しながら作業を開始していた。このような作業形態では、荒耕しや代掻き等の作業ではあまり問題とならないが、播種作業や移植作業では種子や苗が作業開始部分や終了部分で土中に入らず未成育となる。また、施肥作業では作業開始部分や終了部分で肥料を撒き散らすことになる。
 そこで、第三実施形態では、先行作業車両となる自律走行作業車両1と後続作業車両となる随伴走行作業車両100にはそれぞれ枕地旋回開始検出手段と枕地旋回終了検出手段を備えて、自律走行作業車両1及び随伴走行作業車両100が、枕地旋回領域Uに入る時は走行を一旦停止して同時に作業を中止して作業機を上昇し枕地旋回を行い、枕地旋回領域Uから出るときには走行を一旦停止して、作業機を下降して走行作業と作業を同時に再開するように制御するのである。
 具体的には、前記自律走行作業車両1が枕地旋回領域Uに入ると(図10)、自律走行作業車両1及び随伴走行作業車両100は走行及び作業を停止し、自律走行作業車両1は昇降アクチュエータ25を作動させて作業機を上昇し、走行を枕地旋回速度で開始する。自律走行作業車両1の枕地旋回が終了すると(図11)、随伴走行作業車両100は走行及び作業を再開し、自律走行作業車両1は走行を停止し、作業機を下降させて下降したことを確認した後、走行と同時に作業を開始する。なお、作業機の下降の確認は、作業機装着装置23に設けた角度センサ21の検出値により確認できる。
 そして、随伴走行作業車両100が枕地旋回領域Uに入ると(図12)、自律走行作業車両1は走行及び作業を停止し、随伴走行作業車両100も走行及び作業を停止し、作業機を上昇させた後、枕地旋回走行を開始する。随伴走行作業車両100が枕地旋回を終了すると(図13)、自律走行作業車両1は走行及び作業を開始し、随伴走行作業車両100は走行を停止し、作業機を下降させた後、下降を確認した後に、走行及び作業を開始する。その他の行程は前記第二実施形態と同様に制御される。こうして、枕地旋回後の作業開始時に作業機が地表上に下降されて確実に作業ができるようになる。
<第四実施形態>
 また、先行作業車両が無人で後続作業車両が有人の場合、後続作業車両は先行作業車両の走行状態や作業状態を確認しながら作業ができる。ところが、図11において、先行作業車両が枕地旋回を終了した後に後続作業車両が走行を開始すると、途中で先行作業車両とすれ違ってしまい先行作業車両を確認するときは後方に向きを変えなければならないため、確認が困難となる。
 そこで、第四実施形態では、自律走行作業車両1が枕地旋回を開始して随伴走行作業車両100が走行及び作業を停止した状態から、自律走行作業車両1が枕地旋回を終了して随伴走行作業車両100が走行を開始する(図11)。そして、図14に示すように、自律走行作業車両1と随伴走行作業車両100がすれ違って、自律走行作業車両1のオペレータの視界から外れる時、つまり、先行作業車両となる自律走行作業車両1の制御装置30は、後続走行作業車両となる随伴走行作業車両100に設けた遠隔操作装置112と通信して、自律走行作業車両1と随伴走行作業車両100の位置を衛星測位システムを利用して測位して算出し、随伴走行作業車両100とすれ違い位置に到達すると、走行と作業を一旦停止するように制御する。すれ違い位置は左右方向に自律走行作業車両1と随伴走行作業車両100が左右に逆方向で並んだ時である。
 そして、図15に示すように、随伴走行作業車両100が枕地旋回途中で自律走行作業車両1が視界に入ると、つまり、随伴走行作業車両100が作業進行方向に対して横向き(枕地旋回領域Uで自律走行作業車両1の進行方向に対して随伴走行作業車両100が略直交方向の向き)になると、自律走行作業車両1の走行と作業を再開するように制御するのである。その後は前記と同様の制御となる。こうして、自律走行作業車両1がオペレータの視界から外れると、自律走行作業車両1を停止させ、自律走行作業車両1が視界に入ると走行及び作業を開始するように制御するのである。こうして、安全に作業ができるようになる。
 なお、前記自律走行作業車両1と随伴走行作業車両100のすれ違いの検出は、第三実施例のカメラを用いて側方を撮影したり、第九実施例の衛星測位により自律走行作業車両1と随伴作業車両100の位置を測位することで検出したり、遠隔操作装置112の位置を測位したりして自律走行作業車両1とのすれ違い位置を検出することができる。また、随伴走行作業車両100が枕地を走行している時に、自律走行作業車両1が視界に入ることの検出は、第一実施例の操向センサ120、第二実施例の方位センサ132、第三実施例のカメラ、第九実施例の衛星測位を用いて、視界に入る位置を出することができる。
 本発明は、圃場等所定の作業領域内で2台の作業車両が併走して作業を行う、建設機械や農用作業車等の制御装置に利用可能である。
 1   自律走行作業車両
 30  制御装置
 40  操舵アクチュエータ
 42  カメラ
 44  変速手段
 60  エンジンコントローラ
 100 随伴走行作業車両
 112 遠隔操作装置
 114 旋回終了確認スイッチ
 120 操向センサ
 132 方位センサ

Claims (19)

  1.  有人または無人の先行作業車両と、有人または無人の後続作業車両が併走して圃場内を設定した走行経路を往復走行して作業を行うための作業システムにおける作業車両の制御装置であって、先行作業車両と後続作業車両には、それぞれ制御装置と、相互に通信可能な通信装置と、枕地旋回を検知する手段と、走行及び作業を停止する手段と、走行及び作業を再開する手段が設けられ、先行作業車両が枕地旋回領域を出るまで、後続作業車両の走行及び作業が制限されることを特徴とする作業車両の制御装置。
  2.  有人または無人の先行作業車両と、有人または無人の後続作業車両が併走して圃場内を設定した走行経路を往復走行して作業を行うための作業システムにおける作業車両の制御装置であって、先行作業車両と後続作業車両には、それぞれ制御装置と、相互に通信可能な通信装置と、枕地旋回開始検出手段と、枕地旋回終了検出手段とを備え、前記先行作業車両の制御装置が枕地旋回の開始を検出すると、後続作業車両に枕地旋回開始信号を送信し、後続作業車両の制御装置は走行・作業を停止させることを特徴とする作業車両の制御装置。
  3.  前記先行作業車両の制御装置が枕地旋回の終了を検出すると、後続作業車両の制御装置は走行・作業を再開させることを特徴とする請求項2に記載の作業車両の制御装置。
  4.  前記後続作業車両の制御装置が、枕地旋回の開始を検出すると、前記先行作業車両の制御装置は走行・作業を停止させることを特徴とする請求項2または請求項3に記載の作業車両の制御装置。
  5.  前記後続作業車両の制御装置が、枕地旋回の終了を検出すると、前記先行作業車両の制御装置は走行・作業を再開させることを特徴とする請求項2乃至請求項4のいずれか1項に記載の作業車両の制御装置。
  6.  衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業車両の制御システムにおける作業車両の制御装置であって、自律走行作業車両の制御装置は、随伴走行作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、随伴走行作業車両の遠隔操作装置からの再開始信号を受信すると、作業を再開するように制御することを特徴とする作業車両の制御装置。
  7.  衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた自律走行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、該自律走行作業車両に随伴走行しながら作業を行う随伴走行作業車両に搭載する遠隔操作装置により自律走行作業車両を操作可能とする併走作業車両の制御システムにおける作業車両の制御装置であって、前記自律走行作業車両の制御装置は、随伴走行作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して設定距離走行すると一旦停止し、前記随伴走行作業車両に設けた枕地旋回を検知する手段により随伴走行作業車両が旋回して枕地旋回を終了したと検知すると、その信号は遠隔操作装置を介して自律走行作業車両の制御装置に送信されて作業を再開するように制御することを特徴とする作業車両の制御装置。
  8.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、操向センサとされ、制御装置は、操向センサの検出値が直進から設定角度以上となると、枕地旋回の開始と判断し、直進角度に戻され設定時間以上続くと枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  9.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、方位センサとされ、制御装置は、方位が設定値以上変化すると枕地旋回の開始と判断し、方位が枕地旋回開始前と前後逆となると枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  10.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、自律走行作業車両に搭載したカメラとし、該カメラは後続の随伴作業車両を撮影し、制御装置は、前記カメラの映像を画像処理して、随伴作業車両の画像が設定量以上変化すると、枕地旋回の開始と判断し、随伴作業車両の映像が旋回前の映像に近似すると、枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  11.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、作業機の昇降高さを検知する手段とされ、制御装置は、作業機が設定高さ以上上昇されると枕地旋回の開始と判断し、作業機が設定高さ以下に下降されると枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  12.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、PTO入切検知手段とされ、制御装置は、PTOの切が検出されると、枕地旋回の開始と判断され、PTOの入りが検出されると枕地旋回の終了と判断されることを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  13.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、走行速度を検出する手段とされ、制御装置は、走行速度が設定速度以下に低下されると枕地旋回の開始と判断し、走行速度が前記低下後に設定速度以上に増加されると枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  14.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、変速位置検出手段とされ、制御装置は、変速位置が旋回速度に減速されると枕地旋回の開始と判断され、作業速度に増速されると枕地旋回の終了と判断されることを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  15.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、エンジン回転数検出手段とされ、制御装置は、エンジン回転数が設定回転以下に低下されると枕地旋回の開始と判断され、エンジン回転数が設定回転以上に増加されると枕地旋回の終了と判断されることを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  16.  前記枕地旋回を検知する手段、または、枕地旋回開始検出手段と枕地旋回終了検出手段は、衛星測位システムを利用した位置検出手段とされ、制御装置は、車両が設定した枕地旋回領域に入ると枕地旋回の開始と判断し、設定した枕地旋回領域から出ると枕地旋回の終了と判断することを特徴とする請求項1または請求項2または請求項7に記載の作業車両の制御装置。
  17.  衛星測位システムを利用して機体の位置を測位する位置算出手段と、操舵装置を作動させる操舵アクチュエータと、エンジン回転制御手段と、変速手段と、これらを制御する制御装置とを備えた先行作業車両を、前記制御装置に記憶させた設定走行経路に沿って自律走行させるとともに、衛星測位システムを利用して機体の位置を測位する位置算出手段を備えた後続作業車両が前記先行作業車両に随伴走行しながら作業を行う併走作業車両の制御システムにおける作業車両の制御装置であって、前記先行作業車両の制御装置は、後続作業車両に設けた遠隔操作装置と通信可能とされ、枕地旋回して作業しながら走行し、後続作業車両とすれ違い位置に到達すると、走行と作業を一旦停止するように制御することを特徴とする作業車両の制御装置。
  18.  前記先行作業車両の制御装置は、後続作業車両が枕地旋回で先行作業車両の進行方向に対して略直交方向の向きに旋回すると、走行と作業を再開するように制御することを特徴とする請求項17に記載の作業車両の制御装置。
  19.  請求項1乃至請求項18に記載の作業車両の制御装置において、先行作業車両には第一衛星測位システムを搭載し、後続作業車両に持ち込む遠隔操作装置には前記第一衛星測位システムよりも精度の低い第二衛星測位システムを搭載し、第一衛星測位システムと第二衛星測位システムにより、先行作業車両と後続作業車両の現在位置を測位して、先行作業車両と後続作業車両の位置を表示装置に表示することを特徴とする作業車両の制御装置。
PCT/JP2015/059258 2014-03-26 2015-03-25 作業車両の制御装置 WO2015147108A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207015841A KR20200067919A (ko) 2014-03-26 2015-03-25 작업 차량 제어 장치
KR1020217009173A KR20210037740A (ko) 2014-03-26 2015-03-25 작업 차량 제어 장치
CN201580016515.3A CN106132187B (zh) 2014-03-26 2015-03-25 作业车辆的控制装置
EP15769551.1A EP3123850A4 (en) 2014-03-26 2015-03-25 Control device for work vehicle
KR1020167029848A KR102121098B1 (ko) 2014-03-26 2015-03-25 작업 차량 제어 장치
US15/128,837 US10198010B2 (en) 2014-03-26 2015-03-25 Control device for work vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014063717 2014-03-26
JP2014-063717 2014-03-26
JP2014-135415 2014-06-30
JP2014135415A JP6368964B2 (ja) 2014-03-26 2014-06-30 作業車両の制御装置

Publications (1)

Publication Number Publication Date
WO2015147108A1 true WO2015147108A1 (ja) 2015-10-01

Family

ID=54195617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059258 WO2015147108A1 (ja) 2014-03-26 2015-03-25 作業車両の制御装置

Country Status (6)

Country Link
US (1) US10198010B2 (ja)
EP (1) EP3123850A4 (ja)
JP (1) JP6368964B2 (ja)
KR (3) KR102121098B1 (ja)
CN (2) CN112558603A (ja)
WO (1) WO2015147108A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136035A (ja) * 2016-02-04 2017-08-10 ヤンマー株式会社 追従型コンバイン
CN108779621A (zh) * 2016-09-16 2018-11-09 株式会社小松制作所 作业车辆的控制系统、作业车辆的控制系统的控制方法以及作业车辆
CN110235080A (zh) * 2017-01-30 2019-09-13 捷豹路虎有限公司 车辆的运动的控制
JP2020108407A (ja) * 2020-04-03 2020-07-16 ヤンマーパワーテクノロジー株式会社 コンバインの連携システム
JP2020127405A (ja) * 2016-12-19 2020-08-27 株式会社クボタ 作業車自動走行システム
KR102153261B1 (ko) * 2020-04-13 2020-09-08 김소현 터널 자동 세척 장비에 의한 시스템
JPWO2021192259A1 (ja) * 2020-03-27 2021-09-30
JP2021184748A (ja) * 2020-04-08 2021-12-09 株式会社クボタ 作業車自動走行システム
US11307592B2 (en) 2017-12-27 2022-04-19 Komatsu Ltd. Management system of work site and management method of work site

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106462165B (zh) * 2015-03-11 2019-09-03 株式会社久保田 作业车辆及使作业车辆自动行驶的行驶控制装置
DE102015118767A1 (de) * 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine
JP6437479B2 (ja) * 2016-03-22 2018-12-12 ヤンマー株式会社 経路生成装置
JP6531055B2 (ja) * 2016-03-24 2019-06-12 ヤンマー株式会社 経路生成装置
JP6675135B2 (ja) * 2016-03-16 2020-04-01 ヤンマー株式会社 経路生成装置
WO2017159615A1 (ja) * 2016-03-16 2017-09-21 ヤンマー株式会社 経路生成装置
JP6622130B2 (ja) * 2016-03-30 2019-12-18 ヤンマー株式会社 経路生成装置
JP2017182374A (ja) * 2016-03-30 2017-10-05 ヤンマー株式会社 作業車
JP6622131B2 (ja) * 2016-03-30 2019-12-18 ヤンマー株式会社 経路生成装置
WO2017169373A1 (ja) * 2016-03-30 2017-10-05 ヤンマー株式会社 経路生成装置及び作業車
JP6685868B2 (ja) * 2016-09-09 2020-04-22 ヤンマー株式会社 自律走行システム
JP6919012B2 (ja) * 2016-09-09 2021-08-11 ヤンマーパワーテクノロジー株式会社 自律走行システム
CN109936975B (zh) * 2016-12-02 2022-10-28 株式会社久保田 行进路线管理系统及行进路线决定装置
WO2018124040A1 (ja) * 2016-12-27 2018-07-05 三菱マヒンドラ農機株式会社 作業車輌
CN106612776B (zh) * 2016-12-29 2019-03-05 南京理工大学 一种播种与施肥车
CN106612682B (zh) * 2017-01-04 2019-02-05 江苏大学 一种用于拖拉机电液悬挂田头自适应升降装置及控制方法
JP6739364B2 (ja) * 2017-01-20 2020-08-12 株式会社クボタ 自動走行作業車
JP6804999B2 (ja) * 2017-01-20 2020-12-23 株式会社クボタ 作業走行管理システム
JP6673862B2 (ja) * 2017-03-03 2020-03-25 ヤンマー株式会社 走行経路特定システム
CN107091647B (zh) * 2017-04-26 2020-04-21 深圳市招科智控科技有限公司 港口集装箱水平搬运无人车导航方法
US10542674B2 (en) * 2017-05-19 2020-01-28 Cnh Industrial America Llc Methods for creating merged triple windrows
JP2019004792A (ja) * 2017-06-26 2019-01-17 株式会社クボタ 作業場の走行管理システム
CN107817792B (zh) * 2017-09-19 2020-09-29 中车工业研究院有限公司 一种智能公共运输系统
WO2019212239A1 (en) 2018-05-04 2019-11-07 Lg Electronics Inc. A plurality of robot cleaner and a controlling method for the same
WO2019212240A1 (en) 2018-05-04 2019-11-07 Lg Electronics Inc. A plurality of robot cleaner and a controlling method for the same
KR102100476B1 (ko) * 2018-05-04 2020-05-26 엘지전자 주식회사 복수의 이동 로봇 및 그 제어방법
KR102067603B1 (ko) * 2018-05-04 2020-01-17 엘지전자 주식회사 복수의 이동 로봇 및 그 제어방법
US10822031B2 (en) 2018-05-09 2020-11-03 Cnh Industrial America Llc Turn control system for a work vehicle
US20190351765A1 (en) * 2018-05-18 2019-11-21 Cnh Industrial America Llc System and method for regulating the operating distance between work vehicles
WO2020050494A1 (en) * 2018-09-06 2020-03-12 Lg Electronics Inc. A robot cleaner and a controlling method for the same
US11432697B2 (en) 2018-09-06 2022-09-06 Lg Electronics Inc. Robot cleaner and a controlling method for the same
KR102252033B1 (ko) * 2018-09-06 2021-05-14 엘지전자 주식회사 이동 로봇 및 그 제어방법
JP7105659B2 (ja) 2018-09-13 2022-07-25 ヤンマーパワーテクノロジー株式会社 画像情報合成装置
JP2020103093A (ja) * 2018-12-26 2020-07-09 株式会社クボタ 作業車両
JP2020103181A (ja) * 2018-12-27 2020-07-09 井関農機株式会社 作業車両
JP2021065115A (ja) * 2019-10-18 2021-04-30 ヤンマーパワーテクノロジー株式会社 障害物検知システム
JP7363683B2 (ja) 2020-06-30 2023-10-18 井関農機株式会社 作業車両
US11550338B2 (en) 2020-12-29 2023-01-10 Trimble Inc. Path following in vehicle formations
US11787445B2 (en) * 2020-12-29 2023-10-17 Trimble Inc. Techniques for maintaining offsets in vehicle formations
US11708094B2 (en) 2020-12-29 2023-07-25 Trimble Inc. Techniques for maintaining vehicle formations
CN113296510B (zh) * 2021-05-21 2023-07-07 福龙马集团股份有限公司 道路作业安全布控自动收放及自跟随系统及其控制方法
JP2023035382A (ja) * 2021-09-01 2023-03-13 ヤンマーホールディングス株式会社 自動走行方法、自動走行システム、及び自動走行プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101206A (ja) * 1990-08-20 1992-04-02 Yanmar Agricult Equip Co Ltd 作業用走行車両に追従する自走トレーラの制御装置
JPH05158537A (ja) * 1991-12-03 1993-06-25 Yanmar Agricult Equip Co Ltd 移動農機の走行制御システム
JPH1139036A (ja) * 1997-07-23 1999-02-12 Kubota Corp 作業車の走行制御装置
JP2001507843A (ja) * 1997-10-08 2001-06-12 マースランド エヌ・ヴィ 車両の組合わせ
JP2006018675A (ja) * 2004-07-02 2006-01-19 Kubota Corp 移動作業機の自動化構造
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
US20110112730A1 (en) * 2009-11-12 2011-05-12 Deere & Company Coordination of vehicle movement in a field
JP2014178759A (ja) * 2013-03-13 2014-09-25 Kubota Corp 作業車協調システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782389B2 (ja) * 1987-11-17 1995-09-06 株式会社ダイフク 移動車の追突防止装置
CN2199668Y (zh) * 1994-07-05 1995-06-07 新世纪(太原)农业发展有限公司 自走式多功能组合农机
CN2404752Y (zh) * 2000-01-25 2000-11-08 韦增成 手把式拖拉机无线遥控装置
JP4021344B2 (ja) * 2003-03-03 2007-12-12 富士重工業株式会社 車両用運転支援装置
IT1395238B1 (it) * 2009-08-12 2012-09-05 Orlando Sistema agricolo a trazione funicolare a propulsione elettrica.
JP5668359B2 (ja) * 2010-08-11 2015-02-12 トヨタ自動車株式会社 車両制御装置
CN202413789U (zh) * 2011-11-30 2012-09-05 富士重工业株式会社 车辆用驾驶辅助装置
JP5768689B2 (ja) * 2011-12-01 2015-08-26 井関農機株式会社 乗用管理機
US8868304B2 (en) * 2012-02-10 2014-10-21 Deere & Company Method and stereo vision system for facilitating the unloading of agricultural material from a vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101206A (ja) * 1990-08-20 1992-04-02 Yanmar Agricult Equip Co Ltd 作業用走行車両に追従する自走トレーラの制御装置
JPH05158537A (ja) * 1991-12-03 1993-06-25 Yanmar Agricult Equip Co Ltd 移動農機の走行制御システム
JPH1139036A (ja) * 1997-07-23 1999-02-12 Kubota Corp 作業車の走行制御装置
JP2001507843A (ja) * 1997-10-08 2001-06-12 マースランド エヌ・ヴィ 車両の組合わせ
JP2006018675A (ja) * 2004-07-02 2006-01-19 Kubota Corp 移動作業機の自動化構造
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
US20110112730A1 (en) * 2009-11-12 2011-05-12 Deere & Company Coordination of vehicle movement in a field
JP2014178759A (ja) * 2013-03-13 2014-09-25 Kubota Corp 作業車協調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3123850A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136035A (ja) * 2016-02-04 2017-08-10 ヤンマー株式会社 追従型コンバイン
CN108779621B (zh) * 2016-09-16 2021-01-01 株式会社小松制作所 作业车辆的控制系统、作业车辆的控制系统的控制方法以及作业车辆
CN108779621A (zh) * 2016-09-16 2018-11-09 株式会社小松制作所 作业车辆的控制系统、作业车辆的控制系统的控制方法以及作业车辆
US10975552B2 (en) 2016-09-16 2021-04-13 Komatsu Ltd. Control system and method for work vehicle
JP2020127405A (ja) * 2016-12-19 2020-08-27 株式会社クボタ 作業車自動走行システム
CN110235080B (zh) * 2017-01-30 2022-12-30 捷豹路虎有限公司 车辆的运动的控制
CN110235080A (zh) * 2017-01-30 2019-09-13 捷豹路虎有限公司 车辆的运动的控制
US11307592B2 (en) 2017-12-27 2022-04-19 Komatsu Ltd. Management system of work site and management method of work site
JPWO2021192259A1 (ja) * 2020-03-27 2021-09-30
WO2021192259A1 (ja) * 2020-03-27 2021-09-30 本田技研工業株式会社 作業管理装置、作業管理プログラム及び作業管理方法
EP4129038A4 (en) * 2020-03-27 2023-12-20 Honda Motor Co., Ltd. OPERATIONAL MANAGEMENT APPARATUS, OPERATIONAL MANAGEMENT PROGRAM AND OPERATIONAL MANAGEMENT METHOD
JP7410274B2 (ja) 2020-03-27 2024-01-09 本田技研工業株式会社 作業管理装置、作業管理プログラム及び作業管理方法
JP2020108407A (ja) * 2020-04-03 2020-07-16 ヤンマーパワーテクノロジー株式会社 コンバインの連携システム
JP2021184748A (ja) * 2020-04-08 2021-12-09 株式会社クボタ 作業車自動走行システム
JP7262534B2 (ja) 2020-04-08 2023-04-21 株式会社クボタ 作業車自動走行システム及び収穫機
KR102153261B1 (ko) * 2020-04-13 2020-09-08 김소현 터널 자동 세척 장비에 의한 시스템

Also Published As

Publication number Publication date
CN106132187B (zh) 2020-12-18
CN106132187A (zh) 2016-11-16
KR20160140787A (ko) 2016-12-07
US10198010B2 (en) 2019-02-05
EP3123850A4 (en) 2017-11-08
JP6368964B2 (ja) 2018-08-08
US20180181143A1 (en) 2018-06-28
KR20210037740A (ko) 2021-04-06
CN112558603A (zh) 2021-03-26
EP3123850A1 (en) 2017-02-01
KR102121098B1 (ko) 2020-06-09
KR20200067919A (ko) 2020-06-12
JP2015194981A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6368964B2 (ja) 作業車両の制御装置
JP6339427B2 (ja) 併走作業システム
JP6170185B2 (ja) 作業車両の走行経路の設定方法
JP6594805B2 (ja) 作業車両
WO2015118731A1 (ja) 併走作業システムの制御装置
WO2015119266A1 (ja) 併走作業システム
WO2016002623A1 (ja) 併走作業システム
JP6163460B2 (ja) 随伴作業システム
WO2015119265A1 (ja) 走行制御システム
JP6078025B2 (ja) 併走作業システム
JP6267627B2 (ja) 操作端末
WO2015118730A1 (ja) 併走作業システムの遠隔操作装置
JP6296926B2 (ja) 併走作業システム
JP2017174229A (ja) 経路生成装置
JP2015221009A (ja) 併走作業車両
JP2015222499A (ja) 緊急停止装置
JP2016095659A (ja) 複数台併走作業システム
JP6297436B2 (ja) 併走作業システム
JP2015222503A (ja) 自律走行作業車両
JP2015222500A (ja) 緊急停止装置
JP6258781B2 (ja) 緊急停止装置
JP2015222502A (ja) 緊急停止装置
JP6618056B2 (ja) 作業システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128837

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769551

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029848

Country of ref document: KR

Kind code of ref document: A