WO2018124040A1 - 作業車輌 - Google Patents

作業車輌 Download PDF

Info

Publication number
WO2018124040A1
WO2018124040A1 PCT/JP2017/046575 JP2017046575W WO2018124040A1 WO 2018124040 A1 WO2018124040 A1 WO 2018124040A1 JP 2017046575 W JP2017046575 W JP 2017046575W WO 2018124040 A1 WO2018124040 A1 WO 2018124040A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine body
auto
control unit
turning
traveling machine
Prior art date
Application number
PCT/JP2017/046575
Other languages
English (en)
French (fr)
Inventor
武二 田中
Original Assignee
三菱マヒンドラ農機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016252422A external-priority patent/JP6803227B2/ja
Priority claimed from JP2016252420A external-priority patent/JP6700167B2/ja
Priority claimed from JP2016252419A external-priority patent/JP6803225B2/ja
Priority claimed from JP2016252423A external-priority patent/JP6700168B2/ja
Priority claimed from JP2016252421A external-priority patent/JP6803226B2/ja
Application filed by 三菱マヒンドラ農機株式会社 filed Critical 三菱マヒンドラ農機株式会社
Priority to CN201780080810.4A priority Critical patent/CN110139551A/zh
Publication of WO2018124040A1 publication Critical patent/WO2018124040A1/ja
Priority to US16/452,838 priority patent/US11122727B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/003Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
    • A01B69/004Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/02Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors
    • A01B63/08Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by the movement of the tractor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/14Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors
    • A01B63/16Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors with wheels adjustable relatively to the frame
    • A01B63/22Lifting or adjusting devices or arrangements for agricultural machines or implements for implements drawn by animals or tractors with wheels adjustable relatively to the frame operated by hydraulic or pneumatic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/003Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
    • A01B69/005Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection by an additional operator
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/006Other parts or details or planting machines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings

Definitions

  • the present invention relates to a work vehicle such as a tractor or a riding rice transplanter, and more particularly to control of a lifting device that lifts and lowers the work machine.
  • Patent Document 1 a work vehicle including a work machine automatic control mechanism that operates when turning on a headland in work such as tillage and planting performed in a farm has been proposed.
  • the distance sensor starts to accumulate the travel distance of the airframe and the work device is raised so that the travel distance of the airframe is the set distance.
  • the working device is lowered.
  • an object of the present invention is to provide a working vehicle capable of performing work with the headland width from the shore accurately aligned regardless of the level of operator skill.
  • the present invention relates to a traveling machine body (2) supported by the traveling apparatus (5, 6), a steering unit (13) that steers the traveling machine body (2), and a lifting device that lifts and lowers the work machine (3).
  • a working vehicle (1) comprising: A work machine lowering start line is set on a coordinate system having the origin at the start of turning of the traveling machine body (2), the steering operation by the steering unit (13), and the traveling device (5, 6).
  • the coordinates of the traveling machine body (2) are calculated on the basis of the travel distance of the vehicle, and when the traveling machine body (2) reaches the work implement lowering start line in a state where the turning is completed, the lifting device (16) performs the work
  • the machine (3) includes a control unit (52) capable of executing a turning control in which the descent starts. It is characterized by that.
  • control unit can perform the work with the headland width from the shore accurately aligned regardless of the level of the operator's maneuvering skill when turning on the headland.
  • an operation tool (36) operable between a first position and a second position is provided, and the control unit (52) And the second position after the operation tool (36) is held at the first position for a period shorter than a predetermined time.
  • the operation tool (36) is switched. Is in the first position, the lowering of the work machine (3) is stopped.
  • the turning of the traveling machine body can be easily performed by switching from the execution state to the release state by operating the operation tool. it can. Further, when it is predicted that the lowering start timing of the work implement by the turning control is earlier than the lowering start timing desired by the operator, the start of lowering of the work implement can be temporarily stopped by operating the operation tool.
  • a display device (51) having a display unit (51c) and a second display unit (51b) for displaying a positional relationship between the coordinates of the traveling machine body (2) and the work implement lowering start line is provided.
  • the operator can know the operation direction of the steering unit to reach the work implement lowering start line, and the positional relationship between the current position of the traveling machine body and the work machine lowering start line, and the turning operation of the traveling machine body Can be done easily.
  • FIG. 5 is a flowchart of control state processing.
  • FIG. 5 is a flowchart of machine information acquisition processing.
  • FIG. 5A and 4B are diagrams showing contents displayed on a liquid crystal display device, where FIG. 5A is a diagram showing an auto-down release state display, FIG. 5B is a diagram showing a display when the auto-down control is being executed, The figure which shows a display when the descent of the rotary tiller by control is stopped, (d) is a figure which shows the display when the descent of the rotary tiller by auto down control is paused, (e) is auto The figure which shows a display when the rotary tiller is going down by down control, (f) is a figure which shows an automatic down control position alerting
  • (N) is an enlarged view showing the display when the aircraft angle is within the fifth angle range
  • (p) is a view where the aircraft angle is within the turn completion angle range and the Y coordinate of the traveling aircraft is predetermined.
  • the enlarged view which shows a display when it is in the range.
  • Schematic which shows the driving
  • a tractor 1 as a working vehicle includes a traveling machine body 2 and a rotating rotary 3b, and is connected to the rear part of the traveling machine body 2 so as to be movable up and down.
  • the traveling machine body 2 includes a control unit 52 shown in FIG. 7 that controls input / output of each electric signal, and front wheels 5 and rear wheels 6 as traveling devices.
  • a pair of front wheels 5 and rear wheels 6 are provided on the left and right, respectively, and the traveling machine body 2 is steered by steering the front wheels 5 to the left and right.
  • the traveling machine body 2 includes a machine body frame 7 supported by the front wheels 5 and the rear wheels 6, and a driving unit 10 having a driving seat 23 on which an operator gets.
  • the front direction facing the operator seated on the driver's seat 23 of the tractor 1 placed on the horizontal plane is the front that is the direction of the traveling machine body 2, and the front and rear are based on this. Define the left / right direction.
  • a notification buzzer 53 capable of notifying the operator of various types of information by sound emission is provided, and is operated by an output signal from the control unit 52.
  • the body frame 7 includes an engine (not shown) that generates power for driving the front wheels 5 and the rear wheels 6, an engine room 9 in which the engine is housed, and a mission (not shown) arranged between the left and right rear wheels 6. And a case.
  • a transmission (not shown) for shifting the power of the engine is housed inside the transmission case.
  • the traveling transmission is shifted by a main transmission (not shown) for shifting the power of the engine in multiple stages, and the main transmission.
  • a sub-transmission mechanism (not shown) for shifting the motive power in a multistage manner and a PTO transmission mechanism (not shown) for shifting the power to the PTO shaft are incorporated.
  • the rotation of the PTO shaft is transmitted to the rotary cultivator 3, and the rotary 3b rotates about the rotary shaft 3a to cultivate the field.
  • the inside of the transmission case is filled with lubricating oil, and this lubricating oil is supplied to a hydraulic pump (not shown) that is driven by the power of the engine.
  • the hydraulic pressure generated by the hydraulic pump is rotated by operating the lift arm valve 20 shown in FIG. It is transmitted to a lift arm cylinder (not shown) that moves the tiller 3 up and down.
  • the power passing through the main transmission mechanism and the sub-transmission mechanism is distributed to the left and right rear wheels 6 via a rear wheel differential mechanism (not shown) by a rear wheel drive shaft (not shown), and a front wheel transmission mechanism (not shown) and a front wheel drive shaft (not shown).
  • the rear wheel differential mechanism transmits power from the rear wheel drive shaft to the left and right rear wheels 6 via a pair of left and right brake mechanisms (not shown) that can brake the left and right rear wheels 6 independently.
  • the number of revolutions per unit time of the rear wheel drive shaft and either the left or right rear wheel 6 is independently detected by the vehicle speed sensor 11 and is determined per unit time of the rear wheel drive shaft or the left or right rear wheel 6.
  • the vehicle speed of the traveling machine body 2 is calculated on the basis of the number of rotations.
  • the vehicle speed is a movement distance per unit time of the airframe reference point 2a which is the center point of the left and right rear wheels 6 on the rotation axis of the rear wheel 6 as shown in FIG.
  • Information on the vehicle speed at the calculated time point is transmitted to the control unit 52 by an electrical signal. Further, the control unit 52 integrates the vehicle speed with time to obtain the travel distance of the airframe reference point 2a, that is, the travel distance of the travel airframe 2.
  • the front wheel speed change mechanism includes a friction multi-plate hydraulic clutch (not shown), and the hydraulic clutch is connected and disconnected, so that the traveling machine body 2 sets the average peripheral speed of the left and right front wheels 5 to the average peripheral speed of the left and right rear wheels 6.
  • Front wheel double speed on 4WD mode in which front wheel double speed control for increasing speed drive is executed, and front wheel double speed off 4WD that drives the average peripheral speed of the left and right front wheels 5 at substantially the same speed as the average peripheral speed of the left and right rear wheels 6
  • a mode and a 2WD mode in which power is not transmitted to the front wheels 5 are provided to be switchable.
  • a steering device 12 for steering the traveling machine body 2 is disposed on the machine body frame 7.
  • the steering device 12 includes a steering wheel 13 as a steering unit that is rotated by an operator to steer the front wheels 5, a steering column 14 shown in FIG.
  • a steering mechanism (not shown) that converts the rotation of the steering column 14 into a substantially linear motion in the left-right direction
  • a tie rod (not shown) that connects both ends of the steering mechanism and the left and right front wheels 5 are provided.
  • the tie rod moves to the left and right based on the rotation angle and direction of the steering column 14 to steer the left and right front wheels 5.
  • the steering device 12 is provided with a stopper portion (not shown) for restricting the rotation of the steering wheel 13 by more than a predetermined angle in one direction in each of the left and right rotation directions.
  • the maximum rotation angle ⁇ 1 in one direction from the neutral position of the steering wheel 13 where the traveling machine body 2 travels substantially straight is configured to be substantially the same as the maximum rotation angle in the other direction.
  • the steering sensor 15 When the turning angle of the steering wheel 13 is less than ⁇ 2 from the neutral position, the steering sensor 15 is turned off, and it is detected that the turning angle of the steering wheel 13 is less than ⁇ 2. Information on the on or off state of the steering sensor 15 and the rotation direction of the steering wheel 13 is transmitted to the control unit 52 by an electrical signal.
  • an elevator link mechanism 16 is provided as an elevator device for connecting the machine frame 7 and the rotary tiller 3 and raising and lowering the rotary tiller 3.
  • the elevating link mechanism 16 includes a link bracket (not shown) protruding from the rear of the traveling machine body 2, a single top link 17 that is pivotally supported so as to swing up and down with respect to the link bracket, and extends rearward.
  • a pair of left and right lower links 18 which are provided below the links and are pivotally supported so as to be swingable up and down with respect to the link bracket and extend rearward.
  • the rear ends of the top link 17 and the left and right lower links 18 are The rotary tiller 3 is pivotally supported so as to swing up and down to form a three-point link mechanism.
  • the left and right lower links 18 are suspended by lift arms (not shown) via lift rods (not shown) provided on the left and right, respectively.
  • the lift arm is pivotally supported by the link bracket so that the front end of the lift arm can swing up and down, and the lower link 18 swings up and down as the lift arm moves up and down as the lift arm cylinder expands and contracts. 3 goes up and down.
  • the swing angle of the lift arm is detected by a lift arm sensor 21 shown in FIG. 7 provided on the lift arm, and is transmitted to the control unit 52 by an electric signal.
  • auxiliary transmission lever 27 that is swingably supported and shifts the auxiliary transmission mechanism is supported.
  • Below the driver's seat 23 is rotatably supported and the rotary tiller 3 is lowered.
  • a work machine lowering speed adjusting knob 29 capable of operating a lowering speed adjusting valve (not shown) for adjusting the speed is provided.
  • the sub-shift lever 27 is provided so that it can be operated at three shift positions of high speed, medium speed, and low speed. When the shift position of the sub-shift lever 27 is at the high speed, the engine speed is reduced.
  • the reduction ratio divided by the rotational speed of the wheel drive shaft is the smallest of the three stages, the low speed stage is the largest, and the medium speed stage is configured so that the reduction ratio is between the high speed stage and the low speed stage. ing. Further, when the work implement lowering speed adjusting knob 29 is rotated clockwise by the operator, the lowering speed adjusting valve is operated, so that the lowering speed of the rotary cultivator 3 is lowered and rotated counterclockwise. And the descending speed increases. Information on the shift position of the sub-shift lever 27 and information on the rotation position of the work implement lowering speed adjustment knob 29 are transmitted to the control unit 52 by an electrical signal.
  • a side panel 26 on which various operation tools and lamps are arranged is provided on the right side of the driver seat 23.
  • a main transmission lever 30 that is supported in a swingable manner to shift the main transmission mechanism, a position lever 31 that moves the rotary tiller 3 up and down, and a lift that sets the maximum raising height of the rotary tiller 3 is set.
  • a height volume 32 and an auto down timing volume 33 are arranged.
  • the speed change operation of the main speed change mechanism by the main speed change lever 30 can be performed independently of the speed change operation of the sub speed change mechanism by the sub speed change lever 27.
  • a neutral position that does not transmit to the front wheels 5 and the rear wheels 6 and an accelerator shift position that automatically shifts gears from the 8th to the 4th by operating an accelerator pedal (not shown) are provided.
  • the eighth gear is configured such that the speed reduction ratio by the main transmission mechanism is the smallest, and the speed reduction ratio increases as the number of gears decreases.
  • Information on the shift position of the main shift lever 30 is transmitted to the control unit 52 by an electrical signal.
  • the position lever 31 is supported so as to be able to swing back and forth, and is configured to hold the swinging position when the operator releases the operating hand.
  • the position lever 31 is swung back and forth, the rotary tiller 3 moves up and down to a height corresponding to the position where the position lever 31 is held.
  • Information on the position where the position lever 31 is held is transmitted to the control unit 52 by an electrical signal.
  • the raising height volume 32 is rotatably supported, and is provided so that a raising height adjusting position provided in a predetermined turning range and a hydraulic pressure taking-out position can be selected depending on the turning position. .
  • the upper limit height when the rotary tiller 3 moves up and down when the operator turns the raising height volume 32 clockwise.
  • the upper limit height is reduced when it is enlarged and rotated counterclockwise.
  • the traveling machine body 2 is in a state where the hydraulic pressure is transmitted from a hydraulic take-out port (not shown) so that, for example, a front loader can be operated.
  • the hydraulic pressure to the lift cylinder is cut off, and the rotary tiller 3 does not move up and down.
  • Information on the rotational position of the raised height volume 32 is transmitted to the control unit 52 by an electrical signal.
  • the auto-down timing volume 33 is supported so as to be rotatable, and can be changed between an on position and an off position provided in a predetermined rotation range.
  • the descent start timing of the rotary tiller 3 can be adjusted in accordance with the rotation position in auto down control described later.
  • Information on the rotation position of the auto-down timing volume 33 is transmitted to the control unit 52 by an electrical signal.
  • the side panel 26 is provided with an automatic on lamp 48.
  • the automatic on lamp 48 is turned off when the auto down timing volume 33 is located at the off position, and is located at the on position. Lights or blinks when an automatic down permission condition described later is satisfied or not satisfied.
  • a steering wheel 13 is disposed in front of the driver seat 23, and a brake pedal 25 and an accelerator pedal for operating the left and right brake mechanisms are disposed below the steering wheel 13.
  • a starter switch 34 that is a main switch of the traveling machine body 2
  • a shuttle lever 35 as a forward / reverse switching operation tool for an operator to switch between forward and backward movement of the traveling machine body 2
  • a preset upper limit height A quick up lever 36 is disposed as an operation tool for raising and lowering the rotary tiller 3 between the lower limit height and the lower limit height.
  • the shuttle lever 35 is provided so that it can be operated at a forward position, a neutral position, and a reverse position.
  • the traveling machine body 2 moves forward
  • the shuttle lever 35 is located at the neutral position
  • the traveling machine body 2 is moved.
  • the traveling stops and the traveling machine body 2 moves backward when it is in the reverse position.
  • Information on the operation position of the shuttle lever 35 is transmitted to the control unit 52 by an electrical signal.
  • the quick up lever 36 is supported so as to be swingable between an upper position, a center position, and a lower position, and the operator can operate after the operator raises the quick up lever 36 to the upper position or lowers the position to the lower position.
  • An urging member (not shown) is provided so as to return to the central position when released.
  • the rotary tiller 3 is raised to the upper limit height when the quick up lever 36 is shortened, and the rotary tiller 3 is the lower limit height when the shortening operation is performed.
  • the position lever 31 is lowered to a height corresponding to the swing position.
  • the operation direction and operation time of the quick up lever 36 are transmitted to the control unit 52 by an electrical signal.
  • the short raising operation is an operation in which the quick up lever 36 is moved to the center position as the second position after being held at the upper position as the first position for a predetermined time t1 or more and less than t2 (t1 ⁇ t2).
  • the predetermined time t1 is set to 0.1 seconds
  • t2 is set to 0.5 seconds.
  • the short raising operation is a raising operation for a predetermined time t1 or more and less than t2 in order to prevent an erroneous operation, but it may be a raising operation for less than t2.
  • a front panel 24 including various operation tools, a display device, and a lamp is disposed in front of the steering wheel 13.
  • the front panel 24 includes a backup changeover switch 37 that switches between ON and OFF states of the backup mode of the traveling machine body 2 and a turn-up changeover switch 39 that switches between ON and OFF states of the turnup mode.
  • the backup lamp 40 is lit, and the shuttle lever 35 (see FIG. 5) is moved from the neutral position to the reverse position while the rotary tiller 3 is not positioned at the upper limit height.
  • the rotary tiller 3 is raised to the upper limit height.
  • the turning up lamp 41 When the turning up mode is in the on state, the turning up lamp 41 is lit, and when the steering sensor 15 is switched from the off state to the on state with the rotary tiller 3 not positioned at the upper limit height, the rotary tiller 3 is turned on. It rises to the upper limit height.
  • the switching information of the backup changeover switch 37 and the turning up changeover switch 39 is transmitted to the control unit 52 by an electrical signal.
  • the front panel 24 includes a 4-wheel drive changeover switch 42 for connecting / disconnecting a hydraulic clutch, and a turning double speed changeover switch 43 for connecting / disconnecting the hydraulic clutch and a braking operation by a brake mechanism.
  • the traveling machine body 2 switches between each mode in which power is transmitted to the front wheels 5 and a 2WD mode in which power is not transmitted to the front wheels 5, and each of which transmits power to the front wheels 5.
  • the 4WD switching lamp 45 is lit.
  • Information on the switching operation by the 4-wheel drive switch 42 and the turning double speed switch 43 is transmitted to the control unit 52 by an electric signal.
  • the traveling machine body 2 is switched between the front wheel double speed OFF 4WD mode, the front wheel double speed ON 4WD mode, and the autobrake mode.
  • the turning double speed lamp 46 is lit, and in the auto brake mode, the front wheel double speed control is executed and the control unit 52 automatically brakes the rear wheel 6 on the inside of the turn. Is executed and the autobrake turning lamp 47 is lit.
  • the front panel 24 includes an automatic selector switch 49 capable of switching between a working mode for the traveling machine body 2 to perform a plowing operation on a farm field and a traveling mode for traveling on a road or the like outside the farm field, and the traveling machine body 2 has a working mode.
  • the work mode and the travel mode of the traveling machine body 2 are alternately switched.
  • both the backup mode and the turning up mode are turned off, and when the front wheel double speed on 4WD mode or the auto brake mode is set, the front wheel double speed off 4WD mode is set.
  • the two-wheel driving mode is maintained, and the raising and lowering of the rotary tiller 3 by the quick up lever 36 is restricted, and when the main transmission lever 30 is at the accelerator shifting position, the operation of the accelerator pedal is performed.
  • the shift operation of the main transmission mechanism is enabled.
  • the traveling machine body 2 is switched from the traveling mode to the working mode, the state is any of the backup mode, the turning-up mode, the front wheel double speed on 4WD mode, the auto brake mode, and the 2WD mode before switching from the working mode to the traveling mode.
  • the rotary tiller 3 can be moved up and down by the quick up lever 36, and the speed change operation of the main speed change mechanism by the operation of the accelerator pedal is restricted. Switching information between the work mode and the travel mode by the automatic selector switch 49 is transmitted to the control unit 52 by an electrical signal.
  • the front panel 24 includes a liquid crystal display device 51 that displays various types of information related to the state of the traveling machine body 2 and tilling work, and the liquid crystal display device 51 as the display device includes an auto-down state display unit as shown in FIG. 51a and a notification display part 51e.
  • the auto-down state display unit 51a displays engine temperature display and temperature / fuel display including fuel remaining amount display or information related to auto-down control to be described later.
  • the notification display unit 51e displays engine speed display.
  • an engine speed / usage time display composed of a total use time display or a notice regarding auto-down control is displayed.
  • FIG. 7 shows a control block diagram according to the present embodiment.
  • a control unit 52 capable of executing auto-down control described later includes a microcomputer 52a having a CPU 52b, a ROM 52c, a RAM 52d, an interface 52e, and the like.
  • the control unit 52 includes a steering sensor 15, a lift arm sensor 21, a vehicle speed sensor 11, a quick up lever 36, a main transmission lever 30, a sub transmission lever 27, a position lever 31, an automatic selector switch 49, an auto down timing volume 33, a raising height.
  • Micro based on signals input from the volume 32, shuttle lever 35, turning double speed changeover switch 43, 4WD changeover switch 42, backup changeover switch 37, turnup changeover switch 39, work implement lowering speed adjustment knob 29 and starter switch 34.
  • a signal is output by the calculation of the computer 52a, and the lift arm valve 20 and the notification buzzer 53 are operated, and the lift up lamp 22, the automatic switching lamp 50, the turning double speed lamp 46, the 4WD switching lamp 45, the turning up run 41, the backup lamp 40, and controls the turning on and off of the auto brake swivel lamp 47 and automatic entrance ramp 48, and displays various information on a liquid crystal display device 51.
  • the auto-down control as the turning control executed by the control unit 52 is an example of the flowcharts of FIGS. 8 to 17, the notification contents by the liquid crystal display device 51 of FIG. This will be described with reference to a schematic diagram of FIG. That is, hereinafter, only the auto-down control when the tractor 1 turns to the right will be described, and the explanation about the auto-down control when the tractor 1 turns to the left will be omitted.
  • the tractor 1 that has reached the headland J raises the rotary power tiller 3 in the tilling work of the field H performed while the traveling machine body 2 repeats the straight traveling and the reciprocating traveling in the headland J. After turning, the rotary tiller 3 is automatically started to descend when reaching a descending start line as a work implement descending start line.
  • FIG. 8 is a flowchart showing a main routine of auto-down control.
  • the main routine is started.
  • the temperature / fuel display of the auto-down state display unit 51a and the notification display unit 51e are displayed on the liquid crystal display device 51.
  • the auto-down cancel status display screen is displayed, which consists of the engine speed and usage time display.
  • the data acquisition process (step S1) to the automatic end process (step S9) are sequentially repeated until the starter switch 34 is turned off.
  • the operator measures an appropriate headland width M when performing a tilling operation while reciprocating the field H in the directions of the paths L1 and L2 shown in FIG. Specifically, for example, the right end or the left end of the rotary cultivator 3 is brought close to the ridge E and travels along the ridge E to mark the width of the cultivated by the rotary cultivator 3. .
  • the traveling machine body 2 is set to the operation mode by operating the automatic selector switch 49, and after the rotational position of the raised height volume 32 is set to the raised height adjusting position, the rotational position of the auto down timing volume 33 is set.
  • the control unit 52 changes from the auto down off state to the auto down on state, and the automatic on lamp 48 starts blinking.
  • the operator operates the turning double speed changeover switch 43 and the 4WD changeover switch 42 to set the traveling machine body 2 to the front wheel double speed ON 4WD mode or the autobrake mode, and shifts the main transmission lever 30 and the auxiliary transmission lever 27.
  • the auto-down permission condition is satisfied and the automatic The on lamp 48 lights up.
  • the operator puts the traveling machine body 2 in the turn-up mode or the backup mode on by operating the turn-up changeover switch 39 and the backup changeover switch 37 as necessary.
  • the control unit 52 When the main routine is started, the control unit 52 performs a data acquisition process for detecting the presence or absence of a predetermined turning start operation (step S1).
  • the turning start operation refers to switching from the neutral position to the reverse position of the shuttle lever 35 in the backup mode on state and the rotary tiller 3 not positioned at the upper limit height, and the turning up mode on state.
  • the steering sensor 15 is switched from the off state to the on state when the rotary tiller 3 is not positioned at the upper limit height, and the quick up lever 36 is shortly raised when the rotary tiller 3 is stopped.
  • the operator aligns the direction of the traveling machine body 2 with the path L1 shown in FIG. 19 and performs the tilling work while moving the traveling machine body 2 straight toward the headland J along the path L1.
  • the traveling machine body 2 approaches the headland J
  • the operator continues the tilling work while visually checking the position of the rotary shaft 3a, and when the rotary shaft 3a reaches the work boundary C where the headland width M is marked.
  • an auto-down start flag is set.
  • the traveling route during turning in the headland J is not limited to this.
  • the traveling machine body 2 reaches the shore E.
  • the operator may turn the steering wheel 13 clockwise by ⁇ 2 or more, and turn the traveling machine body 2 while moving it backward in the backup mode on state so that the direction of the traveling machine body 2 matches the path L2.
  • the rotary shaft 3a reaches the work boundary C in the headland J
  • the operator turns the steering wheel 13 counterclockwise by ⁇ 2 or more to turn the traveling machine body 2 forward and turn about 90 ° to the left.
  • the traveling machine body 2 is moved straight back and forward to an appropriate position, and then the steering wheel 13 is advanced counterclockwise and rotated forward by ⁇ 2 or more to the left. You may turn 90 degrees and you may match
  • control unit 52 performs control state processing (step S2) for determining whether or not to permit execution of processing for calculating the current position of the traveling machine body 2 and the descending start line.
  • FIG. 9 shows a subroutine of control state processing (step S2).
  • the control unit 52 first determines whether or not the control unit 52 is in the auto down on state (step S201).
  • the control unit 52 determines whether or not an auto down execution flag is set (step S202).
  • the auto-down execution flag is a flag that stands when the control unit 52 is in the auto-down execution state in which the position of the traveling vehicle body 2 that is turning, the calculation of the descent start line, and the like are standing.
  • the state in which the auto-down execution flag is off will be referred to as an auto-down cancel state.
  • the control unit 52 determines whether or not the auto-down start flag is set (step S203). That is, the control unit 52 determines whether or not an automatic down start condition is satisfied.
  • the auto-down execution state as the execution state is a state in which auto-down control can be executed
  • the auto-down release state as the release state is a state in which auto-down control cannot be executed.
  • step S203 when the auto-down start flag is cleared (NO in step S203), the control unit 52 returns the processing to the main routine, and when the auto-down start flag is set (YES in step S203), the control is performed.
  • the unit 52 drops the auto-down start flag (step S204), and determines whether or not the auto-down permission condition is satisfied (step S205).
  • step S205 When the automatic down permission condition is not satisfied (NO in step S205), the control unit 52 returns the process to the main routine, and when the automatic down permission condition is satisfied (YES in step S205), the control unit 52 Then, the auto-down execution flag is set to enter the auto-down execution state (step S206).
  • the front-rear direction display unit 51b, the left-right direction display unit 51c, and the warning display unit 51d are displayed on the auto-down state display unit 51a, and the warning message shown in FIG.
  • the symbols shown in FIG. 18H are displayed on the front-rear direction display unit 51b and the left-right direction display unit 51c.
  • the notification buzzer 53 starts notification by a short sound repeated at a predetermined time t5.
  • the control unit 52 returns the processing to the main routine.
  • the time when the auto-down execution flag is changed to the state where the auto-down execution flag is set is referred to as a turn start time.
  • FIG. One of the symbols shown in the above is displayed.
  • the left-right direction display unit 51c as the first display unit instructs the operation direction of the steering wheel 13 so that the traveling machine body 2 reaches the descending start line
  • the front-rear direction display unit 51b as the second display unit is The positional relationship in the vertical axis Y direction between the coordinates of the traveling machine body 2 and the descent start line is displayed.
  • step S207 the control unit 52 determines whether or not the auto-down permission condition is satisfied.
  • step S207 the control unit 52 blinks the automatic on lamp 48 to notify the operator that the automatic down permission condition is not satisfied (step S208), and performs an automatic down execution flag and an automatic down start flag as the automatic down reset processing.
  • step S210 the automatic down cancel state is entered. This may be the case, for example, when the plowing work is completed and the operator operates the automatic selector switch 49 to switch the traveling machine body 2 from the working mode to the traveling mode.
  • step S207 when the auto-down permission condition is satisfied (YES in step S207), the control unit 52 determines whether or not the auto-down release flag is set (step S209).
  • the auto-down cancel flag is a flag that is set when an auto-down cancel condition, which will be described later, is satisfied in the automatic end process (step S9) in the auto-down execution state.
  • the control unit 52 returns the process to the main routine.
  • the auto-down-off state is set in step S201 (NO in step S201) or the auto-down cancel flag is set in step S209 (YES in step S209)
  • the control unit 52 performs auto-down. Both the execution flag and the auto-down start flag are dropped, the auto-down execution state is canceled as an auto-down reset process to enter the auto-down release state (step S210), and the process returns to the main routine.
  • FIG. 10 is a machine information acquisition process for reading information such as the type and setting of the tractor and calculating a descent reference line F as a reference for determining a descent start line based on the position of the traveling machine 2 at the start of turning (step S3).
  • the control unit 52 reads the maximum output of the engine stored in advance in the control unit 52 as acquisition of horsepower settings (step S301) and acquires the front wheels 5 and rear wheels as acquisition of tire settings.
  • the type and dimensions of the travel device composed of 6 etc. are read (step S302).
  • the types of traveling devices include only a pair of front wheels 5 and a pair of rear wheels 6, a pair of front wheels 5, a pair of crawlers and a pair of crawlers, etc.
  • the dimensions of the traveling device include the length of the crawler or the front wheels 5 and the like. There are inter-axis distances with the rear wheels 6, distances between the left and right front wheels 5, and the rear wheels 6. For this reason, the traveling device may be a combination of the front wheel 5 and the crawler, or only the crawler.
  • the control unit 52 reads whether the traveling machine body 2 is in the front wheel double speed off 4WD mode, the front wheel double speed on 4WD mode, or the autobrake mode (step S303).
  • the control unit 52 stores in advance a turning inner periphery and a turning outer periphery corresponding to various combinations of the results of Step S301, Step S302, and Step S303.
  • the circumference and the turning circumference are calculated (step S304).
  • the turning inner periphery and the turning outer periphery refer to the rear wheels 6 inside and outside the turning when the traveling machine body 2 turns 360 ° with the steering wheel 13 turned to either the left or right maximum turning angle. It is the movement distance.
  • the control unit 52 calculates a turning circumference that is an average value of the turning inner periphery and the turning outer periphery based on the turning inner periphery and the turning outer periphery read in step S304 (step S305), and based on the turning circumference.
  • the turning radius r is calculated (step S306).
  • the turning radius r is a radius of an arc trajectory drawn by the body reference point 2a when the traveling body 2 turns in a state where the steering wheel 13 is turned to either the left or right maximum turning angle. Calculated by dividing by 2 times the circumference.
  • the control unit 52 stores a hitch length A (refer to FIG. 19), which is stored in advance in the control unit 52 and is a distance in plan view between the rotary shaft of the rear wheel 6 and the rotary shaft 3a when the rotary 3b is landed. (Step S307) and the vehicle speed measured by the vehicle speed sensor 11 is read (step S308). Further, the control unit 52 reads the turning position of the dashing height, the raising height volume 32 and the turning position of the work implement lowering speed adjustment knob 29, and after the rotary tiller 3 starts to descend based on the vehicle speed. A descending travel distance D (see FIG. 19) by which the airframe reference point 2a moves before landing is calculated (step S309).
  • the dashing height refers to the descending speed after the rotary tiller 3 is lowered to a predetermined height so that the traveling machine body 2 does not suddenly accelerate by the rotational force of the rotary 3b when the rotary 3b is grounded. This is the height that becomes the changing point of the descent speed that is set in advance when it is decreased and grounded slowly.
  • the control unit 52 uses the position of the airframe reference point 2a at the start of turning, that is, the turning start position as the origin O in a plan view, and the horizontal axis X that is the rotation axis of the rear wheel 6 at this time.
  • a two-dimensional orthogonal coordinate system is set by a vertical axis Y that is orthogonal to the horizontal axis X and passes through the origin O and has a rearward direction of the traveling machine body 2 at the start of turning as a plus direction.
  • the horizontal axis X extends parallel to the left-right direction of the traveling machine body 2 at the start of turning
  • the vertical axis Y extends parallel to the front-rear direction of the traveling machine body 2 at the start of turning.
  • control unit 52 serves as a reference for calculating the descending start line defined only by the Y coordinate on the coordinate system based on the result of Step S307 to Step S309 performed by the body information acquisition process (Step S3).
  • a descending reference line F is set (step S310).
  • the position of the traveling machine body 2 on the coordinate system is specified by the X coordinate in the horizontal axis X direction and the Y coordinate in the vertical axis Y direction of the machine body reference point 2a.
  • the position of the rotary shaft 3a of the rotary tiller 3 that has landed after turning coincides with the work boundary C that is the position of the rotary shaft 3a of the rotary tiller 3 in the landing state at the start of turning, that is, travel at the start of turning.
  • the rotary cultivator 3 lands at the work resuming position G where the Y coordinate of the machine reference point 2a is equal to twice the hitch length A in the state where the direction of the machine body 2 and the direction of the traveling machine body 2 after turning are opposite. Then, when the tilling work is resumed, the tilling work can be performed by aligning the headland width M from the shoreline E.
  • the traveling machine body 2 travels along the route L2
  • the traveling machine body 2 makes a turn on the headland J when the traveling machine body 2 makes a turn on the headland J when the descending starts before the descent traveling distance D from the work resuming position G
  • the tilling work can be resumed from the work resuming position G without stopping.
  • the Y coordinate obtained by subtracting the descent travel distance D from the Y coordinate of the work resuming position G becomes the Y coordinate of the descent reference line F.
  • the control unit 52 returns the processing to the main routine.
  • the operator operates the auto down timing volume 33 to set the Y coordinate of the position where the rotary tiller 3 starts to descend with respect to the descending reference line F from the minimum ⁇ S by using S having a predetermined length. It is possible to set a descent set line adjusted within a range of maximum + S.
  • FIG. 11 shows a subroutine of the aircraft angle process (step S4) for calculating the change in the direction of the traveling vehicle 2 in the auto-down execution state and determining the completion of the turn based on the calculation result.
  • the control unit 52 determines whether or not the vehicle is traveling during a turn (step S401).
  • the term “running during turning” refers to a state that satisfies all the conditions that the auto-down execution flag is set, the vehicle speed of the traveling machine body 2 is other than 0, and the steering sensor 15 is on.
  • step S401 If it is determined that the vehicle is traveling during a turn (YES in step S401), the control unit 52 calculates a change in the direction of the traveling vehicle body 2 in a minute time dt, that is, an angle change amount, based on the vehicle speed and the turning radius r. (Step S403). Then, the control unit 52 accumulates the calculated amount of change in angle, and calculates a body angle that is an angle formed by the direction of the traveling body 2 at the start of turning and the direction of the traveling body 2 at the time of calculation (step S404). If it is determined in step S401 that the vehicle is not turning (NO in step S401), the angle change amount is set to 0 (step S402), and the aircraft angle is calculated (step S404).
  • the power transmission from the PTO shaft to the rotary tiller 3 is cut off, and the rotary tiller 3 rises to the upper limit height, is in the auto down on state and the auto down start condition And when all the automatic down permission conditions are satisfied, it will be in an automatic down execution state, and the calculation of the position and direction of the traveling machine body 2 in the field H will be started.
  • the notification buzzer 53 starts notification by a short sound repeated at an interval of a predetermined time t5
  • the warning display section 51d displays an auto-down caution display “AUTODOWN / Descent caution” shown in FIG.
  • the symbols in FIG. 18H are displayed on the front-rear direction display unit 51b and the left-right direction display unit 51c.
  • the operator rotates the steering wheel 13 clockwise to the maximum rotation angle, and causes the traveling machine body 2 to travel along an arcuate path T whose radius is the turning radius r.
  • the control unit 52 determines whether or not the aircraft angle is 90 ° or more (step S405), and when the aircraft angle is less than 90 ° (NO in step S405), the control unit 52 does not reach the turn.
  • the state is determined (step S406). More specifically, if the aircraft angle is less than 20 °, the control unit 52 displays the symbols shown in FIG. 18 (h) on the front-rear direction display unit 51b and the left-right direction display unit 51c, and is 20 ° or more and less than 90 °. If so, the symbols shown in FIG. 18 (i) are displayed on the front-rear direction display unit 51b and the left-right direction display unit 51c, and the process returns to the main routine.
  • the left-right direction display unit 51c is a rectangular display unit 51i that can be switched between a non-display state in which only the outline is displayed and a display state in which the inside of the outline is filled with the same color as the outline. Three pieces are arranged on the left and right sides of 51b in the left-right direction.
  • the operator approaches the descending start line when the traveling body 2 travels with the steering wheel 13 rotated clockwise. Means that you can.
  • any of the three display portions 51i located on the left side is in the display state, the operator approaches the descending start line when the traveling body 2 travels with the steering wheel 13 turned counterclockwise. It means that you can do it.
  • the symbols displayed on the front-rear direction display unit 51b are oriented as shown in FIG. 18 (h), it means that there is a descending start line behind the traveling machine body 2, and the front-rear direction display unit
  • the symbol displayed in 51b is in the direction shown in FIG. 18 (p)
  • the operator continues to turn the traveling machine body 2 along the route T while maintaining the state in which the steering wheel 13 is rotated clockwise to the maximum rotation angle while looking at the front-rear direction display unit 51b and the left-right direction display unit 51c. To do.
  • step S405 when the aircraft angle is 90 ° or more (YES in step S405), the control unit 52 determines that the vehicle has been turned (step S407), and determines whether the turning angle condition has been achieved. (Step S408).
  • the achievement of the turning angle condition means that the airframe angle is within a predetermined turning completion angle range in which it is determined that the turning has been completed.
  • the turn complete angle range is ⁇ 3 ⁇ 4, using predetermined angles ⁇ 3 and ⁇ 4, and after the aircraft angle changes from outside the range of 180 ° ⁇ ⁇ 3 to within the range of 180 ° ⁇ ⁇ 3, the turn complete angle range is 180.
  • the turn complete angle range becomes 180 ° ⁇ ⁇ 3.
  • step S408 the control unit 52 determines that the front-rear direction display unit 51b and the left-right direction are in the case where the turning angle is 90 ° or more and smaller than the turning completion angle range.
  • the front-rear direction display unit 51b and the left-right direction display unit 51c have the display shown in FIG. ) Is displayed, and when the turning angle is greater than 270 ° and less than 300 °, the design shown in FIG. 18 (n) is displayed on the front-rear direction display unit 51b and the left-right direction display unit 51c, and the turn angle condition flag is displayed. (Step S409), and the process returns to the main routine.
  • step S408 When the turning angle condition is achieved in step S408 (YES in step S408), the control unit 52 determines that the coordinates of the airframe reference point 2a at the time of calculation on the coordinate system, that is, the Y coordinate of the current position is a descending start line.
  • the distance is within a predetermined distance in the minus direction, the front and rear direction display part 51b and the display part 51i adjacent to the left and right of the front and rear direction display part 51b both display the design shown in FIG.
  • the notice buzzer 53 changes the short sound interval to a predetermined time t6 shorter than t5 to notify the operator that the arrival at the descending start line is near, and in other cases, the front / rear direction display unit 51b and the left / right direction display 18c is displayed on the part 51c, a turning angle condition flag is set (step S410), and the process returns to the main routine.
  • the operator confirms that the symbol shown in FIG. 18 (k) is displayed on the left / right direction display portion 51c, returns the steering wheel 13 to the neutral position, and the symbol shown in FIG. 18 (p) appears on the left / right direction display portion 51c. Until it is displayed, the traveling machine body 2 is caused to travel straight along the route L2 in parallel with the route L1.
  • FIG. 12 shows a subroutine of angle calculation (step S5) for calculating the current position based on the aircraft angle.
  • the control unit 52 reads the angle change amount (that is, the turning angle), the airframe angle, and the vehicle speed (step S501), and based on the angle change amount, the airframe angle, and the vehicle speed, the travel unit 2 on the coordinate system at the minute time dt is read.
  • a change in position, that is, a coordinate change amount is calculated (step S502).
  • the control unit 52 determines whether or not the vehicle speed of the traveling machine body 2 is 0 (step S503), and maintains the current position when the vehicle speed (that is, the turning speed) is 0 (YES in step S503).
  • step S504 the process returns to the main routine.
  • step S503 a new current position is calculated by accumulating the coordinate change amount at the current position (step S505), Return processing to the main routine.
  • FIG. 13 shows a subroutine for position calculation (step S6) for calculating a descent start line based on the descent reference line F, the current position, and the descent setting line.
  • the control unit 52 determines whether or not it is in an auto-down execution state (step S601), and when not in an auto-down execution state (NO in step S601), adopts a lowering setting line as a lowering start line (step S602). )
  • the descent start line is a variable defined only by the Y coordinate.
  • the descent reference line F, the descent setting line, the current descent line are calculated by the position calculation (step S6) and the position determination process (step S7) described later in detail.
  • the control unit 52 determines that the Y coordinate of the lowering setting line is greater than or equal to the Y coordinate of the lowering reference line F (YES in step S603) and the lowering setting line.
  • the Y coordinate of the descent setting line is adopted as the Y coordinate of the descent start line (step S606).
  • the control unit 52 starts the descent when the Y coordinate of the descent reference line F exceeds the Y coordinate of the descent setting line and is equal to or less than the Y coordinate of the current position (YES in step S607).
  • the Y coordinate of the descending reference line F is adopted as the Y coordinate of the line (step S608), and the process returns to the main routine.
  • the control unit 52 It is determined whether 15 is on or the shuttle lever 35 is in the reverse position (step S609).
  • step S609 When the steering sensor 15 is in the on state or the shuttle lever 35 is positioned at the reverse position (YES in step S609), the control unit 52 sets a predetermined hysteresis value as the Y coordinate of the descent start line to the Y coordinate of the current position. A value obtained by adding ⁇ is adopted (step S610), and the process returns to the main routine.
  • step S609 when the steering sensor 15 is neither in the on state nor in the state in which the shuttle lever 35 is in the reverse position (NO in step S609), the process returns to the main routine.
  • the state where the descent start line is set while the Y coordinate of the descent start line changes with the change of the Y coordinate of the current position and the descent setting line is maintained.
  • the operator causes the traveling machine body 2 to travel forward while traveling straight along the route L2, and the Y coordinate of the current position reaches within a predetermined distance ⁇ from the descending start line, and the front-rear direction display unit 51b and the left-right direction display unit 51c are shown in FIG.
  • the symbol shown in (p) is displayed, and it is confirmed that the interval of the short sound of the notification buzzer 53 is reduced, and it is known that the start of the descent of the rotary tiller 3 is near.
  • FIG. 14 shows a subroutine of a position flag process (step S10) for determining whether or not a position condition for determining that the traveling machine body 2 has properly reached the descending start line is satisfied.
  • the control unit 52 clears the position condition flag and sets the position pass condition flag (Ste S14), the process is returned to the main routine.
  • the position condition flag is one of the conditions for the control unit 52 to set a lowering flag for starting the lowering of the rotary tiller 3 in the position determination process described in detail later, and the current position is set to the lowering start line. It is a flag indicating that it has been reached.
  • the position passing condition flag is a flag indicating that the current position has reached the descent start line, but has passed the descent start line because the conditions for lowering the rotary tiller 3 are not satisfied.
  • step S11 when the Y coordinate of the current position is equal to or less than the value obtained by adding the hysteresis value ⁇ to the Y coordinate of the descent start line (NO in step S11), the control unit 52 determines that the Y coordinate of the current position is the descent start line. It is determined whether or not the value is less than the value obtained by subtracting the hysteresis value ⁇ from the Y coordinate (step S12).
  • step S12 when the Y coordinate of the current position is less than the value obtained by subtracting the hysteresis value ⁇ from the Y coordinate of the descending start line (YES in step S12), the control unit 52 sets the position condition flag and the position pass condition flag.
  • step S12 when the Y coordinate of the current position is equal to or greater than the value obtained by subtracting the hysteresis value ⁇ from the Y coordinate of the descent start line (NO in step S12), the control unit 52 determines whether or not the position passing condition flag is set. Is determined (step S15).
  • step S15 when the position passing condition flag is set (YES in step S15) and the Y coordinate of the current position is less than the Y coordinate of the descending start line (YES in step S16), the position passing condition flag is lowered.
  • the control unit 52 sets a position condition flag (step S18).
  • step S18 When the Y coordinate of the current position is greater than or equal to the Y coordinate of the descent start line at step S16 (NO at step S16) and when the Y coordinate of the current position is less than or equal to the Y coordinate of the descent start line (step S16) In step S17 NO), the controller 52 returns the process to the main routine.
  • FIG. 15 shows a subroutine of position determination processing (step S7) that issues a lowering request for the rotary tiller 3 based on the result of the position flag processing (step S10).
  • the control unit 52 determines whether or not the vehicle speed is other than 0 (step S701). When the vehicle speed is 0 (NO in step S701), the process returns to the main routine, and when the vehicle speed is not 0 (step S701). Is YES), it is determined whether or not the steering sensor 15 is in an off state and the shuttle lever 35 is located at the forward position (step S702).
  • step S702 when the steering sensor 15 is on or the shuttle lever 35 is not in the forward position (NO in step S702), the control unit 52 returns the process to the main routine.
  • step S702 when the steering sensor 15 is off and the shuttle lever 35 is in the forward position (YES in step S702), the control unit 52 determines whether or not the position condition flag and the turning angle condition flag are set. Is determined (step S703).
  • step S703 when at least one of the position condition flag and the turning angle condition flag is off (NO in step S703), the control unit 52 returns the process to the main routine, and the position condition flag and the turning angle condition flag are set.
  • the control unit 52 determines whether or not the descending delay operation has timed out (step S704).
  • the descent delay operation is a long raising operation that is held for a predetermined time t2 or more in a state in which the quick up lever 36 is raised to the upper position in the auto down execution state. In the state where the descent delay operation is performed, as shown in FIG.
  • a temporary pause symbol 51g is displayed on the warning display portion 51d, and a temporary pause state that restricts the descent of the rotary tiller 3 is entered. Even if other conditions for starting the lowering of the tiller 3 are satisfied, the rotary tiller 3 is maintained at the upper limit height position. That is, the descent of the rotary tiller 3 is stopped while the quick up lever 36 is located at the upper position.
  • the descending delay operation is timed out when a predetermined time t3 longer than t2 is exceeded in a state where the operator raises and holds the quick up lever 36. For example, the predetermined time t3 is set to 10 seconds.
  • step S704 when the descending delay operation has timed out (YES in step S704), the control unit 52 sets an auto-down cancel flag as the time-out process, and as shown in FIG. 18C, the warning display unit 51d. Until the predetermined time t4 has elapsed (step S707), and the process returns to the main routine.
  • step S704 when the descent delay operation has not timed out (NO in step S704), the control unit 52 raises the work implement lowering flag for starting the lowering of the rotary tiller 3 and issues a lowering request (step 706). Return the process to the main routine.
  • FIG. 16 shows a subroutine of a descent start process (step S8) in which the descent of the rotary tiller 3 is started when the lift arm valve 20 is operated based on the descent request.
  • the control unit 52 determines whether or not the work implement lowering flag is set (step S801), and when the work implement lowering flag is set (NO in step S801), the process returns to the main routine.
  • the control unit 52 determines whether the operator has not performed a lowering delay operation (step S802).
  • the control unit 52 returns the process to the main routine.
  • step S803 the control unit 52 sets the work implement lowering flag (step S803) and starts to lower the rotary tiller 3 (step S804).
  • the control unit 52 displays the descending symbol 51h on the warning display unit 51d as shown in FIG. 18 (e), and informs the operator that the rotary tiller 3 is descending by sound emission from the notification buzzer 53. (Step S805), and the process returns to the main routine.
  • FIG. 17 shows a subroutine for automatic termination processing for releasing the auto-down execution state based on the travel route of the traveling machine body 2 in the auto-down execution state.
  • conditions for canceling the auto-down execution state there are provided an auto-down end condition for the control unit 52 to be in an auto-down off state and an auto-down cancel condition for being in an auto-down cancel state.
  • the control unit 52 performs processing for the auto-down end position condition that is the first auto-down end condition.
  • step S901 when the current position is in the end position range (YES in step S901), the control unit 52 displays an automatic down control position release display “automatically by position restriction” shown in FIG.
  • step S902 an automatic end process for setting the control unit 52 to the automatic down-off state is executed (step S902), and the process returns to the main routine.
  • the control unit 52 displays the engine speed / usage time display shown in FIG. 18A on the notification display unit 51e, and the temperature shown in FIG. 18A on the auto-down state display unit 51a. ⁇ Display the fuel display.
  • the control unit 52 is in the work mode. There is no need to change the rotation position of the auto-down timing volume 33 from the off position to the on position again in a state where both the existence and the rotation position of the raising height volume 32 are in the height adjustment position. Must not.
  • step S901 when the current position is not in the end position range (NO in step S901), the control unit 52 determines ⁇ 1 ⁇ X coordinate ⁇ based on the end distance ⁇ 1 and the predetermined notification distance ⁇ 2 smaller than the end distance ⁇ 1. It is determined whether or not the current position is within the notification position range defined by ⁇ 2, or ⁇ 2 ⁇ X coordinate ⁇ ⁇ 1, and ⁇ 1 ⁇ Y coordinate ⁇ 2, or ⁇ 2 ⁇ Y coordinate ⁇ ⁇ 1. (Step S903). In step S903, when the current position is in the notification position range (YES in step S903), as the position notification process, the automatic down control position notification display “over position limit” shown in FIG. Is displayed, and the operator is notified of the cancellation of the auto-down execution state (step S904).
  • step S905 when the current position is within the end position reset range (YES in step S905), the control unit 52 displays the engine speed / number on the notification display unit 51e as shown in FIG. The usage time display is displayed (step S906).
  • the control unit 52 performs processing for the auto-down end angle condition that is the second auto-down end condition.
  • the controller 52 determines whether or not the aircraft angle in the auto-down execution state exceeds a predetermined end angle ⁇ 1 (step S907).
  • the control unit 52 displays an automatic down angle release display “turns off automatically when the angle is limited” on the notification display unit 51e for a predetermined time t4.
  • an automatic end process for setting the control unit 52 to the automatic down-off state is executed (step S902), and the process returns to the main routine.
  • the control unit 52 displays the engine speed / usage time display on the notification display unit 51e and the temperature / fuel display on the auto-down state display unit 51a as shown in FIG.
  • step S907 When the aircraft angle does not exceed the end angle ⁇ 1 in step S907 (NO in step S907), the controller 52 determines that the aircraft angle is greater than ⁇ 2 based on a predetermined notification angle ⁇ 2 that is smaller than the end angle ⁇ 1. It is determined whether or not the notification angle range is equal to or less than ⁇ 1 (step S908).
  • step S908 when the aircraft angle is within the notification angle range (YES in step S908), an automatic down angle notification display “over angle limit” is displayed on the notification display unit 51e as angle notification processing, and the operator is automatically notified. A notice of the cancellation of the down execution state is given (step S909).
  • step S910 determines whether the aircraft angle is less than the reset angle ⁇ 3 that is smaller than the notification angle ⁇ 2 (step S910). ).
  • the control unit 52 displays the engine speed / number on the notification display unit 51e as shown in FIG. The usage time display is displayed (step S911).
  • the control unit 52 performs processing for the automatic end integrated distance condition that is the third auto-down end condition.
  • the control unit 52 determines whether or not the cumulative travel distance from when the auto-down execution state is reached until when the auto-down execution state is reached exceeds the predetermined end cumulative distance ⁇ 1 (step S912).
  • the cumulative travel distance is the total travel distance of the airframe reference point 2a from the auto-down execution state to the auto-down execution state, regardless of whether there is forward, reverse, or temporary travel stop. The added distance.
  • step S912 when the accumulated travel distance exceeds the end accumulated distance ⁇ 1 (YES in step S912), the control unit 52 causes the notification display unit 51e to display an auto-down accumulated distance cancel display “automatically with travel limit”.
  • the automatic end process for setting the control unit 52 to the automatic down-off state is executed (step S902), and the process is returned to the main routine.
  • the control unit 52 displays the engine speed / usage time display on the notification display unit 51e and the temperature / fuel display on the auto-down state display unit 51a as shown in FIG. 18 (a).
  • step S912 when the integrated travel distance does not exceed the end integrated distance ⁇ 1 (NO in step S912), the control unit 52 performs notification based on the notification integrated distance ⁇ 2 in which the integrated travel distance is smaller than the end integrated distance ⁇ 1. It is determined whether or not the notification integrated distance range is greater than the integrated distance ⁇ 2 and equal to or less than the end integrated distance ⁇ 1 (step S913).
  • step S913 when the integrated travel distance is in the notification integrated distance range (YES in step S913), the control unit 52 displays the auto-down integrated distance notification display “travel limit exceeded” on the notification display unit 51e as the integrated distance notification process. Is displayed, and the operator is notified of the cancellation of the auto-down execution state (step S914).
  • the control unit 52 determines whether or not a cancellation forward / reverse travel condition that is an automatic down cancellation condition is satisfied (step S915).
  • the establishment of the release forward / reverse travel condition means that the traveling vehicle body is in a state in which the steering sensor 15 is never turned on until the control unit 52 is in the auto-down execution state and is not in the auto-down execution state.
  • 2 is a time when the straight travel distance, which is a travel distance continuously performed only in the forward / backward direction, exceeds a predetermined release forward / backward travel distance ⁇ 1 smaller than the reset distance ⁇ 3.
  • step S915 when the release forward / backward travel condition is satisfied (YES in step S915), the control unit 52 executes an automatic release process, and the notification display unit 51e displays an auto-down integrated distance release display “running restriction”. "Release control" is displayed for a predetermined time t4, an auto-down cancel flag is set (step S916), an auto-down cancel state is entered, and the process returns to the main routine.
  • the control unit 52 displays the engine speed / usage time display on the notification display unit 51e and the temperature / fuel display on the auto-down state display unit 51a as shown in FIG. 18 (a).
  • step S915 when the release forward / backward travel condition is not satisfied (NO in step S915), the controller 52 determines that the straight travel distance is smaller than the release forward / backward travel distance ⁇ 1, based on a predetermined notification forward / backward travel distance ⁇ 2. It is determined whether or not it is within the notification forward / backward travel range larger than the notification forward / backward travel distance ⁇ 2 and less than the release forward / backward travel distance ⁇ 1 (step S917).
  • step S917 when the straight travel distance is within the notification forward / reverse range (YES in step S917), the control unit 52 displays the auto-down integrated distance notification display “travel limit exceeded” on the notification display unit 51e as the forward / reverse notification processing. Is displayed, the operator is notified of the cancellation of the auto-down execution state (step S918), and the process returns to the main routine.
  • step S917 when the straight travel distance is not in the notification forward / reverse travel range (NO in step S917), the control unit 52 is less than a predetermined reset forward / reverse travel distance ⁇ 3 that is smaller than the report forward / backward travel distance ⁇ 2. Whether or not (step S919).
  • step 919 when the straight backward travel distance is less than the reset forward / reverse travel distance ⁇ 3 (YES in step S919), as shown in FIG. A usage time display is displayed (step S920), and the process returns to the main routine.
  • step S1 the control unit 52 performs a process for a quick-up cancel condition that is an auto-down cancel condition.
  • the control unit 52 starts to descend the rotary tiller 3, sets the auto down release flag, and enters the auto down release state.
  • the control unit 52 displays the stop symbol 51f shown in FIG. 18C on the warning display unit 51d at the predetermined time t4. It is displayed until it elapses, and an auto-down cancel flag is set to enter an auto-down cancel state.
  • the control unit 52 sets the descent start line on the coordinate system with the turning start position of the traveling machine body 2 as the origin O, and lowers the rotary tiller 3 when the current position of the traveling machine body 2 reaches the lowering start line. Therefore, when the tractor 1 travels back and forth to perform a tilling operation on the field H, the operator can select an arbitrary route and turn the traveling machine body 2. Further, it is not necessary to determine the timing for starting the descent of the rotary cultivator 3, and the headland width M from the coast E can be accurately aligned regardless of the level of the operator's maneuvering technique.
  • the switch in the auto-down release state, the switch from the neutral position to the reverse position of the shuttle lever 35 in the backup mode on state and the rotary tiller 3 not positioned at the upper limit height, the turn-up mode on state
  • at least one of switching the steering sensor 15 from the off state to the on state and the raising operation of the quick up lever 36 for the predetermined time t1 or more when the rotary tiller 3 is not positioned at the upper limit height Triggered by the auto-down execution state upon detection of this, and a descent start line is set on the coordinate system with the turning start position as the origin O, it is possible to cope with various turning operation procedures that vary depending on the operator's preference, etc. In addition to improving the degree of freedom of operations to be performed, it reduces unnecessary operation procedures and reduces the burden on the operator. It can be reduced.
  • the control unit 52 does not lower the rotary cultivator 3 even when the traveling machine body 2 reaches the lowering start line.
  • the descent of the machine 3 can be prevented.
  • the operator can freely select the horizontal position of the traveling airframe 2 when the work is resumed. For example, tillage work can be performed every other row, so that the degree of freedom of operation can be improved and the processing load on the control unit 52 can be reduced.
  • control unit 52 stores in advance the turning inner periphery and the turning outer periphery in each of the front wheel double speed on 4WD mode, the front wheel double speed off 4WD mode, and the autobrake mode, and the turning inner periphery corresponding to the selected mode. Since the current position is calculated based on the turning periphery, the error between the calculation result of the descent start line due to the difference in these modes and the position where the operator expects the descent start of the rotary tiller 3 is reduced, and The headland width M can be aligned to a predetermined width with high accuracy.
  • control unit 52 does not enter the auto-down execution state when the two-wheel drive mode unsuitable for the plowing work on the field H or a high speed lower than a predetermined reduction ratio is selected. Unintentional rotary tiller 3 can be prevented from descending. Moreover, since the control part 52 sets a descent
  • control part 52 sets a descent
  • the convenience is improved and the variation in the contact position due to the difference in the time required from the rotary tiller 3 to descend to the contact with the ground is prevented, and the headland width M from the heel is increased to a predetermined width.
  • the Y coordinate of the descent start line can be adjusted by the automatic down timing volume 33, an error may occur in the descent start line due to slippage of the traveling devices such as the front wheels 5 and the rear wheels 6, For example, it is possible to easily cope with plowing work in a trapezoidal field and the like, improving convenience, and aligning the headland width M from the ridge with a predetermined accuracy with high accuracy.
  • the operator can slip the front wheel 5 or the rear wheel 6
  • the rotary cultivator 3 The start of descent can be paused temporarily. Further, the operator can know in advance the timing at which the rotary tiller 3 starts to descend by the notice of the short sound interval from t5 to t6 by the notice buzzer 53, and the rotary tiller based on the notice of notice.
  • the rotary tiller 3 When it is determined that the timing at which 3 starts to descend is too early, the rotary tiller 3 can be temporarily stopped and the descending of the rotary tiller 3 can be started while visually confirming the work resuming position. . Further, in the auto-down execution state, the auto-down execution state is canceled by a short raising operation of the quick-up lever 36 less than the predetermined time t2, so that the lowering of the rotary tiller 3 can be easily interrupted, and further quick-up is performed. Since the auto-down execution state can be set again by the raising operation of the lever 36, the operator can easily perform turning again and the convenience can be improved.
  • the control unit 52 starts notifying the operator by the short sound of the notification buzzer 53, the aircraft angle is within the turning completion angle range, and the Y coordinate of the aircraft reference point 2a is before the descending start line.
  • the distance becomes less than or equal to the predetermined distance ⁇ the interval of the short sound of the notification buzzer 53 is shortened, so that the operator can know that it is in the auto-down execution state and know in advance that the descending start line is near
  • the operator can predict the difference between the tilling restart position by the automatic lowering of the rotary tiller 3 with automatic down control and the tilling restart position desired by the operator.
  • the control unit 52 starts notifying the operator by displaying on the liquid crystal display device 51, displays the direction of the descending start line based on the current position of the traveling machine body 2, and the descending start line. Since the display is changed according to the distance up to, the operator can know the direction in which the traveling machine body 2 should be steered and can know in advance that the descending start line is near. As a result, the operation burden on the operator is reduced, and before the rotary tiller 3 starts to descend, the difference between the tilling restart position by the automatic lowering of the automatic tiller 3 with the automatic down control and the tilling resume position desired by the operator is calculated. The operator can make a prediction.
  • control unit 52 calculates the current position and the aircraft angle of the traveling machine body 2 in the auto-down execution state, and when the traveling machine body 2 is separated from the turning start position by a predetermined distance ⁇ 1, the turning angle is determined from 180 ° to a predetermined value. When it is opened more than an angle or when the accumulated travel distance of the traveling machine body 2 exceeds the predetermined distance ⁇ 1, it is in an automatic down-off state. After going out of the field, the rotary tiller 3 can be prevented from descending unintended by the operator.
  • control unit 52 cancels the auto-down execution state while maintaining the auto-down on state. Can be prevented, and the auto-down execution state can be set again with a small number of operations.
  • the position of the traveling machine body 2 in the auto-down execution state is calculated by the steering sensor 15 and the vehicle speed sensor 11 that can use an inexpensive contact switch, an optical sensor or the like without using an expensive gyro sensor or GPS. Therefore, cost can be suppressed.
  • the current position and the body angle of the traveling machine body 2 are calculated on the basis of the value of the turning radius r that varies depending on the maximum output of the engine and the types and dimensions of the traveling devices such as the front wheels 5 and the rear wheels 6.
  • the control unit 52 can be shared between the traveling bodies 2 having different r.
  • the turning radius r of the traveling machine body 2 is calculated based on whether front wheel double speed control or autobrake control is being executed, and the current position and the aircraft angle of the traveling machine body 2 are calculated based on the turning radius r.
  • the calculation accuracy of the current position of the machine body 2 is improved, and the headland width M from the edge can be aligned with a predetermined width with high accuracy.
  • the vehicle speed is detected by detecting the rotation of one rear wheel 6 and the rotation of the rear wheel drive shaft
  • the rotation of other parts may be detected instead.
  • the rotation of the drive shaft may be detected, or the rotation of both the left and right rear wheels 6 may be detected.
  • the main transmission mechanism and the sub-transmission mechanism are multi-stage transmission mechanisms. However, if the total reduction ratio, which is the ratio between the engine speed and the rear wheel 6 speed, can be detected, The main transmission mechanism and the sub-transmission mechanism may be stepless transmission mechanisms, or may be configured to include only one of them. In addition, you may add the raising operation of the rotary tiller 3 by operation of the position lever 31 as turning start operation
  • the visual notification to the operator is based on the change of the design and notification text of the liquid crystal display device 51.
  • the display may be an organic EL display other than the liquid crystal or a dot matrix display device of an LED lamp, or light emission. You may alert
  • the various operation tools for performing input to the control unit 52 may be a touch panel provided in the liquid crystal display device 51 instead, or may be an input device provided outside the traveling machine body 2 capable of wireless communication. There may be.
  • the remote control device that steers the tractor 1 from a place where the operator does not get on may be provided, and the front wheel 5 may be steered by driving the steering device by a motor, hydraulic control, or the like.
  • the steering wheel 13 may be a lever or button that can swing or move horizontally, and the operation of the steering wheel 13 is not limited to detecting either the on state or the off state, and the operation angle can be detected numerically. It is good also as a structure in which the control part 52 can calculate based on the turning radius r calculated according to the operation angle. Note that the operation of the steering wheel 13 may directly detect the rotation of the steering wheel 13, or may be configured to detect the amount of movement of the tie rod or the amount of inclination of the front wheel 5.
  • the control unit 52 may be formed by a discrete circuit or may be integrally formed as a semiconductor integrated circuit element.
  • a working machine may be a scraping work machine, a plow, etc., and the operation
  • the present invention can be similarly applied to other work vehicles provided with a machine.
  • the present invention can be applied to a work vehicle such as a tractor, and is particularly suitable for a work vehicle that controls the working machine to move up and down during turning.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

走行装置(5,6)に支持される走行機体(2)と、走行機体(2)を操向する操向部(13)と、作業機(3)を昇降する昇降装置(16)と、を備える。制御部(52)は、走行機体(2)の旋回開始時の位置を原点とすると共に走行機体(2)の左右方向を横軸(X)、走行機体(2)の前後方向を縦軸(Y)とする座標系上に、横軸(X)と並行に延びる作業機下降開始線を設定する。そして、制御部(52)は、操向部(13)による操行操作及び前記走行装置(2)による走行距離に基づいて前記走行機体(2)の座標を算出し、前記走行機体(2)が旋回を完了した状態で前記作業機下降開始線に達すると、前記昇降装置(16)によって前記作業機(3)が下降を開始する旋回制御を実行可能である。

Description

作業車輌
 本発明は、トラクタや乗用田植機等の作業車輌に係り、詳しくは作業機を昇降する昇降装置の制御に関する。
 従来、圃場で行われる耕耘や植付等の作業において、枕地での旋回時に作動する作業機自動制御機構を備えた作業車が提案されている(特許文献1)。この作業車は、機体が枕地に達した状態で前輪が操向操作されると、距離センサにより機体の走行距離の積算が開始されると共に作業装置が上昇され、機体の走行距離が設定距離に達すると、作業装置が下降される。
特許第4605622号公報
 しかしながら、上記特許文献1に記載のものは、枕地での旋回時に操向操作を誤ると、目標とする作業装置の下降タイミングでなくても、走行距離が設定距離に達した時に作業装置が下降するので、畦際からの枕地幅を適切な幅に揃えて作業を行うには、オペレータに高い操縦技術が求められた。
 そこで、本発明は、オペレータの操縦技術の高さによらず、畦際からの枕地幅を精度良く揃えて作業を行うことが可能な作業車輌を提供することを目的とするものである。
 本発明は、走行装置(5、6)に支持される走行機体(2)と、該走行機体(2)を操向する操向部(13)と、作業機(3)を昇降する昇降装置(16)と、を備える作業車輌(1)において、
 前記走行機体(2)の旋回開始時の位置を原点とする座標系上に作業機下降開始線を設定し、前記操向部(13)による操向操作、及び前記走行装置(5、6)による走行距離に基づいて前記走行機体(2)の座標を算出し、前記走行機体(2)が旋回を完了した状態で前記作業機下降開始線に達すると、前記昇降装置(16)によって前記作業機(3)が下降を開始する旋回制御を実行可能な制御部(52)を備えてなる、
 ことを特徴とする。
 よって、制御部は、枕地での旋回の際にオペレータの操縦技術の高さによらず、畦際からの枕地幅を精度良く揃えて作業を行うことができる。また、オペレータが作業機の下降を開始するタイミングを誤る等の誤操作を防ぎ、効率的な耕耘作業を行うことができる。
 例えば図5、図7、図9及び図16を参照して、第1位置と第2位置との間で操作可能な操作具(36)を備え、前記制御部(52)は、前記旋回制御を実行可能な実行状態と、前記旋回制御を実行不能な解除状態と、を有し、前記操作具(36)が所定時間よりも短い間だけ前記第1位置に保持された後に前記第2位置に移動することで前記実行状態と前記解除状態とが切換えられ、前記実行状態において前記操作具(36)が前記第1位置に前記所定時間以上保持された場合には、前記操作具(36)が前記第1位置に位置している間、前記作業機(3)の下降が停止される。
 よって、旋回制御による作業機の下降開始タイミングがオペレータの希望する下降開始タイミングと合わない場合には、操作具の操作により実行状態から解除状態に切り換えて、走行機体の旋回を容易にやり直すことができる。また、旋回制御による作業機の下降開始タイミングがオペレータの希望する下降開始タイミングより早いことが予想された際に、操作具の操作により作業機の下降開始を一時停止することができる。
 例えば図1、図6及び図18(b)を参照して、前記作業機下降開始線に前記走行機体(2)が到達するように前記操向部(13)の操作方向を指示する第1表示部(51c)と、前記走行機体(2)の前記座標と前記作業機下降開始線との位置関係を表示する第2表示部(51b)と、を有する表示装置(51)を備える。
 よって、オペレータは、作業機下降開始線へ到達するための操向部の操作方向と、走行機体の現在地と作業機下降開始線との位置関係と、を知ることができ、走行機体の旋回操作を簡単に行うことができる。
 なお、上述カッコ内の符号は、図面と対照するためのものであるが、何ら本発明の構成を限定するものではない。
本実施の形態に係るトラクタを示す側面図。 運転部の後部を示す斜視図。 サイドパネルを示す斜視図。 サイドパネルを示す平面図。 運転部の前部を示す斜視図。 フロントパネルを示す斜視図。 制御部のブロック図。 オートダウン制御のメインルーチンを示すフロー図。 制御状態処理のフロー図。 機体情報取得処理のフロー図。 機体角度処理のフロー図。 角度演算のフロー図。 位置演算のフロー図。 位置フラグ処理のフロー図。 位置判定処理のフロー図。 下降開始処理のフロー図。 自動終了処理のフロー図。 液晶表示装置に表示される内容を示す図で、(a)はオートダウン解除状態表示を示す図、(b)はオートダウン制御実行状態であるときの表示を示す図、(c)はオートダウン制御によるロータリ耕耘機の下降が停止されているときの表示を示す図、(d)はオートダウン制御によるロータリ耕耘機の下降が一時休止されているときの表示を示す図、(e)はオートダウン制御によりロータリ耕耘機が下降中であるときの表示を示す図、(f)はオートダウン制御位置報知表示を示す図、(g)はオートダウン制御位置解除表示を示す図、(h)は機体角度が第1角度範囲内であるときの表示を示す拡大図、(i)は機体角度が第2角度範囲内であるときの表示を示す拡大図、(j)は機体角度が第3角度範囲内であるときの表示を示す拡大図、(k)は機体角度が旋回完了角度範囲内でかつ走行機体のY座標が所定範囲外であるときの表示を示す拡大図、(m)は機体角度が第4角度範囲内であるときの表示を示す拡大図、(n)は機体角度が第5角度範囲内であるときの表示を示す拡大図、(p)は機体角度が旋回完了角度範囲内でかつ走行機体のY座標が所定範囲内であるときの表示を示す拡大図。 トラクタの走行経路を示す概略図。
<全体構成>
 以下、本実施の形態について、図面に基づいて説明する。図1に示すように、本実施の形態に係る作業車輌としてのトラクタ1は、走行機体2と、回転するロータリ3bを有して走行機体2の後部に昇降可能に連結される作業機としてのロータリ耕耘機3と、を有する。走行機体2は、各電気信号の入出力を制御する図7に示す制御部52と、走行装置としての前輪5及び後輪6を有している。前輪5及び後輪6は、それぞれ左右に配置されて一対ずつ設けられており、前輪5が左右に操舵されることにより走行機体2が操向操作される。また、走行機体2は、前輪5及び後輪6に支持される機体フレーム7と、オペレータが乗車する運転座席23を有する運転部10と、を有している。なお、本実施の形態では、特に記載が無い限りは水平面に載置されたトラクタ1の運転座席23に着座したオペレータが向く正面方向を走行機体2の向きである前方とし、これを基準に前後左右方向を定義する。制御部52の出力側には、放音によりオペレータに各種の情報を報知可能な報知ブザー53が設けられており、制御部52からの出力信号により作動する。
<動力伝達構造>
 機体フレーム7は、前輪5及び後輪6を駆動するための動力を発生する図示しないエンジンと、エンジンが収納されるエンジンルーム9と、左右の後輪6の間に配置されている図示しないミッションケースと、を備えている。
 ミッションケースの内部には、エンジンの動力を変速する図示しない走行トランスミッションが収納されており、走行トランスミッションには、エンジンの動力を多段状に変速する図示しない主変速機構と、主変速機構で変速された動力を更に多段状に変速する図示しない副変速機構と、図示しないPTO軸への動力を変速するPTO変速機構と、が組み込まれている。PTO軸の回転がロータリ耕耘機3に伝達され、ロータリ3bがロータリ軸3aを中心として回転することにより圃場が耕耘される。
 ミッションケースの内部は潤滑油で満たされており、この潤滑油はエンジンの動力によって駆動する図示しない油圧ポンプへ供給され、油圧ポンプによって発生した油圧は図7に示すリフトアームバルブ20の操作によりロータリ耕耘機3を昇降する図示しないリフトアームシリンダに伝達される。
 主変速機構及び副変速機構を経由した動力は、図示しない後輪駆動軸によって図示しない後輪差動機構を介して左右の後輪6に分配され、図示しない前輪変速機構及び図示しない前輪駆動軸によって図示しない前輪差動機構を介して左右の前輪5に分配されて、走行機体2が前輪5の操舵により左右へ旋回する際に内輪と外輪の回転数の差を許容することにより、円滑な走行が可能となるように構成されている。
 後輪差動機構は、左右の後輪6を独立して制動可能な左右一対の図示しないブレーキ機構を介して、後輪駆動軸からの動力を左右の後輪6に伝達する。後輪駆動軸及び左右いずれか一方の後輪6の単位時間当たりの回転数は、それぞれ独立して車速センサ11により検出され、後輪駆動軸及び左右いずれか一方の後輪6の単位時間当たりの回転数に基づいて走行機体2の車速が算出される。ここで、車速とは、図19に示すように、後輪6の回転軸上における左右の後輪6の中心点である機体基準点2aの単位時間当たりの移動距離である。算出された時点における車速の情報は、電気信号により制御部52へ送信される。また、制御部52が、車速を時間で積分することにより、機体基準点2aの移動距離、即ち走行機体2の走行距離が得られる。
 前輪変速機構は図示しない摩擦多板式の油圧クラッチを備え、油圧クラッチが断接されることにより、走行機体2は左右の前輪5の平均周速度を左右の後輪6の平均周速度に対して増速駆動する前輪倍速制御が実行される前輪倍速オン4駆モードと、左右の前輪5の平均周速度を左右の後輪6の平均周速度に対して略等速駆動する前輪倍速オフ4駆モードと、動力が前輪5に伝達されない2駆モードと、が切替え可能に設けられている。
<ステアリング装置>
 機体フレーム7には、走行機体2を操向するためのステアリング装置12が配置されている。ステアリング装置12は、前輪5を操舵するためにオペレータが回動操作する操向部としてのステアリングホイール13と、ステアリングホイール13と一体に回動する図6に示すステアリングコラム14と、左右に延設されてステアリングコラム14の回動を左右方向の略直線運動に変換する図示しない操舵機構と、操舵機構の両端と左右の前輪5とを接続する図示しないタイロッドと、を有する。オペレータがステアリングホイール13を回動させるとステアリングコラム14が回動し、ステアリングコラム14の回動角及び回動方向に基づいてタイロッドが左右に移動して左右の前輪5が操舵される。
 ステアリング装置12には、ステアリングホイール13の一方向への所定角以上の回動が規制される図示しないストッパ部が左右の回動方向のそれぞれに設けられている。走行機体2が略直進するステアリングホイール13の中立位置から一方向への最大回動角度α1は、他方向への最大回動角度と略同角度となるように構成されている。ステアリングホイール13が中立位置から最大回動角度α1よりわずかに小さい所定角度α2以上回動されると、図7に示すステアリングセンサ15がオン状態となり、ステアリングホイール13がα2以上回動されていること及びステアリングホイール13の回動方向が検知される。また、ステアリングホイール13の回動角度が中立位置からα2未満であるとき、ステアリングセンサ15はオフ状態となり、ステアリングホイール13の回動角度がα2未満であることが検知される。ステアリングセンサ15のオン状態若しくはオフ状態及びステアリングホイール13の回動方向の情報は、電気信号により制御部52へ送信される。
<昇降リンク機構>
 走行機体2の後部には、機体フレーム7とロータリ耕耘機3とを連結すると共に、ロータリ耕耘機3を昇降する昇降装置としての昇降リンク機構16が設けられている。昇降リンク機構16は、走行機体2の後部に突設された図示しないリンクブラケットと、リンクブラケットに対し上下へ揺動可能に軸支されて後方へ延出する一本のトップリンク17と、トップリンクの下方に設けられてリンクブラケットに対し上下へ揺動可能に軸支されて後方へ延出する左右一対のロワリンク18と、を有し、トップリンク17及び左右のロワリンク18の後端部は、ロータリ耕耘機3に対し上下へ揺動可能に軸支されて3点リンク機構を形成している。左右のロワリンク18は、それぞれ左右に設けられた図示しないリフトロッドを介して図示しないリフトアームにより吊持されている。リフトアームは、前端がリンクブラケットに上下へ揺動可能に軸支されており、リフトアームシリンダの伸縮に伴うリフトアームの上下の揺動に伴ってロワリンク18が上下に揺動し、ロータリ耕耘機3が昇降する。リフトアームの揺動角は、リフトアームに設けられた図7に示すリフトアームセンサ21により検出されて、電気信号により制御部52へ送信される。
<運転部>
 次いで、運転部10について図2に沿って説明する。運転座席23の左側方には、揺動自在に支持されて副変速機構を変速操作する副変速レバー27が、運転座席23の下方には、回動可能に支持されてロータリ耕耘機3の下降速度を調節する図示しない下降速度調節バルブを操作可能な作業機下降速度調節ノブ29が、設けられている。副変速レバー27は高速段、中速段、低速段の3段階の変速位置に操作可能に設けられており、副変速レバー27の変速位置が高速段に位置するとき、エンジンの回転数を後輪駆動軸の回転数で除算した減速比が3段階のうちで最も小さく、低速段は減速比が最も大きく、中速段は減速比が高速段と低速段との間となるように構成されている。また、作業機下降速度調節ノブ29は、オペレータにより時計回りに回動されると下降速度調節バルブが操作されることによりロータリ耕耘機3の下降速度が低下し、反時計回りに回動されると下降速度が上昇する。副変速レバー27の変速位置の情報及び作業機下降速度調節ノブ29の回動位置の情報は、電気信号により制御部52へ送信される。
<サイドパネル>
 図2、図3及び図4に示すように、運転座席23の右側方には、各種の操作具やランプが配置されているサイドパネル26が設けられている。サイドパネル26には、揺動自在に支持されて主変速機構を変速操作する主変速レバー30、ロータリ耕耘機3を昇降操作するポジションレバー31、ロータリ耕耘機3の最大上昇高さを設定する上げ高さボリューム32及びオートダウンタイミングボリューム33が配置されている。
 主変速レバー30による主変速機構の変速操作は、副変速レバー27による副変速機構の変速操作とは独立して行うことが可能であり、8段から1段まで8段階の変速位置、動力を前輪5並びに後輪6へ伝達しない中立位置及び図示しないアクセルペダルの操作により8段から4段までを自動で変速するアクセル変速位置に操作可能に設けられている。8段は主変速機構による減速比が最も小さく、段数が小さくなるにつれて減速比が大きくなるように構成されている。主変速レバー30の変速位置の情報は、電気信号により制御部52へ送信される。
 ポジションレバー31は、前後へ揺動可能に支持されており、オペレータが操作の手を離した時の揺動位置が保持されるように構成されている。ポジションレバー31が前後に揺動操作されると、ポジションレバー31が保持されている位置に対応する高さまでロータリ耕耘機3が昇降する。ポジションレバー31が保持されている位置の情報は、電気信号により制御部52へ送信される。
 上げ高さボリューム32は回動可能に支持されており、回動位置により、所定の回動範囲に設けられている上げ高さ調節位置と、油圧取り出し位置と、を選択可能に設けられている。上げ高さボリューム32の回動位置が上げ高さ調節位置に位置しているときは、オペレータが上げ高さボリューム32を時計回りに回動するとロータリ耕耘機3が昇降する際の上限高さが拡大し、反時計回りに回動すると上限高さが縮小する。上げ高さボリューム32の回動位置が油圧取り出し位置に位置しているときは、走行機体2は、図示しない油圧取り出し口より油圧が伝達されて、例えばフロントローダー等を作動させることができる状態となると共に、リフトシリンダへの油圧が遮断されてロータリ耕耘機3が昇降しない状態となる。上げ高さボリューム32の回動位置の情報は、電気信号により制御部52へ送信される。
 オートダウンタイミングボリューム33は回動可能に支持されており、所定の回動範囲に設けられているオン位置とオフ位置とに変更可能に設けられている。オートダウンタイミングボリューム33の回動位置がオン位置に位置しているときは、後述するオートダウン制御において、回動位置に対応してロータリ耕耘機3の下降開始タイミングを調節することができる。オートダウンタイミングボリューム33の回動位置の情報は、電気信号により制御部52へ送信される。また、サイドパネル26には、自動入ランプ48が設けられており、自動入ランプ48は、オートダウンタイミングボリューム33がオフ位置に位置しているときは消灯し、オン位置に位置しているときは、後述するオートダウン許可条件の成立又は不成立により点灯又は点滅する。
<ステアリングホイール周り>
 図5に示すように、運転座席23の前方にはステアリングホイール13が配置されており、ステアリングホイール13の下方には左右のブレーキ機構を操作するブレーキペダル25及びアクセルペダルが配置されており、ステアリングホイール13の周囲には、走行機体2のメインスイッチであるスタータスイッチ34、オペレータが走行機体2の前進と後進とを切替え操作する前後進切替操作具としてのシャトルレバー35及び予め設定された上限高さと下限高さの間でロータリ耕耘機3を昇降操作する操作具としてのクイックアップレバー36が配置されている。
 シャトルレバー35は前進位置、中立位置及び後進位置に操作可能に設けられており、シャトルレバー35が前進位置に位置するときは走行機体2が前進し、中立位置に位置するときは走行機体2の走行は停止し、後進位置に位置するときは走行機体2が後進する。シャトルレバー35の操作位置の情報は、電気信号により制御部52へ送信される。
 クイックアップレバー36は上位置、中央位置及び下位置の間で揺動可能に支持されており、オペレータがクイックアップレバー36を上位置へ上げ操作又は下位置へ下げ操作をした後で操作の手を離すと中央位置に復帰するように、図示しない付勢部材が設けられている。ロータリ耕耘機3の昇降が停止している状態において、クイックアップレバー36の短上げ操作をするとロータリ耕耘機3は上限高さまで上昇し、短下げ操作をするとロータリ耕耘機3は下限高さであるポジションレバー31の揺動位置に対応する高さまで下降する。クイックアップレバー36の操作方向及び操作時間は、電気信号により制御部52へ送信される。なお、短上げ操作とは、クイックアップレバー36が第1位置としての上位置に所定時間t1以上t2未満(t1<t2)の間保持された後に第2位置としての中央位置に移動させる操作を言う。例えば、所定時間t1は0.1秒に設定され、t2は0.5秒に設定される。なお、短上げ操作は、本実施の形態では誤操作防止のために所定時間t1以上t2未満の上げ操作としたが、t2未満の上げ操作であってもよい。
<フロントパネル>
 図6に示すように、ステアリングホイール13の前方には各種の操作具、表示装置及びランプを備えるフロントパネル24が配置されている。フロントパネル24は、走行機体2の、バックアップモードのオン状態とオフ状態とを切り替えるバックアップ切替スイッチ37と、旋回アップモードのオン状態とオフ状態とを切り替える旋回アップ切替スイッチ39と、を備える。走行機体2が、バックアップモードのオン状態であるとき、バックアップランプ40が点灯し、ロータリ耕耘機3が上限高さに位置していない状態でシャトルレバー35(図5参照)が中立位置から後進位置へ切り替わる後進操作が行われるとロータリ耕耘機3が上限高さまで上昇する。旋回アップモードがオン状態であるとき、旋回アップランプ41が点灯し、ロータリ耕耘機3が上限高さに位置していない状態でステアリングセンサ15がオフ状態からオン状態へ切り替わるとロータリ耕耘機3が上限高さまで上昇する。バックアップ切替スイッチ37及び旋回アップ切替スイッチ39の切り替え情報は、電気信号により制御部52へ送信される。
 また、フロントパネル24は、油圧クラッチの断接操作をする4駆切替スイッチ42と、油圧クラッチの断接操作及びブレーキ機構による制動操作をする旋回倍速切替スイッチ43と、を備える。オペレータが4駆切替スイッチ42を操作する毎に、走行機体2は、前輪5に動力を伝達する各モードと前輪5に動力を伝達しない2駆モードとが切り替わり、前輪5に動力を伝達する各モードである際には、4駆切替ランプ45が点灯する。4駆切替スイッチ42及び旋回倍速切替スイッチ43による切り替え操作の情報は、電気信号により制御部52へ送信される。
 4駆切替ランプ45が点灯している状態において、旋回倍速切替スイッチ43を操作する毎に、走行機体2は、前輪倍速オフ4駆モード、前輪倍速オン4駆モード及びオートブレーキモードが切り替わる。前輪倍速オン4駆モードにおいては旋回倍速ランプ46が点灯し、オートブレーキモードにおいては、前輪倍速制御が実行されると共に、制御部52により旋回内側の後輪6が自動で制動されるオートブレーキ制御が実行され、オートブレーキ旋回ランプ47が点灯する。
 フロントパネル24は、走行機体2が圃場で耕耘作業を行うための作業モードと圃場外で路上等を走行するための走行モードとを切替可能なおまかせ切替スイッチ49、及び走行機体2が作業モードと走行モードとのいずれであるかを表示するおまかせ切替ランプ50を備える。オペレータがおまかせ切替スイッチ49を操作する毎に、走行機体2の作業モードと走行モードとが交互に切り替わるよう構成されている。走行機体2が作業モードから走行モードに切り替わると、バックアップモード及び旋回アップモードが共にオフ状態となり、前輪倍速オン4駆モード又はオートブレーキモードであった際には前輪倍速オフ4駆モードとなり、2駆モードであった際には2駆モードを維持し、クイックアップレバー36によるロータリ耕耘機3の昇降が規制されると共に、主変速レバー30がアクセル変速位置である際には、アクセルペダルの操作により主変速機構の変速操作が可能な状態となる。走行機体2が走行モードから作業モードに切り替わると、作業モードから走行モードに切り替える前の、バックアップモード、旋回アップモード、前輪倍速オン4駆モード、オートブレーキモード及び2駆モードのいずれかの状態になり、クイックアップレバー36によるロータリ耕耘機3の昇降が可能な状態になると共に、アクセルペダルの操作による主変速機構の変速操作が規制される。おまかせ切替スイッチ49による作業モード及び走行モードの切り替え情報は、電気信号により制御部52へ送信される。
<液晶表示装置>
 また、フロントパネル24は、走行機体2の状態や耕耘作業に関する各種の情報を表示する液晶表示装置51を備え、表示装置としての液晶表示装置51は、図18に示すようにオートダウン状態表示部51a及び報知表示部51eを有する。オートダウン状態表示部51aには、エンジンの温度表示並びに燃料の残量表示からなる温度・燃料表示又は後述するオートダウン制御に関する情報等が表示され、報知表示部51eには、エンジンの回転数表示並びに総使用時間表示からなるエンジン回転数・使用時間表示又はオートダウン制御に関する報知文等が表示される。
<ブロック図>
 図7は、本実施の形態における制御ブロック図を示しており、後述するオートダウン制御を実行可能な制御部52は、CPU52b、ROM52c、RAM52d、インターフェース52e等を有するマイクロコンピュータ52aを備えている。制御部52は、ステアリングセンサ15、リフトアームセンサ21、車速センサ11、クイックアップレバー36、主変速レバー30、副変速レバー27、ポジションレバー31、おまかせ切替スイッチ49、オートダウンタイミングボリューム33、上げ高さボリューム32、シャトルレバー35、旋回倍速切替スイッチ43、4駆切替スイッチ42、バックアップ切替スイッチ37、旋回アップ切替スイッチ39、作業機下降速度調節ノブ29及びスタータスイッチ34から入力された信号に基づくマイクロコンピュータ52aの演算により信号が出力され、リフトアームバルブ20及び報知ブザー53を作動すると共に、リフトアップランプ22、おまかせ切替ランプ50、旋回倍速ランプ46、4駆切替ランプ45、旋回アップランプ41、バックアップランプ40、オートブレーキ旋回ランプ47及び自動入ランプ48の点灯及び消灯を制御し、液晶表示装置51に各種の情報を表示させる。
<オートダウン制御>
 次に、制御部52が実行する旋回制御としてのオートダウン制御について図8から図17のフローチャート、図18の液晶表示装置51による報知内容及び圃場Hの耕耘作業におけるトラクタ1の走行経路の一例である図19の概略図に沿って説明する。すなわち、以下では、トラクタ1が右旋回する際のオートダウン制御についてのみ説明し、トラクタ1が左旋回する際のオートダウン制御についての説明は省略する。オートダウン制御は、走行機体2が直進走行及び枕地Jでの旋回を繰り返して往復走行をしながら行う圃場Hの耕耘作業において、枕地Jに達したトラクタ1がロータリ耕耘機3を上昇させて旋回を行った後で、作業機下降開始線としての下降開始線に達すると、自動的にロータリ耕耘機3の下降を開始する制御である。
<メインルーチン>
 図8は、オートダウン制御のメインルーチンを示すフローチャートである。オペレータがスタータスイッチ34をオン状態にするとメインルーチンが開始され、液晶表示装置51には図18(a)に示すように、オートダウン状態表示部51aの温度・燃料表示と、報知表示部51eのエンジン回転数・使用時間表示と、からなる、オートダウン解除状態表示画面が表示される。メインルーチンの実行中は、スタータスイッチ34がオフ状態になるまで、データ取得処理(ステップS1)から自動終了処理(ステップS9)までを順次繰り返す。まず、オペレータは、図19に示す経路L1及び経路L2の方向に圃場Hを往復走行しながら耕耘作業を行う場合の適切な枕地幅Mの測定を行う。具体的には、例えば畦際Eにロータリ耕耘機3の右端又は左端を近接させて畦際Eに沿って走行し、ロータリ耕耘機3による耕耘の幅が分かるような目印を付ける作業等である。
 次いで、オペレータは、耕耘作業を行う事前の準備として、各種の設定を行う。まず、おまかせ切替スイッチ49を操作して走行機体2を作業モードに設定し、上げ高さボリューム32の回動位置を上げ高さ調節位置に合わせた後で、オートダウンタイミングボリューム33の回動位置をオフ位置からオン位置にすることで、制御部52は、オートダウンオフ状態からオートダウンオン状態となり、自動入ランプ48が点滅を開始する。また、オペレータは、旋回倍速切替スイッチ43及び4駆切替スイッチ42を操作して走行機体2を前輪倍速オン4駆モード又はオートブレーキモードに設定し、かつ主変速レバー30及び副変速レバー27を変速操作して主変速機構による変速段と副変速機構による変速段の組み合わせにより決定される総減速比を所定のオートダウン減速比より大きい状態とすることで、オートダウン許可条件が成立して、自動入ランプ48が点灯する。その他、オペレータは、必要に応じて旋回アップ切替スイッチ39及びバックアップ切替スイッチ37の操作により、走行機体2を旋回アップモード又はバックアップモードのオン状態としておく。
 メインルーチンが開始されると、制御部52は、所定の旋回開始動作の有無等を検知するデータ取得処理を行う(ステップS1)。ここで、旋回開始動作とは、バックアップモードのオン状態でかつロータリ耕耘機3が上限高さに位置していない状態におけるシャトルレバー35の中立位置から後進位置への切り替え、旋回アップモードのオン状態でかつロータリ耕耘機3が上限高さに位置していない状態におけるステアリングセンサ15のオフ状態からオン状態への切り替え及びロータリ耕耘機3の昇降停止状態におけるクイックアップレバー36の短上げ操作である。
 オペレータは、図19に示す経路L1に走行機体2の向きを合わせ、経路L1に沿って枕地Jに向かって走行機体2を直進させながら耕耘作業を行う。走行機体2が枕地Jに近づくと、オペレータはロータリ軸3aの位置を目視で確認しながら耕耘作業を続け、ロータリ軸3aが枕地幅Mの目印が付けられた作業境界Cに達した時、旋回開始動作のいずれか一つを行うと、オートダウン開始フラグが立つ。
 なお、本実施の形態においては図19に示すL1、T、L2の経路で説明を行うが、枕地Jにおける旋回時の走行経路はこれに限られず、例えば走行機体2が畦際Eまで達してからオペレータがステアリングホイール13を時計回りにα2以上回動させ、バックアップモードのオン状態で走行機体2を後進させながら旋回させ走行機体2の向きを経路L2に合わせてもよい。また、枕地Jでロータリ軸3aが作業境界Cに達した時、オペレータがステアリングホイール13を反時計回りにα2以上回動させて走行機体2を前進させながら左へ略90°旋回させた後、ステアリングホイール13の回動角度を中立位置まで戻した状態で適当な位置まで走行機体2を直進後進させ、次いでステアリングホイール13を反時計回りにα2以上回動させた状態で前進させながら左へ90°旋回させて走行機体2の向きを経路L2に合わせてもよい。
<制御状態処理>
 次いで、制御部52は、現在の走行機体2の位置や下降開始線を算出する処理の実行を許可するか否かを判断する制御状態処理(ステップS2)を行う。図9は制御状態処理(ステップS2)のサブルーチンを示す。制御状態処理(ステップS2)が開始されると、制御部52は、まず、制御部52がオートダウンオン状態か否かを判断する(ステップS201)。
 制御部52がオートダウンオン状態であるとき(ステップS201のYES)、制御部52は、オートダウン実行フラグが立っているか否かを判断する(ステップS202)。ここで、オートダウン実行フラグとは、制御部52が、旋回中の走行機体2の位置や下降開始線の算出等を行うオートダウン実行状態のときに立っているフラグであり、オートダウンオン状態でかつオートダウン実行フラグが落ちている状態を便宜的に、オートダウン解除状態と呼ぶこととする。オートダウン実行フラグが落ちているとき(ステップS202のNO)、制御部52は、オートダウン開始フラグが立っているか否かを判断する(ステップS203)。すなわち、制御部52は、オートダウン開始条件が成立しているか否かを判断する。また、実行状態としてのオートダウン実行状態は、オートダウン制御を実行可能な状態であり、解除状態としてのオートダウン解除状態は、オートダウン制御を実行不能な状態である。
 ステップS203にて、オートダウン開始フラグが落ちているとき(ステップS203のNO)、制御部52は、処理をメインルーチンに戻し、オートダウン開始フラグが立っているとき(ステップS203のYES)、制御部52は、オートダウン開始フラグを落とし(ステップS204)、オートダウン許可条件が成立しているか否かを判断する(ステップS205)。
 オートダウン許可条件が成立していないとき(ステップS205のNO)、制御部52は、処理をメインルーチンに戻し、オートダウン許可条件が成立しているとき(ステップS205のYES)、制御部52は、オートダウン実行フラグを立ててオートダウン実行状態になる(ステップS206)。オートダウン実行状態では、オートダウン状態表示部51aに前後方向表示部51b、左右方向表示部51c及び警告表示部51dが表示され、警告表示部51dには図18(b)に示す警告文が、前後方向表示部51b及び左右方向表示部51cには図18(h)に示す図柄が表示される。また、オートダウン実行状態では、報知ブザー53が所定時間t5の間隔で繰り返される短音による報知を開始する。このようなオートダウン実行処理が行われた後、制御部52は処理をメインルーチンに戻す。ここで、オートダウン実行フラグが落ちている状態からオートダウン実行フラグが立っている状態に変化した時を旋回開始時と呼ぶこととする。また、前後方向表示部51b及び左右方向表示部51cには、後述する機体情報取得処理(ステップS3)から位置フラグ処理(ステップS10)までの結果に基づいて、図18(h)から(p)に示すいずれかの図柄が表示される。すなわち、第1表示部としての左右方向表示部51cは、下降開始線に走行機体2が到達するようにステアリングホイール13の操作方向を指示し、第2表示部としての前後方向表示部51bは、走行機体2の座標と下降開始線との縦軸Y方向の位置関係を表示する。
 ステップS202にて、オートダウン実行フラグが立っているとき(ステップS202のYES)、制御部52は、オートダウン許可条件が成立しているか否かを判断し(ステップS207)、オートダウン許可条件が成立していないとき(ステップS207のNO)、つまり、走行機体2が一度オートダウン実行状態で旋回又は耕耘作業を行っていたが、何らかの理由によりオートダウン許可条件が成立しないこととなる操作を行ったとき、制御部52は、自動入ランプ48を点滅させてオートダウン許可条件が成立していないことをオペレータに報知し(ステップS208)、オートダウンリセット処理としてオートダウン実行フラグ及びオートダウン開始フラグを共に落とし(ステップS210)、オートダウン解除状態となる。これは、例えば、耕耘作業が終了したことにより、オペレータがおまかせ切替スイッチ49を操作して走行機体2を作業モードから走行モードへ切り替えた場合等が挙げられる。
 ステップS207にて、オートダウン許可条件が成立しているとき(ステップS207のYES)、制御部52は、オートダウン解除フラグが立っているか否かを判断する(ステップS209)。オートダウン解除フラグは、オートダウン実行状態において、自動終了処理(ステップS9)等にて後述するオートダウン解除条件が成立すると立つフラグである。オートダウン解除フラグが落ちているとき(ステップS209のNO)、制御部52は、処理をメインルーチンに戻す。ステップS201にてオートダウンオフ状態であるとき(ステップS201のNO)及びステップS209にてオートダウン解除フラグが立っているとき(ステップS209のYES)のいずれかのとき、制御部52は、オートダウン実行フラグ及びオートダウン開始フラグを共に落とし、オートダウンリセット処理としてオートダウン実行状態を解除してオートダウン解除状態となり(ステップS210)、処理をメインルーチンに戻す。
<機体情報取得処理>
 図10は、トラクタの種類や設定等の情報を読み込み、下降開始線を決定する基準となる下降基準線Fを旋回開始時の走行機体2の位置に基づいて算出する機体情報取得処理(ステップS3)のサブルーチンを示す。機体情報取得処理が開始されると、制御部52は、馬力設定の取得として制御部52に予め記憶されているエンジンの最大出力の読み込み(ステップS301)及びタイヤ設定の取得として前輪5や後輪6等からなる走行装置の種類や寸法の読み込みを行う(ステップS302)。走行装置の種類には、一対の前輪5並びに一対の後輪6、一対の前輪5並びに一対のクローラ及び一対のクローラのみ等があり、走行装置の寸法には、クローラの長さ又は前輪5と後輪6との軸間距離、左右の前輪5及び後輪6間の距離等がある。このため、走行装置は、前輪5とクローラとの組み合わせでもよいしクローラのみでもよい。次いで、制御部52は、走行機体2が前輪倍速オフ4駆モード、前輪倍速オン4駆モード及びオートブレーキモードのいずれであるかを読み込む(ステップS303)。
 制御部52には、ステップS301、ステップS302及びステップS303の結果の様々な組み合わせに対応する旋回内周及び旋回外周が予め記憶されており、制御部52は、上記結果の組み合わせに対応する旋回内周及び旋回外周を演算する(ステップS304)。ここで、旋回内周及び旋回外周とは、ステアリングホイール13が左右いずれかの最大回動角度まで回動された状態で走行機体2が360°旋回した場合における旋回内側及び旋回外側の後輪6の移動距離である。
 次いで、制御部52は、ステップS304により読み込んだ旋回内周及び旋回外周に基づいて、旋回内周及び旋回外周の平均値である旋回円周を算出し(ステップS305)、この旋回円周に基づいて旋回半径rを算出する(ステップS306)。旋回半径rは、ステアリングホイール13が左右いずれかの最大回動角度まで回動された状態で走行機体2が旋回する場合に、機体基準点2aが描く円弧軌跡の半径であり、旋回円周を円周率の2倍で除算して算出される。
 次いで、制御部52は、制御部52に予め記憶されている、後輪6の回転軸とロータリ3bの着地時におけるロータリ軸3aとの平面視における距離であるヒッチ長さA(図19参照)を読み込む(ステップS307)と共に、車速センサ11により測定された車速を読み込む(ステップS308)。更に、制御部52は、ダッシング高さ、上げ高さボリューム32の回動位置及び作業機下降速度調節ノブ29の回動位置を読み込み、車速に基づいてロータリ耕耘機3が下降を開始してから着地するまでに機体基準点2aが移動する下降走行距離D(図19参照)を算出する(ステップS309)。ここで、ダッシング高さとは、ロータリ3bが回転した状態で接地した際にロータリ3bの回転力により走行機体2が急加速しないよう、ロータリ耕耘機3が所定の高さまで下降した後は下降速度を減少させてゆっくりと接地させる際に、予め設定される下降速度の変化点となる高さである。
 制御部52は、図19に示すように、平面視において、旋回開始時の機体基準点2aの位置、即ち旋回開始位置を原点Oとして、この時の後輪6の回転軸である横軸X及び横軸Xに直交すると共に原点Oを通過して、旋回開始時の走行機体2の後方をプラス方向とする縦軸Yによる2次元の直交座標系を設定する。なお、横軸Xは、旋回開始時の走行機体2の左右方向と平行に延び、縦軸Yは、旋回開始時の走行機体2の前後方向と平行に延びる。そして、制御部52は、機体情報取得処理(ステップS3)により行われるステップS307からステップS309の結果に基づいて、座標系上に、Y座標のみで定義されて下降開始線を算出する基準となる下降基準線Fを設定する(ステップS310)。また、座標系上における走行機体2の位置は、機体基準点2aの横軸X方向のX座標及び縦軸Y方向のY座標により特定される。
 旋回後に着地したロータリ耕耘機3のロータリ軸3aの位置が、旋回開始時の着地した状態におけるロータリ耕耘機3のロータリ軸3aの位置である作業境界Cと一致する位置、即ち旋回開始時の走行機体2の向きと旋回後の走行機体2の向きが逆方向である状態で、機体基準点2aのY座標がヒッチ長さAの2倍と等しくなる作業再開位置Gでロータリ耕耘機3が着地して耕耘作業が再開されると、畦際Eからの枕地幅Mを揃えて耕耘作業をすることができる。経路L2に沿って走行機体2が走行中に、作業再開位置Gより下降走行距離D手前で下降が開始されると、走行機体2が枕地Jで旋回をする際に走行機体2の走行を止めることなく、作業再開位置Gから耕耘作業を再開することができる。この場合における、作業再開位置GのY座標から下降走行距離Dを減算したY座標が下降基準線FのY座標となる。制御部52は、下降基準線Fを算出すると、処理をメインルーチンに戻す。また、オペレータは、オートダウンタイミングボリューム33の操作により、下降基準線Fに対してロータリ耕耘機3の下降を開始する位置のY座標を、所定長さであるSを用いて、最小-Sから最大+Sの範囲で調節した下降設定線を設定することができる。
<機体角度処理>
 図11は、オートダウン実行状態における走行機体2の向きの変化を算出し、算出結果に基づいて旋回の完了を判断する機体角度処理(ステップS4)のサブルーチンを示す。まず、制御部52は、旋回時走行中か否かを判断する(ステップS401)。旋回時走行中とは、オートダウン実行フラグが立っている、走行機体2の車速が0以外である及びステアリングセンサ15がオン状態である、の全ての条件を満たした状態である。旋回時走行中であると判断された場合(ステップS401のYES)、制御部52は、車速及び旋回半径rに基づいて微小時間dtにおける走行機体2の向きの変化、即ち角度変化量を算出する(ステップS403)。そして制御部52は、算出した角度変化量を累積して、旋回開始時における走行機体2の向きと演算時点における走行機体2の向きとが成す角度である機体角度を算出する(ステップS404)。ステップS401にて、旋回時走行中ではないと判断された場合(ステップS401のNO)、角度変化量を0として(ステップS402)、機体角度を算出する(ステップS404)。
 オペレータによるいずれかの旋回開始動作が行われると、PTO軸からロータリ耕耘機3への動力伝達が遮断されてロータリ耕耘機3は上限高さまで上昇し、オートダウンオン状態でありかつオートダウン開始条件及びオートダウン許可条件が全て成立している場合には、オートダウン実行状態となり、圃場Hにおける走行機体2の位置や向きの演算が開始される。このとき報知ブザー53からは所定時間t5の間隔で繰返される短音による報知が開始され、警告表示部51dには図18(b)に示すオートダウン注意表示「AUTODOWN/下降注意」が表示され、前後方向表示部51b及び左右方向表示部51cには、図18(h)の図柄が表示される。オペレータは、ステアリングホイール13を時計回りに最大回動角度まで回動して半径が旋回半径rとなる円弧状の経路Tに沿って走行機体2を走行させる。
 次いで、制御部52は、機体角度が90°以上であるか否かを判断し(ステップS405)、機体角度が90°未満であるとき(ステップS405のNO)、制御部52は、旋回未達状態と判断する(ステップS406)。より詳しくは、制御部52は、機体角度が20°未満であれば、前後方向表示部51b及び左右方向表示部51cに図18(h)に示す図柄を表示させ、20°以上かつ90°未満であれば、前後方向表示部51b及び左右方向表示部51cに図18(i)に示す図柄を表示させて、処理をメインルーチンに戻す。左右方向表示部51cは、それぞれ外形線のみが表示される非表示状態と外形線の内部が外形線と同一色で塗りつぶされる表示状態とが切り替え可能な矩形の表示部51iが、前後方向表示部51bの左右両側に3個ずつ左右方向へ並べられている。右側に位置する3つの表示部51iのいずれかが表示状態となっているときは、オペレータがステアリングホイール13を時計回りに回動した状態で走行機体2を走行させると、下降開始線に近づくことが出来ることを意味している。左側に位置する3つの表示部51iのいずれかが表示状態となっているときは、オペレータがステアリングホイール13を反時計回りに回動した状態で走行機体2を走行させると、下降開始線に近づくことが出来ることを意味している。また、前後方向表示部51bに表示される図柄が図18(h)に示す向きとなっているときは、走行機体2の後方に下降開始線があることを意味しており、前後方向表示部51bに表示される図柄が図18(p)に示す向きとなっているときは、走行機体2の前方に下降開始線があることを意味している。オペレータは、前後方向表示部51b及び左右方向表示部51cを見ながらステアリングホイール13を時計回りに最大回動角度まで回動した状態を維持しつつ、経路Tに沿って走行機体2の旋回を継続する。
 ステップS405にて、機体角度が90°以上であるとき(ステップS405のYES)、制御部52は、旋回済状態と判断し(ステップS407)、旋回角度条件を達成しているか否かを判断する(ステップS408)。旋回角度条件の達成とは、機体角度が旋回を完了したと判断される所定の旋回完了角度範囲内であることをいう。旋回完了角度範囲は、α3<α4、である所定角度α3及びα4を用いて、機体角度が180°±α3の範囲外から180°±α3の範囲内に変化後は、旋回完了角度範囲は180°±α4となり、機体角度が180°±α4の範囲内から180°±α4の範囲外に変化後は、旋回完了角度範囲は180°±α3となる。このように、機体角度が旋回完了角度範囲内にあるか否かにより旋回完了角度範囲を変化させることにより、機体角度が旋回完了角度範囲の上限又は下限付近であるときに例えば走行機体2が左右に多少ぶれたとしても、頻繁に処理が切り替わることを防いでいる。
 ステップS408にて、旋回角度条件を達成していないとき(ステップS408のNO)、制御部52は、旋回角度が90°以上かつ旋回完了角度範囲より小さい場合は、前後方向表示部51b及び左右方向表示部51cに図18(j)に示す図柄を表示させ、旋回角度が旋回完了角度範囲より大きくかつ270°以下である場合は、前後方向表示部51b及び左右方向表示部51cに図18(m)に示す図柄を表示させ、旋回角度が270°を超え300°未満である場合は、前後方向表示部51b及び左右方向表示部51cに図18(n)に示す図柄を表示させ旋回角度条件フラグを落として(ステップS409)、処理をメインルーチンに戻す。
 ステップS408にて、旋回角度条件を達成しているとき(ステップS408のYES)、制御部52は、座標系上の演算時点における機体基準点2aの座標、即ち現在位置のY座標が下降開始線からマイナス方向に所定距離以内である場合は、前後方向表示部51b及び前後方向表示部51bの左右に隣接する表示部51iが共に表示状態である図18(p)に示す図柄を表示させてかつ報知ブザー53による短音の間隔をt5より短い所定時間t6に変化させて下降開始線への到達が近いことをオペレータに予告報知し、上記以外の場合は、前後方向表示部51b及び左右方向表示部51cに図18(k)に示す図柄を表示させ、旋回角度条件フラグを立てて(ステップS410)、処理をメインルーチンに戻す。
 オペレータは左右方向表示部51cに図18(k)に示す図柄が表示されたことを確認して、ステアリングホイール13を中立位置に戻し、左右方向表示部51cに図18(p)に示す図柄が表示されるまで、経路L2に沿って走行機体2を経路L1と平行に直進走行させる。
 <角度演算>
 図12は、機体角度に基づいて、現在位置を演算する角度演算(ステップS5)のサブルーチンを示す。まず、制御部52は、角度変化量(すなわち旋回角度)、機体角度及び車速を読み込み(ステップS501)、角度変化量、機体角度及び車速に基づいて微小時間dtにおける座標系上の走行機体2の位置の変化、即ち座標変化量を算出する(ステップS502)。次いで、制御部52は、走行機体2の車速が0であるか否かを判断し(ステップS503)、車速(すなわち旋回速度)が0であるとき(ステップS503のYES)は、現在位置を維持して(ステップS504)処理をメインルーチンに戻し、車速が0以外であるとき(ステップS503のNO)は、現在位置に座標変化量を累積して新たな現在位置を算出し(ステップS505)、処理をメインルーチンに戻す。
<位置演算>
 図13は、下降基準線F、現在位置及び下降設定線に基づいて、下降開始線を演算する位置演算(ステップS6)のサブルーチンを示す。まず、制御部52は、オートダウン実行状態であるか否かを判断し(ステップS601)、オートダウン実行状態でないとき(ステップS601のNO)、下降開始線として下降設定線を採用し(ステップS602)、処理をメインルーチンに戻す。ここで、下降開始線とは、Y座標のみによって定義される変数であり、位置演算(ステップS6)及び詳細を後述する位置判定処理(ステップS7)により、下降基準線F、下降設定線、現在位置、機体角度及び走行機体2の経路に基づく演算の結果により変化し、現在位置が達することでロータリ耕耘機3の下降を開始する直線である。オートダウン実行状態である場合(ステップS601のYES)において、制御部52は、下降設定線のY座標が下降基準線FのY座標以上であるとき(ステップS603のYES)、及び下降設定線のY座標が現在位置のY座標以上かつ下降基準線FのY座標未満であるとき(ステップS605のYES)、下降開始線のY座標として下降設定線のY座標を採用し(ステップS606)、処理をメインルーチンに戻す。
 オートダウン実行状態である場合において、制御部52は、下降基準線FのY座標が下降設定線のY座標を超えてかつ現在位置のY座標以下であるとき(ステップS607のYES)、下降開始線のY座標として下降基準線FのY座標を採用し(ステップS608)、処理をメインルーチンに戻す。オートダウン実行状態である場合において、制御部52は、現在位置のY座標が下降設定線のY座標を超えてかつ下降基準線FのY座標未満であるとき(ステップS607のNO)、ステアリングセンサ15がオン状態である又はシャトルレバー35が後進位置に位置しているか否かを判断する(ステップS609)。ステアリングセンサ15がオン状態である又はシャトルレバー35が後進位置に位置しているとき(ステップS609のYES)、制御部52は、下降開始線のY座標として現在位置のY座標に所定のヒステリシス値γを加えた値を採用し(ステップS610)、処理をメインルーチンに戻す。ステップS609にて、ステアリングセンサ15がオン状態又はシャトルレバー35が後進位置に位置している状態のいずれでもないとき(ステップS609のNO)は、処理をメインルーチンに戻す。このように、オートダウン実行状態においては、現在位置と下降設定線のY座標の変化に伴って下降開始線のY座標が変化しながら下降開始線が設定されている状態が維持される。
 オペレータは、経路L2に沿って走行機体2を直進させながら前進走行させ、現在位置のY座標が下降開始線から所定距離β以内に達し、前後方向表示部51b及び左右方向表示部51cに図18(p)に示す図柄が表示されて、報知ブザー53の短音の間隔が小さくなったことを確認し、ロータリ耕耘機3の下降の開始が近いことを知る。
<位置フラグ処理>
 現在位置が下降開始線に達した場合でも、機体角度が経路L2から大きく乖離しているとき、ステアリングセンサ15がオン状態であるとき及び走行機体2が後進しているときは、走行機体2が適正に下降開始線に達したとは判断されず、ロータリ耕耘機3の下降は開始されない。図14は、走行機体2が適正に下降開始線に達したと判断されるための位置条件が成立しているか否かを判定する位置フラグ処理(ステップS10)のサブルーチンを示す。現在位置のY座標が下降開始線のY座標にヒステリシス値γを加算した値を超えているとき(ステップS11のYES)、制御部52は、位置条件フラグを落とし、位置通過条件フラグを立て(ステップS14)、処理をメインルーチンに戻す。ここで位置条件フラグとは、詳細を後述する位置判定処理において、制御部52がロータリ耕耘機3の下降を開始する下降フラグを立てるための条件の一つであり、現在位置が下降開始線に達したことを示すフラグである。また、位置通過条件フラグは、現在位置が下降開始線に達したがロータリ耕耘機3を下降する条件が整わずに下降開始線を通過したことを示すフラグである。
 ステップS11にて、現在位置のY座標が下降開始線のY座標にヒステリシス値γを加算した値以下であるとき(ステップS11のNO)、制御部52は、現在位置のY座標が下降開始線のY座標からヒステリシス値γを減算した値未満であるか否かを判断する(ステップS12)。ステップS12にて、現在位置のY座標が下降開始線のY座標からヒステリシス値γを減算した値未満であるとき(ステップS12のYES)、制御部52は、位置条件フラグと位置通過条件フラグを共に落とし(ステップS13)、処理をメインルーチンに戻す。ステップS12にて、現在位置のY座標が下降開始線のY座標からヒステリシス値γを減算した値以上であるとき(ステップS12のNO)、制御部52は、位置通過条件フラグが立っているか否かを判断する(ステップS15)。
 ステップS15にて、位置通過条件フラグが立っており(ステップS15のYES)かつ現在位置のY座標が下降開始線のY座標未満であるとき(ステップS16のYES)及び位置通過条件フラグが落ちており(ステップS15のNO)かつ現在位置のY座標が下降開始線のY座標を超えているとき(ステップS17のYES)、制御部52は、位置条件フラグを立てる(ステップS18)。ステップS16にて、現在位置のY座標が下降開始線のY座標以上であるとき(ステップS16のNO)及びステップS17にて、現在位置のY座標が下降開始線のY座標以下であるとき(ステップS17のNO)、制御部52は処理をメインルーチンに戻す。
<位置判定処理>
 図15は、位置フラグ処理(ステップS10)の結果に基づいてロータリ耕耘機3の下降要求を発する位置判定処理(ステップS7)のサブルーチンを示す。まず、制御部52は、車速が0以外か否かを判断し(ステップS701)、車速が0であるとき(ステップS701のNO)は処理をメインルーチンに戻し、車速が0でないとき(ステップS701のYES)は、ステアリングセンサ15がオフ状態かつシャトルレバー35が前進位置に位置しているか否かを判断する(ステップS702)。ステップS702にて、ステアリングセンサ15がオン状態であるか又はシャトルレバー35が前進位置に位置していないとき(ステップS702のNO)、制御部52は処理をメインルーチンに戻す。ステップS702にて、ステアリングセンサ15がオフ状態かつシャトルレバー35が前進位置に位置しているとき(ステップS702のYES)、制御部52は、位置条件フラグ及び旋回角度条件フラグが立っているか否かを判断する(ステップS703)。
 ステップS703にて、位置条件フラグ及び旋回角度条件フラグの少なくともいずれか一方が落ちているとき(ステップS703のNO)、制御部52は処理をメインルーチンに戻し、位置条件フラグ及び旋回角度条件フラグが共に立っているとき(ステップS703のYES)、制御部52は、下降遅延操作がタイムアウトしているか否かを判断する(ステップS704)。ここで、下降遅延操作とは、オートダウン実行状態において、クイックアップレバー36が上位置へ上げ操作された状態で、所定時間t2以上の間保持される長上げ操作のことである。下降遅延操作がされている状態においては、図18(d)に示すように警告表示部51dに一時休止シンボル51gが表示され、ロータリ耕耘機3の下降を規制する一時的な休止状態となり、ロータリ耕耘機3の下降を開始する他の条件が成立してもロータリ耕耘機3は上限高さの位置が維持される。すなわち、クイックアップレバー36が上位置に位置している間、ロータリ耕耘機3の下降が停止される。下降遅延操作において、オペレータがクイックアップレバー36を長上げ操作して保持した状態で、t2より長い所定時間t3を超えると、下降遅延操作がタイムアウトされる。例えば、所定時間t3は10秒に設定される。ステップS704にて、下降遅延操作がタイムアウトされているとき(ステップS704のYES)、制御部52は、タイムアウト処理としてオートダウン解除フラグを立てて、図18(c)に示すように警告表示部51dに所定時間t4が経過するまで停止シンボル51fを表示させ(ステップS707)、処理をメインルーチンに戻す。ステップS704にて、下降遅延操作がタイムアウトされていないとき(ステップS704のNO)、制御部52は、ロータリ耕耘機3の下降を開始する作業機下降フラグを立てて下降要求を発し(ステップ706)、処理をメインルーチンに戻す。また、下降遅延操作後、所定時間t3以内にオペレータがクイックアップレバー36から操作の手を離すと下降遅延操作は解除され、再びロータリ耕耘機3の下降が開始可能な状態となり、警告表示部51dは図18(b)の表示となる。
<下降開始処理>
 図16は、下降要求に基づいてリフトアームバルブ20が作動することによりロータリ耕耘機3の下降が開始される下降開始処理(ステップS8)のサブルーチンを示す。まず、制御部52は、作業機下降フラグが立っているか否かを判断し(ステップS801)、作業機下降フラグが落ちているとき(ステップS801のNO)、処理をメインルーチンに戻す。作業機下降フラグが立っているとき(ステップS801のYES)、制御部52はオペレータによって下降遅延操作がされていないかどうかを判断する(ステップS802)。ステップS802にて、オペレータによって下降遅延操作がされているとき(ステップS802のNO)、制御部52は処理をメインルーチンに戻す。下降遅延操作がされていないとき(ステップS802のYES)、制御部52は、作業機下降フラグを落として(ステップS803)、ロータリ耕耘機3の下降を開始する(ステップS804)。それと同時に制御部52は、図18(e)に示すように警告表示部51dに下降中シンボル51hを表示させ、報知ブザー53による放音によりオペレータにロータリ耕耘機3が下降中であることを報知して(ステップS805)、処理をメインルーチンに戻す。
 オペレータは、ロータリ耕耘機3の下降が開始された状態で走行機体2の前進走行を継続し、PTO軸からロータリ耕耘機3への動力伝達が再開されてロータリ3bが回転し、ロータリ3bが着地すると耕耘作業が再開される。
<自動終了処理>
 図17は、オートダウン実行状態における走行機体2の走行経路に基づいてオートダウン実行状態を解除する自動終了処理のサブルーチンを示す。オートダウン実行状態を解除する条件として、制御部52が、オートダウンオフ状態となるオートダウン終了条件や、オートダウン解除状態となるオートダウン解除条件が設けられている。
 まず、制御部52は、第1のオートダウン終了条件であるオートダウン終了位置条件についての処理を行う。制御部52は、オートダウン実行状態において、所定の終了距離ε1に基づいて、XY座標(X,Y)=(-ε1,-ε1)、(-ε1,ε1)、(ε1,-ε1)、(ε1,ε1)で定義される正方形の外側である終了位置範囲に、現在位置があるか否かを判断する(ステップS901)。ステップS901にて、現在位置が終了位置範囲にあるとき(ステップS901のYES)、制御部52は、報知表示部51eに、図18(g)に示すオートダウン制御位置解除表示「位置制限で自動を切ります」を所定時間t4の間表示し、制御部52をオートダウンオフ状態とする自動終了処理を実行し(ステップS902)、処理をメインルーチンに戻す。所定時間t4が経過後、制御部52は、報知表示部51eに図18(a)に示すエンジン回転数・使用時間表示を表示し、オートダウン状態表示部51aに図18(a)に示す温度・燃料表示を表示する。このように、オートダウン終了条件によりオートダウンオフ状態となった場合、再びオートダウンオン状態とするためには一度オートダウンタイミングボリューム33をオフ位置に回動した後に、制御部52が作業モードであること及び上げ高さボリューム32の回動位置が上げ高さ調節位置に位置していることを共に満たす状態において再びオートダウンタイミングボリューム33の回動位置をオフ位置からオン位置に変更しなくてはならない。
 ステップS901にて、現在位置が終了位置範囲に無いとき(ステップS901のNO)、制御部52は、終了距離ε1及び終了距離ε1より小さい所定の報知距離ε2に基づいて、-ε1≦X座標<-ε2、若しくは、ε2<X座標≦ε1、かつ、-ε1≦Y座標<-ε2、若しくは、ε2<Y座標≦ε1、で定義される報知位置範囲に、現在位置があるか否かを判断する(ステップS903)。ステップS903にて、現在位置が報知位置範囲にあるとき(ステップS903のYES)、位置報知処理として報知表示部51eに図18(f)に示すオートダウン制御位置報知表示「位置制限を越えます」を表示し、オペレータにオートダウン実行状態の解除の予告報知を行う(ステップS904)。
 ステップS903にて、現在位置が報知位置範囲に無いとき(ステップS903のNO)、制御部52は、終了距離ε1及び報知距離ε2より小さい所定のリセット距離ε3に基づいて、XY座標(X,Y)=(-ε3,-ε3)、(-ε3,ε3)、(ε3,-ε3)、(ε3,ε3)で定義される正方形の内側である終了位置リセット範囲に、現在位置があるか否かを判断する(ステップS905)。ステップS905にて、現在位置が終了位置リセット範囲にあるとき(ステップS905のYES)、制御部52は、終了位置リセット処理として図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を表示する(ステップS906)。
 次いで、制御部52は、第2のオートダウン終了条件であるオートダウン終了角度条件についての処理を行う。制御部52は、オートダウン実行状態における機体角度が、所定の終了角度λ1を超えているか否かを判断する(ステップS907)。機体角度が終了角度λ1を超えているとき(ステップS907のYES)、制御部52は、報知表示部51eに、オートダウン角度解除表示「角度制限で自動を切ります」を所定時間t4の間表示し、制御部52をオートダウンオフ状態とする自動終了処理を実行して(ステップS902)、処理をメインルーチンに戻す。所定時間が経過後、制御部52は、図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を、オートダウン状態表示部51aに温度・燃料表示を表示する。
 ステップS907にて、機体角度が終了角度λ1を超えていないとき(ステップS907のNO)、制御部52は、機体角度が、終了角度λ1より小さい所定の報知角度λ2に基づいて、λ2より大きくかつλ1以下である報知角度範囲にあるか否かを判断する(ステップS908)。ステップS908にて、機体角度が報知角度範囲にあるとき(ステップS908のYES)、角度報知処理として報知表示部51eに、オートダウン角度報知表示「角度制限を越えます」を表示し、オペレータにオートダウン実行状態の解除の予告報知を行う(ステップS909)。
 ステップS908にて、機体角度が報知角度範囲にないとき(ステップS908のNO)、制御部52は、機体角度が、報知角度λ2より小さいリセット角度λ3未満であるか否かを判断する(ステップS910)。ステップS910にて、機体角度がリセット角度λ3未満であるとき(ステップS910のYES)、制御部52は、終了角度リセット処理として図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を表示する(ステップS911)。
 次いで、制御部52は、第3のオートダウン終了条件である自動終了積算距離条件についての処理を行う。制御部52は、オートダウン実行状態となってからオートダウン実行状態でなくなるまでの積算走行距離が所定の終了積算距離ξ1を超えているか否かを判断する(ステップS912)。ここで、積算走行距離とは、前進、後進及び一時的な走行停止の有無に依らない、オートダウン実行状態となってからオートダウン実行状態でなくなるまでの機体基準点2aの移動距離の全てを加算した距離である。ステップS912にて、積算走行距離が終了積算距離ξ1を超えているとき(ステップS912のYES)、制御部52は、報知表示部51eに、オートダウン積算距離解除表示「走行制限で自動を切ります」を所定時間t4の間表示し、制御部52をオートダウンオフ状態とする自動終了処理を実行し(ステップS902)、処理をメインルーチンに戻す。所定時間t4が経過後、制御部52は、図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を、オートダウン状態表示部51aに温度・燃料表示を表示する。
 ステップS912にて、積算走行距離が終了積算距離ξ1を超えていないとき(ステップS912のNO)、制御部52は、積算走行距離が、終了積算距離ξ1より小さい報知積算距離ξ2に基づいて、報知積算距離ξ2より大きく終了積算距離ξ1以下の報知積算距離範囲にあるか否かを判断する(ステップS913)。ステップS913にて、積算走行距離が報知積算距離範囲にあるとき(ステップS913のYES)、制御部52は、積算距離報知処理として報知表示部51eに、オートダウン積算距離報知表示「走行制限を越えます」を表示し、オペレータにオートダウン実行状態の解除の予告報知を行う(ステップS914)。
 次いで、制御部52は、オートダウン解除条件である解除前後進条件が成立しているか否かを判断する(ステップS915)。ここで、解除前後進条件の成立とは、制御部52がオートダウン実行状態になってからオートダウン実行状態でなくなるまでの間に、ステアリングセンサ15が一度もオン状態とならない状態で、走行機体2が前後進のみで連続して行った移動距離である直進移動距離が、リセット距離ε3より小さい所定の解除前後進距離ρ1を超えたときをいう。ステップS915にて、解除前後進条件が成立しているとき(ステップS915のYES)、制御部52は、自動解除処理を実行し、報知表示部51eに、オートダウン積算距離解除表示「走行制限で制御解除します」を所定時間t4の間表示し、オートダウン解除フラグを立てて(ステップS916)、オートダウン解除状態となり、処理をメインルーチンに戻す。所定時間t4が経過後、制御部52は、図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を、オートダウン状態表示部51aに温度・燃料表示を表示する。
 ステップS915にて、解除前後進条件が成立していないとき(ステップS915のNO)、制御部52は、直進移動距離が、解除前後進距離ρ1より小さい所定の報知前後進距離ρ2に基づいて、報知前後進距離ρ2より大きく解除前後進距離ρ1以下の報知前後進範囲にあるか否かを判断する(ステップS917)。ステップS917にて、直進移動距離が報知前後進範囲にあるとき(ステップS917のYES)、制御部52は、前後進報知処理として報知表示部51eに、オートダウン積算距離報知表示「走行制限を越えます」を表示し、オペレータにオートダウン実行状態の解除の予告報知を行い(ステップS918)、処理をメインルーチンに戻す。
 ステップS917にて、直進移動距離が報知前後進範囲にないとき(ステップS917のNO)、制御部52は、直進移動距離が、報知前後進距離ρ2より小さい所定のリセット前後進距離ρ3未満であるか否かを判断する(ステップS919)。ステップ919にて、直進後方距離がリセット前後進距離ρ3未満であるとき(ステップS919のYES)、解除前後進距離リセット処理として図18(a)に示すように報知表示部51eにエンジン回転数・使用時間表示を表示し(ステップS920)、処理をメインルーチンに戻す。
 また、ステップS1にて、制御部52は、オートダウン解除条件であるクイックアップ解除条件についての処理を行う。オートダウン実行状態においてクイックアップレバー36の所定時間t7以上の下げ操作があったとき、制御部52はロータリ耕耘機3の下降を開始し、オートダウン解除フラグを立てて、オートダウン解除状態となる。また、オートダウン実行状態においてクイックアップレバー36の所定時間t2未満の短上げ操作があったとき、制御部52は、警告表示部51dに図18(c)に示す停止シンボル51fを所定時間t4が経過するまで表示させ、オートダウン解除フラグを立てて、オートダウン解除状態となる。
<本実施の形態の効果>
 以上より、制御部52は、走行機体2の旋回開始位置を原点Oとして下降開始線を座標系上に設定し、走行機体2の現在位置が下降開始線に達するとロータリ耕耘機3を下降するので、トラクタ1が往復走行して圃場Hの耕耘作業をする場合において、オペレータは、任意の経路を選択して走行機体2を旋回させることができる。また、ロータリ耕耘機3の下降を開始するタイミングを自ら判断する必要がなく、オペレータの操縦技術の高さに依らず畦際Eからの枕地幅Mを精度良く揃えることができる。また、オペレータがロータリ耕耘機3の下降を開始するタイミングを誤る等の誤操作、圃場Hの未耕耘部の形成及び重複耕耘作業等を防ぎ、効率的な耕耘作業を行うことができる。
 また、オートダウン解除状態において、バックアップモードのオン状態でかつロータリ耕耘機3が上限高さに位置していない状態でのシャトルレバー35の中立位置から後進位置への切り替え、旋回アップモードのオン状態でかつロータリ耕耘機3が上限高さに位置していない状態でのステアリングセンサ15のオフ状態からオン状態への切り替え及びクイックアップレバー36の所定時間t1以上の上げ操作のうち少なくともいずれか1つを検知したことを契機としてオートダウン実行状態となり、旋回開始位置を原点Oとする座標系上に下降開始線を設定するので、オペレータの好み等により異なる多様な旋回操作手順に対応でき、オペレータが行う操作の自由度を向上すると共に、不要な操作手順を減らしてオペレータの操作負担を軽減することができる。
 また、機体角度が旋回角度条件を達成していない状態においては、制御部52は、走行機体2が下降開始線に達してもロータリ耕耘機3の下降を行わないので、オペレータが意図しないロータリ耕耘機3の下降を防ぐことができる。また、下降開始線は、旋回開始時における機体基準点2aの前後方向の座標のみによって定義されるので、作業再開時における走行機体2の左右方向の位置についてはオペレータが自由に選択することができ、例えば1列分おきに耕耘作業をすることができるので、操作の自由度を向上すると共に制御部52の処理負担を軽減することができる。
 また、制御部52は、前輪倍速オン4駆モード、前輪倍速オフ4駆モード及びオートブレーキモードのそれぞれにおける旋回内周及び旋回外周を予め記憶して、選択されているモードに対応する旋回内周及び旋回外周に基づいて現在位置を算出するので、これらのモードの違いによる下降開始線の計算結果とオペレータがロータリ耕耘機3の下降開始を期待する位置との誤差を低減し、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。
 また、制御部52は、圃場Hでの耕耘作業に不適な2駆モード又は所定の減速比以下の高速段が選択されている際にはオートダウン実行状態とはしないこととしたので、オペレータが意図しないロータリ耕耘機3の下降を防ぐことができる。また、制御部52は、ロータリ耕耘機3の上限高さ及びオートダウン実行状態における車速に基づいて下降開始線を設定するので、ロータリ耕耘機3が下降を開始してから接地するまでに要する時間の違いによる接地位置のばらつきを防ぎ、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。
 また、制御部52は、上げ高さボリューム32の操作により調節されたロータリ耕耘機3の上限高さに基づいて下降開始線を設定するので、ロータリ耕耘機3が下降を開始してから接地するまでに要する時間の違いによる接地位置のばらつきを防ぎ、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。また、作業機下降速度調節ノブ29の操作により、オートダウン制御によるロータリ耕耘機3の下降速度を調節可能とし、制御部52は、ロータリ耕耘機3の下降速度に基づいて下降開始線を設定するので、利便性を向上すると共に、ロータリ耕耘機3が下降を開始してから接地するまでに要する時間の違いによる接地位置のばらつきを防ぎ、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。また、オートダウンタイミングボリューム33により、下降開始線のY座標を調節可能としたので、前輪5及び後輪6等の走行装置のスリップにより下降開始線に誤差が発生する場合や、矩形でない圃場、例えば台形等の圃場で耕耘作業を行う場合にも容易に対応ができ、利便性を向上すると共に、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。
 また、オートダウン実行状態におけるクイックアップレバー36の所定時間t2以上の長上げ操作により、ロータリ耕耘機3の下降を一時的に休止状態にできるので、オペレータは、前輪5又は後輪6のスリップやオペレータが操向操作を誤る等により、オートダウン制御によるロータリ耕耘機3の下降が開始されるタイミングがオペレータの希望する下降が開始されるタイミングより早いことが予想された際に、ロータリ耕耘機3の下降の開始を一時的に休止することができる。また、オペレータは、報知ブザー53による短音の間隔がt5からt6になる予告報知により、ロータリ耕耘機3が下降を開始するタイミングを事前に知ることができると共に、予告報知に基づいてロータリ耕耘機3が下降を開始するタイミングが早すぎると判断した際にはロータリ耕耘機3を一時的に休止状態とし、目視で作業の再開位置を確認しながらロータリ耕耘機3の下降を開始することができる。また、オートダウン実行状態において、クイックアップレバー36の所定時間t2未満の短上げ操作により、オートダウン実行状態が解除されるので、ロータリ耕耘機3の下降を容易に中断できると共に、更なるクイックアップレバー36の上げ操作により再度オートダウン実行状態とすることができるので、オペレータは容易に旋回のやり直しを行うことができ、利便性を向上できる。
 また、制御部52は、オートダウン実行状態になると報知ブザー53の短音によりオペレータに対する報知を開始し、機体角度が旋回完了角度範囲内でかつ機体基準点2aのY座標が下降開始線から手前に所定距離β以下となった際に報知ブザー53の短音の間隔を短縮するので、オペレータはオートダウン実行状態であることを知ることができると共に、下降開始線が近いことを事前に知ることができ、オートダウン制御のロータリ耕耘機3の自動下降による耕耘再開位置とオペレータが希望する耕耘再開位置との差をオペレータが予測することができる。また、制御部52は、オートダウン実行状態になると液晶表示装置51の表示によりオペレータに対する報知を開始し、走行機体2の現在位置を基準とする下降開始線の方向を表示させ、また下降開始線までの距離に応じて表示を変化させるので、オペレータは走行機体2の操向すべき方向を知ることができると共に下降開始線が近いことを事前に知ることができる。これにより、オペレータの操作負担を軽減すると共に、ロータリ耕耘機3が下降を開始する前にオートダウン制御のロータリ耕耘機3の自動下降による耕耘再開位置とオペレータが希望する耕耘再開位置との差をオペレータが予測することができる。
 また、制御部52は、オートダウン実行状態における走行機体2の現在位置及び機体角度を算出し、走行機体2が旋回開始位置から所定距離ε1を超えて離れたとき、旋回角度が180°から所定角度以上開いたとき又は走行機体2の積算走行距離が所定距離ξ1を超えたときに、オートダウンオフ状態となるので、圃場Hを往復しながら行う耕耘作業を終えて枕地を走行する際や圃場外へ出た後等において、オペレータが意図しないロータリ耕耘機3の下降を防ぐことができる。
 また、直進移動距離が所定の前後進解除距離ρを超えたとき、制御部52は、オートダウンオン状態を維持したままオートダウン実行状態を解除するので、オペレータが意図しないロータリ耕耘機3の下降を防ぐことができると共に、少ない操作で再びオートダウン実行状態とすることができる。
 また、オートダウン実行状態における走行機体2の位置は、高価なジャイロセンサやGPS等を使用せず、安価な接点スイッチや光学センサ等を使用可能なステアリングセンサ15及び車速センサ11によって算出しているので、コストを抑制できる。オートダウン制御において、エンジンの最大出力、前輪5及び後輪6等の走行装置の種類や寸法により異なる旋回半径rの値に基づいて走行機体2の現在位置及び機体角度を算出するので、旋回半径rが異なる走行機体2間で制御部52を共通化できる。また、前輪倍速制御やオートブレーキ制御が実行されているか否かに基づいて走行機体2の旋回半径rを算出し、この旋回半径rにより走行機体2の現在位置及び機体角度を算出するので、走行機体2の現在位置の算出精度が向上し、畦際からの枕地幅Mを所定の幅に高い精度で揃えることができる。
 なお、車速は一方の後輪6の回転及び後輪駆動軸の回転を検出することとしたが、代わりに他の部分の回転を検出してもよく、例えば後輪駆動軸の回転の代わりにドライブシャフトの回転を検出しても良いし、左右両方の後輪6の回転を検出してもよい。なお、主変速機構及び副変速機構は多段状の変速機構であることとしたが、エンジンの回転数と後輪6の回転数の比である総減速比が検知できるようになっていれば、主変速機構及び副変速機構は無段状の変速機構でもよいし、いずれか一方のみを備える構成としてもよい。なお、旋回開始動作としてポジションレバー31の操作によるロータリ耕耘機3の上昇操作を加えてもよい。
 なお、オペレータに対する視覚的な報知は液晶表示装置51の図柄や報知文の変化によることとしたが、代わりに液晶以外の有機ELディスプレイや、LEDランプのドットマトリクス表示装置による表示でもよいし、発光する表示装置の色や位置の変化で報知を行ってもよい。なお、制御部52に対する入力を行う各種の操作具は、代わりに液晶表示装置51に設けられたタッチパネルであってもよいし、無線通信が可能な走行機体2の外部に設けられた入力装置であってもよい。なお、オペレータが乗車せずに離れたところからトラクタ1を操縦する遠隔操作装置を備える構成とし、モーターや油圧制御等によりステアリング装置が駆動されて前輪5が操舵される構造としてもても良い。なお、ステアリングホイール13は、揺動又は水平動可能なレバーやボタン等でもよいし、ステアリングホイール13の操作はオン状態とオフ状態とのいずれかの検知に限られず、操作角度を数値で検出可能として操作角度に応じて算出した旋回半径rに基づいて制御部52が演算を可能な構成としてもよい。なお、ステアリングホイール13の操作はステアリングホイール13の回動を直接検知してもよいし、タイロッドの移動量や前輪5の傾き量で検知する構成としてもよい。なお、制御部52はディスクリート回路により形成されていてもよいし、半導体集積回路素子として一体に形成されていてもよい。
 なお、上記実施の形態はロータリ耕耘機3を備えるトラクタ1について説明したが、これに限られず、作業機は代掻き作業機やプラウ等でもよいし、田植機等、走行機体2に昇降可能な作業機が設けられている他の作業車輌にも同様に適用可能である。
 本発明は、トラクタ等の作業車輌に適用可能であり、特に旋回時に作業機を昇降制御する作業車輌に好適である。
 1  作業車輌(トラクタ)
 2  走行機体
 3  作業機(ロータリ耕耘機)
 5  走行装置(前輪)
 6  走行装置(後輪)
13  操向部(ステアリングホイール)
16  昇降装置(昇降リンク機構)
36  操作具(クイックアップレバー)
51  表示装置(液晶表示装置)
51b 第2表示部(前後方向表示部)
51c 第1表示部(左右方向表示部)
52  制御部
 

Claims (3)

  1.  走行装置に支持される走行機体と、該走行機体を操向する操向部と、作業機を昇降する昇降装置と、を備える作業車輌において、
     前記走行機体の旋回開始時の位置を原点とする座標系上に作業機下降開始線を設定し、前記操向部による操向操作、及び前記走行装置による走行距離に基づいて前記走行機体の座標を算出し、前記走行機体が旋回を完了した状態で前記作業機下降開始線に達すると、前記昇降装置によって前記作業機が下降を開始する旋回制御を実行可能な制御部を備えてなる、
     ことを特徴とする作業車輌。
  2.  第1位置と第2位置との間で操作可能な操作具を備え、
     前記制御部は、前記旋回制御を実行可能な実行状態と、前記旋回制御を実行不能な解除状態と、を有し、前記操作具が所定時間よりも短い間だけ前記第1位置に保持された後に前記第2位置に移動することで前記実行状態と前記解除状態とが切換えられ、
     前記実行状態において前記操作具が前記第1位置に前記所定時間以上保持された場合には、前記操作具が前記第1位置に位置している間、前記作業機の下降が停止される、
     ことを特徴とする請求項1に記載の作業車輌。
  3.  前記作業機下降開始線に前記走行機体が到達するように前記操向部の操作方向を指示する第1表示部と、前記走行機体の前記座標と前記作業機下降開始線との位置関係を表示する第2表示部と、を有する表示装置を備える、
     ことを特徴とする請求項1又は2に記載の作業車輌。
     
PCT/JP2017/046575 2016-12-27 2017-12-26 作業車輌 WO2018124040A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780080810.4A CN110139551A (zh) 2016-12-27 2017-12-26 工作车辆
US16/452,838 US11122727B2 (en) 2016-12-27 2019-06-26 Working vehicle

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016252422A JP6803227B2 (ja) 2016-12-27 2016-12-27 作業車輌
JP2016-252421 2016-12-27
JP2016252420A JP6700167B2 (ja) 2016-12-27 2016-12-27 作業車輌
JP2016252419A JP6803225B2 (ja) 2016-12-27 2016-12-27 作業車輌
JP2016-252419 2016-12-27
JP2016252423A JP6700168B2 (ja) 2016-12-27 2016-12-27 作業車輌
JP2016-252422 2016-12-27
JP2016-252423 2016-12-27
JP2016-252420 2016-12-27
JP2016252421A JP6803226B2 (ja) 2016-12-27 2016-12-27 作業車輌

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/452,838 Continuation US11122727B2 (en) 2016-12-27 2019-06-26 Working vehicle

Publications (1)

Publication Number Publication Date
WO2018124040A1 true WO2018124040A1 (ja) 2018-07-05

Family

ID=62709485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046575 WO2018124040A1 (ja) 2016-12-27 2017-12-26 作業車輌

Country Status (3)

Country Link
US (1) US11122727B2 (ja)
CN (1) CN110139551A (ja)
WO (1) WO2018124040A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031593A (ja) * 2018-08-30 2020-03-05 株式会社クボタ 圃場作業車のための自動操舵システム
WO2020044726A1 (ja) * 2018-08-29 2020-03-05 株式会社クボタ 自動操舵システムおよび収穫機、自動操舵方法、自動操舵プログラム、記録媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027268B2 (ja) * 2018-06-25 2022-03-01 株式会社クボタ 作業車両
US12069974B2 (en) 2022-06-17 2024-08-27 Cnh Industrial America Llc Agricultural vehicle with satellite and variable wheel speed turn control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119363A (ja) * 2008-11-21 2010-06-03 Iseki & Co Ltd 旋回連動制御式の作業車両
JP2014103891A (ja) * 2012-11-27 2014-06-09 Mitsubishi Agricultural Machinery Co Ltd 移植機
JP2015112070A (ja) * 2013-12-12 2015-06-22 株式会社クボタ 圃場作業機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465622Y1 (ja) 1967-02-25 1971-02-27
JPS5537022A (en) 1978-09-08 1980-03-14 Kokusai Denshin Denwa Co Ltd <Kdd> Time division switching circuit net
US4715012A (en) * 1980-10-15 1987-12-22 Massey-Ferguson Services N.V. Electronic tractor control
US5103924A (en) * 1990-09-10 1992-04-14 Walker Dean B Mechanically coupled automatic guidance system for agricultural tractors
JP4605622B2 (ja) 2001-02-07 2011-01-05 株式会社クボタ 作業車の作業装置昇降構造
US20060178823A1 (en) * 2005-02-04 2006-08-10 Novariant, Inc. System and method for propagating agricultural vehicle guidance paths that have varying curvature along their length
JP4713610B2 (ja) * 2008-03-31 2011-06-29 株式会社クボタ 作業車の制御装置
JP5689739B2 (ja) * 2011-05-09 2015-03-25 ヤンマー株式会社 田植機
US9020757B2 (en) * 2012-05-11 2015-04-28 Trimble Navigation Limited Path planning autopilot
JP5751314B2 (ja) 2013-11-15 2015-07-22 井関農機株式会社 乗用型苗移植機
JP6368964B2 (ja) * 2014-03-26 2018-08-08 ヤンマー株式会社 作業車両の制御装置
WO2015147224A1 (ja) * 2014-03-28 2015-10-01 ヤンマー株式会社 自律走行作業車両
DE102015224747A1 (de) * 2014-12-15 2016-06-16 Deere & Company Feldrandbereich-betriebssteuerungssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119363A (ja) * 2008-11-21 2010-06-03 Iseki & Co Ltd 旋回連動制御式の作業車両
JP2014103891A (ja) * 2012-11-27 2014-06-09 Mitsubishi Agricultural Machinery Co Ltd 移植機
JP2015112070A (ja) * 2013-12-12 2015-06-22 株式会社クボタ 圃場作業機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044726A1 (ja) * 2018-08-29 2020-03-05 株式会社クボタ 自動操舵システムおよび収穫機、自動操舵方法、自動操舵プログラム、記録媒体
JP2020031593A (ja) * 2018-08-30 2020-03-05 株式会社クボタ 圃場作業車のための自動操舵システム

Also Published As

Publication number Publication date
US20190313567A1 (en) 2019-10-17
US11122727B2 (en) 2021-09-21
CN110139551A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2018124040A1 (ja) 作業車輌
CN108334067B (zh) 行驶控制装置
US9943023B2 (en) Lift control apparatus for ground work apparatus
JP6645844B2 (ja) 作業車
JP6700168B2 (ja) 作業車輌
JP7482957B2 (ja) 作業車両
JP2016071426A (ja) 走行作業車の操縦補助装置
JP2020120619A (ja) 作業車両
JP6888983B2 (ja) 作業車輌
JP6700167B2 (ja) 作業車輌
JP6803226B2 (ja) 作業車輌
JP6803225B2 (ja) 作業車輌
JP6803227B2 (ja) 作業車輌
JP2020195288A (ja) 作業車両
JP2021036785A (ja) 作業車両
JP5955804B2 (ja) 作業車両
JP5955803B2 (ja) 作業車両
JP5701677B2 (ja) 田植機
JP2009154838A (ja) 作業車輌
JP2017149207A (ja) 作業車両
JP2020006873A (ja) 作業車両
JP6673422B2 (ja) 苗移植機
JP7557649B2 (ja) 作業車両
JP6184359B2 (ja) トラクタ
JP4874869B2 (ja) 作業車輌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888489

Country of ref document: EP

Kind code of ref document: A1