WO2015146507A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2015146507A1
WO2015146507A1 PCT/JP2015/056225 JP2015056225W WO2015146507A1 WO 2015146507 A1 WO2015146507 A1 WO 2015146507A1 JP 2015056225 W JP2015056225 W JP 2015056225W WO 2015146507 A1 WO2015146507 A1 WO 2015146507A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
coating
rake face
cutting edge
flank
Prior art date
Application number
PCT/JP2015/056225
Other languages
English (en)
French (fr)
Inventor
南 徹
恭也 山田
Original Assignee
兼房株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼房株式会社 filed Critical 兼房株式会社
Priority to JP2016510185A priority Critical patent/JP6404906B2/ja
Priority to US15/122,779 priority patent/US10179366B2/en
Priority to EP15769762.4A priority patent/EP3106250B1/en
Priority to CN201580016073.2A priority patent/CN106457411B/zh
Publication of WO2015146507A1 publication Critical patent/WO2015146507A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B33/00Sawing tools for saw mills, sawing machines, or sawing devices
    • B27B33/02Structural design of saw blades or saw teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/245Cross section of the cutting edge rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G13/00Cutter blocks; Other rotary cutting tools

Definitions

  • the present invention relates to a cutting tool used for cutting non-ferrous metals and alloys thereof, wood, wood material or resin.
  • a cutting tool for cutting wood one with one or both sides of a rake face and a flank face covered with a hard coating has been proposed (see, for example, Patent Document 1).
  • the hard film is formed on a base material such as tool steel by a coating process using an arc ion plating apparatus, and is formed with a film thickness of, for example, about 4 ⁇ m over the rake face and the flank face. Then, one of the rake face and the flank face is polished and bladed. Thereby, while the base material is exposed on one of the rake face and the flank face, a blade with the other of the flank face or the rake face not polished is covered with the hard coating is obtained. Note that, in order to obtain a cutting tool in which both the rake face and the flank face are covered with a hard coating, the base material is previously bladed and polished.
  • a knives with either one of the rake face or flank face coated with a hard coating requires special special grinding stones or severe polishing conditions in order to obtain good cutting quality, which increases manufacturing costs. Problems arise.
  • the rake face and flank face do not take into account the film thickness ratios of the respective faces. Since the wear rate of the steel does not change much, the shape of the worn cutting edge becomes round. That is, a double-sided coated blade, like a single-sided blade, can maintain a sharp cutting edge derived from self-polishing properties in which the surface not coated with a hard coating progresses faster than the surface coated with a hard coating. I can't expect it.
  • the cutting edge is hard due to the stress remaining locally on the cutting edge with an acute angle. It has also been found that film chipping is likely to occur.
  • the present invention has been proposed in order to suitably solve these problems related to the prior art, and a cutting tool that can suppress chipping of the cutting blade while maintaining the sharpness of the cutting blade.
  • the purpose is to provide.
  • the cutting tool provides: Cutting used to cut non-ferrous metals and their alloys, wood, wood materials or resins, having a coating formed on at least part of the rake face and flank face including the cutting edge by covering the base material
  • the coating is formed such that any one of a rake face covering portion that covers the rake face and a flank face covering portion that covers the flank face is thicker than the other,
  • the film thickness of the thicker coating part is set in the range of 0.5 ⁇ m to 15.0 ⁇ m, and the ratio of the film thickness of the thinner coating part to the film thickness of the thicker coating part is 0.01 to
  • the gist is that it is set to be in the range of 0.15.
  • the surface of the rake face and the flank face having the thin film thickness has a self-polishing property in which the wear progresses more than the thick film surface. Can maintain the sharpness. Moreover, chipping of the cutting edge can be suppressed by forming the coating so that the film thickness differs between the rake face and the flank face.
  • the portion corresponding to the cutting edge in the base material is 0.2 ⁇ m to 18 ⁇ m from the intersection of the extension line of the rake face and the extension line of the relief surface in the base material.
  • the gist is that they are formed so as to be separated from each other.
  • the chipping of the cutting edge is performed in the cutting tool coated with the coating over the rake face and the flank face including the part by chamfering the part corresponding to the cutting edge in the base material. Can be further suppressed.
  • the gist of the invention according to claim 3 is that a portion of the base material corresponding to the cutting edge is formed in an arc shape having a radius of 0.5 ⁇ m to 6.0 ⁇ m.
  • the invention of claim 3 in the cutting tool coated with the coating over the rake face and the flank face including the part by forming the part corresponding to the cutting edge in the base material in an arc shape, The chipping of the blade can be more suitably suppressed.
  • the invention according to claim 4 is characterized in that the ratio of the film thickness of the thinner covering portion to the film thickness of the thicker covering portion is set to be in a range of 0.01 to 0.05. . According to the invention according to claim 4, by setting the ratio of the film thickness of the thinner coating part to the film thickness of the thicker coating part in the film, the ratio is set in the range of 0.01 to 0.05, Maintaining the sharpness of the cutting edge by self-polishing characteristics and suppressing the chipping of the cutting edge can be achieved in a balanced manner.
  • the coating film has a layer composed of at least chromium-containing nitride, oxynitride, oxide, carbide, carbonate, carbonitride, and carbonitride. It is a summary. According to the invention which concerns on Claim 5, abrasion resistance and corrosion resistance can be improved by having a layer containing chromium as a film.
  • the cutting tool according to the present invention can suppress chipping of the cutting blade while maintaining the sharpness of the cutting blade.
  • FIG. 1 is a top view which shows the replacement blade of the cutting tool which concerns on the suitable Example of this invention
  • (b) is a front view.
  • It is a cross-sectional schematic diagram which shows the cutting blade of the cutting tool which concerns on an Example, and is a case where a coating film is formed thicker than a flank in a rake face.
  • It is a cross-sectional schematic diagram which shows the cutting blade of the cutting tool which concerns on an Example, and is a case where a coating film is formed thicker than a rake face.
  • 4 is an electron micrograph of an enlarged cross-section of a main part of a cemented carbide replaceable blade, showing Test Example 4.
  • FIG. 1 is a top view which shows the replacement blade of the cutting tool which concerns on the suitable Example of this invention
  • (b) is a front view.
  • It is a cross-sectional schematic diagram which shows the cutting blade of the cutting tool which concerns on an Example, and is a case where a coating film is formed thicker
  • FIG. 7 is an electron micrograph of an enlarged cross-section of a main part of a cemented carbide replaceable blade, showing Test Example 7.
  • FIG. (a) shows the film thickness of the rake face for each distance from the cutting edge in the super hard blades of Test Examples 1 to 4, and (b) shows the distance from the cutting edge in the super hard blades of Test Examples 1 to 4.
  • the flank film thickness for each flank is shown, and (c) shows the ratio of the film thickness between the rake face and the flank surface for each distance from the cutting edge in the carbide replacement blades of Test Examples 1 to 4.
  • circle 1 corresponds to Test Example 1
  • circle 2 corresponds to Test Example 2
  • circle 3 corresponds to Test Example 3
  • circle 4 corresponds to Test Example 4.
  • circle 1 corresponds to Test Example 5
  • circle 2 corresponds to Test Example 6
  • circle 3 corresponds to Test Example 7.
  • FIG. It is a figure which piles up and shows cutting edge line roughness before and after the cutting test of test 1, and (a) shows test example 4, (b) shows test example 1, and (c) shows comparative example 1. Show.
  • the replaceable blade 10 of the cutting tool is configured by using, as a base material 12, a cermet containing steel such as tool steel, cutter steel, bearing steel, stainless steel, or cemented carbide, or a composite material obtained by combining these. (See FIGS. 1 to 3).
  • the cutting blade 10 of the cutting tool has a hard coating 20 formed on both the rake face 14 and the flank face 16 with respect to the base material 12 that has been sharpened by polishing in order to improve wear resistance.
  • the rake face 14 including the blade 18 and the flank face 16 are covered with a coating 20.
  • the coating 20 may cover the entire rake face 14 and the flank 16, and a part of the rake face 14 in a direction away from the cutting edge 18 and / or from the cutting edge 18 on the flank 16.
  • covers the partial range in the direction to separate may be sufficient.
  • the replacement blade 10 of the cutting tool is covered with the coating 20 in the rake face 14 and the flank face 16 in a range mainly used for cutting the work material (a range of 0.1 mm from the cutting edge 18). That's fine.
  • the coating 20 has a main layer (layer) composed of at least one of nitride, oxynitride, oxide, carbide, carbonate, carbonitride, and carbonitride containing at least chromium.
  • the main layer containing chromium faces the outer surface of the coating film 20. That is, as a main layer, chromium nitride (CrN), chromium oxynitride (CrNO), chromium oxide (CrO), chromium carbide (CrC), chromium carbonate (CrCO), chromium carbonitride (CrCN), An example is chromium carbonitride (CrCNO).
  • the coating film 20 has a layer containing chromium, it is possible to improve the wear resistance of the target work material such as wood.
  • chromium B (boron), Al (aluminum), Si (silicon), Ti (titanium), V (vanadium), Ni (nickel), Cu (copper), Y (yttrium), Zr (zirconium) ), Nb (niobium), Mo (molybdenum), Hf (hafnium), Ta (tantalum), and W (tungsten) can be combined.
  • the coating 20 may be formed by laminating a plurality of the main layers, and an appropriate underlayer may be provided between the main layer and the base material 12.
  • the underlayer at least metal, nitride, carbide, carbonitride, carbonate, oxide, oxynitride, carbonitride, etc. containing one or more elements such as titanium and aluminum in addition to metal chromium One layer may be mentioned.
  • the coating film 20 is formed so that the rake face covering portion 22 covering the rake face 14 and the flank face covering portion 24 covering the flank face 16 have different film thicknesses C1 and C2. It is formed. That is, one of the rake face covering portion 22 and the flank face covering portion 24 is set such that the film thicknesses C1 and C2 are thicker than the other.
  • the rake face 14 is mainly used in the replaceable blade 10 of the cutting tool
  • the rake face covering portion 22 is formed thicker than the flank face covering portion 24, and the film thickness C1 of the rake face covering portion 22 is 0.5 ⁇ m to 15 ⁇ m.
  • the ratio of the film thickness C2 of the flank face covering portion 24 to the film thickness C1 of the rake face covering portion 22 is in the range of 0.01 to 0.15, more preferably in the range of 0.01 to 0.05. Is set as follows. When the flank 16 is mainly used in the replacement blade 10 of the cutting tool, the flank covering portion 24 is formed thicker than the rake face covering portion 22, and the flank covering portion 24 has a film thickness C2 of 0.5 ⁇ m or more. In the range of 15 ⁇ m, the ratio of the film thickness C1 of the rake face covering portion 22 to the film thickness C2 of the flank covering portion 24 is in the range of 0.01 to 0.15, more preferably in the range of 0.01 to 0.05.
  • the ratio between the film thickness C1 of the rake face covering portion 22 and the film thickness C2 of the flank face covering portion 24 may satisfy the above-mentioned range over the entire surface.
  • the range of the ratio may be satisfied within a range mainly used for cutting a material (a range of 0.1 mm from the cutting edge 18).
  • the film thicknesses C1 and C2 of the thicker cover portions 22 and 24 are in the range of 0.5 ⁇ m to 15 ⁇ m, whereas the film thicknesses C2 and C1 of the thinner cover portions 24 and 22 are 0. It is set in the range of 005 ⁇ m to 2.25 ⁇ m.
  • the film thicknesses C1 and C2 of the thicker covering portions 22 and 24 as the main components are thinner than 0.5 ⁇ m, the wear resistance cannot be sufficiently improved. The film 20 is likely to be defective.
  • the ratio of the film thicknesses C2 and C1 of the thinner coating parts 24 and 22 to the film thicknesses C1 and C2 of the thicker coating parts 22 and 24 is larger than 0.15, a thick coating is formed when the work material is cut.
  • the surface 16, 14 coated with the coating parts 24, 22 thinner than the surfaces 14, 16 coated with the parts 22, 24 has less self-polishing properties due to the rapid progress of wear and the sharpness of the cutting edge 18. Difficult to maintain.
  • the ratio of the film thicknesses C2 and C1 of the thinner cover portions 24 and 22 to the film thicknesses C1 and C2 of the thicker cover portions 22 and 24 is smaller than 0.01. Practically impossible.
  • the rake face 14 or the flank 16 which is the main component of the cutting blade 10 of the cutting tool is appropriately selected depending on how to use the cutting blade 10 of the cutting tool and the surfaces 14 and 16 to be repolished.
  • the ratio of the film thickness C1 of the rake face covering portion 22 to the film thickness C2 of the flank face covering portion 24 described above is a comparison at a position where the distance from the cutting edge 18 is the same.
  • the ratio of the film thickness C1 of the rake face covering portion 22 at a position 0.05 mm away from the cutting edge 18 to the film thickness C2 of the flank face covering portion 24 at a position 0.05 mm away from the cutting edge 18 is within the above range.
  • the film thickness C1 of the rake face covering part 22 at a position 0.1 mm away from the cutting edge 18 and the film thickness C2 of the flank covering part 24 at a position 0.1 mm away from the cutting edge 18 The ratio of is set to be in the above range.
  • the ratio between the film thickness C1 of the rake face covering portion 22 and the film thickness C2 of the flank face covering portion 24 is set to satisfy the above range at each distance from the cutting edge 18.
  • the coating 20 may be formed with the same film thickness from the cutting edge 18 as a whole, but may be formed in an inclined manner so that the film thickness decreases as the distance from the cutting edge 18 increases.
  • the base material 12 has a virtual line (extension line) in which a portion corresponding to the cutting edge 18 (hereinafter referred to as a base material edge 12a) extends a rake face 12b of the base material 12. ) It is formed so as to be away from the intersection of P1 and a virtual line (extension line) P2 obtained by extending the flank 12c of the base material 12.
  • the chamfering distance x from the intersection to the base material edge 12a is set in a range of 0.20 ⁇ m to 18 ⁇ m.
  • the base material edge 12a is formed in an arc shape having a radius r in the range of 0.5 ⁇ m to 6.0 ⁇ m.
  • the chamfer distance x is the distance between the intersection point and the base material edge 12a.
  • the base material edge 12a is rounded (R)
  • the rake face 12b in the base material 12 is used.
  • the imaginary line passing through the center of the blade angle ⁇ formed by the flank 12c is the distance from the intersection of the base material edge 12a to the intersection.
  • the sharpness of the cutting edge 18 of the replacement blade 10 of the cutting tool obtained by forming the coating film 20 is lost, the sharpness is deteriorated, and the cutting power is increased.
  • the base material edge 12a is formed in an arc shape larger than the radius of 6 ⁇ m, the sharpness of the cutting edge 18 of the replacement blade 10 of the cutting tool obtained by forming the coating film 20 is impaired, and the sharpness is deteriorated. There is a demerit that power increases.
  • the chamfering distance x It is substantially difficult to set the chamfering distance x to be smaller than 0.20 ⁇ m due to limitations in processing accuracy and the like, and when the coating 20 is formed, the rake face 12b and the flank face 12c are sharpened and ground. There is not much difference from the sharpened material edge 12a.
  • the coating 20 can be formed by PVD (physical vapor deposition), and the arc ion plating method is suitable among PVDs, but may be a magnetron sputtering method.
  • PVD physical vapor deposition
  • the arc ion plating method is suitable among PVDs, but may be a magnetron sputtering method.
  • one surface of the rake face 12b or the flank face 12c of the base material 12 is placed so as to be behind a shielding object against an evaporation source such as chromium, or the deposition source
  • any one of the rake face 14 and the flank face 16 in the coating 20 can be made thicker than the film thickness of the other face.
  • the coating film 20 in which the rake face 14 and the flank face 16 have different film thicknesses C1 and C2 can be easily formed in one batch of PVD processing.
  • the replaceable blade 10 of the cutting tool has both the rake face 14 and the flank face 16 covered with the coating 20, it is compared with a single-side coated product obtained by polishing one side after forming the coating 20 on both sides. Even if the coating film 20 is thin, the wear band width can be reduced by the presence of the coating film 20, and friction with the work material during cutting can be reduced.
  • the coating film 20 is formed with a film thickness of the other surface thinner than any one of the rake face 14 and the flank face 16, generation of high residual stress can be suppressed, and the cutting edge resulting from the residual stress can be suppressed. The occurrence of 18 chippings (self-destruction) can be prevented. Further, by reducing the film thickness of the other surface of the coating film 20 than either one of the rake face 14 and the flank face 16, the film thickness ratio of the respective faces of the flank face and the flank face that are easy to be coated on one side is set.
  • chipping of the cutting portion that contacts the work material at the cutting edge 18 at the time of cutting can be suppressed, and chipping of a non-cutting portion that does not contact the work material can be suppressed. Can also be suppressed.
  • the replaceable blade 10 of the cutting tool of the embodiment does not need to remove the coating 20 on the rake face 14 or the flank 16 by blade grinding after forming the coating 20 as in a single-side coated product. No chipping of the cutting edge 18 due to.
  • the manufacturing cost can be reduced without restrictions such as a special dedicated grindstone and severe polishing conditions required for edged polishing after the coating is formed.
  • the ratio of the film thicknesses C1 and C2 of the other coating parts 24 and 22 to the film thicknesses C1 and C2 of the one coating parts 22 and 24 is set to be in the range of 0.01 to 0.05.
  • the replacement blade 10 of the cutting tool is formed by chamfering the base material edge 12a and forming a minute surface (R surface in the embodiment) on the edge 12a.
  • generation of high residual stress can be further suppressed, and the occurrence of chipping (self-destruction) of the cutting blade 18 due to the residual stress can be more suitably prevented.
  • chipping of not only the non-cutting portion that does not contact the work material but also the cutting material that contacts the work material at the cutting edge 18 at the time of cutting can be more suitably suppressed.
  • the composite multilayer coating of Test 1 is laminated in the order of five layers of CrN, one layer of CrNO, one layer of Cr 2 O 3 , one layer of CrN, one layer of CrNO, and one layer of Cr 2 O 3 from the base material side.
  • the thickness of each layer with respect to the total thickness is 50% for the CrN layer, 10% for the CrNO layer, 10% for the Cr 2 O 3 layer, 10% for the CrN layer, and 10% for the CrNO layer from the base material side. %, And the outermost Cr 2 O 3 layer is 10%.
  • the CrNO layer is an oxynitride and does not show a diffraction peak of chromium oxide by X-ray diffraction.
  • the Cr 2 O 3 layer shows a diffraction peak of chromium oxide by X-ray diffraction
  • the Cr 2 O 3 layer may contain a slight amount of nitrogen.
  • Test 1 a cutting test was performed in which an NC router was used to cut a European red pine glulam with a router bit (blade tip diameter: 46 mm) equipped with the carbide replacement blades of Test Examples 1 to 4 and Comparative Example 1.
  • the rotational speed of the router bit was 6000 rpm, and the work material was cut 180 m while being cut by 20 mm into the work material while feeding the work material at a feed rate of 1 m / min.
  • the amount of retraction of the cutting edge and the wear band width B were measured based on the cross-sectional shape of the cutting edge. The result is shown in FIG.
  • FIG. 6 corresponds to Test Example 1 and FIG. 7A shows the cross-sectional shape of the cutting edge after the cutting test with the carbide replacement blade of Test Example 1.
  • FIG. The circle 2 in FIG. 6 corresponds to Test Example 2, and the cross-sectional shape of the cutting edge after the cutting test with the cemented carbide replacement blade of Test Example 2 is shown in FIG.
  • the circle 3 in FIG. 6 corresponds to Test Example 3
  • FIG. 7C shows the cross-sectional shape of the cutting edge after the cutting test with the superhard replacement blade of Test Example 3.
  • a circle 4 in FIG. 6 corresponds to Test Example 4
  • FIG. 7D shows a cross-sectional shape of the cutting edge after the cutting test with the cemented carbide replacement blade of Test Example 4.
  • the film thickness of the rake face covering portion is in the range of 0.5 to 15 ⁇ m.
  • the superhard blades of Test Examples 3 and 4 in which the ratio of the film thickness of the flank film thickness part to the film thickness of the rake face covering part is 0.15 or less.
  • the superhard spare blade of Test Example 4 having a ratio of 0.05 or less has self-polishing properties comparable to Comparative Example 1.
  • the superhard spare blades of Test Examples 1 to 4 in which both the rake face and the flank face are coated with a coating are the superhard spare blades of Comparative Example 1 in which only the rake face is covered with a coating. It can be confirmed that the wear band width B is smaller than that.
  • the relationship between the rake face and the flank face is opposite to that of Test Examples 1 to 4 and Comparative Example 1 in terms of the design of the blade used.
  • the upper surface indicated by reference numeral 14 is a relief surface, and the inclined surface indicated by reference numeral 16 is used as a rake face.
  • the superhard spare blades of Test Examples 5 to 7 and Comparative Example 2 are set to form a rake face covering portion having a film thickness of 5 to 6 ⁇ m on the rake face.
  • the film thickness of the coating is as shown in FIG.
  • the composite multilayer coating of Test 2 has a structure in which four layers of CrN, one layer of CrNO, and one layer of Cr 2 O 3 are laminated in this order from the base material side. From the side, the CrN layer is 60%, the CrNO layer is 20%, and the outermost Cr 2 O 3 layer is 20%.
  • the CrNO layer is an oxynitride and does not show a diffraction peak of chromium oxide by X-ray diffraction.
  • the Cr 2 O 3 layer has a diffraction peak of chromium oxide in X-ray diffraction, and the Cr 2 O 3 layer may contain a slight amount of nitrogen.
  • Test 2 a cutting test was performed on an NC router by cutting European red pine laminated wood with a 75 mm diameter cutter equipped with the carbide replacement blades of Test Examples 5 to 7 and Comparative Example 2.
  • the rotational speed of the router bit was 6000 rpm, while the work material was fed at a feed rate of 1 m / min, the work material was cut 120 m while being cut into the work material by 20 mm.
  • the amount of retraction of the cutting edge and the wear band width B were measured based on the cross-sectional shape of the cutting edge. The result is shown in FIG.
  • FIG. 8 corresponds to Test Example 5 and FIG. 9A shows the cross-sectional shape of the cutting edge after the cutting test using the carbide replacement blade of Test Example 5.
  • FIG. A circle 2 in FIG. 8 corresponds to Test Example 6, and FIG. 9B shows a cross-sectional shape of the cutting edge after the cutting test using the superhard replacement blade of Test Example 6.
  • a circle 3 in FIG. 8 corresponds to Test Example 7, and FIG. 9C shows a cross-sectional shape of the cutting edge after the cutting test using the superhard replacement blade of Test Example 7.
  • FIG. 9 (d) shows the cemented carbide of Comparative Example 2 in which the coating on the rake face and flank face was removed by blade grinding under the same conditions as the carbide replacement blade of Test Example 6 and the flank face coating was removed.
  • the film thickness of the coating covering the rake face is the same as the film thickness of the rake face covering portion of Test Example 6.
  • the rake face covering portion in the coating is thicker than the flank face covering portion.
  • the carbides of Test Example 6 and Test Example 7 in which the ratio of the thickness of the flank thickness portion to the thickness of the rake face covering portion is 0.15 or less.
  • FIG. 10A is an electron micrograph showing an enlargement of the cutting edge of the superhard replacement blade of Test Example 4, and FIG. 10B is an enlarged view of the cutting edge of the superhard replacement blade of Test Example 1.
  • FIG. 10C is an electron micrograph showing an enlargement of the cutting edge of the cemented carbide replaceable blade of Comparative Example 1, both in a state before the cutting test is performed. As shown in FIG. 10 (c), it is possible to confirm that a relatively large chipping occurs in the cutting edge of the cemented carbide replaceable blade of Comparative Example 1 in which the edge polishing is performed after the coating is formed.
  • chipping of the cutting edge does not occur in the superhard replacement blade of Test Example 4 in which the ratio of the thickness of the flank covering portion to the thickness of the portion is 0.05 or less. Further, it can be confirmed that the chipping of the cutting edge is not generated in the superhard replacement blade of Test Example 4 as compared with the superhard replacement blade of Test Example 1.
  • the coating is formed so that the ratio of the film thickness of the flank covering portion to the film thickness of the rake face covering portion is larger than 0.15 as in Test Example 1 shown in FIG. High compressive stress may remain, which is presumed to cause the cutting edge to self-break or chipping easily during cutting.
  • the cutting test described in Test 1 was performed on the superhard blades of Test Example 4, Test Example 1 and Comparative Example 1, respectively, and the change in the cutting edge line roughness after cutting from the cutting edge line roughness before cutting was measured. confirmed.
  • the result is shown in FIG.
  • the magnification of the horizontal axis which is the direction in which the cutting edge line extends, is 10 times, whereas the magnification of the vertical axis showing the change from the cutting edge line before cutting is 500 times.
  • the aspect ratio is shown.
  • the cutting portion that is in direct contact with the work material in the cutting work of Test 1 is 4.5 mm, and the amount of retraction of the cutting edge line after cutting in the cutting portion of Test Example 4 in FIG.
  • 11A is 9 to 10 ⁇ m. .
  • the cemented carbide replaceable blades of Test Example 1 and Comparative Example 1 do not contact the work material as well as the cut portion that directly contacts the work material during the cutting process. Chipping has occurred even in the non-cutting part, and when the coating is formed so that the ratio of the film thickness of the flank covering part to the film thickness of the rake face covering part is larger than 0.15, chipping in the non-cutting part is remarkable. I know that there is.
  • according to the cemented carbide spare blade of Test Example 4 which is an embodiment of the present invention, it can be confirmed that almost no chipping has occurred in the non-cutting portion, and good cutting edge quality is maintained before and after cutting. ing.
  • the super hard blades of Test Examples 8 to 13 have a rake face covering portion with a film thickness of 5 ⁇ m to 6 ⁇ m formed on the rake face, and the film thickness distribution between the rake face and the flank face is the same as Test Example 4 of Test 1 ( This is the same as circle 4) in FIG.
  • the portion corresponding to the cutting edge in the base materials of Test Examples 9 to 13 is formed into an arc shape (R surface) by blasting, and the base material of Test Example 8 is subjected to blasting processing on the portion corresponding to the cutting edge. Absent.
  • the radius r (the chamfering distance x from the intersection of the rake face extension line of the base metal and the flank extension line of the base metal) of the portion corresponding to the cutting edge of the base metal is Test Example 9 Is 0.5 (0.6) ⁇ m, Test Example 10 is 1.1 (1.3) ⁇ m, Test Example 11 is 1.8 (2.1) ⁇ m, Test Example 12 is 3.1 (3.6) ) ⁇ m, Test Example 13 was 6.0 (7.0) ⁇ m, and Unblasted Test Example 8 was 0.4 (0.5) ⁇ m.
  • the chamfering distance x is calculated by the equation of ⁇ R surface radius r / sin (cutter angle ⁇ ) ⁇ ⁇ R surface radius r.
  • the composite multilayer coating of Test 3 is laminated in the order of 5 layers of CrN, 1 layer of CrNO, 1 layer of Cr 2 O 3 , 1 layer of CrN, 1 layer of CrNO, 1 layer of Cr 2 O 3 from the base material side.
  • the thickness of each layer with respect to the total thickness is 50% for the CrN layer, 10% for the CrNO layer, 10% for the Cr 2 O 3 layer, 10% for the CrN layer, and 10% for the CrNO layer from the base material side. %, And the outermost Cr 2 O 3 layer is 10%.
  • the CrNO layer is an oxynitride and does not show a diffraction peak of chromium oxide by X-ray diffraction.
  • the Cr 2 O 3 layer shows a diffraction peak of chromium oxide by X-ray diffraction
  • the Cr 2 O 3 layer may contain a slight amount of nitrogen.
  • Test 3 a cutting test was performed in which an NC router was used to cut a European red pine glulam with a router bit (cutting edge diameter: 46 mm) to which the superhard blades of Test Examples 8 to 13 were attached.
  • the rotational speed of the router bit was 6000 rpm, and the work material was cut by 60 m while being cut by 20 mm into the work material while feeding the work material at a feed rate of 1 m / min.
  • the change of the cutting edge line roughness after cutting from the cutting edge line roughness before cutting was confirmed. The result is shown in FIG. In each figure of FIG.
  • the magnification of the horizontal axis which is the direction in which the cutting edge line extends, is 10 times, whereas the magnification of the vertical axis showing the change from the cutting edge line before cutting is 500 times.
  • the aspect ratio is shown.
  • the cutting part which contacts a work material in the cutting process of Test 3 is 5.0 mm.
  • the present invention is not limited to the above-described configuration, and can be modified as follows, for example.
  • the cutting tool is not limited to the shape shown in FIG. 1, and is appropriately formed according to the work material, the cutting method, and the like.
  • Examples of cutting tools to which the present invention can be applied include flat blades such as scissors blades, cutters, tip saws, router bits, knives, only corners, and replacement blades thereof.
  • the cutting tool according to the present invention is not limited to wood, and can be suitably used for cutting non-ferrous metals and their alloys, wood materials or resins.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Knives (AREA)

Abstract

切削工具において切刃の鋭さを維持しつつ切刃のチッピングを抑える。【解決手段】切削工具の替刃(10)において、被膜(20)は、すくい面(14)を被覆するすくい面被覆部(22)および逃げ面(16)を被覆する逃げ面被覆部(24)の何れか一方を他方よりも膜厚が厚くなるよう形成している。厚い方の被覆部(22,24)の膜厚を、0.5μm~15.0μmの範囲に設定すると共に、該厚い方の被覆部(22,24)の膜厚に対する薄い方の被覆部(24,22)の膜厚の比を、0.01~0.15の範囲になるよう設定する。

Description

切削工具
 この発明は、非鉄金属およびそれらの合金、木材、木質材料または樹脂の切削加工に用いられる切削工具に関するものである。
 木材切削用の刃物として、すくい面および逃げ面の一面または両面を硬質被膜で被覆して耐摩耗性を改善したものが提案されている(例えば、特許文献1参照)。硬質被膜は、アークイオンプレーティング装置によるコーティング処理によって工具鋼等の母材上に形成され、すくい面および逃げ面に亘って例えば4μm程度の膜厚で成膜される。そして、すくい面または逃げ面の一方を研磨して刃付けを行う。これにより、すくい面または逃げ面の一方に母材が露出すると共に、研磨していない逃げ面またはすくい面の他方が硬質被膜で覆われた刃物が得られる。なお、すくい面および逃げ面の両方を硬質被膜で被覆した刃物を得る場合には、母材を予め刃付け研磨してある。
特開2007-290180号公報
 すくい面または逃げ面の一方を硬質被膜で片面被覆した刃物は、良好な刃付け品質を得るために、特別な専用砥石やシビアな研磨条件などが必要になり、これにより製造コストが高くなるという問題が生じる。これに対して、すくい面および逃げ面について夫々の面の膜厚比を考慮せずに硬質被膜で両面被覆した刃物は、被削材の切削加工を行った際に、逃げ面とすくい面との摩耗速度があまり変わらないために、摩耗した切刃の形状が丸くなってしまう。すなわち、両面被覆した刃物は、片面被覆した刃物のように、硬質被膜を被覆していない面が硬質被膜を被覆した面よりも摩耗が早く進行する自己研磨特性に由来する鋭い切刃の維持が期待できない。しかも、すくい面および逃げ面について夫々の面の膜厚比を考慮せずに硬質被膜を形成すると、刃物角が鋭角の切刃に局所的に残留した応力などに起因して、切刃で硬質被膜のチッピングが生じ易くなることも判っている。
 すなわち本発明は、従来の技術に係る前記問題に鑑み、これらを好適に解決するべく提案されたものであって、切刃の鋭さを維持しつつ切刃のチッピングを抑えることができる切削工具を提供することを目的とする。
 前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の切削工具は、
 母材を被覆して切刃を含むすくい面および逃げ面の少なくとも一部に亘って形成された被膜を有し、非鉄金属およびそれらの合金、木材、木質材料または樹脂の切削加工に用いられる切削工具において、
 前記被膜は、前記すくい面を被覆するすくい面被覆部および前記逃げ面を被覆する逃げ面被覆部の何れか一方を他方よりも膜厚が厚くなるよう形成し、
 厚い方の被覆部の膜厚を、0.5μm~15.0μmの範囲に設定すると共に、該厚い方の被覆部の膜厚に対する薄い方の被覆部の膜厚の比を、0.01~0.15の範囲になるよう設定したことを要旨とする。
 請求項1に係る発明によれば、すくい面および逃げ面のうちで被膜の膜厚が薄い面が被膜の膜厚が厚い面より摩耗が進行する自己研磨特性を有しているので、切刃の鋭さを保つことができる。また、被膜をすくい面と逃げ面とで膜厚が異なるよう形成することで、切刃のチッピングを抑制することができる。
 請求項2に係る発明では、前記母材における前記切刃に対応する部位を、該母材におけるすくい面の延長ラインと該母材における逃げ面の延長ラインとの交点から0.2μm~18μmの範囲で離れるように形成したことを要旨とする。
 請求項2に係る発明によれば、母材における切刃に対応する部位を面取りすることで、当該部位を含むすくい面および逃げ面に亘って被膜で被覆された切削工具において、切刃のチッピングをより抑えることができる。
 請求項3に係る発明では、前記母材における前記切刃に対応する部位を、半径0.5μm~6.0μmの円弧状に形成したことを要旨とする。
 請求項3に係る発明によれば、母材における切刃に対応する部位を円弧状に形成することで、当該部位を含むすくい面および逃げ面に亘って被膜で被覆された切削工具において、切刃のチッピングをより好適に抑えることができる。
 請求項4に係る発明では、前記厚い方の被覆部の膜厚に対する前記薄い方の被覆部の膜厚の比を、0.01~0.05の範囲になるよう設定したことを要旨とする。
 請求項4に係る発明によれば、被膜において厚い方の被覆部の膜厚に対する薄い方の被覆部の膜厚の比を、0.01~0.05の範囲になるよう設定することで、自己研磨特性による切刃の鋭さの維持と切刃のチッピングの抑制とをバランスよく達成できる。
 請求項5に係る発明では、前記被膜は、少なくともクロムを含む窒化物、酸窒化物、酸化物、炭化物、炭酸化物、炭窒化物および炭酸窒化物の何れかで構成される層を有していることを要旨とする。
 請求項5に係る発明によれば、被膜としてクロムを含む層を有することで、耐摩耗性と耐食性を向上させることができる。
 本発明に係る切削工具によれば、切刃の鋭さを維持しつつ切刃のチッピングを抑えることができる。
(a)は本発明の好適な実施例に係る切削工具の替刃を示す平面図であり、(b)は正面図である。 実施例に係る切削工具の切刃を示す断面模式図であり、すくい面を逃げ面よりも被膜を厚く形成した場合である。 実施例に係る切削工具の切刃を示す断面模式図であり、逃げ面をすくい面よりも被膜を厚く形成した場合である。 超硬替刃の要部断面を拡大した電子顕微鏡写真であって、試験例4を示す。 超硬替刃の要部断面を拡大した電子顕微鏡写真であって、試験例7を示す。 (a)は試験例1~4の超硬替刃において切刃からの距離毎のすくい面の被膜厚を示し、(b)は試験例1~4の超硬替刃において切刃からの距離毎の逃げ面の被膜厚を示し、(c)は試験例1~4の超硬替刃において切刃からの距離毎のすくい面と逃げ面との被膜厚の比を示す。なお、マル1が試験例1に対応し、マル2が試験例2に対応し、マル3が試験例3に対応し、マル4が試験例4に対応している。 試験1を行った後の超硬替刃における切刃断面形状を示す図であって、(a)は試験例1を示し、(b)は試験例2を示し、(c)は試験例3を示し、(d)は試験例4を示し、(e)は比較例1を示す。 (a)は試験例5~7の超硬替刃において切刃からの距離毎のすくい面の被膜厚を示し、(b)は試験例5~7の超硬替刃において切刃からの距離毎の逃げ面の被膜厚を示し、(c)は試験例5~7の超硬替刃において切刃からの距離毎のすくい面と逃げ面との被膜厚の比を示す。なお、マル1が試験例5に対応し、マル2が試験例6に対応し、マル3が試験例7に対応している。 試験2を行った後の超硬替刃における切刃断面形状を示す図であって、(a)は試験例5を示し、(b)は試験例6を示し、(c)は試験例7を示し、(d)は比較例2を示す。 超硬替刃の切刃を拡大した電子顕微鏡写真であって、(a)は試験例4を示し、(b)は試験例1を示し、(c)は比較例1を示す。 試験1の切削試験前後で切刃線粗さを重ね合わせて示す図であって、(a)は試験例4を示し、(b)は試験例1を示し、(c)は比較例1を示す。 試験3の切削試験前後で切刃線粗さを重ね合わせて示す図であって、(a)は試験例8を示し、(b)は試験例9を示し、(c)は試験例10を示し、(d)は試験例11を示し、(e)は試験例12を示し、(f)は試験例13を示す。
 次に、本発明に係る切削工具につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。
 実施例に係る切削工具の替刃10は、工具鋼、刃物鋼、軸受鋼、ステンレス鋼などの鋼あるいは超硬合金を含むサーメットを、単体またはこれらを複合した複合材を母材12として構成される(図1~図3参照)。切削工具の替刃10は、研磨により刃付けされた母材12に対してすくい面14および逃げ面16の両方に、耐摩耗性を向上するために硬質の被膜20が形成されており、切刃18を含むすくい面14および逃げ面16が被膜20で被覆されている。ここで、被膜20は、すくい面14および逃げ面16の全体を被覆してもよく、すくい面14における切刃18から離間する方向での一部範囲および/または逃げ面16における切刃18から離間する方向での一部範囲を被覆する構成であってもよい。すなわち、切削工具の替刃10は、すくい面14および逃げ面16において被削材の切削加工に主に用いられる範囲(切刃18から0.1mmの範囲)が、被膜20で被覆されていればよい。
 前記被膜20は、少なくともクロムを含む窒化物、酸窒化物、酸化物、炭化物、炭酸化物、炭窒化物および炭酸窒化物の何れか1つまたは複数で構成される主層(層)を有し、クロムを含む主層が該被膜20の外表面に臨むようになっている。すなわち、主層としては、クロム窒化物(CrN)、クロム酸窒化物(CrNO)、クロム酸化物(CrO)、クロム炭化物(CrC)、クロム炭酸化物(CrCO)、クロム炭窒化物(CrCN)、クロム炭酸窒化物(CrCNO)が挙げられる。このように、被膜20は、クロムを含む層を有しているので、対象とする木材等の被削材に対する耐摩耗性を向上することができる。また、クロムに加えて、B(ホウ素)、Al(アルミニウム)、Si(ケイ素)、Ti(チタン)、V(バナジウム)、Ni(ニッケル)、Cu(銅)、Y(イットリウム)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)から選ばれた少なくとも1つの元素を組み合わせることができる。このように、クロムに加えて前記元素を添加することで、被膜20の高硬度化、組織の微細化などが期待でき、更なる耐摩耗性や耐食性や強度等の向上を図り得る。なお、被削材に応じて、添加する元素を調整することでも、寿命の向上を図り得る。また、被膜20は、複数の前記主層を積層してもよく、主層と母材12との間に適宜の下地層を設けてもよい。なお、下地層としては、金属クロムの他、チタン、アルミニウム等の元素を1種類以上含む金属、窒化物、炭化物、炭窒化物、炭酸化物、酸化物、酸窒化物、炭酸窒化物などの少なくとも1種の層を挙げることができる。
 図2~図5に示すように、前記被膜20は、すくい面14を被覆するすくい面被覆部22と逃げ面16を被覆する逃げ面被覆部24とが、膜厚C1,C2が異なるように形成される。すなわち、すくい面被覆部22および逃げ面被覆部24の何れか一方が他方よりも膜厚C1,C2が厚くなるように設定されている。切削工具の替刃10においてすくい面14を主体とする場合は、すくい面被覆部22が逃げ面被覆部24よりも厚く形成され、すくい面被覆部22の膜厚C1が0.5μm~15μmの範囲で、すくい面被覆部22の膜厚C1に対する逃げ面被覆部24の膜厚C2の比が、0.01~0.15の範囲、より好ましくは0.01~0.05の範囲になるように設定される。また、切削工具の替刃10において逃げ面16を主体とする場合は、逃げ面被覆部24がすくい面被覆部22よりも厚く形成され、逃げ面被覆部24の膜厚C2が0.5μm~15μmの範囲で、逃げ面被覆部24の膜厚C2に対するすくい面被覆部22の膜厚C1の比が、0.01~0.15の範囲、より好ましくは0.01~0.05の範囲になるように設定される。なお、すくい面被覆部22の膜厚C1と逃げ面被覆部24の膜厚C2との比は、面全体に亘って前記範囲を満たしてもよいが、すくい面14および逃げ面16において被削材の切削加工に主に用いられる範囲(切刃18から0.1mmの範囲)で前記比の範囲を満たせばよい。
 このように、厚い方の被覆部22,24の膜厚C1,C2が0.5μm~15μmの範囲にあるのに対して、薄い方の被覆部24,22の膜厚C2,C1が0.005μm~2.25μmの範囲に設定される。ここで、主体となる厚い方の被覆部22,24の膜厚C1,C2が、0.5μmよりも薄くなると耐摩耗性を十分に向上させることができず、15μmよりも厚くなると、チッピング等の被膜20の不良が生じ易くなる。厚い方の被覆部22,24の膜厚C1,C2に対する薄い方の被覆部24,22の膜厚C2,C1の比が、0.15よりも大きくなると、被削材の切削加工時に厚い被覆部22,24で被覆された面14,16よりも薄い被覆部24,22で被覆された面16,14で摩耗が早く進行することによる自己研磨特性の発現が弱くなり、切刃18の鋭さを維持することが難しい。また、厚い方の被覆部22,24の膜厚C1,C2に対する薄い方の被覆部24,22の膜厚C2,C1の比が0.01よりも小さくなるものは、被膜20の製造上の都合により実質的に不可能である。なお、切削工具の替刃10において主体となるすくい面14または逃げ面16は、該切削工具の替刃10の使用の仕方や再研磨する面14,16などによって適宜選択される。
 前述したすくい面被覆部22の膜厚C1と逃げ面被覆部24の膜厚C2との比は、切刃18からの距離が同じ位置で対比したものである。例えば、切刃18から0.05mm離れた位置のすくい面被覆部22の膜厚C1と切刃18から0.05mm離れた位置の逃げ面被覆部24の膜厚C2とがの比が前記範囲になるよう設定されると共に、切刃18から0.1mm離れた位置のすくい面被覆部22の膜厚C1と切刃18から0.1mm離れた位置の逃げ面被覆部24の膜厚C2とがの比が前記範囲になるよう設定される。すなわち、すくい面被覆部22の膜厚C1と逃げ面被覆部24の膜厚C2との比が、切刃18からの各距離で前記範囲を満たすよう設定される。また、被膜20は、切刃18から全体に亘って同じ膜厚で形成してもよいが、切刃18から離れるにつれて膜厚が小さくなるように傾斜的に形成してもよい。
 図2および図3に示すように、前記母材12は、切刃18に対応する部位(以下、母材エッジ12aという)が、該母材12におけるすくい面12bを延長した仮想ライン(延長ライン)P1と該母材12における逃げ面12cを延長した仮想ライン(延長ライン)P2との交点から離れるように形成されている。ここで、前記交点からの母材エッジ12aまでの面取り距離xは、0.20μm~18μmの範囲に設定される。ここで、実施例では、母材エッジ12aが、半径rが0.5μm~6.0μmの範囲にある円弧状に形成される。なお、前記面取り距離xは、前記交点と母材エッジ12aとの最も近いところでの距離をいい、例えば母材エッジ12aにアール(R)が付されている場合は、母材12におけるすくい面12bと逃げ面12cとがなす刃物角θの中央を通る仮想ラインが母材エッジ12aと交差するところから前記交点までの距離である。
 前記面取り距離xを18μmより大きく設定すると、被膜20を形成して得られる切削工具の替刃10の切刃18の鋭さが損なわれ、切れ味が悪くなり、また切削動力が増加するデメリットがある。同様に、母材エッジ12aを半径6μmよりも大きい円弧形状で形成すると、被膜20を形成して得られる切削工具の替刃10の切刃18の鋭さが損なわれ、切れ味が悪くなり、また切削動力が増加するデメリットがある。前記面取り距離xを0.20μmよりも小さく設定するのは、加工精度の制約などにより実質的に難しく、また被膜20を形成した際に、すくい面12bおよび逃げ面12cを刃付け研磨して母材エッジ12aを尖らしたものと差があまり生じない。同様に、母材エッジ12aを半径0.5μmよりも小さい円弧形状で形成することは、加工精度の制約などにより実質的に難しく、また被膜20を形成した際に、すくい面12bおよび逃げ面12cを刃付け研磨して母材エッジ12aを尖らしたものと差があまり生じない。また、母材エッジ12aの面取りが前記範囲よりも小さいと、母材エッジ12aの面取りによる切刃18の切削部分でのチッピング抑制効果が期待できない。
 前記被膜20は、PVD(物理蒸着)によって形成することができ、PVDの中でもアークイオンプレーティング法が適しているが、マグネトロンスパッタリング法でもよい。例えば、チャンバー内でPVD処理を行う際に、母材12におけるすくい面12bまたは逃げ面12cの一面を、クロム等の蒸発源に対して遮蔽物の陰になるように設置したり、該蒸着源に対する母材12の設置向きを調節するなどにより、被膜20におけるすくい面14および逃げ面16の何れか一面を他面の膜厚よりも厚くすることができる。このように、すくい面14と逃げ面16との膜厚C1,C2が異なる被膜20は、1バッチのPVD処理において簡単に形成することができる。
 〔実施例の作用〕
 次に、実施例に係る切削工具の替刃10の作用について説明する。切削工具の替刃10は、被膜20がすくい面14と逃げ面16とで異なる膜厚C1,C2で形成されているから、被削材を切削加工した際に、すくい面14および逃げ面16のうち被膜20の膜厚が厚い一方と比べて、被膜20の膜厚が薄い他方の摩耗が早く進行する自己研磨特性が発現し、この自己研磨特性により切刃18の鋭さを保つことができる。しかも、切削工具の替刃10は、すくい面14および逃げ面16の両面が被膜20で被覆されているから、両面に被膜20を形成した後に片面を研磨して得られる片面被覆品と比べて、被膜20の膜厚が薄い面であっても該被膜20の存在により摩耗帯幅を小さくすることができ、切削加工時の被削材との摩擦を減らすことができる。
 前記被膜20は、すくい面14および逃げ面16の何れか一面よりも他方の面の膜厚を薄く形成しているから、高い残留応力の発生を抑えることができ、残留応力に起因する切刃18のチッピング(自壊)の発生を防止することができる。また、被膜20を、すくい面14および逃げ面16の何れか一面よりも他方の面の膜厚を薄くすることで、前記片面被覆品やすくい面および逃げ面について夫々の面の膜厚比を考慮せずに被膜で被覆した両面被覆品と比べて、切削加工時に切刃18において被削材に接触する切削部分のチッピングを抑えることができると共に、被削材に接触しない非切削部分のチッピングも抑えることができる。また、実施例の切削工具の替刃10は、片面被覆品のように被膜20を形成した後に刃付け研磨によりすくい面14または逃げ面16の被膜20を除去する必要がないので、刃付け研磨による切刃18のチッピングが生じない。しかも、被膜形成後の刃付け研磨に要求される特別な専用砥石やシビアな研磨条件などの制約もなく、製造コストを抑えることができる。なお、被膜20において一方の被覆部22,24の膜厚C1,C2に対する他方の被覆部24,22の膜厚C1,C2の比を、0.01~0.05の範囲になるよう設定することで、自己研磨特性による切刃18の鋭さの維持と切刃18のチッピングの抑制とをバランスよく達成できる。
 前記切削工具の替刃10は、母材エッジ12aを面取りして該エッジ12aに微小な面(実施例ではR面)を形成してあるから、すくい面14および逃げ面16の何れか一面よりも他方の面の膜厚を薄くすることと相乗して、高い残留応力の発生をより抑えることができ、残留応力に起因する切刃18のチッピング(自壊)の発生をより好適に防止することができる。更に、母材エッジ12aの面取りによって、切削加工時に切刃18において被削材に接触しない非切削部分だけでなく、被削材に接触する切削部分のチッピングをより好適に抑えることができる。
[試験1]
 PVD装置において、CrNとCrNOとCrとを積層した複合多層被膜を超硬合金からなる母材に同じ条件で形成し、試験例1~4および比較例1のルータービット用の超硬替刃を作成した。何れの超硬替刃も、図1に示すような形状であり、長さLが20mmで、幅Wが12mmで、厚さTが1.5mmで、すくい面14と逃げ面16との刃物角θが55°に設定されている。なお、被膜の膜厚は、図6に示すようになっている。試験1の複合多層被膜は、母材側から5層のCrN、1層のCrNO、1層のCr、1層のCrN、1層のCrNO、1層のCrの順に積層された構造であり、全体の厚みに対する各層の厚みは、母材側からCrN層が50%、CrNO層が10%、Cr層が10%、CrN層が10%、CrNO層が10%、最表層のCr層が10%である。なお、CrNO層は、酸窒化物で、X線回折でクロム酸化物の回折ピークを示さないものである。また、Cr層は、X線回折でクロム酸化物の回折ピークが現れるものであり、Cr層にわずかに窒素を含むこともある。
 試験1では、NCルーターにおいて、試験例1~4および比較例1の超硬替刃を取り付けたルータービット(刃先径46mm)によって欧州アカマツ集成材を切削する切削試験を行った。ルータービットの回転数は、6000rpmで、被削材を1m/minの送り速度で送りつつ、被削材に20mm切り込ませた状態で被削材を180m切削した。そして、切削後に、切刃後退量および摩耗帯幅Bを刃先断面形状により測定した。その結果を図7に示す。
 図6におけるマル1が試験例1に対応し、試験例1の超硬替刃による切削試験後の切刃断面形状を図7(a)に示す。図6におけるマル2が試験例2に対応し、試験例2の超硬替刃による切削試験後の切刃断面形状を図7(b)に示す。図6におけるマル3が試験例3に対応し、試験例3の超硬替刃による切削試験後の切刃断面形状を図7(c)に示す。図6におけるマル4が試験例4に対応し、試験例4の超硬替刃による切削試験後の切刃断面形状を図7(d)に示す。図7(e)は、試験例1の超硬替刃と同条件ですくい面および逃げ面に被膜を形成したものを、刃付け研磨して逃げ面の被膜を除去した比較例1の超硬替刃による切削試験後の切刃断面形状である。すなわち、比較例1の超硬替刃は、すくい面を被覆する被膜の膜厚が試験例1のすくい面被覆部の膜厚と同じである。試験例1~4の超硬替刃は、被膜においてすくい面被覆部が逃げ面被覆部よりも厚くなっており、すくい面被覆部の膜厚が約5μm~8.5μmの範囲内にあり、試験例1~4の超硬替刃の何れも、すくい面被覆部の膜厚が0.5μm~15μmの範囲内にある。図7(c)および(d)に示すように、すくい面被覆部の膜厚に対する逃げ面膜厚部の膜厚の比が0.15以下にある試験例3および4の超硬替刃は、図7(e)に示す比較例1の超硬替刃と比べても、切刃の鋭さの低下が抑えられていることが判り、すくい面被覆部の膜厚に対する逃げ面膜厚部の膜厚の比が0.05以下にある試験例4の超硬替刃によれば、比較例1と遜色がない自己研磨特性を有していることが判る。また、図7に示すように、すくい面および逃げ面の両面を被膜で被覆した試験例1~4の超硬替刃は、すくい面だけが被膜で被覆された比較例1の超硬替刃よりも摩耗帯幅Bが小さいことが確認できる。
[試験2]
 PVD装置において、CrNとCrNOとCrとを積層した複合多層被膜を超硬合金からなる母材に同じ条件で形成し、試験例5~7および比較例2のルータービット用の超硬替刃を作成した。何れの超硬替刃も、図1に示すような形状であり、長さLが15mmで、幅Wが15mmで、厚さTが2.5mmで、刃物角θが60°に設定されている。なお、試験例5~7および比較例2の超硬替刃は、用いられる刃物の設計上、すくい面と逃げ面との関係が試験例1~4および比較例1と反対であり、図1における符号14が指す上面が逃げ面であり、符号16が指す傾斜面がすくい面となるように用いられる。なお、試験例5~7および比較例2の超硬替刃は、すくい面に膜厚5μm~6μmのすくい面被覆部を形成するように設定している。なお、被膜の膜厚は、図8に示すようになっている。試験2の複合多層被膜は、母材側から4層のCrN、1層のCrNO、1層のCr、の順に積層された構造であり、全体の厚みに対する各層の厚みは、母材側からCrN層が60%、CrNO層が20%、最表層のCr層が20%である。なお、CrNO層は、酸窒化物で、X線回折でクロム酸化物の回折ピークを示さないものである。また、Cr層は、X線回折でクロム酸化物の回折ピークが現れるものであり、Cr層にわずかに窒素を含むこともある。
 試験2では、NCルーターにおいて、試験例5~7および比較例2の超硬替刃を取り付けた直径75mmのカッターによって欧州アカマツ集成材を切削する切削試験を行った。ルータービットの回転数は、6000rpmで、被削材を1m/minの送り速度で送りつつ、被削材に20mm切り込ませた状態で被削材を120m切削した。そして、切削後に、切刃後退量および摩耗帯幅Bを刃先断面形状により測定した。その結果を図9に示す。
 図8におけるマル1が試験例5に対応し、試験例5の超硬替刃による切削試験後の切刃断面形状を図9(a)に示す。図8におけるマル2が試験例6に対応し、試験例6の超硬替刃による切削試験後の切刃断面形状を図9(b)に示す。図8におけるマル3が試験例7に対応し、試験例7の超硬替刃による切削試験後の切刃断面形状を図9(c)に示す。図9(d)は、試験例6の超硬替刃と同条件ですくい面および逃げ面に被膜を形成したものを、刃付け研磨して逃げ面の被膜を除去した比較例2の超硬替刃による切削試験後の切刃断面形状である。すなわち、比較例2の超硬替刃は、すくい面を被覆する被膜の膜厚が試験例6のすくい面被覆部の膜厚と同じである。試験例5~7の超硬替刃は、被膜においてすくい面被覆部が逃げ面被覆部よりも厚くなっている。図9(b)および図9(c)に示すように、すくい面被覆部の膜厚に対する逃げ面膜厚部の膜厚の比が0.15以下にある試験例6および試験例7の超硬替刃は、図9(d)に示す比較例2の超硬替刃と比べても、切刃の鋭さの低下が抑えられていることが判る。また、図9に示すように、すくい面および逃げ面の両面を被膜で被覆した試験例5~7の超硬替刃は、すくい面だけが被膜で被覆された比較例2の超硬替刃よりも摩耗帯幅Bが小さいことが確認できる。
 図10(a)は、試験例4の超硬替刃の切刃を拡大して示す電子顕微鏡写真であり、図10(b)は、試験例1の超硬替刃の切刃を拡大して示す電子顕微鏡写真であり、図10(c)は、比較例1の超硬替刃の切刃を拡大して示す電子顕微鏡写真であり、何れも切削試験を行う前の状態である。被膜を形成した後に刃付け研磨を行った比較例1の超硬替刃は、図10(c)に示すように、切刃に比較的大きいチッピングが生じているのが確認でき、すくい面被覆部の膜厚に対する逃げ面被覆部の膜厚の比が0.05以下にある試験例4の超硬替刃では、切刃のチッピングが発生していないことが判る。また、試験例4の超硬替刃は、試験例1の超硬替刃と比べても、切刃のチッピングが発生していないことが確認できる。図10(b)に示す試験例1のように、すくい面被覆部の膜厚に対する逃げ面被覆部の膜厚の比が0.15より大きくなるように被膜を形成すると切刃に局所的に高い圧縮応力が残留することがあり、これにより切刃が自壊するもしくは切削時に容易にチッピングすると推測される。そして、試験例4の超硬替刃のように、膜厚の比が0.15以下になるようにすくい面および逃げ面の一方よりも他方を薄く被膜を形成すると、圧縮応力の残留を抑えることができ、切刃のチッピングを防止できる。
 試験例4、試験例1および比較例1の超硬替刃について、試験1で説明した切削試験を夫々行い、切削前の切刃線粗さからの切削後の切刃線粗さの変化を確認した。その結果を図11に示す。図11の各図は、切刃線が延在する方向である横軸の倍率が10倍であるのに対して、切削前の切刃線からの変化を示す縦軸の倍率が500倍とした場合の縦横比で表している。試験1の切削加工に際して被削材に直接接触する切削部分は、4.5mmであり、図11(a)の試験例4の切削部分における切削後の切刃線後退量は9~10μmである。なお、切削前の切刃線より切削後の切刃線が離れるほど、切刃の後退やチッピングなどが大きく生じていることを示す。図11(b)および(c)に示すように、試験例1および比較例1の超硬替刃では、切削加工に際して被削材に直接接触する切削部分だけでなく、被削材に接触しない非切削部分でもチッピングが生じており、すくい面被覆部の膜厚に対する逃げ面被覆部の膜厚の比が0.15より大きくなるように被膜を形成すると、非切削部分でのチッピングが顕著であることが判る。これに対して、本発明の実施例である試験例4の超硬替刃によれば、非切削部分においてチッピングがほとんど起きていないことが確認でき、切削前後で良好な切刃品質を維持している。
[試験3]
 PVD装置において、CrNとCrNOとCrとを積層した複合多層被膜を超硬合金からなる母材に同じ条件で形成し、試験例8~13のルータービット用の超硬替刃を作成した。何れの超硬替刃も、図1に示すような形状であり、長さLが20mmで、幅Wが12mmで、厚さTが1.5mmで、刃物角θが55°に設定されている。また、試験例8~13の超硬替刃は、すくい面に膜厚5μm~6μmのすくい面被覆部を形成し、すくい面と逃げ面との膜厚分布は、試験1の試験例4(図6のマル4)と同じである。試験例9~13の母材における切刃に対応する部位は、ブラスト処理により円弧状(R面)に形成し、試験例8の母材は、切刃に対応する部位にブラスト処理を施していない。このとき、母材における切刃に対応する部位のR面の半径r(母材におけるすくい面の延長ラインと母材における逃げ面の延長ラインとの交点からの面取り距離x)は、試験例9が0.5(0.6)μm、試験例10が1.1(1.3)μm、試験例11が1.8(2.1)μm、試験例12が3.1(3.6)μm、試験例13が6.0(7.0)μmであり、未ブラスト処理の試験例8は、0.4(0.5)μmであった。なお、前記面取り距離xは、{R面半径r/sin(刃物角θ)}-R面半径rの式により算出している。試験3の複合多層被膜は、母材側から5層のCrN、1層のCrNO、1層のCr、1層のCrN、1層のCrNO、1層のCrの順に積層された構造であり、全体の厚みに対する各層の厚みは、母材側からCrN層が50%、CrNO層が10%、Cr層が10%、CrN層が10%、CrNO層が10%、最表層のCr層が10%である。なお、CrNO層は、酸窒化物で、X線回折でクロム酸化物の回折ピークを示さないものである。また、Cr層は、X線回折でクロム酸化物の回折ピークが現れるものであり、Cr層にわずかに窒素を含むこともある。
 試験3では、NCルーターにおいて、試験例8~13の超硬替刃を取り付けたルータービット(刃先径46mm)によって欧州アカマツ集成材を切削する切削試験を行った。ルータービットの回転数は、6000rpmで、被削材を1m/minの送り速度で送りつつ、被削材に20mm切り込ませた状態で被削材を60m切削した。そして、切削前の切刃線粗さからの切削後の切刃線粗さの変化を確認した。その結果を図12に示す。図12の各図は、切刃線が延在する方向である横軸の倍率が10倍であるのに対して、切削前の切刃線からの変化を示す縦軸の倍率が500倍とした場合の縦横比で表している。なお、試験3の切削加工に際して被削材に直接接触する切削部分は、5.0mmである。
 図12に示すように、試験例8では、切削部分に比較的大きいチッピングが1箇所と小さいチッピングが多く発生しているが、母材における切刃に対応した部位を円弧形状とした試験例9~13では、丸印で囲ったように切削部分において1~3箇所のチッピングが発生しただけである。このように、母材における切刃に対応した部位に極小のRをつけることが、切刃の切削部分におけるチッピングの抑制に大きく貢献していることを確認できる。なお、母材における切刃に対応した部位にブラスト処理を施していない試験例8であっても、すくい面被覆部の膜厚に対する逃げ面被覆部の膜厚の比が0.01~0.05の範囲にあるので、試験例9~13と同様に非切削部分においてチッピングがほとんど起きていないことが確認できる。
 (変更例)
 前述した構成に限定されず、例えば以下のように変更することも可能である。
(1)切削工具は、図1に示す形状に限定されず、被削材や切削方法などに応じて適宜に形成される。
(2)本発明を適用可能な切削工具としては、鉋刃等の平刃、カッター、チップソー、ルータービット、ナイフ、角のみ、これらの替刃等が挙げられる。
(3)本発明に係る切削工具は、木材に限られず、非鉄金属およびそれらの合金、木質材料または樹脂の切削加工に好適に使用できる。
 12 母材,12b (母材の)すくい面,12c (母材の)逃げ面,
 14 すくい面,16 逃げ面,18 切刃,20 被膜,
 22 すくい面被覆部,24 逃げ面被覆部,C1,C2 膜厚

Claims (5)

  1.  母材(12)を被覆して切刃(18)を含むすくい面(14)および逃げ面(16)の少なくとも一部に亘って形成された被膜(20)を有し、非鉄金属およびそれらの合金、木材、木質材料または樹脂の切削加工に用いられる切削工具において、
     前記被膜(20)は、前記すくい面(14)を被覆するすくい面被覆部(22)および前記逃げ面(16)を被覆する逃げ面被覆部(24)の何れか一方を他方よりも膜厚が厚くなるよう形成し、
     厚い方の被覆部(22,24)の膜厚(C1,C2)を、0.5μm~15.0μmの範囲に設定すると共に、該厚い方の被覆部(22,24)の膜厚(C1,C2)に対する薄い方の被覆部(24,22)の膜厚(C2,C1)の比を、0.01~0.15の範囲になるよう設定した
    ことを特徴とする切削工具。
  2.  前記母材(12)における前記切刃(18)に対応する部位を、該母材(12)におけるすくい面(12b)の延長ラインと該母材(12)における逃げ面(12c)の延長ラインとの交点から0.2μm~18μmの範囲で離れるように形成した請求項1記載の切削工具。
  3.  前記母材(12)における前記切刃(18)に対応する部位を、半径0.5μm~6.0μmの円弧状に形成した請求項1または2記載の切削工具。
  4.  前記厚い方の被覆部(22,24)の膜厚(C1,C2)に対する前記薄い方の被覆部(24,22)の膜厚(C2,C1)の比を、0.01~0.05の範囲になるよう設定した請求項1~3の何れか一項に記載の切削工具。
  5.  前記被膜(20)は、少なくともクロムを含む窒化物、酸窒化物、酸化物、炭化物、炭酸化物、炭窒化物および炭酸窒化物の何れかで構成される層を有している請求項1~4の何れか一項に記載の切削工具。
PCT/JP2015/056225 2014-03-25 2015-03-03 切削工具 WO2015146507A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016510185A JP6404906B2 (ja) 2014-03-25 2015-03-03 切削工具
US15/122,779 US10179366B2 (en) 2014-03-25 2015-03-03 Cutting tool
EP15769762.4A EP3106250B1 (en) 2014-03-25 2015-03-03 Cutting tool
CN201580016073.2A CN106457411B (zh) 2014-03-25 2015-03-03 切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-061607 2014-03-25
JP2014061607 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146507A1 true WO2015146507A1 (ja) 2015-10-01

Family

ID=54195037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056225 WO2015146507A1 (ja) 2014-03-25 2015-03-03 切削工具

Country Status (5)

Country Link
US (1) US10179366B2 (ja)
EP (1) EP3106250B1 (ja)
JP (1) JP6404906B2 (ja)
CN (1) CN106457411B (ja)
WO (1) WO2015146507A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061408A1 (ja) * 2016-09-29 2018-04-05 住友電工ハードメタル株式会社 切削工具
JP2018103338A (ja) * 2016-12-28 2018-07-05 三菱マテリアル株式会社 ダイヤモンド被覆回転切削工具及びその製造方法
WO2018155644A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 切削インサート及びこれを備えた切削工具
CN112584955A (zh) * 2018-07-30 2021-03-30 京瓷株式会社 分切机刀片以及分切机
WO2022138400A1 (ja) * 2020-12-25 2022-06-30 京セラ株式会社 被覆工具および切削工具
WO2023286411A1 (ja) * 2021-07-12 2023-01-19 兼房株式会社 切削工具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764181B2 (ja) * 2013-10-31 2015-08-12 ユニオンツール株式会社 硬質皮膜被覆切削工具
US11376675B2 (en) * 2014-04-23 2022-07-05 Korloy Inc. Cutting tool having partially-removed film formed thereon
US10882117B2 (en) * 2016-06-29 2021-01-05 Sumitomo Electric Hardmetal Corp. Cutting tool
DE102019216199A1 (de) * 2019-10-21 2021-04-22 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Werkzeugteil und Verfahren zum Herstellen eines solchen Werkzeugteils
CN110976992A (zh) * 2019-12-13 2020-04-10 深圳精匠云创科技有限公司 切削刀具
JP7140786B2 (ja) * 2020-01-10 2022-09-21 ユニオンツール株式会社 硬脆材切削加工用回転切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642412B2 (ja) * 1975-08-29 1981-10-05
JPH02218522A (ja) * 1989-02-14 1990-08-31 Sumitomo Electric Ind Ltd 被覆超硬合金工具
JP2004122263A (ja) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd 高精度加工用被覆切削工具
JP2005007555A (ja) * 2003-06-20 2005-01-13 Osg Corp 硬質被膜被覆切削工具
JP2015085462A (ja) * 2013-10-31 2015-05-07 ユニオンツール株式会社 硬質皮膜被覆切削工具

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261616A (ja) * 1992-03-18 1993-10-12 Mitsubishi Materials Corp ターニングブローチ加工用被覆切削工具
JPH07196379A (ja) * 1993-12-28 1995-08-01 Kobe Steel Ltd 気相合成ダイヤモンドろう付け工具およびその製造方法
US5597272A (en) * 1994-04-27 1997-01-28 Sumitomo Electric Industries, Ltd. Coated hard alloy tool
JP2001347403A (ja) * 2000-06-09 2001-12-18 Sumitomo Electric Ind Ltd 被覆切削工具
US20020187370A1 (en) * 2000-07-12 2002-12-12 Kazuo Yamagata Coated cutting tool
JP3672083B2 (ja) 2000-09-19 2005-07-13 Kddi株式会社 モバイルipにおけるアドレス変換方法
DE10115390A1 (de) * 2000-12-22 2002-06-27 Mitsubishi Materials Corp Toki Beschichtetes Schneidwerkzeug
JP2002194546A (ja) * 2000-12-25 2002-07-10 Ngk Spark Plug Co Ltd 硬質炭素被覆部材及び切削工具
JP4443177B2 (ja) 2003-09-26 2010-03-31 京セラ株式会社 スローアウェイチップ
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
EP1609883B1 (en) * 2004-06-24 2017-09-20 Sandvik Intellectual Property AB Coated metal cutting tool
SE528427C2 (sv) * 2004-07-09 2006-11-07 Seco Tools Ab Ett belagt skär för metallbearbetning och sätt att tillverka detta
WO2006070509A1 (ja) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具および表面被覆切削工具の製造方法
US7695222B2 (en) * 2005-10-21 2010-04-13 Sumitomo Electric Hardmetal Corp. Indexable insert
JP2007136631A (ja) * 2005-11-21 2007-06-07 Sumitomo Electric Hardmetal Corp 刃先交換型切削チップ
JP4783153B2 (ja) * 2006-01-06 2011-09-28 住友電工ハードメタル株式会社 刃先交換型切削チップ
JP4994367B2 (ja) * 2006-03-28 2012-08-08 京セラ株式会社 切削工具及びその製造方法、並びに切削方法
EP2000237A1 (en) * 2006-03-28 2008-12-10 Kyocera Corporation Surface-coated tool
JP2007290180A (ja) 2006-04-24 2007-11-08 Nippon Coating Center Kk 木材切削用刃物
US7967533B2 (en) * 2006-08-31 2011-06-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US20090004449A1 (en) * 2007-06-28 2009-01-01 Zhigang Ban Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
EP2414119A1 (en) * 2009-03-03 2012-02-08 Diamond Innovations, Inc. Thick thermal barrier coating for superabrasive tool
JP5418833B2 (ja) * 2009-12-11 2014-02-19 三菱マテリアル株式会社 表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
JP5642412B2 (ja) 2010-04-01 2014-12-17 Jfeシビル株式会社 平面位置アジャスト吊り治具
JP5066301B2 (ja) * 2010-09-29 2012-11-07 京セラ株式会社 切削工具
JP5201424B2 (ja) * 2010-10-23 2013-06-05 三菱マテリアル株式会社 炭素膜被覆切削工具およびその製造方法
JP5590334B2 (ja) 2011-02-28 2014-09-17 三菱マテリアル株式会社 ダイヤモンド被覆切削工具
CH705029A1 (de) * 2011-05-27 2012-11-30 Bloesch W Ag Beschichtetes Holzbearbeitungswerkzeug.
JP5174292B1 (ja) * 2011-07-25 2013-04-03 京セラ株式会社 切削工具
JP5344204B2 (ja) * 2012-03-05 2013-11-20 三菱マテリアル株式会社 表面被覆切削工具
JP5892472B2 (ja) * 2012-06-19 2016-03-23 三菱マテリアル株式会社 硬質被覆層が高速断続切削加工ですぐれた耐剥離性、耐チッピング性を発揮する表面被覆切削工具
EP2935653B1 (en) * 2012-12-21 2022-06-29 Sandvik Intellectual Property AB Coated cutting tool and method for manufacturing the same
KR102126103B1 (ko) * 2015-07-13 2020-06-23 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642412B2 (ja) * 1975-08-29 1981-10-05
JPH02218522A (ja) * 1989-02-14 1990-08-31 Sumitomo Electric Ind Ltd 被覆超硬合金工具
JP2004122263A (ja) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd 高精度加工用被覆切削工具
JP2005007555A (ja) * 2003-06-20 2005-01-13 Osg Corp 硬質被膜被覆切削工具
JP2015085462A (ja) * 2013-10-31 2015-05-07 ユニオンツール株式会社 硬質皮膜被覆切削工具

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061408A1 (ja) * 2016-09-29 2018-04-05 住友電工ハードメタル株式会社 切削工具
CN109789496A (zh) * 2016-09-29 2019-05-21 住友电工硬质合金株式会社 切削工具
JPWO2018061408A1 (ja) * 2016-09-29 2019-07-18 住友電工ハードメタル株式会社 切削工具
US11376668B2 (en) 2016-09-29 2022-07-05 Sumitomo Electric Hardmetal Corp. Cutting tool
JP2018103338A (ja) * 2016-12-28 2018-07-05 三菱マテリアル株式会社 ダイヤモンド被覆回転切削工具及びその製造方法
WO2018155644A1 (ja) * 2017-02-24 2018-08-30 京セラ株式会社 切削インサート及びこれを備えた切削工具
JPWO2018155644A1 (ja) * 2017-02-24 2019-12-26 京セラ株式会社 切削インサート及びこれを備えた切削工具
CN112584955A (zh) * 2018-07-30 2021-03-30 京瓷株式会社 分切机刀片以及分切机
CN112584955B (zh) * 2018-07-30 2023-10-31 京瓷株式会社 分切机刀片以及分切机
WO2022138400A1 (ja) * 2020-12-25 2022-06-30 京セラ株式会社 被覆工具および切削工具
WO2023286411A1 (ja) * 2021-07-12 2023-01-19 兼房株式会社 切削工具

Also Published As

Publication number Publication date
EP3106250A4 (en) 2017-11-01
EP3106250A1 (en) 2016-12-21
JP6404906B2 (ja) 2018-10-17
CN106457411A (zh) 2017-02-22
US20170072474A1 (en) 2017-03-16
EP3106250B1 (en) 2019-07-24
JPWO2015146507A1 (ja) 2017-04-13
US10179366B2 (en) 2019-01-15
CN106457411B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
JP6404906B2 (ja) 切削工具
EP2576854B1 (en) Coated cutting tool
WO2016189935A1 (ja) 切削インサートおよび切削工具、並びに切削加工物の製造方法
EP2939806B1 (en) Cutting tool
WO2014061292A1 (ja) 表面被覆切削工具
JP2018030207A (ja) 表面被覆切削工具およびその製造方法
JP2016185589A (ja) 表面被覆切削工具
WO2018037647A1 (ja) 切削工具およびその製造方法
WO2018037648A1 (ja) 表面被覆切削工具およびその製造方法
JP2015066644A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
JP6198002B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
JP2013119156A (ja) 表面被覆切削工具
JP5975214B2 (ja) 表面被覆切削工具
JP5094293B2 (ja) 切削工具
JP5610218B2 (ja) 切削工具用硬質被膜及び硬質被膜被覆切削工具
JP5349164B2 (ja) 切削工具
JP6861137B2 (ja) 切削工具用硬質皮膜
EP4371683A1 (en) Cutting tool
WO2021025014A1 (ja) 超砥粒、及び超砥粒ホイール
JP6221872B2 (ja) 表面被覆切削工具
JP2014079835A (ja) 表面被覆切削工具
WO2018037624A1 (ja) 表面被覆切削工具およびその製造方法
JP2014079836A (ja) 表面被覆切削工具
JP2015058503A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510185

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122779

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015769762

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769762

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE