JP4994367B2 - 切削工具及びその製造方法、並びに切削方法 - Google Patents

切削工具及びその製造方法、並びに切削方法 Download PDF

Info

Publication number
JP4994367B2
JP4994367B2 JP2008511989A JP2008511989A JP4994367B2 JP 4994367 B2 JP4994367 B2 JP 4994367B2 JP 2008511989 A JP2008511989 A JP 2008511989A JP 2008511989 A JP2008511989 A JP 2008511989A JP 4994367 B2 JP4994367 B2 JP 4994367B2
Authority
JP
Japan
Prior art keywords
layer
aluminum oxide
cutting
cutting tool
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008511989A
Other languages
English (en)
Other versions
JPWO2007122859A1 (ja
Inventor
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008511989A priority Critical patent/JP4994367B2/ja
Publication of JPWO2007122859A1 publication Critical patent/JPWO2007122859A1/ja
Application granted granted Critical
Publication of JP4994367B2 publication Critical patent/JP4994367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/36Titanium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/10Process of turning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

【技術分野】
【0001】
本発明は、金属等の切削加工に用いられる切削工具及びその製造方法、並びに切削方法に関する。
【背景技術】
【0002】
従来から、基体の表面に被覆層を被着形成した切削インサートが各種用途に用いられている。例えば、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の硬質基体の表面に、炭化チタン(TiC)層、窒化チタン(TiN)層、炭窒化チタン(TiCN)層、酸化アルミニウム(Al)層および窒化チタンアルミ(TiAlN)層等の被覆層を単層または複数層形成されている。そして、最近の切削加工の多様化に従ってさらなる耐欠損性・耐摩耗性の向上が求められている。
【0003】
上記被覆層の特性改善のために、特許文献1には、炭化タングステン基超硬合金基体の表面に、平均層厚0.1〜5μmの粒状窒化チタン(TiN)層−平均層厚2〜15μmの縦長成長結晶組織の炭窒化チタン(TiCN)層−平均層厚0.5〜10μmの酸化アルミニウム(Al)層−平均層厚2〜10μmの縦長成長結晶組織の炭化チタン(TiC)層で構成された被覆層を具備する表面被覆炭化タングステン基超硬合金製切削工具が開示され、優れた耐摩耗性を発揮することが記載されている。
【0004】
さらに、特許文献2では、炭化タングステン基超硬合金基体の表面に、平均層厚0.1〜1μmの粒状結晶組織の窒化チタン(TiN)層−平均層厚0.3〜3μmの縦長成長結晶組織の炭窒化チタン(TiCN)層−さらに、切刃以外のすくい面と逃げ面には、−平均層厚0.1〜1μmの粒状結晶組織の炭窒酸化チタン(TiCNO)層−平均層厚0.1〜1.5μmの粒状結晶組織を有する酸化アルミニウム(Al)層で構成された被覆層を具備する、すなわち切刃におけるAl層を除去してTiCN層を露出させた表面被覆炭化タングステン基超硬合金製エンドミルが開示されている。
【0005】
さらに、特許文献3及び特許文献4には、基体の組成成分を被覆層に拡散させることにより、基体と被覆層との密着性を向上させる方法が開示されている。
【0006】
具体的には、コバルト(Co)を含む炭化タングステン(WC)基超硬合金からなる基体の表面にCVD法(Chemical Vapor Deposition:化学蒸着法)により、炭化チタン(TiC)又は窒化チタン(TiN)の第1層、柱状晶結晶を含む炭窒化チタン(TiCN)の第2層、炭化チタン(TiC)、炭酸化チタン(TiCO)等の第3層、酸化アルミニウム(Al)の第4層を順次被覆形成し、第1層と第2層又は第1〜3層までに基体中のタングステン(W)及びコバルト(Co)を拡散させた切削工具が開示されている。
【特許文献1】
特開2000−158207号公報
【特許文献2】
特開平11−229143号公報
【特許文献3】
特開平7−243023号公報
【特許文献4】
特開平8−118105号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記特許文献1や特許文献2に記載された被覆層の構成では、十分な耐摩耗性を得ることができなかった。そのため、ステンレス材等の難削材の加工に用いるには、依然として耐摩耗性が十分でなく、更なる耐摩耗性の向上が求められていた。
【0008】
また、ステンレス材は熱伝導率が低いために切削温度が上がりやすい材質である。そのため、切削加工によって切削温度が高くなりやすく、被削材が切刃に溶着して拡散摩耗が発生しやすいものであった。
【0009】
さらに上記特許文献3や特許文献4に記載の方法を用いた場合、基体から拡散された元素が不純物として存在する。これにより、被覆層の強度が低下してしまう。そのため十分な耐欠損性を得ることはできず、切削性能を長期にわたって維持することは難しかった。
【0010】
そこで本発明は、耐摩耗性に優れた切削工具を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の一実施形態における切削工具は、基体と、該基体の表面に被覆層とを備える切削工具であって、前記基体は、少なくともコバルトを含んでおり、前記被覆層は、少なくとも前記基体の表面に形成された窒化チタン層と、該窒化チタン層の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面に形成された中間層と、該中間層の表面に形成された酸化アルミニウム層とを含み、前記中間層は、少なくとも酸素およびチタンを含み、前記酸化アルミニウム層中には、コバルトを主成分とする粒子を含むことを特徴とする。
【0012】
また、本発明のその他の実施形態における切削工具は、基体と、該基体の表面に形成された被覆層とを備える切削工具であって、前記被覆層は、少なくとも前記基体の表面に形成された窒化チタン層と、該窒化チタン層の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面に形成された中間層と、該中間層の表面に形成された酸化アルミニウム層とを含み、前記中間層から前記酸化アルミニウム層に向かって、0.05〜0.4μmの平均結晶高さで、炭酸化チタン、酸窒化チタン、炭窒酸化チタン、酸化チタンの群から選ばれる少なくとも1種にて構成された突出粒子が点在して、前記酸化アルミニウム層の内部に食い込んでいることを特徴とする。
【0013】
また、本発明の他の実施形態における切削工具の製造方法は、基体と、該基体の表面に被覆層とを備え、前記被覆層は、少なくとも前記基体の表面に形成された窒化チタン層と、該窒化チタン層の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面に形成された中間層と、該中間層の表面に形成された酸化アルミニウム層とを含む、切削工具の製造方法であって、CVD炉内において、Hを50〜75vol%、Nを25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記導入するガスの常温常圧での体積(流量)をVg(/min)、前記CVD炉内の体積をVr()としたときのVg/Vr(1/min)が0.1〜0.3(1/min)になるように制御し、前記基体をCVD炉内に保持する前処理工程と、前記基体の表面に窒化チタン層を形成する窒化チタン層成膜工程と、前記CVD炉内において、Hを50〜75vol%、Nを25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記Vg/Vr(1/min)が0.1〜0.3(1/min)となるように制御し、窒化チタン層が形成された基体をCVD炉内に保持する中間処理工程と、窒化チタン層上に、炭窒化チタン層、中間層を順次形成する炭窒化チタン層及び中間層成膜工程と、中間層が形成された基体を、AlClを1〜15vol%、Hを85〜99vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入して保持する後処理工程と、中間層上に、酸化アルミニウム層を形成する酸化アルミニウム層成膜工程とを具えることを特徴とする。
【発明の効果】
【0014】
本発明を用いることにより、強断続となる切削加工中に被覆層に発生するクラックを抑制することができる。さらに、酸化アルミニウム層上に表面層を有する場合は、表面層で発生したクラックの進展を抑制することができる。
【発明を実施するための最良の形態】
【0015】
本発明は、金属等の切削加工に用いられる切削工具に関するものである。具体的には硬質相を、少なくともコバルトを結合金属にて結合した超硬合金からなる基体の表面上に、被覆層が形成された硬質材を用いた切削工具に関するものである。
【0016】
なお、上記切削工具としては、ろう付けタイプ又はスローアウェイタイプの旋削バイトに用いられる切削インサートや、ソリッドタイプのドリル又はエンドミル等、切削に寄与する切刃部分を備えるもののことを指す。なお、以下に記載の実施例においては切削工具としてホルダに取り付けられる切削インサートを例示して説明する。
【0017】
本発明の切削インサートの一実施形態における概略斜視図を図1(a)に示す。また、切刃を含む概略断面図を図1(b)に示す。
【0018】
図1における切削インサートは、上面がすくい面3を、下面が着座面4をなし、側面が逃げ面5をなす平板状である。前記すくい面3と前記逃げ面5との交差稜線部には切刃6を備えている。超硬合金からなる基体2の表面には、被覆層8が被着形成されている。
【0019】
前記基体2は、硬質相を結合相により結合した超硬合金からなる。前記硬質相は、周期表の4、5、6族金属の炭化物、窒化物および炭窒化物から選ばれる少なくとも1種を含んでいる。具体的は、炭化タングステン(WC)を主成分として、所望により、炭化チタン(TiC)等の周期表の4、5、6族金属の炭化物(炭化タングステン以外)、窒化物および炭窒化物から選ばれる少なくとも1種以上が含まれるものが挙げられる。
【0020】
前記結合相は結合金属からなる。結合金属としては、少なくともコバルト(Co)が含まれている。その他の金属がさらに含まれていてもよく、例えば鉄(Fe)、ニッケル(Ni)、モリブデン(Mo)、クロム(Cr)等が使用可能である。
【0021】
前記被覆層は、基体側から(a)窒化チタン(TiN)層10、(b)炭窒化チタン(TiCN)層11、(c)中間層12、(d)酸化アルミニウム(Al)層14が順次形成されている。
【0022】
前記中間層12としては、炭酸化チタン(TiCO)、酸窒化チタン(TiNO)、炭窒酸化チタン(TiCNO)及び酸化チタン(Ti,TiO)の群から選ばれる少なくとも1種から構成される。
【0023】
また、前記酸化アルミニウム(Al)層14上に、さらに(e)表面層15を形成しても良い。前記表面層15は、窒化チタン(TiN)、窒化ジルコニウム(ZrN)及び窒化ハフニウム(HfN)の群から選ばれる少なくとも1種から構成される。
【0024】
前記被覆層8としては、すべての膜を含んだ全体平均膜厚が、1.5〜7.0μm、特に、2〜5μmであることが好ましい。
【0025】
本発明の特徴として、図2に示すように酸化アルミニウム(Al)層中に、コバルト(Co)を主成分とする粒子E(以下、コバルト粒子と呼ぶ)が含まれている。このコバルト粒子Eは、コバルト粒子が酸化アルミニウム(Al)層中に固溶した状態でなく、酸化アルミニウム(Al)層中に粒子として析出していることが観察できるものを意味する。具体的には、切断面または破断面を5000〜20000倍の倍率の走査型電子顕微鏡(SEM)にて観察して確認できるものを指す。
【0026】
これにより、延性に優れたコバルト(Co)粒子Eと、硬度に優れた酸化アルミニウム(Al)粒子が酸化アルミニウム(Al)層14内に混在することで、高硬度と高靭性を兼ね備えることができる。
そのため、強断続加工での強い衝撃の際に、酸化アルミニウム(Al)層14にクラックが発生するのを抑制できる。
【0027】
つまり、酸化アルミニウム(Al)層14中に前記コバルト(Co)粒子Eが存在しない構成とすると、酸化アルミニウム(Al)層14にクラックが発生しやすくなるため、該クラックを起点として切刃の欠損が発生しやすくなってしまう。
【0028】
また、前記酸化アルミニウム(Al)層14上に前記表面層が15形成されている場合は、前記表面層15にクラックが発生したとしても、高靭性なコバルト粒子Eを含む酸化アルミニウム(Al)層14がクラックの発生を抑制できる。
【0029】
ここで、酸化アルミニウム(Al)層14中に含まれるコバルト(Co)粒子Eが複数個である場合、その平均粒径は、0.05〜0.4μm、特に、0.1〜0.3μm、さらに、0.1〜0.2μmであることが好ましい。
【0030】
上記範囲内においては、切削工具として、金属の靭性とセラミックスの耐摩耗性がバランス良くなる。また、酸化アルミニウム(Al)層14が高靭性、即ちクッションの役割を果たす。これにより、クラックの発生を抑制できる。つまり、上記範囲は、耐摩耗性を低下させずに被覆層8の強度を向上させることができる点で好ましい。
【0031】
また、酸化アルミニウム(Al)層14中に含まれるコバルト(Co)粒子Eの組成は、合計を100wt%とした場合、コバルト(Co)を92〜98wt%、チタン(Ti)を1.0〜4.0wt%、残部が不可避不純物で構成されていることが好ましい。
【0032】
上記範囲内においては、コバルト(Co)よりも延性に優れたチタン(Ti)と、チタンよりも弾性率に優れたコバルト(Co)をバランス良く含むことにより、優れた耐摩耗性と靭性とを兼ね具えることができる。
【0033】
なお、本発明において、コバルト(Co)粒子の平均粒径とは、被覆層8を構成する酸化アルミニウム(Al)層14を含む任意破断面5ヵ所について、走査型電子顕微鏡(SEM)写真を撮り、膜厚方向に対して垂直な方向で酸化アルミニウム(Al)層14中に点在するそれぞれのコバルト(Co)粒子Eの大きさを測定し、各10個の平均値を算出したものである。
【0034】
また、本発明において、平均層厚とは、基体と被覆層との界面、又は被覆層の各層の界面を含む任意破断面5ヵ所について、走査型電子顕微鏡(SEM)写真を撮り、それぞれの層厚を数点測定し平均値を算出したものである。
【0035】
また、中間層12と酸化アルミニウム(Al)層14との界面と平行な基準長さ10μmに含まれる前記酸化アルミニウム(Al)層中のコバルト(Co)粒子Eの数が3〜20個であることが好ましい。
【0036】
上記範囲内においては、靭性に優れたコバルト(Co)粒子Eが酸化アルミニウム(Al)層14において、適度な間隔で分散していることとなる。そのため、上記範囲においては、耐摩耗性を低下させずに硬質層8の強度を向上させることができる。
【0037】
なお、前記酸化アルミニウム(Al)層14内に含まるコバルト(Co)粒子Eの数は、被覆層815面を基準に15〜20°傾いた面を、研削加工および鏡面加工を施し、その後、走査型電子顕微鏡(SEM)により、反射電子像を5000〜20000倍の倍率で撮影し、酸化アルミニウム(Al)層14な中間層12と酸化アルミニウム(Al)層14との界面と略平行な基準長さ10μmにおけるコバルト(Co)粒子Eの数を測定する。なお、1つのサンプルにつき、5箇所測定を実施して、その平均値をコバルト(Co)粒子Eの数とする。
【0038】
なお、図1の切削インサートにおいては、切刃6における前記硬質層8は、表面層15が研磨されており切刃部分の箇所と比べて薄くなっている、または、酸化アルミニウム(Al)層14が露出していることが好ましい。これにより、酸化アルミニウム(Al)の耐溶着性および耐摩耗性により、切削工具としての切削性能を向上させることができる。
【0039】
以下に各層について説明する。
【0040】
(a)窒化チタン(TiN)層10
窒化チタン(TiN)層10は基体2と炭窒化チタン(TiCN)層11との間に存在して、炭窒化チタン(TiCN)層11の付着力を向上させるとともに基体2成分の拡散により被覆層8の耐摩耗性が低下することを防ぐため、層厚0.1〜1μmの範囲で形成されることが好ましい。結晶組織の形態は粒状、米粒状、柱状のいずれであってもよい。上記範囲内で形成することにより、基体2の成分の必要以上の拡散を抑制するとともに、被覆層8の靭性を向上させることができる。
【0041】
(b)炭窒化チタン(TiCN)層11
炭窒化チタン(TiCN)層11は、被覆層8が受ける衝撃を吸収して被覆層8の耐欠損性を向上させるため、平均層厚1.0〜4μmの範囲で形成されることが好ましい。また、前記炭窒化チタン(TiCN)層11は、基体2表面に対して略垂直な方向に伸びる結晶組織であることが好ましい。これにより被覆層8の靭性を向上させることができる。
【0042】
また、炭窒化チタン(TiCN)層11を表面方向から見たとき、細径をなす炭窒化チタン(TiCN)粒子(以下、微細炭窒化チタン(TiCN)粒子と記す。)の集合体にて構成されていることが好ましい。また、該微細炭窒化チタン(TiCN)粒子が炭窒化チタン(TiCN)層11を表面からみたときにランダムな方向にそれぞれ伸びていることが好ましい。これにより、クラックの偏向効果が高くなる。さらに、クラックが炭窒化チタン(TiCN)層11の深さ方向に進展することを抑制でき、耐欠損性が向上する。
【0043】
なお、断面方向および表面方向の観察を加味すると、微細炭窒化チタン(TiCN)粒子は板状結晶になっているものと推定される。また、粒子(上記微細炭窒化チタン粒子)のアスペクト比は、各粒子について、粒子の長軸と直交する短軸の長さ/粒子の長軸の長さの比が最大値となる値を算定し、一視野内に存在する各炭窒化チタン(TiCN)粒子についてそのアスペクト比の平均値によって見積もることができる。また、被覆層8の断面組織観察にて、粒状TiCN結晶が30面積%以下の割合で混合した混晶であってもよい。
【0044】
また、炭窒化チタン(TiCN)層11の表面付近、すなわち(c)中間層12側の0.05〜0.5μmの厚み領域においては、平均結晶幅が下側よりも広いものであってもよい。
【0045】
(c)中間層12
中間層12は、炭酸化チタン(TiCO)、酸窒化チタン(TiNO)、炭窒酸化チタン(TiCNO)及び酸化チタン(Ti,TiO)の群から選ばれる少なくとも1種にて構成される。前記中間層12は、炭窒化チタン(TiCN)層11(b)と後述する酸化アルミニウム(Al)層14(d)との間に存在して、酸化アルミニウム(Al)層14の結晶をα−酸化アルミニウム(α−Al)の結晶構造とする効果がある。
【0046】
また、前記中間層12は、平均層厚が0.05〜0.4μmであることが好ましい。この範囲内においては、α−酸化アルミニウムの生成が促進するとともに、硬度および強度が高くなる。また、結晶組織の形態は粒状、米粒状、柱状のいずれであってもよいが、特には炭窒化チタン(TiCN)層11同じく柱状結晶組織をなしていることが望ましい。
【0047】
ここで、中間層12から酸化アルミニウム(Al)層14に向かって、0.05〜0.4μmの平均結晶高さで、炭酸化チタン(TiCO)、酸窒化チタン(TiNO)、炭窒酸化チタン(TiCNO)及び酸化チタン(Ti,TiO)の群から選ばれる少なくとも1種にて構成された突出粒子13が点在して、Al層14の内部に食い込んでいることが好ましい。これにより、中間層12と酸化アルミニウム(Al)層14との付着力をより高めることができる。
【0048】
また、中間層12及び突出粒子13の少なくとも一方が酸化チタン(Ti)を含有し、被覆層8の表面におけるX線回折パターンにおいて、酸化アルミニウム(Al)層14の(012)面のピーク強度IAl2O3と、中間層12または突出粒子13のTiの(012)面のピーク強度ITi2O3との比率(ITi2O3/IAl2O3)が0.1〜0.7の範囲にあることが、中間層12と酸化アルミニウム(Al)層14のとの付着力を高める点で望ましい。
【0049】
(d)酸化アルミニウム層14
酸化アルミニウム(Al)層14はα型結晶構造の酸化アルミニウム(α−Al)からなり、平均層厚0.1〜0.45μmで存在することが好ましい。また、結晶組織としては粒状結晶組織であることが好ましい。
【0050】
なお、酸化アルミニウム(Al)層14はα型結晶構造からなることによって構造的に安定で高温になっても優れた耐摩耗性を維持できる。従来ではα型結晶構造をもつ酸化アルミニウムは優れた耐摩耗性を持つが、核生成を行う際の粒径が大きいため、炭窒化チタン(TiCN)層11との接触面積が小さくなり、付着力が弱くなってしまい、膜剥離を起こしやすいという問題があった。しかし、上述した組織調整によって酸化アルミニウム(Al)層14と炭窒化チタン(TiCN)層11との十分な付着力を得ることができる。よって、α型結晶構造の酸化アルミニウム(α−Al)結晶の持つ、優れた耐摩耗性を酸化アルミニウム(Al)層14の付着力を低下させることなく得ることができるため、工具寿命のより長い切削インサート1を得ることができる。
【0051】
さらに、酸化アルミニウム(Al)層14の基体2側の界面において、基準長さ5μmに対する最大高さRzが0.1〜0.5μmであって、かつ基準長さ5μmにおける最も高い位置と最も低い位置との中点を通る基準線に対して、該基準線よりも上に突き出している部分を1つの凸部と規定したとき、前記基準長さ5μmにおける前記凸部の数が4〜15個であることが、中間層12とAl層14との付着力を高める点で望ましい。
【0052】
ここで、酸化アルミニウム(Al)層14の基体2側の界面における上記規定は、被覆層8の組織観察において、酸化アルミニウム(Al)層14の基体2側の界面における凹凸形状をトレースした線からJIS B 0601−2001(ISO4287−1997)に規定される最大高さ(Rz)の算出方法に準じて基準長さを5μmとしたときに求められる値と定義する。
【0053】
また、基準長さ5μmにおける凸部の数は、上記トレースした線Lから図4に示す方法で求めることができる。すなわち、界面における面粗さの測定は、工具1の切断面または破断面を5000〜20000倍の倍率の走査型電子顕微鏡(SEM)にて観察し、基体2と被覆層8の界面での最高凸部を通り、基体2と略平行な直線Aから最深凹部を通り、基体2と略平行な直線Bまでの最短距離Mの中点を通り、基体2に平行な直線を引いたものを基準線Cとし、基準線Cよりも上に突き出しているものを凸部、基準線Cよりも下に凹んでいるものを凹部として、基準線Cから凸部の個数を数える(図4では2個)ことにより算出する(図4参照)。またこの測定に際しては、突出粒子13がある部分は避けてトレースおよび測定を行う。
【0054】
(e)表面層15
表面層15は、窒化チタン(TiN)、窒化ジルコニウム(ZrN)及び窒化ハフニウム(HfN)の群から選ばれる少なくとも1種からなり、0.1〜2μmの平均層厚で構成される。被覆層表面の摺動性、外観等の調整が可能となる。すなわち、表面層15を形成することによって、工具が金色を呈するため、切削インサート1を使用したときに表層が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できる。
【0055】
(製造方法)
また、本発明の切削工具の一例である上述した切削インサート1を製造する方法について説明する。
【0056】
まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合する。その後、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形する。そして、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体2を作製する。そして、上記基体2の表面に所望によって研磨加工や切刃部のホーニング加工を施す。
【0057】
なお、基体2の表面粗さは、被覆層8の付着力を制御する点で、すくい面における算術平均粗さ(Ra)が0.1〜1.5μm、逃げ面における算術平均粗さ(Ra)が0.5〜3μmとなるように原料粉末の粒径、成形方法、焼成方法、加工方法を制御する。
【0058】
そして、基体2の表面に例えば化学気相蒸着(CVD)法によって被覆層8を成膜する。
【0059】
まず、前処理工程として、CVD炉内において、水素(H)を50〜75vol%、窒素(N)を25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記導入するガスの常温常圧での体積(流量)をVg(/min)、前記CVD炉内の体積をVr()としたときのVg/Vrが0.1〜0.3(1/min)になるように制御し、前記基体をCVD炉内に保持する。この前処理工程によって、基体表面の不純物や汚れを除去してコバルト(Co)が被覆層8に拡散しやすい状態を作り出すことができる。
【0060】
次に、窒化チタン(TiN)層10成膜工程として、前記CVD炉内において、例えば塩化チタン(TiCl)が0.3〜1.2vol%、水素(H)が35〜65vol%、窒素(N)が35〜65vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、一定の圧力で前記Vg/Vr(1/min)が0.7〜1.1(1/min)に制御し、CVD法により前記基体2上に窒化チタン(TiN)層10を形成する。
【0061】
その後、中間処理工程として、前記CVD炉内において、水素(H)を50〜75vol%、窒素(N)を25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記Vg/Vr(1/min)が0.1〜0.3(1/min)となるように制御し、窒化チタン層が形成された基体をCVD炉内に保持する。なお、前記処理時間は10〜60分程度、CVD炉内の圧力は10〜30kPa、処理温度は800〜900℃で行なうことが好ましい。
【0062】
この中間処理工程により、窒化チタン(TiN)層10の表面の不純物や汚れを除去してコバルト(Co)が前記窒化チタン(TiN)層10より上層に拡散しやすい状態を作り出すことができる。
【0063】
次に、炭窒化チタン(TiCN)層11成膜工程として、前記CVD炉内において、例えば塩化チタン(TiCl)が0.5〜5vol%、アセトニトリル(CHCN)が0.3〜1.5vol%、窒素(N)が10〜40vol%、残りが水素(H)にて構成され、合計が100vol%になるように混合したガスを導入し、CVD法により前記窒化チタン(TiN)層10上に炭窒化チタン(TiCN)層11を形成する。
【0064】
ここで、上記成膜条件のうち、ガス中のアセトニトリルガスの割合が上記範囲内に調整することによって、炭窒化チタン(TiCN)層11中の炭窒化チタン(TiCN)粒子の組織を上述した範囲に確実に成長させることができる。また、上記成膜温度を、780℃〜880℃とすることにより、断面観察において柱状をなし、かつ表面観察において細径をなす炭窒化チタン(TiCN)からなる突出粒子を形成するのに好ましい。
【0065】
ここで、炭窒化チタン(TiCN)層11の成膜において、炭窒化チタン(TiCN)層11の成膜前期に使用する反応ガス中のアセトニトリル(CHCN)の導入を炭窒化チタン(TiCN)層11の成膜後期には止めることにより、炭窒化チタン(TiCN)層11の表面側(中間層側)の炭窒化チタン(TiCN)結晶の平均結晶幅を大きくすることもできる。なお、上記成膜条件のうち、炭窒化チタン(TiCN)層11の成膜前期における炭窒化チタン(TiCN)結晶の成長過程では、アセトニトリル(CHCN)ガスの割合VAを0.3〜1.5vol%に制御するとともに、キャリアガスである水素(H)ガスの割合Vとアセトニトリル(CHCN)ガスの割合Vとの比(V/V)が0.03以下となるように低濃度に制御することによって、微細な核生成ができて炭窒化チタン(TiCN)層の付着力を向上させることができる。
【0066】
次に、中間層12を成膜する。例えば中間層12として炭窒酸化チタン(TiCNO)層を成膜する場合には、塩化チタン(TiCl)ガスを0.1〜3vol%、メタン(CH)ガスを0.1〜10vol%、二酸化炭素(CO)ガスを0.01〜5vol%、窒素(N)ガスを0〜60vol%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜30kPaとする。
【0067】
ここで、中間層12として炭窒酸化チタン(TiCNO)層を形成する
場合の成膜条件として、塩化チタン(TiCl)ガスの流量に対する二酸化炭素(CO)ガスの流量比(CO/TiCl)を1.8〜4.0に制御することが好ましい。これにより、酸化アルミニウム(Al)層の基体側の界面において、基準長さ5μmに対する最大高さRzが0.1〜0.5μm、かつ基準長さ5μmにおける凸部の数が4〜15個に制御することができる。そのため、中間層12と酸化アルミニウム(Al)層14との密着性を高めることができる。
【0068】
さらに、上記流量比率を2.0〜3.0に制御することにより突出粒子13が形成されやすくなる。
【0069】
その後、後処理工程として、中間層12が形成された基体を、塩化アルミニウム(AlCl)を1〜15vol%、残りを水素(H)にて構成し、合計が100vol%になるように混合したガスを導入して保持する。なお、処理時間は15〜60分程度、圧力は5〜30kPa、処理温度は950〜1150℃で行なうことが好ましい。
【0070】
この後処理工程を行うことにより、酸化アルミニウム(Al)層14にコバルト(Co)粒子が析出しやすくなる。
【0071】
そして、引き続き、酸化アルミニウム(Al)層14を成膜する。酸化アルミニウム(Al)層14の成膜方法としては、塩化アルミニウム(AlCl)ガスを3〜20vol%、塩化水素(HCl)ガスを0.5〜3.5vol%、二酸化炭素(CO)ガスを0.01〜5.0vol%、硫化水素(HS)ガスを0〜0.01vol%、残りが水素(H)ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaとすることが望ましい。
【0072】
次に、表面層15を形成する。例えば、表面層15として窒化チタン(TiN)層を成膜するには、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10vol%、窒素(N)ガスを10〜60vol%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、50〜85kPaとすればよい。
【0073】
従来の製造方法では、特許文献1や特許文献2のように、基体の組成成分を被覆層に拡散させることにより、基体と被覆層との密着性を向上させる方法は知られていたものの、十分な耐欠損性を得ることはできず、高送りや高切り込み加工などの重切削や断続切削においては切刃の欠損が発生し、すぐれた切削性能を長期に渡り維持することは難しかった。
【0074】
そこで、出願人は実験を繰り返した結果、(1)基体表面に窒化チタン形成する前に行なう前処理工程、(2)窒化チタン層形成後、炭窒化チタン層形成前に行なう中間処理工程、(3)中間層形成後、酸化アルミニウム層形成前に行なう後処理工程、これらを行なうことにより、従来はなしえなかった酸化アルミニウム層中に、コバルトを主成分とする粒子を含ませることに成功した。
【0075】
即ち、上記前処理工程、中間処理工程および後処理工程により、基体より拡散するコバルト(Co)成分を酸化アルミニウム(Al)層まで吸い上げることができる。これにより、酸化アルミニウム(Al)層にコバルトを主成分とする粒子を析出させることができる。
【0076】
また、切刃6のみまたは切刃6を含むすくい面3を、成膜した被覆層8の表面からブラシ、弾性砥石またはブラスト法によって機械的に研磨加工して、切刃6にて表面層15を研磨して薄くするか、または酸化アルミニウム(Al)層14を露出させる。この研磨加工により、被覆層中に残存する残留応力が開放されるとともに、切刃6に酸化アルミニウム(Al)層14が露出するか、または酸化アルミニウム(Al)層14が被覆層8の表面近傍に存在することとなる。これにより、被削材の溶着を抑制し、かつ耐摩耗性に優れた切削インサート1となる。
【0077】
次に、本発明の切削方法について説明する。
【0078】
図5から図7に本発明の切削方法の工程図を示す。まず、上記本発明にかかる切削工具1(図においては、例として旋削工具を記載する)に本発明の切削インサートを取り付ける。そして、図5に示すように、切削工具1の切刃を被削材50に近づける。なお、切削工具1と被削材50が相対的に近づけば良く、例えば、被削材50を切削工具1の切刃に近づけても良い。
【0079】
そして、被削材50と切削工具1の少なくとも一方を回転させる。なお、図5から図7においては、被削材が回転するものを例示している。次いで、図6に示すように切削工具1の切刃部分を被削材50に接触させて切削する。その後、図7に示すように前記被削材50から切削工具1を離間させる。なお、切削加工を継続する場合は、切削工具1と被削材50を相対的に回転された状態を保持して、被削材50の異なる箇所に切削工具1の切刃を接触させる工程を繰り返す。
【0080】
以下に本発明の実施例を、表を参照して説明する。
【0081】
(実施例1)
平均粒径1.4μmの炭化タングステン(WC)粉末を90wt%、平均粒径1.6μmの金属コバルト(Co)粉末を8wt%、平均粒径1.5μmの炭化チタン(TiC)粉末を0.3wt%、平均粒径1.4μmのTaC粉末を1.2wt%、平均粒径1.5μmのNbC粉末を0.5wt%の配合組成で添加、混合して、プレス成形により切削工具形状(CNMG120408)に成形した後、脱バインダ処理を施し、0.01Paの真空中において1500℃で1時間焼成して超硬合金を作製した。
【0082】
上記超硬合金を基体として、表1及び表2に記載の各条件で、前処理工程、窒化チタン(TiN)層成膜工程、中間処理工程、炭窒化チタン(TiCN)層成膜工程、中間層成膜工程、後処理工程、酸化アルミニウム(Al)層成膜工程、窒化チタン(TiN)からなる表面層成膜工程を順次行い、試料No.1−16の切削工具(スローアウェイ
チップ)を作製した。
【表1】
Figure 0004994367
【0083】
【表2】
Figure 0004994367
【0084】
なお、酸化アルミニウム(Al)中のコバルト(Co)を主成分とする粒子の確認については、酸化アルミニウム(Al)層を含む界面を高分解能透過型電子顕微鏡(HR−TEM)によって行なった。その結果、表2から分かる通り、本発明の製造方法を用いた試料No.1−10については、図1に示すように酸化アルミニウム(Al)層中にコバルト(Co)を主成分とする粒子Eが含まれていた。それに対して試料No.11−16は、酸化アルミニウム(Al)層中にコバルトを主成分とする粒子は確認できなかった。
【0085】
上記試料No.1−16のスローアウェイチップをホルダに取り付けて、下記条件により切削試験を行い、耐摩耗性(逃げ面摩耗、境界摩耗)、耐欠損性、刃先状態をそれぞれ測定した。その結果を以下の表3に示す。
【0086】
(切削条件)
(1)耐摩耗性試験
被削材 :SUS304 円柱材
工具形状:CNMG120408
切込速度:200m/分
送り速度:0.2mm/rev
切り込み:1.5mm
切削時間:20分
切削状態:湿式切削
(2)耐欠損性試験
被削材 :SUS304 円柱材(溝付き)
工具形状:CNMG120408
切込速度:170m/分
送り速度:0.3mm/rev
切り込み:1.5mm
切削状態:湿式切削
【表3】
Figure 0004994367
【0087】
表3から分かるように、酸化アルミニウム(Al)層中にコバルト(Co)を主成分とする粒子を含む試料No.1−10については、酸化アルミニウム(Al)層中にコバルト(Co)を主成分とする粒子を確認できなかった試料No.11−16に比べて、逃げ面摩耗、境界摩耗、耐欠損試験、刃先状態のすべてにおいて優れた結果を得ることができた。
【0088】
これは、延性に優れたコバルトを主成分とする粒子を酸化アルミニウム(Al)層中に存在させることで、高硬度と高靭性を兼ね備えることができたため、強断続加工での強い衝撃の際に、酸化アルミニウム(Al)層にクラックが発生するのを抑制できたものと考えられる。さらに、表面層にクラックが発生した場合であっても、高靭性なコバルト(Co)を主成分とする粒子を含む酸化アルミニウム(Al)層がクラックの発生を抑制することができたものと考えられる。
【0089】
(実施例2)
平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、炭化タンタル(TaC)粉末を5質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMG120408)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。
さらに、作製した超硬合金にブラシ加工にてすくい面より刃先処理(ホーニングR)を施した。得られた基体の逃げ面においてJISB0601−2001に準じた算術平均粗さ(Ra)は1.1μm、すくい面における算術平均粗さ(Ra)は0.4μmであった。
【0090】
次に、上記超硬合金に対して、CVD法により各種の被覆層を表5に示す構成の多層膜からなる被覆層を成膜した。なお、表5の各層の成膜条件は表4に示した。そして、被覆層の表面をすくい面側から切刃にわたってブラシ加工により切刃が表5の状態となるようして表面被覆スローアウェイチップを作製した。
【表4】
Figure 0004994367
【0091】
得られた工具について、被覆層8の断面を含む任意破断面5ヵ所について走査型電子顕微鏡(SEM)写真を撮り、各写真おいて各被覆層の組織状態を観察し、各層の層厚を測定するとともに突出粒子の存在の有無を確認した。なお、図3に試料No.17のチップについての断面SEM写真を示す。さらに、この写真から酸化アルミニウム層の基体側界面における凹凸をトレースし、最大粗さRzおよび凸部の数を測定した。さらに、被覆層8の表面からX線回折測定を行い、酸化チタン(Ti)の(012)面のピークが存在の有無を確認し、存在する場合には、酸化チタンの(012)面のピーク強度ITi2O3と酸化アルミニウムの(012)面のピーク強度 Al2O3 との比率(ITi2O3/IAl2O3)を算出した。
【表5】
Figure 0004994367
【0092】
そして、この切削工具を用いて下記の条件により、連続切削試験および断続切削試験を行い、耐摩耗性および耐欠損性を評価した。
【0093】
(連続切削条件)
被削材 :ステンレス鋼(SUS304)
工具形状:CNMG120408
切削速度:120m/分
送り速度:0.2mm/rev
切り込み:1.5mm
切削時間:30分
その他 :水溶性切削液使用
評価項目:顕微鏡にて切刃を観察し、逃げ面摩耗量・境界摩耗量を測定
(断続切削条件)
被削材 :ステンレス鋼4本溝付(SUS304)
工具形状:CNMG120408
切削速度:170m/分
送り速度:0.2mm/rev
切り込み:1.0mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の被覆層の剥離状態を観察
【表6】
Figure 0004994367
【0094】
表4〜6より、Al層の層厚が0.45μmを越える試料No.29では、摩耗の進行が速く、また早い段階で欠損が発生してしまった。また、酸化アルミニウム(Al)としてκ−Alとなった試料No.30でも、摩耗の進行が速く、また早い段階で欠損が発生してしまった。
【0095】
これに対して、本発明に従った層構成であるNo.17〜28では、いずれも連続切削においても断続切削においても長寿命であり、耐欠損性および耐摩耗性とも優れた切削性能を有するものであった。
【産業上の利用可能性】
【0096】
本発明の一実施形態によれば、酸化アルミニウム層中に、コバルトを主成分とする粒子が含まれている。これにより、延性に優れたコバルト(Co)粒子と、硬度に優れた酸化アルミニウム(Al)粒子が酸化アルミニウム(Al)層内に混在し、高硬度と高靭性を兼ね備えることができる。そのため、強断続加工での強い衝撃の際に、酸化アルミニウム(Al)層にクラックが発生するのを抑制できる。
【0097】
前記酸化アルミニウム(Al)層上に前記表面層が形成されている場合は、前記表面層にクラックが発生したとしても、高靭性なコバルト粒子を含む酸化アルミニウム(Al)層がクラックの発生を抑制できる。
【0098】
また、本発明は、被覆層が、(a)基体2の表面に形成される平均層厚0.1〜1.0μmの窒化チタン(TiN)層10と、(b)平均層厚1.0〜4.0μmで柱状結晶組織の炭窒化チタン(TiCN)層11と、(c)平均層厚0.05〜0.4μmで、炭酸化チタン(TiCO)、酸窒化チタン(TiNO)、炭窒酸化チタン(TiCNO)、酸化チタン(Ti,TiO)の群から選ばれる少なくとも1種にて構成される中間層12、と、(d)平均層厚0.1〜0.45μmのα型結晶構造の酸化アルミニウム(Al)層14と、(e)0.1〜2.0μmの平均層厚で構成された窒化チタン(TiN)、窒化ジルコニウム(ZrN)または窒化ハフニウム(HfN)の群から選ばれる少なくとも1種からなる表面層15と、を順に積層した全体平均層厚1.5〜7.0μmの構成であることが好ましい。そして、切削工具によれば、切刃6における被覆層8は、表面層15が研磨されて薄くなっているか、または表面層15が除去されて酸化アルミニウム(Al)層14が露出した状態となっていることが好ましい。
【0099】
これによって、切刃にて露出するAl層14が耐溶着性および耐摩耗性に優れる。しかも、耐欠損性が要求される加工においても実用的に問題ない耐摩耗性を確保して被覆層8のチッピングを抑制できる。
【0100】
また、本発明においては、酸化アルミニウム(Al)層中に含まれるコバルト(Co)粒子の平均粒径は、0.05〜0.4μmであることが好ましい。
【0101】
これにより、切削工具として、金属の靭性とセラミックスの耐摩耗性が最もバランス良くなる。また、酸化アルミニウム(Al)層が高靭性、即ちクッションの役割を果たす。これにより、クラックの発生を抑制することができる。つまり、上記範囲は、耐摩耗性を低下させずに硬質層の強度を向上させることができる。また、本発明は、酸化アルミニウム層中に含まれるコバルト(Co)粒子の組成は、合計を100wt%とした場合、コバルトを92〜98wt%、チタンを1〜4wt%、残部がその他の物質で構成されていることが好ましい。
【0102】
上記範囲内においては、コバルト(Co)よりも延性に優れたチタン(Ti)と、チタンよりも弾性率に優れたコバルト(Co)をバランス良く含むことにより、優れた耐摩耗性と靭性とを兼ね具えることができる。
【図面の簡単な説明】
【0103】
【図1】 本発明の切削工具(切削インサート)の一例についての(a)概略斜視図、(b)要部拡大断面図である。
【図2】 本発明の酸化アルミニウム層内のコバルト粒子を示す断面図である。
【図3】 本発明の切削工具(切削インサート)の一例(実施例2)について、その組織を断面から観察した際の走査型電子顕微鏡写真である。
【図4】 酸化アルミニウム層の基体側界面における凸部の数を測定する方法を説明するための模式図である。
【図5】 本発明の切削方法の工程図である。
【図6】 本発明の切削方法の工程図である。
【図7】 本発明の切削方法の工程図である。

Claims (15)

  1. 基体と、該基体の表面に形成された被覆層とを備える切削工具であって、
    前記基体は、少なくともコバルトを含んでおり、
    前記被覆層は、少なくとも前記基体の表面に形成された窒化チタン層と、該窒化チタン層の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面に形成された中間層と、該中間層の表面に形成された酸化アルミニウム層とを含み、
    前記中間層は、少なくとも酸素およびチタンを含み、
    前記酸化アルミニウム層中には、コバルトを主成分とする粒子を含むことを特徴とする切削工具。
  2. 前記被覆層は、前記窒化チタン層の平均層厚が0.1〜1μm、
    前記炭窒化チタン層の平均層厚が1.0〜6μm、
    前記中間層の平均層厚が0.05〜0.4μm、
    前記酸化アルミニウム層の平均層厚が0.1〜0.45μmであることを特徴とする請求項1に記載の切削工具。
  3. 前記コバルトを主成分とする粒子は、前記酸化アルミニウム層中に複数個存在し、
    前記コバルトを主成分とする粒子の平均粒径は0.05〜0.4μmであることを特徴とする請求項1又は請求項2に記載の切削工具。
  4. 前記中間層と前記酸化アルミニウム層との界面と平行な基準長さ10μmに含まれる前記酸化アルミニウム層中のコバルトを主成分とする粒子の数が3〜20個であることを特徴とする請求項1乃至3のいずれかに記載の切削工具。
  5. 前記酸化アルミニウム層中に含まれるコバルトを主成分とする粒子の組成は、コバルトを92〜98wt%、チタンを1〜4wt%、残部が不可避不純物であり、合計が100wt%となることを特徴とする請求項1乃至4のいずれかに記載の切削工具。
  6. 前記酸化アルミニウム層がα型結晶構造を有することを特徴とする請求項1乃至5のいずれかに記載の切削工具。
  7. 前記酸化アルミニウム層上には、表面層が形成されており、
    前記表面層は、窒化チタン、炭化チタン、炭窒化チタン、窒化ジルコニウム、窒化ハフニウムの群から選ばれる少なくとも1種からなり、
    平均層厚が0.1〜2μmの表面層が形成されていることを特徴とする請求項1乃至6のいずれかに記載の切削工具。
  8. 前記被覆層の全体の平均層厚が1.5〜7μmであることを特徴とする請求項2乃至7のいずれかに記載の切削工具。
  9. 前記基体が、炭化タングステンを主成分とすることを特徴とする請求項1乃至8のいずれかに記載の切削工具
  10. 前記基体は、主面がすくい面をなし、側面が逃げ面をなす平板状であり、前記すくい面と前記逃げ面との交差稜線部に切刃が形成されており、
    前記切刃における前記被覆層は、少なくとも前記表面層が研磨されて薄くなっているか、または前記表面層が除去されて前記酸化アルミニウム層が露出していることを特徴とする請求項1に記載の切削工具。
  11. 基体と、該基体の表面に形成された被覆層とを備え、
    前記被覆層は、少なくとも前記基体の表面に形成された窒化チタン層と、該窒化チタン層の表面に形成された炭窒化チタン層と、該炭窒化チタン層の表面に形成された中間層と、該中間層の表面に形成された酸化アルミニウム層とを含む、切削工具の製造方法であって、
    CVD炉内において、Hを50〜75vol%、Nを25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記導入するガスの常温常圧での体積(流量)をVg(/min)、前記CVD炉内の体積をVr()としたときのVg/Vr(/min)が0.1〜0.3(/min)になるように制御し、前記基体をCVD炉内に保持する前処理工程と、
    前記基体の表面に窒化チタン層を形成する窒化チタン層成膜工程と、
    前記CVD炉内において、Hを50〜75vol%、Nを25〜50vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入し、前記Vg/Vr(/min)が0.1〜0.3(/min)となるように制御し、窒化チタン層が形成された基体をCVD炉内に保持する中間処理工程と、
    窒化チタン層上に、炭窒化チタン層、中間層を順次形成する炭窒化チタン層及び中間層成膜工程と、
    中間層が形成された基体を、AlClを1〜15vol%、Hを85〜99vol%の範囲内でそれぞれ含み合計が100vol%になるように混合したガスを導入して保持する後処理工程と、
    中間層上に、酸化アルミニウム層を形成する酸化アルミニウム層成膜工程とを
    具えることを特徴とする切削工具の製造方法。
  12. 前記前処理工程における処理時間が10〜60分であることを特徴とする請求項11に記載の切削工具の製造方法。
  13. 前記中間処理工程における処理時間が10〜60分であることを特徴とする請求項11又は請求項12に記載の切削工具の製造方法。
  14. 前記後処理工程における処理時間が15〜60分であることを特徴とする請求項11乃至13のいずれかに記載の切削工具の製造方法。
  15. 請求項10に記載の切削工具を用いて被削材を切削する切削方法であって、
    前記切削工具の切刃と前記被削材を相対的に近づける近接工程と、
    前記切削工具および前記被削材の少なくとも一方を回転させ、前記切刃を被削材の表面に接触させて、被削材の表面を切削する切削工程と、
    前記被削材と前記切刃とを相対的に遠ざける退避工程とを、備えることを特徴とする切削方法。
JP2008511989A 2006-03-28 2007-02-27 切削工具及びその製造方法、並びに切削方法 Active JP4994367B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008511989A JP4994367B2 (ja) 2006-03-28 2007-02-27 切削工具及びその製造方法、並びに切削方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006087807 2006-03-28
JP2006087807 2006-03-28
JP2006241016 2006-09-06
JP2006241016 2006-09-06
JP2008511989A JP4994367B2 (ja) 2006-03-28 2007-02-27 切削工具及びその製造方法、並びに切削方法
PCT/JP2007/053691 WO2007122859A1 (ja) 2006-03-28 2007-02-27 切削工具及びその製造方法、並びに切削方法

Publications (2)

Publication Number Publication Date
JPWO2007122859A1 JPWO2007122859A1 (ja) 2009-09-03
JP4994367B2 true JP4994367B2 (ja) 2012-08-08

Family

ID=38624775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008511989A Active JP4994367B2 (ja) 2006-03-28 2007-02-27 切削工具及びその製造方法、並びに切削方法

Country Status (4)

Country Link
US (1) US8182911B2 (ja)
EP (1) EP2006040B1 (ja)
JP (1) JP4994367B2 (ja)
WO (1) WO2007122859A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927589B1 (ja) * 2006-01-17 2007-06-13 酒井精工株式会社 回転切削工具および回転切削工具の製造方法
WO2008026432A1 (fr) * 2006-08-31 2008-03-06 Sumitomo Electric Hardmetal Corp. outil de découpe avec revêtement de surface
ATE548765T1 (de) 2006-10-18 2012-03-15 Dow Global Technologies Llc Nanoröhrchen-verkabelung
JP5036470B2 (ja) * 2007-09-27 2012-09-26 京セラ株式会社 表面被覆工具
JP5303732B2 (ja) * 2008-01-21 2013-10-02 日立ツール株式会社 被覆工具
JP5305013B2 (ja) * 2009-03-04 2013-10-02 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5683190B2 (ja) * 2010-09-29 2015-03-11 京セラ株式会社 表面被覆部材
JP5899905B2 (ja) * 2010-12-26 2016-04-06 三菱マテリアル株式会社 炭素膜被覆ドリルおよびその製造方法
KR20160067188A (ko) * 2011-09-30 2016-06-13 제이엑스금속주식회사 스퍼터링용 탄탈제 코일의 재생 방법 및 그 재생 방법에 의해서 얻어진 탄탈제 코일
CN103173761B (zh) * 2011-12-23 2015-08-19 株洲钻石切削刀具股份有限公司 改善涂层结构的切削刀具及其制备方法
US8420237B1 (en) * 2012-02-20 2013-04-16 Wenping Jiang Adherent coating on carbide and ceramic substrates
JP6198176B2 (ja) 2013-02-26 2017-09-20 三菱マテリアル株式会社 表面被覆切削工具
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
WO2014153469A1 (en) 2013-03-21 2014-09-25 Kennametal Inc. Coatings for cutting tools
US9181621B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
KR101813536B1 (ko) * 2013-11-29 2017-12-29 쿄세라 코포레이션 절삭공구
JP6379518B2 (ja) * 2014-02-27 2018-08-29 新日鐵住金株式会社 超硬工具およびその製造方法
CN106457411B (zh) * 2014-03-25 2018-12-11 兼房株式会社 切削工具
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
DE102015222020A1 (de) * 2015-11-09 2017-05-11 Thyssenkrupp Ag Werkzeug zur Bearbeitung von abrasiven Materialien
EP3287857B1 (fr) * 2016-08-26 2019-04-03 The Swatch Group Research and Development Ltd. Procédé d'obtention d'un article à base de zircone ayant un aspect métallique
WO2018230218A1 (ja) 2017-06-13 2018-12-20 住友電工ハードメタル株式会社 ドリル
JP6977034B2 (ja) * 2017-06-21 2021-12-08 京セラ株式会社 被覆工具、切削工具及び切削加工物の製造方法
CN114214613B (zh) * 2021-12-04 2023-05-26 深圳市波尔顿科技有限公司 一种具有纳米氮化钛涂层的抗菌不锈钢刀具的制备方法
CN117140745B (zh) * 2023-10-30 2023-12-29 泉州众志新材料科技有限公司 一种可降低voc浓度的排锯刀头及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591103A (ja) * 1982-06-25 1984-01-06 Toshiba Tungaloy Co Ltd 被覆硬質工具刃先体
JPH05140763A (ja) * 1991-11-14 1993-06-08 Toshiba Tungaloy Co Ltd 耐剥離性被覆部材及びその製造方法
JPH08118105A (ja) * 1994-10-20 1996-05-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2004249380A (ja) * 2003-02-18 2004-09-09 Kyocera Corp 表面被覆Ti基サーメット製切削工具およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270374A (ja) * 1985-05-27 1986-11-29 Sumitomo Electric Ind Ltd 被覆超硬合金
US4822689A (en) * 1985-10-18 1989-04-18 Union Carbide Corporation High volume fraction refractory oxide, thermal shock resistant coatings
US4984940A (en) * 1989-03-17 1991-01-15 Kennametal Inc. Multilayer coated cemented carbide cutting insert
JPH0482604A (ja) * 1990-07-20 1992-03-16 Hitachi Tool Eng Ltd 切削用チップ
JPH06136505A (ja) * 1992-10-26 1994-05-17 Sumitomo Metal Ind Ltd 溶射被覆構造
JP3170993B2 (ja) 1994-02-28 2001-05-28 三菱マテリアル株式会社 耐欠損性のすぐれた表面被覆炭化タングステン基超硬合金製切削工具
US5652045A (en) 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
JP3266047B2 (ja) * 1997-05-12 2002-03-18 三菱マテリアル株式会社 硬質被覆層がすぐれた層間密着性を有する表面被覆超硬合金製切削工具
JPH11229144A (ja) * 1998-02-12 1999-08-24 Hitachi Tool Eng Ltd 被覆工具
JPH11229143A (ja) 1998-02-20 1999-08-24 Mitsubishi Materials Corp 耐欠損性のすぐれた表面被覆超硬合金製エンドミル
JP2000158207A (ja) 1998-12-01 2000-06-13 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
US7172807B2 (en) * 2003-02-17 2007-02-06 Kyocera Corporation Surface-coated member
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
JP4511226B2 (ja) * 2004-03-29 2010-07-28 京セラ株式会社 スローアウェイチップ
EP1609883B1 (en) * 2004-06-24 2017-09-20 Sandvik Intellectual Property AB Coated metal cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591103A (ja) * 1982-06-25 1984-01-06 Toshiba Tungaloy Co Ltd 被覆硬質工具刃先体
JPH05140763A (ja) * 1991-11-14 1993-06-08 Toshiba Tungaloy Co Ltd 耐剥離性被覆部材及びその製造方法
JPH08118105A (ja) * 1994-10-20 1996-05-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2004249380A (ja) * 2003-02-18 2004-09-09 Kyocera Corp 表面被覆Ti基サーメット製切削工具およびその製造方法

Also Published As

Publication number Publication date
US8182911B2 (en) 2012-05-22
EP2006040A9 (en) 2009-07-15
EP2006040A2 (en) 2008-12-24
JPWO2007122859A1 (ja) 2009-09-03
EP2006040A4 (en) 2011-12-28
US20100166512A1 (en) 2010-07-01
WO2007122859A1 (ja) 2007-11-01
EP2006040B1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP4994367B2 (ja) 切削工具及びその製造方法、並びに切削方法
JP4783153B2 (ja) 刃先交換型切削チップ
CN108290223B (zh) 切削工具
JP4739321B2 (ja) 刃先交換型切削チップ
WO2017146200A1 (ja) 被覆工具
JP4711714B2 (ja) 表面被覆切削工具
JP5414883B2 (ja) 切削工具
JP4854359B2 (ja) 表面被覆切削工具
JP2007136631A (ja) 刃先交換型切削チップ
JP4942326B2 (ja) 表面被覆部材および表面被覆部材を用いた切削工具
JP5841170B2 (ja) 被覆工具
WO2006103899A1 (ja) 刃先交換型切削チップ
JP7037581B2 (ja) 被覆工具およびそれを備えた切削工具
JP4142955B2 (ja) 表面被覆切削工具
JP2012144766A (ja) 被覆部材
JP6556246B2 (ja) 被覆工具
JP5597469B2 (ja) 切削工具
JP2011093003A (ja) 表面被覆部材
JP4936742B2 (ja) 表面被覆工具および切削工具
JP6050183B2 (ja) 切削工具
JP3468221B2 (ja) 表面被覆超硬合金切削工具
EP4005708A1 (en) Coated tool, and cutting tool comprising same
US20220250163A1 (en) Coated tool and cutting tool including the same
JP5822780B2 (ja) 切削工具
JP2012030359A (ja) 刃先交換型切削チップ

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under section 34 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150