WO2015141761A1 - フラビン結合型グルコース脱水素酵素 - Google Patents
フラビン結合型グルコース脱水素酵素 Download PDFInfo
- Publication number
- WO2015141761A1 WO2015141761A1 PCT/JP2015/058171 JP2015058171W WO2015141761A1 WO 2015141761 A1 WO2015141761 A1 WO 2015141761A1 JP 2015058171 W JP2015058171 W JP 2015058171W WO 2015141761 A1 WO2015141761 A1 WO 2015141761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glucose dehydrogenase
- seq
- amino acid
- glucose
- flavin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/96—Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/54—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/99—Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
- C12Y101/9901—Glucose dehydrogenase (acceptor) (1.1.99.10)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/902—Oxidoreductases (1.)
- G01N2333/904—Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
Definitions
- the present invention relates to a glucose dehydrogenase, a polynucleotide encoding the enzyme, a method for producing the enzyme, a method for measuring glucose using the enzyme, a measuring reagent composition, a biosensor, and the like.
- Measurement of glucose (blood glucose) concentration in blood is mainly important in blood glucose control of diabetic patients.
- biosensors are widely used as blood glucose measurement devices using enzymes.
- Glucose oxidase and glucose dehydrogenase are known as enzymes that can be used in biosensors.
- glucose oxidase has a problem that measurement errors occur due to dissolved oxygen in the blood.
- glucose dehydrogenases flavin-binding glucose dehydrogenases derived from eukaryotic cells are not affected by dissolved oxygen, do not require the addition of coenzymes, and are excellent in substrate specificity. It is useful as an enzyme for use (Patent Documents 1 to 6).
- the present invention provides a novel glucose dehydrogenase, a polynucleotide encoding the enzyme, a method for producing the enzyme, a method for measuring glucose using the enzyme, a measurement reagent composition, and a biosensor. Furthermore, it aims at providing the manufacturing method of a measuring reagent composition, and the manufacturing method of a biosensor.
- the inventors searched for glucose dehydrogenases derived from various microorganisms, and found a novel flavin-binding glucose dehydrogenase from microorganisms belonging to the genus Penicillium. Furthermore, they found an efficient method for producing flavin-binding glucose dehydrogenase and completed the present invention.
- a flavin-binding glucose dehydrogenase comprising a protein having the following amino acid sequence (a), (b) or (c) and having glucose dehydrogenase activity: (A) the amino acid sequence shown in SEQ ID NO: 2, 3, 5, 6, 8, or 9; (B) an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, 3, 5, 6, 8 or 9; (C) at least 85% identity with the amino acid sequence shown in SEQ ID NO: 2 or 3, at least 95% identity with the amino acid sequence shown in SEQ ID NO: 5 or 6, or the amino acid sequence shown in SEQ ID NO: 8 or 9 Amino acid sequence having at least 80% identity.
- the flavin-binding glucose dehydrogenase according to [1] having the following properties: (1) Action: Oxidizes the hydroxyl group at the 1-position of glucose in the presence of an electron acceptor; (2) soluble; (3) When the activity on glucose is 100%, the activity on maltose is at most 1.5%; (4) the molecular weight of the polypeptide of the enzyme is 60-70 kDa; and (5) stable at pH 3.8. [3] (6) The flavin-binding glucose dehydrogenase according to [1] or [2], which is derived from a microorganism belonging to the genus Penicillium.
- a polynucleotide comprising the following (i), (ii), (iii), (iv) or (v): (I) a polynucleotide encoding the protein according to [1]; (Ii) a polynucleotide having the base sequence represented by SEQ ID NO: 1, 4 or 7; (Iii) Poly encoding a protein having a nucleotide sequence in which one or several bases are deleted, substituted or added in the nucleotide sequence shown in SEQ ID NO: 1, 4 or 7 and having glucose dehydrogenase activity nucleotide; (Iv) a polynucleotide that hybridizes with a polynucleotide having the base sequence represented by SEQ ID NO: 1, 4, or 7 under a stringent condition and encodes a protein having glucose dehydrogenase activity; (V) a polynucleotide encoding a protein having a base sequence having at least 80% identity with the base sequence shown
- [10] A method for measuring glucose using the flavin-binding glucose dehydrogenase according to any one of [1] to [3] and [9].
- [11] A glucose measurement reagent composition comprising the flavin-binding glucose dehydrogenase according to any one of [1] to [3] and [9].
- [12] A glucose measuring biosensor comprising the flavin-binding glucose dehydrogenase according to any one of [1] to [3] and [9].
- a novel flavin-binding glucose dehydrogenase was obtained, and the enzyme could be easily produced.
- Glucose measurement using the enzyme has become possible, and a glucose measurement reagent composition and glucose measurement biosensor containing the enzyme can be produced.
- the glucose dehydrogenase of the present invention is a protein having the following amino acid sequence (a), (b) or (c) and having glucose dehydrogenase activity. “Protein” also includes glycoproteins.
- A The amino acid sequence shown in SEQ ID NO: 2, 3, 5, 6, 8, or 9.
- B An amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, 3, 5, 6, 8 or 9.
- the number of mutations is preferably at most 60, 55, 50, 40, 30, 20, 20, 15, 5, 3, or 2.
- C at least 80%, preferably at least 85%, 90%, 92%, 95%, 97%, 98% or 99% with the amino acid sequence shown in SEQ ID NO: 2, 3, 5, 6, 8 or 9.
- Amino acid sequence with identity The enzyme is preferably a protein having the amino acid sequence of (a), (b) or (c) and having glucose dehydrogenase activity.
- the glucose dehydrogenase of the present invention is not particularly limited as long as it is a protein having the above sequence, and may be an enzyme derived from a wild strain, a recombinant enzyme obtained by gene recombination, or a synthetic enzyme obtained by synthesis. But you can. A recombinant enzyme is preferable.
- the flavin-binding glucose dehydrogenase of the present invention preferably has the following properties (1) to (8).
- flavins include flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), and FAD is preferred.
- FAD flavin adenine dinucleotide
- FMN flavin mononucleotide
- FAD is preferred.
- Action An enzyme that oxidizes the hydroxyl group at the 1-position of glucose in the presence of an electron acceptor.
- Soluble An enzyme that oxidizes the hydroxyl group at the 1-position of glucose in the presence of an electron acceptor.
- the action on 50 mM glucose is 100%, the action on 50 mM maltose is at most 3.0%. Preferably, it is at most 2.5%, 2.0% or 1.5%.
- the activity on 50 mM glucose is 100%, the activity on 50 mM xylose is preferably at most 30%, more preferably at most 20% or 15%.
- the molecular weight of the enzyme polypeptide is 60 to 70 kDa. Preference is given to 65 to 70 kDa.
- the molecular weight of the polypeptide of the enzyme is the molecular weight when the molecular weight of the protein part from which the sugar chain has been removed is measured by SDS-polyacrylamide gel electrophoresis.
- the molecular weight of the entire enzyme as determined by SDS-polyacrylamide gel electrophoresis varies depending on the culture conditions, purification conditions, etc., depending on the amount of glycan addition. The amount of added sugar changes and the molecular weight changes.
- the enzyme activity before a process is set to 100%, and the relative activity after a 1 hour process is shown in 100 mM various buffer solutions at 30 degreeC. By having this stability, it can be used stably even in an acidic region.
- Penicillium is preferably derived from a microorganism belonging to the genus Penicillium.
- the microorganism include Penicillium sclerotiolum, Penicillium paneum, and Penicillium junchinerum.
- Recombinant glucose dehydrogenase produced by introducing the obtained DNA into a suitable host microorganism by various known methods is also included in the glucose dehydrogenase of the present invention.
- Penicillium is easy to handle because it has been widely used in industry. Since the growth is quite fast, the culture time may be short, and it is very easy to use and useful as a strain for screening, a strain for gene acquisition or a strain for enzyme production.
- the Km for glucose is preferably 1.0 to 25 mM, more preferably 1.5 to 20 mM, and most preferably 15 mM, 10 mM or 5 mM.
- the Km is a value calculated by Hanes-Woolf plot. With this Km, accurate measurement can be performed with a small amount of enzyme even in a low concentration region of the substrate.
- the activity value at 25 ° C. is preferably at least 50%. If it is this temperature characteristic, there will be little change of the enzyme activity by temperature. Therefore, it is difficult to be affected by the environmental temperature at the time of measurement, so that it can be measured accurately.
- the polynucleotide of the present invention comprises the following (i), (ii), (iii), (iv) or (v).
- V at least 80%, preferably at least 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identity with the base sequence shown in SEQ ID NO: 1, 4 or 7
- hybridization under stringent conditions include, for example, 50% formamide, 5 ⁇ SSC (150 mM sodium chloride, 15 mM trisodium citrate, 10 mM sodium phosphate. 1 mM ethylenediaminetetraacetic acid, pH 7.2), 5 ⁇ Denhardt's solution, 0.1% SDS, 10% dextran sulfate and 100 ⁇ g / mL denatured salmon sperm DNA, incubated at 42 ° C., and then filtered with 0.2 X Washing at 42 ° C. in SSC can be exemplified.
- the identity is based on the identity value calculated by homology analysis between the base sequences of GENETYX (manufactured by Genetics) or between amino acid sequences.
- the polynucleotide of the present invention can be preferably obtained from a microorganism belonging to the genus Penicillium.
- the microorganism include Penicillium sclerotiolum, Penicillium paneum, and Penicillium junchinerum.
- the obtaining method may be to obtain the full length gene encoding glucose dehydrogenase from the chromosomal DNA or mRNA of the microorganism by PCR or the like, or artificially construct the full length gene sequence from the gene information described in SEQ ID NO: 1, 4 or 7. May be synthesized.
- a polynucleotide obtained by partially modifying a polynucleotide obtained by these methods and encoding a glucose dehydrogenase is also a polynucleotide of the present invention.
- Penicillium is easy to handle because it has been widely used in industry.
- the polynucleotide of the present invention may be chromosomal DNA or cDNA.
- the recombinant vector of the present invention is a cloning vector or an expression vector, and the vector is appropriately selected and contains the polynucleotide of the present invention as an insert.
- a polynucleotide optimized for codon usage may be introduced corresponding to the host cell.
- a gene not containing an intron is used.
- a gene containing an intron may be used.
- the expression level of the recombinant protein may be improved by replacing the stop codon with a stop codon optimal for the host.
- a vector to be expressed as a fusion protein may be selected by adding the start codon to the insert side or using the start codon on the vector side.
- the expression vector may be either a prokaryotic cell expression vector or a eukaryotic cell expression vector. If necessary, a polynucleotide that contributes to the expression of chaperone, lysozyme, and the like can be introduced into the same and / or different vector as the polynucleotide of the present invention.
- the glucose dehydrogenase of the present invention may be expressed using a vector that can be expressed as a fusion protein to which various tags such as a His tag, a FLAG tag, and GFP are added.
- a recombinant protein When a recombinant protein is expressed in a Gram-negative bacterium such as Escherichia coli using a glucose dehydrogenase gene containing a sequence encoding a secretory signal sequence such as SEQ ID NO: 1, 4 or 7, the recombinant protein becomes periplasm. Productivity is poor because it is migrated. Therefore, when it is desired to efficiently recover the recombinant protein, it is preferable to use a sequence in which the gene sequence encoding the signal sequence is deleted.
- a polynucleotide not containing an intron and not containing a sequence encoding a signal sequence for example, a polynucleotide obtained by adding an initiation codon ATG to a polynucleotide encoding the amino acid sequence set forth in SEQ ID NO: 3, 6 or 9 Is preferred.
- the expression vector include pUC system, pBluescript II, pET expression system, pGEX expression system, pCold expression system and the like.
- the entire glucose dehydrogenase gene including a sequence encoding a secretory signal sequence such as SEQ ID NO: 1, 4 or 7 may be inserted into the vector.
- a polynucleotide in which a sequence encoding a signal sequence is substituted with a sequence appropriate for a host, for example, may be used.
- a sequence encoding a signal sequence on the vector side may be used. Examples of expression vectors include pKA1, pCDM8, pSVK3, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, and pYE82.
- the secretory signal sequence can be estimated by comparing with the signal sequence of the glucose dehydrogenase sequence derived from Aspergillus terreus described in, for example, International Publication No. 2006/101239 (amino acid sequence represented by 1 to 19 in SEQ ID NO: 2). . Furthermore, it can also be estimated using a signal sequence prediction site (for example, Signal P: http://www.cbs.dtu.dk/services/SignalP/). For example, MKGFSGALLLPLAAAIPHASR can be inferred as the signal sequence in SEQ ID NO: 2, MRSLIGALLLPLAVAVPHASHHK in SEQ ID NO: 5, and MLVPKTLSSVYFAAVAAAA in SEQ ID NO: 8.
- Examples of the transformed cells of the present invention include prokaryotic cells such as Escherichia coli and Bacillus subtilis, eukaryotic cells such as fungi (yeast, Aspergillus or other ascomycetes, basidiomycetes, etc.), insect cells, mammalian cells, and the like. And can be obtained by transformation with the vector of the present invention.
- the vector may be maintained in a transformed cell in the state of a plasmid, or may be maintained by being incorporated into a chromosome.
- the host can be appropriately selected according to the necessity of the sugar chain, the necessity, and the necessity of other peptide modifications. However, it is possible to select a host to which a sugar chain can be added and produce an enzyme having a sugar chain. preferable.
- Recombinant glucose dehydrogenase can be produced by collecting glucose dehydrogenase from a culture obtained by culturing the transformed cells of the present invention.
- a normal microbial culture medium For cultivation of the glucose dehydrogenase-producing bacterium used in the present invention, a normal microbial culture medium can be used.
- any of a synthetic medium and a natural medium can be used as long as they contain moderate amounts of carbon sources, nitrogen sources, vitamins, inorganic substances, and other micronutrients required by microorganisms to be used.
- the carbon source glucose, sucrose, dextrin, starch, glycerin, molasses and the like can be used.
- nitrogen sources include inorganic salts such as ammonium chloride, ammonium nitrate, ammonium sulfate and ammonium phosphate, amino acids such as DL-alanine and L-glutamic acid, and peptone, meat extract, yeast extract, malt extract and corn steep liquor Nitrogen-containing natural products can be used.
- inorganic salts such as ammonium chloride, ammonium nitrate, ammonium
- the culture for obtaining the glucose dehydrogenase of the present invention is usually preferably carried out under aerobic conditions by methods such as shaking culture and aeration stirring.
- culture conditions suitable for the production of glucose dehydrogenase may be set.
- the culture temperature is preferably 20 to 50 ° C. and pH 4 to pH 8, and the pH may be adjusted during the culture in consideration of productivity.
- the culture period is preferably in the range of 2 days to 10 days.
- an ordinary protein production method can be used as a method for obtaining glucose dehydrogenase from the culture. For example, after first culturing a glucose dehydrogenase-producing bacterium, a culture supernatant is obtained by centrifugation. Alternatively, cultured cells are obtained, the cultured microorganisms are crushed by an appropriate method, and a supernatant is obtained from the crushed liquid by centrifugation or the like. Next, the glucose dehydrogenase contained in these supernatants can be purified by an ordinary protein purification method to obtain a purified enzyme. For example, it can be purified by combining purification operations such as ultrafiltration, salting out, solvent precipitation, heat treatment, dialysis, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromatography.
- purification operations such as ultrafiltration, salting out, solvent precipitation, heat treatment, dialysis, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromat
- Glucose can be measured using the glucose dehydrogenase of the present invention.
- the glucose measurement method of the present invention can quantitate glucose in a test sample by including a step of bringing a test sample containing glucose into contact with the glucose dehydrogenase of the present invention.
- the measuring object of this invention is not specifically limited, For example, a biological sample can be illustrated and a blood sample can be illustrated as a specific example.
- the enzyme of the present invention is particularly useful for blood glucose measurement.
- the present invention provides a method for producing a reagent composition for producing a glucose measuring reagent composition using the glucose dehydrogenase of the present invention or a method for producing a biosensor for producing a glucose measuring biosensor.
- the production method is preferably maintained in the range of pH 3.8 or more, more preferably in the range of pH 3.8 to 6.7. However, in the case where the stability of the enzyme can be maintained by a stabilizer or the like, the range is maintained. Not exclusively.
- the reagent composition of the present invention may be a reagent composition containing the glucose dehydrogenase of the present invention as an enzyme.
- the amount of enzyme in the composition is not particularly limited as long as the measurement target can be measured, but is preferably about 0.05 to 50 U, more preferably about 0.1 to 20 U.
- the composition may appropriately contain other optional components known to those skilled in the art, such as a stabilizer or a buffer, to enhance the thermal stability and storage stability of the enzyme and reagent components. Examples of the component include bovine serum albumin (BSA) or ovalbumin, saccharides or sugar alcohols having no activity with the enzyme, carboxyl group-containing compounds, alkaline earth metal compounds, ammonium salts, sulfates or proteins. .
- BSA bovine serum albumin
- a known substance that suppresses the influence of a contaminant substance that affects the measurement present in the test sample may be included in the measurement reagent.
- the biosensor of the present invention may be any sensor that includes the glucose dehydrogenase of the present invention as an enzyme in the reaction layer.
- an electrochemical biosensor is manufactured by forming an electrode system including a counter electrode and a working electrode on an insulating substrate using a method such as screen printing or vapor deposition, and further including the enzyme and a mediator.
- mediators include proteinaceous electron mediators such as heme, ferricyanide compounds, quinone compounds, osmium compounds, phenazine compounds, and phenothiazine compounds.
- the glucose dehydrogenase of the present invention can be used in a biobattery.
- the biobattery according to the present invention includes an anode electrode that performs an oxidation reaction and a cathode electrode that performs a reduction reaction, and includes an electrolyte layer that separates the anode and the cathode as necessary.
- An enzyme electrode containing the above-mentioned electron mediator and glucose dehydrogenase is used as an anode electrode, and electrons generated by oxidizing the substrate are taken out to the electrode and protons are generated.
- an enzyme generally used for the cathode electrode may be used on the cathode side, for example, by using laccase, ascorbate oxidase or bilirubin oxidase, and reacting protons generated on the anode side with oxygen. Generate water.
- an electrode generally used for a bio battery such as carbon, gold, or platinum can be used.
- the enzyme is preferably diluted as appropriate so that the final concentration is 0.15-0.6 U / mL.
- the enzyme activity unit (U) of the enzyme is an enzyme activity that oxidizes 1 ⁇ mol of glucose per minute.
- the enzyme activity of the glucose dehydrogenase of the present invention can be measured by the following method.
- the amount of decrease per minute ( ⁇ A600) in absorbance at 600 nm accompanying the progress of the enzyme reaction was measured for 5 minutes from the start of the reaction, and the enzyme activity was calculated from the linear portion according to the following formula. At this time, the enzyme activity was defined as 1 U for the amount of enzyme that reduces 1 ⁇ mol of DCIP per minute at 37 ° C. and pH 6.0.
- 3.0 is the amount of reaction reagent + enzyme solution (mL)
- 10.8 is the molar extinction coefficient of DCIP at pH 6.0
- 1.0 is the optical path length (cm) of the cell
- 0.05 represents the amount of the enzyme solution (mL)
- ⁇ A600 blank represents the amount of decrease in absorbance per minute at 600 nm when the reaction was started by adding a diluted enzyme solution instead of the enzyme solution.
- Example 1 (Acquisition of flavin-binding glucose dehydrogenase (GLD))
- GLD activity could be confirmed in the culture supernatants of the three strains.
- they were Penicillium sclerotiolum, Penicillium paneum, and Penicillium junchinerum.
- the respective enzymes derived from these GLD-producing bacteria were cloned.
- cDNA library was prepared from each RNA obtained in (2) by a reverse transcription reaction using a reverse transcriptase and an oligo dT primer with an adapter sequence.
- a reaction reagent “SMARTER RACE cDNA Amplification kit” (manufactured by Takara Bio Inc.) was used, and the reaction conditions were performed according to the protocol described in the instructions.
- E. coli JM109 competent cells (manufactured by Takara Bio Inc.) were each transformed by a known method.
- Each plasmid vector was extracted and purified from each obtained transformant using illustra plasmid-Prep Mini Spin Kit (manufactured by GE Healthcare), and the base sequence of each insert was determined.
- each primer for elucidating the upstream and downstream sequences of each GLD gene was designed. Using these primers, the full length of each GLD gene was elucidated by 5'RACE method and 3'RACE method.
- GLD gene sequences derived from Penicillium scleriothiolum, Penicillium paneum or Penicillium janchinerum are shown in SEQ ID NO: 1, 4 or 7. Further, the amino acid sequence predicted from the gene sequence is shown in SEQ ID NO: 2, 5 or 8. SEQ ID NO: 3, 6 or 9 is a sequence obtained by removing the signal portion predicted by Signal P4.1 for the sequence of SEQ ID NO: 2, 5 or 8.
- GLD derived from Penicillium scleriothiolum is represented as PsGLD
- GLD derived from Penicillium paneum is represented as PpGLD
- GLD derived from Penicillium janchinerum is represented as PjGLD.
- Plasmid vectors were prepared using an improved promoter of the amylase system derived from oryzae. First, PCR was performed using each cDNA library obtained in (3) as a template to obtain a PCR product containing each GLD gene.
- the following primer pairs of S158-Ori (SEQ ID NO: 10) and S158-R-1st (SEQ ID NO: 11) were used using cDNA derived from Penicillium sclerothiolum as a template.
- the following primer pairs of S1268-Ao (SEQ ID NO: 13) and S1268-R-1st (SEQ ID NO: 14) were used using a cDNA derived from Penicillium / Paneum as a template.
- T475-Ori SEQ ID NO: 16
- T475-R-1st SEQ ID NO: 17
- primer pairs were used using cDNA derived from Penicillium junchinerum as a template.
- PCR was carried out using each PCR product as a template to prepare each GLD gene for vector insertion.
- a primer pair of S158-Ori SEQ ID NO: 10
- S158-R-2nd SEQ ID NO: 12
- a primer pair of S1268-Ao (SEQ ID NO: 13) and S1268-R-2nd (SEQ ID NO: 15) was used with a PCR product containing the PpGLD gene as a template.
- a primer pair of T475-Ori (SEQ ID NO: 16) and T475-R-2nd (SEQ ID NO: 18) was used with a PCR product containing the PjGLD gene as a template.
- PsGLD gene, PpGLD gene or PjGLD gene prepared downstream of the promoter was ligated to prepare each plasmid vector capable of expressing the gene.
- Each of the prepared plasmid vectors for expression was introduced into E. coli strain JM109 and transformed.
- Each obtained transformant was cultured, and each plasmid vector was extracted from each collected bacterial body using illustra plasmid-Prep Mini Spin Kit.
- a base sequence containing each GLD gene could be confirmed.
- S158-Ori (SEQ ID NO: 10): 5 '-(CCGCAGCTCGTCAAA) ATGAAGGGATTCTCGGGTC-3' (In parentheses: transcription enhancer) S158-R-1st (SEQ ID NO: 11): 5'- ((GTTCATTTA)) GATCTTTCCCTTGATAATGTC-3 ' (In double brackets: pSEN vector sequence) S158-R-2nd (SEQ ID NO: 12): 5'- ((GTTACGCTTCTAGA GCATGC GTTCATTTA)) GATCTTTCCC-3 ' (In double brackets: pSEN vector sequence, underlined: restriction enzyme site (SphI)) S1268-Ao (SEQ ID NO: 13): 5′-CCGGCTGGACGGGCCGTTCCCCATGCCTCACACAAG-3 ′ S1268-R-1st (SEQ ID NO: 14): 5 '-((GTTCATTTA)) GTAGCACGCCTTGATGATAT-3' (In
- Each of the transformants obtained in (6) was inoculated into each cooled liquid medium, and cultured with shaking at 30 ° C. for 4 days. After completion of the culture, each supernatant was collected by centrifugation, and GLD activity was measured using a plate reader in accordance with the aforementioned GLD activity measurement method.
- each seed culture solution was inoculated into each cooled liquid medium and cultured at 30 ° C., 400 rpm, 1 v / v / m for 4 days.
- each culture solution was filtered with a filter cloth, and the collected filtrate was centrifuged to collect a supernatant, and further filtered with a membrane filter (10 ⁇ m, manufactured by Advantech) to collect each culture supernatant.
- a membrane filter (10 ⁇ m, manufactured by Advantech
- the enzyme was eluted by a gradient elution method from the buffer to 50 mM potassium phosphate buffer (pH 6.0), and the active fraction was collected.
- the collected active fraction was concentrated with an ultrafiltration membrane having a fractional molecular weight of 10,000, desalted, and equilibrated with 1 mM potassium phosphate buffer (pH 6.0).
- the enzyme was adsorbed by passing through a DEAE Cellulofine A-500m (manufactured by Chisso) column pre-equilibrated with the same buffer.
- the column was washed with the same buffer, and then the enzyme was eluted by a gradient elution method from the buffer to 200 mM potassium phosphate buffer (pH 6.0) to collect the active fraction.
- the collected active fraction was concentrated with an ultrafiltration membrane having a fractional molecular weight of 8,000, and then water-substituted sample was used as a purified PsGLD sample.
- the enzyme was eluted from the same buffer to a 50 mM potassium phosphate buffer (pH 6.0) containing 20% saturated ammonium sulfate, and the active fraction was recovered. .
- the collected active fraction was concentrated with an ultrafiltration membrane having a fractional molecular weight of 10,000, desalted, and equilibrated with 1 mM potassium phosphate buffer (pH 6.0).
- the enzyme was adsorbed by passing through a DEAE Cellulofine A-500m (manufactured by Chisso) column pre-equilibrated with the same buffer.
- the column was washed with the same buffer, and then the enzyme was eluted by a gradient elution method from the buffer to 150 mM potassium phosphate buffer (pH 6.0) to collect the active fraction.
- the collected active fraction was concentrated with an ultrafiltration membrane having a molecular weight cut-off of 8,000, and then water-substituted sample was used as a purified PpGLD sample.
- Example 2 (Examination of enzymatic chemistry of GLD of the present invention) Various properties of each purified GLD obtained in Example 1 were examined.
- the absorption spectrum at 200-700 nm before and after the addition of D-glucose was measured using a plate reader (SPECTRA MAX PLUS 384, manufactured by Molecular Devices).
- SPECTRA MAX PLUS 384 manufactured by Molecular Devices.
- GOD activity (U / mL) (( ⁇ A500 ⁇ A500blank) ⁇ 3.0 ⁇ dilution ratio of enzyme) / (10.66 ⁇ 0.5 ⁇ 1.0 ⁇ 0.05)
- 3.0 is the amount of reaction reagent + enzyme solution (mL)
- 10.66 is the molar extinction coefficient of the quinone dye under the present measurement conditions
- 0.5 is the amount of 1 mol of hydrogen peroxide produced.
- the amount of quinone dye produced with respect to the cell 1.0 is the optical path length of the cell (cm), 0.05 is the amount of the enzyme solution (mL), ⁇ A500 blank is the reaction start by adding a diluted enzyme solution instead of the enzyme solution Represents the amount of increase in absorbance per minute at 500 nm when the reaction was started.
- the GLD of the present invention had an activity against maltose of 2.0% or less and an activity against D-xylose of 30% or less, assuming that the activity against D-glucose was 100%.
- Km value for glucose According to the GLD activity measurement method, the activity of each GLD was measured by changing the concentration of D-glucose as a substrate. PsGLD was measured at glucose concentrations of 10, 20, 40 and 60 mM, PpGLD was measured at glucose concentrations of 5, 10, 20 and 50 mM, and PjGLD was measured at glucose concentrations of 1, 2, 5 and 10 mM. The Michaelis constant (Km value) was determined from each activity measurement value by Hanes-Woolf plot. As a result, the Km value for D-glucose of each GLD was 14 mM for PsGLD, 3.3 mM for PpGLD, and 3.6 mM for PjGLD. Therefore, the Km value of the GLD of the present invention is considered to be about 1.0 to 25 mM.
- Buffers include sodium acetate buffer (plotted with diamonds in the figure), sodium citrate buffer (plotted with squares in the figure), sodium phosphate buffer (plotted with black circles in the figure), potassium phosphate buffer (Plotted with triangles in the figure), Tris-HCl buffer (plotted with white circles in the figure) or glycine-NaOH buffer (plotted with x in the figure) was used.
- the enzyme activity before the treatment was assumed to be 100%, the residual activity after the treatment was calculated as a relative value, and the pH stability is shown in the figure.
- the relative activity of PsGLD is at least 80% at pH 3.5 to 6.8
- the relative activity of PpGLD is at least 70% at pH 3.5 to 6.7
- PjGLD The relative activity of was at least 80% at pH 3.8-7.4.
- the GLD of the present invention appeared to be stable in the acidic range.
- the activity of each GLD was measured at 25 ° C or 37 ° C.
- the final concentration of the substrate was 50 mM.
- the relative activity of each GLD at 25 ° C. was at least 70% for PsGLD, at least 70% for PpGLD, and at least 50% for PjGLD.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Emergency Medicine (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
[1]以下の(a)、(b)又は(c)のアミノ酸配列を有し、かつグルコース脱水素酵素活性を有するタンパク質からなるフラビン結合型グルコース脱水素酵素:
(a)配列番号2、3、5、6、8又は9に示されるアミノ酸配列;
(b)配列番号2、3、5、6、8又は9に示されるアミノ酸配列において1又はそれ以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列;
(c)配列番号2もしくは3に示されるアミノ酸配列と少なくとも85%の同一性、配列番号5もしくは6に示されるアミノ酸配列と少なくとも95%の同一性又は配列番号8もしくは9に示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列。
[2]以下の性質を有する、[1]に記載のフラビン結合型グルコース脱水素酵素:
(1)作用:電子受容体存在下で、グルコースの1位の水酸基を酸化する;
(2)可溶性である;
(3)グルコースに対する作用性を100%とした場合に、マルトースに対する作用性が多くとも1.5%である;
(4)酵素のポリペプチドの分子量が60~70kDaである;及び
(5)pH3.8で安定である。
[3](6)ペニシリウム属に属する微生物由来である、[1]又は[2]記載のフラビン結合型グルコース脱水素酵素。
[4]以下の(i)、(ii)、(iii)、(iv)又は(v)からなるポリヌクレオチド:
(i)[1]記載のタンパク質をコードするポリヌクレオチド;
(ii)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチド;
(iii)配列番号1、4又は7に示される塩基配列において1又は数個の塩基が欠失、置換もしくは付加された塩基配列を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iv)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド;
(v)配列番号1、4又は7に示される塩基配列と少なくとも80%の同一性を有する塩基配列を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド。
[5]ペニシリウム属に属する微生物由来である、[4]に記載のポリヌクレオチド。
[6][4]又は[5]に記載のポリヌクレオチドを含む組換えベクター。
[7][6]に記載のベクターにより形質転換した形質転換細胞。
[8][7]に記載の細胞を培養し、培養物からフラビン結合型グルコース脱水素酵素を採取することを特徴とするフラビン結合型グルコース脱水素酵素の製造方法。
[9][8]の製造方法によって得られたフラビン結合型グルコース脱水素酵素。
[10][1]~[3]及び[9]の何れかに記載のフラビン結合型グルコース脱水素酵素を使用するグルコースの測定方法。
[11][1]~[3]及び[9]の何れかに記載のフラビン結合型グルコース脱水素酵素を含むグルコース測定試薬組成物。
[12][1]~[3]及び[9]の何れかに記載のフラビン結合型グルコース脱水素酵素を含むグルコース測定用バイオセンサ。
(a)配列番号2、3、5、6、8又は9に示されるアミノ酸配列。
(b)配列番号2、3、5、6、8又は9に示されるアミノ酸配列において1又はそれ以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列。変異数は、好ましくは多くとも60個、55個、50個、40個、30個、20個、15個、10個、5個、3個又は2個である。
(c)配列番号2、3、5、6、8又は9に示されるアミノ酸配列と少なくとも80%、好ましくは少なくとも85%、90%、92%、95%、97%、98%又は99%の同一性を有するアミノ酸配列。
該酵素は、好ましくは(a)、(b)又は(c)のアミノ酸配列からなり、かつグルコース脱水素酵素活性を有するタンパク質である。
(1)作用:電子受容体存在下で、グルコースの1位の水酸基を酸化する酵素である。
(2)可溶性である。
(i)前記(a)、(b)及び(c)に記載のアミノ酸配列をコードするポリヌクレオチド。(ii)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチド。
(iii)配列番号1、4又は7に示される塩基配列において1又は数個の塩基が欠失、置換もしくは付加された塩基配列を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド。変異数は、好ましくは多くとも10個、8個、5個、3個又は2個である。
(iv)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド。
(v)配列番号1、4又は7に示される塩基配列と少なくとも80%、好ましくは少なくとも85%、90%、92%、95%、96%、97%、98%又は99%の同一性を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド。
100mMリン酸カリウム緩衝液(pH6.0)1.00mL、1M D-グルコース溶液1.00mL、3mM 2,6-ジクロロフェノールインドフェノール(以下DCIPという)0.14mL及び3mM 1-メトキシ-5-メチルフェナジウムメチルサルフェイト0.20mL及び超純水0.61mLを混合し、37℃で10分間保温後、酵素溶液0.05mLを添加し、反応を開始した。反応開始時から5分間、酵素反応の進行に伴う600nmにおける吸光度の1分間あたりの減少量(ΔA600)を測定し、直線部分から次式に従い酵素活性を算出した。この際、酵素活性は、37℃、pH6.0で1分間に1μmolのDCIPを還元する酵素量を1Uと定義した。
尚、式中の3.0は反応試薬+酵素溶液の液量(mL)、10.8はpH6.0におけるDCIPのモル吸光係数、1.0はセルの光路長(cm)、0.05は酵素溶液の液量(mL)、ΔA600blankは酵素の希釈溶液を酵素溶液の代わりに添加して反応開始した場合の600nmにおける吸光度の1分間あたりの減少量を表す。
(フラビン結合型グルコース脱水素酵素(GLD)の取得)
自然界から分離した菌株からGLD生産菌の探索を行った結果、3菌株の培養上清にGLD活性が確認できた。該菌株を同定した結果、ペニシリウム・スクレロチオルム、ペニシリウム・パネウム及びペニシリウム・ジャンチネルムだった。これらのGLD生産菌由来の各酵素のクローニングを行った。
パインデックス2%(松谷化学工業社製)(w/v)、トリプトン1%(BD社製)(w/v)、リン酸二水素カリウム0.5%(ナカライテスク社製)(w/v)、硫酸マグネシウム七水和物0.05%(w/v)(ナカライテスク社製)及び水からなる液体培地150mLを500mL容の坂口フラスコ3本に各々入れ、121℃、20分間オートクレーブした。冷却した各液体培地に、前記GLD生産菌を各々接種し、25℃で72時間振とう培養した後、さらしを用いて、湿菌体を各々回収した。
(1)で取得した各湿菌体200mgを-80℃で凍結した後、ISOGENII(ニッポンジーン社製)を用いて各100μgの全RNAを抽出した。
(2)で取得した各RNAから、逆転写酵素およびアダプター配列付きオリゴdTプライマーを用いた逆転写反応により各cDNAライブラリーを調製した。反応試薬は、「SMARTer RACE cDNA Amplification kit」(タカラバイオ社製)を使用し、反応条件は説明書記載のプロトコールに準じて行った。
(3)で取得した各cDNAライブラリーを鋳型とし、GLD遺伝子取得用プライマー対を用いてPCRを行った。その結果、何れもGLD遺伝子の内部配列と思われるPCR産物が確認された。尚、前記プライマー対は、本発明者らによって既に解明されていた複数のGLD配列を基に、種々のGLD遺伝子取得用に設計したプライマーである。前記PCR産物を各々精製し、DNA Ligation Kit(タカラバイオ社製)を用いて、T-vector PMD20(タカラバイオ社製)にライゲーションした。
公知文献1(Aspergillus属の異種遺伝子発現系、峰時俊貴、化学と生物、38、12、831-838、2000)に記載してあるアスペルギルス・オリゼ由来のアミラーゼ系の改良プロモーターを使用してプラスミドベクターを調製した。最初に、(3)で取得した各cDNAライブラリーを鋳型としてPCRを行い、各GLD遺伝子を含むPCR産物を取得した。PsGLD遺伝子の増幅には、ペニシリウム・スクレロチオルム由来のcDNAを鋳型として下記のS158-Ori(配列番号10)及びS158-R-1st(配列番号11)のプライマー対を使用した。PpGLD遺伝子の増幅には、ペニシリウム・パネウム由来のcDNAを鋳型として下記のS1268-A.o(配列番号13)及びS1268-R-1st(配列番号14)のプライマー対を使用した。PjGLD遺伝子の増幅には、ペニシリウム・ジャンチネルム由来のcDNAを鋳型として下記のT475-Ori(配列番号16)及びT475-R-1st(配列番号17)のプライマー対を使用した。次に、前記各PCR産物を鋳型としてPCRを行い、ベクター挿入用の各GLD遺伝子を調製した。PsGLD遺伝子の調製には、PsGLD遺伝子を含むPCR産物を鋳型としてS158-Ori(配列番号10)及びS158-R-2nd(配列番号12)のプライマー対を使用した。PpGLD遺伝子の調製には、PpGLD遺伝子を含むPCR産物を鋳型としてS1268-A.o(配列番号13)及びS1268-R-2nd(配列番号15)のプライマー対を使用した。PjGLD遺伝子の調製には、PjGLD遺伝子を含むPCR産物を鋳型としてT475-Ori(配列番号16)及びT475-R-2nd(配列番号18)のプライマー対を使用した。
(括弧内:転写増強因子)
S158-R-1st(配列番号11):5’- ((GTTCATTTA))GATCTTTCCCTTGATAATGTC-3’
(二重括弧内:pSENベクター配列)
S158-R-2nd(配列番号12):5’- ((GTTACGCTTCTAGAGCATGCGTTCATTTA))GATCTTTCCC-3’
(二重括弧内:pSENベクター配列、下線部:制限酵素部位(SphI))
S1268-A.o(配列番号13):5’-CCGGCTGGACGGGCCGTTCCCCATGCCTCACACAAG-3’
S1268-R-1st(配列番号14):5’-((GTTCATTTA))GTAGCACGCCTTGATGATAT-3’
(二重括弧内:pSENベクター配列)
S1268-R-2nd(配列番号15):5’-((GTTACGCTTCTAGAGCATGCGTTCATTTA))GTAGCACGC-3’
(二重括弧内:pSENベクター配列、下線部:制限酵素部位(SphI))
T475-Ori(配列番号16):5’-(CCGCAGCTCGTCAAA)ATGCTGGTCCCCAAGACTC-3’
(括弧内:転写増強因子)
T475-R-1st(配列番号17):5’-((GTTCATTTA))AACGCTTCCAGCCTTGATC-3’
(二重括弧内:pSENベクター配列)
T475-R-2nd(配列番号18):5’-((GTTACGCTTCTAGAGCATGCGTTCATTTA))AACGCTTCCA-3’
(二重括弧内:pSENベクター配列、下線部:制限酵素部位(SphI))
(5)で抽出した各プラスミドベクターを用いて、公知文献2(Biosci. Biotech. Biochem.,61(8),1367-1369,1997)及び公知文献3(清酒用麹菌の遺伝子操作技術、五味勝也、醸協、494-502、2000)に記載の方法に準じて、各GLDを生産する各組換えカビ(アスペルギルス・オリゼ)を作製した。得られた各組換え株をCzapek-Dox固体培地で純化した。使用する宿主としては、アスペルギルス・オリゼNS4株を使用した。本菌株は、公知文献2にあるように、1997年(平成9年)に醸造試験所で育種され、現在は、独立行政法人酒類総合研究所で分譲されているものが入手可能である。
パインデックス2%(松谷化学工業社製)(w/v)、トリプトン1%(BD社製)(w/v)、リン酸二水素カリウム0.5%(ナカライテスク社製)(w/v)、硫酸マグネシウム七水和物0.05%(w/v)(ナカライテスク社製)及び水からなる液体培地10mLを太試験管(22mm×200mm)3本に各々入れ、121℃、20分間オートクレーブした。冷却した各液体培地に、(6)で取得した各形質転換体を各々植菌し、30℃で4日間振とう培養した。培養終了後、遠心して各上清を回収し、前述のGLD活性測定法に準じ、プレートリーダーを用いてGLD活性を測定したところ、何れも本発明のGLD活性が確認できた。
(8-1)粗酵素液の取得
(7)に記載の液体培地150mLを500mL容の坂口フラスコ3本に入れ、121℃、20分間オートクレーブした。冷却した各液体培地に、(6)で取得した各形質転換体を各々植菌し、30℃で3日間振とう培養して種培養液とした。前記と同様の培地組成に0.005%クロラムフェニコール(ナカライテスク社製)(w/v)、消泡剤を添加した培地3.5Lを5L容ジャーファーメンター3基に入れ、121℃、20分間オートクレーブした。冷却した各液体培地に、前記種培養液を各50mL植菌し、30℃、400rpm、1v/v/mで4日間培養した。培養終了後、各培養液をろ布でろ過し、回収したろ液を遠心して上清を回収し、更にメンブレンフィルター(10μm、アドバンテック社製)でろ過して各培養上清を回収した。回収した各培養上清を、分画分子量10,000の限外ろ過膜(ミリポア社製)で濃縮して、PsGLD、PpGLD及びPjGLDの各粗酵素液とした。
(8-1)で取得したPsGLDの粗酵素液を、60%飽和硫酸アンモニウム溶液(pH6.0)になるように調整し、4℃で一晩放置後、遠心分離して上清を回収した。該上清を、60%飽和硫酸アンモニウムを含む50mMリン酸カリウム緩衝液(pH6.0)で予め平衡化したTOYOPEARL Butyl-650C(東ソー社製)カラムに通液して酵素を吸着させた。該カラムを同緩衝液で洗浄した後、同緩衝液から50mMリン酸カリウム緩衝液(pH6.0)へのグラジエント溶出法で酵素を溶出させて、活性画分を回収した。回収した活性画分を、分画分子量10,000の限外濾過膜で濃縮後、脱塩し、1mMリン酸カリウム緩衝液(pH6.0)と平衡化させた。同緩衝液で予め平衡化したDEAEセルロファインA-500m(チッソ社製)カラムに通液して酵素を吸着させた。該カラムを同緩衝液で洗浄した後、同緩衝液から200mMリン酸カリウム緩衝液(pH6.0)へのグラジエント溶出法で酵素を溶出させて、活性画分を回収した。回収した活性画分を、分画分子量8,000の限外ろ過膜で濃縮後、水置換したサンプルを、精製PsGLDサンプルとした。
(8-1)で取得したPpGLDの粗酵素液を、60%飽和硫酸アンモニウム溶液(pH6.0)になるように調整し、4℃で一時間放置後、遠心分離して上清を回収した。該上清を、60%飽和硫酸アンモニウムを含む50mMリン酸カリウム緩衝液(pH6.0)で予め平衡化したTOYOPEARL Butyl-650C(東ソー社製)カラムに通液して酵素を吸着させた。該カラムを同緩衝液で洗浄した後、同緩衝液から20%飽和硫酸アンモニウムを含む50mMリン酸カリウム緩衝液(pH6.0)へのグラジエント溶出法で酵素を溶出させて、活性画分を回収した。回収した活性画分を、分画分子量10,000の限外濾過膜で濃縮後、脱塩し、1mMリン酸カリウム緩衝液(pH6.0)と平衡化させた。同緩衝液で予め平衡化したDEAEセルロファインA-500m(チッソ社製)カラムに通液して酵素を吸着させた。該カラムを同緩衝液で洗浄した後、同緩衝液から150mMリン酸カリウム緩衝液(pH6.0)へのグラジエント溶出法で酵素を溶出させて、活性画分を回収した。回収した活性画分を、分画分子量8,000の限外ろ過膜で濃縮後、水置換したサンプルを、精製PpGLDサンプルとした。
(8-1)で取得したPjGLDの粗酵素液を5mMリン酸カリウム緩衝液(pH6.0)と平衡化させ、同緩衝液で予め平衡化したDEAEセルロファインA-500m(チッソ社製)カラムに通液して酵素を吸着させた。該カラムを10mMリン酸カリウム緩衝液(pH6.0)で洗浄した後、同緩衝液から100mMリン酸カリウム緩衝液(pH6.0)へのグラジエント溶出法で酵素を溶出させて、活性画分を回収した。回収した活性画分を、分画分子量8,000の限外ろ過膜で濃縮後、水置換したサンプルを、精製PjGLDサンプルとした。
(本発明のGLDの酵素化学的性質の検討)
実施例1で得られた各精製GLDの諸性質を調べた。
(1)吸収スペクトルの測定
本発明のGLDについて、D-グルコース添加前後の200-700nmにおける吸収スペクトルをプレートリーダー(SPECTRA MAX PLUS 384、モレキュラーデバイス社製)を用いて測定した。その結果、何れのGLDにおいても、波長360-380nm付近及び波長450-460nm付近に認められた吸収極大が、D-グルコース添加により消失したことから、本発明のGLDはフラビン結合型タンパク質であることが明らかになった。
本発明のGLDのGOD活性を調べた結果、何れのGLDにおいても、GOD活性は見られなかった。よって、本発明のGLDは酸素を電子受容体として利用しないため、D-グルコースを定量する際に反応系の溶存酸素の影響を受けにくいことが示された。GOD活性は、以下の方法で測定した。
尚、式中の3.0は反応試薬+酵素溶液の液量(mL)、10.66は本測定条件におけるキノン型色素のモル吸光係数、0.5は1モルの過酸化水素の生成量に対するキノン型色素の生成量、1.0はセルの光路長(cm)、0.05は酵素溶液の液量(mL)、ΔA500blankは酵素の希釈溶液を酵素溶液の代わりに添加して反応開始した場合の反応開始した場合の500nmにおける吸光度の1分間あたりの増加量を表す。
前記GLD活性測定法に準じ、基質に終濃度50mMのD-グルコース、マルトース又はD-キシロースをそれぞれ用いて、各基質に対する各GLDの活性を測定した。結果を表1に示す。
前記GLD活性測定法に準じ、基質であるD-グルコース濃度を変化させて、各GLDの活性測定を行った。PsGLDは10、20、40及び60mMの各グルコース濃度で、PpGLDは5、10、20及び50mMの各グルコース濃度で、PjGLDは1、2、5及び10mMの各グルコース濃度で測定した。各活性測定値からHanes-Woolfプロットによりミカエリス定数(Km値)を求めた。
その結果、各GLDのD-グルコースに対するKm値は、PsGLDが14mM、PpGLDが3.3mM、PjGLDが3.6mMだった。よって、本発明のGLDのKm値は約1.0~25mMと考えられる。
各GLDの終濃度が6U/mL、各緩衝液の終濃度が100mMになるように混合し、30℃で1時間処理した後、前記GLD活性測定法で酵素活性を測定した。緩衝液は、酢酸ナトリウム緩衝液(図中ひし形印でプロット)、クエン酸ナトリウム緩衝液(図中四角印でプロット)、リン酸ナトリウム緩衝液(図中黒丸印でプロット)、リン酸カリウム緩衝液(図中三角印でプロット)、トリス塩酸緩衝液(図中白丸印でプロット)又はグリシン-NaOH緩衝液(図中×でプロット)を使用した。処理前の酵素活性を100%として、処理後の残存活性を相対値で算出し、pH安定性として図に示した。
その結果、PsGLDの相対活性はpH3.5~6.8で少なくとも80%、PpGLDの相対活性はpH3.5~6.7で少なくとも70%及びpH3.5~6.2で少なくとも80%、PjGLDの相対活性はpH3.8~7.4で少なくとも80%だった。本発明のGLDは酸性域で安定と思われた。
前記GLD活性測定法に準じ、25℃又は37℃にて各GLDの活性を測定した。基質の終濃度は50mMとした。
その結果、各GLDの37℃における活性を100%とした場合に、25℃における各GLDの相対活性は、PsGLDが少なくとも70%、PpGLDが少なくとも70%、PjGLDが少なくとも50%だった。
前記GLD活性測定法に準じ、1~60mMの各グルコース濃度で各GLDの活性測定を行い、各GLDの測定値を、相対活性で図1に示した。
その結果、本発明のGLDでD-グルコースの定量が可能であることが示された。
Claims (12)
- 以下の(a)、(b)又は(c)のアミノ酸配列を有し、かつグルコース脱水素酵素活性を有するタンパク質からなるフラビン結合型グルコース脱水素酵素:
(a)配列番号2、3、5、6、8又は9に示されるアミノ酸配列;、
(b)配列番号2、3、5、6、8又は9に示されるアミノ酸配列において1又はそれ以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列;
(c)配列番号2もしくは3に示されるアミノ酸配列と少なくとも85%の同一性、配列番号5もしくは6に示されるアミノ酸配列と少なくとも95%の同一性又は配列番号8もしくは9に示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列。 - 以下の性質を有する、請求項1に記載のフラビン結合型グルコース脱水素酵素:
(1)作用:電子受容体存在下で、グルコースの1位の水酸基を酸化する;
(2)可溶性である;
(3)グルコースに対する作用性を100%とした場合に、マルトースに対する作用性が多くとも1.5%である;
(4)酵素のポリペプチドの分子量が60~70kDaである;及び
(5)pH3.8で安定である。 - (6)ペニシリウム属に属する微生物由来である、請求項1又は2記載のフラビン結合型グルコース脱水素酵素。
- 以下の(i)、(ii)、(iii)、(iv)又は(v)からなるポリヌクレオチド:
(i)請求項1記載のタンパク質をコードするポリヌクレオチド;
(ii)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチド;
(iii)配列番号1、4又は7に示される塩基配列において1又は数個の塩基が欠失、置換もしくは付加された塩基配列を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iv)配列番号1、4又は7に示される塩基配列を有するポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド;
(v)配列番号1、4又は7に示される塩基配列と少なくとも80%の同一性を有する塩基配列を有し、かつグルコース脱水素酵素活性を有するタンパク質をコードするポリヌクレオチド。 - ペニシリウム属に属する微生物由来である、請求項4記載のポリヌクレオチド。
- 請求項4又は5記載のポリヌクレオチドを含む組換えベクター。
- 請求項6記載のベクターにより形質転換した形質転換細胞。
- 請求項7記載の細胞を培養し、培養物からフラビン結合型グルコース脱水素酵素を採取することを特徴とするフラビン結合型グルコース脱水素酵素の製造方法。
- 請求項8記載の製造方法によって得られたフラビン結合型グルコース脱水素酵素。
- 請求項1~3又は9の何れかに記載のフラビン結合型グルコース脱水素酵素を使用するグルコースの測定方法。
- 請求項1~3又は9の何れかに記載のフラビン結合型グルコース脱水素酵素を含むグルコース測定試薬組成物。
- 請求項1~3又は9の何れかに記載のフラビン結合型グルコース脱水素酵素を含むグルコース測定用バイオセンサ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016508780A JP6529960B2 (ja) | 2014-03-21 | 2015-03-19 | フラビン結合型グルコース脱水素酵素 |
US15/126,665 US10077432B2 (en) | 2014-03-21 | 2015-03-19 | Flavin-conjugated glucose dehydrogenase |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014059315 | 2014-03-21 | ||
JP2014-059315 | 2014-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141761A1 true WO2015141761A1 (ja) | 2015-09-24 |
Family
ID=54144723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058171 WO2015141761A1 (ja) | 2014-03-21 | 2015-03-19 | フラビン結合型グルコース脱水素酵素 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10077432B2 (ja) |
JP (1) | JP6529960B2 (ja) |
WO (1) | WO2015141761A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020116330A1 (ja) * | 2018-12-05 | 2020-06-11 | 天野エンザイム株式会社 | グルコースデヒドロゲナーゼ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10961514B2 (en) | 2016-01-14 | 2021-03-30 | Ikeda Food Research Co., Ltd. | Flavin-conjugated glucose dehydrogenase |
CN112301008A (zh) * | 2019-07-24 | 2021-02-02 | 中国医学科学院药物研究所 | 一种醛还原酶的氨基酸序列及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005525788A (ja) * | 2001-09-28 | 2005-09-02 | インサイト・ゲノミックス・インコーポレイテッド | 酵素 |
JP2013090620A (ja) * | 2011-10-05 | 2013-05-16 | Ikeda Shokken Kk | グルコース脱水素酵素 |
WO2013147206A1 (ja) * | 2012-03-30 | 2013-10-03 | 池田食研株式会社 | フラビン結合型グルコースデヒドロゲナーゼ及びこれをコードするポリヌクレオチド |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050191627A1 (en) | 2001-09-28 | 2005-09-01 | Incyte Corporation | Enzymes |
WO2004058958A1 (ja) | 2002-12-24 | 2004-07-15 | Ikeda Food Research Co., Ltd. | 補酵素結合型グルコース脱水素酵素 |
EP2380980B1 (en) | 2005-03-25 | 2014-11-05 | Ikeda Food Research Co. Ltd. | Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same |
US7494794B2 (en) | 2006-03-31 | 2009-02-24 | Toyo Boseki Kabushiki Kaisha | Glucose dehydrogenase |
ATE555198T1 (de) | 2006-03-31 | 2012-05-15 | Toyo Boseki | Glucosedehydrogenase |
US7553649B2 (en) | 2006-03-31 | 2009-06-30 | Toyo Boseki Kabushiki Kaisha | Method for producing glucose dehydrogenase from Aspergillus oryzae |
US8492130B2 (en) | 2006-06-29 | 2013-07-23 | Ikeda Food Research Co., Ltd. | FAD-conjugated glucose dehydrogenase gene |
JP4648993B2 (ja) | 2009-06-04 | 2011-03-09 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
EP2508600B1 (en) * | 2009-12-05 | 2015-08-12 | Amano Enzyme Inc. | Mutant enzyme and application thereof |
JP6079038B2 (ja) | 2011-08-11 | 2017-02-15 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
JP6128560B2 (ja) | 2011-08-26 | 2017-05-24 | 池田食研株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
US20130122149A1 (en) | 2011-09-30 | 2013-05-16 | Novozymes A/S | Polypeptides Having Glucose Dehydrogenase Activity and Polynucleotides Encoding Same |
WO2013065623A1 (ja) | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
US9493814B2 (en) * | 2011-11-02 | 2016-11-15 | Kikkoman Corporation | Flavin-binding glucose dehydrogenase having improved substrate specificity |
JP6207167B2 (ja) | 2012-02-09 | 2017-10-04 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
WO2014002973A1 (ja) | 2012-06-29 | 2014-01-03 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
US9796963B2 (en) | 2012-09-10 | 2017-10-24 | Toyobo Co., Ltd. | Glucose dehydrogenase |
WO2014045912A1 (ja) | 2012-09-18 | 2014-03-27 | 独立行政法人産業技術総合研究所 | フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有するタンパク質 |
-
2015
- 2015-03-19 JP JP2016508780A patent/JP6529960B2/ja not_active Expired - Fee Related
- 2015-03-19 US US15/126,665 patent/US10077432B2/en not_active Expired - Fee Related
- 2015-03-19 WO PCT/JP2015/058171 patent/WO2015141761A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005525788A (ja) * | 2001-09-28 | 2005-09-02 | インサイト・ゲノミックス・インコーポレイテッド | 酵素 |
JP2013090620A (ja) * | 2011-10-05 | 2013-05-16 | Ikeda Shokken Kk | グルコース脱水素酵素 |
WO2013147206A1 (ja) * | 2012-03-30 | 2013-10-03 | 池田食研株式会社 | フラビン結合型グルコースデヒドロゲナーゼ及びこれをコードするポリヌクレオチド |
Non-Patent Citations (3)
Title |
---|
CAVENER, D. R.: "GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities", J. MOL. BIOL., vol. 223, no. 3, 1992, pages 811 - 814, XP024021087 * |
DATABASE GenBank 4 February 2014 (2014-02-04), XP055225184, Database accession no. CDM29258 * |
MORI, K. ET AL.: "Screening of Aspergillus- derived FAD-glucose dehydrogenases from fungal genome database", BIOTECHNOL. LETT., vol. 33, 2011, pages 2255 - 2263, XP019957896 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020116330A1 (ja) * | 2018-12-05 | 2020-06-11 | 天野エンザイム株式会社 | グルコースデヒドロゲナーゼ |
JPWO2020116330A1 (ja) * | 2018-12-05 | 2021-10-28 | 天野エンザイム株式会社 | グルコースデヒドロゲナーゼ |
JP7527969B2 (ja) | 2018-12-05 | 2024-08-05 | 天野エンザイム株式会社 | グルコースデヒドロゲナーゼ |
Also Published As
Publication number | Publication date |
---|---|
US20170088823A1 (en) | 2017-03-30 |
JPWO2015141761A1 (ja) | 2017-04-13 |
JP6529960B2 (ja) | 2019-06-12 |
US10077432B2 (en) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5169991B2 (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
JP6128560B2 (ja) | フラビン結合型グルコースデヒドロゲナーゼ | |
JP6120379B2 (ja) | フラビン結合型グルコースデヒドロゲナーゼ及びこれをコードするポリヌクレオチド | |
WO2010053161A1 (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
JP5408125B2 (ja) | 糸状菌由来フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(fadgdh) | |
JP2008154572A (ja) | 糸状菌由来グルコース脱水素酵素の製造方法 | |
JP6529960B2 (ja) | フラビン結合型グルコース脱水素酵素 | |
JP6455714B2 (ja) | フラビン結合型グルコース脱水素酵素 | |
JP7421801B2 (ja) | フラビン結合型グルコース脱水素酵素 | |
US10961514B2 (en) | Flavin-conjugated glucose dehydrogenase | |
JP6792124B2 (ja) | フラビン結合型グルコース脱水素酵素 | |
JP6504390B2 (ja) | 改変型ピラノース酸化酵素 | |
US11725193B2 (en) | Modified glucose dehydrogenase | |
JP2015023859A (ja) | L−トリプトファンの測定 | |
JPWO2019142935A1 (ja) | キヌレニンモノオキシゲナーゼ、及びそれを用いたキヌレニンの測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764231 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016508780 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15126665 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764231 Country of ref document: EP Kind code of ref document: A1 |