WO2020116330A1 - グルコースデヒドロゲナーゼ - Google Patents

グルコースデヒドロゲナーゼ Download PDF

Info

Publication number
WO2020116330A1
WO2020116330A1 PCT/JP2019/046686 JP2019046686W WO2020116330A1 WO 2020116330 A1 WO2020116330 A1 WO 2020116330A1 JP 2019046686 W JP2019046686 W JP 2019046686W WO 2020116330 A1 WO2020116330 A1 WO 2020116330A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
glucose
glucose dehydrogenase
Prior art date
Application number
PCT/JP2019/046686
Other languages
English (en)
French (fr)
Inventor
杉浦 敏行
宏樹 井戸
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to JP2020559133A priority Critical patent/JPWO2020116330A1/ja
Publication of WO2020116330A1 publication Critical patent/WO2020116330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to glucose dehydrogenase (glucose dehydrogenase). More specifically, it relates to a flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (E.C.1.1.99.10) excellent in thermostability, a gene thereof and the like.
  • FAD flavin adenine dinucleotide
  • E.C.1.1.99.10 excellent in thermostability, a gene thereof and the like.
  • FAD-GDH FAD-dependent glucose dehydrogenase
  • Enzymes are proteins, and they tend to cause a decrease in activity due to heat. The decrease in activity is directly related to the measurement accuracy.
  • blood glucose measurement self blood glucose measurement (SMBG) and continuous blood glucose measurement (CGM)
  • SMBG self blood glucose measurement
  • CGM continuous blood glucose measurement
  • FAD-GDH is generally higher than glucose oxidase (GO). Poor stability.
  • Patent Document 7 there are attempts to increase the thermal stability of FAD-GDH (for example, Patent Document 7), there is still a high need for improving the thermal stability. If FAD-GDH having excellent thermal stability can be used, a glucose sensor with high practicability can be constructed by taking advantage of FAD-GDH. Therefore, it is an object of the present invention to provide FAD-GDH having high thermal stability and improved practicality especially for glucose sensors, and uses thereof.
  • the present inventors conducted a large-scale screening targeting a wide range of microorganisms.
  • amino acid 429 was phenylalanine in common.
  • Another enzyme with relatively excellent thermostability was also found, but amino acid 429 was not phenylalanine. Taking this fact into consideration, it was suggested that phenylalanine at the 429th amino acid is important for thermostability, in other words, 429th phenylalanine contributes to the thermostability.
  • Glucose dehydrogenase having the following amino acid sequence (a) or (b) and having a relative residual activity of 50% or more after treatment at 50° C. for 10 minutes: (a) an amino acid sequence showing 90% or more identity to the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 13 and the amino acid corresponding to the 429th amino acid of the amino acid sequence of SEQ ID NO: 1 is phenylalanine (F); (b) An amino acid sequence showing 90% or more identity with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 14 and the amino acid corresponding to the 429th amino acid of the amino acid sequence of SEQ ID NO: 2 is phenylalanine (F).
  • Glucose dehydrogenase gene consisting of any DNA selected from the group consisting of (A) to (C) below: (A) a DNA encoding the amino acid sequence of (a) or (b) of [1]; (B) a DNA comprising the nucleotide sequence of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 15 or SEQ ID NO: 16; (C) A DNA having a nucleotide sequence equivalent to the nucleotide sequence of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 15 or SEQ ID NO: 16 and encoding a protein having glucose dehydrogenase activity.
  • a method for preparing glucose dehydrogenase which comprises the following steps (1) to (3): (1) Preparing the glucose dehydrogenase gene according to [7]. (2) expressing the gene, and (3) recovering the expression product.
  • a glucose measuring method which comprises measuring glucose in a sample using the glucose dehydrogenase according to any one of [1] to [6].
  • a glucose sensor containing the glucose dehydrogenase according to any one of [1] to [6].
  • An enzyme preparation containing the glucose dehydrogenase according to any one of [1] to [6].
  • the amino acid at position 429 (F) is underlined. Amino acid sequence of FAD-GDH derived from P. variotii IAM12157 strain. The amino acid (L) at position 429 is underlined. Amino acid sequence of FAD-GDH derived from P. brunneolus NBRC7563 strain. The amino acid at position 429 (A) is underlined. Genomic DNA sequence of FAD-GDH from P. variotii NBRC4855 strain. The intron is underlined. Genomic DNA sequence of FAD-GDH from P. variotii AHU9417 strain. The intron is underlined. Genomic DNA sequence of FAD-GDH from P. variotii IAM12157 strain.
  • the intron is underlined. Genomic DNA sequence of FAD-GDH derived from P. brunneolus NBRC7563 strain. The intron is underlined. CDNA sequence of FAD-GDH derived from P. variotii NBRC4855 strain. CDNA sequence of FAD-GDH derived from P. variotii AHU9417 strain. CDNA sequence of FAD-GDH from P. variotii IAM12157 strain. CDNA sequence of FAD-GDH from P. brunneolus NBRC7563 strain. Evaluation of substrate properties using recombinant enzymes. The reactivity to D-maltose and the reactivity to D-xylose were evaluated by the relative activity (%) when the reactivity to D-glucose was 100%. Thermal stability of F429 substitutes.
  • isolated is used interchangeably herein with “purified”.
  • isolated is used to distinguish a product produced in the absence of human intervention from the natural state, ie, the state as it exists in nature. In the case of a product produced by intervening with, it is used to distinguish it from a product that has not undergone an isolation process or a purification process. In the former case, the artificial manipulation of isolation results in a “isolated state”, which is a state different from the natural state, and the isolated one clearly and decisively differs from the natural product itself. On the other hand, in the latter case, impurities are typically removed or the amount thereof is reduced by the isolation step or the purification step, and the purity is increased.
  • the purity of the isolated enzyme is not particularly limited. However, it is preferable that the isolated enzyme has high purity if it is planned to be applied to a use requiring high purity.
  • the first aspect of the present invention relates to glucose dehydrogenase (hereinafter, also referred to as the present enzyme).
  • One aspect (first aspect) of the present enzyme shows 90% or more identity with the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 13, and the 429th amino acid of the amino acid sequence of SEQ ID NO: 1 (amino acid sequence of SEQ ID NO: 13).
  • SEQ ID NO: 1 is the amino acid sequence of glucose dehydrogenase produced by Paecilomyces variotii NBRC 4855 strain
  • SEQ ID NO: 13 is the amino acid sequence of SEQ ID NO: 1 excluding the signal peptide sequence.
  • the strain is stored in the National Institute for Product Evaluation Technology (NBRC) (2-5-8 Kazusa, Kazusa Kamasa, Kisarazu City, Chiba Prefecture, 292-0818, Japan). You can
  • Another aspect (second aspect) of the present invention shows 90% or more identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 14, and the 429th amino acid of the amino acid sequence of SEQ ID NO: 2 (amino acid of SEQ ID NO: 14).
  • the amino acid corresponding to 414th amino acid in the sequence is phenylalanine (F), which has an amino acid sequence.
  • the amino acid sequence of SEQ ID NO: 1 is the amino acid sequence of glucose dehydrogenase produced by the Paecilomyces variotii AHU 9417 strain
  • SEQ ID NO: 14 is the amino acid sequence of SEQ ID NO: 2 excluding the signal peptide sequence.
  • the strain is stored in the Hokkaido University Strain Preservation Room (AHU), and the Hokkaido University graduate School of Agriculture, Department of Applied Life Sciences, Department of Applied Life Sciences, Department of Molecular and Life Sciences, Applied Microbiology Lab, Strain Storage Room (Kita-ku, Kita-ku, Sapporo City, 060-8589, Hokkaido) From Article 9 West 9-chome), you can receive the sale by going through the prescribed procedure.
  • the enzyme has excellent thermostability, and the relative residual activity after treatment at 50°C for 10 minutes is 50% or more.
  • the relative residual activity is preferably 55% or more, more preferably the relative residual activity is 70% or more.
  • the activity measuring method used for evaluation of the relative residual activity is shown in the section of Examples.
  • the identity to the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 13 (identity of the first aspect) and the identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 14 (identity of the second aspect) are preferably 95% or more. , More preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more.
  • Amino acid sequence showing 100% identity that is, consisting of glucose dehydrogenase (enzyme derived from Pecilomyces variotii NBRC4855 strain) consisting of the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 13 and the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 14.
  • Glucose dehydrogenase is a particularly preferred example of glucose dehydrogenase.
  • the term “corresponding” when used for an amino acid residue in the present specification means that proteins (enzymes) to be compared make an equivalent contribution to the exertion of their functions.
  • the amino acid sequence to be compared with the reference amino acid sequence that is, the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 13 or SEQ ID NO: 14
  • the reference amino acid sequence is partially homologous in the primary structure (amino acid sequence).
  • amino acid sequence at the position can be identified as the "corresponding amino acid”.
  • the “corresponding amino acid” can be specified by comparison of the three-dimensional structures (three-dimensional structures) instead of or in addition to the comparison of the primary structures.
  • the three-dimensional structure information By using the three-dimensional structure information, highly reliable comparison results can be obtained.
  • a method of performing alignment while comparing the atomic coordinates of the three-dimensional structures of a plurality of enzymes can be adopted.
  • the three-dimensional structure information of the mutation target enzyme can be obtained from, for example, Protein Data Bank (http://www.pdbj.org/index_j.html).
  • Crystallize protein Crystallization is indispensable for determining the three-dimensional structure, but it is also industrially useful as a method for purifying proteins with high purity and a method for preserving high-density and stable proteins. In this case, it is advisable to crystallize a protein bound with a substrate or its analog compound as a ligand.
  • the prepared crystal is irradiated with X-ray to collect diffraction data. In many cases, protein crystals are damaged by X-ray irradiation and their diffractive ability deteriorates.
  • phase information is required in addition to the diffraction data.
  • the heavy atom isomorphous substitution method is a method in which a metal atom having a large atomic number such as mercury or platinum is introduced into a crystal, and phase information is obtained by utilizing the contribution of the large X-ray scattering ability of the metal atom to X-ray diffraction data. ..
  • the determined phase can be improved by smoothing the electron density in the solvent region in the crystal. Since the water molecules in the solvent region have large fluctuations, the electron density is hardly observed. Therefore, by approximating the electron density in this region to 0, the true electron density can be approximated and the phase can be improved. ..
  • the phase is further significantly improved by averaging the electron densities of these molecules.
  • the model of the protein is fitted to the electron density map calculated using the phase thus improved.
  • This process is performed on computer graphics using a program such as QUANTA of MSI (USA).
  • the structure is refined using a program such as X-PLOR manufactured by MSI, and the structural analysis is completed.
  • Molecular replacement and structure refinement can be performed using programs such as CNS_SOLVE ver.11.
  • mutations were added to the portion other than phenylalanine at position 429 (F429) in the amino acid sequence of SEQ ID NO:1.
  • an amino acid showing high identity to the amino acid sequence of SEQ ID NO: 1 and corresponding to the 429th position of SEQ ID NO: 1 Is a phenylalanine amino acid sequence (for example, an amino acid sequence of glucose dehydrogenase derived from a microorganism belonging to the genus Pecilomyces) with similar mutations (provided that the amino acid sequence after mutation is 90% or more of the amino acid sequence of SEQ ID NO: 1).
  • Amino acid that shows 90% or more identity to the amino acid sequence of SEQ ID NO: 1 and the amino acid corresponding to position 429 of SEQ ID NO: 1 is not phenylalanine, corresponding to position 429 of SEQ ID NO: 1
  • a mutation that substitutes phenylalanine for phenylalanine, or a mutation (deletion, substitution, addition, insertion, etc.) of amino acid sequence other than phenylalanine at position 414 (F414) of SEQ ID NO: 13 (however, The subsequent amino acid sequence shows 90% or more identity to the amino acid sequence of SEQ ID NO: 13), an amino acid showing high identity to the amino acid sequence of SEQ ID NO: 13 and the amino acid corresponding to the 414th position of SEQ ID NO: 13 is phenylalanine.
  • a sequence for example, an amino acid sequence of glucose dehydrogenase derived from a microorganism belonging to the genus Pecilomyces
  • the amino acid sequence after mutation shows 90% or more identity to the amino acid sequence of SEQ ID NO: 13
  • the thing which added the mutation can be mentioned.
  • the amino acid sequence after mutation shows 90% or more identity to the amino acid sequence of SEQ ID NO: 2
  • Amino acid sequence in which the corresponding amino acid is phenylalanine (for example, an amino acid sequence of glucose dehydrogenase derived from a microorganism belonging to the genus Pecilomyces) with similar mutations (however, the amino acid sequence after mutation is 90 amino acid sequence of SEQ ID NO: 2).
  • a similar amino acid sequence for example, an amino acid sequence of glucose dehydrogenase derived from a microorganism belonging to the genus Pecilomyces (provided that the amino acid sequence after mutation has 90% or more identity to the amino acid sequence of SEQ ID NO: 14). ), which shows 90% or more identity to the amino acid sequence of SEQ ID NO: 14 and the amino acid corresponding to the 414th position of SEQ ID NO: 14 is not phenylalanine. To which a mutation for substitution is added.
  • the mutation is preferably caused by a conservative amino acid substitution.
  • the "conservative amino acid substitution” refers to substitution of an amino acid residue with an amino acid residue having a side chain with similar properties.
  • An amino acid residue has a basic side chain (for example, lysine, arginine, histidine), an acidic side chain (for example, aspartic acid, glutamic acid), an uncharged polar side chain (for example, glycine, asparagine, glutamine, serine, threonine, tyrosine) depending on its side chain.
  • Cysteine non-polar side chains (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ branched side chains (eg threonine, valine, isoleucine), aromatic side chains (eg tyrosine, phenylalanine, Tryptophan, histidine) and are classified into several families. Conservative amino acid substitutions are preferably those between amino acid residues within the same family.
  • glucose dehydrogenase derived from Pecilomyces variotii NBRC4855 strain and glucose dehydrogenase derived from Pecilomyces variotii AHU 9417 strain also have excellent substrate properties.
  • the enzyme can be further characterized by its low reactivity with D-maltose and low reactivity with D-xylose.
  • the reactivity to D-maltose when the reactivity to D-glucose is 100% is 5% or less, preferably 3% or less, more preferably 2% or less, still more preferably It is less than 1%.
  • the reactivity to D-xylose when the reactivity to D-glucose is 100% is 22% or less, preferably 20% or less, more preferably 18% or less, still more preferably It is less than 15%.
  • the identity (%) of two amino acid sequences or two nucleic acids can be determined by the following procedure, for example.
  • the two sequences are aligned for optimal comparison (eg, a gap may be introduced in the first sequence to optimize alignment with the second sequence).
  • a gap may be introduced in the first sequence to optimize alignment with the second sequence.
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25(17):3389-3402 can be used.
  • the default parameters of the corresponding program for example, XBLAST and NBLAST
  • the enzyme may be part of a larger protein (eg fusion protein).
  • the sequence added in the fusion protein includes, for example, a sequence useful for purification such as multiple histidine residues, and an additional sequence ensuring stability during recombinant production.
  • the present enzyme having the above amino acid sequence can be easily prepared by a genetic engineering technique. For example, it can be prepared by transforming an appropriate host cell (for example, Escherichia coli) with the DNA encoding the present enzyme and recovering the protein expressed in the transformant. The recovered protein is appropriately purified depending on the purpose. Thus, various modifications can be made by obtaining this enzyme as a recombinant protein. For example, if a DNA encoding the present enzyme and another appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the recombinant protein is formed by linking any peptide or protein. This enzyme can be obtained. In addition, sugar chains and/or lipids may be added, or N-terminal or C-terminal processing may be modified. By the above modification, extraction of recombinant protein, simplification of purification, addition of biological function, etc. are possible.
  • an appropriate host cell for example, Escherichia coli
  • the recovered protein is appropriately purified depending on the purpose.
  • the second aspect of the present invention provides a nucleic acid related to the present enzyme. That is, a gene encoding the present enzyme, a nucleic acid that can be used as a probe for identifying a nucleic acid that encodes the present enzyme, a nucleic acid that can be used as a primer for amplifying or mutating the nucleic acid that encodes the present enzyme, etc. Will be provided.
  • the gene encoding this enzyme is typically used for the preparation of this enzyme. According to the genetic engineering preparation method using the gene encoding the present enzyme, it is possible to obtain the present enzyme in a more homogeneous state. Further, the method can be said to be a suitable method even when a large amount of the present enzyme is prepared.
  • the use of the gene encoding this enzyme is not limited to the preparation of this enzyme.
  • the nucleic acid can be used as an experimental tool for elucidating the action mechanism of the present enzyme or as a tool for designing or producing a mutant of the present enzyme.
  • the “gene encoding the present enzyme” refers to a nucleic acid that can be obtained by expressing the present enzyme, not to mention a nucleic acid having a base sequence corresponding to the amino acid sequence of the present enzyme. It also includes a nucleic acid in which a sequence that does not encode an amino acid sequence is added to such a nucleic acid. Also, degeneracy of codons is considered. For a nucleic acid having a base sequence containing no start codon, the present enzyme can be obtained by adding a start codon or a signal peptide containing a start codon and then expressing the enzyme.
  • SEQ ID NO: 5 genomic DNA sequence encoding the amino acid sequence of SEQ ID NO: 1
  • SEQ ID NO: 9 cDNA sequence encoding the amino acid sequence of SEQ ID NO: 1
  • SEQ ID NO: 6 Genomic DNA sequence encoding the amino acid sequence of SEQ ID NO: 2
  • SEQ ID NO: 10 cDNA sequence encoding the amino acid sequence of SEQ ID NO: 2
  • SEQ ID NO: 15 DNA sequence encoding the amino acid sequence of SEQ ID NO: 13
  • SEQ ID NO: 16 DNA sequence encoding the amino acid sequence of SEQ ID NO: 14
  • the nucleic acid of the present invention can be isolated by using standard genetic engineering techniques, molecular biology techniques, biochemical techniques, etc. with reference to the sequence information disclosed in the present specification or the attached sequence listing. Can be prepared in a ready-made state.
  • the nucleic acid having the same function but partially different base sequence when compared with the base sequence of the gene encoding the present enzyme, the nucleic acid having the same function but partially different base sequence (hereinafter, referred to as “equivalent nucleic acid”).
  • a base sequence defining an equivalent nucleic acid is also referred to as an “equivalent base sequence”.
  • an enzyme having a base sequence containing substitution, deletion, insertion, addition, or inversion of one or more bases based on the base sequence of the nucleic acid encoding the present enzyme which is a characteristic enzyme of the present enzyme Mention may be made of DNA encoding a protein having an activity (ie GDH activity). Substitutions or deletions of bases may occur at multiple sites.
  • plural depends on the position and type of the amino acid residue in the three-dimensional structure of the protein encoded by the nucleic acid, but is, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases. Is.
  • the equivalent nucleic acid is, for example, 60% or more, preferably 70% or more, with respect to the reference nucleotide sequence (sequences of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 15 and SEQ ID NO: 16). , More preferably 80% or more, even more preferably 85% or more, even more preferably about 90% or more, even more preferably 95% or more, and most preferably 99% or more.
  • equivalent nucleic acids include those in which the codons corresponding to positions 1349 to 1351 of the base sequence of SEQ ID NO: 5 are TTT or TTC and have the above-mentioned identity with the base sequence of SEQ ID NO: 5, the base sequence of SEQ ID NO: 6 Of which the codons corresponding to positions 1348 to 1350 are TTT or TTC and which have the above-mentioned identity with the nucleotide sequence of SEQ ID NO: 6, and the codons corresponding to positions 1285 to 1287 of the nucleotide sequence of SEQ ID NO: 9 are TTT or TTC.
  • Equivalent nucleic acids such as those mentioned above are, for example, restriction enzyme treatments, treatments with exonucleases or DNA ligases, etc. Mutation introduction method (Molecular Cloning, Third Edition, Chapter13,Cold Spring Harbor Laboratory Press, New York) can be used to obtain mutations. The equivalent nucleic acid can also be obtained by other methods such as UV irradiation.
  • Another aspect of the present invention relates to a nucleic acid having a base sequence complementary to the base sequence of the gene encoding the present enzyme. Still another aspect of the present invention is at least about 60%, 70%, 80%, 90%, 95%, 99% of the nucleotide sequence of the gene encoding the present enzyme of the present invention, or the nucleotide sequence complementary thereto. %, 99.9% identical nucleic acid sequences are provided.
  • Yet another aspect of the present invention relates to a nucleic acid having a base sequence that hybridizes under stringent conditions to a base sequence complementary to the base sequence of a gene encoding the present enzyme or its equivalent base sequence.
  • the “stringent conditions” here are conditions under which so-called specific hybrid is formed and non-specific hybrid is not formed.
  • Such stringent conditions are known to those skilled in the art, and for example, Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Laboratory,Press New York) and Current protocol b in (edited by Frederick M. Ausubel et al., 1987). Can be set by referring to.
  • hybridization solution 50% formamide, 10 x SSC (0.15M NaCl, 15mM sodium citrate, pH 7.0), 5 x Denhardt solution, 1% SDS, 10% dextran sulfate, denaturation of 10 ⁇ g/ml
  • 5 x Denhardt solution 1% SDS
  • 10% dextran sulfate denaturation of 10 ⁇ g/ml
  • salmon sperm DNA 50 mM phosphate buffer (pH 7.5)
  • washed at about 65°C to about 70°C using 0.1 x SSC, 0.1% SDS can be mentioned.
  • More preferable stringent conditions include, for example, 50% formamide as a hybridization solution, 5 ⁇ SSC (0.15M NaCl, 15mM sodium citrate, pH7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g/ml.
  • the conditions using the denatured salmon sperm DNA of 50 mM phosphate buffer (pH 7.5)) can be mentioned.
  • nucleic acid having a part of the base sequence of a gene encoding the present enzyme or a base sequence complementary thereto.
  • a nucleic acid fragment can be used for detecting, identifying, and/or amplifying a nucleic acid having a base sequence of a gene encoding the present enzyme.
  • a nucleic acid fragment is, for example, a continuous nucleotide portion in the base sequence of a gene encoding the present enzyme (for example, about 10 to about 100 base length, preferably about 20 to about 100 base length, more preferably about 30 to about 100 base length). Is designed to include at least a portion that hybridizes to.
  • the nucleic acid fragment can be labeled.
  • a fluorescent substance, an enzyme, or a radioisotope can be used.
  • Yet another aspect of the present invention relates to a recombinant DNA containing the gene of the present invention (the gene encoding the present enzyme).
  • the recombinant DNA of the present invention is provided in the form of a vector, for example.
  • the term “vector” refers to a nucleic acid molecule capable of transporting a nucleic acid inserted therein into a target such as a cell.
  • An appropriate vector is selected according to the purpose of use (cloning, protein expression) and the type of host cell.
  • a vector using Escherichia coli as a host M13 phage or its modified form, ⁇ phage or its modified form, pBR322 or its modified form (pB325, pAT153, pUC8, pTrc, etc.), etc.As a vector using yeast as a host, pYepSec1, pMFa , PYES2 and the like, examples of vectors using insect cells as hosts include pAc and pVL, and examples of vectors using mammalian cells as hosts include pCDM8 and pMT2PC.
  • the vector of the present invention is preferably an expression vector.
  • the “expression vector” refers to a vector that can introduce the nucleic acid inserted therein into a target cell (host cell) and can be expressed in the cell.
  • the expression vector usually contains a promoter sequence necessary for the expression of the inserted nucleic acid, an enhancer sequence for promoting the expression, and the like.
  • Expression vectors containing selectable markers can also be used. When such an expression vector is used, the presence or absence (and the degree thereof) of the introduction of the expression vector can be confirmed using a selection marker.
  • Insertion of the nucleic acid of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. can be carried out by standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84, Cold). Spring Harbor Laboratory Press, New York can be referred to, and known methods using restriction enzymes and DNA ligases) can be used.
  • microorganisms such as Escherichia coli (Escherichia coli), budding yeast (Saccharomyces cerevisiae), and filamentous fungi (Aspergillus oryzae) as host cells, but the recombinant DNA replicates. Any host cell that is capable and can express the gene of the present enzyme can be used.
  • Escherichia coli include Escherichia coli BL21(DE3) when a T7 promoter is used, and Escherichia coli JM109 and DH5 ⁇ otherwise.
  • the budding yeast include budding yeast SHY2, budding yeast AH22 and budding yeast INVSc1 (Invitrogen).
  • microorganism that is, a transformant
  • the microorganism of the present invention can be obtained by transfection or transformation using the vector of the present invention.
  • the calcium chloride method Frnal of Molecular Biology (J. Mol.Biol.), 53, 159 (1970)
  • Hanahan method Journal of Molecular Biology, 166, 557). Page (1983)
  • SEM method Gene, Volume 96, page 23 (1990)
  • Chung et al. method Proceedings of the National Academy of Sciences of the USA, 86th).
  • microorganism of the present invention can be used for producing the enzyme. it can.
  • a further aspect of the present invention relates to a method for preparing the present enzyme.
  • the present enzyme successfully obtained by the present inventors is prepared by a genetic engineering technique. Specifically, first, a gene encoding this enzyme is prepared (step (1)). Specifically, for example, a nucleic acid encoding the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 13 or SEQ ID NO: 14 is prepared.
  • the "nucleic acid encoding the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 13 or SEQ ID NO: 14" is a nucleic acid that yields a polypeptide having the amino acid sequence when expressed.
  • nucleic acid having a base sequence corresponding to the amino acid sequence but also an extra sequence may be a sequence encoding the amino acid sequence or a sequence not encoding the amino acid sequence
  • the "nucleic acid encoding the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 13 or SEQ ID NO: 14" refers to the sequence information disclosed in the present specification or the attached sequence listing, and a standard genetic engineering method. It can be prepared in an isolated state by using a molecular biological method, a biochemical method, or the like.
  • step (2) express the prepared gene (step (2)).
  • an expression vector into which the above gene is inserted is prepared, and this is used to transform a host cell.
  • the transformant is cultured under the condition that the present enzyme, which is an expression product, is produced. Cultivation of the transformant may be performed according to a conventional method.
  • the carbon source used in the medium may be any assimilable carbon compound, and examples thereof include glucose, sucrose, lactose, maltose, molasses, and pyruvic acid.
  • Any available nitrogen compound may be used as the nitrogen source, and for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkali extract, etc. are used.
  • salts such as phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature can be set in consideration of the growth characteristics of the transformant to be cultured and the production characteristics of the enzyme. It can be set preferably within the range of 30°C to 40°C (more preferably around 37°C).
  • the culture time can be set in consideration of the growth characteristics of the transformant to be cultured and the enzyme production characteristics.
  • the pH of the medium is adjusted so that the transformant grows and the enzyme is produced.
  • the pH of the medium is preferably about 6.0 to 9.0 (preferably around pH 7.0).
  • the culture solution containing the microbial cells after culturing can be used as it is or as an enzyme solution after concentration, removal of impurities, etc., but generally, the expression product is once recovered from the culture solution or the microbial cells. If the expression product is a secretory protein, it can be recovered from the culture solution, and if it is other than that, it can be recovered from the inside of the cell.
  • the culture supernatant is filtered and centrifuged to remove insoluble matter, followed by vacuum concentration, membrane concentration, salting out using ammonium sulfate or sodium sulfate, methanol, ethanol, or acetone.
  • Fractional precipitation method dialysis, heat treatment, isoelectric point treatment, various chromatography such as gel filtration, adsorption chromatography, ion exchange chromatography, affinity chromatography (for example, Sephadex gel (GE Healthcare Bioscience) Separation by combining gel filtration with DEAE Sepharose CL-6B (GE Healthcare Bioscience), Octyl Sepharose CL-6B (GE Healthcare Bioscience), CM Sepharose CL-6B (GE Healthcare Bioscience), etc.
  • a purified product of this enzyme can be obtained.
  • the microbial cells are collected by filtering the culture solution, centrifuging, etc., and then the microbial cells are subjected to a mechanical method such as pressure treatment, ultrasonic treatment or an enzymatic method such as lysozyme. After destruction by the method, a purified product of the enzyme can be obtained by separating and purifying in the same manner as above.
  • the degree of purification of the enzyme is not particularly limited, but for example, the specific activity can be purified to a state of 10 to 1000 (U/mg), preferably a specific activity of 50 to 500 (U/mg).
  • the final form may be liquid or solid (including powder).
  • the purified enzyme obtained as described above in the form of powder by freeze drying, vacuum drying, spray drying, or the like.
  • the purified enzyme may be previously dissolved in a phosphate buffer solution, a triethanolamine buffer solution, a tris-hydrochloric acid buffer solution, or a GOOD buffer solution.
  • a phosphate buffer solution or a triethanolamine buffer solution can be used.
  • the GOOD buffer may be PIPES, MES or MOPS.
  • gene expression to expression product (this enzyme) is collected using an appropriate host-vector system, but a cell-free synthesis system may be used.
  • “cell-free synthetic system (cell-free transcription system, cell-free transcription/translation system)” means that ribosomes derived from live cells (or obtained by genetic engineering techniques) It refers to the synthesis of mRNA or protein encoded by a nucleic acid (DNA or mRNA) that is a template in vitro using transcription/translation factors.
  • a cell extract obtained by purifying a cell lysate as needed is used.
  • the cell extract generally contains ribosomes required for protein synthesis, various factors such as initiation factors, and various enzymes such as tRNA.
  • various substances necessary for protein synthesis such as various amino acids, energy sources such as ATP and GTP, and creatine phosphate are added to this cell extract.
  • energy sources such as ATP and GTP
  • creatine phosphate are added to this cell extract.
  • separately prepared ribosome, various factors, and/or various enzymes may be supplemented as necessary.
  • cell-free transcription/translation system is used interchangeably with cell-free protein synthesis system, in vitro translation system, or in vitro transcription/translation system.
  • RNA is used as a template to synthesize proteins.
  • total RNA, mRNA, in vitro transcription products, etc. are used.
  • the other in vitro transcription/translation system uses DNA as a template.
  • the template DNA should contain a ribosome binding region and preferably also contains suitable terminator sequences.
  • conditions in which factors necessary for each reaction are added are set so that the transcription reaction and the translation reaction proceed continuously.
  • a further aspect of the invention relates to uses of the enzyme.
  • a glucose measuring method using the present enzyme is provided.
  • the amount of glucose in a sample is measured by utilizing the redox reaction of the present enzyme.
  • the present invention can be applied to various uses in which changes due to this reaction can be utilized.
  • the enzyme is typically used for measuring blood glucose level, but is not limited to this as long as the measurement principle can be applied.
  • the present enzyme can be used for measuring glucose contained in body fluids other than blood (eg, tears, saliva, interstitial fluid, urine, etc.) and foods.
  • the present invention also provides a glucose measurement reagent containing the present enzyme.
  • the reagent is used in the above-described glucose measuring method of the present invention.
  • Serum albumin, proteins, surfactants, saccharides, sugar alcohols, inorganic salts and the like may be added for the purpose of stabilizing the glucose measuring reagent and activating it during use.
  • ⁇ Glucose measurement reagent can also be a component of the measurement kit.
  • the present invention also provides a kit (glucose measurement kit) containing the glucose measurement reagent.
  • the kit of the present invention contains the glucose measuring reagent as an essential component.
  • a reaction reagent, a buffer solution, a glucose standard solution, a container and the like are included as optional elements.
  • the glucose measuring kit of the present invention is usually accompanied by instructions for use.
  • the present invention also provides a glucose sensor containing the present enzyme.
  • a glucose sensor containing the present enzyme In a typical structure of the glucose sensor of the present invention, an electrode system having a working electrode and a counter electrode is formed on an insulating substrate, and a reagent layer containing the present enzyme and a mediator is formed thereon. It is also possible to use a measurement system that also includes a reference electrode. By using such a so-called three-electrode measurement system, it becomes possible to represent the potential of the working electrode with reference to the potential of the reference electrode.
  • the material of each electrode is not particularly limited. Examples of electrode materials for the working electrode and the counter electrode are gold (Au), carbon (C), platinum (Pt), and titanium (Ti).
  • mediators include ferricyanide compounds (potassium ferricyanide, etc.), metal complexes (ruthenium complex, osmium complex, cobalt complex, copper complex, etc.), ferrocene, phenazine methosulfate, cytochrome C, pyroquinoline quinone (PQQ), NAD+, NADP+. , Methylene blue, carbon nanotubes, carbon nanobelts, nanometals, nanowires, conductive polymers and the like are used.
  • the enzyme can be provided in the form of an enzyme preparation.
  • the enzyme preparation of the present invention may contain an excipient, a buffer, a suspension, a stabilizer, a preservative, a preservative, physiological saline, etc., in addition to the active ingredient (the enzyme).
  • an excipient starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • As the buffer phosphate, citrate, acetate or the like can be used.
  • As the stabilizer propylene glycol, ascorbic acid or the like can be used.
  • phenol benzalkonium chloride
  • benzyl alcohol chlorobutanol
  • methylparaben and the like can be used.
  • ethanol benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • a culture solution obtained by culturing preserved strains obtained from public institutions and various strains obtained from nature is used as a sample for self blood glucose measurement (SMBG) and continuous blood glucose measurement (CGM)
  • SMBG self blood glucose measurement
  • CGM continuous blood glucose measurement
  • FAD-GDH FAD-GDH that has high thermostability, which is advantageous as an enzyme.
  • the residual activity after incubation of the culture supernatant sample in a 0.1 mol/L phosphate buffer (disodium hydrogen phosphate + potassium dihydrogen phosphate) (pH 7.0) at 50°C for 10 minutes was used. It was analyzed by measuring. Substrate specificity was analyzed by using a culture supernatant sample and changing D-glucose as a substrate to maltose or xylose and similarly measuring.
  • phosphate buffer sodium hydrogen phosphate + potassium dihydrogen phosphate
  • Thermostability Purified enzyme sample was used as 0.1 mol/L phosphate buffer (disodium hydrogen phosphate + potassium dihydrogen phosphate) (pH 7.0) Heat treatment was carried out (incubation at 50°C for 10 minutes), and the residual activity was measured. The measurement result is shown in FIG. It was found that FAD-GDH derived from P. variotii NBRC4855 strain has particularly high thermostability.
  • phosphate buffer sodium hydrogen phosphate + potassium dihydrogen phosphate
  • Genomic DNA was obtained from the cultured cells of each strain using Kaneka Simple DNA Extraction Kit version 2. From the published genomic information of Paecilomyces, we found a sequence with relatively high homology to A. oryzae-derived FAD-GDH, and designed primers based on the sequences before and after it. Information on the full-length sequence of the gene was obtained by combining partial fragments obtained by performing PCR with PrimeSTAR (registered trademark) Max DNA Polymerase manufactured by Takara Bio. In addition, the amino acid sequence encoded by each gene sequence was identified. The amino acid sequences of FAD-GDH derived from each strain are shown in Fig. 4 (P. variotii NBRC 4855 strain), Fig. 5 (P.
  • FIG. 8 P. variotii NBRC 4855 strain, genomic DNA sequence
  • Fig. 9 P. variotii AHU 9417 strain, genomic DNA sequence
  • Fig. 10 P. variotii IAM
  • FIG. 11 P. brunneolus NBRC 7563 strain, genomic DNA sequence
  • FIG. 12 P. variotii NBRC 4855 strain, cDNA sequence
  • FIG. 13 P.
  • FIG. 14 P. variotii IAM 12157 strain, cDNA sequence
  • FIG. 15 P. brunneolus NBRC 7563 strain, cDNA sequence.
  • the amino acid sequences of the purified enzymes of P. variotii NBRC 4855 strain-derived FAD-GDH and P. variotii AHU 9417 strain-derived FAD-GDH were the sequences of SEQ ID NO: 13 and SEQ ID NO: 14, respectively. Was estimated to be.
  • FAD-GDH derived from P. variotii NBRC 4855 strain, FAD-GDH derived from P. variotii AHU 9417 strain and FAD-GDH derived from P. variotii IAM 12157 strain were recombinantly expressed in Escherichia coli, respectively, and the properties were confirmed.
  • the nucleotide sequence encoding the 5'-terminal signal peptide of each FAD-GDH gene was removed by PCR using a primer introduced with a restriction enzyme NcoI site so that methionine entered the N-terminus.
  • the intron was also removed by the PCR method to obtain an E. coli expression gene.
  • the gene from which the signal peptide and the intron were removed was introduced into the expression vector pTrc99A by treatment with a restriction enzyme using the NcoI-HindIII site, and then ligation, and transformation into Escherichia coli DH5 ⁇ competent cells was performed.
  • the transformant was cultured at 28° C. in LB medium in the presence of ampicillin (50 to 100 ⁇ g/mL).
  • the bacterial cells collected by centrifugation were crushed with a bead shocker to extract intracellular components. After centrifugation, the supernatant was collected and filtered through a 0.45 ⁇ m membrane to confirm FAD-GDH activity.
  • a strain transformed with pTrc99A in which the FAD-GDH gene was not inserted was used as a control. FAD-GDH activity could be confirmed in all strains. Moreover, as a result of confirming the substrate specificity, as shown in FIG. 16, even in the recombinantly expressed enzyme, P. variotii NBRC 4855 strain-derived FAD-GDH had low reactivity with D-maltose and D-xylose, and blood glucose was low. It was found to be extremely useful for measurement (SMBG applications, CGM applications).
  • the glucose dehydrogenase of the present invention has excellent thermostability and is useful as an enzyme for glucose sensors for blood glucose meters. Also, from the viewpoint of substrate specificity, the glucose dehydrogenase of the present invention is suitable for use in a glucose sensor for blood glucose meter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

熱安定性が高く、特にグルコースセンサ用としての実用性が向上したFAD-GDHを提供することを課題とする。(a)配列番号1又は配列番号13のアミノ酸配列に90%以上の同一性を示し、且つ配列番号1のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列、又は(b)配列番号2又は配列番号14のアミノ酸配列に90%以上の同一性を示し、且つ配列番号2のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列を有し、50℃で10分処理後の相対残存活性が50%以上である、グルコースデヒドロゲナーゼが提供される。

Description

グルコースデヒドロゲナーゼ
 本発明はグルコースデヒドロゲナーゼ(グルコース脱水素酵素)に関する。詳しくは、熱安定性に優れるフラビンアデニンジヌクレオチド(FAD)依存性グルコースデヒドロゲナーゼ(E.C.1.1.99.10)及びその遺伝子等に関する。本出願は、2018年12月5日に出願された日本国特許出願第2018-228583号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 糖尿病患者は年々増加しており、糖尿病患者、特にインスリン依存性の患者は血糖値を日常的に監視し血糖をコントロールする必要がある。近年、酵素を用いてリアルタイムで簡便にかつ正確に測定できる自己血糖測定器で糖尿病患者の血糖値をチェック出来るようになった。グルコースセンサ(例えば、自己血糖測定器に使用されるセンサ)用として、グルコースオキシダーゼ(E.C.1.1.3.4)、PQQ依存性グルコースデヒドロゲナーゼ(E.C.1.1.5.2)(例えば特許文献1~3を参照)が開発されたが、酸素反応性、マルトース、ガラクトースへの反応性が問題となった。この問題を解決すべく、FAD依存性グルコースデヒドロゲナーゼ(以下、「FAD-GDH」と略称する)が開発された(例えば特許文献4、5、非特許文献1~4を参照)。FAD-GDHについては様々な改良が検討されている(例えば特許文献6、7を参照)。
特開2000-350588号公報 特開2001-197888号公報 特開2001-346587号公報 国際公開第2004/058958号パンフレット 国際公開第2007/139013号パンフレット 国際公開第2009/119728号パンフレット 特許第6084981号
Studies on the glucose dehydrogenase of Aspergillus oryzae. I. Induction of its synthesis by p-benzoquinone and hydroquinone, T.C. Bak, and R. Sato, Biochim. Biophys. Acta, 139, 265-276 (1967). Studies on the glucose dehydrogenase of Aspergillus oryzae. II. Purification and physical and chemical properties, T.C. Bak, Biochim. Biophys. Acta, 139, 277-293 (1967). Studies on the glucose dehydrogenase of Aspergillus oryzae. III. General enzymatic properties, T.C. Bak, Biochim. Biophys. Acta, 146, 317-327 (1967). Studies on the glucose dehydrogenase of Aspergillus oryzae. IV. Histidyl residue as an active site, T.C. Bak, and R. Sato, Biochim. Biophys. Acta, 146, 328-335 (1967).
 酵素はタンパク質であり、熱による活性の低下を引き起こしやすい。活性の低下は測定精度等に直結する。血糖測定(自己血糖測定(SMBG)及び持続血糖測定(CGM))においても、それに使用する酵素の熱安定性が高いことが望まれているが、FAD-GDHは概してグルコースオキシダーゼ(GO)よりも安定性が劣る。FAD-GDHの熱安定性を高める試みはあるものの(例えば特許文献7)、依然として熱安定性向上に対するニーズは高い。熱安定性に優れたFAD-GDHを利用できれば、FAD-GDHの利点を活かした実用性の高いグルコースセンサが構成される。そこで本発明は、熱安定性が高く、特にグルコースセンサ用としての実用性が向上したFAD-GDH及びその用途等を提供することを課題とする。
 上記課題を解決すべく本発明者らは、広範な微生物を対象として大規模なスクリーニングを実施した。その結果、熱安定性が高く、しかも基質特異性に優れ、グルコースセンサ用途に適した特性を備えた二種類の新規FAD-GDHを同定することに成功した。一方、これらのFAD-GDHの配列を解析したところ、429番アミノ酸がフェニルアラニンであるという共通点が見出された。スクリーニングの際、比較的熱安定性に優れる別の酵素も認められたが、その429番アミノ酸はフェニルアラニンではなかった。この事実も考え合わせれば、429番アミノ酸がフェニルアラニンであることが熱安定性に重要であること、言い換えれば429番フェニルアラニンが熱安定性に寄与していることが示唆された。
 以下の発明は、以上の成果及び考察に基づく。
 [1]以下の(a)又は(b)のアミノ酸配列を有し、50℃で10分処理後の相対残存活性が50%以上である、グルコースデヒドロゲナーゼ:
 (a)配列番号1又は配列番号13のアミノ酸配列に90%以上の同一性を示し、且つ配列番号1のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列;
 (b)配列番号2又は配列番号14のアミノ酸配列に90%以上の同一性を示し、且つ配列番号2のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列。
 [2](a)における前記同一性と(b)における前記同一性が95%以上である、[1]に記載のグルコースデヒドロゲナーゼ。
 [3](a)における前記同一性と(b)における前記同一性が97%以上である、[1]に記載のグルコースデヒドロゲナーゼ。
 [4](a)における前記同一性と(b)における前記同一性が98%以上である、[1]に記載のグルコースデヒドロゲナーゼ。
 [5](a)における前記同一性と(b)における前記同一性が99%以上である、[1]に記載のグルコースデヒドロゲナーゼ。
 [6]配列番号13又は配列番号14のアミノ酸配列からなる、[1]に記載のグルコースデヒドロゲナーゼ。
 [7]以下の(A)~(C)からなる群より選択されるいずれかのDNAからなるグルコースデヒドロゲナーゼ遺伝子:
 (A)[1]の(a)又は(b)のアミノ酸配列をコードするDNA;
 (B)配列番号5、配列番号6、配列番号9、配列番号10、配列番号15又は配列番号16の塩基配列からなるDNA;
 (C)配列番号5、配列番号6、配列番号9、配列番号10、配列番号15又は配列番号16の塩基配列と等価な塩基配列を有し、且つグルコースデヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
 [8][7]に記載のグルコースデヒドロゲナーゼ遺伝子を含む組換えDNA。
 [9][8]に記載の組換えDNAを保有する微生物。
 [10]以下のステップ(1)~(3)を含む、グルコースデヒドロゲナーゼの調製法:
 (1)[7]に記載のグルコースデヒドロゲナーゼ遺伝子を用意するステップ;
 (2)前記遺伝子を発現させるステップ、及び
 (3)発現産物を回収するステップ。
 [11][1]~[6]のいずれか一項に記載のグルコースデヒドロゲナーゼを用いて試料中のグルコースを測定することを特徴とする、グルコース測定法。
 [12][1]~[6]のいずれか一項に記載のグルコースデヒドロゲナーゼを含む、グルコース測定用試薬。
 [13][12]に記載のグルコース測定用試薬を含む、グルコース測定用キット。
 [14][1]~[6]のいずれか一項に記載のグルコースデヒドロゲナーゼを含む、グルコースセンサ。
 [15][1]~[6]のいずれか一項に記載のグルコースデヒドロゲナーゼを含有する酵素剤。
培養上清を用いたFAD-GDH活性の測定。50℃、10分処理後の相対残存活性で熱安定性を評価した。 精製酵素を用いたFAD-GDH活性の測定。50℃、10分処理後の相対残存活性で熱安定性を評価した。 精製酵素を用いた基質特性の評価。D-グルコースへの反応性を100%とした場合の相対活性(%)でD-マルトースに対する反応性及びD-キシロースに対する反応性を評価した。 P. variotii NBRC 4855株由来のFAD-GDHのアミノ酸配列。429位アミノ酸(F)を下線で示す。 P. variotii AHU 9417株由来のFAD-GDHのアミノ酸配列。429位アミノ酸(F)を下線で示す。 P. variotii IAM 12157株由来のFAD-GDHのアミノ酸配列。429位アミノ酸(L)を下線で示す。 P. brunneolus NBRC 7563株由来のFAD-GDHのアミノ酸配列。429位アミノ酸(A)を下線で示す。 P. variotii NBRC 4855株由来のFAD-GDHのゲノムDNA配列。イントロンを下線で示す。 P. variotii AHU 9417株由来のFAD-GDHのゲノムDNA配列。イントロンを下線で示す。 P. variotii IAM 12157株由来のFAD-GDHのゲノムDNA配列。イントロンを下線で示す。 P. brunneolus NBRC 7563株由来のFAD-GDHのゲノムDNA配列。イントロンを下線で示す。 P. variotii NBRC 4855株由来のFAD-GDHのcDNA配列。 P. variotii AHU 9417株由来のFAD-GDHのcDNA配列。 P. variotii IAM 12157株由来のFAD-GDHのcDNA配列。 P. brunneolus NBRC 7563株由来のFAD-GDHのcDNA配列。 組換え酵素を用いた基質特性の評価。D-グルコースへの反応性を100%とした場合の相対活性(%)でD-マルトースに対する反応性及びD-キシロースに対する反応性を評価した。 F429置換体の熱安定性。
1.用語
 本明細書において用語「単離された」は「精製された」と交換可能に使用される。用語「単離された」は、人為的操作が介在することなく産生される物の場合、天然の状態、即ち、自然界において存在している状態のものと区別するために使用され、人為的操作が介在して生産される物の場合、単離工程又は精製工程を経ていないものと区別するために使用される。前者の場合、単離するという人為的操作によって、天然の状態とは異なる状態である「単離された状態」となり、単離されたものは天然物自体と明確且つ決定的に相違する。一方、後者の場合、典型的には、単離工程又は精製工程によって不純物が除去され又はその量が低減され、純度が高まる。単離された酵素の純度は特に限定されない。但し、純度の高いことが要求される用途への適用が予定されるのであれば、単離された酵素の純度は高いことが好ましい。
2.グルコースデヒドロゲナーゼ
 本発明の第1の局面はグルコースデヒドロゲナーゼ(以下、本酵素とも呼ぶ)に関する。本酵素の一態様(第1態様)は、配列番号1又は配列番号13のアミノ酸配列に90%以上の同一性を示し、且つ配列番号1のアミノ酸配列の429位アミノ酸(配列番号13のアミノ酸配列では414位アミノ酸)に相当するアミノ酸はフェニルアラニン(F)である、アミノ酸配列を有する。配列番号1のアミノ酸配列はペシロマイセス・バリオチ(Paecilomyces variotii) NBRC 4855株の産生するグルコースデヒドロゲナーゼのアミノ酸配列であり、配列番号13は配列番号1からシグナルペプチド配列を除外したアミノ酸配列である。当該菌株は独立行政法人製品評価技術基盤機構(NBRC)(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)に保存されており、所定の手続きを経ることによってその分譲を受けることができる。
 本発明の別の態様(第2態様)は、配列番号2又は配列番号14のアミノ酸配列に90%以上の同一性を示し、且つ配列番号2のアミノ酸配列の429位アミノ酸(配列番号14のアミノ酸配列では414位アミノ酸)に相当するアミノ酸はフェニルアラニン(F)である、アミノ酸配列を有する。配列番号1のアミノ酸配列はペシロマイセス・バリオチ(Paecilomyces variotii) AHU 9417株の産生するグルコースデヒドロゲナーゼのアミノ酸配列であり、配列番号14は配列番号2からシグナルペプチド配列を除外したアミノ酸配列である。当該菌株は北海道大学菌株保存室(AHU)に保存されており、北海道大学大学院農学研究院 応用生命科学部門 分子生命科学分野 応用菌学研究室 菌株保存室(〒060-8589 北海道札幌市北区北9条西9丁目)より、所定の手続きを経ることによってその分譲を受けることができる。
 本酵素は熱安定性に優れ、50℃で10分処理後の相対残存活性が50%以上となる。好ましくは当該相対残存活性が55%以上、更に好ましくは当該相対残存活性が70%以上である。相対残存活性の評価に用いる活性測定法は実施例の欄に示される。
 配列番号1又は配列番号13のアミノ酸配列に対する同一性(第1態様の同一性)と配列番号2又は配列番号14のアミノ酸配列に対する同一性(第2態様の同一性)は、好ましくは95%以上、更に好ましくは97%以上、更に更に好ましくは98%以上、より一層好ましくは99%以上である。100%の同一性を示すアミノ酸配列、即ち、配列番号1又は配列番号13のアミノ酸配列からなるグルコースデヒドロゲナーゼ(ペシロマイセス・バリオチ NBRC 4855株由来の酵素)と配列番号2又は配列番号14のアミノ酸配列からなるグルコースデヒドロゲナーゼ(ペシロマイセス・バリオチ AHU 9417株由来の酵素)は特に好ましいグルコースデヒドロゲナーゼの具体例である。
 ここで、本明細書においてアミノ酸残基について使用する場合の用語「相当する」とは、比較されるタンパク質(酵素)間においてその機能の発揮に同等の貢献をしていることを意味する。例えば、基準のアミノ酸配列(即ち、配列番号1、配列番号2、配列番号13又は配列番号14のアミノ酸配列)に対して比較対象のアミノ酸配列を、一次構造(アミノ酸配列)の部分的な相同性を考慮しつつ、最適な比較ができるように並べたときに(このときに必要に応じてギャップを導入し、アライメントを最適化してもよい)、基準のアミノ酸配列中の特定のアミノ酸に対応する位置のアミノ酸を「相当するアミノ酸」として特定することができる。一次構造同士の比較に代えて、又はこれに加えて立体構造(三次元構造)同士の比較によって「相当するアミノ酸」を特定することもできる。立体構造情報を利用することによって信頼性の高い比較結果が得られる。この場合は、複数の酵素の立体構造の原子座標を比較しながらアライメントを行っていく手法を採用できる。変異対象酵素の立体構造情報は例えばProtein Data Bank(http://www.pdbj.org/index_j.html)より取得することができる。
 X線結晶構造解析によるタンパク質立体構造の決定方法の一例を以下に示す。
(1)タンパク質を結晶化する。結晶化は、立体構造決定のためには欠かせないが、それ以外にも、タンパク質の高純度の精製法、高密度で安定な保存法として産業上の有用性もある。この場合、リガンドとして基質もしくはそのアナログ化合物を結合したタンパク質を結晶化すると良い。
(2)作製した結晶にX線を照射して回折データを収集する。なお、タンパク質結晶はX線照射によりダメージを受け回折能が劣化するケースが多々ある。その場合、結晶を急激に-173℃程度に冷却し、その状態で回折データを収集する低温測定技術が最近普及してきた。なお、最終的に、構造決定に利用する高分解能データを収集するために、輝度の高いシンクロトロン放射光が利用される。
(3)結晶構造解析を行うには、回折データに加えて、位相情報が必要になる。目的のタンパク質に対して、類縁のタンパク質の結晶構造が未知の場合、分子置換法で構造決定することは不可能であり、重原子同型置換法により位相問題が解決されなくてはならない。重原子同型置換法は、水銀や白金等原子番号が大きな金属原子を結晶に導入し、金属原子の大きなX線散乱能のX線回折データへの寄与を利用して位相情報を得る方法である。決定された位相は、結晶中の溶媒領域の電子密度を平滑化することにより改善することが可能である。溶媒領域の水分子は揺らぎが大きいために電子密度がほとんど観測されないので、この領域の電子密度を0に近似することにより、真の電子密度に近づくことができ、ひいては位相が改善されるのである。また、非対称単位に複数の分子が含まれている場合、これらの分子の電子密度を平均化することにより位相が更に大幅に改善される。このようにして改善された位相を用いて計算した電子密度図にタンパク質のモデルをフィットさせる。このプロセスは、コンピューターグラフィックス上で、MSI社(アメリカ)のQUANTA等のプログラムを用いて行われる。この後、MSI社のX-PLOR等のプログラムを用いて、構造精密化を行い、構造解析は完了する。目的のタンパク質に対して、類縁のタンパク質の結晶構造が既知の場合は、既知タンパク質の原子座標を用いて分子置換法により決定できる。分子置換と構造精密化はプログラム CNS_SOLVE ver.11などを用いて行うことができる。
 第1態様のグルコースデヒドロゲナーゼに該当し得るアミノ酸配列の例として、配列番号1のアミノ酸配列の429位フェニルアラニン(F429)以外の部分に変異(アミノ酸の欠失、置換、付加、挿入等)を加えたもの(但し、変異後のアミノ酸配列は配列番号1のアミノ酸配列に90%以上の同一性を示す)、配列番号1のアミノ酸配列に高い同一性を示し且つ配列番号1の429位に相当するアミノ酸がフェニルアラニンであるアミノ酸配列(例えば、ペシロマイセス属微生物由来のグルコースデヒドロゲナーゼのアミノ酸配列)に対して同様の変異を加えたもの(但し、変異後のアミノ酸配列は配列番号1のアミノ酸配列に90%以上の同一性を示す)、配列番号1のアミノ酸配列に90%以上の同一性を示し且つ配列番号1の429位に相当するアミノ酸がフェニルアラニンでないアミノ酸配列に対して配列番号1の429位に相当するアミノ酸をフェニルアラニンに置換する変異を加えたもの、配列番号13のアミノ酸配列の414位フェニルアラニン(F414)以外の部分に変異(アミノ酸の欠失、置換、付加、挿入等)を加えたもの(但し、変異後のアミノ酸配列は配列番号13のアミノ酸配列に90%以上の同一性を示す)、配列番号13のアミノ酸配列に高い同一性を示し且つ配列番号13の414位に相当するアミノ酸がフェニルアラニンであるアミノ酸配列(例えば、ペシロマイセス属微生物由来のグルコースデヒドロゲナーゼのアミノ酸配列)に対して同様の変異を加えたもの(但し、変異後のアミノ酸配列は配列番号13のアミノ酸配列に90%以上の同一性を示す)、配列番号13のアミノ酸配列に90%以上の同一性を示し且つ配列番号13の414位に相当するアミノ酸がフェニルアラニンでないアミノ酸配列に対して配列番号13の414位に相当するアミノ酸をフェニルアラニンに置換する変異を加えたものを挙げることができる。同様に、第2態様のグルコースデヒドロゲナーゼに該当し得るアミノ酸配列の例として、配列番号2のアミノ酸配列の429位フェニルアラニン(F429)以外の部分に変異(アミノ酸の欠失、置換、付加、挿入等)を加えたもの(但し、変異後のアミノ酸配列は配列番号2のアミノ酸配列に90%以上の同一性を示す)、配列番号2のアミノ酸配列に高い同一性を示し且つ配列番号2の429位に相当するアミノ酸がフェニルアラニンであるアミノ酸配列(例えば、ペシロマイセス属微生物由来のグルコースデヒドロゲナーゼのアミノ酸配列)に対して同様の変異を加えたもの(但し、変異後のアミノ酸配列は配列番号2のアミノ酸配列に90%以上の同一性を示す)、配列番号2のアミノ酸配列に90%以上の同一性を示し且つ配列番号2の429位に相当するアミノ酸がフェニルアラニンでないアミノ酸配列に対して配列番号2の429位に相当するアミノ酸をフェニルアラニンに置換する変異を加えたもの、配列番号14のアミノ酸配列の414位フェニルアラニン(F414)以外の部分に変異(アミノ酸の欠失、置換、付加、挿入等)を加えたもの(但し、変異後のアミノ酸配列は配列番号14のアミノ酸配列に90%以上の同一性を示す)、配列番号14のアミノ酸配列に高い同一性を示し且つ配列番号14の414位に相当するアミノ酸がフェニルアラニンであるアミノ酸配列(例えば、ペシロマイセス属微生物由来のグルコースデヒドロゲナーゼのアミノ酸配列)に対して同様の変異を加えたもの(但し、変異後のアミノ酸配列は配列番号14のアミノ酸配列に90%以上の同一性を示す)、配列番号14のアミノ酸配列に90%以上の同一性を示し且つ配列番号14の414位に相当するアミノ酸がフェニルアラニンでないアミノ酸配列に対して配列番号14の414位に相当するアミノ酸をフェニルアラニンに置換する変異を加えたものを挙げることができる。配列番号1のアミノ酸配列、配列番号2のアミノ酸配列、配列番号13のアミノ酸配列又は配列番号14のアミノ酸配列に対して変異が加えられる場合、その変異は好ましくは保存的アミノ酸置換により生じている。「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリジン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
 後述の実施例に示す通り、ペシロマイセス・バリオチ NBRC 4855株由来のグルコースデヒドロゲナーゼとペシロマイセス・バリオチ AHU 9417株由来のグルコースデヒドロゲナーゼは基質特性にも優れる。この事実に鑑み、本酵素を更に、D-マルトースに対する反応性及びD-キシロースに対する反応性が低い、という特性で特徴付けることができる。D-マルトースに対する反応性については、D-グルコースに対する反応性を100%としたときのD-マルトースに対する反応性が5%以下、好ましくは3%以下、更に好ましくは2%以下、更に更に好ましくは1%以下である。D-キシロースに対する反応性については、D-グルコースに対する反応性を100%としたときのD-キシロースに対する反応性が22%以下、好ましくは20%以下、更に好ましくは18%以下、更に更に好ましくは15%以下である。
 ところで、二つのアミノ酸配列又は二つの核酸(以下、これらを含む用語として「二つの配列」を使用する)の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基又はヌクレオチド)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。二つの配列の同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。
 二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラムおよびXBLASTプログラム(バージョン2.0)に組み込まれている。本発明の核酸分子に等価なヌクレオチド配列を得るには例えば、NBLASTプログラムでscore = 100、wordlength = 12としてBLASTヌクレオチド検索を行えばよい。本酵素に等価なアミノ酸配列を得るには例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えばよい。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLASTおよびGapped BLASTを利用する場合は、対応するプログラム(例えばXBLASTおよびNBLAST)のデフォルトパラメータを使用することができる。詳しくはhttp://www.ncbi.nlm.nih.govを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、MyersおよびMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。
 二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。また、二つの核酸配列の相同度を、GCGソフトウェアパッケージ(http://www.gcg.comで利用可能)のGAPプログラムを用いて、ギャップ加重=50、ギャップ長加重=3として決定することができる。
 本酵素が、より大きいタンパク質(例えば融合タンパク質)の一部であってもよい。融合タンパク質において付加される配列としては、例えば、多重ヒスチジン残基のような精製に役立つ配列、組み換え生産の際の安定性を確保する付加配列等が挙げられる。
 上記アミノ酸配列を有する本酵素は、遺伝子工学的手法によって容易に調製することができる。例えば、本酵素をコードするDNAで適当な宿主細胞(例えば大腸菌)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜精製される。このように組換えタンパク質として本酵素を得ることにすれば種々の修飾が可能である。例えば、本酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる本酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。
3.本酵素をコードする核酸等
 本発明の第2の局面は本酵素に関連する核酸を提供する。即ち、本酵素をコードする遺伝子、本酵素をコードする核酸を同定するためのプローブとして用いることができる核酸、本酵素をコードする核酸を増幅又は突然変異等させるためのプライマーとして用いることができる核酸が提供される。
 本酵素をコードする遺伝子は典型的には本酵素の調製に利用される。本酵素をコードする遺伝子を用いた遺伝子工学的調製法によれば、より均質な状態の本酵素を得ることが可能である。また、当該方法は大量の本酵素を調製する場合にも好適な方法といえる。尚、本酵素をコードする遺伝子の用途は本酵素の調製に限られない。例えば、本酵素の作用機構の解明などを目的とした実験用のツールとして、或いは本酵素の変異体をデザイン又は作製するためのツールとして、当該核酸を利用することもできる。
 本明細書において「本酵素をコードする遺伝子」とは、それを発現させた場合に本酵素が得られる核酸のことをいい、本酵素のアミノ酸配列に対応する塩基配列を有する核酸は勿論のこと、そのような核酸にアミノ酸配列をコードしない配列が付加されてなる核酸をも含む。また、コドンの縮重も考慮される。開始コドンを含まない塩基配列を有する核酸に関しては、開始コドン、又は開始コドンを含むシグナルペプチドを付加した上で発現することで本酵素を得ることができる。
 本酵素をコードする遺伝子の配列の例を配列番号5(配列番号1のアミノ酸配列をコードするゲノムDNA配列)、配列番号9(配列番号1のアミノ酸配列をコードするcDNA配列)、配列番号6(配列番号2のアミノ酸配列をコードするゲノムDNA配列)及び配列番号10(配列番号2のアミノ酸配列をコードするcDNA配列)、配列番号15(配列番号13のアミノ酸配列をコードするDNA配列)、配列番号16(配列番号14のアミノ酸配列をコードするDNA配列)に示す。
 本発明の核酸は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって、単離された状態に調製することができる。
 本発明の他の態様では、本酵素をコードする遺伝子の塩基配列と比較した場合にそれがコードするタンパク質の機能は同等であるものの一部において塩基配列が相違する核酸(以下、「等価核酸」ともいう。また、等価核酸を規定する塩基配列を「等価塩基配列」ともいう)が提供される。等価核酸の例として、本酵素をコードする核酸の塩基配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、本酵素に特徴的な酵素活性(即ちGDH活性)を有するタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該核酸がコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。
 等価核酸は、基準となる塩基配列(配列番号5、配列番号6、配列番号9、配列番号10、配列番号15、配列番号16の配列)に対して、例えば60%以上、好ましくは70%以上、より好ましくは80%以上、より一層好ましくは85%以上、さらに好ましくは約90%以上、さらに一層好ましくは95%以上、最も好ましくは99%以上の同一性を有する。等価核酸の具体例として、配列番号5の塩基配列の1349~1351位に相当するコドンがTTT又はTTCであり配列番号5の塩基配列と上記記載の同一性を有するもの、配列番号6の塩基配列の1348~1350位に相当するコドンがTTT又はTTCであり配列番号6の塩基配列と上記記載の同一性を有するもの、配列番号9の塩基配列の1285~1287位に相当するコドンがTTT又はTTCであり配列番号10の塩基配列と上記記載の同一性を有するもの、配列番号10の塩基配列の1285~1287位に相当するコドンがTTT又はTTCであり配列番号10の塩基配列と上記記載の同一性を有するもの、配列番号15の塩基配列の1240~1242位に相当するコドンがTTT又はTTCであり配列番号15の塩基配列と上記記載の同一性を有するもの、配列番号16の塩基配列の1240~1242位に相当するコドンがTTT又はTTCであり配列番号16の塩基配列と上記記載の同一性を有するもの、を挙げることができる。
 以上のような等価核酸は例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などによって得られる。また、紫外線照射など他の方法によっても等価核酸を得ることができる。
 本発明の他の態様は、本酵素をコードする遺伝子の塩基配列に対して相補的な塩基配列を有する核酸に関する。本発明の更に他の態様は、本発明の本酵素をコードする遺伝子の塩基配列、或いはそれに相補的な塩基配列に対して少なくとも約60%、70%、80%、90%、95%、99%、99.9%同一な塩基配列を有する核酸を提供する。
 本発明の更に別の態様は、本酵素をコードする遺伝子の塩基配列又はその等価塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズする塩基配列を有する核酸に関する。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。
 本発明の更に他の態様は、本酵素をコードする遺伝子の塩基配列、或いはそれに相補的な塩基配列の一部を有する核酸(核酸断片)を提供する。このような核酸断片は、本酵素をコードする遺伝子の塩基配列を有する核酸などを検出、同定、及び/又は増幅することなどに用いることができる。核酸断片は例えば、本酵素をコードする遺伝子の塩基配列において連続するヌクレオチド部分(例えば約10~約100塩基長、好ましくは約20~約100塩基長、更に好ましくは約30~約100塩基長)にハイブリダイズする部分を少なくとも含むように設計される。プローブとして利用される場合には核酸断片を標識化することができる。標識化には例えば、蛍光物質、酵素、放射性同位元素を用いることができる。
 本発明のさらに他の局面は、本発明の遺伝子(本酵素をコードする遺伝子)を含む組換えDNAに関する。本発明の組換えDNAは例えばベクターの形態で提供される。本明細書において用語「ベクター」は、それに挿入された核酸を細胞等のターゲット内へと輸送することができる核酸性分子をいう。
 使用目的(クローニング、タンパク質の発現)に応じて、また宿主細胞の種類を考慮して適当なベクターが選択される。大腸菌を宿主とするベクターとしてはM13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8、pTrcなど)等、酵母を宿主とするベクターとしてはpYepSec1、pMFa、pYES2等、昆虫細胞を宿主とするベクターとしてはpAc、pVL等、哺乳類細胞を宿主とするベクターとしてはpCDM8、pMT2PC等を例示することができる。
 本発明のベクターは好ましくは発現ベクターである。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。発現ベクターは通常、挿入された核酸の発現に必要なプロモーター配列や、発現を促進させるエンハンサー配列等を含む。選択マーカーを含む発現ベクターを使用することもできる。かかる発現ベクターを用いた場合には、選択マーカーを利用して発現ベクターの導入の有無(及びその程度)を確認することができる。
 本発明の核酸のベクターへの挿入、選択マーカー遺伝子の挿入(必要な場合)、プロモーターの挿入(必要な場合)等は標準的な組換えDNA技術(例えば、Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New Yorkを参照することができる、制限酵素及びDNAリガーゼを用いた周知の方法)を用いて行うことができる。
 宿主細胞としては、取り扱いの容易さの点から、大腸菌(エシェリヒア・コリ)、出芽酵母(サッカロマイセス・セレビシエ)、糸状菌(アスペルギルス・オリゼ)などの微生物を用いることが好ましいが、組換えDNAが複製可能で且つ本酵素の遺伝子が発現可能な宿主細胞であれば利用可能である。大腸菌の例としてT7系プロモーターを利用する場合は大腸菌BL21(DE3)、そうでない場合は大腸菌JM109、DH5αを挙げることができる。また、出芽酵母の例として出芽酵母SHY2、出芽酵母AH22あるいは出芽酵母INVSc1(インビトロジェン社)を挙げることができる。
 本発明の更に他の局面は、本発明の組換えDNAを保有する微生物(即ち形質転換体)に関する。本発明の微生物は、上記本発明のベクターを用いたトランスフェクション乃至はトランスフォーメーションによって得ることができる。例えば、塩化カルシウム法(ジャーナル オブ モレキュラー バイオロジー(J.Mol. Biol.)、第53巻、第159頁 (1970))、ハナハン(Hanahan)法(ジャーナル オブ モレキュラー バイオロジー、第166巻、第557頁 (1983))、SEM法(ジーン(Gene)、第96巻、第23頁(1990)〕、チャング(Chung)らの方法(プロシーディングズ オブ ザ ナショナル アカデミー オブ サイエンシーズ オブ ザ USA、第86巻、第2172頁(1989))、リン酸カルシウム共沈降法、エレクトロポーレーション(Potter,H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165(1984))、リポフェクション(Felgner, P.L. et al.,  Proc. Natl. Acad. Sci. U.S.A. 84,7413-7417(1984))等によって実施することができる。尚、本発明の微生物は、本酵素を生産することに利用することができる。
4.本酵素の調製法
 本発明の更なる局面は本酵素の調製法に関する。本発明の調製法では、本発明者らが取得に成功した本酵素を遺伝子工学的手法で調製する。具体的には、まず本酵素をコードする遺伝子を用意する(ステップ(1))。具体的には、例えば、配列番号1、配列番号2、配列番号13又は配列番号14のアミノ酸配列をコードする核酸を用意する。ここで、「配列番号1、配列番号2、配列番号13又は配列番号14のアミノ酸配列をコードする核酸」は、それを発現させた場合に当該アミノ酸配列を有するポリペプチドが得られる核酸であり、当該アミノ酸配列に対応する塩基配列からなる核酸は勿論のこと、そのような核酸に余分な配列(アミノ酸配列をコードする配列であっても、アミノ酸配列をコードしない配列であってもよい)が付加されていてもよい。また、コドンの縮重も考慮される。「配列番号1、配列番号2、配列番号13又は配列番号14のアミノ酸配列をコードする核酸」は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって、単離された状態に調製することができる。
 ステップ(1)に続いて、用意した遺伝子を発現させる(ステップ(2))。例えば、まず上記遺伝子を挿入した発現ベクターを用意し、これを用いて宿主細胞を形質転換する。次に、発現産物である本酵素が産生される条件下で形質転換体を培養する。形質転換体の培養は常法に従えばよい。培地に使用する炭素源としては資化可能な炭素化合物であればよく、例えばグルコース、シュークロース、ラクトース、マルトース、糖蜜、ピルビン酸などが使用される。また、窒素源としては利用可能な窒素化合物であればよく、例えばペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物などが使用される。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛などの塩類、特定のアミノ酸、特定のビタミンなどが必要に応じて使用される。
 培養温度は培養対象の形質転換体の生育特性や酵素の産生特性などを考慮して設定することができる。好ましくは30℃~40℃の範囲内(より好ましくは37℃付近)で設定することができる。培養時間は、培養対象の形質転換体の生育特性や酵素の産生特性などを考慮して設定することができる。培地のpHは、形質転換体が生育し且つ酵素が産生される範囲内に調製される。好ましくは培地のpHを6.0~9.0程度(好ましくはpH7.0付近)とする。
 続いて、発現産物(本酵素)を回収する(ステップ(3))。培養後の菌体を含む培養液をそのまま、或いは濃縮、不純物の除去などを経た後に酵素溶液として利用することもできるが、一般的には培養液又は菌体より発現産物を一旦回収する。発現産物が分泌型タンパク質であれば培養液より、それ以外であれば菌体内より回収することができる。培養液から回収する場合には、例えば培養上清をろ過、遠心処理して不溶物を除去した後、減圧濃縮、膜濃縮、硫酸アンモニウムや硫酸ナトリウムを利用した塩析、メタノールやエタノール又はアセトンなどによる分別沈殿法、透析、加熱処理、等電点処理、ゲルろ過や吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等の各種クロマトグラフィー(例えば、セファデックス(Sephadex)ゲル(GEヘルスケアバイオサイエンス)などによるゲルろ過、DEAEセファロースCL-6B (GEヘルスケアバイオサイエンス)、オクチルセファロースCL-6B (GEヘルスケアバイオサイエンス)、CMセファロースCL-6B(GEヘルスケアバイオサイエンス))などを組み合わせて分離、精製を行ことにより本酵素の精製品を得ることができる。他方、菌体内から回収する場合には、培養液をろ過、遠心処理等することによって菌体を採取し、次いで菌体を加圧処理、超音波処理などの機械的方法またはリゾチームなどによる酵素的方法で破壊した後、上記と同様に分離、精製を行うことにより本酵素の精製品を得ることができる。
 酵素の精製度は特に限定されないが、例えば比活性が10~1000(U/mg)、好ましくは比活性が50~500(U/mg)の状態に精製することができる。また、最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
 上記のようにして得られた精製酵素を、例えば凍結乾燥や真空乾燥或いはスプレードライなどにより粉末化して提供することも可能である。その際、精製酵素を予めリン酸緩衝液、トリエタノールアミン緩衝液、トリス塩酸緩衝液やGOODの緩衝液に溶解させておいてもよい。好ましくは、リン酸緩衝液、トリエタノールアミン緩衝液を使用することができる。尚、ここでGOODの緩衝液としてはPIPES、MES又はMOPSが挙げられる。
 通常は、以上のように適当な宿主-ベクター系を利用して遺伝子の発現~発現産物(本酵素)の回収を行うが、無細胞合成系を利用することにしてもよい。ここで、「無細胞合成系(無細胞転写系、無細胞転写/翻訳系)」とは、生細胞を用いるのではく、生細胞由来の(或いは遺伝子工学的手法で得られた)リボソームや転写・翻訳因子などを用いて、鋳型である核酸(DNAやmRNA)からそれがコードするmRNAやタンパク質をin vitroで合成することをいう。無細胞合成系では一般に、細胞破砕液を必要に応じて精製して得られる細胞抽出液が使用される。細胞抽出液には一般に、タンパク質合成に必要なリボソーム、開始因子などの各種因子、tRNAなどの各種酵素が含まれる。タンパク質の合成を行う際には、この細胞抽出液に各種アミノ酸、ATP、GTPなどのエネルギー源、クレアチンリン酸など、タンパク質の合成に必要なその他の物質を添加する。勿論、タンパク質合成の際に、別途用意したリボソームや各種因子、及び/又は各種酵素などを必要に応じて補充してもよい。
 タンパク質合成に必要な各分子(因子)を再構成した転写/翻訳系の開発も報告されている(Shimizu, Y. et al.: Nature Biotech., 19, 751-755, 2001)。この合成系では、バクテリアのタンパク質合成系を構成する3種類の開始因子、3種類の伸長因子、終結に関与する4種類の因子、各アミノ酸をtRNAに結合させる20種類のアミノアシルtRNA合成酵素、及びメチオニルtRNAホルミル転移酵素からなる31種類の因子の遺伝子を大腸菌ゲノムから増幅し、これらを用いてタンパク質合成系をin vitroで再構成している。本発明ではこのような再構成した合成系を利用してもよい。
 用語「無細胞転写/翻訳系」は、無細胞タンパク質合成系、in vitro翻訳系又はin vitro転写/翻訳系と交換可能に使用される。in vitro翻訳系ではRNAが鋳型として用いられてタンパク質が合成される。鋳型RNAとしては全RNA、mRNA、in vitro転写産物などが使用される。他方のin vitro転写/翻訳系ではDNAが鋳型として用いられる。鋳型DNAはリボソーム結合領域を含むべきであって、また適切なターミネータ配列を含むことが好ましい。尚、in vitro転写/翻訳系では、転写反応及び翻訳反応が連続して進行するように各反応に必要な因子が添加された条件が設定される。
5.本酵素の用途
 本発明の更なる局面は本酵素の用途に関する。この局面ではまず、本酵素を用いたグルコース測定法が提供される。本発明のグルコース測定法では本酵素による酸化還元反応を利用して試料中のグルコース量を測定する。この反応による変化が利用できる各種用途に本発明を適用可能である。
 本酵素は、典型的には、血糖値の測定に利用されるが、その測定原理が適用可能なものであれば、これに限定されない。例えば、血液以外の体液(例えば涙、唾液、細胞間質液、尿等)や食品等に含有されるグルコースの測定にも本酵素を利用可能である。
 本発明はまた、本酵素を含むグルコース測定用試薬を提供する。当該試薬は上記の本発明のグルコース測定法に使用される。グルコース測定用試薬の安定化や使用時の活性化等を目的として、血清アルブミン、タンパク質、界面活性剤、糖類、糖アルコール、無機塩類等を添加してもよい。
 グルコース測定用試薬を測定キットの構成要素にすることもできる。換言すれば、本発明は、上記グルコース測定用試薬を含むキット(グルコース測定用キット)も提供する。本発明のキットは必須の構成要素として上記グルコース測定用試薬を含む。また、反応用試薬、緩衝液、グルコース標準液、容器などを任意の要素として含む。尚、本発明のグルコース測定キットには通常、使用説明書が添付される。
 本酵素を利用してグルコースセンサを構成することが可能である。即ち、本発明は、本酵素を含むグルコースセンサも提供する。本発明のグルコースセンサの典型的な構造では、絶縁性基板上に作用電極及び対極を備えた電極系が形成され、その上に本酵素とメディエータを含む試薬層が形成される。参照電極も備えた測定系を用いることにしてもよい。このような、いわゆる3電極系の測定系を用いれば、参照電極の電位を基準として作用電極の電位を表すことが可能となる。各電極の材料は特に限定されない。作用電極及び対極の電極材料の例を示せば、金(Au)、カーボン(C)、白金(Pt)、チタン(Ti)である。メディエータとしては、フェリシアン化合物(フェリシアン化カリウム等)、金属錯体(ルテニウム錯体、オスミウム錯体、コバルト錯体、銅錯体等)、フェロセン、フェナジンメトサルフェート、シトクロムC、ピロ口キノリンキノン(PQQ)、NAD+、NADP+、メチレンブルー、カーボンナノチューブ、カーボンナノベルト、ナノ金属、ナノワイヤー、導電性高分子等が使用される。尚、グルコースセンサの構成、グルコースセンサを利用した電気化学的測定法については、例えば、「バイオ電気化学の実際-バイオセンサ・バイオ電池の実用展開-(2007年3月発行、シーエムシー出版)」や「生物と化学 Vol.44, No.3, 2006, 192-197(編集・発行:公益社団法人日本農芸化学会)」に詳しい。
 本酵素を酵素剤の形態で提供することもできる。本発明の酵素剤は有効成分(本酵素)の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。
1.微生物からのスクリーニング
 公的機関から入手した保存菌株や自然界から入手した様々な菌株を培養して得られた培養液を試料として、自己血糖測定(SMBG)や持続血糖測定(CGM)に利用される酵素として有利な熱安定性の高いFAD-GDHを探索した。
(1)培養液の取得
 300 mL容三角フラスコを用いて各種菌株を30℃で振とう培養した。培養液から菌体を除去した上清を限外ろ過濃縮したものを培養上清サンプルとした。熱安定性については、培養上清サンプルを0.1mol/Lリン酸緩衝液(リン酸水素二ナトリウム+リン酸二水素カリウム)(pH7.0)中で50℃、10分保温後の残存活性を測定することで分析した。基質特異性については、培養上清サンプルを用いて、基質となるD-グルコースをマルトース又はキシロースへ変更して同様に測定することで分析した。
グルコースデヒドロゲナーゼ活性の測定方法
 0.1%(w/v)トリトンX-100を含む100mmol/L PIPES-NaOH緩衝液(pH7.0) 2.4mL、1mol/L D-グルコース溶液0.3mL、3 mmol/L PMS溶液0.2mL、及び6.6 mmol/L NTB溶液0.1mLを混合し、37℃で5分間保温後、酵素液0.1mLを添加し、反応を開始した。酵素反応の進行と共に570nmに吸収を持つDiformazanが生成される。1分間あたりの570nmにおける吸光度の増加を測定し、FAD-GDH活性を測定した。
(2)培養上清をサンプルとしたFAD-GDH活性の熱安定性
 熱処理(50℃、10分)後の相対残存活性(熱処理後の酵素活性を、熱処理前の酵素活性を100%としたときの相対値(%)で表したもの)で熱安定性を評価した結果、熱安定性が比較的高い二つのFAD-GDHと熱安定性が非常に高い二つのFAD-GDHが見出された(図1)。後者(Paecilomyces variotii NBRC 4855株 由来FAD-GDH及びPaecilomyces variotii AHU 9417株由来FAD-GDH)では90%以上活性が残存しており、非常に高い安定性が確認できた。尚、比較にはアスペルギルス・オリゼ(A.oryzae) BB-56株のFAD-GDH(国際公開第2007/139013号パンフレットを参照)を用いた。
2.酵素の精製
(1)培養
 P. variotii NBRC4855株をポテトデキストロース寒天培地上で培養したスラント菌体を以下の培地に接種し、30℃、7日間培養した。得られた培養液から菌体を除去し、限外ろ過膜で濃縮、脱塩、分画精製するとともに5mM酢酸酸緩衝液(pH4.5)にバッファー交換した。尚、比較のために、P. variotii IAM12157株も同様に培養することにした。
(培地)
 グルコース: 15.0%(w/v)
 酵母エキス: 3.0%(w/v)
 大豆ペプトン: 6.0%(w/v)
 KH2PO4: 0.3%(w/v)
 K2HPO4: 0.2%(w/v)
 ヒドロキノン(pH6.0): 4mM
(2)精製
 該濃縮液を5mM酢酸緩衝液pH 4.5で平衡化したSP SepharoseTM Fast Flowにアプライし、FAD-GDHをカラムに吸着させた。30mM NaClを含む5mM酢酸緩衝液pH4.5でカラムを洗浄後、60mM NaClを含む5mM pH4.5でFAD-GDHを溶出させ、精製酵素サンプルとした。
3.精製酵素を用いた熱安定性及び基質特異性の評価
(1)熱安定性
 精製酵素サンプルを0.1mol/Lリン酸緩衝液(リン酸水素二ナトリウム+リン酸二水素カリウム)(pH7.0)中で熱処理(50℃、10分保温)し、残存活性を測定した。測定結果を図2に示す。P. variotii NBRC4855株由来FAD-GDHが特に高い熱安定性を有することが判明した。
(2)基質特異性
 上記の「グルコースデヒドロゲナーゼ活性の測定方法」においてD-グルコースをD-マルトース又はD-キシロースへ変更し、D-マルトースに対する反応性とD-キシロースに対する反応性を調べた。D-グルコースへの反応性を100%とした場合の相対活性(%)として、D-マルトースに対する反応性とD-キシロースに対する反応性を評価した。結果を図3に示す。Paecilomyces variotii NBRC4855株由来FAD-GDHはA. oryzae BB-56株のFAD-GDHに比べてキシロースへの反応性が低く、有用であることが判明した。
4.遺伝子クローニング
 各菌株の培養菌体から、カネカ簡易DNA抽出キットversion 2使用してゲノムDNAを取得した。公開されているPaecilomycesのゲノム情報より、A. oryzae由来のFAD-GDHと比較的相同性の高い配列を見出し、その前後配列よりプライマーを設計した。タカラバイオ製PrimeSTAR(登録商標) Max DNA PolymeraseによりPCRを実施して得られた部分断片を組み合わせることで遺伝子の全長配列の情報を得た。また、各遺伝子配列がコードするアミノ酸配列を特定した。各菌株由来のFAD-GDHのアミノ酸配列を図4(P. variotii NBRC 4855株)、図5(P. variotii AHU 9417株)、図6(P. variotii IAM 12157株)、及び図7(P. brunneolus NBRC 7563株)に示す。また、各菌株由来のFAD-GDHの遺伝子配列を図8(P. variotii NBRC 4855株、ゲノムDNA配列)、図9(P. variotii AHU 9417株、ゲノムDNA配列)、図10(P. variotii IAM 12157株、ゲノムDNA配列)、及び図11(P. brunneolus NBRC 7563株、ゲノムDNA配列)、図12(P. variotii NBRC 4855株、cDNA配列)、図13(P. variotii AHU 9417株、cDNA配列)、図14(P. variotii IAM 12157株、cDNA配列)、及び図15(P. brunneolus NBRC 7563株、cDNA配列)に示す。精製酵素のN末端アミノ酸配列情報から、P. variotii NBRC 4855株由来FAD-GDHとP. variotii AHU 9417株由来FAD-GDHの精製酵素のアミノ酸配列はそれぞれ配列番号13の配列と配列番号14の配列であると推定された。
 特に熱安定性が高いP. variotii NBRC 4855株由来FAD-GDHとP. variotii AHU 9417株由来FAD-GDHに関しては、429番目のアミノ酸がFであり、このアミノ酸が熱安定性向上に関与していることが示唆された。
5.組換え発現
 P. variotii NBRC 4855株由来FAD-GDH、P. variotii AHU 9417株由来FAD-GDH及びP. variotii IAM 12157株由来FAD-GDHを各々大腸菌で組換え発現し、性質を確認した。各FAD-GDH遺伝子の5’末端側シグナルペプチドをコードする塩基配列は、メチオニンがN末端に入るように制限酵素NcoIサイトを導入したプライマーを使用してPCR法により除去した。イントロンもPCR法により除去し、大腸菌発現用遺伝子とした。NcoI-HindIIIサイトを用いた制限酵素処理、その後ライゲーションにより、発現ベクター pTrc99Aに、シグナルペプチドとイントロンを除去した遺伝子を導入し、大腸菌DH5αコンピテントセルに形質転換した。形質転換体を、アンピシリン存在下(50~100μg/mL)のLB培地を用い、28℃で培養した。遠心分離によって回収した菌体をビーズショッカーで破砕し、菌体内成分を抽出した。遠心処理後、上清を回収し、0.45μmの膜ろ過後、FAD-GDH活性を確認した。FAD-GDH遺伝子を挿入していないpTrc99Aを形質転換した株をコントロールとして用いた。全ての株でFAD-GDH活性を確認できた。また、基質特異性を確認した結果、図16に示すように、組換え発現した酵素においても、P. variotii NBRC 4855株由来FAD-GDHにおいてD-マルトースとD-キシロースに対する反応性は低く、血糖測定(SMBG用途、CGM用途)に極めて有用であることが判明した。
6.P.  variotii AHU9417株由来GDHのF429置換体の安定性
 P. variotii AHU 9417株由来FAD-GDHの429番目のアミノ酸(F)をL、A、G又はKに置換したFAD-GDHを各々大腸菌で組換え発現し、熱安定性を確認した。酵素サンプルを0.1mol/Lリン酸緩衝液(リン酸水素二ナトリウム+リン酸二水素カリウム)(pH7.0)中で熱処理(45℃、15分保温)し、残存活性を測定した。置換前のFAD-GDH(F429)を100%としたときの相対値で評価した。その結果、429番目のFを他のアミノ酸に置換することで熱安定性が低下した(図17)。即ち、429番目のFが熱安定性向上に関与していることが裏付けられた。
 本発明のグルコースデヒドロゲナーゼは熱安定性に優れ、血糖測定器用のグルコースセンサ用の酵素等として有用である。また、基質特異性の点からも、本発明のグルコースデヒドロゲナーゼは血糖測定器用グルコースセンサへの利用に適する。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (15)

  1.  以下の(a)又は(b)のアミノ酸配列を有し、50℃で10分処理後の相対残存活性が50%以上である、グルコースデヒドロゲナーゼ:
     (a)配列番号1又は配列番号13のアミノ酸配列に90%以上の同一性を示し、且つ配列番号1のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列;
     (b)配列番号2又は配列番号14のアミノ酸配列に90%以上の同一性を示し、且つ配列番号2のアミノ酸配列の429位アミノ酸に相当するアミノ酸はフェニルアラニン(F)であるアミノ酸配列。
  2.  (a)における前記同一性と(b)における前記同一性が95%以上である、請求項1に記載のグルコースデヒドロゲナーゼ。
  3.  (a)における前記同一性と(b)における前記同一性が97%以上である、請求項1に記載のグルコースデヒドロゲナーゼ。
  4.  (a)における前記同一性と(b)における前記同一性が98%以上である、請求項1に記載のグルコースデヒドロゲナーゼ。
  5.  (a)における前記同一性と(b)における前記同一性が99%以上である、請求項1に記載のグルコースデヒドロゲナーゼ。
  6.  配列番号13又は配列番号14のアミノ酸配列からなる、請求項1に記載のグルコースデヒドロゲナーゼ。
  7.  以下の(A)~(C)からなる群より選択されるいずれかのDNAからなるグルコースデヒドロゲナーゼ遺伝子:
     (A)請求項1の(a)又は(b)のアミノ酸配列をコードするDNA;
     (B)配列番号5、配列番号6、配列番号9、配列番号10、配列番号15又は配列番号16の塩基配列からなるDNA;
     (C)配列番号5、配列番号6、配列番号9、配列番号10、配列番号15又は配列番号16の塩基配列と等価な塩基配列を有し、且つグルコースデヒドロゲナーゼ活性を有するタンパク質をコードするDNA。
  8.  請求項7に記載のグルコースデヒドロゲナーゼ遺伝子を含む組換えDNA。
  9.  請求項8に記載の組換えDNAを保有する微生物。
  10.  以下のステップ(1)~(3)を含む、グルコースデヒドロゲナーゼの調製法:
     (1)請求項7に記載のグルコースデヒドロゲナーゼ遺伝子を用意するステップ;
     (2)前記遺伝子を発現させるステップ、及び
     (3)発現産物を回収するステップ。
  11.  請求項1~6のいずれか一項に記載のグルコースデヒドロゲナーゼを用いて試料中のグルコースを測定することを特徴とする、グルコース測定法。
  12.  請求項1~6のいずれか一項に記載のグルコースデヒドロゲナーゼを含む、グルコース測定用試薬。
  13.  請求項12に記載のグルコース測定用試薬を含む、グルコース測定用キット。
  14.  請求項1~6のいずれか一項に記載のグルコースデヒドロゲナーゼを含む、グルコースセンサ。
  15.  請求項1~6のいずれか一項に記載のグルコースデヒドロゲナーゼを含有する酵素剤。
PCT/JP2019/046686 2018-12-05 2019-11-29 グルコースデヒドロゲナーゼ WO2020116330A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559133A JPWO2020116330A1 (ja) 2018-12-05 2019-11-29 グルコースデヒドロゲナーゼ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228583 2018-12-05
JP2018228583 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020116330A1 true WO2020116330A1 (ja) 2020-06-11

Family

ID=70975156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046686 WO2020116330A1 (ja) 2018-12-05 2019-11-29 グルコースデヒドロゲナーゼ

Country Status (2)

Country Link
JP (1) JPWO2020116330A1 (ja)
WO (1) WO2020116330A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045912A1 (ja) * 2012-09-18 2014-03-27 独立行政法人産業技術総合研究所 フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有するタンパク質
WO2015141761A1 (ja) * 2014-03-21 2015-09-24 池田食研株式会社 フラビン結合型グルコース脱水素酵素
JP2016034280A (ja) * 2009-12-05 2016-03-17 天野エンザイム株式会社 変異酵素及びその用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034280A (ja) * 2009-12-05 2016-03-17 天野エンザイム株式会社 変異酵素及びその用途
WO2014045912A1 (ja) * 2012-09-18 2014-03-27 独立行政法人産業技術総合研究所 フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有するタンパク質
WO2015141761A1 (ja) * 2014-03-21 2015-09-24 池田食研株式会社 フラビン結合型グルコース脱水素酵素

Also Published As

Publication number Publication date
JPWO2020116330A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6059784B2 (ja) 変異酵素及びその用途
JP5889800B2 (ja) 大腸菌形質転換体、それを用いたフラビン結合型グルコースデヒドロゲナーゼの製造方法、および、変異型フラビン結合型グルコースデヒドロゲナーゼ
US9506042B2 (en) Glucose dehydrogenase
JP6493212B2 (ja) 新規なグルコースデヒドロゲナーゼ
JP6311270B2 (ja) 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP6695802B2 (ja) 変異酵素及びその用途
JP6198997B1 (ja) 新規グルコースデヒドロゲナーゼ
WO2020116330A1 (ja) グルコースデヒドロゲナーゼ
WO2019230614A1 (ja) グルコースデヒドロゲナーゼの改良
JP7044709B2 (ja) グルコースデヒドロゲナーゼ
JP6652756B2 (ja) フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有する変異型タンパク質
JP6127496B2 (ja) ジアホラーゼ
JP6342174B2 (ja) 新規なグルコースデヒドロゲナーゼ
WO2021182508A1 (ja) グルコースデヒドロゲナーゼ
JP6390776B2 (ja) 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
WO2021125332A1 (ja) 新規グルコースデヒドロゲナーゼ
JP6036826B2 (ja) Nad依存型グルコースデヒドロゲナーゼおよびその製造方法
JP2014097050A (ja) ジアホラーゼ
JP2017112860A (ja) 新規グルコースデヒドロゲナーゼ
JP2017112858A (ja) 新規グルコースデヒドロゲナーゼ
JP2017221147A (ja) 新規グルコースデヒドロゲナーゼ
JP2014180223A (ja) アルドヘキソースデヒドロゲナーゼ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892650

Country of ref document: EP

Kind code of ref document: A1