JP5169991B2 - 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ - Google Patents
改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ Download PDFInfo
- Publication number
- JP5169991B2 JP5169991B2 JP2009126142A JP2009126142A JP5169991B2 JP 5169991 B2 JP5169991 B2 JP 5169991B2 JP 2009126142 A JP2009126142 A JP 2009126142A JP 2009126142 A JP2009126142 A JP 2009126142A JP 5169991 B2 JP5169991 B2 JP 5169991B2
- Authority
- JP
- Japan
- Prior art keywords
- paogdh
- seq
- fadgdh
- serine
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
[項1]
改変することにより熱安定性が向上した改変型FADGDH。
[項2]
真核生物由来である項1記載の改変型FADGDH。
[項3]
糸状菌由来である項1記載のFADGDH。
[項4]
Aspergillus属菌由来である項1記載のFADGDH。
[項5]
野生型のフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)よりも熱安定性が向上した項1〜4記載の改変型FADGDH。
[項6]
液状において、50℃、15分間の熱処理後の活性残存率が20%以上であることを特徴とする項1〜4記載の改変型FADGDH。
[項7]
液状において、50℃、15分間の熱処理後の活性残存率が35%以上であることを特徴とする項1〜4記載の改変型FADGDH。
[項8]
液状において、50℃、15分間の熱処理後の活性残存率が40%以上であることを特徴とする項1〜4記載の改変型FADGDH。
[項9]
50℃、15分間の熱処理後の活性残存率が70%以上であることを特徴とする項1〜4記載の改変型FADGDH。
[項10]
50℃、15分間の熱処理後の活性残存率が80%以上であることを特徴とする項1〜4記載の改変型FADGDH。
[項11]
配列表の配列番号2または配列番号46に記載されたアミノ酸配列を有するFADGDHにおいて、少なくとも1つのアミノ酸が置換、欠失、挿入もしくは付加された一次構造を有する改変型FADGDH。
[項12]
配列表の配列番号2において、120位、160位、162位、163位、164位、165位、166位、167位、169位、170位、171位、172位、180位、329位、331位、369位、471位及び551位、からなる群のうち少なくとも1つの位置、または、配列表の配列番号46において116位、159位、161位、164位、166位、167位、175位、325位、327位、365位、547位の位置、または、他の種における上記と同等の位置においてアミノ酸置換を有する熱安定性が向上した改変型FADGDH。
[項13]
配列表の配列番号2において少なくとも、アミノ酸置換が、K120E、G160E、G160I、G160P、G160S、G160Q、S162A、S162C、S162D、S162E、S162F、S162H、S162L、S162P、G163D、G163K、G163L、G163R、S164F、S164T、S164Y、L165A、L165I、L165N、L165P、L165V、A166C、A166I、A166K、A166L、A166M、A166P、A166S、167A、S167P、S167R、S167V、N169K、N169P、N169Y、N169W、L170C、L170F、S171I、S171K、S171M、S171Q、S171V、V172A、V172C、V172E、V172I、V172M、V172S、V172W、V172Y、A180G、V329Q、A331C、A331D、A331I、A331K、A331L、A331M、Q331V、K369R、K471R、V551A、V551C、V551T、V551Q、V551S、V551Y、(G160E+S167P)、(G160I+S167P)、(G160S+S167P)、(G160Q+S167P)、(S162A+S167P)、(S162C+S167P)、(S162D+S167P)、(S162D+S167P)、(S162E+S167P)、(S162F+S167P)、(S162H+S167P)、(S162L+S167P)、(G163D+S167P)、(S164F+S167P)、(S164T+S167P)、(S164Y+S167P)、(L165A+S167P)、(L165I+S167P)、(L165P+S171K)、(L165P+V551C)、(L165V+V551C)、(A166C+S167P)、( A166I+S167P)、(A166K+S167P)、(A166K+S167P) 、(A166M+S167P)、 (A166P+S167P)、(A166S+S167P)、(S167P+N169K)、(S167P+N169P)、(S167P+N169Y)、(S167P+N169W)、(S167P+L170C)、(S167P+L170F)、(S167P+S171I)、(S167P+S171K)、(S167P+S171M)、(S167P+S171Q)、(S167P+S171V)、(S167P+V172A)、(S167P+V172C)、(S167P+V172E)、(S167P+V172I)、(S167P+V172M)、(S167P+V172S)、(S167P+V172T)、(S167P+V172W)、(S167P+V172Y)、(S167P+V329Q)、(S167P+A331C)、(S167P+A331D)、(S167P+A331I)、(S167P+A331K)、(S167P+A331L)、(S167P+A331M)、(S167P+A331V)、(G163K+V551C)、(G163R+V551C)のうちいずれか、または、配列表の配列番号46において少なくとも、アミノ酸置換が、K116D、K116G、K116L、K116F、K116Q、Q159A、Q159K、Q159N、Q159P、Q159V、Q159L、E161C、N164Y、N164V、N164C、T166F、T166Y、T166W、T167L、T167V、T167S、G175K、S325A、S325G、S325K、S325Q、S325R、S325T、S325V、S325Y、S327E、Q365R、V547S、V547C、V547A、V547Qのうちいずれか、または、他の種における上記と同等の位置におけるアミノ酸置換を有する熱安定性が向上した改変型FADGDH。
[項14]
改変することによりpH安定性が向上した項1〜14記載の改変型FADGDH。
[項15]
pH4.5〜pH6.5において、25℃、16時間処理後の残存活性が80%以上であることを特徴とする項1〜15記載の改変型FAD−GDH。
[項16]
pH4.5〜pH6.5において、25℃、16時間処理後の残存活性が90%以上であることを特徴とする項1〜15記載の改変型FAD−GDH。
[項17]
配列番号2において、163位、167位、551位、からなる群のうち少なくとも1つの位置、または他の種における上記と同等の位置においてアミノ酸置換を有するpH安定性が向上した改変体FADGDH。
[項18]
配列表の配列番号2において少なくとも、アミノ酸置換がS167P、V551C、(G163K+V551C)、(G163R+V551C)のうちいずれか、または、他の種における上記と同様の配置における位置におけるアミノ酸置換を有するpH安定性が向上した改変型FADGDH。
[項19]
請求項1〜18のいずれかに記載の改変型FADGDHをコードする遺伝子。
[項20]
請求項19に記載の遺伝子を含むベクター。
[項21]
請求項20に記載のベクターで形質転換された形質転換体。
[項22]
請求項21に記載の形質転換体を培養することを特徴とする改変型FADGDHの製造方法。
[項23]
請求項1〜18のいずれかに記載の改変型FADGDHを含むグルコースアッセイキット。
[項24]
請求項1〜18のいずれかに記載の改変型FADGDHを含むグルコースセンサー。
[項25]
請求項1〜18のいずれかに記載の改変型FADGDHを含むグルコース測定法。
[項26]
野生型のアスペルギルス・オリゼ由来のフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)よりも基質特異性が向上した改変型FADGDHであって、配列番号2のアミノ酸配列における53位、もしくは、それと同等の位置においてアミノ酸置換を有する、熱安定性が向上した改変型FADGDH。
[項27]
キシロースに対する作用性がグルコースに対する作用性の5.0%以下である項26に記載の改変型FADGDH。
[項28]
アミノ酸置換を、配列番号2における、G53H、G53N、G53K、G53M、G53T、G53V及びG53Cからなる群のうちいずれか、もしくは、それと同等の位置に有する項26に記載の改変型FADGDH。
[項29]
配列番号2のアミノ酸配列における163位、167位および551位からなる群のうちいずれか1つ以上の位置、もしくは、それと同等の位置においてアミノ酸置換を有する、項26に記載の改変型FADGDH。
[項30]
配列番号2のアミノ酸配列における(G53H+S167P)、(G53N+S167P)、(G53H+S167P)および(G53N+G163R+V551C)からなる群のうちいずれか、もしくは、それと同等の位置においてアミノ酸置換を有する、項29に記載の改変型FADGDH。
[項31]
項26〜30のいずれかに記載の改変型FADGDHをコードする遺伝子であり、さらに、該遺伝子を含むベクターであり、さらに、該ベクターで形質転換された形質転換体であり、さらに、該形質転換体を培養することを特徴とする改変型FADGDHの製造方法。
[項32]
項26〜30のいずれかに記載の改変型FADGDHを含むグルコースアッセイキット。[項33]
項26〜30のいずれかに記載の改変型FADGDHを含むグルコース測定方法。
[項34]
野生型のフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)よりも熱安定性が向上した改変型FADGDHであって、好ましくは真核生物由来、さらに好ましくは糸状菌由来、さらに好ましくはAspergillus属菌由来のFADGDH。ここで、FADGDHは、50℃、15分間の熱処理後の活性残存率が20%以上であることが好ましく、さらには40%以上であることが好ましく、さらには80%以上であることが好ましい。
[項35]
配列番号2に記載されたアミノ酸配列を有するFADGDHにおいて、少なくとも1つのアミノ酸が置換、欠失、挿入もしくは付加された一次構造を有する改変型FADGDHであり、例えば、配列番号2において、120位、160位、162位、163位、164位、165位、166位、167位、170位、171位、172位、180位、329位、331位、369位、471位及び551位、からなる群のうち少なくとも1つの位置、または、他の種における上記と同等の位置においてアミノ酸置換を有する熱安定性が向上した改変型FADGDH。ここで、162位、163位、167位及び551位の少なくとも1つの位置においてアミノ酸置換を有する改変型FADGDHがさらに好ましいものとして例示できる。
[項36]
野生型のアスペルギルス・オリゼ由来のフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)よりも熱安定性が向上した改変型FADGDHであって、配列番号2のアミノ酸配列における163位および/または551位、もしくは、それと同等の位置においてアミノ酸置換を有する、熱安定性が向上した改変型FADGDH。
[項37]
配列番号2のアミノ酸配列における、G163D、G163K、G163L、G163R、V551A、V551C、V551T、V551Q、V551S、V551Y、(G163D+S167P)、(L165P+V551C)、(L165V+V551C)、(G163K+V551C)、(G163R+V551C)からなる群のうちいずれか、もしくは、それと同等の位置において同等のアミノ酸置換を有する、前パラグラフ記載の改変型FADGDH。
[項38]
配列番号2のアミノ酸配列における163位および/または551位に加えて、さらに、120位、160位、162位、164位、165位、166位、167位、170位、171位、172位、180位、329位、331位、369位および471位からなる群のうちいずれか1つ以上の位置、もしくは、それと同等の位置においてアミノ酸置換を有する、改変型FADGDH。
[項39]
野生型のフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)よりもpH安定性が向上した改変型FADGDHであって、好ましくは真核生物由来、さらに好ましくは糸状菌由来、さらに好ましくはAspergillus属菌由来のFADGDH
[項40]。
配列番号2のアミノ酸配列における163位および/または551位に加えて、さらに、167位、もしくは、それと同等の位置においてアミノ酸置換を有する、pH安定性が向上した改変型FADGDHである。
[項41]
配列番号2のアミノ酸配列におけるS167P、V551C、(G163K+V551C)、(G163R+V551C) からなる群のうちいずれか、もしくは、それと同等の位置において同等のアミノ酸置換を有する、前パラグラフ記載の改変型FADGDHである。
[項42]
pH4.5〜pH6.5において、25℃、16時間処理後の残存活性が80%以上、好ましくは90%以上である項34〜41のいずれかのFADGDH。
[項43]
配列番号2において、163位、167位、551位、からなる群のうち少なくとも1つの位置、または他の種における上記と同等の位置においてアミノ酸置換を有するpH安定性が向上した改変体FADGDH。
[項44]
配列番号2において少なくとも、アミノ酸置換がS167P、V551C、(G163K+V551C)、(G163R+V551C)のうちいずれか、または、他の種における上記と同様の配置における位置におけるアミノ酸置換を有するpH安定性が向上した改変型FADGDH。
[項45]
項34〜44のいずれかに記載の改変型FADGDHをコードする遺伝子、該遺伝子を含むベクター、該ベクターで形質転換された形質転換体、該形質転換体を培養することを特徴とする改変型FADGDHの製造方法。
[項46]
項34〜44のいずれかに記載の改変型FADGDHを含むグルコースアッセイキットまたはグルコースセンサー。
[項47]
項34〜44のいずれかに記載の改変型FADGDHを含むグルコース測定法である。
[アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼ(以下AOGDHとも記載)遺伝子の推定]
[1]アスペルギルス・オリゼ由来GDHの取得
アスペルギルス・オリゼTI株のL乾燥菌株をポテトデキストロース寒天培地(Difco製)に植菌し25℃でインキュベートすることにより復元した。復元させたプレート上の菌糸を寒天ごと回収してフィルター滅菌水に懸濁した。2基の10L容ジャーファーメンター中に生産培地(1%麦芽エキス、1.5%大豆ペプチド、0.1%MgSO4・7水和物、2%グルコース、pH6.5)6Lを調製し、120℃15分オートクレーブ滅菌して放冷した後、上記の菌糸懸濁液を接種し、30℃、通気攪拌培養を行った。培養開始から64時間後に培養を停止し、菌糸体を濾過により除去してGDH活性を含む濾過液を回収した。回収した上清を限外ろ過膜(分子量10,000カット)により低分子物質を除去した。次いで、硫酸アンモニウムを60%飽和度となるように添加、溶解し、硫安分画を行い、遠心機によりGDHを含む上清画分を回収後、Octyl−Sepharoseカラムに吸着させ、硫酸アンモニウム飽和度60%〜0%でグラジエント溶出してGDH活性のある画分を回収した。得られたGDH溶液を、G−25−Sepharoseカラムを用いて脱塩を行った後、60%飽和度の硫酸アンモニウムを添加、溶解し、これをPhenyl−Sepharoseカラムに吸着させ、硫酸アンモニウム飽和度60%〜0%でグラジエント溶出してGDH活性のある画分を回収した。更にこれを50℃で45分加温した後、遠心分離を行って上清を得た。以上の工程を経て得られた溶液を精製GDH標品(AOGDH)とした。尚、上記精製過程においては、緩衝液として20mM リン酸カリウム緩衝液(pH6.5)を使用した。さらに、AOGDHの部分アミノ酸配列を決定するため、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの各種手段により精製を試みたものの、部分アミノ酸配列決定に供することのできる高純度の精製標品を得ることはできなかった。
ペニシリウム属糸状菌由来のGDH生産菌としてPenicillium lilacinoechinulatum NBRC6231を用い、上記アスペルギルス・オリゼTI株と同用の手順に従って、培養および精製を行い、SDS電気泳動でほぼ均一な精製標品を取得した。
[cDNAの作製]
Penicillium lilacinoechinulatum NBRC6231について上記方法に従い(ただしジャーファーメンターでの培養時間は24時間)培養を実施し、濾紙濾過により菌糸体を回収した。得られた菌糸は直ちに液体窒素中に入れて凍結させ、クールミル(東洋紡社製)を用いて菌糸を粉砕した。粉砕菌体より直ちにセパゾールRNA I(ナカライテスク社製)を用いて本キットのプロトコールに従ってトータルRNAを抽出した。得られたトータルRNAからはOrigotex−dt30(第一化学薬品社製)をもちいてmRNAを精製し、これをテンプレートにReverTra−Plus−TM(東洋紡社製)を用いてRT−PCRを行った。得られた産物はアガロース電気泳動を行い、鎖長0.5〜4.0kbに相当する部分を切り出した。切り出したゲル断片からMagExtractor−PCR&Gel Clean Up−(東洋紡社製)を用いてcDNAを抽出・精製してcDNAサンプルとした。
[GDH遺伝子部分配列の決定]
上記で精製したNBRC6231由来GDHを0.1%SDS、10%グリセロールを含有するTris−HClバッファー(pH6.8)に溶解し、ここにGlu特異的V8エンドプロテアーゼを終濃度10μg/mlとなるよう添加し37℃16時間インキュベートすることで部分分解を行った。このサンプルをアクリルアミド濃度16%のゲルを用いて電気泳動してペプチドを分離した。このゲル中に存在するペプチド分子を、ブロット用バッファー(1.4%グリシン、0.3%トリス、20%エタノール)を用いてセミドライ法によりPVDF膜に転写した。PVDF膜上に転写したペプチドはCBB染色キット(PIERCE社製GelCode Blue Stain Reagent)を用いて染色し、可視化されたペプチド断片のバンド部分2箇所を切り取ってペプチドシーケンサーにより内部アミノ酸配列の解析を行った。得られたアミノ酸配列はIGGVVDTSLKVYGT(配列番号37)およびWGGGTKQTVRAGKALGGTST(配列番号38)であった。この配列を元にミックス塩基を含有するディジェネレートプライマーを作製し、NBRC6231由来cDNAをテンプレートにPCRを実施したところ増幅産物が得られ、アガロースゲル電気泳動により確認したところ1.4kb程度のシングルバンドであった。このバンドを切り出して東洋紡製MagExtractor−PCR&Gel Clean Up−を用いて抽出・精製した。精製DNA断片はTArget Clone −Plus−(東洋紡社製)によりTAクローニングし、得られたベクターで大腸菌JM109コンピテントセル(東洋紡社製)をヒートショックにより形質転換した。形質転換クローンのうち青白判定でインサート挿入が確認されたコロニーについてMagExtractor−Plasmid−(東洋紡社製)を用いてプラスミドをミニプレップ抽出・精製し、プラスミド配列特異的プライマーを用いてインサートの塩基配列を決定した(1356bp)。
[AOGDH遺伝子の推定]
決定した塩基配列を元に「NCBI BLAST」のホームページ(http://www.ncbi.nlm.nih.gov/BLAST/)からホモロジー検索を実施し、AOGDH遺伝子を推定した。検索により推定したAOGDHとP.lilacinoechinulatum NBRC6231由来GDH部分配列とのアミノ酸レベルでの相同性は49%であった。
[アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼ遺伝子の取得、大腸菌への導入]
AOGDH遺伝子を取得するために、アスペルギルス・オリゼTI株の菌体よりmRNAを調製し、cDNAを合成した。配列番号39、40に示す2種類のオリゴDNAを合成し、調製したcDNAをテンプレートとしてKOD Plus DNAポリメラーゼ(東洋紡社製)を用いてAOGDH遺伝子増幅した。DNA断片を制限酵素NdeI、BamHIで処理し、pBluescript(LacZの翻訳開始コドンatgに合わせNdeI認識配列のatgを合わせる形でNdeIサイトを導入したもの)NdeI−BamHIサイトに挿入し、組換えプラスミドを構築した。この組換えプラスミドを用いて、エシェリヒア・コリーDH5α(東洋紡社製)を形質転換した。形質転換体より、常法に従いプラスミドを抽出し、AOGDH遺伝子の塩基配列の決定を行った(配列番号41)。この結果、cDNA配列から推定されるアミノ酸残基は593アミノ酸(配列番号42)からなることが明らかとなった。データベース予想されるGDHは588アミノ酸でありTI株 GDHとアミノ酸残基数が異なることが示唆された。なお、該遺伝子については、TI株ゲノムDNAを用いて配列を確認し、遺伝子隣接領域についてもRACE法を用いて確認を行った。また、PCR法を用いて、データベースに基づくDNA配列をもつ組換えプラスミドを構築し、同様に形質転換体を取得した。これら形質転換体を100μg/mlのアンピシリンを含む液体培地(Terrific broth)200ml中で、30℃、16時間振とう培養を行った。菌体破砕液についてGDH活性を確認したところ、データベースより推定したGDHの配列を有する形質転換体ではGDH活性が確認できなかったが、TI株由来GDHの配列を有する形質転換体については菌体内に培養液1ml当たり8.0UのGDH活性が得られた。尚、実施例1で実施したアスペルギルス・オリゼTI株の培養上清のGDH活性は、0.2U/mlであった。
[アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼ(以下AOGDHと示す)遺伝子の大腸菌への導入]
シグナルペプチド切断後のFAD−GDHをmFAD−GDHとした場合、mFAD−GDHのN末端にMのみ付加してmFAD−GDHのN末端が1アミノ酸分のびた形態となっているものをS2と表現した。
cDNAの調製
アスペルギルス・テレウス NBRC33026(独立行政法人製品評価技術基盤機構より購入)L乾標本をポテトデキストロース寒天培地(Difco製)に植菌し25℃でインキュベートすることにより復元させた。500ml 坂口フラスコに1.5%大豆ペプチド、2%グルコース、1%マルトエキスpH6.5を50ml調製し、復元させたプレート上の菌糸を寒天ごと回収して植菌し、30℃,24時間振とう培養を行い、菌体を回収した。得られた菌体は直ちに液体窒素中に入れて凍結させ、東洋紡製クールミルを用いて、粉砕した。粉砕菌体より直ちにナカライテスク社製セパゾールRNA Iを用いて本キットのプロトコールに従ってトータルRNAを抽出し、これをテンプレートに東洋紡製ReverTra−Plus−TMを用いてRT−PCRを行いcDNAを調製した。
GDH遺伝子の配列決定
我々はAspergillus oryzae、Penicillium lilacinoechinulatum 、およびPenicillium italicum由来 GDH遺伝子のクローニングに成功し、その塩基配列情報を取得している。アスペルギルス・テレウスよりGDH遺伝子をクローニングするために、上記3種のGDHの推定アミノ酸配列をアラインさせ、相同性の高い領域の配列をもとに、ディジェネレートプライマーを作製した。<実験例4>で作製したゲノムDNAをテンプレートにPCRを実施したところ、増幅産物が認められた。増幅産物をサブクローニングし、塩基配列を決定した。決定したGDH部分配列を元に、該配列部分の5’側および3’側隣接領域をRACE法により決定した。決定した遺伝子領域の開始コドンから終始コドンまでの配列を配列番号45に、また、本配列から推定されるアミノ酸配列を配列番号46に示す。なお、特許文献1に示されているアスペルギルス・テレウス FERM BP−08578由来補酵素結合型グルコース脱水素酵素とは、アミノ酸レベルで約98.5%と非常に高い相同性をもち、本質的に同等であると考えられる。「相同性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのアミノ酸配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮しうるものである)における、オーバーラップする全アミノ酸に対する、同一アミノ酸残基の割合(%)を意味する。このようなアルゴリズムの例としては、非特許文献1〜4に記載のものが挙げられるが、これらに限定されない。
GDH組換えプラスミドおよび組換え体の作製
配列番号45のDNA配列がコードするアミノ酸配列について、SignalP 3.0 Serverを利用して、シグナルペプチド予測を行った。この結果を元に、シグナルペプチドを除去すべく、N末端配列25コドンが削除され、開始コドン(ATG)を付加した配列増幅が増幅されるようにPCRプライマーを作製した(配列番号47、48)。これらのプライマーを用いて、NBRC33026 cDNAをテンプレートとしてKOD Plus DNAポリメラーゼ(東洋紡社製)により遺伝子増幅を実施した。増幅断片は制限酵素NdeI、BamHIで処理し、pBluescript(LacZの翻訳開始コドンATGに合わせNdeI認識配列のATGを合わせる形でNdeIサイトを導入したもの)のNdeI−BamHIサイト間に挿入し、組換えプラスミドを構築した(pAtGDH−s2−7)。この組換えプラスミドを用いて、エシェリヒア・コリーDH5α(東洋紡社製)を形質転換し、アスペルギルス・テレウス由来 GDH 組換え体を取得した。該形質転換体を100μg/mlのアンピシリンを含む液体培地(Terrific broth)200ml中で、30℃、16時間振とう培養を行った。菌体破砕液についてGDH活性を確認したところ、菌体内に培養液1ml当たり1.0UのGDH活性が得られた。
る上記で示されるいずれか位置においてアミノ酸置換を行うことにより得られる。
列において、53位、163位、167位、位及び551位の少なくとも1つの位置においてアミノ酸置換を有する改変型FADGDHが例示される。
配列番号2のアミノ酸配列において、アミノ酸置換がG53H、G53N、G53K、G53M、G53T、G53V、G53C、G163R、S167P、V551Cからなる群から選ばれる改変型FADGDH。
本発明はまた、本発明に従う改変型FADGDHを含むグルコースアッセイキットを特徴とする。本発明のグルコースアッセイキットは、本発明に従う改変型FADGDHを少なくとも1回のアッセイに十分な量で含む。典型的には、キットは、本発明の改変型FADGDHに加えて、アッセイに必要な緩衝液、メディエーター、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明に従う改変型FADGDHは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。
本発明はまた、本発明に従う改変型FADGDHを用いるグルコースセンサーを特徴とする。電極としては、カーボン電極、金電極、白金電極などを用い、この電極上に本発明の酵素を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどがあり、あるいはフェロセンあるいはその誘導体に代表される電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いて本発明の改変型FADGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。
[試験例]
<試薬>
50mM PIPES緩衝液pH6.5(0.1%TritonX−100を含む)
163mM PMS溶液
6.8mM 2,6−ジクロロフェノールインドフェノール(DCPIP)溶液
1M D−グルコース溶液
上記PIPES緩衝液15.6ml、DCPIP溶液0.2ml、D―グルコース溶液4mlを混合して反応試薬とする。
<測定条件>
反応試薬2.9mlを37℃で5分間予備加温する。GDH溶液0.1mlを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、600nmの吸光度変化を5分記録し、直線部分から1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検はGDH溶液の代わりにGDHを溶解する溶媒を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってGDH活性を求める。ここでGDH活性における1単位(U)とは、濃度200mMのD−グルコース存在下で1分間に1マイクロモルのDCPIPを還元する酵素量として定義している。
活性(U/ml)=
{−(ΔODTEST−ΔODBLANK)×3.0×希釈倍率}/{16.3×0.1×1.0}
なお、式中の3.0は反応試薬+酵素溶液の液量(ml)、16.3は本活性測定条件におけるミリモル分子吸光係数(cm2/マイクロモル)、0.1は酵素溶液の液量(ml)、1.0はセルの光路長(cm)を示す。
検討は、先述の試験例のFADGDH活性の測定方法に準じて行った。
まず、アスペルギルス・オリゼまたはアスペルギルス・テレウス由来改変型FADGDHを約2U/mlになるように酵素希釈液(50mM リン酸カリウム緩衝液(pH5.5)、0.1% TritonX−100)にて溶解したものを50ml用意した。この酵素溶液を1.0mlとしたものを2本用意した。コントロールには、夫々の改変型FADGDH(各種化合物の代わりに蒸留水0.1mlを添加したものを2本用意した。
野生型FADGDHをコードする遺伝子(配列番号1)を含む組み換えプラスミドpAOGDH−S2で市販の大腸菌コンピテントセル(E.coli DH5a;TOYOBO社製)を形質転換した後、形質転換体をアンピシリン(50mg/ml;ナカライテスク社製)を含んだ液体培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl;pH7.3)を摂取し、30℃で一晩振とう培養して得られた菌体から、常法によりプラスミドを調整した。該プラスミドを鋳型として用いDiversifyTMPCR Ramdom Mutagenesis Kit(Clontech社製)を用いた変異処理をそのプロトコールに従って実施し、グルコースデヒドロゲナーゼの生産能を有する、改変型FADGDH変異プラスミドを作製し、上記方法により同様にプラスミドを調製した。
実施例2で調整したプラスミドで市販の大腸菌コンピテントセル(E.coli DH5a;TOYOBO社製)を形質転換した後、形質転換体をアンピシリンを含んだ寒天培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl、1.5%寒天;pH7.3)に塗布した後、30℃で一晩振とう培養して得られたコロニーをさらにアンピシリン(100μg/ml)を含んだLB液体培地に摂取し、30℃で一晩振とう培養した。その培養液の一部から遠心分離によって得られた菌体を回収し、50mMのリン酸緩衝液(pH7.0)中でガラスビーズで該菌体を破砕することにより粗酵素液を調製した。
実施例3の粗酵素液を用いて、上述した活性測定法によりグルコースデヒドロゲナーゼ活性を測定した。また、同粗酵素液を50℃で15分間加熱処理した後、グルコースデヒドロゲナーゼ活性を測定し、3種の熱安定性の向上した変異体を取得した。これら3種の改変体をコードするプラスミドをpAOGDH−M1、pAOGDH−M2、pAOGDH−M3、pAOGDH−M4と命名した。
pAOGDH−M10のプラスミドを鋳型として、160番目のグリシンを複数種のアミノ酸に置換するよう設計した配列番号20の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、161番目のトリプトファンを複数種のアミノ酸に置換するよう設計した配列番号21の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、162番目のセリンを複数種のアミノ酸に置換するよう設計した配列番号22の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、163番目のグリシンを複数種のアミノ酸に置換するよう設計した配列番号23の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、164番目のセリンを複数種のアミノ酸に置換するよう設計した配列番号24の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、165番目のロイシンを複数種のアミノ酸に置換するよう設計した配列番号25の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、166番目のアラニンを複数種のアミノ酸に置換するよう設計した配列番号26の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、168番目のグリシンを複数種のアミノ酸に置換するよう設計した配列番号27の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、169番目のアスパラギンを複数種のアミノ酸に置換するよう設計した配列番号28の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、170番目のロイシンを複数種のアミノ酸に置換するよう設計した配列番号29の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、171番目のセリンを複数種のアミノ酸に置換するよう設計した配列番号30の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、172番目のバリンを複数種のアミノ酸に置換するよう設計した配列番号31の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、329番目のバリンを複数種のアミノ酸に置換するよう設計した配列番号32の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、330番目のロイシンを複数種のアミノ酸に置換するよう設計した配列番号33の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチド、331番目のアラニンを複数種のアミノ酸に置換するよう設計した配列番号34の合成オリゴヌクレオチド、551番目のバリンを複数種のアミノ酸に置換するよう設計した配列番号35の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチドを基に、QuickChangeTMSite−Directed Mutagenesis Kit(STRATAGENE製)を用いて、そのプロトコールに従って、変異操作を行い、 グルコースデヒドロゲナーゼの生産能を有する、改変型FADGDH変異プラスミドを作製し、上記方法により同様にプラスミドを調製した。
改変型FADGDH生産菌として、pAOGDH−M10、pAOGDH−M15、pAOGDH−M75、pAOGDH−M76で市販の大腸菌コンピテントセル(E.coli DH5a;TOYOBO社製)を形質転換した。得られた形質転換体を10L容ジャーファーメンターを用いて、TB培地に培養温度25℃で24時間培養した。培養菌体を遠心分離で集めた後、50mMのリン酸バッファー(pH6.5)に懸濁し、除核酸処理後、遠心分離して上清を得た。これに硫酸アンモニウムを飽和量溶解させて目的タンパク質を沈殿させ、遠心分離で集めた沈殿を50mMのリン酸バッファー(pH6.5)に再溶解させた。そしてG−25セファロースカラムによるゲルろ過、Octyl−セファロースカラムおよびPhenyl−セファロースカラムによる疎水クロマト(溶出条件は共に25%飽和〜0%の硫酸アンモニウム濃度勾配をかけてピークフラクションを抽出)を実施し、さらにG−25セファロースカラムによるゲルろ過で硫酸アンモニウムを除去し改変型FADGDHサンプルとした。表4に示すように精製標品においても熱安定性が向上していることが確認された。
実施例6で得た精製標品についてpH安定性を知るために、pH3.5〜8.5の範囲の緩衝液(pH3.5〜6.3:0.1M 酢酸バッファー、pH6.3〜7.3、0.1M PIPESバッファー、pH7.3〜8.5:0.1M トリス塩酸バッファー、pH6.0〜7.7:0.1M リン酸バッファー)を調製し、これらを用いて各GDHを酵素濃度1U/mlとなるよう希釈した。希釈液を25℃で16時間インキュベートしてインキュベート前後の活性を比較した。インキュベート前の活性に対するインキュベート後の活性残存率を示したグラフを図1に示す。図1に示すようにpH安定域の幅が広がっていることが確認された。
我々はアスペルギルス・オリゼ由来 GDH遺伝子のクローニングに成功し、その塩基配列情報を取得している。また、熱安定性を指標としたスクリーニングを実施し、熱安定性向上に効果のあるアミノ酸部位を同定している。そこで、アスペルギルス・オリゼ由来GDHの推定アミノ酸配列とアスペルギルス・テレウス由来GDHの推定アミノ酸配列をアラインさせ、アスペルギルス・テレウス由来GDHにおいて、アスペルギルス・オリゼFADGDHで熱安定性向上に効果のあった部位に対応するアミノ残基を同定した。
得られたコロニーをさらにアンピシリン(100μg/ml)を含んだLB液体培地に摂取し、30℃で一晩振とう培養した。その培養液の一部から遠心分離によって得られた菌体を回収し、50mMのリン酸緩衝液(pH7.0)中でガラスビーズで該菌体を破砕することにより粗酵素液を調製した。
実施例9の粗酵素液を用いて、上述した活性測定法によりグルコースデヒドロゲナーゼ活性を測定した。また、同粗酵素液を50℃で15分間加熱処理した後、グルコースデヒドロゲナーゼ活性を測定した。
値を測定し、グルコースを基質とした場合の測定値を100とした場合の相対値を求めた。
野生型FADGDHをコードする遺伝子(配列番号1)を含む組み換えプラスミドpAOGDH−S2で市販の大腸菌コンピテントセル(E.coli DH5・;TOYOBO社製)を形質転換した後、形質転換体をアンピシリン(50・g/ml;ナカライテスク社製)を含んだ液体培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl;pH7.3)を摂取し、30℃で一晩振とう培養して得られた菌体から、常法によりプラスミドを調整した。該プラスミドを鋳型として53番目のグリシンを複数種のアミノ酸に置換するよう設計した配列番号49の合成オリゴヌクレオチドとそれに相補的な合成オリゴヌクレオチドを基に、QuickChangeTMSite−Directed Mutagenesis Kit(STRATAGENE製)を用いて、そのプロトコールに従って、変異操作を行い、グルコースデヒドロゲナーゼの生産能を有する、改変型FADGDH変異プラスミドを作製し、上記方法により同様にプラスミドを調製した。
実施例2で調整したプラスミドpAOGDH−S2で市販の大腸菌コンピテントセル(E.coli DH5・;TOYOBO社製)を形質転換した後、形質転換体をアンピシリンを含んだ寒天培地(1%ポリペプトン、0.5%酵母エキス、0.5%NaCl、1.5%寒天;pH7.3)に塗布した後、30℃で一晩振とう培養して得られたコロニーをさらにアンピシリン(100μg/ml)を含んだLB液体培地に摂取し、30℃で一晩振とう培養した。その培養液の一部から遠心分離によって得られた菌体を回収し、50mMのリン酸緩衝液(pH7.0)中でガラスビーズで該菌体を破砕することにより粗酵素液を調製した。
実施例3の粗酵素液を用いて、上述した活性測定法によりグルコースならびにキシロースを基質として活性を測定したところ、7種の基質特異性が向上した変異体を取得した。これら7種の改変体をコードするプラスミドをpAOGDH−M1、pAOGDH−M2、pAOGDH−M3、pAOGDH−M4、pAOGDH−M5、pAOGDH−M6、pAOGDH−M7と命名した。
実施例13で調整したプラスミドpAOGDH−M2を鋳型として、164番目のセリンをプロリンに置換するよう設計した配列番号50の合成オリゴヌクレオチドと、それに相補的な合成オリゴヌクレオチド、pAOGDH−M5を鋳型として、164番目のセリンをプロリンに置換するよう設計した配列番号50の合成オリゴヌクレオチドと、それに相補的な合成オリゴヌクレオチド、pAOGDH−M2を鋳型として、163番目のグリシンをアルギニンに置換するよう設計した配列番号51の合成オリゴヌクレオチドと、それに相補的な合成オリゴヌクレオチド、さらに551番目のバリンをシステインに置換するよう設計した配列番号52の合成オリゴヌクレオチドと、それに相補的な合成オリゴヌクレオチドをもとに実施例2の方法と同様に変異操作を行い、基質特異性、及び/または、熱安定性に優れた改変型FADGDHを作製し上記の方法と同様にプラスミドを調整した。変異箇所を同定するため実施例4の方法と同様にDNAシークエンサー(ABI PRISMTM 3700DNA Analyzer;Perkin−Elmer製)でグルコースデヒドロゲナーゼをコードする遺伝子の塩基配列を決定した結果、pAOGDH−M8で配列番号2記載の53番目のグリシンがヒスチジンに、167番目のセリンがプロリンに、pAOGDH−M9で配列番号2記載の53番目のグリシンがアスパラギンに、167番目のセリンがプロリンに、pAOGDH−M10で配列番号2記載の53番目のグリシンがアスパラギンに、163番目のグリシンがアルギニンに、551番目のバリンがシステインに置換していることが確認された。実施例4と同様の活性測定法により、グルコースならびにキシロースを基質として活性を測定したところ、pAOGDH−M8、pAOGDH−M9、pAOGDH−M10は基質特異性が向上していることが確認された。熱安定性を測定するため実施例3の方法と同様に、pAOGDH−M8、pAOGDH−M9、pAOGDH−M10の粗酵素液を調整し、上述した活性測定法によりグルコースデヒドロゲナーゼ活性を測定した。また、同粗酵素液を50℃で15分間加熱処理した後、グルコースデヒドロゲナーゼ活性を測定し、pAOGDH−M8、pAOGDH−M9、pAOGDH−M10は熱安定性が向上していることが確認された。結果を表2に示す。
改変型FADGDH生産菌として、pAOGDH−M8、pAOGDH−M9、pAOGDH−M10で市販の大腸菌コンピテントセル(E.coli DH5・;TOYOBO社製)を形質転換した。得られた形質転換体を10L容ジャーファーメンターを用いて、TB培地に培養温度25℃で24時間培養した。培養菌体を遠心分離で集めた後、50mMのリン酸バッファー(pH6.5)に懸濁し、除核酸処理後、遠心分離して上清を得た。これに硫酸アンモニウムを飽和量溶解させて目的タンパク質を沈殿させ、遠心分離で集めた沈殿を50mMのリン酸バッファー(pH6.5)に再溶解させた。そしてG−25セファロースカラムによるゲルろ過、Octyl−セファロースカラムおよびPhenyl−セファロースカラムによる疎水クロマト(溶出条件は共に25%飽和〜0%の硫酸アンモニウム濃度勾配をかけてピークフラクションを抽出)を実施し、さらにG−25セファロースカラムによるゲルろ過で硫酸アンモニウムを除去し改変型FADGDHサンプルとした。表3に示すように精製標品においても熱安定性が向上していることが確認された。
Claims (9)
- 配列番号2のアミノ酸配列で示されるフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)の53位のグリシンが、システイン・ヒスチジン・リジン・メチオニン・アスパラギン・スレオニンおよびバリンからなる群のうちいずれかに置換されているFADGDH。
- キシロースに対する作用性がグルコースに対して5%以下に低減された、請求項1のFADGDH。
- 請求項1または2に記載のFADGDHをコードする遺伝子。
- 請求項3に記載の遺伝子を含むベクター。
- 請求項4に記載のベクターで形質転換された形質転換体。
- 請求項5に記載の形質転換体を培養することを特徴とするFADGDHの製造方法。
- 請求項1または2に記載のFADGDHを含むグルコースアッセイキット。
- 請求項1または2に記載のFADGDHを含むグルコースセンサー。
- 請求項1または2に記載のFADGDHを含むグルコース測定法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009126142A JP5169991B2 (ja) | 2006-11-14 | 2009-05-26 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006336351 | 2006-11-14 | ||
JP2006308337 | 2006-11-14 | ||
JP2006336351 | 2006-11-14 | ||
JP2006308337 | 2006-11-14 | ||
JP2007035980 | 2007-02-16 | ||
JP2007035978 | 2007-02-16 | ||
JP2007035978 | 2007-02-16 | ||
JP2007035979 | 2007-02-16 | ||
JP2007035980 | 2007-02-16 | ||
JP2007035979 | 2007-02-16 | ||
JP2007045372 | 2007-02-26 | ||
JP2007045372 | 2007-02-26 | ||
JP2009126142A JP5169991B2 (ja) | 2006-11-14 | 2009-05-26 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007293325A Division JP4348563B2 (ja) | 2006-11-14 | 2007-11-12 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009225800A JP2009225800A (ja) | 2009-10-08 |
JP5169991B2 true JP5169991B2 (ja) | 2013-03-27 |
Family
ID=39909291
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007293325A Active JP4348563B2 (ja) | 2006-11-14 | 2007-11-12 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP2009006900A Active JP5282581B2 (ja) | 2006-11-14 | 2009-01-15 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP2009126143A Withdrawn JP2009225801A (ja) | 2006-11-14 | 2009-05-26 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP2009126142A Active JP5169991B2 (ja) | 2006-11-14 | 2009-05-26 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007293325A Active JP4348563B2 (ja) | 2006-11-14 | 2007-11-12 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP2009006900A Active JP5282581B2 (ja) | 2006-11-14 | 2009-01-15 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP2009126143A Withdrawn JP2009225801A (ja) | 2006-11-14 | 2009-05-26 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Country Status (4)
Country | Link |
---|---|
JP (4) | JP4348563B2 (ja) |
CN (1) | CN101535476B (ja) |
AT (1) | ATE496124T1 (ja) |
DE (1) | DE602007012130D1 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981157A (zh) * | 2006-05-29 | 2014-08-13 | 天野酶株式会社 | 黄素腺嘌呤双核苷酸结合型葡萄糖脱氢酶 |
EP2241621B1 (en) * | 2007-12-28 | 2012-08-15 | Ikeda Food Research Co. Ltd. | Modified glucose dehydrogenase gene |
JP4648993B2 (ja) | 2009-06-04 | 2011-03-09 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
WO2011034108A1 (ja) * | 2009-09-16 | 2011-03-24 | 東洋紡績株式会社 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP5803081B2 (ja) * | 2009-10-09 | 2015-11-04 | 東洋紡株式会社 | Fadジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法 |
JP5850291B2 (ja) * | 2009-11-06 | 2016-02-03 | 東洋紡株式会社 | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法 |
JP5660271B2 (ja) * | 2009-11-13 | 2015-01-28 | 東洋紡株式会社 | グルコースデヒドロゲナーゼおよびその製造方法 |
EP2508600B1 (en) | 2009-12-05 | 2015-08-12 | Amano Enzyme Inc. | Mutant enzyme and application thereof |
JP5899616B2 (ja) * | 2009-12-28 | 2016-04-06 | 東洋紡株式会社 | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法 |
US8999691B2 (en) | 2010-06-29 | 2015-04-07 | Ultizyme International Ltd. | Glucose dehydrogenase |
JP2012029677A (ja) * | 2010-07-08 | 2012-02-16 | Toyobo Co Ltd | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの基質特異性を改善するための方法 |
JP5811521B2 (ja) * | 2010-09-09 | 2015-11-11 | 東洋紡株式会社 | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上するための方法 |
WO2012073987A1 (ja) | 2010-12-01 | 2012-06-07 | キッコーマン株式会社 | 大腸菌形質転換体、それを用いたフラビン結合型グルコースデヒドロゲナーゼの製造方法、および、変異型フラビン結合型グルコースデヒドロゲナーゼ |
WO2012073986A1 (ja) | 2010-12-02 | 2012-06-07 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法およびそれに用いる酵母形質転換体 |
JP6093700B2 (ja) * | 2011-06-07 | 2017-03-08 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法、およびそれを用いたグルコース測定方法 |
JP6079038B2 (ja) | 2011-08-11 | 2017-02-15 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
JP5584740B2 (ja) * | 2011-09-26 | 2014-09-03 | アークレイ株式会社 | グルコースセンサ |
WO2013065623A1 (ja) | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
US9493814B2 (en) | 2011-11-02 | 2016-11-15 | Kikkoman Corporation | Flavin-binding glucose dehydrogenase having improved substrate specificity |
JP6207167B2 (ja) | 2012-02-09 | 2017-10-04 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
WO2013164477A1 (en) * | 2012-05-03 | 2013-11-07 | Roche Diagnostics Gmbh | A glycosylated modified flavin adenine dinucleotide dependent glucose dehydrogenase |
WO2014002973A1 (ja) | 2012-06-29 | 2014-01-03 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
US9796963B2 (en) | 2012-09-10 | 2017-10-24 | Toyobo Co., Ltd. | Glucose dehydrogenase |
GB201223166D0 (en) * | 2012-12-21 | 2013-02-06 | Alere Switzerland Gmbh | Test strip |
WO2015060150A1 (ja) | 2013-10-21 | 2015-04-30 | 東洋紡株式会社 | 新規なグルコースデヒドロゲナーゼ |
JP6311270B2 (ja) * | 2013-10-29 | 2018-04-18 | 東洋紡株式会社 | 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JP6526572B2 (ja) * | 2013-12-27 | 2019-06-05 | キッコーマン株式会社 | 熱安定性が向上したフラビン結合型グルコースデヒドロゲナーゼ |
WO2016114334A1 (ja) | 2015-01-16 | 2016-07-21 | 東洋紡株式会社 | Fad依存型グルコースデヒドロゲナーゼ |
US10913971B2 (en) | 2015-04-09 | 2021-02-09 | Toyobo Co., Ltd. | Enzyme preparation for use in measurement of glucose |
EP3456823A4 (en) | 2016-05-09 | 2019-11-13 | Kikkoman Corporation | FLAVIN BINDING GLUCOSE DEHYDROGENASE VARIANT |
JP6390776B2 (ja) * | 2017-09-15 | 2018-09-19 | 東洋紡株式会社 | 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
JPWO2021210282A1 (ja) * | 2020-04-17 | 2021-10-21 | ||
CN113393900B (zh) * | 2021-06-09 | 2022-08-02 | 吉林大学 | 基于改进Transformer模型的RNA状态推断研究方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000350588A (ja) * | 1999-04-08 | 2000-12-19 | Koji Hayade | グルコース脱水素酵素 |
JP2004344145A (ja) * | 2002-05-27 | 2004-12-09 | Toyobo Co Ltd | 基質特異性または安定性に優れたピロロキノリンキノン(pqq)依存性グルコースデヒドロゲナーゼ改変体 |
WO2004058958A1 (ja) * | 2002-12-24 | 2004-07-15 | Ikeda Food Research Co., Ltd. | 補酵素結合型グルコース脱水素酵素 |
CA2535147A1 (en) * | 2003-08-11 | 2005-05-19 | Codexis, Inc. | Improved glucose dehydrogenase polypeptides and related polynucleotides |
WO2005103248A1 (ja) * | 2004-04-23 | 2005-11-03 | Arkray, Inc. | 変異グルコース脱水素酵素 |
EP2380980B1 (en) * | 2005-03-25 | 2014-11-05 | Ikeda Food Research Co. Ltd. | Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same |
WO2006109578A1 (ja) * | 2005-04-05 | 2006-10-19 | Amano Enzyme Inc. | 改変型ピロロキノリンキノン依存性グルコース脱水素酵素、及びピロロキノリンキノン依存性グルコース脱水素酵素の基質特異性改良法 |
-
2007
- 2007-11-12 JP JP2007293325A patent/JP4348563B2/ja active Active
- 2007-11-12 AT AT07831612T patent/ATE496124T1/de not_active IP Right Cessation
- 2007-11-12 DE DE602007012130T patent/DE602007012130D1/de active Active
- 2007-11-12 CN CN2007800421102A patent/CN101535476B/zh active Active
-
2009
- 2009-01-15 JP JP2009006900A patent/JP5282581B2/ja active Active
- 2009-05-26 JP JP2009126143A patent/JP2009225801A/ja not_active Withdrawn
- 2009-05-26 JP JP2009126142A patent/JP5169991B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP5282581B2 (ja) | 2013-09-04 |
JP2008237210A (ja) | 2008-10-09 |
CN101535476B (zh) | 2012-10-24 |
JP2009225800A (ja) | 2009-10-08 |
JP4348563B2 (ja) | 2009-10-21 |
JP2009159964A (ja) | 2009-07-23 |
JP2009225801A (ja) | 2009-10-08 |
DE602007012130D1 (de) | 2011-03-03 |
CN101535476A (zh) | 2009-09-16 |
ATE496124T1 (de) | 2011-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5169991B2 (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
EP2083074B1 (en) | Modified flavine-adenine-dinucleotide-dependent glucose dehydrogenase | |
JP6460152B2 (ja) | 新規なグルコース脱水素酵素 | |
JP5873796B2 (ja) | グルコース脱水素酵素 | |
JP5176045B2 (ja) | 可溶性グルコースデヒドロゲナーゼ(gdh)を含む組成物の安定性を向上する方法 | |
JP5408125B2 (ja) | 糸状菌由来フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(fadgdh) | |
WO2010053161A1 (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
WO2013022074A1 (ja) | 新規なグルコース脱水素酵素 | |
JP2019033753A (ja) | 新規なグルコースデヒドロゲナーゼ | |
JP2010035448A (ja) | 基質特異性が向上したフラビンアデニン依存性グルコースデヒドロゲナーゼ改変体 | |
JP6465156B2 (ja) | 新規なグルコース脱水素酵素 | |
JP6635913B2 (ja) | 比活性が向上したフラビン結合型グルコースデヒドロゲナーゼ | |
WO2013099294A1 (ja) | グルコース脱水素酵素 | |
JP2016208916A (ja) | フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有する変異型タンパク質 | |
JP5811521B2 (ja) | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上するための方法 | |
JP2009273381A (ja) | 熱安定性が向上したフラビンアデニン依存性グルコースデヒドロゲナーゼ改変体 | |
JP2011103770A (ja) | グルコース脱水素酵素およびグルコースの電気化学測定法 | |
JP5799534B2 (ja) | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの安定性を向上するための方法 | |
JP5793841B2 (ja) | フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上する方法 | |
JP2005270082A (ja) | グルコース脱水素酵素 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121217 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5169991 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160111 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |