WO2015141286A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2015141286A1
WO2015141286A1 PCT/JP2015/052330 JP2015052330W WO2015141286A1 WO 2015141286 A1 WO2015141286 A1 WO 2015141286A1 JP 2015052330 W JP2015052330 W JP 2015052330W WO 2015141286 A1 WO2015141286 A1 WO 2015141286A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
clutch
gear ratio
mode
vehicle
Prior art date
Application number
PCT/JP2015/052330
Other languages
English (en)
French (fr)
Inventor
山本 明弘
守洋 長嶺
亮 高野
伸太郎 大塩
兒玉 仁寿
拓朗 平野
征史 大塚
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/121,827 priority Critical patent/US9963141B2/en
Priority to EP15765055.7A priority patent/EP3121082B1/en
Priority to JP2016508571A priority patent/JP6113910B2/ja
Priority to CN201580015259.6A priority patent/CN106103225B/zh
Publication of WO2015141286A1 publication Critical patent/WO2015141286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/918Continuously variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention is a hybrid equipped with an engine and an electric motor as a power source and capable of selecting an electric travel mode (EV mode) that travels only by the electric motor and a hybrid travel mode (HEV mode) that travels by the electric motor and engine.
  • EV mode electric travel mode
  • HEV mode hybrid travel mode
  • the present invention relates to a vehicle control device.
  • the engine is coupled to the driving wheel through a continuously variable transmission and a clutch in order to be detachable, and the electric motor is always coupled to the driving wheel.
  • a mechanical oil pump driven by the engine is provided to supply oil to the continuously variable transmission and the clutch.
  • This hybrid vehicle is capable of electric travel (EV travel) in the EV mode using only the electric motor by stopping the engine and releasing the clutch, and is electrically operated by starting the engine and engaging the clutch.
  • Hybrid running (HEV running) in HEV mode with a motor and engine is possible.
  • the engine and continuously variable transmission in the stopped state are disconnected from the drive wheels, so the friction of the engine and continuously variable transmission during EV travel can be reduced. Energy efficiency can be increased by avoiding energy loss in minutes.
  • the present invention pays attention to the above-mentioned problem, and an object of the present invention is to provide a control device for a hybrid vehicle that can get over a step even if the road surface started in EV mode has a step or the like.
  • the hybrid vehicle control device determines that there is a step, and releases the clutch, stops the engine, and runs with the driving force of the motor. Was restarted, and the continuously variable transmission was downshifted to a gear ratio capable of overcoming a predetermined level difference.
  • the engine when there is a step on the road surface that started in EV mode, the engine is downshifted to a gear ratio that can step over the continuously variable transmission, so that the motor driving force is insufficient and the engine driving force is used.
  • the continuously variable transmission does not reduce the engine torque and can overcome the step.
  • FIG. 1 is a schematic system diagram showing a hybrid vehicle drive system and its overall control system according to a first embodiment.
  • (a) is a schematic system diagram showing a drive system of the hybrid vehicle and an overall control system thereof
  • (b) is a V-belt type continuously variable transmission in the drive system of the hybrid vehicle.
  • FIG. 3 is a logic diagram of clutch engagement in a sub-transmission built in the machine. It is the mode map in which the driving mode of the hybrid vehicle of Example 1 was set.
  • 3 is a flowchart illustrating a forced downshift control process associated with a step determination according to the first embodiment.
  • 3 is a flowchart illustrating a forced downshift control process associated with a step determination according to the first embodiment.
  • 6 is a time chart showing a state in which the hybrid vehicle of the first embodiment depresses the accelerator pedal after step difference determination and starts in HEV mode.
  • 5 is a time chart showing a state in which the accelerator pedal is maintained and the EV mode is continued after the step determination in the hybrid vehicle of the first embodiment.
  • 6 is a time chart when a step difference is determined during traveling in the HEV mode in the hybrid vehicle of the first embodiment.
  • FIG. 1 is a schematic system diagram showing a hybrid vehicle drive system and its overall control system according to the first embodiment.
  • the hybrid vehicle of FIG. 1 is mounted with an engine 1 and an electric motor 2 as power sources, and the engine 1 is started by a starter motor 3.
  • the engine 1 is drive-coupled to the drive wheels 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separated.
  • the variator CVT of the continuously variable transmission 4 is a V belt type continuously variable transmission mechanism including a primary pulley 6, a secondary pulley 7, and a V belt 8 (endless flexible member) spanned between these pulleys 6 and 7. is there.
  • the V belt 8 employs a configuration in which a plurality of elements are bundled by an endless belt, but may be a chain system or the like, and is not particularly limited.
  • the primary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C, and the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
  • FIG. 1 conceptually shows a power transmission path.
  • a high clutch H / C, a reverse brake R / B, and a low brake L / B provided in an auxiliary transmission 31 described later are collectively referred to as a clutch. It is described as CL.
  • the clutch CL When the clutch CL is engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C, and then sequentially passes through the V belt 8, the secondary pulley 7, the clutch CL, and the final gear set 9 to drive wheels 5 To be used for running a hybrid vehicle.
  • the pulley V groove width of the primary pulley 6 is reduced while the pulley V groove width of the secondary pulley 7 is increased to increase the winding arc diameter of the V belt 8 and the primary pulley 6 and at the same time Decrease the diameter of the winding arc with pulley 7.
  • the variator CVT upshifts to the high pulley ratio (high gear ratio).
  • the gear ratio is set to the maximum gear ratio.
  • the variator CVT downshifts to the low pulley ratio (low gear ratio).
  • the gear shift is set to the minimum gear ratio.
  • the variator CVT has a primary rotational speed sensor 6a for detecting the rotational speed of the primary pulley 6 and a secondary rotational speed sensor 7a for detecting the rotational speed of the secondary pulley 7, and the rotational speed detected by these both rotational speed sensors.
  • the actual gear ratio is calculated based on the above, and hydraulic control of each pulley is performed so that the actual gear ratio becomes the target gear ratio.
  • the electric motor 2 is always coupled to the drive wheel 5 via the final gear set 11, and the electric motor 2 is driven via the inverter 13 by the power of the battery 12.
  • the inverter 13 converts the DC power of the battery 12 into AC power and supplies it to the electric motor 2, and controls the driving force and the rotation direction of the electric motor 2 by adjusting the power supplied to the electric motor 2.
  • the electric motor 2 functions as a generator in addition to the motor drive described above, and is also used for regenerative braking. During this regenerative braking, the inverter 13 applies a power generation load corresponding to the regenerative braking force to the electric motor 2 so that the electric motor 2 acts as a generator, and the generated power of the electric motor 2 is stored in the battery 12.
  • the caliper 15 is connected to a master cylinder 18 that outputs a brake fluid pressure corresponding to the brake pedal depression force under a boost by a negative pressure brake booster 17 that responds to the depression force of the brake pedal 16 that the driver steps on.
  • the caliper 15 generated by the master cylinder 18 is actuated by the brake fluid pressure to frictionally brake the brake disc 14.
  • a brake actuator 180 capable of adjusting the brake fluid pressure supplied to the caliper 15 is provided.
  • the brake actuator 180 includes a pump motor and a plurality of solenoid valves, and increases or decreases the brake fluid pressure supplied to the caliper 15. For example, during regenerative braking, even if the master cylinder pressure increases, the hydraulic pressure corresponding to the regenerative braking force generated by the electric motor 2 is reduced from the caliper 15 so that the driver does not feel uncomfortable during braking. To. Further, for example, when the vehicle is stopped on an uphill road or the like and then restarted, hill hold control for supplying brake fluid pressure is performed in order to prevent the vehicle from moving backward.
  • the brake fluid pressure in the caliper 15 is sealed when the driver releases the brake pedal, or the brake fluid is supplied into the caliper 15 by the pump motor to ensure the necessary braking force.
  • the hybrid vehicle drives the wheel 5 with a torque according to the driving force command that the driver commands by depressing the accelerator pedal 19, and travels with the driving force according to the driver's request. .
  • the hybrid controller 21 selects the travel mode of the hybrid vehicle, the output control of the engine 1, the rotational direction control and output control of the electric motor 2, the shift control of the variator CVT, the shift control of the auxiliary transmission 31, and the clutch CL.
  • the fastening / release control and the charge / discharge control of the battery 12 are executed.
  • the hybrid controller 21 performs these controls via the corresponding engine controller 22, motor controller 23, transmission controller 24, battery controller 25, and brake controller 26.
  • the hybrid controller 21 includes an accelerator pedal opening sensor that detects a signal from the brake switch 26, which is a normally open switch that switches from OFF to ON when the brake pedal 16 is depressed, and an accelerator pedal depression amount (accelerator pedal opening) APO.
  • the signal from 27 is input.
  • the hybrid controller 21 further exchanges internal information with the engine controller 22, the motor controller 23, the transmission controller 24, the battery controller 25, and the brake controller 26.
  • the engine controller 22 controls the output of the engine 1 in response to a command from the hybrid controller 21, and the motor controller 23 controls the rotational direction of the electric motor 2 via the inverter 13 in response to the command from the hybrid controller 21.
  • the transmission controller 24 responds to a command from the hybrid controller 21 and uses oil from a mechanical oil pump O / P driven by an engine (or an electric oil pump EO / P driven by a pump motor) as a medium.
  • the shift control of the variator CVT V-belt type continuously variable transmission mechanism CVT
  • the shift control of the auxiliary transmission 31, and the engagement / release control of the clutch CL are performed.
  • the battery controller 25 performs charge / discharge control of the battery 12 in response to a command from the hybrid controller 21.
  • the brake controller 26 performs hill hold control in addition to performing cooperative control of the regenerative braking force and the braking force by the hydraulic pressure.
  • FIG. 2 (a) is a schematic system diagram showing a hybrid vehicle drive system and its overall control system according to the first embodiment.
  • FIG. 2 (b) is a continuously variable transmission in the hybrid vehicle drive system according to the first embodiment.
  • 4 is an engagement logic diagram of a clutch CL (specifically, H / C, R / B, L / B) in the auxiliary transmission 31 built in FIG.
  • the auxiliary transmission 31 rotatably supports the composite sun gears 31s-1 and 31s-2, the inner pinion 31pin, the outer pinion 31pout, the ring gear 31r, the pinion 31pin, and the flange 31pout.
  • a Ravigneaux type planetary gear set comprising the carrier 31c.
  • the sun gear 31s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31s-2 is arranged coaxially with respect to the secondary pulley 7, but freely rotates. To get.
  • the inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
  • the outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
  • the carrier 31c and the ring gear 31r can be appropriately coupled by the high clutch H / C as the clutch CL, the ring gear 31r can be appropriately fixed by the reverse brake R / B as the clutch CL, and the sun gear 31s-2 can be coupled by the clutch CL. It can be fixed as appropriate with a certain low brake L / B.
  • the auxiliary transmission 31 is engaged with the high clutch H / C, the reverse brake R / B, and the low brake L / B in the combinations indicated by the circles in FIG. 2 (b), and the others are shown in FIG. 2 (b).
  • the forward first speed, the second speed, and the reverse speed can be selected.
  • the sub-transmission 31 is in a neutral state where no power is transmitted.
  • the auxiliary transmission 31 When the transmission 31 is in the first forward speed selection (deceleration) state and the high clutch H / C is engaged, the auxiliary transmission 31 is in the second forward speed selection (direct connection) state and when the reverse brake R / B is engaged, The transmission 31 is in a reverse selection (reverse) state.
  • the continuously variable transmission 4 in FIG. 2 (a) releases all the clutches CL (H / C, R / B, L / B) and puts the sub-transmission 31 in a neutral state, so that the variator CVT (secondary The pulley 7) and the drive wheel 5 can be disconnected.
  • the continuously variable transmission 4 in FIG. 2 (a) is controlled by using oil from a mechanical oil pump O / P driven by an engine or an electric oil pump EO / P driven by a pump motor as a working medium.
  • the transmission controller 24 includes a line pressure solenoid 35, a lockup solenoid 36, a primary pulley pressure solenoid 37-1, a secondary pulley pressure solenoid 37-2, a low brake pressure solenoid 38, a high clutch pressure & reverse brake pressure solenoid 39 and a switch.
  • the shift control of the variator CVT is performed through the valve 41 as follows.
  • the transmission controller 24 receives a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G.
  • the line pressure solenoid 35 responds to a command from the transmission controller 24 and regulates the oil from the mechanical oil pump O / P to the line pressure PL corresponding to the vehicle required driving force.
  • An electric oil pump EO / P is connected between the mechanical oil pump O / P and the line pressure solenoid 35, and pump discharge pressure is supplied in response to a command from the transmission controller 24.
  • the lockup solenoid 36 responds to a lockup command from the transmission controller 24 and directs the line pressure PL to the torque converter T / C as appropriate, so that the torque converter T / C is connected between the input and output elements as required. Set to a directly connected lockup state.
  • the primary pulley pressure solenoid 37-1 adjusts the line pressure PL to the primary pulley pressure in response to the CVT gear ratio command from the transmission controller 24, and supplies this to the primary pulley 6, thereby
  • the CVT gear ratio command from the transmission controller 24 is realized by controlling the groove width and the V groove width of the secondary pulley 7 so that the CVT gear ratio matches the command from the transmission controller 24.
  • the secondary pulley pressure solenoid 37-2 adjusts the line pressure PL to the secondary pulley pressure in accordance with a clamping force command from the transmission controller 24, and supplies the secondary pulley pressure to the secondary pulley 7. Clamp it so that it will not slip.
  • the low brake pressure solenoid 38 is engaged by supplying the line pressure PL to the low brake L / B as the low brake pressure when the transmission controller 24 issues the first speed selection command for the sub-transmission 31.
  • the first speed selection command is realized.
  • the high clutch pressure & reverse brake pressure solenoid 39 is a switch valve that uses the line pressure PL as the high clutch pressure & reverse brake pressure when the transmission controller 24 issues the second speed selection command or reverse selection command for the sub-transmission 31. Supply to 41.
  • the maximum discharge capacity of the electric oil pump EO / P in Example 1 is set smaller than that of the mechanical oil pump O / P, and the motor and pump of the electric oil pump EO / P are made smaller. Yes.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the high clutch pressure to the high clutch H / C, and by engaging this, the second speed selection command of the auxiliary transmission 31 is issued. Realize.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the reverse brake pressure to the reverse brake R / B and fastens it, thereby realizing the reverse selection command of the auxiliary transmission 31.
  • the transmission controller 24 determines the continuously variable transmission 4 according to the driving state of the vehicle (vehicle speed VSP, primary rotational speed Npri, accelerator pedal opening APO in the first embodiment) while referring to a preset shift map. Control.
  • a shift line is set for each accelerator pedal opening APO, and the shift of the continuously variable transmission 4 depends on the accelerator pedal opening APO. According to the selected shift line.
  • a mode switching shift line for shifting the sub-transmission 31 is set.
  • the transmission controller 24 When the operating point of the continuously variable transmission 4 crosses the mode switching shift line, the transmission controller 24 performs coordinated shifting with both the variator CVT and the auxiliary transmission 31 to switch between the high speed mode and the low speed mode. . Note that at low vehicle speeds such as when starting, the sub-transmission 31 performs shift control mainly by controlling the pulley ratio of the variator CVT while the first forward speed is selected.
  • FIG. 3 is a mode map in which the travel mode of the hybrid vehicle of the first embodiment is set.
  • the value above 0 on the vertical axis is set according to the accelerator pedal opening, and the value below 0 is set according to the on / off state of the brake switch 26.
  • the powering region in the EV mode is set up to the powering vehicle speed VSPX.
  • the EV mode is used up to a predetermined vehicle speed VSP1 higher than the power running speed VSPX.
  • the power running area is set. The region below the predetermined vehicle speed VSP1 is hardly selected when the accelerator pedal 19 is depressed.
  • the EV regeneration state is switched to the braking by the friction brake. This is because it is undesirable for the electric motor 2 to generate a high regenerative torque in a low rotation state.
  • the engine 1 when traveling in the EV mode, the engine 1 is stopped so that the fuel injection stoppage (fuel cut) that has been performed during the coasting from the viewpoint of fuel consumption is continued even when the clutch CL is released.
  • the engine 1 is stopped by prohibiting the restart of fuel injection (fuel recovery).
  • the step can be overcome if the torque of the electric motor 2 exceeds the torque necessary for overcoming the step. However, if the torque of the electric motor 2 is less than the torque required to overcome the step or if the maximum torque that the electric motor 2 can output is less than the torque required to overcome the step, the step is overcome. I can't.
  • the engine 1 is restarted by further depressing the accelerator pedal, the engine 1 is restarted, and the clutch CL is engaged to apply engine torque to the drive wheels 5.
  • the clutch CL is engaged to apply engine torque to the drive wheels 5.
  • the gear ratio of the variator CVT is downshifted to a gear step ratio G1 that can overcome the predetermined step.
  • the gear ratio G1 that can get over a predetermined step may be the “lowest gear ratio” or “higher than the lowest gear ratio and clear the most severe step conditions that exist on ordinary roads. It may be the “lowest possible gear ratio”.
  • FIGS. 4 and 5 are flowcharts showing the forced downshift control process associated with the step determination according to the first embodiment.
  • step S1 it is determined whether or not the vehicle has stopped from a regenerative braking state in EV mode (hereinafter referred to as an EV regenerative state). If the vehicle has stopped from the EV regenerative state, the process proceeds to step S2, otherwise the control is performed. End the flow.
  • the gear ratio of the variator CVT may be higher than the lowest gear ratio. If the vehicle is stopped at other times, the gear ratio is downshifted to the lowest gear ratio. is there.
  • step S2 it is determined whether the brake pedal is released and the brake switch 26 is OFF.
  • step S3 it is determined whether or not the accelerator pedal has been depressed, that is, whether or not the accelerator pedal opening APO is equal to or greater than a predetermined opening indicating start intention. Proceed to step S4, otherwise repeat this step.
  • step S4 it is determined from the mode map whether or not the current travel mode is the EV mode. If the current mode is the EV mode, the process proceeds to step S5. Otherwise, the process proceeds to step S20 to execute the HEV start process. In step S5, motor torque corresponding to the driver's accelerator pedal opening APO is output from the electric motor 2.
  • step S6 a step is determined, and if it is determined that there is a step, the process proceeds to step S7. If it is determined that there is no step, this control flow is terminated, and the driving in the EV mode is continued as it is.
  • the step is determined when the accelerator pedal opening APO is greater than or equal to a predetermined value indicating the driver's intention to get over the step, or the motor torque is equal to or greater than the predetermined torque and the vehicle speed is less than the predetermined vehicle speed indicating the vehicle stopped state.
  • Judge that there is. In other words, in a situation where the driver depresses the accelerator pedal and indicates the intention to travel, and the motor torque is higher than the predetermined torque required for traveling, but the vehicle speed does not increase, It is because it is thought that is disturbed.
  • step S7 it is determined whether or not the gear ratio G of the current variator CVT is greater than the gear ratio G1 that can be stepped over (Low side). If it is Low, the gear ratio G of the variator CVT can already output sufficient torque. In step S11, the forced downshift is prohibited, thereby avoiding unnecessary engine start and the like. On the other hand, when it is High, it is determined that it is necessary to forcibly downshift the variator CVT toward the gear ratio G1 capable of overcoming the step, and the process proceeds to Step S8.
  • the gear ratio at the time of transition from the previous HEV mode to the EV mode may be stored in a memory or the like, and it may be determined using the stored gear ratio, or the variator CVT
  • the gear ratio may be detected based on the groove width, and is not particularly limited.
  • step S8 the engine is restarted by the starter motor 3 (hereinafter referred to as engine ON).
  • step S81 hill hold determination is performed. If it is determined that hill hold control is necessary, the process proceeds to step S82, and the hill hold control is turned on. If it is determined that hill hold control is not necessary, the process proceeds to step S9. That is, when the driver steps on the brake pedal and stops the vehicle after coming into contact with the step, the hill hold control is not particularly performed because the vehicle does not move. On the other hand, when the driver does not depress the brake pedal, the hill hold control is turned ON to restrict the movement of the vehicle, and the movement of the vehicle is restricted by the friction brake.
  • step S9 the engine 1 ensures that the variator CVT rotates, and the oil pump O / P driven by the engine 1 is used as a hydraulic power source to forcibly downshift the variator CVT over the stepped gear ratio G1. (Hereinafter referred to as forced downshift).
  • step S10 it is determined whether or not the gear ratio has reached the gear ratio G1 that can be stepped over. If the gear ratio has reached, the process proceeds to step S11, and if not, the process returns to step S9 to continue the forced downshift.
  • step S11 it is determined whether or not the vehicle has shifted to the HEV mode by depressing the accelerator pedal.
  • the process proceeds to step S15.
  • the process proceeds to step S12.
  • the engine 1 started at is turned off.
  • step S13 it is determined whether or not the hill hold control is ON. If the motor torque of the electric motor 2 is equal to or greater than the predetermined value, the process proceeds to step S14 and the hill hold control is turned OFF. The vehicle stop is maintained by continuing.
  • the vehicle cannot get over the step, and the vehicle is continuously stopped.
  • the mode map of Fig. 3 when the vehicle speed is near 0 km / h, the EV mode area is expanded in the direction of the accelerator opening, so the accelerator pedal must be depressed within this EV mode area. If the torque required for overcoming the step is secured, the vehicle can travel over the step in the EV mode.
  • step S15 it is determined whether or not the engine 1 is ON.
  • the process proceeds to step S17, and when the forced downshift is not performed and the engine 1 is not ON. Advances to step S16 and turns on the engine 1.
  • step S17 the clutch CL is turned on to travel in the HEV mode.
  • step S171 it is determined whether or not the hill hold control is ON. If the motor torque of the electric motor 2 is equal to or greater than the predetermined value and the transmission torque capacity of the clutch CL is equal to or greater than the predetermined value, the vehicle is not likely to move backward. Proceeding to step S172, the hill hold control is turned OFF, and if either condition is not satisfied, the vehicle stop is maintained by continuing the hill hold control.
  • FIG. 5 is a flowchart showing the HEV start process of the first embodiment.
  • step S21 the engine 1 is turned on.
  • step S22 the clutch CL is turned ON.
  • step S23 a level difference is determined. If it is determined that there is a level difference, the process proceeds to step S24. If it is determined that there is no level difference, this control flow is terminated, and the driving in the HEV mode is continued as it is.
  • the accelerator pedal opening APO is equal to or greater than a predetermined value indicating the driver's intention to get over the step
  • the engine torque is equal to or greater than the predetermined torque
  • the motor torque is equal to or greater than the predetermined torque
  • the vehicle speed is in the vehicle stopped state.
  • step S6 is based on the condition that either the accelerator pedal opening condition or the motor torque condition is satisfied. This is because in the EV mode, the accelerator pedal opening degree and the motor torque are correlated. On the other hand, in the HEV mode, it may be considered that the motor torque outputs the regenerative torque depending on the power generation mode. In this case, it is assumed that both the accelerator pedal opening condition and the motor torque condition are satisfied because there is room for the motor torque to output the driving torque without performing a forced downshift.
  • step S24 it is determined whether or not the gear ratio G of the current variator CVT is greater than the gear ratio G1 that can be stepped over (Low side). If it is Low, the gear ratio G of the variator CVT can already output sufficient torque. This control flow is terminated by determining that the current state is in a stable state, and forced downshift is prohibited. On the other hand, when it is on the High side, it is determined that it is necessary to forcibly downshift the variator CVT toward the gear ratio G1 capable of overcoming the step, and the process proceeds to Step S25.
  • step S25 hill hold control is turned ON. Specifically, brake fluid is supplied into the caliper 15 by the brake actuator 180 to prevent rolling of the tire including the driving wheel 5 and / or the driven wheel.
  • step S26 the clutch CL is turned OFF. That is, in order to forcibly downshift the variator CVT, it is necessary to rotate the variator CVT. In a state where the clutch CL is engaged while the vehicle is stopped, the variator CVT cannot be rotated and cannot be downshifted. Therefore, the clutch CL is temporarily released to make the variator CVT rotatable.
  • step S27 a forced downshift is executed. As described above, when a forced downshift is performed during the HEV mode, no load is input to the variator CVT from the drive wheel 5 side, so that the gear ratio of the variator CVT can be quickly downshifted to the gear ratio G1 that can be stepped over. Note that the forced downshift is performed after the step determination.
  • step S28 it is determined whether or not the gear ratio has reached the gear ratio G1 that can be stepped over. If the gear ratio has reached, the process proceeds to step S29. If not, the process returns to step S27 to continue the forced downshift.
  • step S29 the clutch CL is turned ON.
  • step S30 the hill hold control is turned off and the vehicle starts in the HEV mode. At this time, since the downshift of the variator CVT has been completed, it is possible to secure the driving torque necessary to get over the step, and to start over the step without going backward.
  • FIG. 6 is a time chart showing a state in which the hybrid vehicle of the first embodiment depresses the accelerator pedal after the step determination and starts in the HEV mode.
  • the driver releases the brake pedal, the brake switch 26 is turned from ON to OFF, and the accelerator pedal is depressed to start the start.
  • the vehicle stops moving due to contact with the step, so the increase in vehicle speed stops and the motor speed MotorREV also stops.
  • the motor torque MotorTRQ continues to increase.
  • the motor torque MotorTRQ is equal to or greater than a predetermined value indicating the intention to get over the step and the vehicle speed is less than the predetermined vehicle speed indicating the vehicle stop state, it is determined that there is a step.
  • a forced downshift is executed before the mode transition to the HEV mode.
  • the engine 1 is turned on, and the target gear ratio G * of the variator CVT is set to the gear ratio G1 that can step over the step.
  • the variator CVT starts a downshift.
  • the gear ratio G of the variator CVT reaches the gear ratio G1 that can overcome the step, the mode transition from the EV mode to the HEV mode is started, and the motor torque MotorTRQ that has been suppressed is restored and the engine torque EngTRQ is increased.
  • the engine torque EngTRQ can be increased and transmitted to the drive wheels 5.
  • the transmission torque capacity of the clutch CL is gradually increased, and accordingly, the primary rotational speed Npri and the secondary rotational speed Nsec of the variator CVT also approach the driving wheel rotational speed Nout.
  • the hill hold control is turned off and the vehicle starts over the step.
  • FIG. 7 is a time chart showing a state where the accelerator pedal is maintained and the EV mode is continued after the step determination in the hybrid vehicle of the first embodiment.
  • the driver releases the brake pedal, the brake switch 26 is turned from ON to OFF, and the accelerator pedal is depressed to start the start.
  • hill hold control is also set to ON, it can avoid that a vehicle reverses.
  • it is judged that there is a high possibility of transition to HEV mode and the transmission torque capacity for looseness is set in the clutch CL, and the transmission torque capacity can be generated immediately when the clutch CL is requested to be engaged. To ensure proper condition. The driver maintains the amount of depression of the accelerator pedal after coming into contact with the step, and thus the EV mode is continuously required.
  • a forced downshift is executed before the mode transition to the HEV mode. Specifically, the engine 1 is turned on, and the target gear ratio G * of the variator CVT is set to the gear ratio G1 that can step over the step.
  • the variator CVT starts a downshift.
  • the speed change ratio G of the variator CVT reaches the step changeable speed change ratio G1 at time t41, since the EV mode is continuously requested, the engine 1 is turned off and the suppressed motor torque MotorTRQ is restored. . Further, since the EV mode is required, the transmission torque capacity of the clutch CL is maintained in a state in which the backlash is reduced.
  • the primary rotational speed Npri and the secondary rotational speed Nsec of the variator CVT are also reduced and approach the driving wheel rotational speed Nout.
  • the EV mode is set in a state where the variator CVT is downshifted, and the hill hold control is also turned OFF, but the vehicle does not move backward by the action of the motor torque MotorTRQ. Thereafter, for example, when the driver depresses the accelerator pedal and a mode transition request to HEV mode is made, the forced downshift of the variator CVT has already been completed. By increasing the transmission torque capacity of the vehicle, it is possible to start over the steps immediately.
  • FIG. 8 is a time chart when the step difference is determined during traveling in the HEV mode in the hybrid vehicle of the first embodiment.
  • the driver releases the brake pedal, and then depresses the accelerator pedal to start the start.
  • a request for transition from the EV mode to the HEV mode is output, the engine 1 is turned on, and a transmission torque capacity for loosening is set in the clutch CL.
  • the pulley speed of each variator CVT also increases.
  • the gear ratio G of the variator CVT is higher than the gear ratio G1 capable of overcoming the step, and the secondary rotational speed Nse is larger than the primary rotational speed Npri.
  • the hill hold control is turned on, and the forced downshift process is started. Specifically, the clutch CL is released, the engine torque EngTRQ and the motor torque MotorTRQ are reduced, and the target gear ratio of the variator CVT is set to the gear ratio G1 that can be stepped over. As a result, the gear ratio of the variator CVT is changed to the gear ratio G1 that can be stepped over, and the primary rotation speed Npri becomes larger than the secondary rotation speed Nse.
  • Engine 1 Engine 1, variator CVT coupled to the output shaft of engine 1, clutch CL coupled to the output shaft of variator CVT, drive wheel 5 coupled to the output shaft of clutch CL, and drive wheel 5
  • the hybrid controller 21 controls the electric motor 2 (motor) coupled to the motor, the outputs of the engine 1 and the electric motor 2, the engagement and disengagement of the clutch CL, and the gear ratio of the continuously variable transmission 4 according to the operating state.
  • Control means and a hybrid vehicle control device including step S6 (step difference determination means) for determining the presence or absence of a step, and the hybrid controller 21 determines that there is a step and is in EV mode (clutch When CL is released and the engine 1 is stopped and the vehicle is driven by the driving force of the electric motor 2, the engine 1 is restarted with the clutch CL released, and the variator CVT can get over a predetermined step.
  • step S6 When it is determined that there is a step in step S6 and the HEV mode (running with the driving force of the engine 1 with the clutch CL engaged), the clutch CL is released and the variator CVT is able to get over the predetermined step. Downshift to G1.
  • a forced downshift is performed during the HEV mode, no load is input to the variator CVT from the drive wheel 5 side, so that the gear ratio of the variator CVT can be quickly downshifted to the gear ratio G1 that can be stepped over.
  • the forced downshift is performed after the step determination. In other words, if there is no level difference determination, no forced downshift is performed, so that the influence on drivability can be minimized by minimizing unnecessary downshifts.
  • a brake actuator 180 capable of applying a braking force to the drive wheels 5 is provided, and the hybrid controller 21 applies a braking force to the drive wheels 5 in conjunction with the release of the clutch CL. That is, it is assumed that when the tire comes into contact with the step, the tire slightly climbs the step and stops just before getting over. At this time, if the clutch CL is once turned off after the next step S26, the engine torque cannot be transmitted and the vehicle may be pushed back and move. Therefore, the vehicle movement can be suppressed by turning on the hill hold control and restricting the rotation of the tire.
  • step S6 Even if the hybrid controller 21 determines that there is a step in step S6, as shown in step S7 or step S24, the gear ratio G of the variator CVT is greater than the gear ratio G1 over which the step can be overcome, that is, the gear ratio G
  • the step for performing the forced downshift is bypassed and the downshift is prohibited.
  • the gear ratio G is lower than the gear ratio G1 that can overcome the step, the gear ratio G of the variator CVT is already in a state that can output a sufficient torque. Engine starting, clutch release, etc. can be avoided.
  • the negative region on the vertical axis is determined based on ON or OFF of the brake switch 26.
  • the present invention is not limited to this, and the stroke sensor of the brake pedal 16 is not limited thereto. May be determined based on the output value of the brake fluid pressure sensor, or based on the output value of a brake fluid pressure sensor that detects the master cylinder pressure or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 本発明によるハイブリッド車両の制御装置は、段差有りと判定され、かつ、クラッチを解放しエンジンを停止してモータの駆動力により走行しているときは、クラッチを解放したままエンジンを再始動し、無段変速機を所定の段差乗り越え可能変速比へダウンシフトすることとした。

Description

ハイブリッド車両の制御装置
 本発明は、エンジンおよび電動モータを動力源として搭載し、電動モータのみにより走行する電気走行モード(EVモード)と、電動モータおよびエンジンにより走行するハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両の制御装置に関する。
 このようなハイブリッド車両として、例えば特許文献1に記載のようなものが知られている。このハイブリッド車両は、エンジンが無段変速機およびクラッチを順次介して駆動輪に切り離し可能に結合され、電動モータが駆動輪に常時結合されている。また、エンジンに駆動される機械式オイルポンプを備え、無段変速機やクラッチへ油を供給している。
 このハイブリッド車両は、エンジンを停止すると共に上記のクラッチを解放することで電動モータのみによるEVモードでの電気走行(EV走行)が可能であり、エンジンを始動させると共に当該クラッチを締結することにより電動モータおよびエンジンによるHEVモードでのハイブリッド走行(HEV走行)が可能である。
 なお、EV走行中にクラッチを解放することで、停止状態のエンジンや無段変速機が駆動輪から切り離されるため、EV走行中におけるエンジンや無段変速機のフリクションを低減することができ、その分のエネルギー損失を回避することでエネルギー効率を高めることができる。
特開2000-199442号公報
 しかしながら、上記従来技術にあっては、HEVモードからEVモードに切り替わった後、エンジンの停止によって無段変速機の回転が停止すると共に、オイルポンプも停止するため、無段変速機の変速制御が行えない。よって、HEVモードからEVモードに切り替わったときの変速比のまま成り行きで放置されることとなる。この状態での車両停止後、EVモードで発進した路面に段差があると、EVモードでは段差乗り越えに必要な駆動力が得られない場合がある。この場合、運転者はアクセルペダルを更に踏み込むことでHEVモードに切り替えられ、エンジンが始動される。しかしながら、無段変速機の変速比が前回のHEVモードからEVモードへの切り替え時の変速比としてHigh側で放置されていると、例えエンジントルクを出力したとしても、無段変速機によってエンジントルクが小さくなり、駆動輪に段差乗り越えに必要なトルクを伝達することが困難であった。
 本発明は上記課題に着目し、EVモードで発進した路面に段差等があったとしても、段差を乗り越えることが可能なハイブリッド車両の制御装置を提供することを目的とする。
 この目的のため、本発明によるハイブリッド車両の制御装置は、段差有りと判定され、かつ、クラッチを解放しエンジンを停止してモータの駆動力により走行しているときは、クラッチを解放したままエンジンを再始動し、無段変速機を所定の段差乗り越え可能変速比へダウンシフトすることとした。
 すなわち、EVモードで発進した路面に段差があるときは、エンジンにより無段変速機を段差乗り越え可能変速比へダウンシフトするため、モータの駆動力が不足し、エンジンの駆動力を用いる場合であっても、無段変速機によってエンジントルクが小さくなることがなく、段差を乗り越えることができる。
実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。 実施例1のハイブリッド車両において、 (a)は、当該ハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、 (b)は、当該ハイブリッド車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内におけるクラッチの締結論理図である。 実施例1のハイブリッド車両の走行モードが設定されたモードマップである。 実施例1の段差判定に伴う強制ダウンシフト制御処理を表すフローチャートである。 実施例1の段差判定に伴う強制ダウンシフト制御処理を表すフローチャートである。 実施例1のハイブリッド車両において段差判定後にアクセルペダルを踏み込んでHEVモードにより発進する状態を表すタイムチャートである。 実施例1のハイブリッド車両において段差判定後にアクセルペダルを維持してEVモードを継続する状態を表すタイムチャートである。 実施例1のハイブリッド車両においてHEVモードで走行中に段差判定した場合のタイムチャートである。
 1 エンジン
 2 電動モータ
 3 スタータモータ
 4 Vベルト式無段変速機
 5 駆動輪
 6 プライマリプーリ
 7 セカンダリプーリ
 8 Vベルト
 CVT バリエータ(無段変速機構)
 T/C トルクコンバータ
 9,11 ファイナルギヤ組
 15 キャリパ
 16 ブレーキペダル
 19 アクセルペダル
 21 ハイブリッドコントローラ
 26 ブレーキスイッチ
 27 アクセルペダル開度センサ
 O/P オイルポンプ
 31 副変速機
 CL クラッチ
 H/C ハイクラッチ
 R/B リバースブレーキ
 L/B ローブレーキ
 32 車速センサ
 〔実施例1〕
 図1は、実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。図1のハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式の無段変速機4を介して駆動輪5に適宜切り離し可能に駆動結合する。
 無段変速機4のバリエータCVTは、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8(無端可撓部材)とからなるVベルト式無段変速機構である。尚、Vベルト8は複数のエレメントを無端ベルトによって束ねる構成を採用したが、チェーン方式等であってもよく特に限定しない。プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動輪5に結合する。尚、本実施例にあっては、動力伝達経路を断接する要素(クラッチやブレーキ等)を総称してクラッチと記載する。図1は、動力伝達経路を概念的に示すものであり、後述する副変速機31内に設けられたハイクラッチH/C,リバースブレーキR/B及びローブレーキL/Bを、総称してクラッチCLと記載している。クラッチCLが締結状態のとき、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達し、ハイブリッド車両の走行に供される。
 エンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を大きくすると同時にセカンダリプーリ7との巻き掛け円弧径を小さくする。これにより、バリエータCVTはHigh側プーリ比(High側変速比)へのアップシフトを行う。High側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
 逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を小さくすると同時にセカンダリプーリ7との巻き掛け円弧径を大きくする。これにより、バリエータCVTはLow側プーリ比(Low側変速比)へのダウンシフトを行う。Low側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
 バリエータCVTは、プライマリプーリ6の回転数を検出するプライマリ回転数センサ6aと、セカンダリプーリ7の回転数を検出するセカンダリ回転数センサ7aとを有し、これら両回転数センサにより検出された回転数に基づいて実変速比を算出し、この実変速比が目標変速比となるように各プーリの油圧制御等が行われる。
 電動モータ2はファイナルギヤ組11を介して駆動輪5に常時結合され、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動される。
 インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に、電動モータ2への供給電力を加減することにより、電動モータ2を駆動力制御および回転方向制御する。
 なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、回生制動の用にも供する。この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけることにより、電動モータ2を発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。
 実施例1のハイブリッド車両は、クラッチCLを解放すると共にエンジン1を停止させた状態で電動モータ2を駆動することで、電動モータ2の動力のみがファイナルギヤ組11を経て駆動輪5に達し、電動モータ2のみによる電気走行モード(EVモード)で走行を行う。この間、クラッチCLを解放することで、停止状態のエンジン1及びバリエータCVTのフリクションを低減し、EV走行中の無駄な電力消費を抑制する。
 上記のEVモードによる走行状態において、エンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達するようになり、ハイブリッド車両はエンジン1および電動モータ2によるハイブリッド走行モード(HEVモード)で走行する。
 ハイブリッド車両を上記の走行状態から停車させる、もしくは、この停車状態に保つに際しては、駆動輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動する負圧式ブレーキブースタ17による倍力下で、ブレーキペダル踏力対応のブレーキ液圧を出力するマスタシリンダ18に接続されている。マスタシリンダ18により発生しブレーキ液圧によりキャリパ15を作動させてブレーキディスク14の摩擦制動を行う。
 マスタシリンダ18とキャリパ15との間には、キャリパ15に供給するブレーキ液圧を調整可能なブレーキアクチュエータ180が設けられている。このブレーキアクチュエータ180は、ポンプ用モータと複数の電磁弁から構成され、キャリパ15に供給するブレーキ液圧を増減圧する。例えば、回生制動時には、マスタシリンダ圧が高くなったとしても、電動モータ2が発生する回生制動力に相当する液圧分をキャリパ15から減圧することで運転者に制動時の違和感を与えないようにする。また、例えば登坂路等で車両停止し、その後、再発進する際、車両の後退を抑制するためにブレーキ液圧を供給するヒルホールド制御を行う。ヒルホールド制御時には、運転者のブレーキペダル解放時にキャリパ15内のブレーキ液圧を封入する制御や、ポンプ用モータによりキャリパ15内にブレーキ液を供給して必要な制動力を確保する制御を行う。ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで車輪5を駆動し、運転者の要求に応じた駆動力で走行する。
 ハイブリッドコントローラ21は、ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、バリエータCVTの変速制御と、副変速機31の変速制御及びクラッチCLの締結、解放制御と、バッテリ12の充放電制御とを実行する。このとき、ハイブリッドコントローラ21は、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、バッテリコントローラ25及びブレーキコントローラ26を介してこれら制御を行う。
 ハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセルペダル開度)APOを検出するアクセルペダル開度センサ27からの信号とが入力される。ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、バッテリコントローラ25及びブレーキコントローラ26との間で、内部情報のやり取りを行う。
 エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動される機械式オイルポンプO/P(もしくはポンプ用モータに駆動される電動式オイルポンプEO/P)からのオイルを媒体として、バリエータCVT(Vベルト式無段変速機構CVT)の変速制御および副変速機31の変速制御及びクラッチCLの締結、解放制御を行う。バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。ブレーキコントローラ26は、ハイブリッドコントローラ21からの指令に応答し、回生制動力と液圧による制動力との協調制御を行う他、ヒルホールド制御を行う。
 図2(a)は、実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、図2(b)は、実施例1のハイブリッド車両の駆動系における無段変速機4に内蔵された副変速機31内におけるクラッチCL(具体的には、H/C, R/B, L/B)の締結論理図である。図2(a)に示すように、副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
 複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。
 サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
 アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。
 キャリア31cとリングギヤ31rとをクラッチCLであるハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをクラッチCLであるリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をクラッチCLであるローブレーキL/Bにより適宜固定可能となす。
 副変速機31は、ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。
 図2(a)の無段変速機4は、全てのクラッチCL(H/C, R/B, L/B)を解放して副変速機31を中立状態にすることで、バリエータCVT(セカンダリプーリ7)と駆動輪5との間を切り離すことができる。
 図2(a)の無段変速機4は、エンジン駆動される機械式オイルポンプO/Pもしくはポンプ用モータに駆動される電動式オイルポンプEO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37-1、セカンダリプーリ圧ソレノイド37-2、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、バリエータCVTの変速制御を以下のように行う。尚、変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
 ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、機械式オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧する。また、機械式オイルポンプO/Pとライン圧ソレノイド35との間には電動式オイルポンプEO/Pが接続されており、変速機コントローラ24からの指令に応動してポンプ吐出圧を供給する。
 ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに向かわせることで、トルクコンバータT/Cを所要に応じて入出力要素間が直結されたロックアップ状態にする。
 プライマリプーリ圧ソレノイド37-1は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、セカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。
 セカンダリプーリ圧ソレノイド37-2は、変速機コントローラ24からのクランプ力指令に応じてライン圧PLをセカンダリプーリ圧に調圧し、これをセカンダリプーリ7に供給することにより、セカンダリプーリ7がVベルト8をスリップしないよう挟圧する。
 ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
 ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
 実施例1の電動式オイルポンプEO/Pの最大吐出能力は、機械式オイルポンプO/Pに比べて小さく設定されており、電動式オイルポンプEO/Pのモータ及びポンプの小型化を図っている。
 第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
 後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。
 〔変速制御処理について〕
 次に変速制御処理について説明する。変速機コントローラ24は、予め設定された変速マップを参照しながら、車両の運転状態(実施例1では車速VSP、プライマリ回転速度Npri、アクセルペダル開度APO)に応じて、無段変速機4を制御する。この変速マップでは、従来のベルト式無段変速機の変速マップと同様に、アクセルペダル開度APO毎に変速線が設定されており、無段変速機4の変速はアクセルペダル開度APOに応じて選択される変速線に従って行われる。この変速マップ上には副変速機31の変速を行うモード切換変速線が設定される。そして、無段変速機4の動作点がモード切換変速線を横切った場合、変速機コントローラ24はバリエータCVTと副変速機31の両方で協調変速を行い、高速モード-低速モード間の切換えを行う。尚、発進時等の低車速時では、副変速機31は前進第1速段が選択された状態で、主にバリエータCVTのプーリ比を制御することで変速制御が行われる。
 〔モード切り替え制御について〕
 図3は実施例1のハイブリッド車両の走行モードが設定されたモードマップである。図3のモードマップでは、縦軸の0より上はアクセルペダル開度に応じて設定され、0より下についてはブレーキスイッチ26のオン・オフ状態に応じて設定されている。アクセルペダル19が踏み込まれたEV力行領域にあっては、力行車速VSPXまでEVモードによる力行領域が設定されている。また、アクセルペダル19がほとんど踏み込まれていない状態(例えば、1/8よりも十分に小さなアクセルペダル開度)を表す領域には、力行車速VSPXよりも更に高車速の所定車速VSP1までEVモードによる力行領域が設定されている。この所定車速VSP1以下の領域はアクセルペダル19が踏み込まれた状態ではほとんど選択されることはない。
 一方、HEVモードによる走行中にアクセルペダル19を解放してコースティング(惰性)走行へ移行した場合や、HEVモードによる力行状態からブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る(HEV回生状態)。また、制動トルクが所定値b1より大きな制動トルクとなったときには、電動モータ2のみによる回生制動では制動力が不足すると判断してHEV回生制動状態とする。これにより、摩擦ブレーキも併用し、制動トルクを確保する。また、制動トルクが所定値b1未満であっても、車速が所定車速Vc以下のときには、EV回生状態から摩擦ブレーキによる制動に切り替える。電動モータ2が低回転状態で高い回生トルクを発生させることは望ましくないからである。
 ところでHEVモードのまま回生制動(HEV回生状態)を行うときは、クラッチCLが締結状態であるため、エンジン1の逆駆動力(エンジンブレーキ)分および無段変速機4のフリクション分だけ回生制動エネルギーの低下を招くこととなり、エネルギー回生効率が悪い。そのため、HEVモードによる走行中に回生制動が開始され、所定車速VSP1を下回ると、クラッチCLの解放によりエンジン1およびバリエータCVTを駆動輪5から切り離してEVモードによる走行へと移行する。これによりEV回生状態とし、エンジン1および無段変速機4によるフリクションを低減し、その分だけエネルギー回生量を稼げるようにする。また、EVモードにより走行する際には、燃費の観点からコースティング走行中に実行されていたエンジン1への燃料噴射の中止(フューエルカット)がクラッチCLの解放時も継続されるよう、エンジン1への燃料噴射の再開(フューエルリカバー)を禁止することでエンジン1を停止させる。
 〔HEVモードからEVモードに遷移したときの変速制御について〕
 次に、HEVモードからEVモードに遷移したときの変速制御について説明する。例えば図3のモードマップ内に記載された矢印(a)に示すように、HEV回生領域からブレーキ操作によって減速し、EV回生領域に入ることでEV回生状態となると、クラッチCLを解放し、エンジン1を停止させる。その後、図3の矢印(b)に示すように、アクセルペダル19を踏み込むことで要求駆動力が所定以上となると、HEV力行領域に移行する。同様に、例えば図3の矢印(c)に示すように、アクセルペダル19が踏みこまれたHEV力行領域からブレーキ操作によってEV回生領域に入ることでEV回生状態となると、クラッチCLを解放し、エンジン1を停止させる。その後、図3の矢印(d)に示すように、アクセルペダル19を踏み込むことで要求駆動力が所定以上となると、HEV力行領域に移行する。このときは、エンジン1をスタータモータ3により再始動させると共に、クラッチCLを締結してEVモードからHEVモードへ切り替える。
 このように、アクセルペダル19を頻繁に解放したり、再踏み込みする癖のある運転者が運転している場合や、主としてそのような運転を余儀なくされる走行環境下で車両を使用する場合、もしくはブレーキペダル16を踏み込んで減速している状態であって車両停止前にブレーキを放し、アクセルペダル19を踏み込むといった場合(以下、チェンジマインドと記載する。)には、必然的にEVモードからHEVモードへの切り替えが行われる。
 このとき、最Low変速比に変速させておくことも考えられる。しかしながら、チェンジマインドにより比較的高車速側でEVモードからHEVモードに切り替える場合、エンジン回転数を極めて高く上昇させなければ駆動輪側の回転数と同期を図ることができず、車速によってはエンジン回転数がオーバーレブ(機械的な回転数上限値)となり、クラッチCLにおける入力側回転数(セカンダリ回転数)が出力側回転数(駆動輪回転数)よりも低い状態しか得ることができない。この状態でクラッチCLを一気に締結すると、加速要求を出力しているにも関わらず引きショックを発生してしまい、運転者に違和感となる。この違和感を回避するには、エンジン1及び無段変速機4の両方を使って駆動輪側との回転同期を図った後でクラッチCLを締結する必要が有り、HEVモードへの切り替えに時間がかかってしまうため、運転者の加速要求に対して応答性が悪化するおそれがある。
 仮に、EVモードの状態であっても、常時バリエータCVTの変速比を変速マップに応じて変速させておけば、どのタイミングでEVモードからHEVモードへの切り替えが起こったとしても、クラッチCLに相対回転が生じていないため、素早くモードを切り替えられる。しかし、非回転状態のバリエータCVTを強制的に変速させるには電動式オイルポンプEO/Pの出力として非常に大きな出力を要求することとなり、エネルギー消費量の増大に加えて大型化に伴う車両搭載性の悪化を招くおそれがある。また、ある程度バリエータCVTを回転させて変速比を維持する場合には、クラッチCLを締結(スリップ締結を含む)する必要があり、フリクション増大に伴う燃費の悪化を招く。そこで、実施例1ではHEVモードによる減速中にEVモード(EV回生状態)に切り替える要求がなされたときは、その時点における無段変速機4の変速比のまま出来成りの状態としている。
 次に、HEVモードからEVモードにモード遷移した後、EVモードのまま車両停止した場合の課題について説明する。基本的に停車前の走行状態においてHEVモードからEVモードに遷移しているため、バリエータCVTの変速比は最Low変速比よりもHigh側の変速比となる場面が想定される。その後、運転者がアクセルペダルを踏み込み、発進要求を行うと、運転者のアクセルペダル踏み込み量が小さいときはEVモードのまま発進し、アクセルペダルの踏み込み量が大きいときはHEVモードとして発進することになる。尚、HEVモードとして発進するとは、実際にエンジン1が始動しているか否かではなく、モードマップ上でHEVモードが選択されることを含む。
 次に、アクセルペダルの踏み込み量が小さく、EVモードで発進した場合について説明する。発進後の路面に段差があると、電動モータ2のトルクが段差乗り越えに必要なトルクを上回っていれば、段差を乗り越えることができる。しかしながら、電動モータ2のトルクが段差乗り越えに必要なトルク以下の場合や、電動モータ2が出力可能な最大トルクを出力したとしても段差乗り越えに必要なトルクを下回っている場合には、段差を乗り越えることができない。
 ここで、運転者が段差の乗り越えを希望する場合、アクセルペダルを更に踏み込むことでHEVモードに遷移し、エンジン1が再始動されると共に、クラッチCLが締結されてエンジントルクを駆動輪5に付与することとなる。ところが、エンジントルクを出力したとしても、バリエータCVTの変速比がHigh側の状態で維持されていた場合、エンジントルクが小さくなった状態で駆動輪5に伝達されるため、段差乗り越えに必要なトルクを駆動輪5に伝達することが困難であった。
 そこで、実施例1では、EVモードでの発進後に段差の有無を判定し、段差がある場合には、バリエータCVTの変速比を所定の段差乗り越え可能変速比G1にダウンシフトすることとした。ここで、所定の段差乗り越え可能変速比G1とは、「最Low変速比」でもよいし、「最Low変速比よりもHigh側であって、かつ、一般道路に存在する最も厳しい段差条件をクリアできる最Low付近の変速比」であってもよい。
 図4,5は実施例1の段差判定に伴う強制ダウンシフト制御処理を表すフローチャートである。
 ステップS1では、EVモードによる回生制動状態(以下、EV回生状態)から車両停止したか否かを判断し、EV回生状態からの車両停止であればステップS2に進み、それ以外の場合は本制御フローを終了する。EV回生状態からの車両停止の場合、バリエータCVTの変速比が最Low変速比よりもHigh側の可能性があり、それ以外の車両停止であれば最Low変速比にダウンシフトされているからである。
 ステップS2では、ブレーキペダルが離されてブレーキスイッチ26がOFFか否かを判断し、ブレーキスイッチ26がOFFの場合はステップS3に進み、それ以外の場合は本ステップを繰り返す。ブレーキスイッチ26がOFFの場合は、発進の可能性が高いからである。
 ステップS3では、アクセルペダルが踏み込まれたか否か、すなわちアクセルペダル開度APOが発進意図を表す所定開度以上か否かを判断し、所定開度以上の場合は発進意図があると判断してステップS4に進み、それ以外の場合は本ステップを繰り返す。
 ステップS4では、モードマップから現在の走行モードがEVモードか否かを判断し、EVモードの場合はステップS5に進み、それ以外の場合はステップS20に進んでHEV発進処理を実行する。
 ステップS5では、運転者のアクセルペダル開度APOに応じたモータトルクを電動モータ2から出力する。
 ステップS6では、段差判定を行い、段差有りと判定されたときはステップS7に進み、段差が無いと判定された場合は本制御フローを終了し、そのままEVモードによる走行を継続する。段差判定では、アクセルペダル開度APOが運転者の段差乗り越え意図を表す所定値以上、もしくは、モータトルクが所定トルク以上であって、かつ、車速が車両停車状態を表す所定車速未満の場合を段差有りと判定する。すなわち、運転者がアクセルペダルを踏み込んで走行意図を示し、モータトルクも走行に必要な所定トルク以上のトルクを出力しているにも関わらず車速が上昇してこない場面では、段差によって車両の前進が妨げられていると考えられるからである。
 ステップS7では、現在のバリエータCVTの変速比Gが段差乗り越え可能変速比G1以上(Low側)か否かを判断し、Low側のときは既にバリエータCVTの変速比Gが十分なトルクを出力可能な状態にあると判断してステップS11に進み、強制ダウンシフトを禁止することで、無駄なエンジン始動等を回避する。一方、High側のときはバリエータCVTを段差乗り越え可能変速比G1に向けて強制ダウンシフトする必要があると判断してステップS8に進む。尚、変速比の検出にあたっては、前回のHEVモードからEVモードへ遷移したときの変速比をメモリ等に記憶しておき、記憶された変速比を用いて判断してもよいし、バリエータCVTの溝幅を検知可能なセンサ等を備えている場合には、その溝幅に基づいて変速比を検知してもよく、特に限定しない。
 ステップS8では、スタータモータ3によりエンジンを再始動(以下、エンジンONと記載する。)を行う。
 ステップS81では、ヒルホールド判定を行い、ヒルホールド制御が必要と判断した場合はステップS82に進んでヒルホールド制御をONとし、不要と判断した場合はステップS9に進む。すなわち、段差に当接後、運転者がブレーキペダルを踏み込んで車両停車している場合には車両が移動しないため、特にヒルホールド制御は行わない。一方、運転者がブレーキペダルを踏み込んでいない場合には、車両の移動を規制するためにヒルホールド制御をONとし、摩擦ブレーキにより車両の移動を規制する。
 ステップS9では、エンジン1によりバリエータCVTが回転する状態を確保し、エンジン1により駆動されるオイルポンプO/Pを油圧源としてバリエータCVTを段差乗り越え可能変速比G1に向けて強制的にダウンシフトする(以下、強制ダウンシフトと記載する。)。
 ステップS10では、変速比が段差乗り越え可能変速比G1に到達したか否かを判断し、到達しているときにはステップS11に進み、到達していないときにはステップS9に戻って強制ダウンシフトを継続する。
 ステップS11では、運転者のアクセルペダルの踏み込みによりHEVモードに移行したか否かを判断し、HEVモードのときはステップS15に進み、EVモードが継続している場合はステップS12に進み、ステップS8において始動したエンジン1をOFFとする。
 ステップS13では、ヒルホールド制御がONか否かを判断し、電動モータ2のモータトルクが所定値以上の場合はステップS14に進んでヒルホールド制御をOFFとし、所定値未満の場合はヒルホールド制御を継続することで車両停止を維持する。
 尚、運転者が段差に当接した時点からアクセルペダルの踏み込み量を増大させていなければ、車両は段差を乗り越えることができないため、車両は継続的に停車状態となる。また、図3のモードマップに示すように、車速が0km/hの付近では、EVモードの領域がアクセル開度軸方向に拡大されていることから、このEVモードの領域内でアクセルペダルを踏み込み、段差乗り越えに必要なトルクが確保された場合には、EVモードのまま段差を乗り越えて走行することもできる。
 ステップS15では、エンジン1がONか否かを判断し、強制ダウンシフトが行われたことでONとなっている場合にはステップS17に進み、強制ダウンシフトが行われずONとなっていない場合にはステップS16に進んでエンジン1をONとする。
 ステップS17では、クラッチCLをONとしてHEVモードにより走行する。
 ステップS171では、ヒルホールド制御がONか否かを判断し、電動モータ2のモータトルクが所定値以上、かつ、クラッチCLの伝達トルク容量が所定値以上の場合は車両が後退するおそれがないためステップS172に進んでヒルホールド制御をOFFとし、いずれかの条件を満たさない場合はヒルホールド制御を継続することで車両停止を維持する。
 図5は実施例1のHEV発進処理を表すフローチャートである。
 ステップS21では、エンジン1をONとする。
 ステップS22では、クラッチCLをONとする。
 ステップS23では、段差判定を行い、段差有りと判定されたときはステップS24に進み、段差が無いと判定された場合は本制御フローを終了し、そのままHEVモードによる走行を継続する。ここで、段差判定では、アクセルペダル開度APOが運転者の段差乗り越え意図を表す所定値以上、エンジントルクが所定トルク以上、モータトルクが所定トルク以上であって、かつ、車速が車両停車状態を表す所定車速未満の場合を段差有りと判定する。すなわち、運転者がアクセルペダルを踏み込んで走行意図を示し、かつ、エンジントルクもモータトルクも走行に必要な所定トルク以上のトルクを出力しているにも関わらず車速が上昇してこない場面では、段差によって車両の前進が妨げられていると考えられるからである。尚、ステップS6における段差判定では、アクセルペダル開度条件とモータトルク条件のいずれかが成立していることを条件とした。これは、EVモードではアクセルペダル開度とモータトルクとが相関関係にあるからである。一方、HEVモードでは、発電モードによってモータトルクが回生トルクを出力している場合も考えられる。この場合には、特に強制ダウンシフトを行わなくても、モータトルクが駆動トルクを出力する余地があるため、アクセルペダル開度条件とモータトルク条件は両方が成立していることとした。
 ステップS24では、現在のバリエータCVTの変速比Gが段差乗り越え可能変速比G1以上(Low側)か否かを判断し、Low側のときは既にバリエータCVTの変速比Gが十分なトルクを出力可能な状態にあると判断して本制御フローを終了し、強制ダウンシフトを禁止する。一方、High側のときはバリエータCVTを段差乗り越え可能変速比G1に向けて強制ダウンシフトする必要があると判断してステップS25に進む。
 ステップS25では、ヒルホールド制御をONとする。具体的には、ブレーキアクチュエータ180によりキャリパ15内にブレーキ液を供給し、駆動輪5及び/又は従動輪を含むタイヤの転がりを防止する。すなわち、段差に当接した際、タイヤが若干段差を乗り上げ、乗り越える直前で停止している場合が想定される。このとき、次のステップS26以降でクラッチCLを一旦OFFすると、エンジントルクが伝達できず車両が押し戻されて移動するおそれがある。そこで、ヒルホールド制御をONとし、タイヤの回転を規制することで車両の移動を抑制している。
 ステップS26では、クラッチCLをOFFとする。すなわち、バリエータCVTを強制ダウンシフトするには、バリエータCVTを回転させる必要がある。車両停止状態でクラッチCLを締結した状態では、バリエータCVTを回転させることができず、ダウンシフトできないため、一旦、クラッチCLを解放し、バリエータCVTが回転可能な状態とする。
 ステップS27では、強制ダウンシフトを実行する。このように、HEVモード中に強制ダウンシフトを行う際、駆動輪5側からバリエータCVTに負荷が入力されないため、バリエータCVTの変速比を素早く段差乗り越え可能変速比G1までダウンシフトさせることができる。尚、強制ダウンシフトは、段差判定後に行われる。言い換えると、段差判定がなければ、特に強制ダウンシフトを行わないため、無駄なダウンシフトを最小限に抑えることで運転性に与える影響を最小限とする。
 ステップS28では、変速比が段差乗り越え可能変速比G1に到達したか否かを判断し、到達しているときにはステップS29に進み、到達していないときにはステップS27に戻って強制ダウンシフトを継続する。
 ステップS29では、クラッチCLをONとする。
 ステップS30では、ヒルホールド制御をOFFとし、HEVモードにより発進する。このとき、バリエータCVTのダウンシフトが完了していることから、段差を乗り越えるのに必要な駆動トルクを確保でき、車両が後退することなく段差を乗り越えて発進できる。
 図6は実施例1のハイブリッド車両において段差判定後にアクセルペダルを踏み込んでHEVモードにより発進する状態を表すタイムチャートである。
 時刻t1において、運転者がブレーキペダルを離してブレーキスイッチ26がONからOFFとなり、アクセルペダルを踏み込んで発進を開始する。
 時刻t2において、段差に当接し車両が進めなくなるため、車速の上昇が停止し、モータ回転数MotorREVも同様に停止する。ただし、運転者はアクセルペダルを踏み込んだままの状態であるため、モータトルクMotorTRQは増大を継続する。このとき、モータトルクMotorTRQが段差乗り越え意図を表す所定値以上であって、車速が車両停止状態を表す所定車速未満であるため、段差有りと判定される。この時点で、現在のモータトルクMotorTRQを出力し続けても段差を乗り越えることはできないと判断し、一旦モータトルクMotorTRQを抑制してモータ駆動回路への負担を軽減すると共に無駄なバッテリ消費を抑制する。尚、後述するようにヒルホールド制御もONとされるため、車両が後退することを回避できる。また、HEVモードへの遷移が行われる可能性が高いと判断し、クラッチCLにはガタ詰め用の伝達トルク容量が設定され、クラッチCLの締結要求が来た時に即座に伝達トルク容量が発生可能な状態を確保する。運転者は段差に当接後、アクセルペダルを更に踏み込んでおり、これによりEVモードからHEVモードへの遷移要求が行われる。
 時刻t3において、HEVモードへのモード遷移の前に強制ダウンシフトを実行する。具体的には、エンジン1をONとし、バリエータCVTの目標変速比G*を段差乗り越え可能変速比G1に設定する。そして、エンジン回転数が上昇すると、バリエータCVTがダウンシフトを開始する。
 時刻t4において、バリエータCVTの変速比Gが段差乗り越え可能変速比G1に到達すると、EVモードからHEVモードへのモード遷移が開始され、抑制されていたモータトルクMotorTRQを復帰させると共にエンジントルクEngTRQを増大させる。このとき、バリエータCVTが十分にダウンシフトしているため、エンジントルクEngTRQを大きくして駆動輪5に伝達できる。また、クラッチCLの伝達トルク容量を徐々に増大させ、それに伴ってバリエータCVTのプライマリ回転数Npri及びセカンダリ回転数Nsecも駆動輪回転数Noutに近づく。
 時刻t5において、クラッチCLの伝達トルク容量が段差乗り越えに必要なトルク以上となると、ヒルホールド制御をOFFとし、車両が段差を乗り越えて発進する。
 図7は実施例1のハイブリッド車両において段差判定後にアクセルペダルを維持してEVモードを継続する状態を表すタイムチャートである。
 時刻t1において、運転者がブレーキペダルを離してブレーキスイッチ26がONからOFFとなり、アクセルペダルを踏み込んで発進を開始する。
 時刻t2において、段差に当接し車両が進めなくなるため、車速の上昇が停止し、モータ回転数MotorREVも同様に停止する。ただし、運転者はアクセルペダルを踏み込んだままの状態であるため、モータトルクMotorTRQは増大を継続する。このとき、モータトルクMotorTRQが段差乗り越え意図を表す所定値以上であって、車速が車両停止状態を表す所定車速未満であるため、段差有りと判定される。この時点で、現在のモータトルクMotorTRQを出力し続けても段差を乗り越えることはできないと判断し、一旦モータトルクMotorTRQを抑制してモータ駆動回路への負担を軽減すると共に無駄なバッテリ消費を抑制する。尚、ヒルホールド制御もONとされるため、車両が後退することを回避できる。また、HEVモードへの遷移が行われる可能性が高いと判断し、クラッチCLにはガタ詰め用の伝達トルク容量が設定され、クラッチCLの締結要求が来た時に即座に伝達トルク容量が発生可能な状態を確保する。運転者は段差に当接後、アクセルペダルの踏み込み量を維持しており、これによりEVモードが継続的に要求される。
 時刻t31において、HEVモードへのモード遷移の前に強制ダウンシフトを実行する。具体的には、エンジン1をONとし、バリエータCVTの目標変速比G*を段差乗り越え可能変速比G1に設定する。そして、エンジン回転数Neが上昇すると、バリエータCVTがダウンシフトを開始する。
 時刻t41において、バリエータCVTの変速比Gが段差乗り越え可能変速比G1に到達すると、継続的にEVモードが要求されているため、エンジン1がOFFとされ、抑制されていたモータトルクMotorTRQを復帰させる。また、EVモードが要求されているため、クラッチCLの伝達トルク容量はガタ詰めが行われた状態を維持する。また、エンジン1のOFFに伴ってバリエータCVTのプライマリ回転数Npri及びセカンダリ回転数Nsecも低下して駆動輪回転数Noutに近づく。
 時刻t51において、バリエータCVTのダウンシフトが行われた状態でEVモードとなり、ヒルホールド制御もOFFとされるものの、モータトルクMotorTRQの作用によって車両が後退することはない。これ以後、例えば、運転者がアクセルペダルを踏み込み、HEVモードへのモード遷移要求がなされた場合には、既にバリエータCVTの強制ダウンシフトが完了していることから、エンジン1をONとし、クラッチCLの伝達トルク容量を上昇させることで即座に段差を乗り越えた発進が可能となる。
 図8は実施例1のハイブリッド車両においてHEVモードで走行中に段差判定した場合のタイムチャートである。
 時刻t11において、運転者がブレーキペダルを離し、その後、アクセルペダルを踏み込んで発進を開始する。
 時刻t12において、EVモードからHEVモードへの遷移要求が出力され、エンジン1がONとされると共にクラッチCLにはガタ詰め用の伝達トルク容量が設定される。そして、エンジン回転数Neの上昇に伴ってバリエータCVTの各プーリ回転数も上昇する。このとき、バリエータCVTの変速比Gは段差乗り越え可能変速比G1よりもHigh側となっており、プライマリ回転数Npriよりもセカンダリ回転数Nseが大きくなる。そして、エンジン1の完爆に伴ってクラッチCLの締結圧が徐々に増大する。
 時刻t13において、クラッチCLの伝達トルク容量が所定値以上になると、HEVモードによりエンジントルクEngTRQ及びモータトルクMotorTRQが共に増大する。
 時刻t14において、アクセルペダル開度が所定値以上であって、モータトルクMotorTRQが所定値以上、エンジントルクEngTRQが所定値以上であるにも関わらず、車速が所定車速未満の場合は段差に当接したと判断される。このとき、ヒルホールド制御がONとされ、強制ダウンシフト処理を開始する。具体的には、クラッチCLを解放し、エンジントルクEngTRQ及びモータトルクMotorTRQを低下させ、バリエータCVTの目標変速比を段差乗り越え可能変速比G1に設定する。これにより、バリエータCVTの変速比が段差乗り越え可能変速比G1に変更され、プライマリ回転数Npriがセカンダリ回転数Nseよりも大きくなる。
 時刻t15において、バリエータCVTの変速比Gが段差乗り越え可能変速比G1に到達すると、クラッチCLの伝達トルク容量を徐々に増大させる。そして、時刻t16において、クラッチCLの伝達トルク容量が所定値以上になると、エンジントルクEngTRQ及びモータトルクMotorTRQをアクセルペダル開度に応じた値に復帰させると共にヒルホールド制御をOFFとし、車両が段差を乗り越えて発進する。
 以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)エンジン1と、エンジン1の出力軸に結合されたバリエータCVTと、バリエータCVTの出力軸に結合されたクラッチCLと、クラッチCLの出力軸に結合された駆動輪5と、駆動輪5に結合された電動モータ2(モータ)と、運転状態に応じてエンジン1及び電動モータ2の出力と、クラッチCLの締結及び解放と、無段変速機4の変速比とを制御するハイブリッドコントローラ21(制御手段)と、を備えたハイブリッド車両の制御装置において、段差の有無を判定するステップS6(段差判定手段)を有し、ハイブリッドコントローラ21は、段差有りと判定され、かつ、EVモード(クラッチCLを解放しエンジン1を停止して電動モータ2の駆動力により走行)のときは、クラッチCLを解放したままエンジン1を再始動し、バリエータCVTを所定の段差乗り越え可能変速比G1へダウンシフトする。
 すなわち、電動モータ2の駆動力により走行しているときに段差があるときは、エンジン1によりバリエータCVTを段差乗り越え可能変速比へダウンシフトするため、電動モータ2の駆動力が不足し、エンジン1の駆動力を用いる場合であっても、バリエータCVTによってエンジントルクが小さくなることがなく、段差を乗り越えることができる。
 (2)ステップS6にて段差有りと判定され、かつ、HEVモード(クラッチCLを締結しエンジン1の駆動力により走行)のときは、クラッチCLを解放しバリエータCVTを所定の段差乗り越え可能変速比G1へダウンシフトする。
 このように、HEVモード中に強制ダウンシフトを行う際、駆動輪5側からバリエータCVTに負荷が入力されないため、バリエータCVTの変速比を素早く段差乗り越え可能変速比G1までダウンシフトさせることができる。また、強制ダウンシフトは、段差判定後に行われる。言い換えると、段差判定がなければ、特に強制ダウンシフトを行わないため、無駄なダウンシフトを最小限に抑えることで運転性に与える影響を最小限にできる。
 (3)駆動輪5に制動力を付与可能なブレーキアクチュエータ180(制動手段)を有し、ハイブリッドコントローラ21は、クラッチCLの解放に併せて駆動輪5に制動力を付与する。
 すなわち、段差に当接した際、タイヤが若干段差を乗り上げ、乗り越える直前で停止している場合が想定される。このとき、次のステップS26以降でクラッチCLを一旦OFFすると、エンジントルクが伝達できず車両が押し戻されて移動するおそれがある。そこで、ヒルホールド制御をONとし、タイヤの回転を規制することで車両の移動を抑制できる。
 (4)ハイブリッドコントローラ21は、ステップS6にて段差有りと判定されたとしても、ステップS7やステップS24に示すように、バリエータCVTの変速比Gが段差乗り越え可能変速比G1以上、すなわち変速比Gが段差乗り越え可能変速比G1よりもLow側のときは、強制ダウンシフトを行うステップを迂回してダウンシフトを禁止する。
 すなわち、変速比Gが段差乗り越え可能変速比G1よりもLow側のときは既にバリエータCVTの変速比Gが十分なトルクを出力可能な状態にあるため、強制ダウンシフトを禁止することで、無駄なエンジン始動やクラッチ解放等を回避することができる。
 (他の実施例)
 以上、本願発明を各実施例に基づいて説明したが、上記構成に限られず、他の構成であっても本願発明に含まれる。実施例ではスタータモータ3によりエンジン再始動を行う構成を示したが、他の構成であっても構わない。具体的には、近年、アイドリングストップ機能付き車両であって、オルタネータをモータ・ジェネレータに置き換え、このモータ・ジェネレータにオルタネータ機能を加えてエンジン始動機能を付加することにより、アイドリングストップからのエンジン再始動時に、スタータモータではなく、このモータ・ジェネレータによりエンジン再始動を行う技術が実用化されている。本願発明も上記のようなモータ・ジェネレータによりエンジン再始動を行う構成としてもよい。
 また、実施例では、モードマップ内での判断に関し、縦軸の負の領域についてブレーキスイッチ26のONもしくはOFFに基づいて判断したが、これに限定されるものではなく、ブレーキペダル16のストロークセンサの出力値に基づいて判断する、もしくはマスタシリンダ圧等を検出するブレーキ液圧センサの出力値に基づいて判断するようにしてもよい。

Claims (4)

  1.  エンジンと、
     前記エンジンの出力軸に結合された無段変速機と、
     前記無段変速機の出力軸に結合されたクラッチと、
     前記クラッチの出力軸に結合された駆動輪と、
     前記駆動輪に結合されたモータと、
     運転状態に応じて前記エンジン及び前記モータの出力と、前記クラッチの締結及び解放と、前記無段変速機の変速比とを制御する制御手段と、
     を備えたハイブリッド車両の制御装置において、
     段差の有無を判定する段差判定手段を有し、
     前記制御手段は、段差有りと判定され、かつ、前記クラッチを解放し前記エンジンを停止して前記モータの駆動力により走行しているときは、前記クラッチを解放したまま前記エンジンを再始動し、前記無段変速機を所定の段差乗り越え可能変速比へダウンシフトすることを特徴とするハイブリッド車両の制御装置。
  2.  請求項1に記載のハイブリッド車両の制御装置において、
     前記制御手段は、段差有りと判定され、かつ、前記クラッチを締結し前記エンジンの駆動力により走行しているときは、前記クラッチを解放し前記無段変速機を所定の段差乗り越え可能変速比へダウンシフトすることを特徴とするハイブリッド車両の制御装置。
  3.  請求項2に記載のハイブリッド車両の制御装置において、
     前記駆動輪に制動力を付与可能な制動手段を有し、
     前記制御手段は、前記クラッチの解放に併せて前記駆動輪に制動力を付与することを特徴とするハイブリッド車両の制御装置。
  4.  請求項1ないし3いずれか一つに記載のハイブリッド車両の制御装置において、
     前記制御手段は、段差有りと判定されたとしても、前記無段変速機の変速比が前記段差乗り越え可能変速比以上のときは、前記ダウンシフトを禁止することを特徴とするハイブリッド車両の制御装置。
PCT/JP2015/052330 2014-03-20 2015-01-28 ハイブリッド車両の制御装置 WO2015141286A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/121,827 US9963141B2 (en) 2014-03-20 2015-01-28 Hybrid vehicle control device with transmission control for a level difference of a road surface
EP15765055.7A EP3121082B1 (en) 2014-03-20 2015-01-28 Hybrid vehicle controller
JP2016508571A JP6113910B2 (ja) 2014-03-20 2015-01-28 ハイブリッド車両の制御装置
CN201580015259.6A CN106103225B (zh) 2014-03-20 2015-01-28 混合动力车辆的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-057585 2014-03-20
JP2014057585 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141286A1 true WO2015141286A1 (ja) 2015-09-24

Family

ID=54144266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052330 WO2015141286A1 (ja) 2014-03-20 2015-01-28 ハイブリッド車両の制御装置

Country Status (5)

Country Link
US (1) US9963141B2 (ja)
EP (1) EP3121082B1 (ja)
JP (1) JP6113910B2 (ja)
CN (1) CN106103225B (ja)
WO (1) WO2015141286A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097777A (zh) * 2016-02-12 2017-08-29 福特全球技术公司 用于管理扭矩的系统和方法
JP2020104760A (ja) * 2018-12-28 2020-07-09 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2023051532A (ja) * 2021-09-30 2023-04-11 本田技研工業株式会社 無段変速機を備えたモータ駆動車両およびその制御方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013237A1 (ja) * 2014-07-25 2016-01-28 ジヤトコ株式会社 無段変速機およびその制御方法
DE102014016172A1 (de) * 2014-11-03 2016-05-04 Audi Ag Antriebsvorrichtung für ein hybridgetriebenes Kraftfahrzeug
FR3040672B1 (fr) * 2015-09-07 2017-10-13 Renault Sas Procede de gestion de l'energie dans un vehicule automobile hybride
KR101986472B1 (ko) * 2015-11-09 2019-06-05 닛산 지도우샤 가부시키가이샤 제구동력 제어 방법 및 제구동력 제어 장치
JP6374431B2 (ja) 2016-03-29 2018-08-15 株式会社Subaru 駆動制御機構および駆動制御装置
US10017044B2 (en) * 2016-05-16 2018-07-10 GM Global Technology Operations LLC Hybrid powertrain system
US10421362B2 (en) * 2016-09-30 2019-09-24 Faraday&Future Inc. Regenerative braking control method and system
DE102016221045A1 (de) * 2016-10-26 2018-04-26 Audi Ag Getriebeanordnung für ein Hybridfahrzeug
JP6694405B2 (ja) * 2017-03-17 2020-05-13 本田技研工業株式会社 輸送機器の制御装置
US10857992B2 (en) * 2017-04-04 2020-12-08 Nissan Motor Co., Ltd. Control method for hybrid vehicles
KR101876740B1 (ko) * 2017-04-17 2018-07-10 현대자동차주식회사 하이브리드 자동차 및 그를 모드 전환 방법
JP6827118B2 (ja) * 2017-07-14 2021-02-10 ヤマハ発動機株式会社 車両
US10704618B2 (en) * 2017-10-16 2020-07-07 Ford Global Technologies, Llc Methods and system for operating a driveline disconnect clutch
JP2019127225A (ja) * 2018-01-26 2019-08-01 トヨタ自動車株式会社 ハイブリッド車両
KR102610753B1 (ko) * 2018-12-11 2023-12-08 현대자동차주식회사 하이브리드 차량 제어 장치, 그를 포함한 시스템 및 그 방법
JP7232092B2 (ja) * 2019-03-20 2023-03-02 株式会社Subaru 車両の制御装置
US10774930B1 (en) * 2019-05-21 2020-09-15 GM Global Technology Operations LLC Ratio selection method for a continuously variable transmission during deceleration by braking
DE102019125954A1 (de) * 2019-08-15 2021-02-18 Schaeffler Technologies AG & Co. KG Beschleunigungsverfahren für einen Hybrid-Antriebsstrang
CN114542699B (zh) * 2022-03-18 2024-01-12 潍柴动力股份有限公司 一种自动变速器坡道升降挡优化方法、控制器及机动车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020831A (ja) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd 電動車両の段差通過時駆動力制御装置
JP2007278367A (ja) * 2006-04-05 2007-10-25 Toyota Motor Corp 車両およびその制御方法
WO2012137278A1 (ja) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 車両および車両の制御方法
JP2013086649A (ja) * 2011-10-18 2013-05-13 Jatco Ltd ハイブリッド車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803205B2 (ja) 1998-12-28 2006-08-02 本田技研工業株式会社 ハイブリッド自動車
JP3550067B2 (ja) * 2000-01-17 2004-08-04 本田技研工業株式会社 ハイブリッド車両の制御装置
US20030184152A1 (en) * 2002-03-25 2003-10-02 Ford Motor Company Regenerative braking system for a hybrid electric vehicle
US8197384B2 (en) 2007-07-09 2012-06-12 Toyota Jidosha Kabushiki Kaisha Engine start-up device for hybrid vehicle power transmitting device
US8738258B2 (en) * 2008-03-14 2014-05-27 Ford Global Technologies, Llc Shift hunting control of a hybrid electric vehicle
JP2012046106A (ja) * 2010-08-27 2012-03-08 Toyota Motor Corp ハイブリッド自動車
JP2012091583A (ja) * 2010-10-25 2012-05-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置
KR101202832B1 (ko) * 2012-01-27 2012-11-21 서광모 무단변속기가 구비된 전기 차량의 동력전달장치
JP2015134508A (ja) 2012-03-26 2015-07-27 ジヤトコ株式会社 ハイブリッド車両の電気走行減速時変速制御装置
KR101371465B1 (ko) 2012-08-09 2014-03-10 기아자동차주식회사 하이브리드 전기자동차의 출발 제어장치 및 방법
GB2508670A (en) * 2012-12-10 2014-06-11 Jaguar Land Rover Ltd Hybrid vehicle and boost control for gradients

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020831A (ja) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd 電動車両の段差通過時駆動力制御装置
JP2007278367A (ja) * 2006-04-05 2007-10-25 Toyota Motor Corp 車両およびその制御方法
WO2012137278A1 (ja) * 2011-04-01 2012-10-11 トヨタ自動車株式会社 車両および車両の制御方法
JP2013086649A (ja) * 2011-10-18 2013-05-13 Jatco Ltd ハイブリッド車両の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107097777A (zh) * 2016-02-12 2017-08-29 福特全球技术公司 用于管理扭矩的系统和方法
CN107097777B (zh) * 2016-02-12 2022-09-20 福特全球技术公司 用于管理扭矩的系统和方法
JP2020104760A (ja) * 2018-12-28 2020-07-09 本田技研工業株式会社 ハイブリッド車両の制御装置
CN111391814A (zh) * 2018-12-28 2020-07-10 本田技研工业株式会社 混合动力车辆的控制装置
JP2023051532A (ja) * 2021-09-30 2023-04-11 本田技研工業株式会社 無段変速機を備えたモータ駆動車両およびその制御方法
JP7277535B2 (ja) 2021-09-30 2023-05-19 本田技研工業株式会社 無段変速機を備えたモータ駆動車両およびその制御方法

Also Published As

Publication number Publication date
EP3121082A1 (en) 2017-01-25
JPWO2015141286A1 (ja) 2017-04-06
CN106103225B (zh) 2018-03-30
EP3121082A4 (en) 2017-04-19
US20170066437A1 (en) 2017-03-09
JP6113910B2 (ja) 2017-04-12
EP3121082B1 (en) 2018-12-19
US9963141B2 (en) 2018-05-08
CN106103225A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6113910B2 (ja) ハイブリッド車両の制御装置
JP5955455B2 (ja) ハイブリッド車両
JP6115978B2 (ja) ハイブリッド車両の制御装置
JP5835500B2 (ja) ハイブリッド車両の制御装置
JP6052775B2 (ja) ハイブリッド車両の制御装置
JP6025628B2 (ja) ハイブリッド車両の制御装置
JP6569095B2 (ja) ハイブリッド車両の制御装置
JP6340605B2 (ja) ハイブリッド車両の制御装置
JPWO2014065302A1 (ja) ハイブリッド車両のモード切り替え制御装置
JP6330190B2 (ja) ハイブリッド車両の制御装置
JP6113478B2 (ja) ハイブリッド車両の制御装置
JP6303783B2 (ja) ハイブリッド車両の制御装置
JP6273505B2 (ja) ハイブリッド車両の制御装置
JP2014113902A (ja) ハイブリッド車両のモード切り替え制御装置
WO2014091838A1 (ja) ハイブリッド車両の制御装置
WO2014073435A1 (ja) ハイブリッド車両の制御装置
JP2015143050A (ja) ハイブリッド車両の制御装置
JP2014091438A (ja) ハイブリッド車両の変速制御装置
JP6330189B2 (ja) ハイブリッド車両の制御装置
WO2015019785A1 (ja) フライホイール回生システム及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15121827

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015765055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765055

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE