WO2015141211A1 - 継目無金属管の製造方法 - Google Patents
継目無金属管の製造方法 Download PDFInfo
- Publication number
- WO2015141211A1 WO2015141211A1 PCT/JP2015/001439 JP2015001439W WO2015141211A1 WO 2015141211 A1 WO2015141211 A1 WO 2015141211A1 JP 2015001439 W JP2015001439 W JP 2015001439W WO 2015141211 A1 WO2015141211 A1 WO 2015141211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roll
- diameter
- rolling
- piercing
- cone
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002184 metal Substances 0.000 title claims description 10
- 238000005096 rolling process Methods 0.000 claims abstract description 76
- 239000007787 solid Substances 0.000 claims abstract description 22
- 238000005553 drilling Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 abstract description 15
- 238000000034 method Methods 0.000 description 42
- 230000000694 effects Effects 0.000 description 21
- 238000005242 forging Methods 0.000 description 10
- 229910000851 Alloy steel Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 238000003475 lamination Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241001333990 Rugopharynx theta Species 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B19/00—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
- B21B19/02—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
- B21B19/04—Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/02—Roll dimensions
- B21B2267/06—Roll diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/024—Rolls for bars, rods, rounds, tubes, wire or the like
- B21B27/025—Skew rolls
Definitions
- the present invention relates to a method for manufacturing a seamless metal pipe, and in particular, a method for manufacturing a seamless metal pipe capable of manufacturing a thin-walled tube (hollow piece) by piercing and rolling from a billet of difficult-to-process material at a high workability.
- a seamless metal pipe capable of manufacturing a thin-walled tube (hollow piece) by piercing and rolling from a billet of difficult-to-process material at a high workability.
- the most commonly employed methods for producing seamless pipes include the Mannesmann-plug mill method and the Mannesmann-mandrel mill method.
- a solid billet heated to a predetermined temperature in a heating furnace is pierced by a piercing and rolling machine to form a hollow rod-shaped hollow piece, which is mainly reduced in thickness by a rolling mill such as a plug mill and a mandrel mill to reduce the thickness of the hollow shell.
- a rolling mill such as a plug mill and a mandrel mill to reduce the thickness of the hollow shell.
- the outer diameter is mainly reduced by a drawing mill such as a sizer or stretch reducer to obtain a hot-finished seamless pipe having a predetermined size.
- the present invention relates to a method for manufacturing a seamless metal tube, in which a thin hollow piece is manufactured by subjecting a billet of difficult-to-process material to piercing and rolling at a high workability in the first piercing and rolling step in the above steps.
- Patent Document 1 to Patent Document 4 First, as the prior art, the inventions proposed by the present inventors in Patent Document 1 to Patent Document 4 will be described.
- Patent Document 1 The invention of Patent Document 1 (hereinafter, referred to as “first prior invention”) includes an inclination angle ⁇ of a cone-type main roll supported at both ends, which is opposed to the left and right or up and down across a pass line through which a billet and a hollow piece pass.
- the cross roll angle ⁇ of the main roll is maintained in the range of the following formulas (1) ′ to (3) ′, and the disc roll surface is placed between the main rolls and vertically or horizontally across the pass line. And piercing and rolling while pressing the billet and hollow piece. That is, 3 ° ⁇ ⁇ ⁇ 25 ° (1) ′ 3 ° ⁇ ⁇ ⁇ 25 ° (2) ′ 15 ° ⁇ ⁇ + ⁇ ⁇ 45 ° (3) ′
- the tilt angle ⁇ is an angle formed by the roll axis center line with respect to the horizontal plane or vertical plane of the pass line, and the crossing angle ⁇ is the roll axis axis line formed with respect to the vertical plane or horizontal plane of the pass line. Is an angle.
- the first prior invention fundamentally denies the drilling principle of the Mannesmann drilling method, and the conventional Mannesmann drilling method uses a so-called rotary forging effect (Mannesmann effect) to create a state in which holes are easily formed.
- a so-called rotary forging effect Mannesmann effect
- Suppressing the generation of the rotary forging effect Mannesmann effect
- (Ii) be suppressed as much as possible circumferential shear deformation gamma R.theta and surface torsional shear gamma Betaeru generated in drilling process realizes the metal flow equivalent to equal to or extrusion pipe manufacturing method while a tilt-rolling That was the technical idea.
- the piercing and rolling mill for realizing this has a structure that enables piercing with a high crossing angle and a high inclination angle.
- the main roll has a cone shape, and a disc roll is adopted instead of the guide shoe.
- the invention of Patent Document 2 (hereinafter referred to as the “second prior invention”) includes an inclination angle ⁇ of a cone-type main roll supported at both ends, which is opposed to left and right or up and down across a pass line through which a billet and a hollow piece pass.
- the crossing angle ⁇ of the main roll is maintained in the range of the following formulas (1) to (3), and the diameter d 0 of the solid billet, the outer diameter d of the hollow piece after piercing and rolling, and the wall thickness t are Invention of a seamless pipe manufacturing method that satisfies the following formula (4) and has a perforation ratio of 4.0 or more, a tube expansion ratio of 1.15 or more, or a “wall thickness / outer diameter” ratio of 6.5 or less.
- the roll inclination angle ⁇ and the crossing angle ⁇ are maintained in an appropriate range, so that the piercing and rolling process, especially the high-thickness piercing and rolling, is performed.
- This is a method for suppressing as much as possible the rotary forging effect and the additional shear deformation that occur remarkably in the process.
- it prevents inner surface flaws and lamination (double cracks that occur at the center of the wall thickness) that occur in stainless steel and high alloy steel pipes.
- equation (4) means that a high drilling ratio drilling method is adopted without selecting a high drilling ratio drilling method in order to drill thin holes with a high workability. is doing.
- the first prior invention is not necessarily limited to the tube expansion drilling method, but the second prior invention is clearly limited to the high tube expansion ratio drilling.
- the roll gorge diameter should be as small as possible relative to the billet diameter in order to stably drill difficult-to-work materials such as stainless steel and high alloy steel without causing internal flaws or lamination. It implies.
- the shaft diameters of the entrance and exit rolls must be reduced due to the roll structure. If it does so, the intensity
- the object of the invention of Patent Document 3 (hereinafter referred to as “third prior invention”) is to suppress the rotational forging effect as much as possible without reducing the roll gorge diameter so much and to suppress the additional shear deformation as much as possible. It is in providing the piercing-rolling method which can be performed.
- the present inventor proposed the high crossover angle tube piercing and rolling method from the viewpoint of killing the rotary forging effect and suppressing the additive shear deformation, and performed the second prior invention.
- the high crossover angle is a necessary condition for killing the rotary forging effect and suppressing the additive shear deformation, but it is not a sufficient condition.
- the necessary and sufficient condition is the optimization of the roll shape, and the high crossing angle is a necessary condition for the optimization of the roll shape.
- the relative relationship between the tube material expansion ratio and the cone main roll expansion ratio is optimized.
- the rotary forging effect in the piercing and rolling process is remarkably suppressed, and the inner surface flaws and lamination that are likely to occur in the thin-hole piercing and rolling process of difficult-to-work materials such as stainless steel and high alloy steel are more reliably ensured. Can be suppressed.
- the main roll inlet diameter D 1 , outlet diameter D 2 , billet diameter d 0 , post-drilling diameter d and crossing angle The following (5) and (6) are satisfied between ⁇ . (D / d 0 ) / (0.75 + 0.025 ⁇ ) ⁇ (D 2 / D 1 ) (5) D 2 / D 1 ⁇ (d / d 0 ) / (1.00 ⁇ 0.027 ⁇ ) (6)
- a criterion for determination is whether or not the ductility (aperture value) of the billet center immediately before the plug tip contacts can be made larger than the aperture value of the billet itself.
- said (5) Formula is an indispensable condition for specifying a roll shape, since (6) Formula is often formed without being conscious, it is not necessarily required as a condition.
- Patent Document 4 (hereinafter referred to as “fourth prior invention”) is an invention relating to a disk roll setting method, but will be omitted in the present invention because a disk roll is not used as will be described in detail below.
- the inclination angle of the cone-type main roll supported at both ends with the pass line sandwiched between left and right or up and down (the angle formed by the axis of the main roll with respect to the horizontal or vertical plane of the pass line) ⁇
- the crossing angle of the main roll (angle formed by the axis of the main roll with respect to the vertical plane or horizontal plane of the pass line) ⁇
- the radial logarithmic strain ⁇ r and the circumferential logarithmic strain ⁇ ⁇ The distribution ratio was optimized, and the relationship between the tube material expansion ratio and the cone roll diameter expansion ratio was optimized.
- the conventional Mannesmann piercing method is a piercing and rolling method in which piercing is performed using the rotary forging effect (Mannesmann effect).
- the invention was invented from the viewpoint of suppressing the generation of the rotary forging effect as much as possible and suppressing the additive shear deformations ⁇ r ⁇ and ⁇ ⁇ 1 generated in the drilling process as much as possible.
- a disk roll located between the cone-type main rolls and arranged vertically or horizontally across the pass line is driven and pierced and rolled while pressing the billet and hollow piece on the hole-shaped surface of the disk roll.
- the disc roll has been used in actual operation for about 30 years, replacing the old fixed guide shoe, but has the following problems.
- the present inventor eliminates the disc roll, and instead adopts a cone-type sub-roll having a smaller diameter than the main roll having the same effect as the cone-type main roll. I stepped on. In other words, we decided to develop a 4-roll type cross drill. If the two-roll type cross rolling method can be changed to the four-roll type cross rolling method, it is also possible to expect an effect that can avoid the following problems.
- the present invention has been made under such a technical background.
- the billet of a difficult-to-work material in particular, a high-working and thin-walled tube
- the method of the present invention comprises a pair of large-diameter cone-type main rolls that are supported on both sides or above and below the pass line, and a pair of large cone-type main rolls, Using a 4-roll type inclined rolling mill composed of a pair of small-diameter sub-rolls that are supported on both ends in the vertical and horizontal directions, the inclination angle ⁇ of the cone-type main roll and the crossing angle ⁇ of the main roll And the inclination angle ⁇ ′ of the cone-type sub-roll and the crossing angle ⁇ ′ of the sub-roll 5 ° ⁇ “ ⁇ , ⁇ ′” ⁇ 25 ° 3 ° ⁇ “ ⁇ , ⁇ ′” ⁇ 35 ° 10 ° ⁇ “ ⁇ + ⁇ , ⁇ ′ + ⁇ ′” ⁇ 55 °
- the solid billet is pierced and rolled.
- an ultra-thin hollow piece can be manufactured with high workability from a billet of difficult-to-work materials such as stainless steel and high alloy steel without causing flare and peeling. Furthermore, by optimizing the relationship between the diameter of the cone-type main roll and the diameter of the solid billet, and optimizing the relative relationship between the expansion ratio of the pipe material and the expansion ratio of the main roll and sub-roll, It is also possible to suppress internal flaws and lamination that are likely to occur in the thin-wall piercing and rolling process.
- FIG. 1 is an explanatory view of a two-roll piercing and rolling method related to the prior invention, and is a plan view schematically showing the piercing and rolling state.
- FIG. 2 is a side view schematically showing the piercing and rolling state.
- FIG. 3 is a front view seen from the entry side, schematically showing the piercing-rolling state.
- FIG. 4 is an explanatory diagram showing a state of stress acting on the billet center portion in the two-roll piercing rolling related to the prior invention.
- FIG. 5 is an explanatory diagram showing a state of stress acting on the billet center portion in the four-roll piercing rolling according to the present invention.
- FIG. 1 is an explanatory view of a two-roll piercing and rolling method related to the prior invention, and is a plan view schematically showing the piercing and rolling state.
- FIG. 2 is a side view schematically showing the piercing and rolling state.
- FIG. 3 is a front
- FIG. 6 is an explanatory view of the four-roll piercing and rolling method according to the present invention, and is a plan view schematically showing the piercing and rolling state.
- FIG. 7 is a side view schematically showing the piercing-rolling state.
- FIG. 8 is a front view seen from the entry side, schematically showing the piercing-rolling state.
- FIGS. 1 and 2 are explanatory diagrams of a two-roll piercing and rolling method related to the prior invention.
- FIG. 1 is a plan view schematically showing the piercing and rolling state
- FIG. 2 is a side view
- FIG. 3 is a view from the entrance side.
- the main rolls 1, 1 ′ have a cone shape with the front end facing the inlet side of the solid billet 2, and the inlet side roll surfaces 1 a, 1 ′ a and the outlet side The positions where the roll surfaces 1b and 1'b cross are gorge portions 1g and 1'g. Both ends of each roll shaft 1c, 1'c are held by a support frame (not shown).
- the roll shafts 1c and 1'c are inclined with an inclination angle ⁇ equal to a direction opposite to the plane (the horizontal plane in the illustrated example) including the pass line (see FIG. 2). Is inclined with an equal crossing angle ⁇ in a direction opposite to the vertical plane including the angle (see FIG. 1), and rotates in the same direction at the same angular velocity as indicated by the arrows.
- disk rolls 6 and 6 ' are disposed between main rolls 1 and 1' with a solid billet 2 interposed therebetween.
- the solid billet 2 is perforated by a plug 4 supported by a mandrel 3 to become a hollow piece 5.
- FIGS. 6 to 8 are explanatory views of a four-roll piercing and rolling method according to the present invention.
- FIG. 6 is a plan view schematically showing the piercing and rolling state
- FIG. 7 is a side view
- the cone-shaped main rolls 1 and 1 ' are arranged on the left and right sides of the pass line (XX line), and the opposite main rolls 1 and 1' In the middle, cone-shaped sub-rolls 7 and 7 'are vertically arranged opposite to each other across the pass line.
- the roll shafts 1c and 1'c of the main roll are inclined with an inclination angle ⁇ equal to the direction in which the extended line is opposite to the plane including the pass line (horizontal plane in the illustrated example) (see FIG. 7). Inclination is set with a crossing angle ⁇ equal to the opposite direction to the vertical plane including the pass line (see FIG. 6). As shown by the arrows, the main rolls 1 and 1 'rotate in the same direction at the same angular velocity. Similarly, the roll shafts 7c and 7'c of the sub rolls 7 and 7 'are also inclined with an inclination angle ⁇ ' and a crossing angle ⁇ ', and rotate in the same direction at the same angular velocity.
- FIG. 4 is an explanatory diagram showing a state of stress acting on the billet center portion in the two-roll piercing and rolling related to the prior invention. If a solid billet is rotationally forged with a two-roll type inclined rolling mill, a compressive stress acts on the axial center of the solid billet in the reduction direction, and a tensile stress is generated in a direction perpendicular to the reduction direction. The so-called Mannesmann phenomenon appears from the center segregation, inclusions, or center porosity, and collapses if significant.
- FIG. 5 is an explanatory diagram showing a state of stress acting on the billet center portion in the four-roll piercing rolling related to the present invention. If the two-roll type inclined rolling mill is changed to a four-roll type inclined rolling mill, no tensile stress is generated at the time of reduction, and plastic deformation occurs only by compressive stress acting in the reduction direction. Generation of effects can be suppressed.
- the main roll and the sub roll have an inlet roll diameter D 1 and D 1 ′ and an outlet roll diameter D 2, respectively.
- D 2 ′ the relationship between the expansion ratio d / d 0 of the pipe material and the expansion ratios D 2 / D 1 and D 2 ′ / D 1 ′ of the main roll and the sub roll is as in the prior invention. The relationship is established as it is. That is, (D / d 0 ) / (D 2 / D 1 ) ⁇ 0.75 + 0.025 ⁇ (D / d 0 ) / (D 2 ′ / D 1 ′) ⁇ 0.75 + 0.025 ⁇ ′
- the reason why the roll diameter of the sub roll is made smaller than the roll diameter of the main roll is to widen the piercable dimension range as much as possible by taking a roll opening adjustment margin of the main roll.
- a hollow piece having a diameter d of (2 1/2 ⁇ 1) D 2 or less cannot be obtained due to geometric constraints.
- the overall structure of the rolling mill becomes complicated, so that the small-diameter secondary roll is not driven, and the piercing and rolling load of the secondary roll can be shared by the driving power of the primary roll. .
- the solid billet has been described as an object, but the present invention is not limited to this, and the present invention can be applied to a manufacturing method using a hollow billet that is bored by machining.
- Example 1 The hot workability of high alloy steel is still worse than that of stainless steel, and lamination often occurs when the piercing and rolling temperature exceeds 1275 ° C. Therefore, in this example, a billet with a diameter of 70 mm of 25% Cr-35% Ni-3Mo high alloy steel was used as the test material, the main roll and the sub roll were driven, the piercing and rolling temperature was 1200 ° C., and the tube expansion ratio was No. 2 high workability thin wall piercing and rolling was performed.
- the conditions of the main roll and the sub roll, and the piercing and rolling conditions are as follows.
- the rolling distribution ratio in the circumferential direction and the wall thickness direction is appropriate, and the roll shape is also optimized, so that high workability thin wall piercing and rolling of high alloy steel with poor hot workability. Even with this, piercing and rolling was possible without any problems.
- Example 2 Using a billet of 18% Cr-8% Ni austenitic stainless steel with a diameter of 60mm as the test material, the secondary roll is not driven, and only the main roll is driven, and the high workability thin wall piercing rolling with a tube expansion ratio of 1.5 Went.
- the heating temperature of the billet was 1250 ° C.
- the hot workability of stainless steel is much worse than that of carbon steel.
- the conditions of the main roll and the sub roll, and the piercing and rolling conditions are as follows.
- the rolling distribution ratio in the circumferential direction and the wall thickness direction that is, the rolling distribution ratio in the longitudinal direction and the circumferential direction was appropriate, piercing and rolling could be performed without causing flaring and peeling. Since the roll shape is also optimized, there was no occurrence of internal flaws or lamination even in the high workability ultra-thin wall piercing and rolling of difficult-to-work materials.
- the method of the present invention is a method using a four-roll type inclined rolling mill that adopts a cone-type sub roll having the same effect as the cone-type main roll instead of the disk roll, and in particular, stainless steel, high alloy steel. It can be effectively used for piercing and rolling of difficult-to-work materials such as.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
3°≦β≦25° ・・・(1)′
3°≦γ≦25° ・・・(2)′
15°≦β+γ≦45° ・・・(3)′
(i)回転鍛造効果(マンネスマン効果)の発生を極力抑制し、
(ii)穿孔過程で発生する円周方向剪断変形γrθおよび表面捩れ剪断変形γβlをも可能な限り抑制し、傾斜圧延でありながら押出し製管法と同等またはこれに準ずるメタルフローを実現することをその技術思想としたものであった。
そして、これを実現するための穿孔圧延機は高交叉角、高傾斜角穿孔を可能とする構造であり、主ロール形状はコーン型となし、また、ガイドシューに替えてディスクロールを採用した。
8°≦β≦20° ・・・(1)
5°≦γ≦35° ・・・(2)
15°≦β+γ≦50° ・・・(3)
1.5≦-ψr/ψθ≦4.5 ・・・(4)
但し、ψr=ln(2t/d0)
ψθ=ln{2(d-t)/d0}
(d/d0)/(0.75+0.025γ)≦(D2/D1) ・・・(5)
D2/D1≦(d/d0)/(1.00-0.027γ) ・・・(6)
(2)また、ディスクロール孔型のエッジ面でホローピースの管肉がピーリングされる危険があり、特に高加工度薄肉穿孔が難しくなる。
5°≦「β、β′」≦25°
3°≦「γ、γ′」≦35°
10°≦「β+γ、β′+γ′」≦55°
の範囲に保持し、中実ビレットを穿孔圧延することを特徴としている。
1.5≦-ψr/ψθ≦4.5
但し、ψr=ln(2t/d0)
ψθ=ln{2(d-t)/d0}
なる関係を同時に満足させ、中実ビレットを拡管穿孔圧延することを特徴としている。
図1~図3は、先行発明に関する2ロール型穿孔圧延法の説明図で、図1は穿孔圧延状態を模式的に示す平面図、図2は同じく側面図、図3は同じく入側から見た正面図である。図1、図2に示すように、主ロール1、1′は中実ビレット2の入口側に先端を向けたコーン型の形状をなし、入口側のロール面1a、1′aと出口側のロール面1b、1′bが交叉する位置がゴージ部1g、1′gとなっている。各ロール軸1c、1′cの両端は支持枠(図示せず)に保持されている。
(d/d0)/(D2/D1)<0.75+0.025γ
(d/d0)/(D2′/D1′)<0.75+0.025γ′
高合金鋼の熱間加工性は、ステンレス鋼のそれよりもなお劣悪であり、穿孔圧延温度が1275℃を超えるとラミネーションを発生することが多い。そこで、この実施例では、25%Cr-35%Ni-3Moの高合金鋼の直径70mmのビレットを供試材として、主ロールと副ロールを駆動し、穿孔圧延温度を1200℃として、拡管比2の高加工度薄肉穿孔圧延を行った。主ロールと副ロールの条件、ならびに穿孔圧延条件は以下のとおりである。
交叉角・・・ γ=30°
傾斜角・・・ β=12°
ゴージ径・・・ Dg=500mm
入口径・・・ D1=300mm
出口径・・・ D2=670mm
ロール拡径比・・・ D2/D1=2.23
入側バレル幅・・・ L1=300mm
出側バレル幅・・・ L2=460mm
バレル幅・・・ L1+L2=760mm
バレル幅比・・・ L2/L1=1.53
ロール回転数・・・ n=60rpm
交叉角・・・ γ′=30°
傾斜角・・・ β′=12°
ゴージ径・・・ Dg′=400mm
入口径・・・ D1′=240mm
出口径・・・ D2′=536mm
ロール拡径比・・・ D2′/D1′=2.23
入側バレル幅・・・ L1′=300mm
出側バレル幅・・・ L2′=460mm
バレル幅・・・ L1′+L2′=760mm
バレル幅比・・・ L2′/L1′=1.53
ロール回転数・・・ n′=75rpm
プラグ径・・・ dp=130mm
ビレット径・・・d0=70mm
ホローピース径・・・ d=140mm
ホローピース肉厚・・・t=3.5mm
拡管比・・・ d/d0=2.00
穿孔圧延比・・・ d0 2/4t(d-t)=2.56
「肉厚/外径」比・・・ (t/d)×100=2.5%
ロール形状指数・・・ (d/d0)/(D2/D1)
=(d2/d0)/(D2′/D1′)
=0.897
肉厚方向対数ひずみ・・・ψr=ln(2t/d0)
=ln0.10=-2.303
円周方向対数ひずみ・・・ψθ=ln{2(d-t)/d0}
=ln3.90=1.361
圧下配分比・・・ -ψr/ψθ=1.692
18%Cr-8%Niのオーステナイト系ステンレス鋼の直径60mmのビレットを供試材として、副ロールを非駆動となし、主ロールのみ駆動して、拡管比1.5の高加工度薄肉穿孔圧延を行った。ビレットの加熱温度は1250℃とした。なお、ステンレス鋼の熱間加工性は炭素鋼のそれに較べてはるかに劣悪である。主ロールと副ロールの条件、ならびに穿孔圧延条件は以下のとおりである。
交叉角・・・ γ=25°
ゴージ径・・・ Dg=400mm
傾斜角・・・ β=12°
入口径・・・ D1=240mm
出口径・・・ D2=550mm
ロール拡径比・・・ D2/D1=2.29
入側バレル幅・・・ L1=300mm
出側バレル幅・・・ L2=460mm
バレル幅・・・ L1+L2=760mm
バレル幅比・・・ L2/L1=1.53
ロール回転数・・・ n=60rpm
交叉角・・・ γ′=25°
ゴージ径・・・ Dg′=320mm
傾斜角・・・ β′=12°
入口径・・・ D1′=192mm
出口径・・・ D2′=440mm
ロール拡径比・・・ D2′/D1′=2.29
入側バレル幅・・・ L1′=300mm
出側バレル幅・・・ L2′=460mm
バレル幅・・・ L1′+L2′=760mm
バレル幅比・・・ L2′/L1′=1.53
ロール回転数・・・ n′=(非駆動)
プラグ径・・・ dp=80mm
ビレット径・・・d0=60mm
ホローピース径・・・ d=90mm
ホローピース肉厚・・・t=2.7mm
拡管比・・・ d/d0=1.50
穿孔圧延比・・・ d0 2/4t(d-t)=3.82
「肉厚/外径」比・・・ (t/d)×100=3.0%
ロール形状指数・・・ (d/d0)/(D2/D1)
=(d/d0)/(D2′/D1′)
=0.655
肉厚方向対数ひずみ・・・ψr=ln(2t/d0)
=ln0.09=-2.408
円周方向対数ひずみ・・・ψθ=ln{2(d-t)/d0}
=ln2.91=1.068
圧下配分比・・・ -ψr/ψθ=2.255
2:中実ビレット
3:マンドレル
4:プラグ
5:ホローピース
6、6′:ディスクロール
7、7′:副ロール
Claims (4)
- パスラインを挟んで左右または上下に対設された両端支持の一組の太径のコーン型主ロールと、該対設された主ロールの間にあって、同じくパスラインを挟んで上下または左右に対設された両端支持の一組の細径の副ロールから構成された4ロール型の傾斜圧延機を用い、
コーン型主ロールの傾斜角βと、該主ロールの交叉角γと、コーン型副ロールの傾斜角β′と、該副ロールの交叉角γ′を
5°≦「β、β′」≦25°
3°≦「γ、γ′」≦35°
10°≦「β+γ、β′+γ′」≦55°
の範囲に保持し、
中実ビレットを穿孔圧延することを特徴とする、継目無金属管の製造方法。 - 中実ビレットの直径d0と、穿孔後のホローピースの直径dおよび肉厚tとの間に
1.5≦-ψr/ψθ≦4.5
但し、ψr=ln(2t/d0)
ψθ=ln{2(d-t)/d0}
なる関係を同時に満足させ、
中実ビレットを拡管穿孔圧延することを特徴とする、請求項1に記載の継目無金属管の製造方法。 - コーン型主ロールの入口径D1、出口径D2およびロール交叉角γ、同じくコーン型副ロールの入口径D1′、出口径D2′およびロール交叉角γ′と、中実ビレットの直径d0および穿孔後のホローピースの直径dとの間に
(d/d0)/(D2/D1)<0.75+0.025γ
(d/d0)/(D2′/D1′)<0.75+0.025γ′
なる関係を満足させ、穿孔圧延することを特徴とする、請求項2に記載の継目無金属管の製造方法。 - 細径の副ロールを非駆動となし、太径の主ロールのみを駆動し、
中実ビレットを穿孔圧延することを特徴とする、請求項1または請求項2に記載の継目無金属管の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016140598A RU2656901C2 (ru) | 2014-03-19 | 2015-03-16 | Способ изготовления бесшовной металлической трубы |
EP15764059.0A EP3120942B8 (en) | 2014-03-19 | 2015-03-16 | Method for producing seamless metal pipe |
US15/125,699 US10232418B2 (en) | 2014-03-19 | 2015-03-16 | Method for producing seamless metal pipe |
CN201580013362.7A CN106102941B (zh) | 2014-03-19 | 2015-03-16 | 无缝金属管的制造方法 |
MX2016012047A MX2016012047A (es) | 2014-03-19 | 2015-03-16 | Metodo para producir tubo de metal sin costuras. |
JP2015542059A JP5858206B1 (ja) | 2014-03-19 | 2015-03-16 | 継目無金属管の製造方法 |
CA2941344A CA2941344C (en) | 2014-03-19 | 2015-03-16 | Method for producing seamless metal pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014056370 | 2014-03-19 | ||
JP2014-056370 | 2014-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141211A1 true WO2015141211A1 (ja) | 2015-09-24 |
Family
ID=54144194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001439 WO2015141211A1 (ja) | 2014-03-19 | 2015-03-16 | 継目無金属管の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10232418B2 (ja) |
EP (1) | EP3120942B8 (ja) |
JP (1) | JP5858206B1 (ja) |
CN (1) | CN106102941B (ja) |
CA (1) | CA2941344C (ja) |
MX (1) | MX2016012047A (ja) |
RU (1) | RU2656901C2 (ja) |
WO (1) | WO2015141211A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109772890B (zh) * | 2019-02-28 | 2020-01-31 | 西北工业大学 | 一种大尺寸高温合金棒材的超细晶轧制方法 |
CN115815320A (zh) * | 2022-12-07 | 2023-03-21 | 安徽东耘智能设备制造有限责任公司 | 轧制机构、斜轧机及45钢棒材的超细晶轧制方法 |
CN115780512A (zh) * | 2022-12-07 | 2023-03-14 | 安徽东耘智能设备制造有限责任公司 | 轧制机构、斜轧机及铝合金棒材的超细晶轧制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594905A (ja) * | 1982-06-30 | 1984-01-11 | Sumitomo Metal Ind Ltd | 中空棒材の製造方法 |
JPS6431505A (en) * | 1987-07-24 | 1989-02-01 | Sumitomo Metal Ind | Piercing method for seamless pipe |
JPH0270338A (ja) * | 1988-09-02 | 1990-03-09 | Sumitomo Metal Ind Ltd | スパイラルフィン付き金属管の製造方法 |
JPH07155807A (ja) * | 1993-11-30 | 1995-06-20 | Kawasaki Steel Corp | 継目無管の傾斜圧延方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1957916A (en) * | 1932-07-27 | 1934-05-08 | Ralph C Stiefel | Apparatus for and method of producing metal tubes |
JPS57137009A (en) * | 1981-02-17 | 1982-08-24 | Sumitomo Metal Ind Ltd | Manufacture of seamless metallic pipe |
JPS6059042B2 (ja) * | 1981-04-10 | 1985-12-23 | 住友金属工業株式会社 | 継目無鋼管の製造方法 |
AU562483B2 (en) * | 1982-06-30 | 1987-06-11 | Sumitomo Metal Industries Ltd. | Reduction rolling to produce circular bar material |
AU564031B2 (en) * | 1982-06-30 | 1987-07-30 | Sumitomo Metal Industries Ltd. | Manufacturing hollow rods |
JPS63238909A (ja) * | 1987-03-27 | 1988-10-05 | Sumitomo Metal Ind Ltd | 継目無管の製造方法 |
JPH0194808A (ja) * | 1987-10-07 | 1989-04-13 | Sanyo Electric Co Ltd | 炊飯器 |
JPH0523842A (ja) | 1991-07-19 | 1993-02-02 | Hirado Kinzoku Kogyo Kk | ろう付け方法 |
JP3082489B2 (ja) * | 1992-11-18 | 2000-08-28 | 住友金属工業株式会社 | 継目無管の製造方法 |
JP2996077B2 (ja) * | 1993-11-02 | 1999-12-27 | 住友金属工業株式会社 | 継目無金属管の穿孔圧延方法 |
JPH07155806A (ja) * | 1993-11-30 | 1995-06-20 | Kawasaki Steel Corp | 継目無管の傾斜圧延方法 |
WO1996021526A1 (fr) * | 1995-01-10 | 1996-07-18 | Sumitomo Metal Industries, Ltd. | Procede et appareil pour obtenir par perçage des tuyaux metalliques sans soudure |
US5699690A (en) * | 1995-06-19 | 1997-12-23 | Sumitomo Metal Industries, Ltd. | Method and apparatus for manufacturing hollow steel bars |
JPH1094808A (ja) | 1996-09-25 | 1998-04-14 | Kawasaki Steel Corp | 傾斜圧延機のローラ・シュー |
JP2001259710A (ja) * | 2000-03-24 | 2001-09-25 | Kawasaki Steel Corp | 傾斜圧延機のローラ・シュー |
DE60326086D1 (ja) * | 2002-12-12 | 2009-03-19 | Sumitomo Metal Ind | |
US7146836B2 (en) * | 2003-06-06 | 2006-12-12 | Sumitomo Metal Industries, Ltd. | Piercing method for manufacturing of seamless pipe |
CN100509192C (zh) * | 2003-06-06 | 2009-07-08 | 住友金属工业株式会社 | 制造无缝管时的穿孔轧制方法 |
RU2250147C1 (ru) * | 2004-01-09 | 2005-04-20 | Закрытое акционерное общество "Инвест Пром Торг" | Способ винтовой прошивки литой заготовки |
EP2052795B1 (en) * | 2006-08-14 | 2013-06-05 | Nippon Steel & Sumitomo Metal Corporation | Method for producing seamless pipe |
JP4371247B2 (ja) * | 2008-03-28 | 2009-11-25 | 住友金属工業株式会社 | 高合金継目無鋼管の製造方法 |
RU2489220C1 (ru) * | 2012-01-11 | 2013-08-10 | Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") | Способ винтовой прошивки литой заготовки |
JP6059042B2 (ja) | 2013-02-28 | 2017-01-11 | 東京窯業株式会社 | マンホール |
-
2015
- 2015-03-16 RU RU2016140598A patent/RU2656901C2/ru active
- 2015-03-16 CN CN201580013362.7A patent/CN106102941B/zh active Active
- 2015-03-16 US US15/125,699 patent/US10232418B2/en active Active
- 2015-03-16 CA CA2941344A patent/CA2941344C/en active Active
- 2015-03-16 EP EP15764059.0A patent/EP3120942B8/en active Active
- 2015-03-16 MX MX2016012047A patent/MX2016012047A/es unknown
- 2015-03-16 WO PCT/JP2015/001439 patent/WO2015141211A1/ja active Application Filing
- 2015-03-16 JP JP2015542059A patent/JP5858206B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594905A (ja) * | 1982-06-30 | 1984-01-11 | Sumitomo Metal Ind Ltd | 中空棒材の製造方法 |
JPS6431505A (en) * | 1987-07-24 | 1989-02-01 | Sumitomo Metal Ind | Piercing method for seamless pipe |
JPH0270338A (ja) * | 1988-09-02 | 1990-03-09 | Sumitomo Metal Ind Ltd | スパイラルフィン付き金属管の製造方法 |
JPH07155807A (ja) * | 1993-11-30 | 1995-06-20 | Kawasaki Steel Corp | 継目無管の傾斜圧延方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2941344C (en) | 2017-12-05 |
CN106102941A (zh) | 2016-11-09 |
CN106102941B (zh) | 2017-12-26 |
RU2656901C2 (ru) | 2018-06-07 |
EP3120942A1 (en) | 2017-01-25 |
US10232418B2 (en) | 2019-03-19 |
EP3120942B8 (en) | 2019-09-04 |
JP5858206B1 (ja) | 2016-02-10 |
RU2016140598A (ru) | 2018-04-19 |
EP3120942A4 (en) | 2017-11-22 |
JPWO2015141211A1 (ja) | 2017-04-06 |
US20170001225A1 (en) | 2017-01-05 |
MX2016012047A (es) | 2016-12-07 |
EP3120942B1 (en) | 2019-01-02 |
CA2941344A1 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4155267B2 (ja) | 継目無金属管の製造方法 | |
JP5858206B1 (ja) | 継目無金属管の製造方法 | |
CN101394943B (zh) | 高Cr无缝管的制造方法 | |
JP4315155B2 (ja) | 継目無管の製造方法 | |
JP5273231B2 (ja) | 継目無金属管の製造方法 | |
JPS63238909A (ja) | 継目無管の製造方法 | |
JP4930002B2 (ja) | 継目無管の製造方法 | |
WO2009119245A1 (ja) | 継目無管の製造方法 | |
JP3823762B2 (ja) | 継目無金属管の製造方法 | |
JP4196991B2 (ja) | 継目無管の製造における穿孔圧延方法 | |
WO2009118957A1 (ja) | 高合金継目無鋼管の製造方法 | |
US9254511B2 (en) | Method for producing seamless tube/pipe | |
JP2006231354A (ja) | 超薄肉継目無金属管の製造方法 | |
JP5273230B2 (ja) | 継目無金属管の製造方法 | |
JP7549212B2 (ja) | 継目無金属管の製造方法 | |
JP6241432B2 (ja) | 難加工材の継目無鋼管の製造方法 | |
JP3036356B2 (ja) | 継目無管製造装置及び継目無管製造方法 | |
JPH04187310A (ja) | 継目無オーステナイト系ステンレス鋼管の製造方法 | |
JP3407704B2 (ja) | 高炭素継目無鋼管の製造方法 | |
JP2001219205A (ja) | 継目無管の製造方法 | |
JP2016185553A (ja) | 内面品質に優れた継目無鋼管の製造方法 | |
JP2004082174A (ja) | 継目無鋼管の製造方法 | |
JPS63230205A (ja) | 快削鋼ビレツトの穿孔圧延方法 | |
JPH0569602B2 (ja) | ||
JP2007229795A (ja) | 円周方向剪断歪みを低減するバレル型ピアサーロール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015542059 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764059 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016016540 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2941344 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15125699 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/012047 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015764059 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015764059 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016140598 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016016540 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160715 |