WO2015140991A1 - 連続鋳造鋳型 - Google Patents

連続鋳造鋳型 Download PDF

Info

Publication number
WO2015140991A1
WO2015140991A1 PCT/JP2014/057799 JP2014057799W WO2015140991A1 WO 2015140991 A1 WO2015140991 A1 WO 2015140991A1 JP 2014057799 W JP2014057799 W JP 2014057799W WO 2015140991 A1 WO2015140991 A1 WO 2015140991A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous casting
casting mold
diamond
mold
layer
Prior art date
Application number
PCT/JP2014/057799
Other languages
English (en)
French (fr)
Inventor
修 筒江
秀典 井上
直子 廣門
祐登 梅山
浩郁 森園
Original Assignee
三島光産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三島光産株式会社 filed Critical 三島光産株式会社
Priority to JP2014537391A priority Critical patent/JP5640179B1/ja
Priority to PCT/JP2014/057799 priority patent/WO2015140991A1/ja
Priority to TW104108818A priority patent/TWI617375B/zh
Publication of WO2015140991A1 publication Critical patent/WO2015140991A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Definitions

  • the present invention relates to a continuous casting mold in which a diamond-like carbon layer (DLC) is formed on the inner side of a casting mold member in contact with molten steel or a slab (specifically, a shell).
  • DLC diamond-like carbon layer
  • Non-Patent Document 1 describes the characteristics of DLC films and their applications, and in a durability test using a copper-based sintered alloy mold, the DLC-treated mold is untreated. In comparison, it is disclosed that the lifetime is greatly increased.
  • Non-Patent Document 1 describes that a DLC film is applied to a copper-based sintered alloy molding die. However, since a cemented carbide is used as a material, thermal conductivity is poor, and a continuous casting mold is used. There was a problem that could not be used as.
  • the present invention has been made in view of such circumstances, and provides a continuous casting mold in which a diamond-like carbon layer is formed at least on the inner side of a mold member in contact with molten steel or a cast slab, and friction with molten steel is extremely reduced. With the goal.
  • a continuous casting mold according to the present invention that meets the above-mentioned object is a molten steel or a shell (cast slab) in which the molten steel is solidified by coating a diamond-like carbon layer through a hard protective layer on the inside of a mold body made of copper or a copper alloy. ) Is formed.
  • a diamond-like carbon layer for example, a layer having a high wear resistance with a density ⁇ in the range of 2.0 to 3.5 (more preferably 2.6 to 3.5) is used. Good.
  • each of the mold members has a pair of short side and long side, and the diamond-like carbon layer is formed on all or part of the inside of the short side and the long side.
  • the mold member is a tubular type, and the diamond-like carbon layer is formed on all or a part of an inner surface of the molten steel or a shell solidified by the molten steel.
  • the hard protective layer may be formed by performing nitriding treatment and / or shot peening treatment on the mold body.
  • the hard protective layer is preferably composed of a hard plating layer formed on the mold body, and the hard plating layer in this case is, for example, Cr, Ni, Co, high hardness Cu or It consists of these alloy plating.
  • the hard protective layer can be formed by thermal spraying (for example, cermet thermal spraying, self-fluxing alloy thermal spraying).
  • the hard protective layer is formed on the mold body after being subjected to concavo-convex treatment by blasting or etching.
  • the diamond-like carbon layer is preferably formed by a PVD method or a CVD method.
  • the meniscus portion means, for example, a range of +80 mm to ⁇ 100 mm (more preferably +50 mm to ⁇ 60 mm) with respect to the average meniscus height.
  • the width and interval of the vertical groove is preferably in the range of 0.4 to 15 mm (more preferably 0.5 to 2.2 mm).
  • the diameter is 0.5 to 3 mm (more preferably 0.7 to 1.5 mm), hemispherical, conical, cylindrical, or indefinite, and the gap between each dimple is 0.5 to 3 mm. It is preferable that they are arranged in a lattice shape or at an equal interval of about 3 mm.
  • the hard protective layer is formed by one or more of 1) nitriding treatment, shot peening treatment, 2) hard plating, 3) blast treatment, etching treatment, and 4) spraying treatment. It can also be done in combination.
  • the continuous casting mold according to the present invention has a diamond-like carbon layer covered with a hard protective layer on the inner side of a mold member made of copper or a copper alloy and in contact with a molten steel or a solidified shell of molten steel. Therefore, the coefficient of friction with respect to the molten steel and slab on the inner surface of the mold member is extremely reduced, and the slab can be manufactured smoothly.
  • the diamond-like carbon layer is reinforced by the hard protective layer, and the diamond-like carbon layer is not peeled off. Furthermore, since the strength is provided by the hard protective layer, the diamond-like carbon layer can be made thinner.
  • the continuous casting mold according to the present invention enables the production of ultra-high quality slabs without oscillation marks in addition to the reduction of steelmaking costs by simple powder reduction, which eliminates the need for scarfing treatment. . 2) In some cases, the installation of the oscillation device itself in the continuous casting mold facility can be omitted.
  • the processing becomes simpler, but further, plating or thermal spraying is performed on the upper layer. If done, a stronger coating can be formed.
  • the joining area is increased by this, so that the continuous casting mold having a longer life is obtained. It can be.
  • (A) is an exploded plan view of a continuous casting mold according to one embodiment of the present invention, and (B) to (D) are partially enlarged views of the continuous casting mold.
  • (A), (B), and (C) are a diamond structural diagram, a graphite structural diagram, and a structural diagram of a DLC film, respectively.
  • (D) is an explanatory diagram of an amorphous carbon film (Source: Non-Patent Document 1). It is a graph which shows the abrasion characteristic at the time of forming various protective films in a casting_mold
  • a continuous casting mold 10 according to an embodiment of the present invention includes opposing short sides 11 and 12 and opposing short sides 11 and 12 constituting a mold member. And back sides 15 to 18 having a water-cooling structure arranged to be fixed to the outer sides of the short sides 11 and 12 and the long sides 13 and 14.
  • the short sides 11 and 12 and the long sides 13 and 14 are plate-shaped mold bodies 11a to 14a made of copper or copper alloy having good thermal conductivity, and hard protective layers formed on the inner surfaces of the mold bodies 11a to 14a, respectively. 20 and a diamond-like carbon layer (DLC) 21 formed on the surface of each hard protective layer 20.
  • DLC diamond-like carbon layer
  • the hard protective layer 20 is formed by 1) a method of forming inner surfaces of the mold bodies 11a to 14a by nitriding and / or shot peening, and 2) chromium (Cr), nickel (on the inner surfaces of the mold bodies 11a to 14a).
  • There are a method of spraying a material for example, a mixture of metal and hard ceramic powder), and 4) a method of forming two or more of these together.
  • a cermet material (or a self-fluxing alloy) may be used as the material to be sprayed.
  • hard plating examples include Ni-based alloy plating, Co—Ni-based alloy plating, and hard (high hardness) Cu plating (including alloy plating).
  • Thermal spray materials include 1) Cr-Si-B alloys based on Ni or Co, and 2) Co, Ni or Co-Ni alloys with carbides, nitrides and borides added. Etc.
  • the thickness when the hard protective layer 20 is formed by plating is, for example, about 0.01 to 3 mm (more preferably, 0.1 to 1 mm), and when formed by thermal spraying, for example, 0.01 About 3 mm (more preferably 0.05 to 1 mm).
  • the thickness of the hard protective layer 20 is too thick, heat removal from the continuous casting mold 10 is deteriorated, and when the hard protective layer 20 and the mold main bodies 11a to 14a have different thermal expansion coefficients, they are easily peeled off.
  • the thickness of the hard protective layer 20 is too thin, the strength of the hard protective layer 20 is lost, and wrinkles are easily generated.
  • a diamond-like carbon layer 21 is formed on the surface (inner side surface) of the hard protective layer 20.
  • the diamond-like carbon layer 21 has both the diamond structure (sp 3 ) and the graphite structure (sp 2 ) shown in FIGS. 2A and 2B, and has the structure shown in FIG.
  • aC amorphous carbon
  • ta-C tetrahedral amorphous carbon
  • the hard protective layer 20 and the diamond-like carbon layer 21 can be easily applied to the entire inner surface of the mold main bodies 11a to 14a. However, the inner surface of the mold main bodies 11a to 14a may be directly applied to the molten steel and slab. You may form the hard protective layer 20 and the diamond-like carbon layer 21 only in a part with.
  • the inner surfaces of the mold bodies 11a to 14a may be cured by nitriding and / or shot peening, and the inner surfaces of the mold bodies 11a to 14a may be uneven by blasting or etching ( (Formation) treatment may be performed to increase the surface roughness, and adhesion of a plating layer or a sprayed layer to be further formed on the surface may be improved.
  • (Formation) treatment may be performed to increase the surface roughness, and adhesion of a plating layer or a sprayed layer to be further formed on the surface may be improved.
  • the diamond-like carbon layer 21 is formed by a CVD (Chemical Vapor Deposition) method using a hydrocarbon-based gas as a raw material, as shown in FIG. 2 (D), but PVD (Physical Vapor) using solid carbon as a raw material.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor
  • the Deposition method can also be used. In either case, the method itself is well known, and detailed description thereof is omitted.
  • the diamond-like carbon layer 21 has a very thin thickness of about 0.001 to 5 ⁇ m (preferably 1 to 5 ⁇ m), but the present invention is also applied to a case where the thickness is even thicker. If the diamond-like carbon layer 21 is excessively thick, the adhesion to the base material (the mold bodies 11a to 14a, the hard protective layer 20) is reduced. Since the diamond-like carbon layer 21 has an amorphous structure, the atomic structure is uniform and stable, and has high corrosion resistance. Further, since the inside of the short sides 11 and 12 and the long sides 13 and 14 formed in this way has a diamond-like carbon layer 21 on the surface, the friction coefficient with respect to the slab is 0, as shown in FIG. 1 or less (however, about 0.3 when Ni is a protective layer). In addition, although the characteristic comparison of a carbonaceous material is shown in Table 1, it turns out that DLC has very high hardness.
  • the film-forming running cost of the diamond-like carbon layer 21 is 1) the material (hydrocarbon gas) cost is extremely low, 2) The cost of electricity required for the production is low, so it can be reduced. 3) The film formation time is about 2 ⁇ m / h, and the production cost is low.
  • the mold bodies 11a to 14a themselves are soft, so that the adhesion and wear resistance are excellent.
  • the hard protective layer 20 between the diamond-like carbon layer 21 and the mold bodies 11a to 14a it is possible to obtain a continuous casting mold 10 having a stronger and higher wear resistance and higher corrosion resistance. .
  • the molten steel and the mold member (short sides 11 and 12 and the long sides) with which the solidified shell of the molten steel (part of the slab) comes into contact.
  • Slow cooling by the continuous casting mold 10 composed of 13, 14) can be performed.
  • the hard protective layer 20 and the diamond-like carbon layer 21 are formed along an uneven shape.
  • the cross section of the longitudinal groove is not limited to a semicircular shape, and various cases such as a triangle, a quadrangle, and an arc shape can be adopted. A large number of dimples for slow cooling may be formed in the meniscus portion.
  • FIG. 3 and FIG. 4 show data obtained by actually obtaining the wear index (wear amount) and the friction coefficient of the continuous casting mold 10 and the conventional continuous casting mold.
  • 3 and 4 1 is an example of forming a diamond-like carbon layer by performing Ni plating on the mold bodies 11 a to 14 a (base material), and 2 is forming a diamond-like carbon layer by performing Co plating on the base material.
  • Example 3 shows an example in which a diamond-like carbon layer is formed by spraying a wear-resistant material on a base material.
  • 4 shows an example in which only Ni plating is performed on the surface of the base material, 5 shows only Co plating on the surface of the base material, and 6 shows only thermal spraying on the surface of the base material.
  • the thickness of the above plating and thermal spray coating is 0.1 to 0.2 mm, and a cermet containing a hard material (for example, WC) is used as the thermal spray material.
  • friction coefficient (see FIG. 4)
  • P surface pressure
  • L sliding distance
  • Hv strength of coating
  • the diamond-like carbon layer had a thickness of about 0.5 to 2 ⁇ m (actually in the range of 0.001 to 5 ⁇ m), and the plating layer had a thickness of 0.5 to 1 mm.
  • the present invention is not limited to the above-described examples and experimental examples, and the present invention is also applied to the case where material change, thickness change, and numerical value change are made without changing the gist of the present invention.
  • a hard protective layer is formed by a combination of roughening treatment (unevenness treatment) of the mold body, surface hardening treatment of the mold body, formation of a plating layer, and formation of a sprayed layer, and finally a diamond-like carbon layer is formed.
  • the present invention also applies.
  • the continuous casting mold has a long side and a short side, even if it is a cylindrical mold (substantially square cross section, circular cross section, tubular type), a hard protective layer and Any diamond-like carbon layer can be applied.
  • the diamond-like carbon layer is coated on the inner side of the mold body via the hard protective layer, so that the friction between the inner surface of the mold and the slab is remarkably reduced, and the lifetime is longer.
  • a continuous casting mold can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

鋳型本体11a~14aが銅又は銅合金からなり、溶鋼又は該溶鋼が凝固したシェルが接する鋳型部材11~14の内側に、硬質保護層20を介してダイヤモンドライクカーボン層21を有している。この場合の鋳型部材11~14は、それぞれ対となる短辺と長辺とを有するタイプや筒状のタイプがある。溶鋼又は鋳片が接する鋳型部材11~14の内側に硬質保護層20を介してダイヤモンドライクカーボン層21を形成しているので、溶鋼及び鋳片との摩擦を極端に下げた連続鋳造鋳型10を提供できる。

Description

連続鋳造鋳型
本発明は、溶鋼又は鋳片(具体的にはシェル)が接する鋳型部材の内側にダイヤモンドライクカーボン層(DLC)を形成した連続鋳造鋳型に関する。
特許文献1に記載のように、現状の連続鋳造方法では、鋳型表面と鋳片表面との間には摩擦が存在し、これを低減するために鋳造時にはモールドパウダー(潤滑材)を使用し、鋳造設備にはオシレーション機構が装備されている。
また、特許文献2の第1の実施の形態では、鋳型表面に耐劣化性のあるダイヤモンドなどの材料で作られた被膜が形成された連続鋳造用鋳型が提案され、第2の実施の形態では、鋳型全体がダイヤモンド等の非金属材料で形成されたものが提案されている。
更に、非特許文献1においては、DLC膜の特性及びその応用が記載され、銅系焼結合金用金型を用いた耐久性試験においても、DLC処理を施した金型が未処理のものに比べ、寿命が大幅に伸びることが開示されている。
特開2001-246449号公報 特表2002-522225号公報
大平晃也(要素技術研究所)、「DLC膜の特性とその応用」、NTN TECHNICAL REVIEW No.77(2009)、p.87-93
しかし、特許文献1では、鋳型表面と鋳片表面の間の摩擦力は鋳型表面の磨耗の原因となり、モールドパウダーは鋳型表面の腐食の原因となっている。
また、特許文献2に記載の鋳型表面を直接ダイヤモンド被膜で覆っている技術においては、鋳型本体が銅又は銅合金からなり柔らかいので、その上にダイヤモンドコーティング層を形成しても表面の硬度を十分に確保できず、更に被覆したダイヤモンドコーティング層が剥離し易く十分な効果を発揮することができないという問題があった。
非特許文献1においては、DLC膜を銅系焼結合金成形金型に応用することが記載されているが、材料として超硬合金を使用しているので、熱伝導率が悪く、連続鋳造鋳型として使用できないという問題があった。
本発明はかかる事情に鑑みてなされたもので、少なくとも溶鋼又は鋳片が接する鋳型部材の内側にダイヤモンドライクカーボン層を形成して、溶鋼との摩擦を極端に下げた連続鋳造鋳型を提供することを目的とする。
前記目的に沿う本発明に係る連続鋳造鋳型は、銅又は銅合金からなる鋳型本体の内側に硬質保護層を介してダイヤモンドライクカーボン層を被覆して、溶鋼又は該溶鋼が凝固したシェル(鋳片)が接する鋳型部材が構成される。なお、ダイヤモンドライクカーボン層としては、例えば密度ρが2.0~3.5(より好ましくは、2.6~3.5)の範囲にある耐摩耗性に富むタイプのものを使用するのがよい。
本発明に係る連続鋳造鋳型において、前記鋳型部材はそれぞれ対となる短辺と長辺とを有し、前記短辺及び前記長辺の内側の全部又は一部に前記ダイヤモンドライクカーボン層が形成されているタイプのものがある。
また、本発明に係る連続鋳造鋳型において、前記鋳型部材はチューブラ型であって、前記溶鋼又は前記溶鋼が凝固したシェルが接する内表面の全部又は一部に前記ダイヤモンドライクカーボン層が形成されているタイプのものもある。
また、本発明に係る連続鋳造鋳型において、前記硬質保護層は、前記鋳型本体を窒化処理及び/又はショットピーニング処理を行うことによって形成することもできる。
本発明に係る連続鋳造鋳型において、前記硬質保護層は前記鋳型本体に形成された硬質めっき層からなるのが好ましく、この場合の硬質めっき層は、例えば、Cr、Ni、Co、高硬度Cu又はこれらの合金めっきからなる。
そして、本発明に係る連続鋳造鋳型において、前記硬質保護層は溶射(例えば、サーメット溶射、自溶性合金溶射)によって形成することもできる。
本発明に係る連続鋳造鋳型において、前記硬質保護層は前記鋳型本体にブラスト又はエッチングによる凹凸処理がなされた上に形成されているのがより好ましい。
また、本発明に係る連続鋳造鋳型において、前記ダイヤモンドライクカーボン層は、PVD法又はCVD法によって形成されているのが好ましい。
そして、本発明の連続鋳造鋳型において、前記鋳型の上部に位置するメニスカス部には、緩冷却のため、上下に長い多数の縦溝又は多数のディンプルが形成されているのが好ましい。ここで、メニスカス部とは、例えば、平均のメニスカス高さに対して+80mm~-100mm(より好ましくは、+50mm~-60mm)の範囲をいう。また、縦溝の幅及び間隔(即ち、非溝部の水平幅)は0.4~15mm(より好ましくは、0.5~2.2mm)の範囲とするのが好ましい。なお、ディンプルの場合は、直径が0.5~3mm(より好ましくは、0.7~1.5mm)の半球状、円錐状、円筒状、不定形状とし、各ディンプルの隙間が0.5~3mm程度で格子状又は等間隔で配置されているのが好ましい。
なお、本発明に係る連続鋳造鋳型において、硬質保護層の形成は、1)窒化処理、ショットピーニング処理、2)硬質めっき、3)ブラスト処理、エッチング処理、4)溶射処理の1又は2以上を組み合わせて行うこともできる。
本発明に係る連続鋳造鋳型は、鋳型本体が銅又は銅合金からなり、溶鋼又は溶鋼が凝固したシェルが接する鋳型部材の内側に、硬質保護層を介してダイヤモンドライクカーボン層を被覆状態で有しているので、鋳型部材の内表面の溶鋼及び鋳片に対する摩擦係数が極端に下がり、円滑に鋳片の製造が可能となる。
鋳型部材と鋳片との摩擦を極めて小さくすることによって、パウダーレス鋳造又はパウダーの量を減らした鋳造が可能となり、鋳型部材の磨耗や腐食が激減する。
また、ダイヤモンドライクカーボン層の下層に硬質保護層を形成することによって、硬質保護層によるダイヤモンドライクカーボン層の補強がなされ、ダイヤモンドライクカーボン層の剥離がなくなる。更に、強度は硬質保護層で持つので、ダイヤモンドライクカーボン層をより薄くすることができる。
また、本発明に係る連続鋳造鋳型の使用によって、以下のことが期待できる。
1)本発明に係る連続鋳造鋳型は、単純なパウダー削減による製鋼コストの低減の他、オシレーションマーク無しの超高品質のスラブ等の製造が可能となり、これにより、スカーフィング処理が不要となる。
2)場合によっては、連続鋳造鋳型の設備へのオシレーション装置自体の設置を省略できる。
そして、本発明に係る連続鋳造鋳型において、硬質保護層が、鋳型本体を窒化処理、ショットピーニング処理することによって形成される場合は、より処理が簡単になるが、更に上層にめっきや溶射等を行うと、より強固な被膜が形成できる。
また、本発明に係る連続鋳造鋳型において、硬質保護層がブラスト又はエッチングによる凹凸処理がなされた上に形成されている場合は、これによって接合面積が増えるので、より長期の寿命を有する連続鋳造鋳型とすることができる。
そして、本発明に係る連続鋳造鋳型において、鋳型部材の上部に位置するメニスカス部に、緩冷却のため、上下に長い多数の縦溝(極細スリット)やディンプルが形成されている場合は、鋳片の初期凝固時の緩冷却制御が可能となる。
(A)は本発明の一実施例に係る連続鋳造鋳型の分解平面図、(B)~(D)は同連続鋳造鋳型の部分拡大図である。 (A)、(B)、(C)はそれぞれダイヤモンド構造図、グラファイト構造図、DLC膜の構造図、(D)はアモルファス炭素膜の説明図である(出典:非特許文献1)。 鋳型本体に各種の保護膜を形成した場合の摩耗特性を示すグラフである。 鋳型本体に各種の保護膜を形成した場合の摩擦係数を示すグラフである。
続いて、本発明を具体化した実施例について説明し、本発明の理解に供する。
図1(A)、(B)に示すように、本発明の一実施例に係る連続鋳造鋳型10は、鋳型部材を構成する、対向する短辺11、12と、対向する短辺11、12を挟むようにして配置された長辺13、14とを有し、短辺11、12及び長辺13、14の外側に固定して配置された水冷構造のバックプレート15~18を有している。
短辺11、12及び長辺13、14は、熱伝導性のよい銅又は銅合金からなる板状の鋳型本体11a~14aと、鋳型本体11a~14aの内側表面にそれぞれ形成された硬質保護層20と、それぞれの硬質保護層20の表面に形成されたダイヤモンドライクカーボン層(DLC)21とを有している。
硬質保護層20は、1)鋳型本体11a~14aの内側面を窒化処理及び/又はショットピーニング処理して形成する方法と、2)鋳型本体11a~14aの内側面にクロム(Cr)、ニッケル(Ni)、コバルト(Co)、高硬度銅(Cu)、又はこれらの合金(NiCo合金)から硬質めっきを行って硬質めっき層として形成する方法と、3)鋳型本体11a~14aの内側面に硬質材料(例えば、金属と硬質セラミック粉の混合物)を溶射して形成する方法、4)これらの2以上を併合して形成する方法がある。溶射する材料にはサーメット材(又は自溶性合金)を使用してもよい。
なお、硬質めっきは、具体的にNi系合金めっき、Co-Ni系合金めっき、硬質(高硬度)Cuめっき(合金めっきを含む)等がある。また、溶射材料には、1)Ni又はCoをベースにしたCr-Si-B系の合金、2)Co、Ni又はCo-Ni系の合金に、炭化物、窒化物、硼化物を添加したもの等がある。
ここで、硬質保護層20をめっきによって形成する場合の厚みは、例えば、0.01~3mm程度(より好ましくは、0.1~1mm)で、溶射によって形成する場合は、例えば、0.01~3mm程度(より好ましくは、0.05~1mm)である。
なお、硬質保護層20の厚みが厚すぎる場合は連続鋳造鋳型10の抜熱が悪くなり、硬質保護層20と鋳型本体11a~14aとの熱膨張係数が異なる場合は剥がれ易くなる。また、硬質保護層20の厚みが薄すぎると、硬質保護層20の強度がなくなり、疵が発生し易くなる。
硬質保護層20の表面(内側面)には、ダイヤモンドライクカーボン層21が形成されている。このダイヤモンドライクカーボン層21は、図2(A)、(B)に示すダイヤモンド構造(sp3)とグラファイト構造(sp2)を合わせ持つもので、図2(C)に示す構造を有する。図2(D)に示す状態図において、a-C(アモルファスカーボン)、ta-C(テトラヘドラルアモルファスカーボン)を用いる。
硬質保護層20及びダイヤモンドライクカーボン層21は、鋳型本体11a~14aの内側全面に行うのが施工上容易であるが、鋳型本体11a~14aの内側表面で、溶鋼及び鋳片に直接する可能性がある部分のみに硬質保護層20及びダイヤモンドライクカーボン層21を形成してもよい。
また、硬質保護層20を形成する前に、鋳型本体11a~14aの内面に窒化及び/又はショットピーニングによる硬化処理を行ってもよいし、鋳型本体11a~14aの内面にブラスト又はエッチングによる凹凸(形成)処理を行って表面粗度を大きくし、その表面に更に形成するめっき層又は溶射層の付着をよくしてもよい。
ダイヤモンドライクカーボン層21の形成は、図2(D)に示すように、原料として炭化水素系ガスを用いたCVD(Chemical Vapor Deposition)法で製造したが、固体カーボンを原料とするPVD(Physical Vapor Deposition)法を用いることもできる。いずれの場合も、その方法自体は周知であるので、詳しい説明を省略する。
ダイヤモンドライクカーボン層21の厚みは、極めて薄く0.001~5μm(1~5μmがより好ましい)程度であるが、更に厚い場合も本発明は適用される。なお、ダイヤモンドライクカーボン層21を過度に厚くすると母材(鋳型本体11a~14a、硬質保護層20)への密着力が下がる。このダイヤモンドライクカーボン層21は、アモルファス構造のため原子構造が均一で安定し、高耐蝕性を有する。
また、このようにして形成された短辺11、12及び長辺13、14の内側は、表面にダイヤモンドライクカーボン層21を有するので、図4に示すように、鋳片に対する摩擦係数が0.1以下(但し、Niが保護層の場合は0.3程度)と小さい。なお、表1に炭素系材料の特性比較を示すが、DLCは極めて高い硬度を有していることが判る。
Figure JPOXMLDOC01-appb-T000001
また、この実施例に係る連続鋳造鋳型10においては、CVD法又はPVD法を用いることによって、ダイヤモンドライクカーボン層21の成膜ランニングコストを、1)材料(炭化水素系ガス)費が極めて安く、2)製造に必要な電気代が安いので、低減でき、更に、3)成膜時間も2μm/h程度で製造コストが安価であるという利点がある。
更に、ダイヤモンドライクカーボン層21を直接銅又は銅合金製の鋳型本体11a~14aに形成した場合は、鋳型本体11a~14a自体が柔らかいので、密着性と耐磨耗性が優れているとは言えないが、ダイヤモンドライクカーボン層21と鋳型本体11a~14aとの間に硬質保護層20を形成することによって、より強固な高耐磨耗性及び高耐蝕性の連続鋳造鋳型10とすることができる。
また、図1(C)、(D)に示すように、鋳型本体11a~14aのメニスカス部23に緩冷却用の上下に長い縦溝22を所定ピッチ(a+b)で形成することも可能である。この場合縦溝22の断面を半円とすると、縦溝の幅b及び間隔(即ち、非溝部の水平幅)aはそれぞれ、0.4~15mm(より好ましくは、0.5~2.2mm)の範囲とするのが好ましい。なお、縦溝22は、図1(D)に示すように、平均メニスカス高さ(位置)に対して+80mm~-100mm(より好ましくは、+50mm~-60mm)の範囲とするのが好ましい。即ちc=20~80mm、d=40~100mm程度が好ましい。
このように、メニスカス部23に水平方向に多数並んだ縦溝22を形成することによって、溶鋼及び溶鋼が凝固したシェル(鋳片の一部)が接する鋳型部材(短辺11、12及び長辺13、14)で構成される連続鋳造鋳型10による緩冷却を行うことができる。この場合、硬質保護層20及びダイヤモンドライクカーボン層21は凹凸形状に沿って形成される。なお、縦溝の断面は半円形状だけでなく、三角形、四角形、円弧状等の種々の場合が採用できる。また、メニスカス部に緩冷却用の多数のディンプルを形成してもよい。
実験例
次に、上記した連続鋳造鋳型10と従来の連続鋳造鋳型の摩耗指数(摩耗量)と摩擦係数を実際に求めたデータを図3、図4に示す。図3、図4において、1は鋳型本体11a~14a(基材)にNiめっきを行ってダイヤモンドライクカーボン層を形成した例を、2は基材にCoめっきを行ってダイヤモンドライクカーボン層を形成した例を、3は基材に耐摩耗性材料の溶射を行ってダイヤモンドライクカーボン層を形成した例を示す。また、4は基材の表面にNiめっきだけを、5は基材の表面にCoめっきだけを、6は基材の表面に溶射のみを行った例を示す。
ここで、以上のめっき及び溶射被膜の厚みは0.1~0.2mmであり、溶射材料として硬質材料(例えば、WC)を含むサーメットを用いた。
なお、図3の「摩耗指数」は、以下の式によって表される摩耗量と同一とした。
摩耗量=μ・P・L/Hv 
ここで、μ:摩擦係数(図4参照)、P:面圧、L:摺動距離、Hv:被膜の強度
以上の実験から、基材にNiめっきを行いその上にダイヤモンドライクカーボン層を形成した場合は、基材にCoめっき層又は溶射層を形成してダイヤモンドライクカーボン層を形成した場合に比べて摩擦係数が大きくなり、摩耗指数が大きくなるが、従来のダイヤモンドライクカーボン層を形成しないNiめっき層、Coめっき層、溶射層を形成した場合に比較して格段の効果(摩擦係数の減少、摩耗指数の減少)を齎す。なお、「摩耗なし」は摩擦係数μが0.001以下を示す。
次に、DLC膜を形成した鋳型部材のヒートサイクル試験を行った試験例について説明する。ヒートサイクル試験は400℃の加熱と水冷の繰り返しを行うことによって実施した。以下の試験例において、ダイヤモンドライクカーボン層の厚みは0.5~2μm程度(実際には、0.001~5μmの範囲でも可能)、めっき層の厚みは0.5~1mmであった。
表2に示すように、1)銅板(CCM-BS)+ダイヤモンドライクカーボン層、2)銅板+Niめっき(硬質保護層)+ダイヤモンドライクカーボン層、3)銅板+CoNiめっき(硬質保護層)+ダイヤモンドライクカーボン層、4)銅板+自溶性合金溶射(硬質保護層)+ダイヤモンドライクカーボン層、5)銅板+Niめっき+サーメット溶射+ダイヤモンドライクカーボン層、6)銅板+サーメット溶射(WC,Ni等合金)+ダイヤモンドライクカーボン層について行った。なお、溶射皮膜は0.5mm程度の厚みであった。また、表2の試験例2~6においては「銅板+」を省略している。
Figure JPOXMLDOC01-appb-T000002
以上の試験例2)~4)においてはヒートサイクル100回であっても割れが発生しなかった。試験例5)においては100回目で損傷がなく、6)では20回目で剥がれが生じた。この6)の理由は、非自溶性サーメット材と母材(銅)との接合が十分でないからである。一方、自溶性合金溶射においては、溶射後に加熱するので、溶射膜と母材が拡散接合しているものと考えられる。
次に、表面にダイヤモンドライクカーボン層をそれぞれ形成した、試験例1)~4)について、鋳型部材の耐酸性試験を行った。
1)銅板(CCM-BS)+ダイヤモンドライクカーボン層、については腐食が発生し、2)Niめっき(硬質保護層)+ダイヤモンドライクカーボン層、3)CoNiめっき(硬質保護層)+ダイヤモンドライクカーボン層、4)溶射(硬質保護層)+ダイヤモンドライクカーボン層については数時間経過後も腐食反応は見受けられなかった。従って、硬質保護層+ダイヤモンドライクカーボン層を形成することによって、優れた耐蝕性を有することが判る。
本発明は前記実施例、実験例に限定されず、本発明の要旨を変更しない範囲での、材料変更、厚み変更、数値の変更を行う場合も本発明は適用される。
また、鋳型本体の粗面化処理(凹凸処理)、鋳型本体の表面硬化処理、めっき層の形成、溶射層の形成を組み合わせて硬質保護層を形成し、最後にダイヤモンドライクカーボン層を形成する場合も本発明は適用される。
また、前記実施例において、連続鋳造鋳型は長辺及び短辺を有するものであったが、筒状(断面略角形、断面円形、チューブラタイプ)の鋳型であってもその内面に硬質保護層及びダイヤモンドライクカーボン層を形成するものであれば適用される。
本発明にかかる連続鋳造鋳型は、鋳型本体の内側に硬質保護層を介してダイヤモンドライクカーボン層を被覆しているので、鋳型内面と鋳片との摩擦が著しく減少し、更に長期の寿命を有する連続鋳造鋳型を提供できる。
10:連続鋳造鋳型、11、12:短辺、13、14:長辺、11a~14a:鋳型本体、15~18:バックプレート、20:硬質保護層、21:ダイヤモンドライクカーボン層、22:縦溝、23:メニスカス部

Claims (11)

  1. 銅又は銅合金からなる鋳型本体の内側に硬質保護層を介してダイヤモンドライクカーボン層を被覆して、溶鋼又は該溶鋼が凝固したシェルが接する鋳型部材が構成されることを特徴とする連続鋳造鋳型。
  2. 請求項1記載の連続鋳造鋳型において、前記鋳型部材はそれぞれ対となる短辺と長辺とを有し、前記短辺及び前記長辺の内側の全部又は一部に前記ダイヤモンドライクカーボン層が形成されていることを特徴とする連続鋳造鋳型。
  3. 請求項1記載の連続鋳造鋳型において、前記鋳型部材はチューブラ型であって、前記溶鋼又は前記溶鋼が凝固したシェルが接する内表面の全部又は一部に前記ダイヤモンドライクカーボン層が形成されていることを特徴とする連続鋳造鋳型。
  4. 請求項1~3のいずれか1記載の連続鋳造鋳型において、前記硬質保護層は、前記鋳型本体を窒化処理及び/又はショットピーニング処理を行うことによって形成されていることを特徴とする連続鋳造鋳型。
  5. 請求項1~4のいずれか1記載の連続鋳造鋳型において、前記硬質保護層は前記鋳型本体に形成された硬質めっき層からなることを特徴とする連続鋳造鋳型。
  6. 請求項5記載の連続鋳造鋳型において、前記硬質めっき層は、Cr、Ni、Co、高硬度Cu又はこれらの合金めっきからなることを特徴とする連続鋳造鋳型。
  7. 請求項1~6のいずれか1記載の連続鋳造鋳型において、前記硬質保護層は溶射によって形成されていることを特徴とする連続鋳造鋳型。
  8. 請求項1~7のいずれか1記載の連続鋳造鋳型において、前記硬質保護層は前記鋳型本体にブラスト又はエッチングによる凹凸処理がなされた上に形成されていることを特徴とする連続鋳造鋳型。
  9. 請求項1~8のいずれか1記載の連続鋳造鋳型において、前記ダイヤモンドライクカーボン層は、PVD法又はCVD法によって形成されていることを特徴とする連続鋳造鋳型。
  10. 請求項1~9のいずれか1記載の連続鋳造鋳型において、前記鋳型部材の上部に位置するメニスカス部には、緩冷却用の上下に長い多数の縦溝が形成されていることを特徴とする連続鋳造鋳型。
  11. 請求項1~9のいずれか1記載の連続鋳造鋳型において、前記鋳型部材の上部に位置するメニスカス部には、緩冷却用の多数のディンプルが形成されていることを特徴とする連続鋳造鋳型。
PCT/JP2014/057799 2014-03-20 2014-03-20 連続鋳造鋳型 WO2015140991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014537391A JP5640179B1 (ja) 2014-03-20 2014-03-20 連続鋳造鋳型
PCT/JP2014/057799 WO2015140991A1 (ja) 2014-03-20 2014-03-20 連続鋳造鋳型
TW104108818A TWI617375B (zh) 2014-03-20 2015-03-19 連續鑄造鑄模

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057799 WO2015140991A1 (ja) 2014-03-20 2014-03-20 連続鋳造鋳型

Publications (1)

Publication Number Publication Date
WO2015140991A1 true WO2015140991A1 (ja) 2015-09-24

Family

ID=52145722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057799 WO2015140991A1 (ja) 2014-03-20 2014-03-20 連続鋳造鋳型

Country Status (3)

Country Link
JP (1) JP5640179B1 (ja)
TW (1) TWI617375B (ja)
WO (1) WO2015140991A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020573B (zh) * 2019-12-05 2022-04-01 沈阳工业大学 基于铜表面的导热防腐蚀的复合膜层及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174759A (ja) * 1987-01-14 1988-07-19 Nomura Tokin:Kk 連続鋳造用鋳型
JP2006255733A (ja) * 2005-03-16 2006-09-28 Jfe Steel Kk 連続鋳造用鋳型銅板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557927B (zh) * 2006-12-27 2014-10-22 日立化成株式会社 凹版和使用该凹版的带有导体层图形的基材
WO2011104876A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 スクロール圧縮機
CN104395015B (zh) * 2012-06-27 2016-08-17 杰富意钢铁株式会社 连续铸造用铸型以及钢的连续铸造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174759A (ja) * 1987-01-14 1988-07-19 Nomura Tokin:Kk 連続鋳造用鋳型
JP2006255733A (ja) * 2005-03-16 2006-09-28 Jfe Steel Kk 連続鋳造用鋳型銅板

Also Published As

Publication number Publication date
JP5640179B1 (ja) 2014-12-10
TW201544211A (zh) 2015-12-01
JPWO2015140991A1 (ja) 2017-04-06
TWI617375B (zh) 2018-03-11

Similar Documents

Publication Publication Date Title
JP5480331B2 (ja) 射出金型装置
JP4735309B2 (ja) 耐キャビテーションエロージョン用部材及びその製造方法
CN100532039C (zh) 耐火砖模具
JP5640179B1 (ja) 連続鋳造鋳型
US20120067541A1 (en) Permanent mold for continuous casting
JP2009084613A (ja) 金属ガラス合金複合体及びその製造方法
WO2003064077A1 (fr) Feuille de cuivre de moule pour coulee continue et son procede de fabrication
CN1426333A (zh) 结晶器壁,尤其是铸钢连铸结晶器的宽侧壁
JPS5973153A (ja) 連続鋳造用鋳型及びその製造方法
JP2005199348A (ja) 鋳造圧延ロール設備
JP2012183548A (ja) ダイカスト用金型
JP5833982B2 (ja) 鋳造用金型及びその製造方法
RU2211111C2 (ru) Способ изготовления формообразующего корпуса кристаллизатора и корпус кристаллизатора
JP5161842B2 (ja) 連続鋳造用鋳型
JP5776790B2 (ja) 鋳造用部材、及びその製造方法
KR100740899B1 (ko) 강 연속 주조 주형의 주형 벽, 특히 넓은 쪽 벽
Peng-cheng et al. High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy
JP4122984B2 (ja) 連続鋳造用のモールド銅板およびその製造方法
JP2004346353A (ja) 非晶質炭素被膜の成膜方法
JP2759208B2 (ja) シエル鋳型造型用金型
JPS61129257A (ja) 連続鋳造用鋳型の製法
JP6109106B2 (ja) 連続鋳造用鋳型の製造方法
JP2010247188A (ja) 等速ジョイント用外輪の製造方法
JPS5973152A (ja) 連続鋳造用鋳型及びその製造方法
JPH0237258B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014537391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886454

Country of ref document: EP

Kind code of ref document: A1