WO2015137206A1 - サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料 - Google Patents

サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2015137206A1
WO2015137206A1 PCT/JP2015/056330 JP2015056330W WO2015137206A1 WO 2015137206 A1 WO2015137206 A1 WO 2015137206A1 JP 2015056330 W JP2015056330 W JP 2015056330W WO 2015137206 A1 WO2015137206 A1 WO 2015137206A1
Authority
WO
WIPO (PCT)
Prior art keywords
sizing agent
reinforcing fiber
fiber
group
coated reinforcing
Prior art date
Application number
PCT/JP2015/056330
Other languages
English (en)
French (fr)
Inventor
日浅巧
小林大悟
市川智子
遠藤真
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580012895.3A priority Critical patent/CN106068346B/zh
Priority to JP2015512927A priority patent/JP6179591B2/ja
Priority to KR1020167026823A priority patent/KR20160132040A/ko
Priority to EP15760771.4A priority patent/EP3118370B1/en
Priority to US15/120,708 priority patent/US10208173B2/en
Publication of WO2015137206A1 publication Critical patent/WO2015137206A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to a sizing agent-coated reinforcing fiber, a sizing agent-coated reinforcing fiber manufacturing method, a prepreg, and a fiber-reinforced composite material, which constitute a fiber-reinforced composite material having excellent adhesive strength with a matrix resin and high mechanical strength. is there.
  • fiber reinforced composite materials are widely used in general industrial fields such as office equipment, computer applications (IC trays, notebook PC cases, etc.), and automobile applications.
  • the demand is increasing year by year.
  • metal fibers such as aluminum fibers and stainless fibers, organic fibers such as aramid fibers and PBO fibers, inorganic fibers such as silicon carbide fibers, and carbon fibers are used.
  • Carbon fiber is suitable from the viewpoint of the balance of specific strength, specific rigidity and lightness, and among them, polyacrylonitrile-based carbon fiber is suitably used.
  • phenol resin, melamine resin, bismaleimide resin, unsaturated polyester resin, epoxy resin and the like are preferably used.
  • an epoxy resin is particularly preferably used for the purpose of increasing such interfacial adhesion and providing a fiber-reinforced composite material having a high mechanical strength.
  • Patent Documents 1 and 2 For example, a method of applying diglycidyl ether of bisphenol A as a sizing agent to carbon fibers has been proposed (Patent Documents 1 and 2). Further, a method of applying an epoxy adduct of polyalkylene glycol as a sizing agent to carbon fibers has been proposed (Patent Documents 3, 4, and 5).
  • the fiber reinforced composite material is a heterogeneous material, there is a large difference between the physical properties in the arrangement direction of the reinforcing fibers and the physical properties in other directions.
  • the impact resistance indicated by resistance to falling weight impact is governed by delamination strength, that is, interlayer toughness such as G Ic (opening mode) and G IIc (in-plane shear mode).
  • a carbon fiber reinforced composite material using a thermosetting resin as a matrix resin reflects the low toughness of the matrix resin and has the property of being easily destroyed by stresses from other than the direction of the carbon fibers that are reinforcing fibers. Yes.
  • an object of the present invention is to use a sizing agent-coated reinforcing fiber that exhibits high toughness in a fiber-reinforced composite material, a method for producing the sizing agent-coated reinforcing fiber, and the reinforcing fiber It is to provide a fiber reinforced composite material.
  • the present inventors have found that the toughness of a fiber-reinforced composite material using the reinforcing fiber can be improved by applying a sizing agent containing polyrotaxane to the reinforcing fiber, and have arrived at the present invention.
  • the present invention is a sizing agent-coated reinforcing fiber obtained by coating a reinforcing fiber with a sizing agent containing polyrotaxane.
  • the polyrotaxane is arranged at both ends of the cyclic molecule, the linear molecule that is included in the circular molecule in a skewered manner, and the linear molecule so that the cyclic molecule is not detached from the linear molecule. It has a blocking group.
  • the present invention also relates to a method for producing a sizing agent-coated reinforcing fiber by applying a sizing agent containing polyrotaxane to a reinforcing fiber and then heat-treating the sizing agent in the step of applying the sizing agent.
  • the sizing agent application is performed at a temperature range of 160 to 260 ° C. for 30 to 600 seconds, with 0.1 to 10 parts by mass based on 100 parts by mass of the reinforcing fiber applied with sizing agent.
  • the manufacturing method of a reinforced fiber is included.
  • the present invention also includes a prepreg composed of a reinforcing fiber coated with the above sizing agent and a thermosetting resin.
  • the present invention also includes a fiber reinforced composite material obtained by curing the above prepreg.
  • the present invention also includes a fiber-reinforced composite material composed of the above-described sizing agent-coated reinforcing fiber and a thermosetting resin.
  • the present invention is a sizing agent-coated reinforcing fiber obtained by coating a reinforcing fiber with a sizing agent containing polyrotaxane.
  • the sizing agent used in the present invention needs to contain a polyrotaxane.
  • a polyrotaxane is a compound having a structure in which a blocking group is arranged at both ends of a pseudopolyrotaxane in which an opening of a cyclic molecule is skewered by a linear molecule so that the cyclic molecule is not detached. Since polyrotaxane has specific functions and properties, application to various technical fields has been studied in recent years. For example, Japanese Patent Application Laid-Open No. 2008-1997 proposes a technique for improving the stretchability, washing resistance, wrinkle resistance and the like of a fiber material using a polyrotaxane material.
  • a sizing agent containing a polyrotaxane to reinforcing fibers, it is possible to impart high elongation and toughness properties to the reinforcing fiber / matrix resin interface. It has been found that a fiber-reinforced composite material having a high degree of toughness can be provided during interlaminar fracture. Below, each structure of the polyrotaxane contained in the sizing agent of this invention is demonstrated.
  • the cyclic molecule used for the polyrotaxane is not particularly limited as long as it is a molecule in which a linear molecule can be included in a skewered manner in the opening.
  • the cyclodextrin may be a cyclodextrin derivative.
  • the type of cyclodextrin or cyclodextrin derivative is not particularly limited, but is preferably selected from ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and derivatives thereof.
  • the cyclodextrin derivative is introduced by substituting a polymer chain and / or a substituent on the hydroxyl group of cyclodextrin.
  • the dispersibility of the polyrotaxane in the sizing agent can be adjusted. It can.
  • examples of such a polymer chain include polyethylene glycol, polypropylene glycol, polyethylene, polypropylene, polyvinyl alcohol, polyacrylic acid ester, polylactone, and polylactam.
  • examples of the substituent include a hydroxyl group, thionyl group, amino group, sulfonyl group, phosphonyl group, acetyl group, methyl group, ethyl group, propyl group, isopropyl group and other alkyl groups, trityl group, tosyl group, and trimethyl.
  • a silane group, a phenyl group, etc. are mentioned.
  • the other component of the sizing agent or the solvent in which the sizing agent is dissolved is a hydrophilic compound, it is preferable to introduce a hydrophilic polymer chain or a substituent.
  • the other component of the sizing agent or the solvent in which the sizing agent is dissolved is a hydrophobic compound
  • the cyclodextrin is modified with a polymer chain.
  • the polymer chain preferably includes a bond selected from —O— bond and —NH— bond, and a group selected from an alkylene group and an alkenylene group.
  • the alkylene group preferably has 1 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms.
  • the alkenylene group preferably has 2 to 20 carbon atoms, and more preferably 2 to 12 carbon atoms.
  • Examples of such polymer chains include polyalkylene glycol, polyalkenylene glycol, polyalkyleneimine, polylactone, polylactam and the like.
  • Preferable specific examples include polyethylene glycol, polypropylene glycol, polyethyleneimine, poly ⁇ -propiolactone, poly ⁇ -valerolactone, poly ⁇ -caprolactone, poly ⁇ -caprolactam, polylauryl lactam and the like.
  • a part of hydrogen of the alkylene or alkenylene group is substituted with at least one selected from the group consisting of an acyl group such as a hydroxyl group, a carboxyl group and an acetyl group, an olefin group such as a phenyl group, a halogen atom and an allyl group. It may be.
  • the linear molecule of the polyrotaxane is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclic molecule.
  • linear molecules polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulose resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene glycol, polypropylene glycol, polyvinyl acetal resins , Polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, and copolymers thereof; polyolefin resins such as polyethylene and polypropylene; polyester resins; polyvinyl chloride resins; polystyrene, acrylonitrile-styrene copolymer resins, etc.
  • Polystyrene resin polymethyl methacrylate, (meth) acrylic acid ester copolymer, acrylonitrile-methyl Acrylic resin such as acrylate copolymer resin; Polycarbonate resin; Polyurethane resin; Vinyl chloride-vinyl acetate copolymer resin; Polyvinyl butyral resin etc .; Polyisobutylene; Polytetrahydrofuran; Polyaniline; Acrylonitrile-butadiene-styrene copolymer (ABS resin) Polyamides such as nylon, polyimides, polydienes such as polyisoprene and polybutadiene, polysiloxanes such as polydimethylsiloxane, polysulfones, polyimines, polyacetic anhydrides, polyureas, polysulfides, and polyphosphazenes Polyketones; polyphenylenes; polyhaloolefins; and derivatives of these resins.
  • ABS resin Acrylonitrile-buta
  • polyethylene glycol polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and A linear molecule selected from the group consisting of polyvinyl methyl ether is preferred, and polyethylene glycol is particularly preferred.
  • the linear molecule of polyrotaxane preferably has a weight average molecular weight of 15,000 or more, more preferably 17,000 or more. Moreover, it is preferable that a weight average molecular weight is 30,000 or less, and it is more preferable that it is 25,000 or less.
  • the weight average molecular weight is determined based on the retention time (retention capacity) of standard polystyrene having a known molecular weight measured under the same conditions as the retention time (retention capacity) measured using a gel permeation chromatograph (GPC). It can be calculated in terms of molecular weight.
  • the polyrotaxane slide ring is formed by the cyclic molecule sliding on the linear molecule when the sizing-coated reinforcing fiber is used as a matrix resin and a composite material.
  • the effect is particularly excellent, and the physical properties of the fiber-reinforced composite material are particularly improved.
  • the weight average molecular weight of the linear molecule is 30,000 or less, the interaction between the polyrotaxane and the matrix resin is optimized, and the physical properties of the fiber-reinforced composite material are particularly improved.
  • ⁇ Inclusion amount> When a plurality of cyclic molecules include a linear molecule in a skewered manner, when the maximum amount of cyclic molecules included in one linear molecule is 1, the cyclic molecule is 0.001-0.
  • the linear molecules should be included in an amount in the range of .6, preferably 0.01 to 0.5, more preferably 0.05 to 0.4.
  • the maximum inclusion amount of the cyclic molecule can be calculated from the length of the linear molecule and the thickness of the cyclic molecule.
  • the maximum inclusion amount is experimentally determined (see Macromolecules 1993, 26, 5698-5703). The contents of this document are all incorporated herein.
  • the blocking group of the polyrotaxane is not particularly limited as long as it is a group that is arranged at both ends of the linear molecule and acts so as not to leave the cyclic molecule.
  • a group selected from is preferred.
  • the substituent include alkyl groups such as methyl groups, alkyloxy groups such as methoxy groups, hydroxy groups, halogen groups, cyano groups, sulfonyl groups, carboxyl groups, amino groups, and phenyl groups. It is not limited to these. One or more substituents may be present.
  • the blocking group is more preferably a group selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, and pyrenes, more preferably an adamantane group or a trityl group. is there.
  • a cyclic molecule is an ⁇ -cyclodextrin derivative having a polymer chain containing ⁇ -caprolactone as a monomer unit, and a polyrotaxane whose linear molecule is polyethylene glycol is a good sizing agent.
  • a polyrotaxane whose linear molecule is polyethylene glycol is a good sizing agent.
  • Specific examples of such compound products include “Celum®” superpolymer SH1310P, “Celum®” superpolymer SH2400P, “Celum®” superpolymer SH3400P (all of which are advanced soft materials). Etc.).
  • “Celum (registered trademark)” superpolymer SH2400P whose linear molecule is polyethylene glycol having a weight average molecular weight of 20,000 can be preferably used.
  • the sizing agent can contain a compound that promotes cross-linking of the polyrotaxane molecules.
  • the compound that promotes crosslinking include a compound having a plurality of reactive groups that react with an active group of a cyclic molecule of polyrotaxane.
  • the plurality of reactive groups each crosslink by reacting with an active group with a plurality of polyrotaxanes to form chemical bonds.
  • Examples of the reactive group include an isocyanate group, a thioisocyanate group, an oxirane group, an oxetane group, a carbodiimide group, a silanol group, an oxazoline group, and an aziridine group.
  • An isocyanate group or a thioisocyanate group is more preferable, and an isocyanate group is more preferable.
  • the compound having a plurality of the above reactive groups include polyether, polyester, polysiloxane, polycarbonate, poly (meth) acrylate, polyene or copolymers thereof, or both ends of the above reaction. Mention may be made of compounds modified by groups.
  • a product in which polyrotaxane and a compound that promotes crosslinking are mixed is also commercially available.
  • Specific examples of such products include “Celum (registered trademark)” elastomer SH3400S, “Celum (registered trademark)” elastomer SH3400M, and “Celum (registered trademark)” elastomer SH3400H (all manufactured by Advanced Soft Materials Co., Ltd.). ) And the like.
  • the sizing agent further contains a compound having an epoxy group in addition to the polyrotaxane.
  • the epoxy group interacts with the surface functional group of the reinforcing fiber to improve adhesion with the surface of the reinforcing fiber, and has high interaction and reactivity with the matrix resin, particularly the epoxy resin.
  • the compound having an epoxy may be an aliphatic epoxy compound or an aromatic epoxy compound. These compounds can be used alone or in combination of two or more. Specific examples of the compound having an epoxy include a glycidyl ether type epoxy compound derived from a polyol, a glycidyl amine type epoxy compound derived from an amine having a plurality of active hydrogens, a glycidyl ester type epoxy compound derived from a polycarboxylic acid, And an epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule.
  • Examples of the glycidyl ether type epoxy compound include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetrabromobisphenol A, phenol novolac, cresol novolac, hydroquinone, resorcinol, 4,4′-dihydroxy-3,3 ′, 5. , 5'-tetramethylbiphenyl, 1,6-dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene, tris (p-hydroxyphenyl) methane, and tetrakis (p-hydroxyphenyl) ethane and epichlorohydride
  • Examples include glycidyl ether type epoxy compounds obtained by reaction with phosphorus.
  • glycidyl ether type epoxy compound obtained by the reaction of epichlorohydrin.
  • the epoxy compound include
  • Examples of the glycidylamine type epoxy compound include N, N-diglycidylaniline, N, N-diglycidyl-o-toluidine, 1,3-bis (aminomethyl) cyclohexane, m-xylenediamine, m-phenylenediamine, 4 4,4'-diaminodiphenylmethane and 9,9-bis (4-aminophenyl) fluorene.
  • epoxy compounds obtained by reacting both the hydroxyl group and amino group of aminophenols of m-aminophenol, p-aminophenol, and 4-amino-3-methylphenol with epichlorohydrin are mentioned. It is done.
  • glycidyl ester type epoxy compound examples include glycidyl ester type epoxy compounds obtained by reacting phthalic acid, terephthalic acid, hexahydrophthalic acid, and dimer acid with epichlorohydrin.
  • Examples of the epoxy compound obtained by oxidizing a compound having a plurality of double bonds in the molecule include an epoxy compound having an epoxycyclohexane ring in the molecule and epoxidized soybean oil.
  • epoxy compounds such as triglycidyl isocyanurate can be mentioned.
  • combined from the epoxy compound mentioned above as a raw material for example, the epoxy compound synthesize
  • an epoxy compound having one or more epoxy groups and one or more functional groups selected from an amide group, an imide group, a urethane group, a urea group, a sulfonyl group, and a sulfo group is used as the epoxy compound. You can also.
  • Examples of the compound having an epoxy group and an amide group include glycidyl benzamide and an amide-modified epoxy compound.
  • the amide-modified epoxy compound can be obtained by reacting an epoxy group of an epoxy compound having two or more epoxy groups with a carboxyl group of a dicarboxylic acid amide.
  • Examples of the compound having an epoxy group and an imide group include glycidyl phthalimide. Specific examples include “Denacol (registered trademark)” EX-731 (manufactured by Nagase ChemteX Corporation).
  • Examples of the compound having an epoxy group and a urethane group include a urethane-modified epoxy compound.
  • ADEKA RESIN registered trademark
  • EPU-78-13S, EPU-6, EPU-11, EPU-15, EPU-16A, EPU-16N, EPU-17T-6, EPU-1348 and EPU-1395 (Made by ADEKA Corporation).
  • the terminal hydroxyl group of polyethylene oxide monoalkyl ether is reacted with a polyvalent isocyanate compound having a reaction equivalent to the amount of the hydroxyl group, and then the isocyanate residue of the obtained reaction product is reacted with the hydroxyl group in the polyvalent epoxy compound.
  • the compound obtained by is mentioned.
  • polyvalent isocyanate compound used 2,4-tolylene diisocyanate, metaphenylene diisocyanate, paraphenylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, triphenylmethane triisocyanate and biphenyl-2 4,4′-triisocyanate and the like.
  • Examples of the compound having an epoxy group and a urea group include a urea-modified epoxy compound.
  • the urea-modified epoxy compound can be obtained by reacting the epoxy group of an epoxy compound having two or more epoxy groups with the carboxyl group of the dicarboxylic acid urea.
  • Examples of the compound having an epoxy group and a sulfonyl group include a bisphenol S-type epoxy compound.
  • Examples of the compound having an epoxy group and a sulfo group include p-toluenesulfonic acid glycidyl compound and 3-nitrobenzenesulfonic acid glycidyl compound.
  • the epoxy value of the epoxy-containing compound is preferably 2.0 meq / g or more.
  • the epoxy value of the epoxy compound is 2.0 meq / g or more, an interaction with the carbon fiber is formed at a high density, and the adhesion between the carbon fiber and the matrix resin is further improved.
  • the upper limit of the epoxy value is not particularly limited, but 8.0 meq / g is sufficient from the viewpoint of adhesiveness because the interaction with the reinforcing fiber is reinforced. More preferably, the epoxy value of the epoxy compound is 3.0 to 7.0 meq / g.
  • the compound having an epoxy group is preferably a compound selected from a polyether type polyepoxy compound and a polyol type polyepoxy compound having two or more epoxy groups in the molecule from the viewpoint of high adhesiveness.
  • the adhesion is further strengthened by increasing the interaction with the functional groups on the surface of the reinforcing fiber.
  • the interaction with the functional group on the surface of the reinforcing fiber is strengthened, so that the physical properties of the obtained fiber-reinforced composite material are improved.
  • the compound having an epoxy is a glycidyl ether type epoxy obtained by reaction of at least one compound selected from glycerin, diglycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol, and arabitol with epichlorohydrin. More preferably, it is a compound. Since these compounds have flexible molecular chains, the interaction with the functional group on the surface of the reinforcing fiber is further increased, and the physical properties of the fiber-reinforced composite material are further improved.
  • products of these compounds include polyglycerin polyglycidyl ether (eg, “Denacol (registered trademark)” EX-512, EX-521 manufactured by Nagase ChemteX Corporation), trimethylolpropane polyglycidyl ether (eg, "Denacol (registered trademark) EX-321” manufactured by Nagase ChemteX Corporation, glycerin polyglycidyl ether (for example, "Denacol (registered trademark)” EX-313, EX-314 manufactured by Nagase ChemteX Corporation) ), Sorbitol polyglycidyl ether (for example, “Denacol (registered trademark)” EX-611, EX-612, EX-614, EX-614B, EX-622 manufactured by Nagase ChemteX Corporation), pentaerythritol polyglycidyl ether (For example, Nagase ChemteX
  • the content ratio of the polyrotaxane in the sizing agent is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more with respect to the total amount of the sizing agent.
  • the content ratio of the polyrotaxane is 5% by mass or more, the high elongation and high toughness properties of the polyrotaxane are more effectively expressed when the fiber reinforced composite material is obtained.
  • the content rate of a polyrotaxane is 80 mass% or less with respect to the sizing agent whole quantity, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less.
  • the content ratio of the polyrotaxane is 80% by mass or less, the plasticity of the polyrotaxane acts appropriately on the matrix resin, and the tensile strength of the fiber reinforced composite material tends to be higher.
  • the compound having an epoxy group in the sizing agent is preferably contained in an amount of 20% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more based on the total amount of the sizing agent. Moreover, it is preferable that the compound which has an epoxy group in a sizing agent is contained in the ratio of 95 mass% or less with respect to the sizing agent whole quantity, More preferably, it is 90 mass% or less, More preferably, it is 85 mass% or less. .
  • the content ratio of the compound having a polyrotaxane and an epoxy group in the sizing agent was obtained by immersing the sizing agent-coated reinforcing fiber in a solvent and performing ultrasonic cleaning to elute the polyrotaxane and the compound having an epoxy group, and the eluted polyrotaxane and It can obtain
  • the solvent for example, acetone, N, N-dimethylformamide, acetonitrile, dichloromethane, chloroform, and a mixture thereof can be preferably used.
  • polyrotaxane and the compound having an epoxy group can be quantified by gas chromatography, liquid chromatography, nuclear magnetic resonance spectroscopy (NMR), oxidation-reduction titration method, acid-base titration method, or the like.
  • the sizing agent may contain components other than those described above.
  • auxiliary components such as an adhesion promoting component that enhances the adhesion between the sizing agent and the reinforcing fibers and / or the matrix resin, a dispersant for the purpose of stabilizing the sizing agent, and a surfactant can be added.
  • Adhesion promoting components include triisopropylamine, dibutylethanolamine, diethylethanolamine, triisopropanolamine, diisopropylethylamine, N-benzylimidazole, 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) ), 1,5-diazabicyclo [4,3,0] -5-nonene (DBN), 1,4-diazabicyclo [2,2,2] octane, 5,6-dibutylamino-1,8-diaza-bicyclo And tertiary amine compounds such as [5,4,0] undecene-7 (DBA) and salts thereof; phosphine compounds such as tributylphosphine and triphenylphosphine; and quaternary phosphonium salts. These compounds are preferably added in an amount of 1 to 25% by mass, more preferably 2 to 8% by mass, based on the total amount
  • Dispersants and surfactants include nonionic, cationic, and anionic surfactants. From the viewpoint of stability when a water emulsion is used, it is preferable to use nonionic surfactants. More specifically, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene fatty acid amide ether, polyhydric alcohol fatty acid ester, polyoxyethylene polyhydric alcohol fatty acid ester, fatty acid sucrose Examples thereof include esters, alkylolamides, and polyoxyalkylene block copolymers. Furthermore, you may add a polyester compound, an unsaturated polyester compound, etc. suitably in the range which does not affect the effect of this invention.
  • a component that imparts convergence or flexibility to the sizing agent-coated reinforcing fiber may be appropriately added within a range that does not affect the effects of the present invention.
  • the handleability, abrasion resistance and fluff resistance of the sizing agent-coated reinforcing fiber can be improved, and the impregnation property of the matrix resin can be improved.
  • Reinforcing fibers include carbon fibers, glass fibers, ceramic fibers, silicon carbide fibers and other inorganic fibers; aromatic polyamide fibers (aramid fibers), polyethylene fibers, polyethylene terephthalate fibers, polybutylene terephthalate fibers, polyethylene naphthalate fibers, poly Various organic fibers such as arylate fiber, polyacetal fiber, PBO fiber, polyphenylene sulfide fiber, and polyketone fiber can be exemplified, but are not limited thereto. Of these, inorganic fibers such as carbon fibers and glass fibers, and aromatic polyamide fibers are preferable, and carbon fibers are more preferable. Particularly preferred are polyacrylonitrile-based carbon fibers which have good specific strength and specific elastic modulus, and can provide a lightweight and high-strength fiber-reinforced composite material.
  • spinning methods such as wet, dry, and dry wet can be used. From the viewpoint of easily obtaining high-strength carbon fibers, it is preferable to use a wet or dry wet spinning method.
  • the total fineness of the carbon fiber is preferably 400 to 3000 tex.
  • the number of carbon fiber filaments is preferably 1000 to 100,000, and more preferably 3000 to 50,000.
  • a solution obtained by dissolving a polyacrylonitrile homopolymer or copolymer in a solvent can be used as the spinning dope.
  • a solvent an organic solvent such as dimethyl sulfoxide, dimethylformamide, or dimethylacetamide, or an aqueous solution of an inorganic compound such as nitric acid, sodium rhodanate, zinc chloride, or sodium thiocyanate is used. Dimethyl sulfoxide or dimethylacetamide is preferred as the solvent.
  • the above spinning solution is spun through a die and discharged into a spinning bath to be solidified.
  • a spinning bath an aqueous solution of a solvent used as a solvent for the spinning dope can be used.
  • a spinning solution containing the same solvent as the spinning solution is preferably used, and a dimethyl sulfoxide aqueous solution or a dimethylacetamide aqueous solution is preferable.
  • the fibers solidified in the spinning bath are washed with water and drawn to obtain precursor fibers.
  • the obtained precursor fiber is subjected to flameproofing treatment and carbonization treatment, and if necessary, further subjected to graphitization treatment to obtain carbon fiber.
  • the maximum heat treatment temperature is preferably 1100 ° C. or more, more preferably 1300 to 3000 ° C.
  • the single fiber diameter of the carbon fiber is preferably 7.5 ⁇ m or less, more preferably 6 ⁇ m or less, and further preferably 5.5 ⁇ m or less.
  • the lower limit of the single fiber diameter is not particularly limited, but if it is less than 4.5 ⁇ m, the single fiber is likely to be cut in the process, and the productivity may be lowered.
  • Carbon fibers are usually subjected to an oxidation treatment to improve adhesion to the matrix resin, and oxygen-containing functional groups are introduced to the surface.
  • an oxidation treatment method gas phase oxidation, liquid phase oxidation and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform processing, liquid phase electrolytic oxidation is preferably used.
  • Examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution.
  • Examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid; organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid; or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used.
  • alkaline electrolyte examples include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide; sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate; aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate; ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine.
  • hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide
  • sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate
  • bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate,
  • an aqueous solution of ammonium carbonate and ammonium hydrogen carbonate or an aqueous solution of tetraalkylammonium hydroxide exhibiting strong alkalinity is preferably used.
  • the carbon fiber is electrolytically oxidized with an alkaline electrolytic solution, or the carbon fiber is an acidic aqueous solution
  • a sizing agent after electrolytic oxidation treatment in the substrate, followed by washing with an alkaline aqueous solution.
  • an excessively oxidized part on the surface of the carbon fiber exists as a fragile layer and may become a starting point of destruction when made into a composite material. It is considered preferable to dissolve and remove with an aqueous solution.
  • the pH of the alkaline aqueous solution used for washing is preferably in the range of 7 to 14, and more preferably in the range of 10 to 14.
  • Specific examples of the alkaline aqueous solution include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and barium hydroxide; sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, and barium carbonate.
  • aqueous solutions of carbonates such as ammonium carbonate; aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate; ammonia, tetraalkylammonium hydroxide and hydrazine
  • carbonates such as ammonium carbonate
  • bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate
  • ammonia tetraalkylammonium hydroxide and hydrazine
  • a dip method and a spray method can be used as a method for washing the carbon fiber with an alkaline aqueous solution.
  • a dip method and a spray method can be used as a method for washing the carbon fiber with an alkaline aqueous solution.
  • the concentration of the electrolytic solution is preferably in the range of 0.01 to 5 mol / liter, more preferably in the range of 0.1 to 1 mol / liter.
  • concentration of the electrolytic solution is 0.01 mol / liter or more, the voltage of the electrolytic oxidation treatment is lowered, which is advantageous in terms of operating cost.
  • concentration of the electrolytic solution is 5 mol / liter or less, it is advantageous from the viewpoint of safety.
  • the temperature of the electrolytic solution is preferably in the range of 10 to 100 ° C., more preferably in the range of 10 to 40 ° C.
  • the temperature of the electrolytic solution is 10 ° C. or higher, the efficiency of the electrolytic oxidation treatment is improved, which is advantageous in terms of operating cost.
  • the temperature of the electrolytic solution is 100 ° C. or lower, it is advantageous from the viewpoint of safety.
  • the current density in the liquid phase electrolytic oxidation is preferably in the range of 1.5 to 1000 amperes / m 2 per 1 m 2 of the surface area of the carbon fiber in the electrolytic solution, more preferably in the range of 3 to 500 amperes / m 2 . Is within.
  • the current density is 1.5 amperes / m 2 or more, the efficiency of the electrolytic oxidation treatment is improved, which is advantageous in terms of operating cost.
  • the current density is 1000 amperes / m 2 or less, it is advantageous from the viewpoint of safety.
  • the amount of electricity in the liquid phase electrolytic oxidation treatment is preferably optimized according to the carbonization degree of the carbon fiber. When processing high-modulus carbon fiber, a larger amount of electricity is required.
  • the carbon fiber has a surface oxygen concentration (O / C), which is the ratio of the number of oxygen (O) and carbon (C) atoms on the fiber surface measured by X-ray photoelectron spectroscopy, of 0.05 to 0.00. Those within the range of 50 are preferred, more preferably within the range of 0.07 to 0.30, and even more preferably within the range of 0.10 to 0.30.
  • O / C surface oxygen concentration
  • the surface oxygen concentration (O / C) is 0.05 or more, an oxygen-containing functional group on the surface of the carbon fiber can be secured and strong adhesion with the matrix resin can be obtained.
  • the surface oxygen concentration (O / C) is 0.5 or less, a decrease in strength of the carbon fiber itself due to oxidation can be suppressed.
  • the surface oxygen concentration of the carbon fiber can be determined by X-ray photoelectron spectroscopy according to the following procedure. First, carbon fibers from which dirt and the like adhering to the carbon fiber surface were removed with a solvent were cut into a length of 20 mm, spread and arranged on a copper sample support, and then AlK ⁇ 1 and 2 were used as an X-ray source. The sample chamber is maintained at 1 ⁇ 10 ⁇ 8 Torr. As a correction value for the peak accompanying charging during measurement, the binding energy value of the main peak (peak top) of C 1s is adjusted to 284.6 eV. The C 1s peak area is obtained by drawing a straight base line in the range of 282 to 296 eV.
  • the O 1s peak area can be obtained by drawing a straight base line in the range of 528 to 540 eV.
  • the surface oxygen concentration can be calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • the carbon fiber is washed with a liquid phase electrolytic oxidation treatment or an alkaline aqueous solution, then washed with water and dried.
  • the drying temperature is too high, the functional groups present on the outermost surface of the carbon fiber are likely to disappear due to thermal decomposition, and thus it is desirable to dry at the lowest possible temperature.
  • the drying is performed at a drying temperature of preferably 250 ° C. or lower, more preferably 210 ° C. or lower.
  • the drying temperature is preferably 110 ° C. or higher, and more preferably 140 ° C. or higher.
  • carbon fibers that are preferably used can be obtained.
  • the strand strength of the carbon fiber is preferably 3.5 GPa or more, more preferably 4 GPa or more, and further preferably 5 GPa. Moreover, it is preferable that the strand elastic modulus of carbon fiber is 220 GPa or more, More preferably, it is 240 GPa or more, More preferably, it is 280 GPa or more.
  • the strand tensile strength and strand elastic modulus of the carbon fiber bundle can be determined by the resin impregnated strand test method of JIS-R-7608 (2004).
  • a sizing agent containing polyrotaxane can be diluted with a solvent.
  • a solvent examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, dimethylformamide, and dimethylacetamide.
  • water is preferably used because it is easy to handle and advantageous from the viewpoint of safety.
  • a surfactant can be added and used as an aqueous emulsion. Although it does not specifically limit as surfactant, Nonionic surfactants, such as a block copolymer of ethylene oxide and propylene oxide, etc. can be mentioned preferably.
  • a coating method a method of coating at once using a sizing agent-containing solution in which polyrotaxane and other sizing agent components are simultaneously dissolved or dispersed, and a sizing agent-containing solution in which each component is arbitrarily selected and individually dissolved or dispersed
  • a method of applying a plurality of times using is preferably used.
  • the polyrotaxane and other components can be added in any order.
  • the application means for the case where the above sizing agent dispersion liquid simultaneously contains a polyrotaxane and other components will be described. The same can be done for application.
  • Examples of the application means include, for example, a method in which reinforcing fibers are immersed in a sizing agent-containing liquid via a roller, a method in which reinforcing fibers are in contact with a roller to which the sizing agent-containing liquid is attached, and a sizing agent-containing liquid is atomized to form reinforcing fibers.
  • the sizing agent applying means may be either a batch type or a continuous type, but a continuous type which is good in productivity and can reduce variation is preferably used.
  • the concentration and temperature of the sizing agent-containing liquid and the yarn tension of the reinforcing fiber so that the amount of the sizing agent active component attached to the reinforcing fiber is uniform within an appropriate range.
  • the reinforcing fiber is vibrated with ultrasonic waves when the sizing agent is applied.
  • the adhesion amount of the sizing agent is preferably in the range of 0.1 to 10 parts by mass, more preferably in the range of 0.2 to 3 parts by mass with respect to 100 parts by mass of the sizing agent-coated reinforcing fiber.
  • the adhesion amount of the sizing agent is 0.1 parts by mass or more, when prepreg and weaving the sizing agent-coated reinforcing fiber, it can withstand friction caused by a metal guide that passes therethrough, and generation of fluff is suppressed. The quality of the prepreg using the reinforcing fiber is excellent.
  • the adhesion amount of the sizing agent is 10 parts by mass or less
  • the matrix resin is impregnated inside the reinforcing fiber bundle without being inhibited by the sizing agent film around the reinforcing fiber bundle, and void formation is suppressed in the obtained composite material. Therefore, the quality and mechanical properties of the composite material are excellent.
  • the thickness of the sizing agent layer applied to the reinforcing fiber after drying is preferably in the range of 2.0 to 20 nm, and the maximum value of the thickness does not exceed twice the minimum value.
  • Reinforcing fibers are manufactured by applying a sizing agent-containing liquid, then heat-treating, removing the solvent contained in the sizing agent-containing liquid and drying.
  • the heat treatment is considered to have an effect of promoting the formation of a covalent bond between the sizing agent component and the functional group on the surface of the reinforcing fiber and enhancing the adhesion between the reinforcing fiber and the matrix resin.
  • the heat treatment conditions are preferably in the temperature range of 130 ° C. to 260 ° C., more preferably in the temperature range of 160 to 260 ° C., and preferably 30 to 600 seconds. When the temperature is 130 ° C. or higher and 30 seconds or longer, water and organic solvent in which the sizing agent component is dissolved or dispersed can be sufficiently removed. When it is 260 ° C. or lower and 600 seconds or shorter, the operation cost and safety are particularly excellent.
  • the heat treatment can be performed by microwave irradiation and / or infrared irradiation.
  • the reinforcing fiber When the reinforcing fiber is heat-treated by microwave irradiation and / or infrared irradiation, the reinforcing fiber that is the object to be heated can be heated to a desired temperature in a short time.
  • the inside of the reinforcing fiber can be quickly heated by microwave irradiation and / or infrared irradiation, the temperature difference between the inside and outside of the reinforcing fiber bundle can be reduced, and the adhesion unevenness of the sizing agent can be reduced. It becomes possible to do.
  • the reinforcing fiber is carbon fiber
  • the sizing agent component can be applied to the carbon fiber surface simultaneously with water washing in a later washing step.
  • the amount of the sizing agent component attached can be controlled by controlling the concentration and temperature of the electrolytic solution and the yarn tension of the carbon fiber.
  • the sizing-coated reinforcing fiber of the present invention is used in the form of, for example, tow, woven fabric, knitted fabric, braided string, web, mat, and chopped fiber.
  • tows in which carbon fibers are aligned in one direction are most suitable.
  • a prepreg obtained by impregnating a sizing coated reinforcing fiber with a matrix resin is preferably used.
  • the sizing coated reinforcing fiber in the present invention can be used as a prepreg and a fiber reinforced composite material in combination with a matrix resin.
  • thermosetting resin As the prepreg and the matrix resin of the fiber reinforced composite material, either a thermosetting resin or a thermoplastic resin can be used.
  • a thermosetting resin is more preferable.
  • the thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, melamine resins, urea resins, thermosetting polyimide resins, cyanate ester resins, and bismaleimide resins, and their modifications. Body, and a resin obtained by blending two or more of these.
  • an epoxy resin is preferable because it has an advantage of excellent balance of mechanical properties and small curing shrinkage.
  • the epoxy resin is preferably an epoxy resin composition containing an epoxy compound and a curing agent.
  • the epoxy compound is not particularly limited, and is not limited to bisphenol type epoxy compound, amine type epoxy compound, phenol novolac type epoxy compound, cresol novolac type epoxy compound, resorcinol type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy.
  • One or more compounds can be selected and used from among compounds, dicyclopentadiene type epoxy compounds, epoxy compounds having a biphenyl skeleton, isocyanate-modified epoxy compounds, tetraphenylethane type epoxy compounds, triphenylmethane type epoxy compounds, and the like.
  • the curing agent is not particularly limited, and examples thereof include an aromatic amine curing agent, dicyanamide or a derivative thereof.
  • amines such as alicyclic amines, phenol compounds, acid anhydrides, polyamide aminos, organic acid hydrazides, isocyanates, and the like can be used in combination with aromatic amine curing agents.
  • an epoxy resin composition containing a polyfunctional glycidylamine type epoxy compound and an aromatic diamine curing agent it is preferable to use an epoxy resin composition containing a polyfunctional glycidylamine type epoxy compound and an aromatic diamine curing agent.
  • a matrix resin containing a polyfunctional glycidylamine type epoxy compound and an aromatic diamine curing agent has a high crosslinking density, and can improve the heat resistance and compressive strength of the resulting fiber-reinforced composite material.
  • the polyfunctional glycidylamine type epoxy compound for example, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol and the like can be preferably used.
  • the polyfunctional glycidylamine type epoxy compound has an effect of improving heat resistance, and the ratio is preferably 30 to 100% by mass in 100% by mass of all epoxy compounds. When the ratio of the glycidylamine type epoxy compound is 30% by mass or more, the compressive strength of the fiber reinforced composite material is improved and the heat resistance is excellent.
  • tetraglycidyldiaminodiphenylmethane examples include, for example, “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Toto Kasei Co., Ltd.), “Araldite (registered trademark)” MY720 (Huntsman Advanced Materials Co., Ltd.), “jER (registered trademark)” 604 (Japan Epoxy Resin Co., Ltd.) and the like can be used.
  • triglycidylaminophenol or triglycidylaminocresol examples include, for example, “Sumiepoxy (registered trademark)” ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite (registered trademark)” MY0510, and “Araldite (registered trademark)”. “MY0600 (manufactured by Huntsman Advanced Materials Co., Ltd.)”, “jER (registered trademark)” 630 (manufactured by Japan Epoxy Resin Co., Ltd.) and the like can be used.
  • the aromatic diamine curing agent is not particularly limited as long as it is an aromatic amine used as a curing agent for an epoxy resin composition.
  • 3,3′-diaminodiphenyl sulfone (3,3) is used.
  • aromatic amine curing agents include Seika Cure S (manufactured by Wakayama Seika Kogyo Co., Ltd.), MDA-220 (manufactured by Mitsui Chemicals), “jER Cure (registered trademark)” W (Japan Epoxy Resin ( ), And 3,3′-DAS (Mitsui Chemicals), “Lonacure (registered trademark)” M-DEA (Lonza), “Lonzasure (registered trademark)” M-DIPA ( Lonza Co., Ltd.), “Lonzacure (registered trademark)” M-MIPA (Lonza Co., Ltd.) and “Lonzacure (registered trademark)” DETDA 80 (Lonza Co., Ltd.).
  • the aromatic diamine curing agent is preferably contained in a stoichiometric amount of 50 to 120% by mass, more preferably 60 to 120% by mass, and still more preferably, based on the total epoxy compound contained in the epoxy resin composition. 70 to 90% by mass.
  • the aromatic amine curing agent is 50% by mass or more of the stoichiometric amount with respect to the total epoxy compound, the heat resistance of the obtained resin cured product is improved.
  • curing agent is 120 mass% or less, the toughness of the resin cured material obtained improves.
  • an effect promoter can be blended for the purpose of promoting the curing of the epoxy resin composition.
  • the curing accelerator include urea compounds, tertiary amines and salts thereof, imidazoles and salts thereof, triphenylphosphine or derivatives thereof, carboxylic acid metal salts and Lewis acids, Bronsted acids and salts thereof, and the like.
  • thermoplastic resin can be blended with the matrix resin of the fiber reinforced composite material in order to improve physical properties such as toughness of the obtained cured resin.
  • thermoplastic resins include carbon-carbon bonds, amide bonds, imide bonds (polyetherimide, etc.), ester bonds, ether bonds, siloxane bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds,
  • a thermoplastic resin having a bond selected from the group consisting of a sulfone bond, an imidazole bond, and a carbonyl bond can be used.
  • those having both heat resistance and toughness such as polysulfone, polyethersulfone, polyetherimide, polyimide, polyamide, polyamideimide, polyphenylene ether, phenoxy resin, and vinyl polymer can be preferably used.
  • polyethersulfone and polyetherimide are suitable because these effects can be exhibited with almost no loss of heat resistance.
  • Polyether sulfones include “Sumika Excel (registered trademark)” 3600P, “Sumika Excel (registered trademark)” 5003P, “Sumika Excel (registered trademark)” 5200P, “Sumika Excel (registered trademark)” 7200P (above, Sumitomo Chemical) Kogyo Co., Ltd.) and polyetherimide include "Ultem (registered trademark)” 1000, “Ultem (registered trademark)” 1010, “Ultem (registered trademark)” 1040 (above, manufactured by Nippon GE Plastics Co., Ltd.) ) Etc. can be used.
  • the amount of the thermoplastic resin is preferably 1 to 40 parts by mass, more preferably 1 to 25 parts by mass with respect to 100 parts by mass of the epoxy compound when dissolved in the epoxy resin composition. .
  • the amount is preferably 10 to 40 parts by weight, more preferably 15 to 30 parts by weight with respect to 100 parts by weight of the epoxy compound.
  • thermoplastic resin is preferably uniformly dissolved in the epoxy resin composition or finely dispersed in the form of particles so as not to interfere with the prepreg production process, particularly in terms of impregnation. .
  • thermosetting resin other than the thermosetting resin used as the matrix resin, elastomer, filler, rubber particles, thermoplastic resin particles, inorganic particles and other additives are blended. You can also.
  • thermoplastic resin particles the same thermoplastic resins as those exemplified above can be used.
  • polyamide particles and polyimide particles are preferably used.
  • polyamides Nylon 12, Nylon 6, Nylon 11, Nylon 6/12 copolymer can give particularly good adhesive strength with thermosetting resin. It is preferable because the delamination strength is high and the effect of improving impact resistance is high.
  • particles made into a semi-IPN (polymer interpenetrating network structure) by a combination of a polyamide resin and an epoxy resin have high heat resistance and solvent resistance. More preferable. Specific examples include “Trepearl (registered trademark)” TN manufactured by Toray Industries, Inc.
  • thermoplastic resin particles may be spherical particles, non-spherical particles, or porous particles, but since the spherical particles do not deteriorate the flow characteristics of the resin, they are excellent in viscoelasticity and have no origin of stress concentration. This is preferable in terms of giving high impact resistance.
  • cross-linked rubber particles, and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like.
  • inorganic particles such as silica, alumina, smectite, and synthetic mica can be added to the matrix resin in order to adjust fluidity such as thickening of the matrix resin within the range that does not impair the effects of the present invention.
  • Prepreg is a wet method in which the above matrix resin is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnated into the reinforcing fiber, or a hot melt method in which the viscosity is lowered by heating and impregnated into the reinforcing fiber (dry method). Or the like.
  • the wet method is a method in which a reinforcing fiber is immersed in a matrix resin solution, then lifted, and the solvent is evaporated using an oven or the like.
  • the hot melt method is a method in which a reinforcing resin is impregnated directly with a matrix resin whose viscosity is reduced by heating, or a film in which a matrix resin is coated on a release paper or the like is once prepared, and then the film is applied from both sides or one side of the reinforcing fiber. And reinforcing the fiber by impregnating the matrix resin with heat and pressure.
  • the hot melt method is a preferable method because there is substantially no solvent remaining in the prepreg.
  • a fiber-reinforced composite material can be produced by a method of heat-curing the matrix resin while applying pressure to the laminate.
  • a method for applying heat and pressure a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, a vacuum pressure molding method, and the like are employed.
  • the fiber reinforced composite material does not go through a prepreg, and includes, for example, a filament winding method, a hand layup method, a resin injection molding method, “SCRIMP (registered trademark)”, a resin film infusion method, and a resin transfer method. It can also be produced by a molding method such as a molding method.
  • the fiber reinforced composite material of the present invention is, for example, a personal computer, a display, an OA device, a mobile phone, a portable information terminal, a facsimile, a compact disc, a portable MD, a portable radio cassette, a PDA (a portable information terminal such as an electronic notebook), a video.
  • Example 1 carbon fiber was used as the reinforcing fiber.
  • This example comprises the following I step, II step and III step.
  • Step I Step of producing carbon fiber A copolymer composed of 99 mol% of acrylonitrile and 1 mol% of itaconic acid was spun and fired, and the total number of filaments was 12,000, specific gravity 1.8, strand tensile strength 700 kgf / mm 2, to obtain a carbon fiber strand tensile modulus 33,000kgf / mm 2.
  • the carbon fiber was subjected to liquid phase electrolytic oxidation treatment using an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / liter as an electrolytic solution.
  • the carbon fiber subjected to the liquid phase electrolytic oxidation treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber subjected to surface oxidation treatment.
  • Step II Step of producing sizing-coated carbon fiber and evaluation 70 parts by mass of (A-1) as a compound having an epoxy group, 30 parts by mass of (B-1) as a polyrotaxane, and dimethylformamide as a solvent Then, a sizing agent solution was prepared. This sizing agent solution was applied to the surface oxidized carbon fiber obtained as described above using a dipping method and then heat treated at a temperature of 210 ° C. for 180 seconds to obtain a sizing agent-coated carbon fiber bundle. The adhesion amount of the sizing agent was measured by the method described below and adjusted so that the adhesion amount of the sizing agent was 0.5 parts by mass with respect to 100 parts by mass of the sizing agent-coated carbon fibers.
  • IFSS interfacial shear strength
  • (C) Resin casting and curing
  • the resin prepared in the procedure (a) is poured into the dumbbell mold after the vacuum drying in the procedure (b), and the heating rate is 1.5 ° C. using an oven.
  • the temperature rises to 75 ° C./min and is maintained at 75 ° C. for 2 hours, then rises to a temperature of 125 ° C. at a heating rate of 1.5 minutes, held at 125 ° C. for 2 hours, and then the cooling rate is 2.5 ° C.
  • the temperature was lowered to 30 ° C. in minutes. Then, it demolded and the test piece was obtained.
  • Interfacial shear strength IFSS (MPa) ⁇ (MPa) ⁇ d ( ⁇ m) / (2 ⁇ lc) ( ⁇ m)
  • the strand tensile strength was determined according to the following procedure in accordance with the resin impregnated strand test method of JIS-R-7608 (2004).
  • the interfacial shear strength IFSS is an index of the adhesive strength between the carbon fiber and the matrix resin interface. In the present invention, 30 MPa or more is a preferable range.
  • Step III Preparation of prepreg, molding and evaluation of carbon fiber reinforced composite laminate ⁇ Preparation of prepreg> First, bisphenol A type epoxy resin, “jER (registered trademark)” 828 (manufactured by Mitsubishi Chemical Corporation) 60 parts by mass, tetraglycidyldiaminodiphenylmethane, ELM434 (manufactured by Sumitomo Chemical Co., Ltd.) 40 parts by mass, 4, 4 ′ -40 parts by mass of diaminodiphenylsulfone, “Seika Cure (registered trademark)” S (manufactured by Wakayama Seika Co., Ltd.) and 10 parts by mass of polyethersulfone “Sumika Excel (registered trademark)” PES5003P (manufactured by Sumitomo Chemical Co., Ltd.) A kneaded epoxy resin composition was prepared, and this was coated on a release paper with a resin basis weight of 30 g / m 2
  • This primary resin film is superimposed on both sides of a sizing agent-coated carbon fiber (weight per unit area 190 g / m 2 ) aligned in one direction, and the epoxy resin composition is applied to the sizing agent-coated carbon fiber while heating and pressing using a heat roll.
  • a primary prepreg was produced by impregnation.
  • a resin composition was prepared by further kneading 80 parts by mass of the above-mentioned epoxy resin composition with “Trepearl (registered trademark)” TN (manufactured by Toray Industries, Inc., average particle size: 13.0 ⁇ m).
  • a secondary resin film was prepared by coating the release paper with a resin basis weight of 20 g / m 2 using a coater. This secondary resin film was overlapped on both sides of the primary prepreg, and the primary prepreg was impregnated with the resin composition to produce a target prepreg.
  • High mode I interlaminar fracture toughness means that the adhesion between the carbon fiber and the matrix resin is good, and the toughness of the fiber-reinforced composite material is high.
  • the mode I interlaminar fracture toughness (G Ic ) is preferably in the range of 700 J / m 2 or more.
  • Table 1 the value of the mode I interlaminar fracture toughness (G Ic) are marked 950J / m 2 or more of A, less than 700 J / m 2 or more 950J / m 2 B, less than 700 J / m 2 at C ing.
  • Step I Step of producing carbon fiber as raw material The same procedure as in Example 1 was performed.
  • Step II Step for producing sizing coated carbon fiber and evaluation Sizing agent coated carbon fiber was obtained in the same manner as in Example 1 except that the ratio of each component was as shown in Table 1. . Subsequently, when the interfacial shear strength (IFSS) was measured in the same manner as in Example 1 using the obtained sizing agent-coated carbon fiber, it was found that the adhesiveness was sufficiently high. The results are shown in Table 1.
  • IFSS interfacial shear strength
  • Step III Preparation of prepreg, molding of carbon fiber reinforced composite material laminate and evaluation
  • a unidirectional reinforcing material carbon fiber reinforced composite material
  • the I interlaminar fracture toughness (G Ic ) showed a sufficiently high value. The results are shown in Table 1.
  • Example 10 Step I: Step of producing carbon fiber The same procedure as in Example 1 was performed.
  • Step II Step of producing sizing coated carbon fiber and evaluation Implemented except that the concentration of the sizing agent solution was adjusted so that the adhesion amount of the sizing agent was 1 part by mass with respect to 100 parts by mass of the sizing agent coated carbon fiber.
  • Sizing agent-coated carbon fibers were obtained in the same manner as in Example 1. Subsequently, when the interfacial shear strength (IFSS) was measured in the same manner as in Example 1 using the obtained sizing agent-coated carbon fiber, it was found that the adhesiveness was sufficiently high. The results are shown in Table 1.
  • IFSS interfacial shear strength
  • Step III Preparation of prepreg, molding of carbon fiber reinforced composite material laminate and evaluation
  • a unidirectional reinforcing material carbon fiber reinforced composite material
  • the I interlaminar fracture toughness (G Ic ) showed a sufficiently high value. The results are shown in Table 1.
  • Step I Step of producing carbon fiber The same procedure as in Example 1 was performed.
  • Step II Step of producing sizing-coated carbon fiber and evaluation Sizing agent-coated carbon fiber was obtained in the same manner as in Example 1 except that the sizing agent solution was prepared using only the component (A-2). Subsequently, when the interfacial shear strength (IFSS) was measured in the same manner as in Example 1 using the obtained sizing agent-coated carbon fiber, it was found that the adhesiveness was sufficiently high. The results are shown in Table 1.
  • Step III Preparation of prepreg, molding of carbon fiber reinforced composite material laminate and evaluation
  • a unidirectional reinforcing material carbon fiber reinforced composite material
  • the I interlaminar fracture toughness (G Ic ) showed a low value. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

強化繊維にポリロタキサンを含むサイジング剤が塗布されてなるサイジング剤塗布強化繊維。繊維強化複合材料とした際に力学特性に優れるサイジング剤塗布強化繊維および該サイジング剤塗布強化繊維の製造方法、そのサイジング剤塗布強化繊維を用いたプリプレグおよび力学特性に優れた繊維強化複合材料を提供する。

Description

サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
 本発明は、マトリックス樹脂との接着性に優れ、高度な機械強度を有する繊維強化複合材料を構成するサイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料に関するものである。
 軽量でありながら強度、剛性、寸法安定性等に優れることから、繊維強化複合材料は、広く事務機器用途、コンピュータ用途(ICトレイ、ノートパソコン筐体等)、自動車用途等の一般産業分野に展開され、その需要は年々増加しつつある。これらの強化繊維には、アルミニウム繊維やステンレス繊維などの金属繊維、アラミド繊維やPBO繊維などの有機繊維、シリコンカーバイド繊維などの無機繊維、および炭素繊維などが使用されている。比強度、比剛性および軽量性のバランスの観点から炭素繊維が好適であり、その中でもポリアクリロニトリル系炭素繊維が好適に用いられている。
 このような強化繊維に付与するサイジング剤としては、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂およびエポキシ樹脂などが好適に用いられている。一般に、強化繊維およびマトリックス樹脂からなる繊維強化複合材料成形品においては、繊維方向に高い引張強度や圧縮強度を発現させるために、強化繊維とマトリックス樹脂との間に高い界面接着性が求められる。そこで強化繊維に付与するサイジング剤として、このような界面接着性を高め、高度の機械的強度を有する繊維強化複合材料を与える目的で、エポキシ樹脂が特に好適に用いられている。例えば、サイジング剤としてビスフェノールAのジグリシジルエーテルを炭素繊維に塗布する方法が提案されている(特許文献1、2)。また、サイジング剤としてポリアルキレングリコールのエポキシ付加物を炭素繊維に塗布する方法が提案されている(特許文献3、4、5)。
 ところで、繊維強化複合材料は不均一材料であるため、強化繊維の配列方向の物性とそれ以外の方向の物性に大きな差が存在する。例えば、落錘衝撃に対する抵抗性で示される耐衝撃性は、層間剥離強度すなわちGIc(開口モード)やGIIc(面内せん断モード)などの層間靭性に支配されることが知られている。特に、熱硬化性樹脂をマトリックス樹脂とする炭素繊維強化複合材料は、マトリックス樹脂の低い靭性を反映し、強化繊維である炭素繊維の配列方向以外からの応力に対し、破壊され易い性質を持っている。
 そこでこのような問題を解決するために、繊維方向の引張強度や圧縮強度の向上に加え、繊維の配列方向以外からの応力への強度を改善できるサイジング剤の検討が行われている。例えば、可撓性エポキシ樹脂と該可撓性エポキシ樹脂とは相溶性のないエポキシ樹脂を必須成分として含有するサイジング剤を使用することで層間靭性に優れた炭素繊維強化複合材料方法を得る方法が提案されている(特許文献6)。
米国特許第3,957,716号 特開昭57-171767号公報 特開昭57-128266号公報 米国特許第4,555,446号 特開昭62-33872号公報 国際公開WO07/060833号
 しかしながら、今後一段と高まる、さらなる軽量化と高い層間靱性への要求を考慮した場合、上記の方法は、必ずしも十分であるとはいえない。マトリックス樹脂の高靭性化および高強度化が進む中、繊維強化複合材料の層間靭性をより一層高められるサイジング剤の開発が望まれている。
 本発明の目的は、上記の従来技術における問題点に鑑み、繊維強化複合材料に高度の靭性を発現させるサイジング剤塗布強化繊維、該サイジング剤塗布強化繊維の製造方法、ならびに該強化繊維を使用した繊維強化複合材料を提供することにある。
 本発明者らは、ポリロタキサンを含むサイジング剤を強化繊維に塗布することにより、該強化繊維を用いた繊維強化複合材料の靭性を向上できることを見出し、本発明に想到した。
 すなわち、本発明は、強化繊維にポリロタキサンを含むサイジング剤が塗布されてなるサイジング剤塗布強化繊維である。ここで、ポリロタキサンとは、環状分子、該環状分子に串刺し状に包接される直鎖状分子、および該直鎖状分子から環状分子が脱離しないように直鎖状分子の両端に配置される封鎖基を有するものである。
 また、本発明は、強化繊維にポリロタキサンを含むサイジング剤を塗布した後、熱処理することによってサイジング剤塗布強化繊維を製造する方法であって、前記サイジング剤を塗布する工程において、サイジング剤の付着量がサイジング剤塗布強化繊維100質量部に対して0.1~10質量部となるようにし、かつ、前記熱処理する工程の条件が160~260℃の温度範囲で30~600秒間であるサイジング剤塗布強化繊維の製造方法を含む。
 また、本発明は、上記のサイジング剤を塗布した強化繊維と熱硬化性樹脂からなるプリプレグを含む。
 また、本発明は、上記のプリプレグを硬化させてなる繊維強化複合材料を含む。
 また、本発明は、上記のサイジング剤塗布強化繊維と熱硬化性樹脂からなる繊維強化複合材料を含む。
 本発明のサイジング剤塗布強化繊維を用いることで、高い靭性を有する繊維強化複合材料を得ることができる。
 以下、本発明の実施形態について説明する。
 本発明は強化繊維にポリロタキサンを含むサイジング剤が塗布されてなるサイジング剤塗布強化繊維である。
 まず、本発明に用いられるサイジング剤について説明する。
 本発明に用いられるサイジング剤は、ポリロタキサンを含有することが必要である。ポリロタキサンとは、環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなる構成を有する化合物である。ポリロタキサンは、特有の機能および性質を有していることから、近年、様々な技術分野への応用が検討されている。例えば、特開2008-1997号公報では、ポリロタキサン材料を用い繊維材料のストレッチ性、耐洗濯性、防しわ性等を改良する技術が提案されている。
 本発明においては、ポリロタキサンを含むサイジング剤を強化繊維に付与することにより、高伸度および高靭性の特性を強化繊維/マトリックス樹脂界面に付与することができ、これによって得られる繊維強化複合材料の層間破壊の際に高度な靭性を有する繊維強化複合材料を提供できることを見出した。以下に、本発明のサイジング剤に含まれるポリロタキサンの各構成について説明する。
 <環状分子>
 ポリロタキサンに用いられる環状分子は、その開口部に直鎖状分子が串刺し状に包接され得る分子であれば、特に限定されない。
 環状分子としては、水酸基を有する環状分子が好ましく、包接性および生産性の観点から、シクロデキストリンがより好ましい。ここで、シクロデキストリンとしてはシクロデキストリン誘導体でもよい。シクロデキストリンまたはシクロデキストリン誘導体の種類は、特に制限されないが、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、およびこれらの誘導体から選ばれたものが好ましい。ここでシクロデキストリン誘導体とは、シクロデキストリンの水酸基に高分子鎖および/または置換基を置換させて導入したものである。これら高分子鎖および/または置換基を、サイジング剤の他の成分およびサイジング剤を溶解させる溶媒にあわせて、適切に選択することにより、本サイジング剤中でのポリロタキサンの分散性を調整することができる。かかる高分子鎖としては、例えばポリエチレングリコール、ポリプロピレングリコール、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリアクリル酸エステル、ポリラクトン、ポリラクタム等が挙げられる。一方、上記置換基としては、例えば、水酸基、チオニル基、アミノ基、スルホニル基、ホスホニル基、アセチル基、メチル基、エチル基、プロピル基、イソプロピル基等のアルキル基、トリチル基、トシル基、トリメチルシラン基、フェニル基等が挙げられる。一般に、サイジング剤の他の成分またはサイジング剤を溶解させる溶媒が親水性の化合物である場合には、親水性の高分子鎖または置換基を導入することが好ましい。また、サイジング剤の他の成分またはサイジング剤を溶解させる溶媒が疎水性の化合物である場合には、疎水性の高分子鎖または置換基を導入することが好ましい。高分子鎖または置換基の導入によりポリロタキサンのサイジング剤への親和性を高め、サイジング剤中での良好な分散性を付与するとともに、サイジング剤と強化繊維表面とを強固に接着させることができる。
 このような観点においては、上記シクロデキストリンが、高分子鎖により修飾されていることがさらに好ましい。該高分子鎖は、-O-結合および-NH-結合から選ばれた結合、ならびに、アルキレン基およびアルケニレン基から選ばれた基を含むことが好ましい。ここで、アルキレン基は炭素数が1以上20以下であることが好ましく、炭素数が2以上12以下であることがより好ましい。アルケニレン基は炭素数が2以上20以下であることが好ましく、炭素数が2以上12以下であることがより好ましい。このような高分子鎖の例としては、ポリアルキレングリコール、ポリアルケニレングリコール、ポリアルキレンイミン、ポリラクトン、ポリラクタム等が挙げられる。好ましい具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリβ-プロピオラクトン、ポリδ-バレロラクトン、ポリε-カプロラクトン、ポリε-カプロラクタム、ポリラウリルラクタム等が挙げられる。また、前記アルキレンまたはアルケニレン基の水素の一部が、水酸基、カルボキシル基、アセチル基等のアシル基、フェニル基、ハロゲン原子およびアリル基等のオレフィン基からなる群から選ばれる少なくとも1種で置換されていてもよい。
 このようなシクロデキストリンまたはシクロデキストリン誘導体のより具体的な例としては、α-シクロデキストリン(グルコース数=6個、空孔の内径=約0.45~0.6μm)、β-シクロデキストリン(グルコース数=7個、空孔の内径=約0.6~0.8μm)、γ-シクロデキストリン(グルコース数=8個、空孔の内径=約0.8~0.95μm)、ジメチルシクロデキストリン、グルコシルシクロデキストリン、2-ヒドロキシプロピル-α-シクロデキストリン、2,6-ジ-O-メチル-α-シクロデキストリン、6-O-α-マルトシル-α-シクロデキストリン、6-O-α-D-グルコシル-α-シクロデキストリン、ヘキサキス(2,3,6-トリ-O-アセチル)-α-シクロデキストリン、ヘキサキス(2,3,6-トリ-O-メチル)-α-シクロデキストリン、ヘキサキス(6-O-トシル)-α-シクロデキストリン、ヘキサキス(6-アミノ-6-デオキシ)-α-シクロデキストリン、ヘキサキス(2,3-アセチル-6-ブロモ-6-デオキシ)-α-シクロデキストリン、ヘキサキス(2,3,6-トリ-O-オクチル)-α-シクロデキストリン、モノ(2-O-ホスホリル)-α-シクロデキストリン、モノ[2,(3)-O-(カルボキシルメチル)]-α-シクロデキストリン、オクタキス(6-O-t-ブチルジメチルシリル)-α-シクロデキストリン、スクシニル-α-シクロデキストリン、グルクロニルグルコシル-β-シクロデキストリン、ヘプタキス(2,6-ジ-O-メチル)-β-シクロデキストリン、ヘプタキス(2,6-ジ-O-エチル)-β-シクロデキストリン、ヘプタキス(6-O-スルホ)-β-シクロデキストリン、ヘプタキス(2,3-ジ-O-アセチル-6-O-スルホ)-β-シクロデキストリン、ヘプタキス(2,3-ジ-O-メチル-6-O-スルホ)-β-シクロデキストリン、ヘプタキス(2,3,6-トリ-O-アセチル)-β-シクロデキストリン、ヘプタキス(2,3,6-トリ-O-ベンゾイル)-β-シクロデキストリン、ヘプタキス(2,3,6-トリ-O-メチル)-β-シクロデキストリン、ヘプタキス(3-O-アセチル-2,6-ジ-O-メチル)-β-シクロデキストリン、ヘプタキス(2,3-O-アセチル-6-ブロモ-6-デオキシ)-β-シクロデキストリン、2-ヒドロキシエチル-β-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリン、(2-ヒドロキシ-3-N,N,N-トリメチルアミノ)プロピル-β-シクロデキストリン、6-O-α-マルトシル-β-シクロデキストリン、メチル-β-シクロデキストリン、ヘキサキス(6-アミノ-6-デオキシ)-β-シクロデキストリン、ビス(6-アジド-6-デオキシ)-β-シクロデキストリン、モノ(2-O-ホスホリル)-β-シクロデキストリン、ヘキサキス[6-デオキシ-6-(1-イミダゾリル)]-β-シクロデキストリン、モノアセチル-β-シクロデキストリン、トリアセチル-β-シクロデキストリン、モノクロロトリアジニル-β-シクロデキストリン、6-O-α-D-グルコシル-β-シクロデキストリン、6-O-α-D-マルトシル-β-シクロデキストリン、スクシニル-β-シクロデキストリン、スクシニル-(2-ヒドロキシプロピル)-β-シクロデキストリン、2-カルボキシメチル-β-シクロデキストリン、2-カルボキシエチル-β-シクロデキストリン、ブチル-β-シクロデキストリン、スルホプロピル-β-シクロデキストリン、6-モノデオキシ-6-モノアミノ-β-シクロデキストリン、シリル[(6-O-t-ブチルジメチル)2,3-ジ-O-アセチル]-β-シクロデキストリン、2-ヒドロキシエチル-γ-シクロデキストリン、2-ヒドロキシプロピル-γ-シクロデキストリン、ブチル-γ-シクロデキストリン、3A-アミノ-3A-デオキシ-(2AS,3AS)-γ-シクロデキストリン、モノ-2-O-(p-トルエンスルホニル)-γ-シクロデキストリン、モノ-6-O-(p-トルエンスルホニル)-γ-シクロデキストリン、モノ-6-O-メシチレンスルホニル-γ-シクロデキストリン、オクタキス(2,3,6-トリ-O-メチル)-γ-シクロデキストリン、オクタキス(2,6-ジ-O-フェニル)-γ-シクロデキストリン、オクタキス(6-O-t-ブチルジメチルシリル)-γ-シクロデキストリン、オクタキス(2,3,6-トリ-O-アセチル)-γ-シクロデキストリン、などが挙げられる。ここで、上述のシクロデキストリン等の環状分子は、その1種を単独で、あるいは2種以上を組み合わせて使用することができる。
 <直鎖状分子>
 ポリロタキサンの直鎖状分子は、環状分子の開口部に串刺し状に包接され得るものであれば、特に限定されない。
 例えば、直鎖状分子として、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等およびこれらの共重合体;ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;ポリエステル樹脂;ポリ塩化ビニル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合樹脂等のポリスチレン系樹脂;ポリメチルメタクリレート、(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合樹脂などのアクリル系樹脂;ポリカーボネート樹脂;ポリウレタン樹脂;塩化ビニル-酢酸ビニル共重合樹脂;ポリビニルブチラール樹脂等;ポリイソブチレン;ポリテトラヒドロフラン;ポリアニリン;アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂);ナイロンなどのポリアミド類;ポリイミド類;ポリイソプレン、ポリブタジエンなどのポリジエン類;ポリジメチルシロキサンなどのポリシロキサン類;ポリスルホン類;ポリイミン類;ポリ無水酢酸類;ポリ尿素類;ポリスルフィド類;ポリフォスファゼン類;ポリケトン類;ポリフェニレン類;ポリハロオレフィン類;並びにこれらの樹脂の誘導体などが挙げられる。特にサイジング剤中での分散性が良好であること、および、生産性の観点から、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコールおよびポリビニルメチルエーテルからなる群から選ばれる直鎖状分子が好ましく、特にポリエチレングリコールが好ましい。
 ポリロタキサンの直鎖状分子は、その重量平均分子量が15,000以上であることが好ましく、17,000以上であることがより好ましい。また重量平均分子量が30,000以下であることが好ましく、25,000以下であることがより好ましい。なお、重量平均分子量は、ゲル浸透クロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件にて測定した分子量既知の標準ポリスチレンの保持時間(保持容量)に基づいて、ポリスチレンの分子量に換算して求めることができる。直鎖状分子の重量平均分子量が15,000以上であると、該サイジング塗布強化繊維を用いてマトリックス樹脂と複合材料とした際、直鎖状分子上を環状分子が滑ることによるポリロタキサンのスライドリング効果が特に優れて発揮され、繊維強化複合材料の物性が特に向上する。また直鎖状分子の重量平均分子量が30,000以下であるとポリロタキサンとマトリックス樹脂との相互作用が適正化され、繊維強化複合材料の物性が特に向上する。
 <包接量>
 複数の環状分子が直鎖状分子を串刺し状に包接する際に、1本の直鎖状分子を環状分子が最大限に包接する量を1とした場合、前記環状分子が0.001~0.6、好ましくは0.01~0.5、より好ましくは0.05~0.4の範囲の量で直鎖状分子を包接するのがよい。
 なお、環状分子の最大包接量は、直鎖状分子の長さと環状分子の厚さとにより、計算することができる。例えば、直鎖状分子がポリエチレングリコールであり、環状分子がα-シクロデキストリン分子の場合、最大包接量は、実験的に求められている(Macromolecules 1993, 26, 5698-5703を参照のこと。なお、この文献の内容はすべて本明細書に組み込まれる)。
 <封鎖基>
 ポリロタキサンの封鎖基は、直鎖状分子の両端に配置され、環状分子が脱離しないように作用する基であれば、特に限定されない。
 例えば、封鎖基として、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、ピレン類、置換ベンゼン類、置換されていてもよい多核芳香族類、およびステロイド類からなる群から選ばれた基が好ましい。なお、前記置換基としては、メチル基等のアルキル基、メトキシ基等のアルキルオキシ基、ヒドロキシ基、ハロゲン基、シアノ基、スルホニル基、カルボキシル基、アミノ基、フェニル基などを挙げることができるがこれらに限定されない。置換基は1つまたは複数存在してもよい。封鎖基は、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、およびピレン類からなる群から選ばれた基がより好ましく、さらに好ましくはアダマンタン基類またはトリチル基類である。
 これらのポリロタキサンのなかでも、環状分子がε-カプロラクトンをモノマー単位として含む高分子鎖を有するα-シクロデキストリン誘導体であり、直鎖状分子がポリエチレングリコールであるポリロタキサンが、サイジング剤中での良好な分散性および工業生産性の観点から特に好ましい。このような化合物の製品の具体例としては、“セルム(登録商標)”スーパーポリマーSH1310P、“セルム(登録商標)”スーパーポリマーSH2400P、“セルム(登録商標)”スーパーポリマーSH3400P(いずれもアドバンストソフトマテリアルズ(株)製)などが挙げられる。なかでも、直鎖状分子が重量平均分子量20,000のポリエチレングリコールである“セルム(登録商標)”スーパーポリマーSH2400Pなどを好ましく用いることができる。
 また、サイジング剤には、ポリロタキサンに加えて、ポリロタキサンの分子同士の架橋を促進する化合物を含むことができる。架橋を促進する化合物の例としては、ポリロタキサンの環状分子が有する活性基に対して反応する反応基を複数有する化合物が挙げられる。つまり、前記複数の反応基が、それぞれ複数のポリロタキサンとの活性基と反応して、化学結合を形成することにより架橋するものである。
 上記反応基の例としては、イソシアネート基、チオイソシアネート基、オキシラン基、オキセタン基、カルボジイミド基、シラノール基、オキサゾリン基、およびアジリジン基などが挙げられる。より好ましくはイソシアネート基またはチオイソシアネート基であり、より好ましくはイソシアネート基である。
 上記反応基を複数有する化合物のより具体的な例として、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリ(メタ)アクリレート、またはポリエンもしくはそれらの共重合体、もしくはそれらの混合物の両端が上記の反応基により修飾された化合物を挙げることができる。
 ポリロタキサンと架橋を促進する化合物を混合した製品も市販されている。そのような製品の具体例としては、“セルム(登録商標)”エラストマーSH3400S、“セルム(登録商標)”エラストマーSH3400M、“セルム(登録商標)”エラストマーSH3400H(いずれもアドバンストソフトマテリアルズ(株)製)などが挙げられる。
 サイジング剤は、ポリロタキサンの他に、エポキシ基を有する化合物をさらに含むことが好ましい。エポキシ基は、強化繊維の表面官能基と相互作用し、強化繊維表面との接着性を向上させるとともに、マトリックス樹脂、とりわけエポキシ樹脂との相互作用および反応性が高い。これにより、高い層間破壊靱性を有するとともに、強化繊維とマトリックス樹脂との接着性に優れた繊維強化複合材料を得ることができる。
 エポキシを有する化合物としては、脂肪族エポキシ化合物でも、芳香族エポキシ化合物でもよい。これらの化合物は、単独でまたは2種以上を組み合わせて使用することができる。エポキシを有する化合物の具体例としては、ポリオールから誘導されるグリシジルエーテル型エポキシ化合物、複数活性水素を有するアミンから誘導されるグリシジルアミン型エポキシ化合物、ポリカルボン酸から誘導されるグリシジルエステル型エポキシ化合物、および分子内に複数の2重結合を有する化合物を酸化して得られるエポキシ化合物などが挙げられる。
 グリシジルエーテル型エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、1,6-ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、トリス(p-ヒドロキシフェニル)メタン、およびテトラキス(p-ヒドロキシフェニル)エタンとエピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。また、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、ポリブチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールF、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールと、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物が挙げられる。また、このエポキシ化合物としては、ジシクロペンタジエン骨格を有するグリシジルエーテル型エポキシ化合物、およびビフェニルアラルキル骨格を有するグリシジルエーテル型エポキシ化合物が挙げられる。
 グリシジルアミン型エポキシ化合物としては、例えば、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、1,3-ビス(アミノメチル)シクロヘキサン、m-キシレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタンおよび9,9-ビス(4-アミノフェニル)フルオレンが挙げられる。さらに、例えば、m-アミノフェノール、p-アミノフェノール、および4-アミノ-3-メチルフェノールのアミノフェノール類の水酸基とアミノ基の両方を、エピクロロヒドリンと反応させて得られるエポキシ化合物が挙げられる。
 グリシジルエステル型エポキシ化合物としては、例えば、フタル酸、テレフタル酸、ヘキサヒドロフタル酸、およびダイマー酸を、エピクロロヒドリンと反応させて得られるグリシジルエステル型エポキシ化合物が挙げられる。
 分子内に複数の2重結合を有する化合物を酸化させて得られるエポキシ化合物としては、例えば、分子内にエポキシシクロヘキサン環を有するエポキシ化合物やエポキシ化大豆油が挙げられる。
 これらのエポキシ化合物以外にも、トリグリシジルイソシアヌレートのようなエポキシ化合物が挙げられる。さらには、上に挙げたエポキシ化合物を原料として合成されるエポキシ化合物、例えば、ビスフェノールAジグリシジルエーテルとトリレンジイソシアネートからオキサゾリドン環生成反応により合成されるエポキシ化合物などが挙げられる。
 さらに、エポキシ化合物として、1個以上のエポキシ基と、アミド基、イミド基、ウレタン基、ウレア基、スルホニル基、およびスルホ基から選ばれる、1個以上の官能基とを有するエポキシ化合物を用いることもできる。
 エポキシ基とアミド基を有する化合物としては、例えば、グリシジルベンズアミド、アミド変性エポキシ化合物等が挙げられる。アミド変性エポキシ化合物は、ジカルボン酸アミドのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 エポキシ基とイミド基を有する化合物としては、例えば、グリシジルフタルイミド等が挙げられる。具体的には“デナコール(登録商標)”EX-731(ナガセケムテックス株式会社製)等が挙げられる。
 エポキシ基とウレタン基を有する化合物としては、例えば、ウレタン変性エポキシ化合物が挙げられる。具体的には“アデカレジン(登録商標)”EPU-78-13S、EPU-6、EPU-11、EPU-15、EPU-16A、EPU-16N、EPU-17T-6、EPU-1348およびEPU-1395(株式会社ADEKA製)等が挙げられる。または、ポリエチレンオキサイドモノアルキルエーテルの末端水酸基に、その水酸基量に対する反応当量の多価イソシアネート化合物を反応させ、次いで得られた反応生成物のイソシアネート残基に多価エポキシ化合物内の水酸基と反応させることによって得られる化合物が挙げられる。ここで、用いられる多価イソシアネート化合物としては、2,4-トリレンジイソシアネート、メタフェニレンジイソシアネート、パラフェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トリフェニルメタントリイソシアネートおよびビフェニル-2,4,4’-トリイソシアネートなどが挙げられる。
 エポキシ基とウレア基を有する化合物としては、例えば、ウレア変性エポキシ化合物等が挙げられる。ウレア変性エポキシ化合物は、ジカルボン酸ウレアのカルボキシル基に2個以上のエポキシ基を有するエポキシ化合物のエポキシ基を反応させることによって得ることができる。
 エポキシ基とスルホニル基を有する化合物としては、例えば、ビスフェノールS型エポキシ化合物等が挙げられる。
 エポキシ基とスルホ基を有する化合物としては、例えば、p-トルエンスルホン酸グリシジル化合物および3-ニトロベンゼンスルホン酸グリシジル化合物等が挙げられる。
 エポキシを有する化合物のエポキシ価は2.0meq/g以上であることが好ましい。エポキシ化合物のエポキシ価が、2.0meq/g以上であると、高密度で炭素繊維との相互作用が形成され、炭素繊維とマトリックス樹脂との接着性がさらに向上する。エポキシ価の上限は特にないが、8.0meq/gあれば、強化繊維との相互作用が強化されるため、接着性の観点から十分である。エポキシ化合物のエポキシ価が3.0~7.0meq/gであることがより好ましい。
 エポキシ基を有する化合物は、上述したなかでも、高い接着性の観点から、分子内にエポキシ基を2個以上有するポリエーテル型ポリエポキシ化合物およびポリオール型ポリエポキシ化合物から選ばれた化合物が好ましい。エポキシ基の数が増えると、強化繊維表面の官能基との相互作用が増えることにより接着性がさらに強化される。さらに、分子内に水酸基およびエーテル結合から選ばれた基を有することで、強化繊維表面の官能基との相互作用が強化されるため、得られる繊維強化複合材料の物性が向上する。エポキシ基の数に上限はないが、接着性の観点からは10個で十分である。
 エポキシを有する化合物は、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される1種以上の化合物と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物であることがさらに好ましい。これらの化合物は分子鎖が柔軟であるため、強化繊維表面の官能基との相互作用がさらに大きくなり、繊維強化複合材料の物性がさらに向上する。
 これらの化合物の製品の具体例として、ポリグリセリンポリグリシジルエーテル(例えば、ナガセケムテックス(株)製の“デナコール(登録商標)”EX-512、EX-521)、トリメチロールプロパンポリグリシジルエーテル(例えば、ナガセケムテックス(株)製の“デナコール(登録商標)”EX-321)、グリセリンポリグリシジルエーテル(例えば、ナガセケムテックス(株)製の“デナコール(登録商標)”EX-313、EX-314)、ソルビトールポリグリシジルエーテル(例えば、ナガセケムテックス(株)製の“デナコール(登録商標)”EX-611、EX-612、EX-614、EX-614B、EX-622)、ペンタエリスリトールポリグリシジルエーテル(例えば、ナガセケムテックス(株)製の“デナコール(登録商標)”EX-411)などを挙げることができる。これらの化合物は、単独でまたは2種以上を組み合わせて使用することができる。
 また、サイジング剤中におけるポリロタキサンの含有比率は、サイジング剤全量に対して、5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。ポリロタキサンの含有比率が5質量%以上であると、繊維強化複合材料とした際に、ポリロタキサンの高伸度および高靭性の物性がより有効に発現する。また、ポリロタキサンの含有比率は、サイジング剤全量に対して、80質量%以下であることが好ましく、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。ポリロタキサンの含有比率が80質量%以下であると、ポリロタキサンの可塑性がマトリックス樹脂に対し適度に作用して繊維強化複合材料の引張強度がより高くなる傾向にある。
 また、サイジング剤中におけるエポキシ基を有する化合物は、サイジング剤全量に対して、20質量%以上含まれることが好ましく、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。また、サイジング剤中におけるエポキシ基を有する化合物は、サイジング剤全量に対して、95質量%以下の比率で含まれることが好ましく、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。
 サイジング剤中におけるポリロタキサンおよびエポキシ基を有する化合物の含有割合は、サイジング剤塗布強化繊維を溶媒中に浸漬して超音波洗浄を行うことでポリロタキサンおよびエポキシ基を有する化合物を溶出させ、溶出したポリロタキサンおよびエポキシ基を有する化合物を定量することで求めることができる。溶媒としては、例えば、アセトン、N,N-ジメチルホルムアミド、アセトニトリル、ジクロロメタン、クロロホルム、およびこれらの混合液を好ましく用いることができる。また、ポリロタキサンやエポキシ基を有する化合物の定量は、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴分光法(NMR)、酸化還元滴定法、酸塩基滴定法などにより行うことができる。
 また、サイジング剤は、上記以外の成分を含んでも良い。例えば、サイジング剤と強化繊維および/またはマトリックス樹脂との接着性を高める接着性促進成分、サイジング剤の安定性を目的とする分散剤および界面活性剤等の補助成分を添加することができる。
 接着性促進成分としては、トリイソプロピルアミン、ジブチルエタノールアミン、ジエチルエタノールアミン、トリイソプロパノールアミン、ジイソプロピルエチルアミン、N-ベンジルイミダゾールや、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4,3,0]-5-ノネン(DBN)、1,4-ジアザビシクロ[2,2,2]オクタン、5、6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5,4,0]ウンデセン-7(DBA)等の3級アミン化合物およびその塩;トリブチルホスフィン、トリフェニルホスフィン等のホスフィン化合物および4級ホスホニウム塩などが挙げられる。これらの化合物は、サイジング剤全量に対して好ましくは1~25質量%、さらに好ましくは2~8質量%配合するのがよい。
 分散剤および界面活性剤としては、ノニオン系、カチオン系、アニオン系界面活性剤が挙げられるが、水エマルジョンとした際の安定性の面から、ノニオン系界面活性剤を使用することが好ましい。より具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸アミドエーテル、多価アルコール脂肪酸エステル、ポリオキシエチレン多価アルコール脂肪酸エステル、脂肪酸ショ糖エステル、アルキロールアミド、ポリオキシアルキレンブロックコポリマーなどを挙げることができる。さらに、本発明の効果に影響しない範囲で、適宜、ポリエステル化合物および不飽和ポリエステル化合物等を添加してもよい。
 さらに、本発明の効果に影響しない範囲で、適宜、サイジング剤塗布強化繊維に収束性あるいは柔軟性を付与する成分を添加してもよい。これによりサイジング剤塗布強化繊維の取り扱い性、耐擦過性および耐毛羽性を高め、またマトリックス樹脂の含浸性を向上させることができる。
 強化繊維としては、炭素繊維、ガラス繊維、セラミック繊維、炭化ケイ素繊維などの各種無機繊維;芳香族ポリアミド繊維(アラミド繊維)、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンサルフィド繊維、ポリケトン繊維などの各種有機繊維、を挙げることができるが、これらに限定されない。なかでも炭素繊維、ガラス繊維などの無機繊維や、芳香族ポリアミド繊維が好ましく、炭素繊維がより好ましい。特に比強度および比弾性率が良好で、軽量かつ高強度の繊維強化複合材料が得られるポリアクリロニトリル系炭素繊維が好ましい。
 次に、ポリアクリロニトリル系炭素繊維の製造方法について説明する。
 炭素繊維の前駆体繊維を得るための紡糸方法としては、湿式、乾式および乾湿式等の紡糸方法を用いることができる。高強度の炭素繊維が得られやすいという観点から、湿式あるいは乾湿式紡糸方法を用いることが好ましい。
 炭素繊維の総繊度は、400~3000テックスであることが好ましい。また、炭素繊維のフィラメント数は好ましくは1000~100000本であり、さらに好ましくは3000~50000本である。炭素繊維とマトリックス樹脂との接着性をさらに向上するために、表面粗さ(Ra)が6.0~100nmの炭素繊維に上記のサイジング剤を塗布することが好ましい。表面粗さ(Ra)が6.0~100nmの炭素繊維を得るためには、湿式紡糸方法により前駆体繊維を紡糸することが好ましい。
 湿式紡糸方法において、紡糸原液には、ポリアクリロニトリルのホモポリマーあるいは共重合体を溶剤に溶解した溶液を用いることができる。溶剤としてはジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの有機溶剤や、硝酸、ロダン酸ソーダ、塩化亜鉛、チオシアン酸ナトリウムなどの無機化合物の水溶液を使用する。ジメチルスルホキシドまたはジメチルアセトアミドが溶剤として好適である。
 上記の紡糸原液を口金に通して紡糸し、紡糸浴中に吐出して凝固させる。紡糸浴としては、紡糸原液の溶剤として使用した溶剤の水溶液を用いることができる。紡糸原液の溶剤と同じ溶剤を含む紡糸液とすることが好ましく、ジメチルスルホキシド水溶液またはジメチルアセトアミド水溶液が好適である。紡糸浴中で凝固した繊維を、水洗および、延伸して前駆体繊維を得る。得られた前駆体繊維に耐炎化処理と炭化処理を行い、必要によってはさらに黒鉛化処理をすることにより炭素繊維を得る。炭化処理と黒鉛化処理の条件としては、最高熱処理温度が1100℃以上であることが好ましく、より好ましくは1300~3000℃である。
 強度と弾性率の高い炭素繊維を得られるという観点から、細繊度の炭素繊維が好ましく用いられる。具体的には、炭素繊維の単繊維径が、7.5μm以下であることが好ましく、6μm以下であることがより好ましく、さらには5.5μm以下であることが好ましい。単繊維径の下限は特にないが、4.5μm未満では工程における単繊維切断が起きやすく生産性が低下する場合があるので、4.5μm以上が好ましい。
 炭素繊維は、マトリックス樹脂との接着性を向上させるために、通常、酸化処理が施され、酸素含有官能基が表面に導入される。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられる。生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
 液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸;酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸;または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液;炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液;アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、マトリックス樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
 サイジング剤成分と炭素繊維表面の酸素含有官能基との共有結合形成が促進され、接着性がさらに向上するという観点から、炭素繊維をアルカリ性電解液で電解酸化処理した後、または炭素繊維を酸性水溶液中で電解酸化処理し、続いてアルカリ性水溶液で洗浄した後、サイジング剤を塗布することが好ましい。炭素繊維を電解酸化処理した場合、炭素繊維表面において過剰に酸化された部分が脆弱層として存在し、複合材料にした場合の破壊の起点となる場合があるため、過剰に酸化された部分をアルカリ性水溶液で溶解除去することが好ましいと考えられる。
 洗浄に用いられるアルカリ性水溶液のpHは、7~14の範囲内であることが好ましく、より好ましくは10~14の範囲内である。アルカリ性水溶液としては、具体的には水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液;炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液;アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、マトリックス樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウム、炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。炭素繊維をアルカリ性水溶液で洗浄する方法としては、例えば、ディップ法とスプレー法を用いることができる。なかでも、洗浄が容易であるという観点から、ディップ法を用いることが好ましく、さらには、炭素繊維を超音波で加振させながらディップ法を用いることが好ましい。
 電解液の濃度は、0.01~5モル/リットルの範囲内であることが好ましく、より好ましくは0.1~1モル/リットルの範囲内である。電解液の濃度が0.01モル/リットル以上であると、電解酸化処理の電圧が下げられ、運転コスト的に有利になる。一方、電解液の濃度が5モル/リットル以下であると、安全性の観点から有利になる。
 電解液の温度は、10~100℃の範囲内であることが好ましく、より好ましくは10~40℃の範囲内である。電解液の温度が10℃以上であると、電解酸化処理の効率が向上し、運転コスト的に有利になる。一方、電解液の温度が100℃以下であると、安全性の観点から有利になる。
 液相電解酸化における電流密度は、電解液中の炭素繊維の表面積1m当たり1.5~1000アンペア/mの範囲内であることが好ましく、より好ましくは3~500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解酸化処理の効率が向上し、運転コスト的に有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
 液相電解酸化処理における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましい。高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
 炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.05~0.50の範囲内であるものが好ましく、より好ましくは0.07~0.30の範囲内のものであり、さらに好ましくは0.10~0.30の範囲内ものである。表面酸素濃度(O/C)が0.05以上であることにより、炭素繊維表面の酸素含有官能基を確保し、マトリックス樹脂との強固な接着を得ることができる。また、表面酸素濃度(O/C)が0.5以下であることにより、酸化による炭素繊維自体の強度の低下を抑えることができる。
 炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求めることができる。まず、溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を長さ20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1,2を用い、試料チャンバー中を1×10-8Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は282~296eVの範囲で直線のベースラインを引くことにより求められる。O1sピーク面積は528~540eVの範囲で直線のベースラインを引くことにより求められる。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出できる。
 炭素繊維を液相電解酸化処理またはアルカリ性水溶液で洗浄した後、水洗および乾燥することが好ましい。この場合、乾燥温度が高すぎると炭素繊維の最表面に存在する官能基は熱分解により消失し易いため、できる限り低い温度で乾燥することが望ましい。具体的には乾燥温度が好ましくは250℃以下、さらに好ましくは210℃以下で乾燥する。一方、乾燥の効率を考慮すれば、乾燥温度は110℃以上であることが好ましく、140℃以上であることがより好ましい。
 以上のようにして、好ましく用いられる炭素繊維を得ることができる。
 炭素繊維のストランド強度は、3.5GPa以上であることが好ましく、より好ましくは4GPa以上であり、さらに好ましくは5GPaである。また、炭素繊維のストランド弾性率は、220GPa以上であることが好ましく、より好ましくは240GPa以上であり、さらに好ましくは280GPa以上である。なお、炭素繊維束のストランド引張強度およびストランド弾性率は、JIS-R-7608(2004)の樹脂含浸ストランド試験法により求めることができる。
 次に、本発明のサイジング塗布強化繊維の製造方法について述べる。
 ポリロタキサンを含むサイジング剤を溶媒で希釈して用いることができる。このような溶媒としては、例えば、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミドが挙げられる。なかでも、取扱いが容易であり、安全性の観点から有利であることから、水が好ましく用いられる。また、界面活性剤を添加し、水系エマルジョンとして用いることもできる。界面活性剤としては特に限定はされないが、エチレンオキサイドとプロピレンオキサイドとのブロック共重合体等のノニオン系界面活性剤などを好ましく挙げることができる。
 次に、サイジング剤の強化繊維への塗布手段について述べる。塗布方法としては、ポリロタキサンおよびその他のサイジング剤成分を同時に溶解または分散したサイジング剤含有液を用いて1回で塗布する方法や、各成分を任意に選択し個別に溶解または分散したサイジング剤含有液を用いて複数回にわたり塗布する方法が好ましく用いられる。この場合、ポリロタキサンとその他の成分は任意の順序で付与することができる。以下に、上記のサイジング剤分散液がポリロタキサンとその他の成分を同時に含む場合についての塗布手段を説明するが、ポリロタキサンを含むサイジング剤含有液とその他の成分を含むサイジング剤含有液の各々を別々に塗布する場合も同様におこなうことができる。
 塗布手段としては、例えば、ローラを介してサイジング剤含有液に強化繊維を浸漬する方法、サイジング剤含有液の付着したローラに強化繊維を接する方法、サイジング剤含有液を霧状にして強化繊維に吹き付ける方法などがある。また、サイジング剤の塗布手段は、バッチ式と連続式のいずれでもよいが、生産性がよく、バラツキが小さくできる連続式が好ましく用いられる。この際、強化繊維に対するサイジング剤有効成分の付着量が適正範囲内で均一になるように、サイジング剤含有液濃度および温度並びに強化繊維の糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に、強化繊維を超音波で加振させることも好ましい態様である。
 サイジング剤の付着量は、サイジング剤塗布強化繊維100質量部に対して、0.1~10質量部の範囲であることが好ましく、より好ましくは0.2~3質量部の範囲である。サイジング剤の付着量が0.1質量部以上であると、サイジング剤塗布強化繊維をプリプレグ化および製織等する際に、通過する金属ガイド等による摩擦に耐えることができ、毛羽発生が抑えられ、該強化繊維を使用したプリプレグなどの品位が優れる。一方、サイジング剤の付着量が10質量部以下であると、強化繊維束周囲のサイジング剤膜に阻害されることなくマトリックス樹脂が強化繊維束内部に含浸され、得られる複合材料においてボイド生成が抑えられ、複合材料の品位および機械物性が優れる。
 強化繊維に塗布されたサイジング剤層の乾燥後の厚さは、2.0~20nmの範囲内で、かつ、厚さの最大値が最小値の2倍を超えないことが好ましい。このような厚さの均一なサイジング剤層により、安定して大きな接着性向上効果が得られ、さらには、安定して優れた高次加工性が得られる。
 強化繊維はサイジング剤含有液を塗布した後、熱処理し、サイジング剤含有液に含まれる溶媒を除去および乾燥することにより製造する。該熱処理は、サイジング剤成分と強化繊維表面の官能基との間の共有結合形成を促進し、強化繊維とマトリックス樹脂との接着性を高める効果もあると考えられる。熱処理条件としては、好ましくは130℃~260℃の温度範囲、より好ましくは160~260℃の温度範囲で、30~600秒間が好ましい。温度が130℃以上かつ30秒以上の場合、サイジング剤成分を溶解または分散させていた水や有機溶媒を十分に除去することができる。260℃以下かつ600秒以下の場合、運転コストおよび安全性に特に優れる。
 また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。マイクロ波照射および/または赤外線照射により強化繊維を加熱処理した場合、短時間に被加熱物である強化繊維を所望の温度に加熱できる。また、マイクロ波照射および/または赤外線照射により、強化繊維内部の加熱も速やかに行うことができるため、強化繊維束の内側と外側の温度差を小さくすることができ、サイジング剤の接着ムラを小さくすることが可能となる。
 さらに強化繊維が炭素繊維である場合、別の付与手段として、電解液の中にサイジング剤成分を添加しておき、液相電解酸化処理と同時に炭素繊維表面へ付与する方法、液相電解酸化処理後の洗浄工程でサイジング剤成分を水洗と同時に炭素繊維表面へ付与することもできる。これらの場合、サイジング剤成分の付着量は、電解液の濃度および温度並びに炭素繊維の糸条張力などをコントロールすることでおこなうことができる。
 本発明のサイジング塗布強化繊維は、例えば、トウ、織物、編物、組み紐、ウェブ、マットおよびチョップドファイバー等の形態で用いられる。特に、比強度と比弾性率が高いことを要求される用途には、炭素繊維が一方向に引き揃えられたトウが最も適している。また、サイジング塗布強化繊維にマトリックス樹脂を含浸したプリプレグが好ましく用いられる。
 次に、本発明のプリプレグおよび繊維強化複合材料について説明する。本発明におけるサイジング塗布強化繊維は、マトリックス樹脂と組み合わせてプリプレグおよび繊維強化複合材料として用いることができる。
 プリプレグおよび繊維強化複合材料のマトリックス樹脂としては、熱硬化性樹脂および熱可塑性樹脂のいずれも用いることができる。熱硬化性樹脂がより好ましい。熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド樹脂、シアネートエステル樹脂およびビスマレイミド樹脂等の樹脂およびこれらの変性体、これらを2種類以上ブレンドした樹脂が挙げられる。なかでも、機械特性のバランスに優れ、硬化収縮が小さいという利点を有するため、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、エポキシ化合物と硬化剤を含むエポキシ樹脂組成物が好ましい。エポキシ化合物としては、特に限定されるものではなく、ビスフェノール型エポキシ化合物、アミン型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、レゾルシノール型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ビフェニル骨格を有するエポキシ化合物、イソシアネート変性エポキシ化合物、テトラフェニルエタン型エポキシ化合物、トリフェニルメタン型エポキシ化合物等のなかから1種類以上を選択して用いることができる。
 また、硬化剤としては特に限定はされないが、芳香族アミン硬化剤、ジシアンアミドもしくはその誘導体などが挙げられる。また、脂環式アミン等のアミン、フェノール化合物、酸無水物、ポリアミドアミノ、有機酸ヒドラジドおよびイソシアネートなどを芳香族アミン硬化剤と併用して用いることもできる。
 なかでも多官能のグリシジルアミン型エポキシ化合物と芳香族ジアミン硬化剤を含有したエポキシ樹脂組成物を使用することが好ましい。一般に多官能のグリシジルアミン型エポキシ化合物と芳香族ジアミン硬化剤を含有するマトリックス樹脂は、架橋密度が高く、得られる繊維強化複合材料の耐熱性および圧縮強度を向上させることができる。
 多官能のグリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノールおよびトリグリシジルアミノクレゾールなどを好ましく使用することができる。多官能のグリシジルアミン型エポキシ化合物は耐熱性を高める効果があり、その割合は、全エポキシ化合物100質量%中、30~100質量%含まれていることが好ましい。グリシジルアミン型エポキシ化合物の割合が30質量%以上の場合は、繊維強化複合材料の圧縮強度が向上し、耐熱性に優れる。
 テトラグリシジルジアミノジフェニルメタンの具体例としては、例えば、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(東都化成(株)製)、“アラルダイト(登録商標)”MY720(ハンツマン・アドバンスト・マテリアルズ(株)製)、および“jER(登録商標)”604(ジャパンエポキシレジン(株)製)等を使用することができる。トリグリシジルアミノフェノールまたはトリグリシジルアミノクレゾールの具体例としては、例えば、“スミエポキシ(登録商標)”ELM100(住友化学工業(株)製)、“アラルダイト(登録商標)”MY0510、“アラルダイト(登録商標)”MY0600(以上、ハンツマン・アドバンスト・マテリアルズ(株)製)、および“jER(登録商標)”630(ジャパンエポキシレジン(株)製)等を使用することができる。
 芳香族ジアミン硬化剤としては、エポキシ樹脂組成物の硬化剤として用いられる芳香族アミン類であれば特に限定されるものではないが、具体的には、3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルエーテル(DADPE)、ビスアニリン、ベンジルジメチルアニリン、2-(ジメチルアミノメチル)フェノール(DMP-10)、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)、DMP-30のトリ-2-エチルヘキシル酸塩等、およびそれらの異性体または誘導体を好ましく使用することができる。これらは、単独で用いても、あるいは2種以上の混合物を用いてもよい。
 芳香族アミン硬化剤の市販品としては、セイカキュアS(和歌山精化工業(株)製)、MDA-220(三井化学(株)製)、“jERキュア(登録商標)”W(ジャパンエポキシレジン(株)製)、および3,3’-DAS(三井化学(株)製)、“Lonzacure(登録商標)”M-DEA(Lonza(株)製)、“Lonzacure(登録商標)”M-DIPA(Lonza(株)製)、“Lonzacure(登録商標)”M-MIPA(Lonza(株)製)および“Lonzacure(登録商標)”DETDA 80(Lonza(株)製)などが挙げられる。
 上記の芳香族ジアミン硬化剤は、エポキシ樹脂組成物に含まれる全エポキシ化合物に対する化学量論量の50~120質量%含まれていることが好ましく、60~120質量%がより好ましく、さらに好ましくは70~90質量%である。芳香族アミン硬化剤が、全エポキシ化合物に対する化学量論量の50質量%以上である場合、得られる樹脂硬化物の耐熱性が良好になる。また、芳香族アミン硬化剤が120質量%以下の場合は、得られる樹脂硬化物の靱性が向上する。
 また、エポキシ樹脂組成物の硬化を促進する目的のために効果促進剤を配合することもできる。硬化促進剤としては、ウレア化合物、第三級アミンとその塩、イミダゾールとその塩、トリフェニルホスフィンまたはその誘導体、カルボン酸金属塩やルイス酸、ブレンステッド酸類とその塩類などが挙げられる。
 繊維強化複合材料のマトリックス樹脂には、得られる樹脂硬化物の靭性等の物性を向上させるため、熱可塑性樹脂を配合することができる。かかる熱可塑性樹脂としては、例えば、主鎖に炭素-炭素結合、アミド結合、イミド結合(ポリエーテルイミド等)、エステル結合、エーテル結合、シロキサン結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂を使用することができる。例えば、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、フェノキシ樹脂およびビニル系ポリマー等の耐熱性と靭性とを兼備したものを好ましく使用することができる。
 特に、耐熱性をほとんど損なわずにこれらの効果を発揮できることから、ポリエーテルスルホンやポリエーテルイミドが好適である。ポリエーテルスルホンとしては、“スミカエクセル(登録商標)”3600P、“スミカエクセル(登録商標)”5003P、“スミカエクセル(登録商標)”5200P、“スミカエクセル(登録商標)”7200P(以上、住友化学工業(株)製)、ポリエーテルイミドとしては、“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010、“ウルテム(登録商標)”1040(以上、日本ジーイープラスチックス(株)製)などを使用することができる。
 また、上記の熱可塑性樹脂の配合量は、エポキシ樹脂組成物中に溶解せしめる場合には、エポキシ化合物100質量部に対して1~40質量部が好ましく、より好ましくは1~25質量部である。一方、分散させて用いる場合には、エポキシ化合物100質量部に対して10~40質量部が好ましく、より好ましくは15~30質量部である。熱可塑性樹脂の配合量がかかる範囲であると、靭性向上効果がさらに向上する。また、熱可塑性樹脂が前記範囲を超えない場合は、含浸性、タック、ドレープおよび耐熱性が良好になる。
 上記の熱可塑性樹脂は、特に含浸性等の点で、プリプレグ作製工程に支障をきたさないように、エポキシ樹脂組成物中に均一溶解しているか、粒子の形態で微分散していることが好ましい。
 さらに、マトリックス樹脂を改質するために、マトリックス樹脂として用いられる熱硬化性樹脂以外の熱硬化性樹脂、エラストマー、フィラー、ゴム粒子、熱可塑性樹脂粒子、無機粒子およびその他の添加剤を配合することもできる。
 上記の熱可塑性樹脂粒子としては、先に例示した各種の熱可塑性樹脂と同様のものを用いることができる。なかでも、ポリアミド粒子やポリイミド粒子が好ましく用いられる。ポリアミドの中でも、ナイロン12、ナイロン6、ナイロン11、ナイロン6/12共重合体は、特に良好な熱硬化性樹脂との接着強度を与えることができることから、落錘衝撃時の繊維強化複合材料の層間剥離強度が高く、耐衝撃性の向上効果が高いため好ましい。さらに、特開平01-104624号公報に示されるような、ポリアミド樹脂とエポキシ樹脂との組合わせによりセミIPN(高分子相互侵入網目構造)化された粒子は、耐熱性および耐溶剤性も高いので、一層好ましい。具体的には、東レ(株)製“トレパール(登録商標)”TNが挙げられる。
 この熱可塑性樹脂粒子の形状としては、球状粒子でも非球状粒子でも、あるいは多孔質粒子でもよいが、球状粒子が樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい。
 ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。
 また、マトリックス樹脂には、本発明の効果を損なわない範囲において、マトリックス樹脂の増粘等の流動性調整のため、シリカ、アルミナ、スメクタイトおよび合成マイカ等の無機粒子を配合することもできる。
 プリプレグは、上記のマトリックス樹脂をメチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、強化繊維に含浸させるウェット法、または、加熱により低粘度化し、強化繊維に含浸させるホットメルト法(ドライ法)等により作製することができる。
 ウェット法は、強化繊維をマトリックス樹脂溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法である。ホットメルト法は、加熱により低粘度化したマトリックス樹脂を直接強化繊維に含浸させる方法、またはいったん離型紙等の上にマトリックス樹脂をコーティングしたフィルムを作成し、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより、強化繊維にマトリックス樹脂を含浸させる方法である。ホットメルト法は、プリプレグ中に残留する溶媒が実質上無いため好ましい方法である。
 得られたプリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法等により、繊維強化複合材料を作製することができる。ここで熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法および真空圧成形法等が採用される。繊維強化複合材料は、プリプレグを介さず、例えば、フィラメントワインディング法、ハンド・レイアップ法、レジン・インジェクション・モールディング法、“SCRIMP(登録商標)”、レジン・フィルム・インフュージョン法およびレジン・トランスファー・モールディング法等の成形法によっても作製することができる。
 本発明の繊維強化複合材料は、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース;機構部品、パネルなどの建材用途;モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車または二輪車関連部品;部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェアリング、リブなどの航空機関連部品または部材;および外板、風車の羽根などが挙げられる。特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体およびトレイやシャーシなどに好ましく用いられる。
 以下、本発明について、実施例を用いてさらに具体的に説明するが、本発明はこれら実施例により制限されるものではない。
 各実施例、および各比較例でサイジング剤成分として用いた材料と成分は以下の通りである。
 ・エポキシ基を有する化合物:(A-1~A-3)
 (A-1)“デナコール(登録商標)”EX-521(ナガセケムテックス(株)製:ポリグリセリンポリグリシジルエーテル)
 (A-2)“デナコール(登録商標)”EX-411(ナガセケムテックス(株)製:ペンタエリスリトールポリグリシジルエーテル)
 (A-3)“デナコール(登録商標)”EX-611(ナガセケムテックス(株)製:ソルビトールポリグリシジルエーテル)。
 ・ポリロタキサン:(B-1~B-3)
 (B-1)“セルム(登録商標)”スーパーポリマーSH2400P(アドバンストソフトマテリアルズ(株)製:環状分子はα-シクロデキストリン;直鎖状分子は重量平均分子量20,000のポリエチレングリコール;封鎖基はアダマンタン基;環状分子はポリ(ε-カプロラクトン)からなるグラフト鎖により修飾されている)
 (B-2)“セルム(登録商標)”スーパーポリマーSH1310P(アドバンストソフトマテリアルズ(株)製:環状分子はα-シクロデキストリン;直鎖状分子は重量平均分子量11,000のポリエチレングリコール;封鎖基はアダマンタン基;環状分子はポリ(ε-カプロラクトン)からなるグラフト鎖により修飾されている)
 (B-3)“セルム(登録商標)”スーパーポリマーSH3400P(アドバンストソフトマテリアルズ(株)製:環状分子はα-シクロデキストリン;直鎖状分子は重量平均分子量35,000のポリエチレングリコール;封鎖基はアダマンタン基;環状分子はポリ(ε-カプロラクトン)からなるグラフト鎖により修飾されている)。
 (実施例1)
 本実施例では、強化繊維として炭素繊維を用いた。本実施例は、次の第Iの工程、第IIの工程および第IIIの工程からなる。
 第Iの工程:炭素繊維を製造する工程
 アクリロニトリル99モル%とイタコン酸1モル%からなる共重合体を紡糸した後、焼成し、総フィラメント数12,000本、比重1.8、ストランド引張強度700kgf/mm、ストランド引張弾性率33,000kgf/mmの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/リットルの炭酸水素アンモニウム水溶液を電解液として、液相電解酸化処理した。この液相電解酸化処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、表面酸化処理された炭素繊維を得た。
 第IIの工程:サイジング塗布炭素繊維を作製する工程および評価
 エポキシ基を有する化合物として(A-1)を70質量部、ポリロタキサンとして(B-1)が30質量部を、溶媒としてジメチルホルムアミドに溶解してサイジング剤溶液を調合した。このサイジング剤溶液を浸漬法を用いて、上記により得られた表面酸化処理された炭素繊維に塗布した後、210℃の温度で180秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量を、以下に記す方法により測定し、サイジング剤塗布炭素繊維100質量部に対して、サイジング剤の付着量が0.5質量部となるように調整した。
 <サイジング剤付着量の測定>
 約2gのサイジング剤塗布炭素繊維束を秤量(W1)(小数第4位まで読み取り)した後、50ミリリットル/分の窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させた。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W2)(少数第4位まで読み取り)した。次式よりサイジング剤塗布炭素繊維束100質量部に対するサイジング剤付着量を求めた。
サイジング剤付着量(質量部)=[W1(g)-W2(g)]/[W1(g)]×100
本実施例では、測定は2回おこない、その平均値をサイジング剤付着量とした。
 続いて、サイジング剤塗布炭素繊維の界面剪断強度(IFSS)を以下に記す方法で測定した。この結果、IFSSが42MPaであり、該サイジング剤塗布炭素繊維の接着性が十分に高いことがわかった。
 <界面剪断強度(IFSS)の測定>
 界面剪断強度(IFSS)の測定は、次の(a)~(d)の手順でおこなった。
 (a)樹脂の調製
 ビスフェノールA型エポキシ樹脂化合物“jER”(登録商標)828(三菱化学(株)製)100質量部とメタフェニレンジアミン(シグマアルドリッチジャパン(株)製)14.5質量部を、それぞれ容器に入れた。その後、上記のjER828の粘度低下とメタフェニレンジアミンの溶解のため、75℃の温度で15分間加熱をおこなった後、両者をよく混合し、80℃の温度で約15分間真空脱泡をおこなった。
 (b)炭素繊維単糸を専用モールドに固定
 炭素繊維束から単繊維を抜き取り、単繊維に一定張力を与えた状態で、単繊維の両端をダンベル型モールドの長手方向に接着剤で固定した。その後、炭素繊維およびモールドに付着した水分を除去するため、80℃の温度で30分間以上真空乾燥をおこなった。ダンベル型モールドは、シリコーンゴム製で、注型部分の形状は、中央部分巾5mm、長さ25mm、両端部分巾10mm、全体長さ150mmである。
 (c)樹脂注型および硬化
 上記(b)の手順の真空乾燥後のダンベル型モールド内に、上記(a)の手順で調製した樹脂を流し込み、オーブンを用いて、昇温速度1.5℃/分で75℃の温度まで上昇し、75℃で2時間保持後、昇温速度1.5分で125℃の温度まで上昇し、125℃で2時間保持後、降温速度2.5℃/分で30℃の温度まで降温させた。その後、脱型して試験片を得た。
 (d)界面剪断強度(IFSS)測定
 上記(c)の手順で得られた試験片に、繊維軸方向(長手方向)に引張力を与え、歪みを12%生じさせた後、偏光顕微鏡を用いて試験片中心部22mmの範囲における繊維破断数N(個)を測定した。次に、平均破断繊維長laを、la(μm)=22×1000(μm)/N(個)の式により計算し、さらに平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算した。ストランド引張強度σと炭素繊維単糸の直径dを測定し、界面剪断強度IFSSを、次式で算出した。実施例では、測定数n=5の平均を試験結果とした。
界面剪断強度IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)
 なお、ストランド引張強度は、JIS-R-7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求めた。含浸させる樹脂としては、“セロキサイド”(登録商標)2021P(ダイセル化学工業社製)/三フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用いた。樹脂の硬化条件としては、常圧、温度125℃、硬化時間30分とした。炭素繊維束のストランド10本を測定し、その平均値をストランド引張強度とした。
 界面剪断強度IFSSは、炭素繊維とマトリックス樹脂界面の接着強度の指標となる。本発明において、30MPa以上が好ましい範囲である。
 第IIIの工程:プリプレグの作製、炭素繊維強化複合材料積層板の成形および評価
 <プリプレグの作製>
 まず、ビスフェノールA型エポキシ樹脂、“jER(登録商標)”828(三菱化学(株)製)60質量部、テトラグリシジルジアミノジフェニルメタン、ELM434(住友化学(株)製)40質量部、4,4’-ジアミノジフェニルスルホン、“セイカキュア(登録商標)”S(和歌山精化(株)製)40質量部および、ポリエーテルスルホン“スミカエクセル(登録商標)”PES5003P(住友化学(株)製)10質量部を混練したエポキシ樹脂組成物を調製し、これをナイフコーターを用いて樹脂目付30g/mで離型紙上にコーティングし、1次樹脂フィルムを作製した。この1次樹脂フィルムを1方向に引き揃えたサイジング剤塗布炭素繊維(目付190g/m)の両側に重ね合わせて、ヒートロールを用い加熱加圧しながらエポキシ樹脂組成物をサイジング剤塗布炭素繊維に含浸させることにより、1次プリプレグを作製した。次に、上記のエポキシ樹脂組成物にさらに“トレパール(登録商標)”TN(東レ(株)製、平均粒子径:13.0μm)80質量部を混練した樹脂組成物を調製し、これをナイフコーターを用いて樹脂目付20g/mで離型紙上にコーティングし、2次樹脂フィルムを作製した。この2次樹脂フィルムを1次プリプレグの両側に重ね合せて、樹脂組成物を1次プリプレグに含浸させ、目的のプリプレグを作製した。
 <炭素繊維強化複合材料の成形とモードI層間破壊靱性(GIc)の測定>
 前記のようにして作製したプリプレグを裁断し、一方向積層した後、オートクレーブを用いて加熱硬化させ、一方向強化材(炭素繊維強化複合材料)を作製した。JIS K7086(1993)に記載の双方持ちはり試験に従って、亀裂進展初期のモードI層間破壊靱性(GIc)を求めたところ、十分に高い値を示した。結果を表1に示す。
 モードI層間破壊靱性(GIc)が高いことは、炭素繊維とマトリックス樹脂の接着性が良好であり、かつ、繊維強化複合材料の靱性が高いことを意味する。本発明において、モードI層間破壊靱性(GIc)は、700J/m以上が好ましい範囲である。なお、表1においては、モードI層間破壊靱性(GIc)の値が、950J/m以上をA、700J/m以上950J/m未満をB、700J/m未満をCで記している。
Figure JPOXMLDOC01-appb-T000001
 (実施例2~9)
 第Iの工程:原料となる炭素繊維を製造する工程
 実施例1と同様にした。
 第IIの工程:サイジング塗布炭素繊維を作製する工程および評価
 各成分の比が表1に記載のようになるようにした以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、得られたサイジング剤塗布炭素繊維を用いて、実施例1と同様に界面剪断強度(IFSS)を測定したところ、接着性が十分に高いことがわかった。結果を表1に示す。
 第IIIの工程:プリプレグの作製、炭素繊維強化複合材料積層板の成形および評価
 実施例1と同様に、一方向強化材(炭素繊維強化複合材料)を作製し、力学特性を評価したところ、モードI層間破壊靱性(GIc)は十分に高い値を示した。結果を表1に示す。
 (実施例10)
 第Iの工程:炭素繊維を製造する工程
 実施例1と同様にした。
 第IIの工程:サイジング塗布炭素繊維を作製する工程および評価
 サイジング剤の付着量をサイジング剤塗布炭素繊維100質量部に対して1質量部となるようにサイジング剤溶液濃度を調整した以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、得られたサイジング剤塗布炭素繊維を用いて、実施例1と同様に界面剪断強度(IFSS)を測定したところ、接着性が十分に高いことがわかった。結果を表1に示す。
 第IIIの工程:プリプレグの作製、炭素繊維強化複合材料積層板の成形および評価
 実施例1と同様に、一方向強化材(炭素繊維強化複合材料)を作製し、力学特性を評価したところ、モードI層間破壊靱性(GIc)は十分に高い値を示した。結果を表1に示す。
 (比較例1)
 第Iの工程:炭素繊維を製造する工程
 実施例1と同様にした。
 第IIの工程:サイジング塗布炭素繊維を作製する工程および評価
 サイジング剤溶液を、(A-2)成分のみで調合した以外は、実施例1と同様の方法でサイジング剤塗布炭素繊維を得た。続いて、得られたサイジング剤塗布炭素繊維を用いて、実施例1と同様に界面剪断強度(IFSS)を測定したところ、接着性が十分に高いことがわかった。結果を表1に示す。
 第IIIの工程:プリプレグの作製、炭素繊維強化複合材料積層板の成形および評価
 実施例1と同様に、一方向強化材(炭素繊維強化複合材料)を作製し、力学特性を評価したところ、モードI層間破壊靱性(GIc)は低い値を示した。結果を表1に示す。

Claims (15)

  1. 強化繊維にポリロタキサンを含むサイジング剤が塗布されてなるサイジング剤塗布強化繊維。
  2. 前記サイジング剤が、エポキシ基を有する化合物をさらに含む、請求項1に記載のサイジング剤塗布強化繊維。
  3. 前記エポキシ基を有する化合物が、分子内にエポキシ基を2以上有する化合物であって、ポリエーテル型ポリエポキシ化合物およびポリオール型ポリエポキシ化合物から選ばれた化合物である、請求項2に記載のサイジング剤塗布強化繊維。
  4. 前記エポキシ基を有する化合物が、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、およびアラビトールから選択される1種以上の化合物と、エピクロロヒドリンとの反応により得られるグリシジルエーテル型エポキシ化合物である、請求項3に記載のサイジング剤塗布強化繊維。
  5. 前記サイジング剤が、サイジング剤全量に対してポリロタキサンを5~80質量%含む、請求項1~4のいずれかに記載のサイジング剤塗布強化繊維。
  6. 前記ポリロタキサンの構成成分である直鎖状分子の重量平均分子量が15,000以上30,000以下である、請求項1~5のいずれかに記載のサイジング剤塗布強化繊維。
  7. 前記ポリロタキサンが、シクロデキストリンおよびポリエチレングリコールを構成成分とする、請求項1~6のいずれかに記載のサイジング剤塗布強化繊維。
  8. 前記シクロデキストリンが、高分子鎖により修飾されており、該高分子鎖は、-O-結合および-NH-結合から選ばれた結合、ならびに、アルキレン基およびアルケニレン基から選ばれた基を含む請求項7に記載のサイジング剤塗布強化繊維。
  9. 強化繊維が炭素繊維である請求項1~8のいずれかに記載のサイジング剤塗布強化繊維。
  10. 強化繊維にポリロタキサンを含むサイジング剤を塗布した後、熱処理することによってサイジング剤塗布強化繊維を製造する方法であって、前記サイジング剤を塗布する工程において、サイジング剤の付着量がサイジング剤塗布強化繊維100質量部に対して0.1~10質量部となるようにし、かつ、前記熱処理する工程の条件が160~260℃の温度範囲で30~600秒間であるサイジング剤塗布強化繊維の製造方法。
  11. 請求項1~9のいずれかに記載のサイジング剤塗布強化繊維と、熱硬化性樹脂とを含むプリプレグ。
  12. 前記熱硬化性樹脂がエポキシ樹脂である請求項11に記載のプリプレグ。
  13. 請求項11または12に記載のプリプレグを硬化させてなる繊維強化複合材料。
  14. 請求項1~9のいずれかに記載のサイジング剤塗布強化繊維と熱硬化性樹脂の硬化物からなる繊維強化複合材料。
  15. 前記熱硬化性樹脂がエポキシ樹脂である請求項14に記載の繊維強化複合材料。
PCT/JP2015/056330 2014-03-12 2015-03-04 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料 WO2015137206A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580012895.3A CN106068346B (zh) 2014-03-12 2015-03-04 涂上浆剂增强纤维、涂上浆剂增强纤维的制造方法、预浸料坯及纤维增强复合材料
JP2015512927A JP6179591B2 (ja) 2014-03-12 2015-03-04 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
KR1020167026823A KR20160132040A (ko) 2014-03-12 2015-03-04 사이징제 도포 강화 섬유, 사이징제 도포 강화 섬유의 제조 방법, 프리프레그 및 섬유 강화 복합 재료
EP15760771.4A EP3118370B1 (en) 2014-03-12 2015-03-04 Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material
US15/120,708 US10208173B2 (en) 2014-03-12 2015-03-04 Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-048509 2014-03-12
JP2014048509 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015137206A1 true WO2015137206A1 (ja) 2015-09-17

Family

ID=54071653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056330 WO2015137206A1 (ja) 2014-03-12 2015-03-04 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料

Country Status (6)

Country Link
US (1) US10208173B2 (ja)
EP (1) EP3118370B1 (ja)
JP (1) JP6179591B2 (ja)
KR (1) KR20160132040A (ja)
CN (1) CN106068346B (ja)
WO (1) WO2015137206A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057592A1 (ja) * 2015-10-02 2017-04-06 ナガセケムテックス株式会社 樹脂用架橋剤組成物
JP2017201007A (ja) * 2016-04-28 2017-11-09 横浜ゴム株式会社 ポリロタキサン化合物
WO2019146633A1 (ja) 2018-01-26 2019-08-01 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP2020055986A (ja) * 2018-02-28 2020-04-09 東レ株式会社 樹脂組成物およびその成形品
CN112236301A (zh) * 2018-03-06 2021-01-15 Aerlyte有限公司 纤维增强型复合材料、以及形成和使用该纤维增强型复合材料的方法
JP2021088686A (ja) * 2019-12-06 2021-06-10 LG Japan Lab株式会社 高分子及び繊維構造体を備えた高分子複合体

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US10626273B2 (en) * 2016-08-31 2020-04-21 Toray Industries, Inc. Resin composition and molded article thereof
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) * 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
CN111770948A (zh) * 2018-02-27 2020-10-13 东丽株式会社 热固性树脂组合物、预浸料及纤维增强复合材料
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
CN108642882B (zh) * 2018-05-09 2020-02-11 东华大学 一种碳纤维表面改性的方法
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
CN111379170A (zh) * 2018-12-27 2020-07-07 苏州迪塔杉针织有限公司 一种增强纺织纤维丝耐磨性能的镀膜液的制备方法
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
KR102276968B1 (ko) * 2019-07-12 2021-08-04 주식회사 신영에이치앤비 인조 속눈썹
AU2021227504A1 (en) * 2020-02-28 2022-09-15 Teijin Limited Stitched reinforcing fiber base material, preform material, fiber reinforced composite material, and manufacturing methods for same
CN114673029B (zh) * 2022-02-28 2022-11-22 西北工业大学 一种改性碳纤维增强聚酰亚胺树脂基湿式摩擦材料及制备方法
CN117800620B (zh) * 2024-02-27 2024-05-07 河北瑞昌玻璃纤维制品有限公司 一种聚合物涂层高耐碱玻璃纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171767A (en) * 1981-04-13 1982-10-22 Mitsubishi Rayon Co Sizining treatment
WO2001083566A1 (fr) * 2000-04-28 2001-11-08 Center For Advanced Science And Technology Incubation, Ltd. Compose contenant du polyrotaxane reticule
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2007092024A (ja) * 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用
JP2008001997A (ja) * 2006-06-20 2008-01-10 Advanced Softmaterials Inc ポリロタキサン及び繊維を有する繊維材料、及びその製造方法
WO2014030556A1 (ja) * 2012-08-23 2014-02-27 独立行政法人科学技術振興機構 カーボンナノ材料、組成物、導電性材料及びその製造方法
JP2014196382A (ja) * 2013-03-29 2014-10-16 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957716A (en) 1973-10-01 1976-05-18 Hercules Incorporated Sized carbon fibers
JPS57128266A (en) 1981-01-29 1982-08-09 Mitsubishi Rayon Co Treatment of carbon fiber
JPS6047953B2 (ja) 1982-07-05 1985-10-24 東レ株式会社 高次加工性並びにコンポジツト物性に優れた炭素繊維
JPS6233872A (ja) 1985-07-31 1987-02-13 竹本油脂株式会社 炭素繊維用サイジング剤
JPH01278523A (ja) * 1988-04-28 1989-11-08 Kanegafuchi Chem Ind Co Ltd 樹脂組成物及びそれからなる繊維強化複合材料
JPH03203934A (ja) * 1989-12-28 1991-09-05 Nippon Steel Chem Co Ltd エポキシ樹脂プリプレグ
FR2722188B1 (fr) * 1994-07-05 1996-09-06 Vetrotex France Sa Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultantx
US5824413A (en) * 1996-07-15 1998-10-20 Ppg Industries, Inc. Secondary coating for fiber strands, coated strand reinforcements, reinforced polymeric composites and a method of reinforcing a polymeric material
DE102005035762A1 (de) 2005-07-29 2007-02-01 Süd-Chemie AG Hochporöse Schichten aus MOF-Materialien und Verfahren zur Herstellung derartiger Schichten
JPWO2007060833A1 (ja) 2005-11-25 2009-05-07 東レ株式会社 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
EP2287206B1 (en) * 2008-05-30 2014-01-01 Advanced Softmaterials Inc. Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same
JP2010138259A (ja) * 2008-12-10 2010-06-24 Lintec Corp 粘着シート
KR101096855B1 (ko) 2009-03-24 2011-12-22 도레이 카부시키가이샤 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
JP2010240163A (ja) * 2009-04-06 2010-10-28 Advanced Softmaterials Inc 医療用構造体
JP5804222B1 (ja) * 2014-02-25 2015-11-04 東レ株式会社 炭素繊維強化複合材料およびプリプレグ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171767A (en) * 1981-04-13 1982-10-22 Mitsubishi Rayon Co Sizining treatment
WO2001083566A1 (fr) * 2000-04-28 2001-11-08 Center For Advanced Science And Technology Incubation, Ltd. Compose contenant du polyrotaxane reticule
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2007092024A (ja) * 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用
JP2008001997A (ja) * 2006-06-20 2008-01-10 Advanced Softmaterials Inc ポリロタキサン及び繊維を有する繊維材料、及びその製造方法
WO2014030556A1 (ja) * 2012-08-23 2014-02-27 独立行政法人科学技術振興機構 カーボンナノ材料、組成物、導電性材料及びその製造方法
JP2014196382A (ja) * 2013-03-29 2014-10-16 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057592A1 (ja) * 2015-10-02 2017-04-06 ナガセケムテックス株式会社 樹脂用架橋剤組成物
JP2017201007A (ja) * 2016-04-28 2017-11-09 横浜ゴム株式会社 ポリロタキサン化合物
JP7136086B2 (ja) 2018-01-26 2022-09-13 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
WO2019146633A1 (ja) 2018-01-26 2019-08-01 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
CN111615530A (zh) * 2018-01-26 2020-09-01 东丽株式会社 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
JPWO2019146633A1 (ja) * 2018-01-26 2020-11-26 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
US11505661B2 (en) 2018-01-26 2022-11-22 Toray Industries, Inc. Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
CN111615530B (zh) * 2018-01-26 2022-10-25 东丽株式会社 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
JP2020055986A (ja) * 2018-02-28 2020-04-09 東レ株式会社 樹脂組成物およびその成形品
JP7205252B2 (ja) 2018-02-28 2023-01-17 東レ株式会社 樹脂組成物およびその成形品
CN112236301A (zh) * 2018-03-06 2021-01-15 Aerlyte有限公司 纤维增强型复合材料、以及形成和使用该纤维增强型复合材料的方法
JP2021088686A (ja) * 2019-12-06 2021-06-10 LG Japan Lab株式会社 高分子及び繊維構造体を備えた高分子複合体
JP7399417B2 (ja) 2019-12-06 2023-12-18 エルジー・ケム・リミテッド 高分子及び繊維構造体を備えた高分子複合体

Also Published As

Publication number Publication date
JPWO2015137206A1 (ja) 2017-04-06
KR20160132040A (ko) 2016-11-16
CN106068346B (zh) 2018-12-11
EP3118370A1 (en) 2017-01-18
EP3118370A4 (en) 2017-09-27
JP6179591B2 (ja) 2017-08-16
CN106068346A (zh) 2016-11-02
US10208173B2 (en) 2019-02-19
EP3118370B1 (en) 2019-08-07
US20170002154A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6179591B2 (ja) サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
US11390720B2 (en) Sizing agent coated carbon fiber bundle, method for manufacturing same, prepreg, and carbon fiber reinforced composite material
TWI504648B (zh) A carbon fiber reinforced resin composition, a method for producing a carbon fiber reinforced resin composition, a molding material, a method for producing a molding material, and a carbon fiber reinforced resin molded article
JP6418161B2 (ja) 高弾性率繊維強化ポリマー複合材料
JP2017048481A (ja) サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
JP2017119936A (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
WO2013084669A1 (ja) 炭素繊維成形素材、成形材料および炭素繊維強化複合材料
JP6056517B2 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、およびプリプレグならびに炭素繊維強化熱可塑性樹脂組成物
JP5516771B1 (ja) プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
JP6394085B2 (ja) サイジング剤塗布炭素繊維およびその製造方法、プリプレグおよび炭素繊維強化複合材料
JP5516770B1 (ja) 成形材料、成形材料の製造方法および炭素繊維強化複合材料
JP2018178264A (ja) 炭素繊維の製造方法
JP5454668B1 (ja) 炭素繊維強化熱可塑性樹脂組成物および成形品
JP2017155372A (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、プリプレグおよび炭素繊維強化複合材料
JP4924768B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP4924769B1 (ja) サイジング剤塗布炭素繊維の製造方法
JP5967333B1 (ja) サイジング剤塗布炭素繊維、サイジング剤塗布炭素繊維の製造方法、炭素繊維強化複合材料および炭素繊維強化複合材料の製造方法
JP2013104145A (ja) サイジング剤塗布炭素繊維

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015512927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760771

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015760771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15120708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026823

Country of ref document: KR

Kind code of ref document: A