WO2015129699A1 - 貫通孔を有する絶縁基板 - Google Patents

貫通孔を有する絶縁基板 Download PDF

Info

Publication number
WO2015129699A1
WO2015129699A1 PCT/JP2015/055258 JP2015055258W WO2015129699A1 WO 2015129699 A1 WO2015129699 A1 WO 2015129699A1 JP 2015055258 W JP2015055258 W JP 2015055258W WO 2015129699 A1 WO2015129699 A1 WO 2015129699A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
hole
substrate
sintered body
alumina
Prior art date
Application number
PCT/JP2015/055258
Other languages
English (en)
French (fr)
Inventor
達朗 高垣
康範 岩崎
杉夫 宮澤
井出 晃啓
中西 宏和
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP15750613.0A priority Critical patent/EP3113585B1/en
Priority to CN201580000703.7A priority patent/CN105191511B/zh
Priority to JP2015536337A priority patent/JP5877933B1/ja
Priority to KR1020157023831A priority patent/KR102250468B1/ko
Priority to US14/827,456 priority patent/US9894763B2/en
Publication of WO2015129699A1 publication Critical patent/WO2015129699A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0029Etching of the substrate by chemical or physical means by laser ablation of inorganic insulating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture

Definitions

  • the present invention relates to a ceramic substrate having a large number of through holes for forming via conductors and through-hole conductors.
  • a conductive wiring When mounting an electronic component such as an IC device, it is necessary to form a conductive wiring via a semiconductor holding substrate.
  • a method of forming conductive wiring on such a holding substrate a large number of through holes are formed in the holding substrate, and a metal electrode is formed on the side wall of the through hole.
  • the diameter of such a through hole is required to be reduced to, for example, 100 ⁇ m or less, and a large number of through holes are required to be formed at a high density.
  • the material of the holding substrate is required to have a high resistance in order to suppress a leakage current between the wirings.
  • these boards need to be thin to meet the need for low-profile electronic components, so they must be strong, but after electronic components are mounted, they must be separated into pieces by dicing. Therefore, characteristics such as good machinability are also required.
  • the through hole is formed by a combination of photolithography and DRIE.
  • a sapphire substrate When a higher withstand voltage is required for the insulating substrate, a sapphire substrate is used, and in this case, a laser processing technique is generally used. However, in this case, the sapphire substrate itself may break due to the influence of heat during laser processing or due to a decrease in substrate strength when a large number of holes are formed. In particular, it is considered that the yield decreases as the density of the through holes increases.
  • Patent Documents 1 and 2 describe that a through electrode is formed on a wafer made of ceramics such as alumina. Further, it is described that a through hole is formed in the wafer by laser processing.
  • Patent Document 3 a through hole is formed in a ceramic substrate, and the through hole is formed by a pin in a green sheet of the ceramic substrate.
  • Patent Document 4 also describes forming a through electrode on a ceramic substrate.
  • Patent Document 5 describes that a through-hole having a diameter of 100 ⁇ m or less is formed by irradiating a laser on a green sheet of a ceramic substrate such as alumina.
  • An insulating substrate made of an alumina sintered body has high toughness and can generally ensure a sufficiently high substrate strength.
  • an abnormality in the shape of the through-hole occurs, there is a risk of causing damage or cracking when the high temperature is applied in the subsequent electrode formation process or semiconductor processing process, and may cause a conduction failure.
  • the ceramic substrate becomes thinner, the influence of the shape abnormality of the through hole becomes larger.
  • chipping, cracks, etc. are likely to occur during dicing.
  • An object of the present invention is to obtain a substrate that can be thinned and has good dicing properties while preventing a shape abnormality of the through hole when forming the through hole in the ceramic insulating substrate.
  • the present invention is an insulating substrate in which through holes for conductors are arranged,
  • the thickness of the insulating substrate is 25 to 300 ⁇ m
  • the diameter of the through hole is 20 ⁇ m or more
  • the insulating substrate is made of an alumina sintered body
  • the relative density of the alumina sintered body is 99.5% or more
  • the average grain size The diameter is 2 to 50 ⁇ m.
  • the present inventor examined the cause of abnormal shape of the through hole when a large number of through holes were formed in the alumina substrate. For example, as shown in FIG. 1B, such a through hole 2 swells toward one side, and a swelled portion 3 is formed.
  • voids due to coarse pores remaining in the dense alumina sintered body are connected to the relatively fine through-hole 2 and integrated. It was considered a thing. Such voids are caused by coarse pores having a diameter of 10 ⁇ m or more.
  • the glass portion contained in the substrate is soft, so the glass is gradually scraped to a grindstone and becomes a fine abrasive powder, while the alumina portion is scraped to peel off from the grain boundary, It was found that the peeled alumina particles were directly used as polishing powder. From this, it was considered that the generation of fine cutting powder can be suppressed by reducing the glass component contained in the substrate and increasing the particle size of the alumina particles.
  • the inventor further examined the material of the dense alumina sintered body based on such knowledge. Since a large number of through electrodes are formed on this substrate, it is desirable to employ a high-purity alumina sintered body in order to achieve high resistance. However, at the same time, by controlling so that the average particle diameter is 2 to 50 ⁇ m and the relative density is 99.5% or more, coarse pores having a diameter of 10 ⁇ m or more can be suppressed, and abnormal shape of the through holes can be prevented. Furthermore, the inventors have found that it is possible to prevent the generation of fine grinding powder and to suppress the occurrence of defects such as chipping and cracking during dicing due to clogging of the grindstone.
  • (A) is a top view which shows typically the insulated substrate 1 in which the through-hole 2 was formed
  • (b) is a schematic diagram which shows the shape abnormality of the through-hole 2
  • (c) is a through-hole. It is sectional drawing which shows typically the insulating substrate 1 in which 2 was formed. It is a schematic diagram which shows the example of calculation of an average particle diameter.
  • It is a flowchart which shows an example of the suitable manufacturing procedure of an insulated substrate.
  • the insulating substrate 1 is provided with one main surface 1a and the other main surface 1b, and a through-hole penetrating between the main surfaces 1a and 1b. 2 is formed in large numbers.
  • a predetermined conductor can be formed in the through hole.
  • a conductor Ag, Au, Cu, Pd, or a mixture thereof, or a paste obtained by mixing a small amount of glass component with these, is filled into the hole inner surface, and then baked at 400 to 900 ° C. to be fixed.
  • Examples of the conductors (via conductors), conductors printed only on the inner surfaces of the holes, and baked in the same manner (through-hole conductors) can be exemplified, but the form of the conductors is not particularly limited.
  • predetermined wirings, pads, and the like are formed on the main surfaces 1a and 1b of the through holes.
  • the insulating substrate is an integral relay substrate.
  • the thickness of the insulating substrate is 25 to 300 ⁇ m. From the viewpoint of reducing the height, the thickness of the insulating substrate is set to 300 ⁇ m or less, preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less. Further, from the viewpoint of the strength necessary for handling the insulating substrate, the thickness of the insulating substrate is 25 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the diameter W of the through hole formed in the insulating substrate is 20 ⁇ m or more. This through hole diameter is more preferably 25 ⁇ m or more from the viewpoint of ease of molding. Further, in order to increase the density of the through holes, the through hole diameter W is set to 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the distance D between the adjacent through holes 2 is preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more, from the viewpoint of suppressing breakage and cracks. Further, the distance D between adjacent through holes 2 is preferably 1000 ⁇ m or less, and more preferably 500 ⁇ m or less, from the viewpoint of improving the density of the through holes.
  • the relative density of the alumina sintered body constituting the insulating substrate is set to 99.5% or more, more preferably 99.6% or more. This upper limit is not particularly limited and may be 100%.
  • the porosity is determined as follows. That is, the cross section (cross section perpendicular to the bonding surface) of the handle substrate is mirror-polished and thermally etched to highlight the crystal grain boundary, and then an optical micrograph (200 times) is taken. Then, a layered visual field of 0.1 mm is set in the thickness direction (direction perpendicular to the bonding surface) of the handle substrate and 1.0 mm in the direction horizontal to the bonding surface. Then, for each visual field, the total area of pores having a size of 0.5 ⁇ m or more is calculated, and the visual field area ratio is calculated from the obtained pore area to obtain the porosity.
  • the average particle size of the alumina sintered body constituting the insulating substrate is set to 2 to 50 ⁇ m.
  • the average particle diameter of the alumina sintered body constituting the above is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the occurrence of chipping during dicing can be suppressed by setting the average particle size to 2 ⁇ m or more.
  • the average particle diameter is preferably 3 ⁇ m or more, and more preferably 3.5 ⁇ m or more.
  • FIG. 1 An example of calculating the average particle diameter is shown in FIG.
  • the alumina purity of the alumina sintered body constituting the insulating substrate is 99.9%. This can prevent contamination of the circuit and the like.
  • the alumina purity of the alumina sintered body is determined by dissolving a sample pulverized in a powder form by sulfuric acid decomposition with sulfuric acid, and analyzing the solution by ICP emission spectrometry.
  • 200 to 800 ppm by mass of zirconia, 150 to 300 ppm by mass of magnesia and 10 to 30 ppm by mass of yttria are added as sintering aids to the alumina sintered body constituting the insulating substrate.
  • the breakdown voltage of sapphire is 47 kV / mm, and the breakdown voltage of a normal alumina sintered body is 12 kV / mm. Furthermore, the dielectric loss tangent of this alumina sintered body is equivalent to that of sapphire, which is much lower than the dielectric loss tangent of a normal alumina sintered body, for example, about 1/10.
  • the addition amount of zirconia in the alumina sintered body constituting the insulating substrate is more preferably 300 mass ppm or more, and further preferably 600 mass ppm or less.
  • the amount of magnesia added to the alumina sintered body constituting the insulating substrate is more preferably 200 ppm by mass or more, and further preferably 280 ppm by mass or less.
  • the amount of yttria added to the alumina sintered body constituting the insulating substrate is more preferably 12 mass ppm or more, and further preferably 20 mass ppm or less.
  • the method for forming the through hole in the insulating substrate is not particularly limited.
  • a through hole can be formed in a green sheet of an insulating substrate by pins or laser processing.
  • a through-hole can also be formed in a blank board
  • 3 and 4 are flow charts illustrating procedures suitable for manufacturing the insulating substrate of the present invention.
  • a slurry for an alumina molded body is prepared.
  • the sintering aid powder as described above is added to high-purity alumina powder having a purity of 99.9% or more (more preferably 99.95% or more).
  • high-purity alumina powder examples include high-purity alumina powder manufactured by Daimei Chemical Co., Ltd.
  • the method for forming the polycrystalline ceramic sintered body is not particularly limited, and may be any method such as a doctor blade method, an extrusion method, or a gel cast method. Especially preferably, it manufactures using a gel cast method as blank board
  • a slurry containing alumina powder, powder of each sintering aid, a dispersion medium and a gelling agent is produced, and this slurry is cast and gelled to obtain a compact.
  • a release agent is applied to the mold, the mold is assembled, and the slurry is cast.
  • the gel is cured in the mold to obtain a molded body, and the molded body is released from the mold. The mold is then washed. A blank substrate is obtained by sintering this gel molded body.
  • the gel molded body is dried, preferably calcined in the air, and then calcined in hydrogen.
  • the sintering temperature during the main calcination is preferably 1700 to 1900 ° C., more preferably 1750 to 1850 ° C., from the viewpoint of densification of the sintered body.
  • the substrate is placed on a flat plate made of a refractory metal such as molybdenum. At that time, it is possible to leave a gap of 5 to 10 mm above the substrate to discharge the sintering aid. This is preferable from the viewpoint of facilitating the grain growth and facilitating the grain growth. This is because pores can be discharged by the grain boundary movement accompanying the grain growth. On the other hand, excessive discharge of the sintering aid tends to cause abnormal grain growth and cause cracks.
  • an additional annealing treatment can be performed to correct the warp.
  • This annealing temperature is preferably within the maximum temperature ⁇ 100 ° C. during firing from the viewpoint of promoting the discharge of the sintering aid while preventing deformation and abnormal grain growth, and the maximum temperature is 1900 ° C. or less. More preferably it is.
  • the annealing time is preferably 1 to 6 hours.
  • polishing slurry used for this, a slurry in which abrasive grains having a particle size of 30 nm to 200 nm are dispersed in an alkali or neutral solution is used.
  • the abrasive material include silica, alumina, diamond, zirconia, and ceria, which are used alone or in combination.
  • a hard urethane pad, a nonwoven fabric pad, and a suede pad can be illustrated as a polishing pad.
  • the annealing process can be performed after the rough polishing process before the final precision polishing process is performed.
  • the atmospheric gas for the annealing treatment include air, hydrogen, nitrogen, argon, and vacuum.
  • the annealing temperature is preferably 1200 to 1600 ° C., and the annealing time is preferably 2 to 12 hours.
  • the through hole is not formed in the molded body, and after the sintered blank substrate is roughly polished, the through hole is formed in the blank substrate by laser processing.
  • Laser processing is preferably performed as follows.
  • a through-hole is formed by irradiating the substrate surface with a short pulse laser.
  • the pulse width is generally less than milliseconds (1 / 1e-3 seconds).
  • gas (CO2) or solid (YAG) is used as the laser source.
  • Example 1 The insulating substrate of the present invention was produced according to the procedure described with reference to FIG. Specifically, in order to produce a blank substrate made of translucent alumina ceramic, a slurry in which the following components were mixed was prepared.
  • (Raw material powder) - ⁇ -alumina powder (alumina purity 99.9%) having a specific surface area of 3.5 to 4.5 m2 / g and an average primary particle size of 0.35 to 0.45 ⁇ m 100 parts by mass ⁇ MgO (magnesia) 250 mass ppm ⁇ ZrO2 (zirconia) 400 mass ppm ⁇ Y2O3 (yttria) 15 mass ppm
  • Dission medium ⁇ Dimethyl glutarate 27 parts by mass ⁇ Ethylene glycol 0.3 parts by mass (gelling agent) ⁇ 4 parts by mass of MDI resin (dispersant) ⁇ Polymer surfactant 3 parts by mass (catalyst) ⁇ N, N-dimethylaminohexanol
  • the slurry was cast in an aluminum alloy mold at room temperature and then left at room temperature for 1 hour. Subsequently, it was left to stand at 40 ° C. for 30 minutes, and after solidification proceeded, it was released. Furthermore, it was left to stand at room temperature and then at 90 ° C. for 2 hours to obtain a plate-like powder compact. However, many through-holes were formed by providing a core in the mold.
  • the obtained powder compact is calcined at 1100 ° C. in the air (preliminary firing), then fired at 1750 ° C. in an atmosphere of hydrogen 3: nitrogen 1 and then annealed under the same conditions to obtain a blank substrate. It was.
  • High-precision polishing was performed on the created blank substrate. First, the shape was adjusted by double-sided lapping with green carbon, and then double-sided lapping with diamond slurry was performed. The particle size of diamond was 3 ⁇ m. Finally, CMP processing using SiO2 abrasive grains and diamond abrasive grains was performed, and cleaning was performed to obtain an insulating substrate 1.
  • the characteristics of the obtained insulating substrate are as follows. Dielectric breakdown voltage: Measurement average 75 kV / mm Insulating substrate 1 thickness: 150 ⁇ m Diameter W of the through hole 2: 60 ⁇ m Alumina purity: 99.9% Relative density: 99.6% Average particle size: 5 ⁇ m Porosity: 0.4% Resistivity: 10E14 ⁇ ⁇ cm Through hole interval D: 500 ⁇ m Number of through holes: 3.2 / cm2 Density of pores with a diameter of 10 ⁇ m or more: 0.0%
  • Example 2 An insulating substrate was produced in the same manner as in Example 1. However, unlike Example 1, no through hole was formed during molding. Instead, a through-hole was formed in the blank substrate by laser processing after rough polishing the blank substrate, and then precision polishing was performed.
  • the laser processing conditions are as follows. CO2 laser (wavelength 10.6 ⁇ m) Pulse (1000Hz-On time 5 ⁇ s) Laser mask diameter 0.3mm
  • the characteristics of the obtained insulating substrate are as follows. Dielectric breakdown voltage: Measurement average 78kV / mm Insulating substrate 1 thickness: 150 ⁇ m Diameter W of the through hole 2: 70 ⁇ m Alumina purity: 99.9% Relative density: 99.6% Average particle size: 5 ⁇ m Porosity: 0.4% Resistivity: 10E14 ⁇ ⁇ cm Through hole interval D: 500 ⁇ m Number of through-holes: 3.2 / cm2 Density of pores with a diameter of 10 ⁇ m or more: 0.0% The obtained insulating substrate was evaluated in the same manner as in Example 1.
  • Examples 3 to 6 A substrate was produced in the same manner as in Example 2. However, the firing temperature was adjusted to produce substrates with different average particle sizes. About the obtained board
  • the properties and physical properties of the alumina sintered body are as follows.
  • the obtained insulating substrate was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 6 A substrate was produced in the same manner as in Example 2. However, substrates with different alumina purity and average particle diameter were prepared by adjusting the alumina raw material to be used and the firing temperature. About the obtained board
  • the abnormality of the through hole was small, and cracks and chipping after dicing were suppressed.
  • Comparative Examples 1, 2, and 3 since the relative density of the alumina sintered body constituting the insulating substrate was low, there were many through-hole abnormalities, cracks after dicing, and chipping.
  • Comparative Example 4 since the average particle diameter of the alumina sintered body constituting the insulating substrate was small, there were many abnormalities in the through holes, cracks after dicing, and chipping.
  • Comparative Example 5 since the average particle diameter of the alumina sintered body constituting the insulating substrate was large, there were many cracks and chipping after dicing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 導体用の貫通孔(2)が配列されている絶縁基板(1)を提供する。絶縁基板(1)の厚さが25~300μmであり、貫通孔(2)の径(W)が20μm~100μmであり、絶縁基板(1)がアルミナ焼結体からなる。アルミナ焼結体の相対密度が99.5%以上であり、平均粒径が2~50μmである。

Description

貫通孔を有する絶縁基板
 本発明は、ビア導体やスルーホール導体を形成するための貫通孔を多数有するセラミック基板に関するものである。
 ICデバイス等の電子部品を実装する際に、半導体保持基板を介して、導通配線を形成する必要がある。こうした保持基板に導通配線を形成する方法として、保持基板に多数の貫通孔を形成し、貫通孔側壁に金属電極を形成することが行われている。こうした貫通孔の直径は、例えば100μm以下とする細径化が求められており、また高密度で多数形成することが求められている。また、保持基板の材質には、配線間のリーク電流を押さえるために高い抵抗が求められる。
 また、こういった基板は電子部品の低背化ニーズに対応するため薄板化が求められることから、高強度であることが必要である反面、電子部品実装後はダイシングにより個片化されることから、切削性の良さといった特性も求められる。
 高抵抗シリコン基板に貫通孔を形成することは知られている。この場合は、フォトリソグラフィーおよびDRIEの組み合わせで貫通孔を形成する。
 絶縁基板にもっと高い絶縁耐圧が求められる場合には、サファイア基板が用いられており、この場合にはレーザー加工技術が一般的に用いられる。しかし、この場合には、レーザー加工時の熱の影響や、多数の孔を形成した場合の基板強度低下により、サファイア基板そのものが破断することがある。特に、貫通孔の密度が高くなるのにつれて、歩留りの低下をもたらすものと考えられる。
 特許文献1、2には、アルミナ等のセラミックスからなるウエハーに貫通電極を形成することが記載されている。また、このウエハーに貫通孔をレーザー加工によって形成することが記載されている。
 特許文献3では、セラミック基板に貫通孔を形成しており、また貫通孔はセラミック基板のグリーンシートにピンによって形成している。特許文献4にも、セラミック基板に貫通電極を形成することが記載されている。
 また、特許文献5には、アルミナ等のセラミック基板のグリーンシートに対してレーザーを照射することによって直径100μm以下の貫通孔を形成することが記載されている。
実開平5-67026 特開2010-232636 特許第5065494号 特開2009-105326 特開2008-288403
 アルミナ焼結体からなる絶縁基板は、靱性が高く、一般的には十分に高い基板強度を確保できる。しかし、本発明者がアルミナ焼結体からなる絶縁基板に多数の貫通孔を高密度で形成してみたところ、実際には異常な形状の貫通孔が発生し、歩留りが低下することを発見した。こうした貫通孔の形状の異常が発生すると、続く電極形成工程や半導体処理工程で高温が加わったときに、破損やクラックの原因となるおそれがあり、また導通不良の原因となるおそれがある。特に、セラミック基板が薄くなるのにつれ、こうした貫通孔の形状異常の影響が大きくなる。また、セラミック基板が薄くなるのにつれ、ダイシングの際もチッピング、クラック等が発生しやすい、といった問題があることを発見した。
 本発明の課題は、セラミック絶縁基板に貫通孔を形成するのに際して、貫通孔の形状異常を防止しつつ、薄板化が可能でかつダイシング性の良い基板を得ることである。
 本発明は、導体用の貫通孔が配列されている絶縁基板であって、
 絶縁基板の厚さが25~300μmであり、貫通孔の径が20μm以上であり、絶縁基板がアルミナ焼結体からなり、アルミナ焼結体の相対密度が99.5%以上であり、平均粒径が2~50μmであることを特徴とする。
 本発明者は、アルミナ基板に貫通孔を多数形成した場合に、貫通孔の形状異常が生ずる原因について検討した。例えば、図1(b)に示すように、こうした貫通孔2が一方に向かって膨れ、膨れ部3が形成されていた。
 こうした膨れ部3の形態および寸法について検討した結果、緻密質のアルミナ焼結体中にも残留している粗大な気孔に起因するボイドが、比較的微細な貫通孔2に連結し、一体化したものと考えられた。こうしたボイドは、径10μm以上の粗大な気孔に起因するものである。
 また、ダイシングの際に発生するチッピング、クラックの原因については、基板がダイシング砥石で削られることにより微細な研磨粉が発生し、その研磨粉が砥石のすき間に目詰まりして切削性が低下するため、と考えられた。本来であれば、基板が削られるのと同時に、砥石表面の古く磨耗した砥粒の脱落が起こり、新しい砥粒が表面に現れることにより切削性が維持されるが、目詰まりすると古い砥粒の脱落が阻害されるためと考えられた。基板の切削面の微構造観察により、基板に含まれるガラス部分は柔らかいためガラスが徐々に砥石に削られて細かな研磨粉となっており、一方アルミナ部分は粒界からはがれるように削られ、はがれたアルミナ粒子がそのまま研磨粉となっていることがわかった。このことから基板に含まれるガラス成分を減らし、アルミナ粒子の粒径を大きくすれば微細な切削粉の発生を抑制できると考えられた。
 本発明者は、こうした知見に基づき、緻密質アルミナ焼結体の材質について更に検討した。この基板には多数の貫通電極を形成することから、高抵抗を実現するため、高純度のアルミナ焼結体を採用することは望ましい。しかし、これと同時に、平均粒径が2~50μm、相対密度が99.5%以上となるように制御することで、径10μm以上の粗大な気孔を抑制し、貫通孔の形状異常を防止でき、更に、微細な研削粉の発生を防止し、砥石の目詰まりによるダイシング時のチッピングやクラックといった不具合の発生を抑制できることを見いだし、本発明に到達した。
(a)は、貫通孔2の形成された絶縁基板1を模式的に示す平面図であり、(b)は、貫通孔2の形状異常を示す模式図であり、(c)は、貫通孔2の形成された絶縁基板1を模式的に示す断面図である。 平均粒径の算出例を示す模式図である。 絶縁基板の好適な製造手順の一例を示すフロー図である。 絶縁基板の好適な製造手順の一例を示すフロー図である。
 以下、適宜図面を参照しつつ、本発明を更に詳細に説明する。
 図1(a)、(c)に示すように、絶縁基板1には一方の主面1aと他方の主面1bとが設けられており、主面1aと1bとの間を貫通する貫通孔2が多数形成されている。
 貫通孔内には所定の導体を形成可能である。こうした導体としては、Ag、Au、Cu、Pd、またはその混合物や、これらに少量のガラス成分を混合してペースト化したものを孔内面に充填した後、400~900℃で焼付けして固定化させたものや(ビア導体)、孔の内面にのみ導体を印刷し、同様に焼付けしたもの(スルホール導体)などを例示できるが、導体の形態は特に限定されるものではない。また、貫通孔の主面1a、1bには、所定の配線やパッドなどを形成する。また,絶縁基板は、一体の中継基板である。
 本発明の絶縁基板には、導体用の貫通孔が配列されている。ここで、絶縁基板の厚さは25~300μmである。低背化の観点からは、絶縁基板の厚さを300μm以下とするが、これは250μm以下が好ましく、200μm以下が更に好ましい。また、絶縁基板のハンドリングに必要な強度の観点からは、絶縁基板の厚さを25μm以上とするが、50μm以上が好ましく、100μm以上が更に好ましい。
 絶縁基板に形成する貫通孔の径W(図1参照)は20μm以上である。この貫通孔径は、成形しやすさの観点からは、25μm以上が更に好ましい。また、貫通孔の密度を上げるためには、貫通孔径Wは、100μm以下とするが、80μm以下が更に好ましい。
 隣接する貫通孔2の間隔Dは、破損やクラックを抑制するという観点からは、50μm以上が好ましく、100μm以上が更に好ましい。また、隣接する貫通孔2の間隔Dは、貫通孔の密度を向上させるという観点からは、1000μm以下が好ましく、500μm以下が更に好ましい。
 前述した貫通孔の形状異常を防止するという観点からは、絶縁基板を構成するアルミナ焼結体の相対密度を99.5%以上とするが、99.6%以上とすることが更に好ましい。この上限は特になく、100%であってよい。
 この相対密度は気孔率から算出することができる。
 相対密度 (%)= 100(%) -気孔率(%)
 本発明においては、以下のようにして気孔率を決定する。
 すなわち、ハンドル基板の断面(接合面に対して垂直な断面)を鏡面研磨、サーマルエッチングし、結晶粒界を際立たせた後、光学顕微鏡写真(200倍)を撮影する。そして、ハンドル基板の厚さ方向(接合面に垂直な方向)に0.1mm、接合面に水平な方向に1.0mmの層状の視野を設定する。そして、各視野について、大きさ0.5μm以上の気孔の総面積を算出し、得られた気孔面積から視野面積比を算出し、気孔率とする。
 絶縁基板を構成するアルミナ焼結体の平均粒径を2~50μmとする。この平均粒径を50μm以下とすることで絶縁基板の強度を向上させ、貫通孔の形状異常を抑制できる。この観点からは、前記を構成するアルミナ焼結体の平均粒径を20μm以下とすることが好ましく、10μm以下とすることが一層好ましい。一方、平均粒径を2μm以上とすることで、ダイシング時のチッピング発生を抑制することが出来る。この観点からは、前記平均粒径を3μm以上とすることが好ましく、3.5μm以上とすることが更に好ましい。
 ここで、結晶粒子の平均粒径は以下のようにして測定するものである。
(1) 多結晶セラミック焼結体の断面を鏡面研磨、サーマルエッチングして粒界を際立たせた後、顕微鏡写真(100~200倍)を撮影し、単位長さの直線が横切る粒子の数を数える。これを異なる3箇所について実施する。なお、単位長さは500μm~1000μmの範囲とする。
(2) 実施した3箇所の粒子の個数の平均をとる。
(3) 下記の式により、平均粒径を算出する。
 [算出式]
    D=(4/π)×(L/n)
   [D:平均粒径、L:直線の単位長さ、n:3箇所の粒子の個数の平均]
 平均粒径の算出例を図2に示す。異なる3箇所の位置において、それぞれ単位長さ(例えば500μm)の直線が横切る粒子の個数が22、23、19としたとき、平均粒径Dは、上記算出式により、
D=(4/π)×[500/{(22+23+19)/3}]=29.9μmとなる。
 好適な実施形態においては、絶縁基板を構成するアルミナ焼結体のアルミナ純度は99.9%とする。これによって回路などの汚染を防止できる。
 アルミナ焼結体のアルミナ純度は、粉末状に粉砕した試料を硫酸で加圧酸分解により溶解し、その溶解液をICP発光分光分析法にて分析することで決定する。
 好適な実施形態においては、絶縁基板を構成するアルミナ焼結体に焼結助剤としてジルコニアが200~800質量ppm、マグネシアが150~300質量ppmおよびイットリアが10~30質量ppm添加されている。こうした構成によって、前述した純度、気孔率、相対密度を確保しつつ、粗大な気泡の生成を抑制して貫通孔の形状異常を防止でき、しかもアルミナ焼結体の絶縁破壊電圧は50kV/mm以上と非常に高くすることができるので、微細な貫通孔を形成しても絶縁破壊が生じにくい。サファイアの絶縁破壊電圧は47kV/mmであり、通常のアルミナ焼結体の絶縁破壊電圧は12kV/mmである。更に、本アルミナ焼結体の誘電正接は、サファイアと同等であり、通常のアルミナ焼結体の誘電正接よりはるかに低く、例えば10分1程度である。
 本実施形態において、絶縁基板を構成するアルミナ焼結体におけるジルコニアの添加量は300質量ppm以上が更に好ましく、また、600質量ppm以下が更に好ましい。また、絶縁基板を構成するアルミナ焼結体におけるマグネシアの添加量は200質量ppm以上が更に好ましく、また、280質量ppm以下が更に好ましい。また、絶縁基板を構成するアルミナ焼結体におけるイットリアの添加量は12質量ppm以上が更に好ましく、また、20質量ppm以下が更に好ましい。
 絶縁基板に貫通孔を形成する方法は、特に限定されない。例えば、絶縁基板のグリーンシートにピンやレーザー加工によって貫通孔を形成することができる。あるいは、アルミナ焼結体からなるブランク基板を製造した後に、ブランク基板にレーザー加工によって貫通孔を形成することもできる。
 図3、図4は、それぞれ、本発明の絶縁基板を製造するのに適した手順を例示するフロー図である。
 まず、アルミナ成形体用のスラリーを作製する。
 好ましくは純度99.9%以上(更に好ましくは99.95%以上)の高純度アルミナ粉末に対して前述のような焼結助剤の粉末を添加する。このような高純度アルミナ粉末としては、大明化学工業株式会社製の高純度アルミナ粉体を例示できる。
 多結晶セラミック焼結体の成形方法は特に限定されず、ドクターブレード法、押し出し法、ゲルキャスト法など任意の方法であってよい。特に好ましくは、ブランク基板形成としてゲルキャスト法を用いて製造する。
 好適な実施形態においては、アルミナ粉末、各焼結助剤の粉末、分散媒およびゲル化剤を含むスラリーを製造し、このスラリーを注型し、ゲル化させることによって成形体を得る。ここで、ゲル成形の段階では、型に離型剤を塗布し、型を組み、スラリーを注型する。次いで、ゲルを型内で硬化させて成形体を得、成形体を離型する。次いで型を洗浄する。このゲル成形体を焼結させることでブランク基板を得る。
 ここで、図3の例では、型の内部形状によって、成形体に多数の貫通孔を成形しておく。図4の例では、成形体に貫通孔を形成する必要はない。
 次いで、ゲル成形体を乾燥し、好ましくは大気中で仮焼し、次いで、水素中で本焼成する。本焼成時の焼結温度は、焼結体の緻密化という観点から、1700~1900℃が好ましく、1750~1850℃が更に好ましい。
 また、上記焼成の際は、モリブデン等の高融点金属からなる平坦な板の上に基板を置くが、その際、基板の上側には5~10mmの隙間を空けることが焼結助剤の排出を促し、粒成長を促進し易くするとの観点より好ましい。粒成長に伴う粒界移動で気孔の排出を進めることができるためである。一方で焼結助剤の排出が進みすぎると異常粒成長が起こり易く、クラックの原因となるため、アニールの際は基板の上にモリブデン等の板を載せ、基板を上下から挟み込む形で行うことが更に好ましい。
 また、焼成時に十分に緻密な焼結体を生成させた後に、更に追加でアニール処理を実施することで反り修正を行うことができる。このアニール温度は、変形や異常粒成長発生を防止しつつ、焼結助剤の排出を促進するといった観点から焼成時の最高温度±100℃以内であることが好ましく、最高温度が1900℃以下であることが更に好ましい。また、アニール時間は、1~6時間であることが好ましい。
 こうして得られたブランク基板を粗研磨加工する。次いで、図3の例では、既に貫通孔の成形が終わっているので、主面のRaを小さくすることを目的に精密研磨加工を行うことができる。こうした精密研磨加工としては、CMP(Chemical Mechanical Polishing)加工が一般的であり。これに使われる研磨スラリーとして、アルカリまたは中性の溶液に30nm~200nmの粒径を持つ砥粒を分散させたものが使われる。砥粒材質としては、シリカ、アルミナ、ダイヤ、ジルコニア、セリアを例示でき、これらを単独または組み合わせて使用する。また、研磨パッドには、硬質ウレタンパッド、不織布パッド、スエードパッドを例示できる。
 また、最終的な精密研磨加工を実施する前の粗研磨加工を実施した後にアニール処理を行うこともできる。アニール処理の雰囲気ガスは大気、水素、窒素、アルゴン、真空を例示できる。アニール温度は1200~1600℃、アニール時間は2~12時間であることが好ましい。これにより、表面の平滑を損ねることなく、焼結助剤の排出を促進することができる。
 図4の例では、成形体に貫通孔を形成せず、焼結後のブランク基板を粗研磨した後に、ブランク基板に貫通孔をレーザー加工によって形成する。レーザー加工は、以下のようにして行うことが好ましい。
 短パルス化したレーザーを基板表面に照射することにより、貫通孔を形成する。パルス幅は一般的にミリ秒(1/1e-3秒)以下が使用される。また、レーザー源として、気体(CO2)や固体(YAG)が用いられる。レーザー装置内に転写用のマスクを配置し、基板表面へレーザーを導入することで、目的とする孔の形状を得ることができる。孔径はマスク径により調整することができる。
(実施例1)
 図3を参照しつつ説明した手順に従って、本発明の絶縁基板を作製した。
 具体的には、透光性アルミナセラミック製のブランク基板を作製する為、以下の成分を混合したスラリーを調製した。
(原料粉末)
 ・比表面積3.5~4.5m2/g、平均一次粒子径0.35~0.45μmのα-アルミナ粉末(アルミナ純度99.9%)
         100質量部
 ・MgO(マグネシア)        250質量ppm
 ・ZrO2(ジルコニア)       400質量ppm
 ・Y2O3(イットリア)        15質量ppm
(分散媒)
 ・グルタル酸ジメチル           27質量部
 ・エチレングリコール          0.3質量部
(ゲル化剤)
 ・MDI樹脂                4質量部
(分散剤)
 ・高分子界面活性剤             3質量部
(触媒)
 ・N,N-ジメチルアミノヘキサノール   0.1質量部
 このスラリーを、アルミニウム合金製の型に室温で注型の後、室温で1時間放置した。次いで40℃で30分放置し、固化を進めてから、離型した。さらに、室温、次いで90℃の各々にて2時間放置して、板状の粉末成形体を得た。ただし、型に中子を設けることによって、多数の貫通孔を形成した。
 得られた粉末成形体を、大気中1100℃で仮焼(予備焼成)の後、水素3:窒素1の雰囲気中1750℃で焼成を行い、その後、同条件でアニール処理を実施し、ブランク基板とした。
 作成したブランク基板に高精度研磨加工を実施した。まず、グリーンカーボンによる両面ラップ加工により形状を整えた後、ダイヤモンドスラリーによる両面ラップ加工を実施した。ダイヤモンドの粒径は3μmとした。最後にSiO2砥粒とダイヤモンド砥粒によるCMP加工を実施し、洗浄を実施し、絶縁基板1を得た。
 得られた絶縁基板の特性は以下のとおりである。
絶縁破壊電圧:  測定平均 75kV/mm
 絶縁基板1の厚さ:    150μm
 貫通孔2の径W:     60μm
 アルミナ純度:      99.9%
 相対密度:        99.6%
 平均粒径:        5μm
 気孔率:          0.4%
 抵抗率:            10E14 Ω・cm
 貫通孔の間隔D:       500μm
 貫通孔の個数:      3.2個/cm2
 径10μm以上の気孔の密度: 0.0%
 得られた絶縁基板の貫通孔100個について、異常の有無を確認した。次いで、得られた基板をダイシングにより□2mmの大きさに個片化した。その後、ダイシングによるクラック、または30μmを超えるチッピングの発生有無の確認を行い、結果を表1に示す。ただし、ダイシングについては、10個のサンプルについてそれぞれ試験を行った。
(ダイシング条件)
 砥石回転数=30000rpm
 砥石の送り速度=80mm/sec
 砥石粒度=SD325(レジンボンド)
 砥石幅=0.15mm
(実施例2)
 実施例1と同様にして絶縁基板を作製した。ただし、実施例1と異なり、成形時に貫通孔を形成しなかった。その代わりに、ブランク基板を粗研磨加工した後にレーザー加工によってブランク基板に貫通孔を形成し、その後に精密研磨加工を行った。
 レーザー加工条件は以下のとおりである。
 CO2レーザー(波長 10.6μm)
 パルス(1000Hz- On time 5μs)
 レーザーマスク径0.3mm
 得られた絶縁基板の特性は以下のとおりである。
 絶縁破壊電圧:  測定平均78kV/mm
 絶縁基板1の厚さ: 150μm
 貫通孔2の径W:   70μm
 アルミナ純度:     99.9%
 相対密度:       99.6%
 平均粒径:       5μm
 気孔率:        0.4%
 抵抗率:          10E14 Ω・cm
 貫通孔の間隔D:     500μm
 貫通孔の個数:    3.2 個/cm2
 径10μm以上の気孔の密度:   0.0%
 得られた絶縁基板について、実施例1と同様の評価を行った
(実施例3~6)
 実施例2と同様の方法で基板を作製した。ただし、焼成温度を調整し、異なる平均粒径の基板を作製した。得られた基板について、実施例1と同様の評価を行った。
(比較例1) 
 図3を参照しつつ説明した手順に従って、絶縁基板を作製した。
 (原料粉末)
 ・α-アルミナ粉末(アルミナ純度 99.6%) 100質量部
 ・MgO(マグネシア)         100質量ppm
 ・Fe2O3               200質量ppm
 ・SiO2                150質量ppm
 ・CuO                 100質量ppm
(分散媒)
 ・グルタル酸ジメチル            27質量部
 ・エチレングリコール           0.3質量部
(ゲル化剤)
 ・MDI樹脂                 4質量部
(分散剤)
 ・高分子界面活性剤              3質量部
(触媒)
 ・N,N-ジメチルアミノヘキサノール      0.1質量部
実施例1と同様にして絶縁基板を作製した。ただし、アルミナ焼結体の性状および物性等は以下のとおりである。
 アルミナ純度:    99.6%
 平均粒径:      1μm
 相対密度:      98%
 気孔率:        2%
 抵抗率:    10E14 Ω・cm
 絶縁基板1の厚さ:  150μm
 貫通孔2の径W:   70μm
 貫通孔の間隔D:     500μm
 貫通孔の個数:      35個/cm2
 径10μm以上の気孔の密度: 1%  
 得られた絶縁基板について、実施例1と同様の評価を行い、結果を表1に示した。
(比較例2~6)
 実施例2と同様の方法で基板を作製した。、ただし、用いるアルミナ原料、焼成温度の調整により異なるアルミナ純度、平均粒径の基板を作製した。得られた基板について、実施例1と同様の評価を行った。結果を表2に示した。
 これら比較例の条件では、砥石の目詰まりが見られた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1に示すように、本発明によれば、貫通孔の異常が少なく、またダイシング後のクラックやチッピングが抑制されていた。
 比較例1、2、3では、絶縁基板を構成するアルミナ焼結体の相対密度が低いため、貫通孔の異常、ダイシング後のクラック、チッピングが多かった。 比較例4では、絶縁基板を構成するアルミナ焼結体の平均粒径が小さいため、貫通孔の異常、ダイシング後のクラック、チッピングが多かった。
  比較例5では、絶縁基板を構成するアルミナ焼結体の平均粒径が大きいため、ダイシング後のクラック、チッピングが多かった。

 

Claims (5)

  1.  導体用の貫通孔が配列されている絶縁基板であって、前記絶縁基板の厚さが25~300μmであり、前記貫通孔の径が20μm~100μmであり、前記絶縁基板がアルミナ焼結体からなり、前記アルミナ焼結体の相対密度が99.5%以上であり、平均粒径が2~50μmであることを特徴とする、貫通孔を有する絶縁基板。
  2.  前記アルミナ焼結体の絶縁破壊電圧が50kV/mm以上であることを特徴とする、請求項1記載の絶縁基板。
  3.  前記アルミナ焼結体のアルミナ純度が99.9%以上であり、前記アルミナ焼結体に焼結助剤としてジルコニアが200~800質量ppm、マグネシアが150~300質量ppmおよびイットリアが10~30質量ppm添加されていることを特徴とする、請求項1または2記載の絶縁基板。
  4.  前記貫通孔がレーザー加工によって形成されていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の絶縁基板。
  5.  前記アルミナ焼結体の成形時に前記貫通孔が成形されていることを特徴とする、請求項1~3のいずれか一つの請求項記載の絶縁基板。

     
PCT/JP2015/055258 2014-02-26 2015-02-24 貫通孔を有する絶縁基板 WO2015129699A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15750613.0A EP3113585B1 (en) 2014-02-26 2015-02-24 Insulating substrate having through-holes
CN201580000703.7A CN105191511B (zh) 2014-02-26 2015-02-24 具有贯通孔的绝缘基板
JP2015536337A JP5877933B1 (ja) 2014-02-26 2015-02-24 貫通孔を有する絶縁基板
KR1020157023831A KR102250468B1 (ko) 2014-02-26 2015-02-24 관통 구멍을 갖는 절연 기판
US14/827,456 US9894763B2 (en) 2014-02-26 2015-08-17 Insulating substrates including through holes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014035399 2014-02-26
JP2014-035399 2014-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/827,456 Continuation US9894763B2 (en) 2014-02-26 2015-08-17 Insulating substrates including through holes

Publications (1)

Publication Number Publication Date
WO2015129699A1 true WO2015129699A1 (ja) 2015-09-03

Family

ID=54008894

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/054765 WO2015129574A1 (ja) 2014-02-26 2015-02-20 貫通孔を有する絶縁基板
PCT/JP2015/055258 WO2015129699A1 (ja) 2014-02-26 2015-02-24 貫通孔を有する絶縁基板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054765 WO2015129574A1 (ja) 2014-02-26 2015-02-20 貫通孔を有する絶縁基板

Country Status (7)

Country Link
US (2) US9894763B2 (ja)
EP (2) EP3113586B1 (ja)
JP (2) JP5877932B1 (ja)
KR (2) KR102250469B1 (ja)
CN (2) CN105144851B (ja)
TW (2) TWI632836B (ja)
WO (2) WO2015129574A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877932B1 (ja) * 2014-02-26 2016-03-08 日本碍子株式会社 貫通孔を有する絶縁基板
CN108886870B (zh) * 2016-03-11 2021-03-09 日本碍子株式会社 连接基板
KR102315180B1 (ko) * 2017-06-13 2021-10-20 엔지케이 인슐레이터 엘티디 반도체 제조 장치용 부재
CN110869334B (zh) * 2017-06-29 2022-06-10 京瓷株式会社 氧化铝基板及使用其的电阻器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260766A (ja) * 1986-05-08 1987-11-13 東レ株式会社 アルミナ焼結体
JPH0567026A (ja) 1991-09-10 1993-03-19 Shikoku Nippon Denki Software Kk 周辺装置制御装置
JPH0565494B2 (ja) 1988-02-03 1993-09-17 Chiyoda Chem Eng Construct Co
JP2001097767A (ja) * 1999-09-30 2001-04-10 Kyocera Corp アルミナ質焼結体及びその製造方法、並びに配線基板及びその製造方法
JP2001156458A (ja) * 1999-11-26 2001-06-08 Kyocera Corp 配線基板およびその製造方法
JP2008288403A (ja) 2007-05-18 2008-11-27 Ngk Spark Plug Co Ltd セラミック基板の製造方法
JP2009105326A (ja) 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd 貫通電極付き基板の製造方法
JP2010232636A (ja) 2009-03-27 2010-10-14 Ibiden Co Ltd 多層プリント配線板
JP3183661U (ja) * 2013-03-13 2013-05-30 西村陶業株式会社 端子固定構造およびledモジュール

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203449A (ja) 1983-04-28 1984-11-17 Nitta Zerachin Kk 冷菓用含泡組成物
JP2555285B2 (ja) 1987-06-20 1996-11-20 株式会社アテックス 穀粒コンテナの穀粒搬出装置
JPH02205094A (ja) * 1989-02-03 1990-08-14 Mitsubishi Mining & Cement Co Ltd マイクロ波用薄膜回路基板
JPH03177376A (ja) * 1989-12-04 1991-08-01 Japan Gore Tex Inc セラミック基板
JPH0567026U (ja) 1992-02-06 1993-09-03 株式会社三協精機製作所 基板の貫通電極
JP3093897B2 (ja) 1992-11-13 2000-10-03 東芝セラミックス株式会社 高純度アルミナセラミックス及びその製造方法
GB9526343D0 (en) * 1995-12-22 1996-02-21 Cohen A N Improved sintered material
JP3411143B2 (ja) * 1995-12-28 2003-05-26 京セラ株式会社 メタライズ組成物及びそれを用いた配線基板
JP2000223810A (ja) * 1999-02-01 2000-08-11 Kyocera Corp セラミックス基板およびその製造方法
EP1065190A3 (en) * 1999-06-29 2001-05-16 Hitachi Metals, Ltd. Alumina ceramic composition
US6391082B1 (en) * 1999-07-02 2002-05-21 Holl Technologies Company Composites of powdered fillers and polymer matrix
JP2001064075A (ja) 1999-08-30 2001-03-13 Sumitomo Chem Co Ltd 透光性アルミナ焼結体およびその製造方法
JP2001199761A (ja) 2000-01-13 2001-07-24 Konoshima Chemical Co Ltd 高純度アルミナセラミックス及びその製造方法
US6759740B2 (en) * 2001-03-30 2004-07-06 Kyocera Corporation Composite ceramic board, method of producing the same, optical/electronic-mounted circuit substrate using said board, and mounted board equipped with said circuit substrate
JP2003095730A (ja) 2001-09-18 2003-04-03 Toshiba Ceramics Co Ltd 高純度アルミナセラミックスおよびその製造方法
US7649270B2 (en) 2004-08-06 2010-01-19 A. L. M. T. Corp. Collective substrate, semiconductor element mount, semiconductor device, imaging device, light emitting diode component and light emitting diode
JP4559936B2 (ja) * 2004-10-21 2010-10-13 アルプス電気株式会社 無電解めっき方法およびこの方法を用いた回路形成方法
US7088000B2 (en) * 2004-11-10 2006-08-08 International Business Machines Corporation Method and structure to wire electronic devices
JP4729583B2 (ja) * 2005-11-21 2011-07-20 日本カーバイド工業株式会社 光反射用材料、発光素子収納用パッケージ、発光装置及び発光素子収納用パッケージの製造方法
JP5019106B2 (ja) * 2007-03-27 2012-09-05 Tdk株式会社 多層セラミックス基板の製造方法
JP2009200356A (ja) * 2008-02-22 2009-09-03 Tdk Corp プリント配線板及びその製造方法
US20090308646A1 (en) * 2008-06-12 2009-12-17 Seiko Epson Corporation Conductor pattern forming ink, conductor pattern, and wiring substrate
JP5065494B2 (ja) 2008-08-27 2012-10-31 セイコーインスツル株式会社 圧電振動子、発振器、電子機器及び電波時計並びに圧電振動子の製造方法
JP5017298B2 (ja) * 2009-03-11 2012-09-05 株式会社日本自動車部品総合研究所 アルミナ質焼結体とその製造方法及びこれを用いた点火プラグ
GB201005457D0 (en) * 2010-03-31 2010-05-19 Isis Innovation Ceramic materials
JP5693940B2 (ja) * 2010-12-13 2015-04-01 株式会社トクヤマ セラミックスビア基板、メタライズドセラミックスビア基板、これらの製造方法
CN103688601A (zh) * 2012-04-27 2014-03-26 松下电器产业株式会社 陶瓷基板复合体及陶瓷基板复合体的制造方法
JP6003194B2 (ja) 2012-04-27 2016-10-05 セイコーエプソン株式会社 ベース基板、電子デバイスおよびベース基板の製造方法
JP6026829B2 (ja) 2012-09-11 2016-11-16 スカイワークスフィルターソリューションズジャパン株式会社 弾性表面波デバイス
JP5877932B1 (ja) 2014-02-26 2016-03-08 日本碍子株式会社 貫通孔を有する絶縁基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260766A (ja) * 1986-05-08 1987-11-13 東レ株式会社 アルミナ焼結体
JPH0565494B2 (ja) 1988-02-03 1993-09-17 Chiyoda Chem Eng Construct Co
JPH0567026A (ja) 1991-09-10 1993-03-19 Shikoku Nippon Denki Software Kk 周辺装置制御装置
JP2001097767A (ja) * 1999-09-30 2001-04-10 Kyocera Corp アルミナ質焼結体及びその製造方法、並びに配線基板及びその製造方法
JP2001156458A (ja) * 1999-11-26 2001-06-08 Kyocera Corp 配線基板およびその製造方法
JP2008288403A (ja) 2007-05-18 2008-11-27 Ngk Spark Plug Co Ltd セラミック基板の製造方法
JP2009105326A (ja) 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd 貫通電極付き基板の製造方法
JP2010232636A (ja) 2009-03-27 2010-10-14 Ibiden Co Ltd 多層プリント配線板
JP3183661U (ja) * 2013-03-13 2013-05-30 西村陶業株式会社 端子固定構造およびledモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3113585A4

Also Published As

Publication number Publication date
JP5877933B1 (ja) 2016-03-08
EP3113586A4 (en) 2017-10-25
US9538653B2 (en) 2017-01-03
TWI632124B (zh) 2018-08-11
EP3113586A1 (en) 2017-01-04
CN105144851B (zh) 2019-02-12
TW201546019A (zh) 2015-12-16
CN105191511B (zh) 2019-04-09
US20150353428A1 (en) 2015-12-10
TWI632836B (zh) 2018-08-11
EP3113586B1 (en) 2018-11-28
EP3113585A1 (en) 2017-01-04
KR102250468B1 (ko) 2021-05-12
EP3113585B1 (en) 2018-11-28
US9894763B2 (en) 2018-02-13
JPWO2015129574A1 (ja) 2017-03-30
KR102250469B1 (ko) 2021-05-12
KR20160124649A (ko) 2016-10-28
JP5877932B1 (ja) 2016-03-08
EP3113585A4 (en) 2017-10-25
CN105144851A (zh) 2015-12-09
JPWO2015129699A1 (ja) 2017-03-30
KR20160124650A (ko) 2016-10-28
CN105191511A (zh) 2015-12-23
TW201547334A (zh) 2015-12-16
US20160007461A1 (en) 2016-01-07
WO2015129574A1 (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6076486B2 (ja) 半導体用複合基板のハンドル基板
JP5877933B1 (ja) 貫通孔を有する絶縁基板
TWI722129B (zh) 連接基板
WO2014174946A1 (ja) 半導体用複合基板のハンドル基板
JP5697813B1 (ja) 半導体用複合基板のハンドル基板
JP5849176B1 (ja) 半導体用複合基板のハンドル基板および半導体用複合基板
CN110494956B (zh) 临时固定基板以及电子部件的模塑方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000703.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015536337

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015750613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015750613

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023831

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15750613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE