WO2015129600A1 - 多層基板の製造方法、及び多層基板 - Google Patents

多層基板の製造方法、及び多層基板 Download PDF

Info

Publication number
WO2015129600A1
WO2015129600A1 PCT/JP2015/054939 JP2015054939W WO2015129600A1 WO 2015129600 A1 WO2015129600 A1 WO 2015129600A1 JP 2015054939 W JP2015054939 W JP 2015054939W WO 2015129600 A1 WO2015129600 A1 WO 2015129600A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
thermoplastic resin
material layer
conductor patterns
multilayer substrate
Prior art date
Application number
PCT/JP2015/054939
Other languages
English (en)
French (fr)
Inventor
西野耕輔
用水邦明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201580001519.4A priority Critical patent/CN105474762B/zh
Priority to JP2015555308A priority patent/JP5880802B1/ja
Publication of WO2015129600A1 publication Critical patent/WO2015129600A1/ja
Priority to US15/046,696 priority patent/US10051730B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09472Recessed pad for surface mounting; Recessed electrode of component

Definitions

  • the present invention relates to a method for producing a multilayer substrate in which a plurality of thermoplastic resin base materials having conductor patterns formed thereon are laminated, and a multilayer substrate.
  • Patent Document 1 a flat upper surface and a flat lower surface of a laminate in which an insulator layer of a flexible material is laminated are connected to an external electrode and a mother substrate for mounting electronic components, respectively.
  • a circuit board provided with external electrodes is disclosed.
  • Patent Document 1 it is difficult to place the electronic component at an accurate position with respect to the external electrode on the upper surface of the circuit board. It is also difficult to place. For this reason, there is a possibility that the mounting position of the electronic component is shifted with respect to the circuit board, or the mounting position of the circuit board is shifted with respect to the mother board.
  • an object of the present invention is to provide a method for manufacturing a multilayer substrate and a multilayer substrate capable of suppressing a shift in mounting position.
  • the present invention relates to a method for producing a multilayer substrate in which a plurality of thermoplastic resin substrates including a thermoplastic resin substrate on which a conductor pattern is formed are laminated and formed by thermocompression bonding.
  • a thermocompression bonding process in which an elastic member is pressed against a portion of the outermost surface on which the mounting electrodes are formed with respect to the plurality of thermoplastic resin substrates, and in the laminating process, the thermoplasticity Regarding the occupancy ratio in the laminating direction of the low-fluidity member having a lower fluidity than the thermoplastic resin base material at the temperature at the time of thermocompression bonding of the resin base material, the occupancy ratio of the region overlapping the mounting electrode in the laminating direction is , Heavy on the mounting electrode So as to
  • the portion with a low occupation ratio of the low-fluidity member is recessed inward in the stacking direction, so that a recess is formed in the portion of the surface of the multilayer substrate where the mounting electrode is formed.
  • the multilayer substrate can be arranged so that the mounting electrode of the circuit board fits into the recess. Accurate alignment with respect to the mounting electrode.
  • the solder when the multilayer board is mounted on the circuit board by solder, the solder accumulates in the formed recess, and the amount of solder protruding from the multilayer board can be reduced. As a result, it is possible to suppress problems such as short circuit with other circuits due to the protruding solder. In addition, since the spread of the solder is suppressed, the effect of self-alignment is enhanced, and the displacement of the mounting position can be suppressed.
  • the low-fluidity member preferably includes the conductor pattern.
  • the multilayer substrate can be reduced in height.
  • the plurality of thermoplastic resin base materials are laminated so that the number of the conductive patterns laminated in the region overlapping the mounting electrode when viewed in the laminating direction is smaller than the region surrounding the region.
  • the occupation ratio of the conductor pattern in the area overlapping the mounting area can be reduced.
  • the conductor pattern formed on the thermoplastic resin base material constitutes a coil having a winding direction as a winding axis, and in the laminating step, the mounting electrode is arranged in an inner region of the coil as viewed in the laminating direction. It is preferable to laminate the plurality of thermoplastic resin substrates.
  • the coil pattern can function as a low-fluidity member, a separately provided low-fluidity member can be eliminated or reduced.
  • mounting electrodes are formed on the main surfaces of the different thermoplastic resin substrates, and in the laminating step, the main surfaces of the different thermoplastic resin substrates are the outermost surfaces opposite to each other. It is preferable that the thermoplastic resin base material is laminated, and in the thermocompression bonding step, an elastic member is pressed against the outermost surfaces on both sides on which the mounting electrodes are formed to perform thermocompression bonding.
  • a concave portion recessed inward in the stacking direction is formed with respect to the main surface of the multilayer substrate opposite to the main surface on the side mounted on the circuit board.
  • Other electronic components can be mounted on the multilayer substrate in which the recesses are formed.
  • the mounting electrode on the electronic component side can be disposed so as to fit into the recess, so that the electronic component can be accurately aligned with the multilayer substrate.
  • solder when electronic components are mounted on a multilayer board by solder, the solder accumulates in the formed recess, and the amount of solder protruding from the multilayer board can be reduced. As a result, it is possible to suppress problems such as short circuit with other circuits due to the protruding solder. In addition, since the spread of the solder is suppressed, the effect of self-alignment is enhanced, and the displacement of the mounting position can be suppressed.
  • the present invention when a multilayer board is mounted, alignment can be performed with high accuracy. In addition, it is possible to suppress problems such as short-circuiting with other circuits due to the solder used for mounting the multilayer substrate. Furthermore, by suppressing the spread of the solder, the effect of self-alignment is enhanced, and displacement of the mounting position can be suppressed.
  • FIG. 1 is an exploded perspective view of a multilayer substrate according to Embodiment 1.
  • FIG. Sectional view taken along line II-II shown in FIG. The figure which shows the state which carried out the thermocompression bonding of the laminated body Sectional view showing the state where the multilayer board is mounted on the circuit board Sectional view showing the state where the multilayer board is mounted on the circuit board
  • the exploded perspective view of the multilayer substrate concerning Embodiment 2 Sectional view taken along line VII-VII shown in FIG.
  • Sectional drawing which shows the state which mounted the multilayer substrate 3 in the circuit board 4 is an exploded perspective view of a multilayer substrate according to Embodiment 4.
  • FIG. 1 is an exploded perspective view of a multilayer substrate 1 according to the first embodiment.
  • 2 is a cross-sectional view taken along line II-II shown in FIG.
  • the multilayer substrate 1 is formed by thermocompression-bonding a laminate 10 in which a plurality of thermoplastic resins are laminated.
  • FIG. 1 is an exploded perspective view of the multilayer substrate 1 before thermocompression bonding, and FIG. It is sectional drawing of the multilayer substrate 1 after pressure bonding.
  • the multilayer substrate 1 includes a laminate 10 in which a coil is formed.
  • the first base material layer 11, the second base material layer 12, the third base material layer 13, the fourth base material layer 14, and the fifth base material layer 15 are sequentially laminated and thermocompression bonded. It is formed.
  • Each of the base material layers 11 to 15 has a rectangular shape having a long side and a short side, and the laminate 10 has a substantially rectangular parallelepiped shape.
  • the base material layers 11 to 15 are formed using an insulating thermoplastic resin such as an LCP resin (liquid crystal polymer resin) as a base material.
  • thermoplastic resin examples include PEEK (polyether ether ketone), PEI (polyether imide), PPS (poniphenylene sulfide), PI (polyimide), and these may be used instead of the liquid crystal polymer resin. .
  • Rectangular conductor patterns 11A and 11B are formed on one main surface (the upper surface in FIG. 1) of the first base material layer 11.
  • the conductor patterns 11A and 11B are examples of the “mounting electrode” according to the present invention, and are also examples of the “low fluidity member”.
  • the first base material layer 11 is the outermost layer of the laminate 10, and the multilayer substrate 1 is mounted on a circuit board or the like with the main surface of the first base material layer 11 on which the conductor patterns 11A and 11B are formed as a mounting surface.
  • the conductor patterns 11A and 11B are used as mounting electrodes of the multilayer substrate 1.
  • interlayer connection conductors 11C and 11D are formed on the first base material layer 11 at positions overlapping the conductor patterns 11A and 11B in plan view.
  • the interlayer connection conductors 11C and 11D are examples of the “low fluidity member” according to the present invention.
  • regions that surround the conductor patterns 11A and 11B and overlap this region in the stacking direction of the stacked body 10 are denoted by P1 and P2.
  • Conductor patterns 12A and 12B are independently formed on one main surface (the upper surface in FIG. 1) of the second base material layer 12.
  • the second base material layer 12 is laminated on the first base material layer 11 with the main surface on which the conductor patterns 12A and 12B are formed facing the first base material layer 11 side.
  • the conductor patterns 12A and 12B are belt-shaped, have one ends in the regions P1 and P2, are drawn from the position, and are wound so as to surround the regions P1 and P2.
  • One end of each of the conductor patterns 12A and 12B located in the regions P1 and P2 is electrically connected to the conductor patterns 11A and 11B via the interlayer connection conductors 11C and 11D formed on the first base material layer 11.
  • the conductor patterns 12A and 12B are an example of the “low fluidity member” according to the present invention.
  • the conductor patterns 12A and 12B are members having lower fluidity than the base material layers 11 to 15 at the temperature (for example, 250 ° C. to 350 ° C.) when the laminated body 10 is thermocompression bonded.
  • Conductor patterns 13A and 13B are independently formed on one main surface (the upper surface in FIG. 1) of the third base material layer 13.
  • the conductor patterns 13A and 13B are examples of the “low-fluidity member” according to the present invention.
  • the third base material layer 13 is laminated on the second base material layer 12 with the main surface on which the conductor patterns 13A and 13B are formed facing the second base material layer 12 side.
  • the conductor patterns 13A and 13B are belt-shaped and are wound so as to surround the regions P1 and P2.
  • the conductor patterns 13A and 13B do not have a portion overlapping the regions P1 and P2.
  • One end of each of the conductor patterns 13A and 13B is connected to one end of each of the conductor patterns 12A and 12B via an interlayer connection conductor (not shown) formed on the second base material layer 12.
  • Conductor patterns 14A and 14B are independently formed on one main surface (the upper surface in FIG. 1) of the fourth base material layer 14.
  • the conductor patterns 14A and 14B are examples of the “low-fluidity member” according to the present invention.
  • the fourth base material layer 14 is laminated on the third base material layer 13 with the main surface on which the conductor patterns 14A and 14B are formed facing the third base material layer 13 side.
  • the conductor patterns 14A and 14B are belt-shaped and are wound so as to surround the regions P1 and P2.
  • the conductor patterns 14A and 14B have no portion overlapping the regions P1 and P2.
  • One end of each of the conductor patterns 14A and 14B is connected to one end of each of the conductor patterns 13A and 13B via an interlayer connection conductor (not shown) formed on the third base material layer 13.
  • a conductor pattern 15A is formed on one main surface (the upper surface in FIG. 1) of the fifth base material layer 15.
  • the conductor pattern 15A is an example of the “low fluidity member” according to the present invention.
  • the fifth base material layer 15 is laminated on the fourth base material layer 14 with the main surface on which the conductor pattern 15A is formed facing the fourth base material layer 14 side.
  • the conductor pattern 15A has a strip shape and is wound so as to surround the regions P1 and P2.
  • the conductor pattern 15A has no portion overlapping the regions P1 and P2.
  • One end and the other end of the conductor pattern 15 ⁇ / b> A are connected to one end of the conductor patterns 14 ⁇ / b> A and 14 ⁇ / b> B via an interlayer connection conductor (not shown) formed on the fourth base material layer 14.
  • interlayer connection conductor formed in each layer is an example of the “low fluidity member” according to the present invention.
  • Each conductor pattern formed on the laminate 10 forms one coil with the conductor patterns 11A and 11B as input / output ends and the winding axis as the lamination direction.
  • the conductor patterns 12A, 13A, and 14A are wound in the same direction to form one coil with the winding axis as the stacking direction
  • the conductor patterns 12B, 13B, and 14B are wound in the same direction
  • the winding axis is One coil is formed in the stacking direction.
  • these two coils are connected by the conductor pattern 15A, and one coil is formed.
  • each conductor pattern formed on the base material layers 12 to 15 is wound so as to surround the regions P1 and P2. More specifically, some of the conductor patterns 12A and 12B formed on the second base material layer 12 are located in the regions P1 and P2, and the other conductor patterns are located in regions surrounding the regions P1 and P2. . Therefore, the number of conductor patterns stacked in the regions P1 and P2 is smaller than the number of conductor patterns stacked in the regions surrounding the regions P1 and P2. In other words, the occupation rate of the conductor pattern in the regions P1 and P2 is lower than the occupation rate of the conductor pattern in the region surrounding the regions P1 and P2.
  • the multilayer substrate 1 is formed by forming each conductor pattern on each base material layer 11 to 15, laminating each base material layer 11 to 15, and thermocompression bonding each base material layer 11 to 15 in the stacking direction.
  • the FIG. 3 is a view showing a state in which the laminate 10 is thermocompression bonded.
  • the metal rigid body 100 is pressed from the fifth base material layer 15 side, and the elastic body 101 is pressed from the first base material layer 11 side.
  • the elastic body 101 is, for example, silicon resin or silicon rubber.
  • the occupancy rate of the conductor pattern in the regions P1 and P2 overlapping the conductor patterns 11A and 11B of the first base material layer 11 in the stacking direction is lower than the occupancy rate of the conductor pattern in the region surrounding the regions P1 and P2. Therefore, the fluidity in the stacking direction of the regions P1 and P2 is high, and the fluidity in the stacking direction of the other regions is low.
  • the elastic body 101 is pressed in the laminating direction from the first base material layer 11 side with respect to the laminate 10 having different fluidity, the elastic body 101 is deformed in the regions surrounding the regions P1 and P2 having low fluidity. In the regions P1 and P2 having high fluidity, the regions P1 and P2 are deformed in the stacking direction.
  • the regions with low fluidity other than the regions P1 and P2 are not easily dented even when pressed by the elastic body 101.
  • the areas P1 and P2 having high fluidity are pressed by the elastic body 101, the pressed portions are recessed inward along the stacking direction.
  • the conductor patterns 11A and 11B formed in the regions P1 and P2 are pushed inward along the stacking direction, and the conductor patterns 11A and 11B are positioned on the inner side of the surface of the stacked body 10.
  • the recessed part 10A, 10B recessed inside the surface of the laminated body 10 is formed around the conductor patterns 11A, 11B. That is, the conductor patterns 11A and 11B are located at the bottoms of the recesses 10A and 10B formed on the surface of the multilayer body 10.
  • the elastic body 101 is made of silicon resin, silicon rubber, or the like, and has an elastic modulus that deforms according to the level of fluidity as described above when pressing the base material layers 11 to 15 during thermocompression bonding. A member is preferred.
  • FIG. 4 and 5 are cross-sectional views showing a state in which the multilayer board 1 is mounted on the circuit board 200.
  • the circuit board 200 is, for example, a mother board.
  • the conductor patterns 11A and 11B which are mounting electrodes of the multilayer substrate 1 are positioned at the bottoms of the recesses 10A and 10B formed on the surface of the multilayer body 10, so that the multilayer substrate 1 is mounted on the mounting electrodes 200A and 200B of the circuit substrate 200.
  • the mounting electrodes 200A and 200B can be disposed so as to fit into the recesses 10A and 10B when mounting, the multilayer substrate 1 can be accurately aligned with the mounting electrodes 200A and 200B.
  • solders 201A and 201B for mounting the conductor patterns 11A and 11B on the mounting electrodes 200A and 200B are accumulated in the recesses 10A and 10B, so that the amount of the solder 201A and 201B protruding from the multilayer substrate 1 can be reduced. As a result, it is possible to suppress problems such as short circuit with other circuits due to the protruding solder. In addition, since the spread of the solders 201A and 201B is suppressed, the effect of self-alignment is enhanced, and the displacement of the mounting position of the multilayer substrate 1 can be suppressed.
  • convex portions 210 and 211 are formed on a part of the circuit board 200 on which the mounting electrodes 200 ⁇ / b> A and 200 ⁇ / b> B are formed. Since it can arrange
  • a copper foil is affixed to one main surface of a thermoplastic resin sheet, or a single-sided copper affixed sheet is prepared. And according to the conductor pattern to form, a resist film is patterned on copper foil. Etching is performed to form a conductor pattern, and the resist film is removed. From the other side of the resin sheet (the side where the copper foil is not attached), each part (the part where the copper foil is removed by the above etching) is irradiated with laser light to make a hole, and this hole (via hole) Fill with conductive paste. These steps correspond to the “mounting electrode forming step” according to the present invention.
  • each of the conductor patterns is formed in each of the base patterns 11A and 11B formed on the first base material layer 11 serving as the mounting electrode in the regions P1 and P2 that overlap in the stacking direction so that the conductor pattern is reduced. Formed on material layers 12-15. Specifically, the conductor pattern is formed on each of the base material layers 12 to 15 so that the occupation ratio of the conductor pattern in the areas P1 and P2 is lower than the occupation ratio of the conductor pattern in the areas surrounding the areas P1 and P2. Thereby, in the stacking direction, the fluidity of the regions P1 and P2 is higher than the fluidity of the regions surrounding the regions P1 and P2.
  • the conductor pattern formed on each of the base material layers 12 to 15 is a low fluidity member having lower fluidity than the base material layers 11 to 15 at the temperature at the time of thermocompression bonding.
  • the base material layers 11 to 15 are sequentially stacked so that one main surface of the first base material layer 11 on which the conductor patterns 11A and 11B are formed becomes the outermost surface (lamination step). At this time, alignment is performed in consideration of the positional relationship between the interlayer connection conductor formed on the base material layer and the conductor pattern. In this way, the base material layers 11 to 15 are laminated to form the laminate 10. And the laminated body 10 is thermocompression-bonded by pressing the metal rigid body 100 from the 5th base material layer 15 side, and pressing the elastic body 101 from the 1st base material layer 11 side (thermocompression-bonding process).
  • the regions P1 and P2 having high fluidity are pushed inward in the stacking direction, the recesses 10A and 10B are formed on the surface of the multilayer body 10, and the conductor patterns 11A and 11B are on the inner side of the surface of the multilayer body 10 Will come to be located. Further, in the present embodiment, since the via hole is filled with the conductive paste, it is easier to be deformed at the time of thermocompression bonding than the through hole formed by plating or the like, and the laminated body 10 is easily recessed.
  • the resin sheet is thermoplastic as described above, it is not necessary to use an adhesive. Further, during this heating and pressurizing treatment, the interlayer connection conductor and the corresponding conductor are joined. Thus, the multilayer substrate 1 shown in FIG. 2 can be manufactured by a simple process.
  • the multilayer substrate 1 has the recesses 10A and 10B, and the conductor patterns 11A and 11B, which are mounting electrodes, are formed on the bottoms of the recesses 10A and 10B. Alignment can be performed accurately with respect to 200A and 200B. Further, since the solders 201A and 201B are accumulated in the recesses 10A and 10B, the amount of protrusion of the solders 201A and 201B from the multilayer substrate 1 can be reduced. As a result, it is possible to suppress a problem that the solder 201A and 201B that protrudes causes a short circuit with another circuit. In addition, since the spread of the solders 201A and 201B is suppressed, the effect of self-alignment is enhanced, and the displacement of the mounting position can be suppressed.
  • the recesses 10A and 10B are formed by reducing the occupation ratio of the conductor pattern in the regions P1 and P2 and crimping with the elastic body 101, the manufacturing is easy. And since it is not necessary to provide another exclusive member in the laminated body 10 in order to form the recessed part 10A, 10B, the low profile of the multilayer substrate 1 is realizable. Furthermore, since the multilayer substrate 1 is an inductor element having a built-in coil, it is possible to realize an inductor element capable of suppressing a shift in mounting position.
  • the conductor patterns 12A and 12B are positioned in the areas P1 and P2, but the other conductor patterns 13A, 13B, 14A, 14B, and 15A are in the areas P1, P2. You may make it locate in. In this case, the conductor pattern occupancy in the regions P1 and P2 only needs to be lower than the conductor pattern occupancy in the other regions. Further, by positioning the conductor patterns 13A, 13B, 14A, 14B, and 15A in the regions P1 and P2, the size (the amount of pressing) of the recesses 10A and 10B can be adjusted when the recesses 10A and 10B are formed.
  • the recesses 10A and 10B can be formed small. If the occupancy ratio of the conductor pattern in the regions P1 and P2 is lowered, the amount of pressing of the regions P1 and P2 by the elastic body 101 increases, and the recesses 10A and 10B can be formed larger.
  • FIG. 6 is an exploded perspective view of the multilayer substrate 2 according to the second embodiment.
  • 7 is a cross-sectional view taken along line VII-VII shown in FIG.
  • the concave portions 10A and 10B are formed in the multilayer body 10 by using the conductor pattern forming the coil, whereas in the present embodiment, the dummy patterns 23A, 23B, 24A, and 24B are used.
  • the recesses 20A and 20B are formed in the laminate 20.
  • the dummy patterns 23A, 23B, 24A, and 24B are electrically independent patterns irrespective of circuit wiring, and are members having lower fluidity than the thermoplastic resin at the temperature when the thermoplastic resin is crimped. If it is.
  • the dummy patterns 23A, 23B, 24A, and 24B may be conductors or non-conductors such as ceramics.
  • the multilayer substrate 2 includes a laminate 20.
  • the first base material layer 21, the second base material layer 22, the third base material layer 23, the fourth base material layer 24, and the fifth base material layer 25 are sequentially laminated and thermocompression bonded. It is formed.
  • Each of the base material layers 11 to 15 has a rectangular shape having a long side and a short side, and the laminate 10 has a substantially rectangular parallelepiped shape.
  • the base material layers 11 to 15 are formed using an insulating thermoplastic resin such as an LCP resin (liquid crystal polymer resin) as a base material.
  • Rectangular conductor patterns 21A and 21B are formed on one main surface (the upper surface in FIG. 6) of the first base material layer 21.
  • the conductor patterns 21A and 21B are an example of a “mounting electrode” according to the present invention and an example of a “low fluidity member”.
  • the first base material layer 21 is the outermost layer of the laminate 20, and the multilayer substrate 2 is mounted on a circuit board or the like with the main surface of the first base material layer 21 on which the conductor patterns 21A and 21B are formed as a mounting surface.
  • the conductor patterns 21A and 21B are used as mounting electrodes of the multilayer substrate 1.
  • interlayer connection conductors 21C and 21D are formed on the first base material layer 21 at positions overlapping the conductor patterns 21A and 21B in plan view.
  • the interlayer connection conductors 21 ⁇ / b> C and 21 ⁇ / b> D are examples of the “low fluidity member” according to the present invention.
  • the regions surrounding the conductor patterns 21A and 21B and overlapping with the regions in the stacking direction of the stacked body 20 are denoted by P1 and P2.
  • Conductor patterns 22A and 22B are independently formed on one main surface (the upper surface in FIG. 6) of the second base material layer 22.
  • the second base material layer 22 is laminated on the first base material layer 21 with the main surface on which the conductor patterns 22A and 22B are formed facing the first base material layer 21 side.
  • the conductor patterns 22A and 22B are belt-shaped, have one ends in the regions P1 and P2, and are drawn from the position to the outside of the regions P1 and P2.
  • One end of each of the conductor patterns 22A and 22B located in the regions P1 and P2 is electrically connected to the conductor patterns 21A and 21B via the interlayer connection conductors 21C and 21D formed on the first base material layer 21.
  • Dummy patterns 23A and 23B are independently formed on the third base material layer 23.
  • the dummy patterns 23A and 23B are examples of the “low-fluidity member” according to the present invention.
  • the third base material layer 23 is laminated on the second base material layer 22 with the main surface on which the dummy patterns 23A and 23B are formed facing the second base material layer 22 side.
  • the dummy patterns 23A and 23B are belt-like and are wound so as to surround the regions P1 and P2.
  • the dummy patterns 23A and 23B are independent of the conductor patterns formed on the other base material layers 21, 22, 24, and 25.
  • Dummy patterns 24A and 24B are independently formed on the fourth base material layer 24.
  • the dummy patterns 24A and 24B are examples of the “low fluidity member” according to the present invention.
  • the fourth base material layer 24 is laminated on the third base material layer 23 with the main surface on which the dummy patterns 24A and 24B are formed facing the third base material layer 23 side.
  • the dummy patterns 24A and 24B are belt-shaped and are wound so as to surround the regions P1 and P2.
  • the dummy patterns 24A and 24B are independent of the conductor patterns formed on the other base material layers 21 to 23 and 25.
  • conductor patterns 25A and 25B are formed outside the regions P1 and P2.
  • the conductor patterns 25A and 25B are examples of the “low-fluidity member” according to the present invention.
  • the fifth base material layer 25 is laminated on the fourth base material layer 24 with the main surface on which the conductor patterns 25A and 25B are formed facing the fourth base material layer 24 side.
  • the conductor patterns 25A and 25B are electrically connected to the conductor patterns 22A and 22B of the second base material layer 22 through interlayer connection conductors (not shown) of the third base material layer 23 and the fourth base material layer 24.
  • the fifth base material layer 25 is formed by laminating a plurality of thermoplastic resins having a conductor pattern formed on the surface, and a coil is formed inside.
  • the conductor patterns 25A and 25B formed on one main surface of the fifth base material layer 25 are connected to the ends of the underlying coils. That is, the coil existing in the fifth base material layer 25 of the multilayer substrate 2 has the conductor patterns 21A and 21B as input / output ends, and is electrically connected to the conductor patterns 21A and 21B via the conductor patterns 22A, 22B, 25A, and 25B. is doing.
  • a coil is formed in a region overlapping the regions P1 and P2 so that the occupation ratio of the conductor pattern is low.
  • the occupation rate of the conductor pattern in the regions P1 and P2 is lower than the occupation rate of the conductor pattern in the region surrounding the regions P1 and P2.
  • the respective base material layers 21 to 25 are laminated, a metal rigid body is pressed from the fifth base material layer 25 side, an elastic body is pressed from the first base material layer 21 side, and thermocompression bonding is performed on the surface.
  • the multilayer substrate 2 in which the recesses 20A and 20B are formed is manufactured. By forming the recesses 20A and 20B and positioning the conductor patterns 21A and 21B, which are mounting electrodes, on the inner side of the surface, the multilayer substrate 2 can be accurately aligned with the mounting electrodes of the circuit board.
  • the solder since the solder accumulates in the recesses 20A and 20B, the amount of solder protruding from the multilayer substrate 2 can be reduced. As a result, it is possible to suppress problems such as short circuit with other circuits due to the protruding solder. In addition, since the spread of the solder is suppressed, the effect of self-alignment is enhanced, and the displacement of the mounting position can be suppressed.
  • the dummy patterns 23A, 23B, 24A, and 24B it is possible to increase the occupation ratio of the conductor pattern in the region surrounding the regions P1 and P2 as compared with the case where the dummy patterns 23A, 23B, 24A, and 24B are not formed. For this reason, when it presses with the elastic body from the 1st base material layer 21 side, it becomes easy to form recessed part 20A, 20B in area
  • FIG. 8 is a cross-sectional view of the multilayer substrate 3 according to the third embodiment.
  • FIG. 9 is an exploded view of the multilayer substrate 3 according to the third embodiment.
  • the concave portion is formed only on one main surface of the multilayer body, whereas in the present embodiment, the concave portions are formed on both main surfaces of the multilayer body 30.
  • two coils are independently formed in the multilayer body 30.
  • a laminated body 30 in which the first base material layer 31, the second base material layer 32, the third base material layer 33, the fourth base material layer 34, and the fifth base material layer 35 are laminated is thermocompression bonded. Formed.
  • Rectangular conductor patterns 31A and 31B are formed on one main surface of the first base material layer 31 (upper surface in FIG. 9).
  • the conductor patterns 31 ⁇ / b> A and 31 ⁇ / b> B are examples of “mounting electrodes” according to the present invention and also examples of “low fluidity members”.
  • the first base material layer 31 is the outermost layer of the stacked body 30.
  • regions that surround the conductor patterns 31A and 31B and that overlap with the regions in the stacking direction of the stacked body 30 are denoted by P1 and P2.
  • Conductor patterns 32A and 32B are independently formed on one main surface (the upper surface in FIG. 9) of the second base material layer 32.
  • the second base material layer 32 is laminated on the first base material layer 31 with the main surface on which the conductor patterns 32A and 32B are formed facing the first base material layer 31 side.
  • the conductor patterns 32A and 32B have a belt-like shape as in the first embodiment, have one ends in the regions P1 and P2, and are routed from the position to bring the regions P1 and P2 inward. It is wound to surround.
  • One end of each of the conductor patterns 32A and 32B located in the regions P1 and P2 is electrically connected to the conductor patterns 31A and 31B via an interlayer connection conductor (not shown) formed on the first base material layer 31.
  • the conductor patterns 32A and 32B are examples of the “low-fluidity member” according to the present invention.
  • the conductor patterns 32A and 32B are members having lower fluidity than the base material layers 31 to 35 at the temperature when the laminated body 10 is thermocompression bonded.
  • Conductor patterns 33A and 33B are independently formed on one main surface (the lower surface in FIG. 9) of the third base material layer 33.
  • the conductor patterns 33A and 33B are examples of the “low-fluidity member” according to the present invention.
  • the third base material layer 33 is formed on the second base material layer 32 with the main surface (the upper surface in FIG. 9) opposite to the main surface on which the conductor patterns 33A and 33B are formed facing the second base material layer 32.
  • the conductor patterns 33A and 33B are belt-like and are wound so as to surround the regions P1 and P2.
  • One end of each of the conductor patterns 33A and 33B is connected to one end of each of the conductor patterns 32A and 32B via an interlayer connection conductor (not shown) formed on the second base material layer 32 and the third base material layer 33.
  • Conductor patterns 34A and 34B are independently formed on one main surface (lower surface in FIG. 9) of the fourth base material layer 34.
  • the conductor patterns 34A and 34B are examples of the “low-fluidity member” according to the present invention.
  • the fourth base material layer 34 is formed on the third base material layer 33 with the main surface (upper surface in FIG. 9) opposite to the main surface on which the conductor patterns 34A and 34B are formed facing the third base material layer 33.
  • the conductor patterns 34A and 34B are belt-shaped and are wound so as to surround the regions P1 and P2.
  • One end of each of the conductor patterns 34A and 34B is connected to one end of each of the conductor patterns 33A and 33B via an interlayer connection conductor (not shown) formed on the fourth base material layer 34.
  • Conductor patterns 35 ⁇ / b> A and 35 ⁇ / b> B are formed on one main surface (the lower surface in FIG. 9) of the fifth base material layer 35.
  • the conductor patterns 35A and 35B are formed at positions that substantially overlap the conductor patterns 31A and 31B in the stacking direction.
  • the fifth base material layer 35 is the outermost layer of the stacked body 30.
  • the fifth base material layer 35 is formed on the fourth base material layer 34 with the main surface (upper surface in FIG. 9) opposite to the main surface on which the conductor patterns 35A and 35B are formed facing the fourth base material layer 34.
  • the conductor patterns 35A and 35B are connected to one ends of the conductor patterns 34A and 34B via interlayer connection conductors and the like formed on the fifth base material layer 35.
  • the conductor patterns 31A, 32A, 33A, 34A, and 35A formed on the base material layers 31 to 35 of the laminate 30 form one coil with the conductor patterns 31A and 35A as input / output ends.
  • the conductor patterns 31B, 32B, 33B, 34B, and 35B formed on the base material layers 31 to 35 form one coil with the conductor patterns 31B and 35B as input / output ends. That is, two independent coils having the winding direction as the winding axis are formed in the laminate 30.
  • the occupation ratio of the conductor pattern in the areas P1 and P2 is lower than the occupation ratio of the conductor pattern in the area surrounding the areas P1 and P2. Then, by laminating the respective base material layers 31 to 35 and pressing the elastic bodies 101A and 101B from both the first base material layer 31 and the fifth base material layer 35 and thermocompression bonding, the concave portions 30A, The multilayer substrate 3 on which 30B, 30C, and 30D are formed is manufactured.
  • FIG. 10 is a cross-sectional view showing a state in which the multilayer board 3 is mounted on the circuit board 200.
  • another electronic component 300 is mounted on the main surface of the multilayer body 30 on the side where the conductor patterns 31A and 31B are formed.
  • the electrodes 300A and 300B of the electronic component 300 are mounted on the conductor patterns 31A and 31B with the solders 201C and 201D.
  • the multilayer substrate 3 is mounted on the circuit board 200 with the main surface of the layer body 30 on the side where the conductor patterns 35A and 35B are formed as a mounting surface.
  • the conductor patterns 35A and 35B are mounted on the mounting electrodes 200A and 200B of the circuit board 200 by the solders 201A and 201B.
  • the multilayer substrate 3 can be accurately compared to the mounting electrodes 200A and 200B of the circuit board 200 Can be aligned. Further, since the solders 201A and 201B accumulate in the recesses 30A and 30B, the amount of the solder 201A and 201B protruding from the multilayer substrate 3 can be reduced, and the solder 201A and 201B that protrudes causes a short circuit with other circuits. Can be suppressed.
  • the recesses 30C and 30D are formed, and the conductive patterns 31A and 31B as mounting electrodes are positioned on the inner side of the surface of the multilayer body 30, whereby the electronic component 300 can be accurately aligned with the multilayer substrate 3. .
  • the solders 201C and 201D accumulate in the recesses 30C and 30D, the amount of the solder 201C and 201D protruding from the multilayer substrate 3 can be reduced, and the protruding solder 201C and 201D causes a short circuit with other circuits. Defects can be suppressed.
  • FIG. 11 is an exploded perspective view of the multilayer substrate 4 according to the fourth embodiment.
  • 12 is a cross-sectional view of the multilayer substrate 4 taken along line XII-XII shown in FIG.
  • conductor patterns 41A and 41B serving as mounting electrodes are formed on one main surface of the laminate 40 of the multilayer substrate 4, and conductor patterns 45A and 45B are formed on the other main surface. Yes. Furthermore, the conductor patterns 41A and 45A and the conductor patterns 41B and 45B are respectively formed at different positions in the stacking direction.
  • the laminated body 40 is formed by laminating a first base material layer 41, a second base material layer 42, a third base material layer 43, a fourth base material layer 44, and a fifth base material layer 45, and thermocompression bonding. Is done.
  • Rectangular conductor patterns 41A and 41B are formed on one main surface (the upper surface in FIG. 11) of the first base material layer 41. Moreover, rectangular conductor patterns 45A and 45B different from the conductor patterns 41A and 41B in the stacking direction are formed on one main surface (the lower surface in FIG. 11) of the fifth base material layer 45.
  • the first base material layer 41 and the fifth base material layer 45 are the outermost layers of the stacked body 40.
  • the conductor patterns 41A and 41B and the conductor patterns 45A and 45B are examples of “mounting electrodes” according to the present invention, and are also examples of “low fluidity members”.
  • regions that surround the conductor patterns 41A and 41B and that overlap with the regions in the stacking direction of the stacked body 40 are denoted by P1 and P2.
  • regions that surround the conductor patterns 45A and 45B and that overlap with the regions in the stacking direction of the stacked body 40 are denoted by P3 and P4.
  • Conductor patterns 42A and 42B are independently formed on one main surface (the upper surface in FIG. 11) of the second base material layer 42.
  • the conductor patterns 42A and 42B are examples of the “low-fluidity member” according to the present invention.
  • the second base material layer 42 is laminated on the first base material layer 41 with the main surface on which the conductor patterns 42A and 42B are formed facing the first base material layer 41 side.
  • the conductor pattern 42A has a belt-like shape, and has a portion wound so as to surround the region P1 and a portion wound so as to surround the region P3, and these two portions are conductive. is doing.
  • the part wound so as to surround the region P1 is partly located in the region P1, and a part of the conductor pattern 41A is interposed via the interlayer connection conductor 41C formed in the first base material layer 41. And continuity.
  • the conductor pattern 42B has a strip shape, and has a portion wound so as to surround the region P2 and a portion wound so as to surround the region P4, and these two portions are electrically connected. is doing.
  • the part wound so as to surround the region P2 is partially located in the region P2, and a part of the conductor pattern 41B is interposed via the interlayer connection conductor 41D formed on the first base material layer 41. And continuity.
  • Interlayer connection conductors 41C and 41D are examples of the “low fluidity member” according to the present invention.
  • Conductor patterns 43A, 43B, 43C, and 43D are independently formed on one main surface (the upper surface in FIG. 11) of the third base material layer 43.
  • the conductor patterns 43A, 43B, 43C, and 43D are examples of the “low fluidity member” according to the present invention.
  • the third base material layer 43 is laminated on the second base material layer 42 with the main surface on which the respective conductor patterns 43A, 43B, 43C, 43D are formed facing the second base material layer 42 side.
  • the conductor pattern 43A has a strip shape and is wound so as to surround the region P3.
  • the conductor pattern 43A is electrically connected to the conductor pattern 42A via an interlayer connection conductor (not shown) formed on the second base material layer 42.
  • the conductor pattern 43B has a strip shape and is wound so as to surround the region P1.
  • the conductor pattern 43B is electrically connected to the conductor pattern 42A via an interlayer connection conductor (not shown) formed on the second base material layer 42.
  • the conductor pattern 43C has a strip shape and is wound so as to surround the region P2.
  • the conductor pattern 43C is electrically connected to the conductor pattern 42B via an interlayer connection conductor (not shown) formed on the second base material layer 42.
  • the conductor pattern 43D has a band shape and is wound so as to surround the region P4.
  • the conductor pattern 43D is electrically connected to the conductor pattern 42B via an interlayer connection conductor (not shown) formed on the second base material layer 42.
  • Conductor patterns 44A, 44B, and 44C are independently formed on one main surface (the upper surface in FIG. 11) of the fourth base material layer 44.
  • the conductor patterns 44A, 44B, and 44C are examples of the “low-fluidity member” according to the present invention.
  • the fourth base material layer 44 is laminated on the third base material layer 43 with the main surface on which the conductor patterns 44A, 44B, and 44C are formed facing the third base material layer 43 side.
  • the conductor pattern 44A has a belt shape and is wound so as to surround the region P3.
  • the conductor pattern 44A is electrically connected to the conductor pattern 43A via an interlayer connection conductor (not shown) formed in the third base material layer 43.
  • the conductive pattern 44B has a belt-like shape, and has a portion wound so as to surround the region P1 and a portion wound so as to surround the region P2, and these two portions are conductive. is doing.
  • a portion wound so as to surround the region P ⁇ b> 1 is electrically connected to the conductor pattern 43 ⁇ / b> B through an interlayer connection conductor (not shown) formed in the first base material layer 43.
  • a portion wound so as to surround the region P ⁇ b> 2 is electrically connected to the conductor pattern 43 ⁇ / b> C via an interlayer connection conductor (not shown) formed in the first base material layer 43.
  • the conductor pattern 44C has a band shape and is wound so as to surround the region P4.
  • the conductor pattern 44C is electrically connected to the conductor pattern 43D through an interlayer connection conductor (not shown) formed on the third base material layer 43.
  • Dummy patterns 451, 452, 453, and 454 of thermosetting resin are formed on the other main surface (the upper surface in FIG. 11) of the fifth base material layer 45. Since the dummy patterns 451, 452, 453, and 454 are cured by heating, the fluidity is lower than that of the base material layers 41 to 45 at the time of thermocompression bonding.
  • the dummy patterns 451, 452, 453, and 454 are examples of the “low fluidity member” according to the present invention.
  • the fifth base material layer 45 is laminated on the fourth base material layer 44 with the main surface on which the dummy patterns 451, 452, 453, 454 are formed facing the fourth base material layer 44.
  • the dummy patterns 451 and 452 are wound so as to surround the regions P3 and P4.
  • the conductor patterns 45A and 45B formed on one main surface of the fifth base material layer 45 are formed on the interlayer connection conductors 44D and 44E formed on the fourth base material layer 44 and the fifth base material layer 45. It is connected to conductor patterns 44A and 44C via interlayer connection conductors 45C and 45D.
  • the dummy patterns 453 and 454 are wound so as to surround the areas P1 and P2.
  • Each conductor pattern formed in the laminate 40 forms three coils with the conductor patterns 41A, 41B, 45A, 45B as input / output ends. Specifically, with the conductor patterns 41A and 45A as input / output ends, the conductor patterns 43A and 44A, and the conductor pattern 42A, which are wound in the same direction so as to surround the region P3, are wound in the same direction. A first coil having the winding direction as the winding axis is formed.
  • the conductor patterns 41A and 41B are used as input / output ends, and the conductor pattern 42A is a portion that is wound so as to surround the region P1, the conductor pattern 42B, and the conductor pattern 44B, and includes the region P1.
  • a coil is formed by winding the conductor pattern 42C and the conductor pattern 42B in such a manner that a portion wound so as to surround the region P2 is wound in the same direction.
  • These two coils have a winding direction as a winding axis, and the two coils are connected in the conductor pattern 44B to form a second coil.
  • the conductor patterns 44C and 43D and the conductor pattern 42B which are wound so as to surround the region P4, are wound in the same direction, and laminated.
  • a third coil whose direction is the winding axis is formed.
  • the occupation ratio of the conductor pattern in the regions P1, P2, P3, and P4 is It is lower than the occupation rate of the conductor pattern in the region surrounding the regions P1, P2, P3 and P4.
  • the dummy patterns 451, 452, 453, and 454 formed in the regions surrounding the regions P1, P2, P3, and P4 are thermosetting resins and flow more than the base material layers 31 to 35 at the temperature at the time of thermocompression bonding. It is a member with low properties. For this reason, the dummy patterns 451, 452, 453, and 454 act in the same manner as other conductor patterns during thermocompression bonding.
  • the base material layers 41 to 45 are laminated, the elastic body is pressed from both the first base material layer 41 and the fifth base material layer 45, and thermocompression bonding is performed.
  • the multilayer substrate 4 having the recesses 40A, 40B, 40C, and 40D formed thereon is manufactured.
  • FIG. 13 is an exploded view when the laminated body 40 is thermocompression bonded.
  • FIG. 14 is a view showing a state in which the laminate 40 is thermocompression bonded.
  • the multilayer substrate 4 is formed by forming each conductor pattern on each base material layer 41 to 45, then laminating each base material layer 41 to 45, and thermocompression bonding each base material layer 41 to 45 in the stacking direction.
  • The When thermocompression bonding is performed, in the regions P1 and P2 where the recesses 40C and 40D are formed, the elastic body 101C is pressed from the first base material layer 41 side, and the metal rigid body 100B is pressed from the fifth base material layer 45 side. In the regions P3 and P4 where the recesses 40A and 40B are formed, the elastic bodies 101D and 101E are pressed from the fifth base layer 45 side, and the metal rigid body 100A is pressed from the first base layer 41 side.
  • the occupation ratio of the conductor pattern in the areas P1, P2, P3, P4 is lower than the occupation ratio of the conductor pattern in the area surrounding the areas P1, P2, P3, P4. Therefore, when the regions P1 and P2 are pressed by the elastic body 101C from the first base material layer 41 side, the pressed portions are recessed inward along the stacking direction. Therefore, the conductor patterns 41A and 41B formed in the regions P1 and P2 are pushed inward along the stacking direction, and the conductor patterns 41A and 41B are positioned on the inner side of the surface of the stacked body 40. Then, around the conductor patterns 41A and 41B, recesses 40C and 40D that are recessed inward from the surface of the multilayer body 40 are formed.
  • the regions P3 and P4 are pressed by the elastic bodies 101D and 101E from the fifth base material layer 45 side, the pressed portions are recessed inward along the stacking direction. For this reason, the conductor patterns 45A and 45B formed in the regions P3 and P4 are pushed inward along the stacking direction, and the conductor patterns 45A and 45B are positioned on the inner side of the surface of the stacked body 40. Then, around the conductor patterns 45A and 45B, recesses 40A and 40B that are recessed inward from the surface of the multilayer body 40 are formed.
  • FIG. 15 is a cross-sectional view showing a state in which the multilayer board 4 is mounted on the circuit board 200.
  • other electronic components 300 are mounted on the main surface of the multilayer body 40 on the side where the conductor patterns 41A and 41B are formed.
  • the mounting electrodes 300A and 300B of the electronic component 300 are mounted on the conductor patterns 41A and 41B by the solders 201C and 201D.
  • the multilayer board 4 is mounted on the circuit board 200 with the main surface of the multilayer body 40 on the side where the conductor patterns 45A and 45B are formed as a mounting surface.
  • the conductor patterns 45A and 45B are mounted on the mounting electrodes 200A and 200B of the circuit board 200 by the solders 201A and 201B.
  • the multilayer substrate 4 can be accurately aligned with the mounting electrodes of the circuit board. . Further, even if a deviation occurs during alignment, the position is restored to a normal position during reflow, so that the positional deviation during mounting can be reduced. Furthermore, by making the solder 201A, 201B accumulate in the recesses 40A, 40B, the amount of the solder 201A, 201B protruding from the multilayer substrate 4 can be reduced, and the protruding solder 201A, 201B becomes a solder ball and peels off. The problem of short-circuiting with other circuits can be suppressed.
  • the electronic component 300 can be accurately aligned with the multilayer substrate 4. . Further, even if a deviation occurs during alignment, the position is restored to a normal position during reflow, so that the positional deviation during mounting can be reduced. Further, by allowing the solders 201C and 201D to collect in the recesses 40C and 40D, the amount of the solder 201C and 201D protruding from the multilayer substrate 4 can be reduced, and the protruding solder 201C and 201D peels off as solder balls. The problem of short-circuiting with other circuits can be suppressed.
  • the number of base material layers is described as being less than the actual number of layers (for example, 10 layers). For this reason, regarding the occupancy ratio of the low-fluidity member in the stacking direction, the difference between the occupancy ratio of the region that overlaps the mounting electrode and the occupancy ratio of the region that surrounds the region overlapping the mounting electrode appears small in the drawing in the stacking direction. .
  • the actual number of stacked layers is larger than the illustrated number of stacked layers, and the number of stacked low fluidity members located in the region surrounding the region overlapping the mounting electrode is larger than the illustrated number of stacked layers. For this reason, actually, the difference between the occupancy rate of the region overlapping the mounting electrode and the occupancy rate of the region surrounding the region overlapping the mounting electrode is more conspicuous when viewed in the stacking direction.
  • Interlayer connection conductors 23A, 23B, 24A, 24B ... Dummy patterns 30A, 30B, 30C, 30D ... Recesses 31A, 31B, 32A, 32B, 33A, 33B, 34A, 34B, 35A, 35B ... Body patterns 40A, 40B, 40C, 40D ... concave portions 41A, 41B, 42A, 42B, 42C, 43A, 43B, 43C, 43D, 44A, 44B, 44C, 45A, 45B ... conductor patterns 41C, 41D, 44D, 44E ... interlayer Connection conductors 45C, 45D ... interlayer connection conductors 100, 100A, 100B ...
  • metal rigid bodies 101, 101A, 101B, 101C, 101D, 101E elastic bodies (elastic members) 200 ... Circuit boards 200A, 200B ... Mounting electrodes 201A, 201B, 201C, 201D ... Solders 23A, 23B, 24A, 24B ... Dummy patterns 210, 211 ... Convex portions 300 ... Electronic components 300A, 300B ... Mounting electrodes 451, 452, 453 , 454 ... Dummy pattern

Abstract

 導体パターンが形成された基材層(11~15)を積層し、熱圧着して形成する多層基板(1)の製造方法において、第1基材層(11)の主面に実装電極である導体パターン(11A,11B)を形成し、基材層(12~15)の主面に導体パターン(12A,12B,13A,13B,14A,14B,15A)を形成する。第1基材層(11)の主面が最外面となるように、基材層(11~15)を積層する。積層した基材層(11~15)を、第1基材層(11)側に弾性体(101)を押し当てて熱圧着する。基材層(11~15)を積層した積層体(10)では、積層方向に視て導体パターン(11A,11B)に重なる領域(P1,P2)の導体パターンの占有率が、領域(P1,P2)を囲む領域における占有率より低くなるよう、導体パターンが配置されている。これにより、実装位置のずれを抑制できる多層基板の製造方法、及び多層基板を提供することにある。

Description

多層基板の製造方法、及び多層基板
 本発明は、導体パターンが形成された複数の熱可塑性樹脂基材を積層した多層基板の製造方法、及び多層基板に関する。
 特許文献1には、可撓性材料の絶縁体層が積層された積層体の平坦状の上面及び平坦状の下面に、それぞれ、電子部品を実装するための外部電極及びマザー基板に接続される外部電極を設けた回路基板が開示されている。
国際公開第2010/113539号
 しかしながら、特許文献1の場合、回路基板の上面の外部電極に対して電子部品を正確な位置に配置することは難しく、また、回路基板の下面の外部電極をマザー基板に対して正確な位置に配置することも難しい。このため、回路基板に対して電子部品の実装位置がずれたり、マザー基板に対して回路基板の実装位置がずれたりしてしまうおそれがある。
 そこで、本発明の目的は、実装位置のずれを抑制できる多層基板の製造方法、及び多層基板を提供することにある。
 本発明は、導体パターンが形成された熱可塑性樹脂基材を含む複数の熱可塑性樹脂基材を積層し、熱圧着して形成する多層基板の製造方法において、熱可塑性樹脂基材の主面に実装電極を形成する実装電極形成工程と、前記実装電極が形成された熱可塑性樹脂基材の主面が最外面となるように前記複数の熱可塑性樹脂基材を積層する積層工程と、積層した前記複数の熱可塑性樹脂基材に対して、前記最外面の前記実装電極が形成された部分に弾性部材を押し当てて熱圧着する熱圧着工程と、を備え、前記積層工程では、前記熱可塑性樹脂基材の熱圧着時の温度において前記熱可塑性樹脂基材よりも流動性の低い低流動性部材の積層方向における占有率について、積層方向に視て、前記実装電極に重なる領域の占有率が、前記実装電極に重なる領域を囲む領域の占有率より低くなるよう、前記複数の熱可塑性樹脂基材を積層することを特徴とする。
 この構成では、熱圧着時に、低流動性部材の占有率が低い部分は、積層方向において内側に凹むため、多層基板の表面のうち、実装電極が形成された部分に凹部が形成される。この凹部が形成された多層基板を、マザー基板等の回路基板の実装電極に対して実装する際、凹部に回路基板の実装電極が嵌合するように配置することができるため、多層基板は、実装電極に対して精度よく位置合わせができる。
 また、半田により、多層基板を回路基板に実装する際、半田が、形成された凹部内に溜まるようになり、半田の多層基板からのはみ出し量を少なくできる。これにより、はみ出した半田により他の回路とショートするといった不具合を抑制できる。また、半田の広がりが抑えられるので、セルフアライメントによる効果が高まり、実装位置のずれを抑制できる。
 前記低流動性部材は前記導体パターンを含むことが好ましい。
 この構成では、凹部を形成するために別途、低流動性部材を配置する必要がなく、多層基板の低背化が実現できる。
 前記積層工程では、積層方向に視て前記実装電極に重なる領域における前記導体パターンの積層数が、前記領域を囲む領域より少なくなるよう、前記複数の熱可塑性樹脂基材を積層することが好ましい。
 この構成では、実装領域と重なる領域の導体パターンの占有率を低くできる。
 前記熱可塑性樹脂基材に形成された導体パターンは、積層方向を巻回軸とするコイルを構成しており、前記積層工程では、積層方向に視て前記コイルの内側領域に前記実装電極が配置されるよう、前記複数の熱可塑性樹脂基材を積層することが好ましい。
 この構成では、コイルパターンを低流動性部材として機能させることができるため、別途設ける低流動性部材を無くすことができ、また、減らすことができるようになる。
 前記実装電極形成工程では、異なる熱可塑性樹脂基材それぞれの主面に実装電極を形成し、前記積層工程では、前記異なる熱可塑性樹脂基材の主面が互いに反対側の最外面となるように前記熱可塑性樹脂基材を積層し、前記熱圧着工程は、前記実装電極が形成された両側の前記最外面に弾性部材を押し当てて熱圧着することが好ましい。
 この構成では、回路基板に実装する側の主面とは反対側の多層基板の主面に対して、積層方向において内側に凹んだ凹部が形成される。この凹部が形成された多層基板に対し、他の電子部品を実装できる。電子部品の実装する際、電子部品側の実装電極が凹部に嵌合するように配置することができるため、電子部品は、多層基板に対して精度よく位置合わせができる。
 また、半田により、電子部品を多層基板に実装する際、半田が、形成された凹部内に溜まるようになり、半田の多層基板からのはみ出し量を少なくできる。これにより、はみ出した半田により他の回路とショートするといった不具合を抑制できる。また、半田の広がりが抑えられるので、セルフアライメントによる効果が高まり、実装位置のずれを抑制できる。
 本発明によれば、多層基板を実装する際、精度よく位置合わせができる。また、多層基板の実装に用いた半田により他の回路とショートするといった不具合を抑制できる。さらに、半田の広がりが抑えることで、セルフアライメントによる効果が高まり、実装位置のずれを抑制できる。
実施形態1に係る多層基板の分解斜視図 図1に示すII-II線の断面図 積層体を熱圧着した状態を示す図 多層基板を回路基板へ実装した状態を示す断面図 多層基板を回路基板へ実装した状態を示す断面図 実施形態2に係る多層基板の分解斜視図 図6に示すVII-VII線の断面図 実施形態3に係る多層基板の断面図 実施形態3に係る多層基板の分解図 多層基板3を回路基板へ実装した状態を示す断面図 実施形態4に係る多層基板の分解斜視図 図11に示すXII-XII線における多層基板の断面図 積層体を熱圧着する際の分解図 積層体を熱圧着した状態を示す図 多層基板を回路基板へ実装した状態を示す断面図
(実施形態1)
 図1は、実施形態1に係る多層基板1の分解斜視図である。図2は、図1に示すII-II線の断面図である。なお、多層基板1は、複数の熱可塑性樹脂が積層された積層体10が熱圧着されて形成されるが、図1は熱圧着前の多層基板1の分解斜視図であり、図2は熱圧着後の多層基板1の断面図である。
 多層基板1は、内部にコイルが形成された積層体10を備えている。積層体10は、第1基材層11、第2基材層12、第3基材層13、第4基材層14及び第5基材層15が順に積層され、熱圧着されることで形成される。各基材層11~15は長辺及び短辺を有する矩形状であり、積層体10は略直方体形状を有する。基材層11~15は、絶縁性の熱可塑性樹脂、例えばLCP樹脂(液晶ポリマ樹脂)を母材として形成されている。
 熱可塑性樹脂としては、例えばPEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PPS(ポニフェニレンスルファイド)、PI(ポリイミド)等があり、液晶ポリマ樹脂に代えてこれらを用いてもよい。
 第1基材層11の一方主面(図1において上面)には、矩形状の導体パターン11A,11Bが形成されている。導体パターン11A,11Bは、本発明に係る「実装電極」の一例であり、また、「低流動性部材」の一例でもある。第1基材層11は積層体10の最外層であり、多層基板1は、導体パターン11A,11Bが形成された第1基材層11の主面を実装面として、回路基板等に実装される。そして、導体パターン11A,11Bは、多層基板1の実装電極として用いられる。
 また、第1基材層11には、平面視で導体パターン11A,11Bと重なる位置に層間接続導体11C,11Dが形成されている。この層間接続導体11C,11Dは、本発明に係る「低流動性部材」の一例である。
 本実施形態では、導体パターン11A,11Bを囲う領域であって、積層体10の積層方向において、この領域と重なる領域をP1,P2で表す。
 第2基材層12の一方主面(図1において上面)には、導体パターン12A,12Bが独立して形成されている。第2基材層12は、導体パターン12A,12Bが形成された主面を第1基材層11側にして、第1基材層11に積層されている。導体パターン12A,12Bは帯状であって、領域P1,P2に一端を有し、その位置から引き回されて、領域P1,P2を内側に囲うように巻回されている。そして、領域P1,P2に位置する導体パターン12A,12Bの一端は、第1基材層11に形成された層間接続導体11C,11Dを介して、導体パターン11A,11Bと導通している。
 導体パターン12A,12Bは、本発明に係る「低流動性部材」の一例である。導体パターン12A,12Bは、積層体10の熱圧着時の温度(例えば、250℃~350℃)における基材層11~15よりも流動性が低い部材である。
 第3基材層13の一方主面(図1において上面)には、導体パターン13A,13Bが独立して形成されている。導体パターン13A,13Bは、本発明に係る「低流動性部材」の一例である。第3基材層13は、導体パターン13A,13Bが形成された主面を第2基材層12側にして、第2基材層12に積層されている。導体パターン13A,13Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。この導体パターン13A,13Bには、領域P1,P2と重なる部分がない。導体パターン13A,13Bの一端は、第2基材層12に形成された層間接続導体(不図示)を介して、導体パターン12A,12Bの一端に接続している。
 第4基材層14の一方主面(図1において上面)には、導体パターン14A,14Bが独立して形成されている。導体パターン14A,14Bは、本発明に係る「低流動性部材」の一例である。第4基材層14は、導体パターン14A,14Bが形成された主面を第3基材層13側にして、第3基材層13に積層されている。導体パターン14A,14Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。この導体パターン14A,14Bには、領域P1,P2と重なる部分がない。導体パターン14A,14Bの一端は、第3基材層13に形成された層間接続導体(不図示)を介して、導体パターン13A,13Bの一端に接続している。
 第5基材層15の一方主面(図1において上面)には、導体パターン15Aが形成されている。導体パターン15Aは、本発明に係る「低流動性部材」の一例である。第5基材層15は、導体パターン15Aが形成された主面を第4基材層14側にして、第4基材層14に積層されている。導体パターン15Aは帯状であって、領域P1,P2を内側に囲うように巻回されている。この導体パターン15Aには、領域P1,P2と重なる部分がない。導体パターン15Aの一端及び他端は、第4基材層14に形成された層間接続導体(不図示)を介して、導体パターン14A,14Bの一端に接続している。
 なお、図示しない、各層に形成された層間接続導体は、本発明に係る「低流動性部材」の一例である。
 この積層体10に形成された各導体パターンは、導体パターン11A,11Bを入出力端として、巻回軸を積層方向とする一つのコイルを形成している。詳しくは、導体パターン12A,13A,14Aは同方向に巻回し、巻回軸を積層方向とする一のコイルを形成し、導体パターン12B,13B,14Bは同方向に巻回し、巻回軸を積層方向とする一のコイルを形成している。そして、これら二つのコイルは、導体パターン15Aにより接続され、一つのコイルが形成されている。
 また、基材層12~15に形成される各導体パターンは、領域P1,P2を内側に囲うように巻回されている。より詳しくは、第2基材層12に形成された導体パターン12A,12Bの一部がこの領域P1,P2に位置し、他の導体パターンは、領域P1,P2を囲む領域に位置している。したがって、領域P1,P2における導体パターンの積層数は、領域P1,P2を囲む領域における導体パターンの積層数より少ない。換言すれば、領域P1,P2における導体パターンの占有率は、領域P1,P2を囲む領域における導体パターンの占有率より低い。
 多層基板1は、各基材層11~15に各導体パターンを形成した後、各基材層11~15を積層し、積層方向に各基材層11~15を熱圧着することで形成される。図3は、積層体10を熱圧着した状態を示す図である。熱圧着する場合、第5基材層15側から金属剛体100を押し当て、第1基材層11側から弾性体101を押し当てる。弾性体101は、例えば、シリコン樹脂又はシリコンゴム等である。
 前記のように、第1基材層11の導体パターン11A,11Bと積層方向において重なる領域P1,P2における導体パターンの占有率は、領域P1,P2を囲む領域における導体パターンの占有率より低い。したがって、領域P1,P2の積層方向における流動性は高く、他の領域の積層方向における流動性は低い。この流動性が異なる積層体10に対して弾性体101で第1基材層11側から積層方向に押圧すると、流動性が低い領域P1,P2を囲む領域は、弾性体101が変形するが、流動性が高い領域P1,P2では、その領域P1,P2が積層方向に変形する。
 具体的には、領域P1,P2以外の流動性が低い領域は、弾性体101で押圧されても凹みにくい。これに対し、流動性が高い領域P1,P2は、弾性体101で押圧されると、押圧部分が積層方向に沿って内側に凹む。このため、領域P1,P2に形成されている導体パターン11A,11Bは積層方向に沿って内側に押し込まれ、導体パターン11A,11Bは、積層体10の表面よりも内側に位置するようになる。そして、導体パターン11A,11Bの周囲には、積層体10の表面より内側に凹んだ凹部10A,10Bが形成される。すなわち、導体パターン11A,11Bは、積層体10の表面に形成された凹部10A,10Bの底部に位置する。
 なお、熱圧着時に、導体パターン11A,11Bが積層方向に沿って内側に押し込まれることで、積層方向において重合する位置にある層間接続導体11C,11D及び導体パターン12A,12Bの一部も同様に内側に押し込まれるため、導体パターン12A,12Bの一部は、図2及び図3に示すように、他の部分よりも水平方向(積層方向に直交する方向)に対し傾斜する。
 また、弾性体101は、シリコン樹脂又はシリコンゴム等であるが、熱圧着時の基材層11~15を押圧する際、前記のように流動性の高低に応じて、変形する弾性率を有する部材が好ましい。
 図4及び図5は、多層基板1を回路基板200へ実装した状態を示す断面図である。回路基板200は、例えばマザー基板等である。多層基板1の実装電極である導体パターン11A,11Bが、積層体10の表面に形成された凹部10A,10Bの底部に位置することで、多層基板1を回路基板200の実装電極200A,200Bに対して実装する際、凹部10A,10Bに実装電極200A,200Bが嵌合するよう配置することができるため、多層基板1は、実装電極200A,200Bに対して精度よく位置合わせができる。
 また、導体パターン11A,11Bを実装電極200A,200Bに実装する半田201A,201Bが凹部10A,10B内に溜まるようになり、半田201A,201Bの多層基板1からのはみ出し量を少なくできる。これにより、はみ出した半田により他の回路とショートするといった不具合を抑制できる。また、半田201A,201Bの広がりが抑えられるので、セルフアライメントによる効果が高まり、多層基板1の実装位置のずれを抑制できる。
 さらに、図5に示すように、実装電極200A,200Bが形成される回路基板200の一部に凸部210,211を形成し、その凸部210,211が積層体10の凹部10A,10Bと嵌合するように配置することができるため、多層基板1は、実装電極200A,200Bに対してさらに精度よく位置合わせができる。
 以下に、多層基板1の製造方法について説明する。
 熱可塑性の樹脂シートの一方主面に銅箔を貼り付ける、又は片面銅貼シートを用意する。そして、形成する導体パターンに応じて、銅箔上にレジスト膜のパターニングを行う。エッチングを行って導体パターンを形成し、レジスト膜を除去する。樹脂シートの他方の面(銅箔を貼り付けていない面)から、各箇所(上記のエッチングで銅箔を除去した箇所)にレーザ光を照射して穴開けを行い、この穴(ビアホール)に導電性ペーストを充填する。これらの工程は、本発明に係る「実装電極形成工程」に相当する。
 導体パターンの形成時、実装電極となる第1基材層11に形成した導体パターン11A,11Bと積層方向において重合する領域P1,P2には、導体パターンが少なくなるよう、各導体パターンを各基材層12~15に形成する。具体的には、領域P1,P2における導体パターンの占有率が、領域P1,P2を囲む領域における導体パターンの占有率より低くなるよう、各基材層12~15に導体パターンを形成する。これにより、積層方向において、領域P1,P2の流動性は、領域P1,P2を囲む領域の流動性よりも高くなる。
 各基材層12~15に形成する導体パターンは、熱圧着時の温度における基材層11~15よりも流動性が低い低流動性部材である。
 次に、導体パターン11A,11Bが形成された第1基材層11の一方主面が最外面となるよう、基材層11~15を順に重ねる(積層工程)。このとき、基材層に形成した層間接続導体と、導体パターンとの位置関係を考慮して、位置合わせを行う。このように、各基材層11~15を積層して積層体10を形成する。そして、その積層体10を、第5基材層15側から金属剛体100を押し当て、第1基材層11側から弾性体101を押し当てて熱圧着する(熱圧着工程)。これにより、流動性が高い領域P1,P2が積層方向の内側に押し込まれ、積層体10の表面に凹部10A,10Bが形成されると共に、導体パターン11A,11Bが積層体10の表面よりも内側に位置するようになる。また、本実施形態では、ビアホールに導電性ペーストが充填されているので、メッキ等で形成したスルーホールと比較して熱圧着時に変形しやすく、積層体10を凹ませやすい。
 樹脂シートは、上述したように熱可塑性であるので、接着剤を使用しなくてもよい。また、この加熱及び加圧処理の際に、層間接続導体とそれに対応する導体とが接合される。このように、簡単な工程で、これにより、図2に示す多層基板1を製造できる。
 以上説明したように、多層基板1が凹部10A,10Bを有し、その凹部10A,10Bの底部に、実装電極である導体パターン11A,11Bが形成されることで、多層基板1は、実装電極200A,200Bに対して精度よく位置合わせができる。また、半田201A,201Bが凹部10A,10B内に溜まるようになるため、半田201A,201Bの多層基板1からのはみ出し量を少なくできる。これにより、はみ出した半田201A,201Bにより他の回路とショートするといった不具合を抑制できる。また、半田201A,201Bの広がりが抑えられるので、セルフアライメントによる効果が高まり、実装位置のずれを抑制できる。
 また、この凹部10A,10Bは、領域P1,P2における導体パターンの占有率を低くして、弾性体101で圧着すれば形成されるため、製造が容易である。そして、凹部10A,10Bを形成するために、積層体10に他の専用部材を設ける必要がないため、多層基板1の低背化が実現できる。さらに、多層基板1はコイルを内在したインダクタ素子であるため、実装位置のずれを抑制できるインダクタ素子を実現できる。
 なお、本実施形態では、領域P1,P2には、導体パターン12A,12Bの一部のみが位置するようにしているが、他の導体パターン13A,13B,14A,14B,15Aが領域P1,P2に位置するようにしてもよい。この場合、領域P1,P2における導体パターンの占有率が、他の領域における導体パターンの占有率よりも低ければよい。また、領域P1,P2に導体パターン13A,13B,14A,14B,15Aを位置させることで、凹部10A,10Bの形成時に、凹部10A,10Bの大きさ(押し込まれ量)を調整できる。
 例えば、領域P1,P2における導体パターンの占有率を高くすれば、弾性体101による領域P1,P2の押込み量が小さくなり、凹部10A,10Bを小さく形成できる。領域P1,P2における導体パターンの占有率を低くすれば、弾性体101による領域P1,P2の押込み量が大きくなり、凹部10A,10Bを大きく形成できる。
(実施形態2)
 図6は、実施形態2に係る多層基板2の分解斜視図である。図7は、図6に示すVII-VII線の断面図である。
 実施形態1では、コイルを形成する導体パターンを利用して、積層体10に凹部10A,10Bを形成しているのに対し、本実施形態では、ダミーパターン23A,23B,24A,24Bを用いて、積層体20に凹部20A,20Bを形成する。ダミーパターン23A,23B,24A,24Bは、回路の配線とは関係なく、電気的に独立したパターンであって、熱可塑性樹脂の圧着時の温度において、その熱可塑性樹脂よりも流動性が低い部材であればよい。ダミーパターン23A,23B,24A,24Bは、導体であってもよいし、セラミックなどの非導体であってもよい。
 多層基板2は積層体20を備えている。積層体20は、第1基材層21、第2基材層22、第3基材層23、第4基材層24及び第5基材層25が順に積層され、熱圧着されることで形成される。各基材層11~15は長辺及び短辺を有する矩形状であり、積層体10は略直方体形状を有する。基材層11~15は、絶縁性の熱可塑性樹脂、例えばLCP樹脂(液晶ポリマ樹脂)を母材として形成されている。
 第1基材層21の一方主面(図6において上面)には、矩形状の導体パターン21A,21Bが形成されている。導体パターン21A,21Bは、本発明に係る「実装電極」の一例であり、また、「低流動性部材」の一例でもある。第1基材層21は積層体20の最外層であり、多層基板2は、導体パターン21A,21Bが形成された第1基材層21の主面を実装面として、回路基板等に実装される。そして、導体パターン21A,21Bは、多層基板1の実装電極として用いられる。
 また、第1基材層21には、平面視で導体パターン21A,21Bと重なる位置に層間接続導体21C,21Dが形成されている。層間接続導体21C,21Dは、本発明に係る「低流動性部材」の一例である。
 本実施形態においても、実施形態1と同様に、導体パターン21A,21Bを囲う領域であって、積層体20の積層方向において、この領域と重なる領域をP1,P2で表す。
 第2基材層22の一方主面(図6において上面)には、導体パターン22A,22Bが独立して形成されている。第2基材層22は、導体パターン22A,22Bが形成された主面を第1基材層21側にして、第1基材層21に積層されている。導体パターン22A,22Bは帯状であって、領域P1,P2に一端を有し、その位置から領域P1,P2の外側に引き出されている。そして、領域P1,P2に位置する導体パターン22A,22Bの一端は、第1基材層21に形成された層間接続導体21C,21Dを介して、導体パターン21A,21Bと導通している。
 第3基材層23には、ダミーパターン23A,23Bが独立して形成されている。ダミーパターン23A,23Bは、本発明に係る「低流動性部材」の一例である。第3基材層23は、ダミーパターン23A,23Bが形成された主面を第2基材層22側にして、第2基材層22に積層されている。ダミーパターン23A,23Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。ダミーパターン23A,23Bは、他の基材層21,22,24,25に形成される導体パターンとは独立している。
 第4基材層24には、ダミーパターン24A,24Bが独立して形成されている。ダミーパターン24A,24Bは、本発明に係る「低流動性部材」の一例である。第4基材層24は、ダミーパターン24A,24Bが形成された主面を第3基材層23側にして、第3基材層23に積層されている。ダミーパターン24A,24Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。ダミーパターン24A,24Bは、他の基材層21~23,25に形成される導体パターンとは独立している。
 第5基材層25の一方主面(図6の上面)には、領域P1,P2の外側に導体パターン25A,25Bが形成されている。導体パターン25A,25Bは、本発明に係る「低流動性部材」の一例である。第5基材層25は、導体パターン25A,25Bが形成された主面を第4基材層24側にして、第4基材層24に積層されている。導体パターン25A,25Bは、第3基材層23及び第4基材層24の不図示の層間接続導体を介して、第2基材層22の導体パターン22A,22Bと導通している。
 第5基材層25は、表面に導体パターンが形成された熱可塑性樹脂が複数積層され、内部にコイルが形成されている。第5基材層25の一方主面に形成された導体パターン25A,25Bは、内在するコイルの端部に接続している。すなわち、多層基板2の第5基材層25に内在するコイルは、導体パターン21A,21Bを入出力端とし、導体パターン22A,22B,25A,25Bを介して、その導体パターン21A,21Bに導通している。
 なお、第5基材層25において、領域P1,P2に重なる領域では、導体パターンの占有率が低くなるよう、コイルが形成されていることが好ましい。
 本実施形態においても、実施形態1と同様、領域P1,P2における導体パターンの占有率は、領域P1,P2を囲む領域における導体パターンの占有率より低い。そして、各基材層21~25を積層し、第5基材層25側から金属剛体を押し当て、第1基材層21側から弾性体を押し当てて、熱圧着することで、表面に凹部20A,20Bが形成された多層基板2が製造される。凹部20A,20Bを形成し、実装電極である導体パターン21A,21Bを表面より内側に位置させることで、多層基板2を、回路基板の実装電極に対して精度よく位置合わせができる。また、半田が凹部20A,20B内に溜まるようになるため、半田の多層基板2からのはみ出し量を少なくできる。これにより、はみ出した半田により他の回路とショートするといった不具合を抑制できる。また、半田の広がりが抑えられるので、セルフアライメントによる効果が高まり、実装位置のずれを抑制できる。
 また、本実施形態では、ダミーパターン23A,23B,24A,24Bを形成することで、形成しない場合と比べて、領域P1,P2を囲む領域における導体パターンの占有率を高くすることができる。このため、弾性体で第1基材層21側から押圧したときに、領域P1,P2に凹部20A,20Bを形成し易くなる。
(実施形態3)
 図8は、実施形態3に係る多層基板3の断面図である。図9は、実施形態3に係る多層基板3の分解図である。実施形態1,2では、積層体の一方主面にのみ凹部を形成しているのに対し、本実施形態では、積層体30の両方の主面に凹部を形成している。また、本実施形態に係る多層基板3では、積層体30に2つのコイルが独立して形成されている。
 多層基板3は、第1基材層31、第2基材層32、第3基材層33、第4基材層34及び第5基材層35が積層された積層体30が熱圧着されて形成される。
 第1基材層31の一方主面(図9の上面)には、矩形状の導体パターン31A,31Bが形成されている。導体パターン31A,31Bは、本発明に係る「実装電極」の一例であり、「低流動性部材」の一例でもある。第1基材層31は積層体30の最外層である。
 本実施形態では、実施形態1,2と同様に、導体パターン31A,31Bを囲う領域であって、積層体30の積層方向において、この領域と重なる領域をP1,P2で表す。
 第2基材層32の一方主面(図9において上面)には、導体パターン32A,32Bが独立して形成されている。第2基材層32は、導体パターン32A,32Bが形成された主面を第1基材層31側にして、第1基材層31に積層されている。導体パターン32A,32Bは、図示は省略するが、実施形態1と同様に、帯状であって、領域P1,P2に一端を有し、その位置から引き回されて、領域P1,P2を内側に囲うように巻回されている。そして、領域P1,P2に位置する導体パターン32A,32Bの一端は、第1基材層31に形成された層間接続導体(不図示)を介して、導体パターン31A,31Bと導通している。
 導体パターン32A,32Bは、本発明に係る「低流動性部材」の一例である。導体パターン32A,32Bは、積層体10の熱圧着時の温度における基材層31~35よりも流動性が低い部材である。
 第3基材層33の一方主面(図9において下面)には、導体パターン33A,33Bが独立して形成されている。導体パターン33A,33Bは、本発明に係る「低流動性部材」の一例である。第3基材層33は、導体パターン33A,33Bが形成された主面とは反対側の主面(図9において上面)を第2基材層32側にして、第2基材層32に積層されている。導体パターン33A,33Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。導体パターン33A,33Bの一端は、第2基材層32及び第3基材層33に形成された層間接続導体(不図示)を介して、導体パターン32A,32Bの一端に接続している。
 第4基材層34の一方主面(図9において下面)には、導体パターン34A,34Bが独立して形成されている。導体パターン34A,34Bは、本発明に係る「低流動性部材」の一例である。第4基材層34は、導体パターン34A,34Bが形成された主面とは反対側の主面(図9において上面)を第3基材層33側にして、第3基材層33に積層されている。導体パターン34A,34Bは帯状であって、領域P1,P2を内側に囲うように巻回されている。導体パターン34A,34Bの一端は、第4基材層34に形成された層間接続導体(不図示)を介して、導体パターン33A,33Bの一端に接続している。
 第5基材層35の一方主面(図9において下面)には、導体パターン35A,35Bが形成されている。導体パターン35A,35Bは、積層方向において、導体パターン31A,31Bと略重なる位置に形成されている。第5基材層35は積層体30の最外層である。第5基材層35は、導体パターン35A,35Bが形成された主面とは反対側の主面(図9において上面)を第4基材層34側にして、第4基材層34に積層されている。導体パターン35A,35Bは、第5基材層35に形成される層間接続導体等を介して、導体パターン34A,34Bの一端に接続している。
 この積層体30の各基材層31~35に形成された導体パターン31A,32A,33A,34A,35Aは、導体パターン31A,35Aを入出力端として、一つのコイルを形成している。また、各基材層31~35に形成された導体パターン31B,32B,33B,34B,35Bは、導体パターン31B,35Bを入出力端として、一つのコイルを形成している。すなわち、積層体30には、積層方向を巻回軸とした、独立した二つのコイルが形成されている。
 また、本実施形態は、実施形態1,2と同様に、領域P1,P2における導体パターンの占有率は、領域P1,P2を囲む領域における導体パターンの占有率より低い。そして、各基材層31~35を積層し、第1基材層31及び第5基材層35の両方から弾性体101A,101Bを押し当てて、熱圧着することで、表面に凹部30A,30B,30C,30Dが形成された多層基板3が製造される。
 図10は、多層基板3を回路基板200へ実装した状態を示す断面図である。
 多層基板3は、導体パターン31A,31Bが形成された側の積層体30の主面に対し、他の電子部品300が実装される。このとき、導体パターン31A,31Bは、電子部品300の電極300A,300Bが半田201C,201Dにより実装される。また、多層基板3は、導体パターン35A,35Bが形成された側の層体30の主面を実装面として、回路基板200に実装される。このとき、導体パターン35A,35Bは、回路基板200の実装電極200A,200Bに半田201A,201Bにより実装される。
 凹部30A,30Bを形成し、実装電極である導体パターン35A,35Bを積層体30の表面より内側に位置させることで、多層基板3を、回路基板200の実装電極200A,200Bに対して精度よく位置合わせができる。また、半田201A,201Bが凹部30A,30B内に溜まるようになるため、半田201A,201Bの多層基板3からのはみ出し量を少なくでき、はみ出した半田201A,201Bにより他の回路とショートするといった不具合を抑制できる。
 同様に、凹部30C,30Dを形成し、実装電極である導体パターン31A,31Bを積層体30の表面より内側に位置させることで、多層基板3に対し、電子部品300を精度よく位置合わせができる。また、半田201C,201Dが凹部30C,30D内に溜まるようになるため、半田201C,201Dの多層基板3からのはみ出し量を少なくでき、はみ出した半田201C,201Dにより、他の回路とショートするといった不具合を抑制できる。
(実施形態4)
 図11は、実施形態4に係る多層基板4の分解斜視図である。図12は、図11に示すXII-XII線における多層基板4の断面図である。本実施形態では、実施形態3と同様に、多層基板4の積層体40の一方主面に実装電極となる導体パターン41A,41Bが形成され、他方主面に導体パターン45A,45Bが形成されている。さらに、導体パターン41A,45A、及び、導体パターン41B,45Bはそれぞれ、積層方向に異なる位置に形成されている。
 積層体40は、第1基材層41、第2基材層42、第3基材層43、第4基材層44及び第5基材層45が積層され、熱圧着されることで形成される。
 第1基材層41の一方主面(図11において上面)には、矩形状の導体パターン41A,41Bが形成されている。また、第5基材層45の一方主面(図11において下面)には、積層方向において、導体パターン41A,41Bとは異なる矩形状の導体パターン45A,45Bが形成されている。第1基材層41及び第5基材層45は積層体40の最外層である。導体パターン41A,41B及び導体パターン45A,45Bは、本発明に係る「実装電極」の一例であり、「低流動性部材」の一例でもある。
 本実施形態では、導体パターン41A,41Bを囲う領域であって、積層体40の積層方向において、この領域と重なる領域をP1,P2で表す。また、導体パターン45A,45Bを囲う領域であって、積層体40の積層方向において、この領域と重なる領域をP3,P4で表す。
 第2基材層42の一方主面(図11において上面)には、導体パターン42A,42Bが独立して形成されている。導体パターン42A,42Bは、本発明に係る「低流動性部材」の一例である。第2基材層42は、導体パターン42A,42Bが形成された主面を第1基材層41側にして、第1基材層41に積層されている。
 導体パターン42Aは帯状であって、領域P1を内側に囲うように巻回されている部分と、領域P3を内側に囲うように巻回されている部分とを有し、これら二つの部分は導通している。領域P1を内側に囲うように巻回されている部分は、一部が領域P1に位置し、その一部が第1基材層41に形成された層間接続導体41Cを介して、導体パターン41Aと導通している。
 導体パターン42Bは帯状であって、領域P2を内側に囲うように巻回されている部分と、領域P4を内側に囲うように巻回されている部分とを有し、これら二つの部分は導通している。領域P2を内側に囲うように巻回されている部分は、一部が領域P2に位置し、その一部が第1基材層41に形成された層間接続導体41Dを介して、導体パターン41Bと導通している。
 層間接続導体41C,41Dは、本発明に係る「低流動性部材」の一例である。
 第3基材層43の一方主面(図11において上面)には、導体パターン43A,43B,43C,43Dが独立して形成されている。導体パターン43A,43B,43C,43Dは、本発明に係る「低流動性部材」の一例である。第3基材層43は、各導体パターン43A,43B,43C,43Dが形成された主面を第2基材層42側にして、第2基材層42に積層されている。
 導体パターン43Aは帯状であって、領域P3を内側に囲うように巻回されている。導体パターン43Aは、第2基材層42に形成された層間接続導体(不図示)を介して、導体パターン42Aと導通している。導体パターン43Bは帯状であって、領域P1を内側に囲うように巻回されている。導体パターン43Bは、第2基材層42に形成された層間接続導体(不図示)を介して、導体パターン42Aと導通している。
 導体パターン43Cは帯状であって、領域P2を内側に囲うように巻回されている。導体パターン43Cは、第2基材層42に形成された層間接続導体(不図示)を介して、導体パターン42Bと導通している。導体パターン43Dは帯状であって、領域P4を内側に囲うように巻回されている。導体パターン43Dは、第2基材層42に形成された層間接続導体(不図示)を介して、導体パターン42Bと導通している。
 第4基材層44の一方主面(図11において上面)には、導体パターン44A,44B,44Cが独立して形成されている。導体パターン44A,44B,44Cは、本発明に係る「低流動性部材」の一例である。第4基材層44は、導体パターン44A,44B,44Cが形成された主面を第3基材層43側にして、第3基材層43に積層されている。
 導体パターン44Aは帯状であって、領域P3を内側に囲うように巻回されている。導体パターン44Aは、第3基材層43に形成された層間接続導体(不図示)を介して、導体パターン43Aと導通している。導体パターン44Bは帯状であって、領域P1を内側に囲うように巻回されている部分と、領域P2を内側に囲うように巻回されている部分とを有し、これら二つの部分は導通している。領域P1を内側に囲うように巻回されている部分は、第1基材層43に形成された層間接続導体(不図示)を介して、導体パターン43Bと導通している。領域P2を内側に囲うように巻回されている部分は、第1基材層43に形成された層間接続導体(不図示)を介して、導体パターン43Cと導通している。導体パターン44Cは帯状であって、領域P4を内側に囲うように巻回されている。導体パターン44Cは、第3基材層43に形成された層間接続導体(不図示)を介して、導体パターン43Dと導通している。
 第5基材層45の他方主面(図11の上面)には、熱硬化性樹脂のダミーパターン451,452,453,454が形成されている。ダミーパターン451,452,453,454は加熱により硬化するので、熱圧着時には基材層41~45よりも流動性が低い。ダミーパターン451,452,453,454は、本発明に係る「低流動性部材」の一例である。第5基材層45は、ダミーパターン451,452,453,454が形成された主面を第4基材層44側にして、第4基材層44に積層されている。
 ダミーパターン451,452は、領域P3,P4を内側に囲うように巻回されている。第5基材層45の一方主面に形成された導体パターン45A,45Bは、第4基材層44に形成された層間接続導体44D,44E、及び、第5基材層45に形成された層間接続導体45C,45Dを介して、導体パターン44A,44Cに接続されている。
 また、ダミーパターン453,454は、領域P1,P2を内側に囲うように巻回されている。
 この積層体40に形成された各導体パターンは、導体パターン41A,41B,45A,45Bを入出力端として、三つのコイルを形成している。詳しくは、導体パターン41A,45Aを入出力端として、導体パター43A,44A、及び、導体パターン42Aであって、領域P3を内側に囲うように巻回されている部分が同方向に巻回し、積層方向を巻回軸とする第1のコイルを形成している。
 また、導体パターン41A,41Bを入出力端として、導体パターン42Aであって、領域P1を内側に囲うように巻回されている部分と、導体パターン42Bと、導体パターン44Bであって、領域P1を内側に囲うように巻回されている部分とが同方向に巻回して形成されるコイル、及び、導体パターン44Bであって、領域P2を内側に囲うように巻回されている部分と、導体パターン42Cと、導体パターン42Bであって、領域P2を内側に囲うように巻回されている部分とが同方向に巻回して形成されるコイルが形成される。これら二つのコイルは積層方向を巻回軸とし、導体パターン44Bにおいて二つのコイルが接続されて、第2のコイルが形成されている。
 さらに、導体パターン41B,45Bを入出力端として、導体パター44C,43D、及び、導体パターン42Bであって、領域P4を内側に囲うように巻回されている部分が同方向に巻回し、積層方向を巻回軸とする第3のコイルを形成している。
 前記のように、各基材層41~45に対し導体パターンを形成することで、本実施形態においても、実施形態1と同様、領域P1,P2,P3,P4における導体パターンの占有率は、領域P1,P2,P3,P4を囲む領域における導体パターンの占有率より低い。ここで、領域P1,P2,P3,P4を囲む領域に形成されたダミーパターン451,452,453,454は熱硬化性樹脂であり、熱圧着時の温度における基材層31~35よりも流動性が低い部材である。このため、ダミーパターン451,452,453,454は、熱圧着時、他の導体パターンと同様に作用する。そして、実施形態3と同様に、各基材層41~45を積層し、第1基材層41及び第5基材層45の両方から弾性体を押し当てて、熱圧着することで、表面に凹部40A,40B,40C,40Dが形成された多層基板4が製造される。
 図13は、積層体40を熱圧着する際の分解図である。図14は、積層体40を熱圧着した状態を示す図である。
 多層基板4は、各基材層41~45に各導体パターンを形成した後、各基材層41~45を積層し、積層方向に各基材層41~45を熱圧着することで形成される。熱圧着する場合、凹部40C,40Dが形成される領域P1,P2では、第1基材層41側から弾性体101Cを押し当て、第5基材層45側から金属剛体100Bを押し当てる。また、凹部40A,40Bが形成される領域P3,P4では、第5基材層45側から弾性体101D,101Eを押し当て、第1基材層41側から金属剛体100Aを押し当てる。
 これにより、領域P1,P2,P3,P4における導体パターンの占有率は、領域P1,P2,P3,P4を囲む領域における導体パターンの占有率より低い。したがって、領域P1,P2を第1基材層41側から弾性体101Cで押圧すると、その押圧部分が積層方向に沿って内側に凹む。このため、領域P1,P2に形成されている導体パターン41A,41Bは積層方向に沿って内側に押し込まれ、導体パターン41A,41Bは、積層体40の表面よりも内側に位置するようになる。そして、導体パターン41A,41Bの周囲には、積層体40の表面より内側に凹んだ凹部40C,40Dが形成される。
 また、領域P3,P4を第5基材層45側から弾性体101D,101Eで押圧すると、その押圧部分が積層方向に沿って内側に凹む。このため、領域P3,P4に形成されている導体パターン45A,45Bは積層方向に沿って内側に押し込まれ、導体パターン45A,45Bは、積層体40の表面よりも内側に位置するようになる。そして、導体パターン45A,45Bの周囲には、積層体40の表面より内側に凹んだ凹部40A,40Bが形成される。
 図15は、多層基板4を回路基板200へ実装した状態を示す断面図である。
 多層基板4は、実施形態3と同様、導体パターン41A,41Bが形成された側の積層体40の主面に対し、他の電子部品300が実装される。このとき、導体パターン41A,41Bは、電子部品300の実装電極300A,300Bが半田201C,201Dにより実装される。また、多層基板4は、導体パターン45A,45Bが形成された側の積層体40の主面を実装面として、回路基板200に実装される。このとき、導体パターン45A,45Bは、回路基板200の実装電極200A,200Bに半田201A,201Bにより実装される。
 凹部40A,40Bを形成し、実装電極である導体パターン45A,45Bを積層体40の表面より内側に位置させることで、多層基板4を、回路基板の実装電極に対して精度よく位置合わせができる。また、位置合わせ時にずれが生じていてもリフロー時に正常な位置へ修復されるため、実装時の位置ずれを小さくできる。さらに、半田201A,201Bが凹部40A,40B内に溜まるようにすることで、半田201A,201Bの多層基板4からのはみ出し量を少なくでき、はみ出した半田201A,201Bが半田ボールとなって剥離し、他の回路とショートするといった不具合を抑制できる。
 同様に、凹部40C,40Dを形成し、実装電極である導体パターン41A,41Bを積層体40の表面より内側に位置させることで、多層基板4に対し、電子部品300を精度よく位置合わせができる。また、位置合わせ時にずれが生じていてもリフロー時に正常な位置へ修復されるため、実装時の位置ずれを小さくできる。さらに、半田201C,201Dが凹部40C,40D内に溜まるようにすることで、半田201C,201Dの多層基板4からのはみ出し量を少なくでき、はみ出した半田201C,201Dが半田ボールとなって剥離し、他の回路とショートするといった不具合を抑制できる。
 なお、上記実施形態では、説明を簡易にするため、基材層の積層数を実際の積層数(例えば、10層)よりも少ない構成で説明している。このため、低流動性部材の積層方向における占有率について、積層方向に視て、実装電極に重なる領域の占有率と、実装電極に重なる領域を囲む領域の占有率との差が図面上小さく見える。しかしながら、実際の積層数は図示された積層数よりも多く、実装電極に重なる領域を囲む領域に位置する低流動性部材の積層数は図示された積層数よりも多い。このため、実際には、積層方向に視て、実装電極に重なる領域の占有率と、実装電極に重なる領域を囲む領域の占有率との差はより顕著である。
P1,P2,P3,P4…領域
1,2,3,4…多層基板
10,20,30,40…積層体
10A,10B…凹部
11,21,31,41…第1基材層
11A,11B…導体パターン
11C,11D…層間接続導体
12,22,32,42…第2基材層
12A,12B,13A,13B,14A,14B,15A…導体パターン
13,23,33,43…第3基材層
14,24,34,44…第4基材層
15,25,35,45…第5基材層
20A,20B…凹部
21A,21B,22A,22B,25A,25B…導体パターン
21C,21D…層間接続導体
23A,23B,24A,24B…ダミーパターン
30A,30B,30C,30D…凹部
31A,31B,32A,32B,33A,33B,34A,34B,35A,35B…導体パターン
40A,40B,40C,40D…凹部
41A,41B,42A,42B,42C,43A,43B,43C,43D,44A,44B,44C,45A,45B…導体パターン
41C,41D,44D,44E…層間接続導体
45C,45D…層間接続導体
100,100A,100B…金属剛体
101,101A,101B,101C,101D,101E…弾性体(弾性部材)
200…回路基板
200A,200B…実装電極
201A,201B,201C,201D…半田
23A,23B,24A,24B…ダミーパターン
210,211…凸部
300…電子部品
300A,300B…実装電極
451,452,453,454…ダミーパターン

Claims (7)

  1.  導体パターンが形成された熱可塑性樹脂基材を含む複数の熱可塑性樹脂基材を積層し、熱圧着して形成する多層基板の製造方法において、
     熱可塑性樹脂基材の主面に実装電極を形成する実装電極形成工程と、
     前記実装電極が形成された熱可塑性樹脂基材の主面が最外面となるように前記複数の熱可塑性樹脂基材を積層する積層工程と、
     積層した前記複数の熱可塑性樹脂基材に対して、前記最外面の前記実装電極が形成された部分に弾性部材を押し当てて熱圧着する熱圧着工程と、
     を備え、
     前記積層工程では、
     前記熱可塑性樹脂基材の熱圧着時の温度において前記熱可塑性樹脂基材よりも流動性の低い低流動性部材の積層方向における占有率について、積層方向に視て、前記実装電極に重なる領域の占有率が、前記実装電極に重なる領域を囲む領域の占有率より低くなるよう、前記複数の熱可塑性樹脂基材を積層する、
     多層基板の製造方法。
  2.  前記低流動性部材は前記導体パターンを含む、
     請求項1に記載の多層基板の製造方法。
  3.  前記積層工程では、
     積層方向に視て前記実装電極に重なる領域における前記導体パターンの積層数が、前記実装電極に重なる領域を囲む領域より少なくなるよう、前記複数の熱可塑性樹脂基材を積層する、
     請求項2に記載の多層基板の製造方法。
  4.  前記熱可塑性樹脂基材に形成された導体パターンは、積層方向を巻回軸とするコイルを構成しており、
     前記積層工程では、
     積層方向に視て前記コイルの内側領域に前記実装電極が配置されるよう、前記複数の熱可塑性樹脂基材を積層する、
     請求項3に記載の多層基板の製造方法。
  5.  前記実装電極形成工程では、異なる熱可塑性樹脂基材それぞれの主面に実装電極を形成し、
     前記積層工程では、前記異なる熱可塑性樹脂基材の主面が互いに反対側の最外面となるように前記熱可塑性樹脂基材を積層し、
     前記熱圧着工程は、
     前記実装電極が形成された両側の前記最外面に弾性部材を押し当てて熱圧着する、
     請求項1から4の何れかに記載の多層基板の製造方法。
  6.  導体パターンが形成された熱可塑性樹脂基材を含む複数の熱可塑性樹脂基材を積層し、熱圧着して形成する多層基板において、
     複数の熱可塑性樹脂基材が積層された積層体と、
     前記積層体の主面に形成された実装電極と、
     を備え、
     前記積層体は、
     前記実装電極が形成された部分に積層方向において内側に凹んだ凹部を有しており、かつ、前記熱可塑性樹脂基材の熱圧着時の温度において前記熱可塑性樹脂基材よりも流動性の低い低流動性部材の積層方向における占有率について、積層方向に視て、前記実装電極に重なる領域が、前記実装電極に重なる領域を囲む領域の占有率より低くなるように前記低流動性部材が配置されている、
     多層基板。
  7.  電極が形成された凸部を有する回路基板に対して、前記積層体の前記凹部が前記回路基板の前記凸部に嵌合するように配置され、前記実装電極が半田により前記回路基板の前記電極に接続される、請求項6に記載の多層基板。
PCT/JP2015/054939 2014-02-26 2015-02-23 多層基板の製造方法、及び多層基板 WO2015129600A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001519.4A CN105474762B (zh) 2014-02-26 2015-02-23 多层基板的制造方法及多层基板
JP2015555308A JP5880802B1 (ja) 2014-02-26 2015-02-23 多層基板の製造方法、及び多層基板
US15/046,696 US10051730B2 (en) 2014-02-26 2016-02-18 Multilayer substrate manufacturing method and multilayer substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-035526 2014-02-26
JP2014035526 2014-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/046,696 Continuation US10051730B2 (en) 2014-02-26 2016-02-18 Multilayer substrate manufacturing method and multilayer substrate

Publications (1)

Publication Number Publication Date
WO2015129600A1 true WO2015129600A1 (ja) 2015-09-03

Family

ID=54008920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054939 WO2015129600A1 (ja) 2014-02-26 2015-02-23 多層基板の製造方法、及び多層基板

Country Status (4)

Country Link
US (1) US10051730B2 (ja)
JP (1) JP5880802B1 (ja)
CN (1) CN105474762B (ja)
WO (1) WO2015129600A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135034A1 (ja) * 2016-02-04 2017-08-10 株式会社村田製作所 樹脂多層基板
JP2017199822A (ja) * 2016-04-28 2017-11-02 株式会社村田製作所 多層基板
JPWO2017026208A1 (ja) * 2015-08-10 2017-12-14 株式会社村田製作所 樹脂多層基板およびその製造方法
WO2018174133A1 (ja) * 2017-03-24 2018-09-27 株式会社村田製作所 多層基板、アクチュエータおよび多層基板の製造方法
JPWO2017199747A1 (ja) * 2016-05-19 2019-03-22 株式会社村田製作所 多層基板及び多層基板の製造方法
WO2023084943A1 (ja) * 2021-11-11 2023-05-19 株式会社村田製作所 電子部品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520801B2 (ja) * 2016-04-19 2019-05-29 株式会社村田製作所 電子部品
JP6512161B2 (ja) * 2016-04-21 2019-05-15 株式会社村田製作所 電子部品
CN110876012B (zh) * 2018-08-31 2021-06-15 恒劲科技股份有限公司 具有能量转换功能的集积化驱动模块及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187293A (ja) * 1989-12-15 1991-08-15 Hitachi Chem Co Ltd 銅張り積層板の製造方法
WO2010113539A1 (ja) * 2009-04-02 2010-10-07 株式会社村田製作所 回路基板
JP2012114153A (ja) * 2010-11-22 2012-06-14 Nippon Mektron Ltd 多層プリント配線板の製造方法
JP2012129364A (ja) * 2010-12-15 2012-07-05 Murata Mfg Co Ltd コイル内蔵基板
WO2012121141A1 (ja) * 2011-03-07 2012-09-13 株式会社村田製作所 セラミック多層基板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949654A (en) * 1996-07-03 1999-09-07 Kabushiki Kaisha Toshiba Multi-chip module, an electronic device, and production method thereof
CN100426491C (zh) * 1997-10-17 2008-10-15 揖斐电株式会社 封装基板
JP4973202B2 (ja) 2007-01-11 2012-07-11 株式会社デンソー 多層回路基板の製造方法
JP5150518B2 (ja) * 2008-03-25 2013-02-20 パナソニック株式会社 半導体装置および多層配線基板ならびにそれらの製造方法
JP5566771B2 (ja) * 2010-05-18 2014-08-06 日本特殊陶業株式会社 多層配線基板
CN103141164B (zh) * 2010-10-08 2016-06-08 株式会社村田制作所 元器件内置基板及其制造方法
JP5146627B2 (ja) * 2011-02-15 2013-02-20 株式会社村田製作所 多層配線基板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187293A (ja) * 1989-12-15 1991-08-15 Hitachi Chem Co Ltd 銅張り積層板の製造方法
WO2010113539A1 (ja) * 2009-04-02 2010-10-07 株式会社村田製作所 回路基板
JP2012114153A (ja) * 2010-11-22 2012-06-14 Nippon Mektron Ltd 多層プリント配線板の製造方法
JP2012129364A (ja) * 2010-12-15 2012-07-05 Murata Mfg Co Ltd コイル内蔵基板
WO2012121141A1 (ja) * 2011-03-07 2012-09-13 株式会社村田製作所 セラミック多層基板およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017026208A1 (ja) * 2015-08-10 2017-12-14 株式会社村田製作所 樹脂多層基板およびその製造方法
WO2017135034A1 (ja) * 2016-02-04 2017-08-10 株式会社村田製作所 樹脂多層基板
JP2017199822A (ja) * 2016-04-28 2017-11-02 株式会社村田製作所 多層基板
JPWO2017199747A1 (ja) * 2016-05-19 2019-03-22 株式会社村田製作所 多層基板及び多層基板の製造方法
WO2018174133A1 (ja) * 2017-03-24 2018-09-27 株式会社村田製作所 多層基板、アクチュエータおよび多層基板の製造方法
JPWO2018174133A1 (ja) * 2017-03-24 2019-11-07 株式会社村田製作所 アクチュエータ
US11309113B2 (en) 2017-03-24 2022-04-19 Murata Manufacturing Co., Ltd Multilayer substrate, actuator, and method of manufacturing multilayer substrate
WO2023084943A1 (ja) * 2021-11-11 2023-05-19 株式会社村田製作所 電子部品

Also Published As

Publication number Publication date
JP5880802B1 (ja) 2016-03-09
US20160165720A1 (en) 2016-06-09
US10051730B2 (en) 2018-08-14
CN105474762A (zh) 2016-04-06
CN105474762B (zh) 2018-05-11
JPWO2015129600A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5880802B1 (ja) 多層基板の製造方法、及び多層基板
US9460841B2 (en) Integrated inductor device with high inductance in a radiofrequency identification system
WO2011040393A1 (ja) 回路基板及びその製造方法
JP5970716B2 (ja) 電子部品及びその製造方法
JP5610105B1 (ja) 電子部品内蔵モジュール
US10477704B2 (en) Multilayer board and electronic device
CN213124101U (zh) 多层基板以及多层基板的安装构造
JP5765507B1 (ja) インダクタ素子及び電子機器
JPWO2019069637A1 (ja) インターポーザおよび電子機器
WO2015005029A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
US20160007450A1 (en) Method for Producing a Printed Circuit Board with MultiLayer Sub-Areas in Sections
JP6687081B2 (ja) 樹脂多層基板
JP5715237B2 (ja) フレキシブル多層基板
WO2014125894A1 (ja) 積層回路基板
WO2017065028A1 (ja) 樹脂基板、部品実装樹脂基板、および、部品実装樹脂基板の製造方法
WO2021025025A1 (ja) 樹脂多層基板および樹脂多層基板の製造方法
US10188000B2 (en) Component mounting board
JP6699805B2 (ja) インダクタブリッジおよび電子機器
JP2019091897A (ja) 部品実装樹脂基板
CN217405406U (zh) 多层基板
CN219204859U (zh) 多层基板
CN111599569B (zh) 线圈部件
CN114258200B (zh) 具有内埋元件的软硬结合线路板的制作方法
JP6969533B2 (ja) 多層基板および電子機器
WO2020203724A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001519.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754431

Country of ref document: EP

Kind code of ref document: A1