WO2014125894A1 - 積層回路基板 - Google Patents

積層回路基板 Download PDF

Info

Publication number
WO2014125894A1
WO2014125894A1 PCT/JP2014/051455 JP2014051455W WO2014125894A1 WO 2014125894 A1 WO2014125894 A1 WO 2014125894A1 JP 2014051455 W JP2014051455 W JP 2014051455W WO 2014125894 A1 WO2014125894 A1 WO 2014125894A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
circuit board
conductor patterns
conductor pattern
conductor
Prior art date
Application number
PCT/JP2014/051455
Other languages
English (en)
French (fr)
Inventor
用水邦明
小澤真大
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490000434.5U priority Critical patent/CN204994111U/zh
Priority to JP2015500170A priority patent/JP6004078B2/ja
Publication of WO2014125894A1 publication Critical patent/WO2014125894A1/ja
Priority to US14/748,623 priority patent/US9980383B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09527Inverse blind vias, i.e. bottoms outwards in multilayer PCB; Blind vias in centre of PCB having opposed bottoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09672Superposed layout, i.e. in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/097Alternating conductors, e.g. alternating different shaped pads, twisted pairs; Alternating components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets

Definitions

  • the present invention relates to a laminated circuit board configured by laminating a plurality of thermoplastic resin layers.
  • Patent Document 1 discloses a laminated circuit board mounted on a communication device such as a smartphone or a mobile phone.
  • the laminated circuit board of Patent Document 1 is manufactured as follows. First, the metal film is etched on a sheet having a metal film attached to one side. Thereby, the conductor pattern of the capacitor and the conductor pattern of the coil are formed.
  • the sheet is made of a thermoplastic resin. And a some sheet
  • the multilayer circuit board which equips an inside with a capacitor
  • thermoplastic resin softens and flows due to heat and pressure during thermocompression bonding. Therefore, in the laminated circuit board of Patent Document 1, the thermoplastic resin between the conductor patterns constituting the capacitor and coil flows in a large amount to the outside between the conductor patterns during thermocompression bonding, and the conductors facing each other with the thermoplastic resin layer interposed therebetween. The distance between patterns may be displaced.
  • an object of the present invention is to provide a laminated circuit board capable of suppressing changes in element values even when a laminated circuit board is manufactured by laminating a thermoplastic resin layer and thermocompression bonding.
  • the laminated circuit board of the present invention has the following configuration in order to solve the above problems.
  • the first and second conductor patterns constitute capacitors and coils, for example.
  • the resin flow between the first and second conductor patterns is the first main surface and the second main surface. Blocked by the main face. Therefore, at the time of this thermocompression bonding, the resin between the first and second conductor patterns does not flow so much to the outside between the first and second conductor patterns.
  • the capacitance between the first and second conductor patterns does not easily change.
  • the stray capacitance or the line-to-line capacitance between the conductor patterns does not easily change.
  • the surface roughness of the first main surface is larger than the surface roughness of the third main surface on the side opposite to the second conductor pattern in the first conductor pattern.
  • the flow amount of the resin near the first main surface is smaller than the flow amount of the resin near the third main surface. Therefore, at the time of thermocompression bonding, the flow amount of the resin in the vicinity of the first main surface is further reduced, and the first conductor pattern can be further suppressed from approaching the second conductor pattern. That is, it can be further suppressed that the distance between the first and second conductor patterns changes and the element value changes.
  • the surface roughness of the second main surface is larger than the surface roughness of the fourth main surface on the opposite side to the first conductor pattern in the second conductor pattern.
  • the flow amount of the resin near the second main surface is smaller than the flow amount of the resin near the fourth main surface. Therefore, at the time of thermocompression bonding, the flow amount of the resin near the second main surface is further reduced, and the second conductor pattern can be further suppressed from approaching the first conductor pattern. That is, it can be further suppressed that the distance between the first and second conductor patterns changes and the element value changes.
  • each of the first and second conductor patterns is obtained by patterning a metal film provided on the surface of the thermoplastic resin layer.
  • the surface roughness of the first main surface is substantially the same as the surface roughness of the second main surface.
  • the flow amount of the resin near the first main surface and the flow amount of the resin near the second main surface are the same. Therefore, at the time of thermocompression bonding, it can be suppressed that one of the first and second conductor patterns approaches the other. That is, it can be further suppressed that the distance between the first and second conductor patterns changes and the element value changes.
  • the area of the first main surface is substantially the same as the area of the second main surface.
  • thermocompression bonding since the areas of the first and second main surfaces are the same, the non-opposing regions cannot be formed. Therefore, at the time of thermocompression bonding, it can suppress that the said area
  • the first and second conductor patterns constitute capacitors, for example.
  • a via-hole conductor is formed around the first and second conductor patterns in the thermoplastic resin layer.
  • thermocompression bonding when a thermoplastic resin layer is laminated and thermocompression bonded, the resin flow between the first and second conductor patterns is hindered by the via-hole conductor. Therefore, at the time of thermocompression bonding, it can be suppressed that one of the first and second conductor patterns approaches the other. That is, it can be further suppressed that the distance between the first and second conductor patterns changes and the element value changes.
  • the first and second conductor patterns constitute a capacitor.
  • the first and second conductor patterns constitute an inductor.
  • the first conductor pattern constitutes an inductor
  • the second conductor pattern constitutes a ground
  • FIG. 1 is an external view of a multilayer circuit board 101 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is sectional drawing which shows the manufacturing method of the laminated circuit board 101 shown in FIG. It is sectional drawing which shows the manufacturing method of the laminated circuit board 101 shown in FIG.
  • FIG. 5A is an enlarged cross-sectional view of a portion that becomes the capacitor C1 shown in FIG.
  • FIG. 5B is an enlarged cross-sectional view showing a state in which a portion to be the capacitor C1 is thermocompression bonded. It is sectional drawing which shows the manufacturing method of the laminated circuit board 201 which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is an external view of a multilayer circuit board 101 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is sectional drawing which shows the manufacturing method of the laminated circuit
  • FIG. 7A is an enlarged cross-sectional view of a portion that becomes the capacitor C2 shown in FIG.
  • FIG. 7B is an enlarged cross-sectional view showing a state in which a portion to be the capacitor C2 is thermocompression bonded.
  • FIG. 8A is an enlarged cross-sectional view of a portion that becomes a capacitor C3 according to a modification of the capacitor C2 shown in FIG.
  • FIG. 8B is an enlarged cross-sectional view showing a state in which a portion to be the capacitor C3 is thermocompression bonded.
  • It is sectional drawing which shows the manufacturing method of the multilayer circuit board 301 which concerns on 3rd Embodiment of this invention. It is a front view of the principal part of the sheet
  • FIG. 12A is an enlarged cross-sectional view of a portion that becomes the capacitor C1 shown in FIG.
  • FIG. 12B is an enlarged cross-sectional view showing a state where a portion to be the capacitor C1 shown in FIG. 9 is thermocompression bonded.
  • FIG. 14A is an enlarged cross-sectional view of a portion that becomes the coil L2 shown in FIG.
  • FIG. 14B is an enlarged cross-sectional view showing a state in which a portion to be the coil L2 is thermocompression bonded.
  • FIG. 16A is an enlarged cross-sectional view of a portion that becomes the coil L3 shown in FIG.
  • FIG. 16B is an enlarged cross-sectional view showing a state in which a portion to be the coil L3 is thermocompression bonded.
  • FIG. 18A is an enlarged cross-sectional view of a portion that becomes the coil L4 shown in FIG.
  • FIG. 18B is an enlarged cross-sectional view showing a state where the portion to be the coil L4 is thermocompression bonded.
  • FIG. 1 is an external view of the multilayer circuit board 101 according to the first embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line PP in FIG.
  • the surface mounted on the multilayer circuit board 101 is referred to as a main surface Z1.
  • the surface opposite to the main surface Z1 of the multilayer circuit board 101 is referred to as a main surface Z2.
  • the laminated circuit board 101 includes a capacitor C1, a coil L1, mounting lands 121, 122, 131, 132, and 133, and external connection terminals 31A and 31B.
  • the laminated circuit board 101 has a surface mount type configuration.
  • the laminated circuit board 101 is a laminated body formed by laminating a plurality of thermoplastic resin sheets 11 to 15 on which conductor patterns are formed. Each of the sheets 11 to 15 has a predetermined dielectric constant.
  • the capacitor C1 includes a planar first conductor pattern 32A and a planar second conductor pattern 33A.
  • the coil L1 includes linear conductor patterns 33B, 33C, 33D, 33E, 34A, 34B, 34C, 34D and a via-hole conductor 44.
  • the conductor patterns 33B, 33C, 33D, 33E, 34A, 34B, 34C, and 34D are provided so as to overlap in a loop shape when viewed from the stacking direction of the stacked circuit board 101.
  • the conductor pattern 33C of the coil L1 is connected to the conductor pattern 32B via the via-hole conductors 43 and 42.
  • External connection terminals 31A and 31B are formed on the main surface Z1 of the laminated circuit board 101.
  • the external connection terminals 31A and 31B are connected to electrodes such as a printed wiring board (not shown).
  • the mounting lands 121, 122, 131, 132, 133 are formed on the main surface Z2 of the laminated circuit board 101.
  • the mounting component 120 is mounted on the mounting lands 121 and 122.
  • the mounting component 130 is mounted on the mounting lands 131, 132, and 133.
  • mounting lands 131, 132, and 133 are illustrated as mounting lands, a larger number of mounting lands may be arranged on the main surface Z2.
  • FIG. 3 and 4 are cross-sectional views showing a method for manufacturing the laminated circuit board 101 shown in FIG.
  • FIG. 5A is an enlarged cross-sectional view of a portion that becomes the capacitor C1 shown in FIG.
  • FIG. 5B is an enlarged cross-sectional view illustrating a state in which a portion to be the capacitor C1 illustrated in FIG.
  • the multilayer circuit board 101 is manufactured by providing a portion to be a large number of multilayer circuit boards 101 on the sheet, forming a plurality of multilayer circuit boards 101 at a time, and then cutting out each of the multilayer circuit boards 101.
  • sheets 11 to 15 are prepared.
  • the outer shape of each of the sheets 11 to 15 when viewed from the front in the stacking direction is rectangular.
  • the sheet 11 includes a thermoplastic resin layer 21 and a metal film 31.
  • the metal film 31 is affixed to the main surface of the thermoplastic resin layer 21 on the main surface Z1 side.
  • the sheet 12 includes a thermoplastic resin layer 22 and a metal film 32.
  • the metal film 32 is affixed to the main surface of the thermoplastic resin layer 22 on the main surface Z1 side.
  • the sheet 13 includes a thermoplastic resin layer 23 and a metal film 33.
  • the metal film 33 is attached to the main surface of the thermoplastic resin layer 23 on the main surface Z2 side.
  • the sheet 14 includes a thermoplastic resin layer 24 and a metal film 34.
  • the metal film 34 is affixed to the main surface of the thermoplastic resin layer 24 on the main surface Z2 side.
  • the sheet 15 includes a thermoplastic resin layer 25 and a metal film 35.
  • the metal film 35 is affixed to the main surface of the thermoplastic resin layer 25 on the main surface Z2 side.
  • the metal film is fixed by the anchor effect. That is, of the two main surfaces of the metal film, the surface fixed to the sheet is a roughened surface (mat surface), and the opposite surface is a glossy surface (shiny surface).
  • the material of the thermoplastic resin layers 21 to 25 is, for example, a liquid crystal polymer.
  • the material of the metal films 31 to 35 is, for example, copper which is a metal foil.
  • a heat-resistant and flexible thermoplastic resin such as thermoplastic polyimide can be used.
  • metal films 31 to 35 metal foil such as silver can be used in addition to copper.
  • the sheet 12 is a sheet in which the main surface on the main surface Z2 side of the metal film 32 is subjected to a roughening process in advance.
  • the main surface on the main surface Z2 side in the metal film 32 is a surface including a first main surface 91 described later.
  • the sheet 13 is a sheet in which the main surface on the main surface Z1 side of the metal film 33 is subjected to a roughening process in advance.
  • the main surface on the main surface Z1 side in the metal film 33 is a surface including a second main surface 92 described later.
  • the metal films 31 to 35 of the sheets 11 to 15 are patterned by etching or the like.
  • 33C, 33D, 33E, 34A, 34B, 34C, and 34D are formed.
  • wiring conductors for connecting these conductor patterns 32A, 33A, 33B, 33C, 33D, 33E, 34A, 34B, 34C, and 34D are formed at the same time.
  • the area of the first main surface 91 facing the second conductor pattern 33A in the first conductor pattern 32A is the same as the area of the second main surface 92 facing the first conductor pattern 32A in the second conductor pattern 33A or It is substantially the same.
  • the metal films 32 to 34 do not penetrate the thermoplastic resin layers 22 to 24 of the sheets 12 to 14 by laser or the like, but the thermoplastic resin layers 22 to 24 have through holes that penetrate.
  • the through hole is filled with a conductive material such as a conductive paste mainly composed of silver and tin.
  • the sheets 11 to 15 are laminated, and are pressure-bonded while being heated at a temperature of, for example, 300 ° C. using a jig 90 such as a press plate from the vertical direction of the lamination direction.
  • a jig 90 such as a press plate from the vertical direction of the lamination direction.
  • the sheets 11 to 15 are softened and flown and integrated, and the conductive paste filled in the through holes is metalized (sintered).
  • the laminated circuit board 101 including the capacitor C1 and the coil L1 therein is manufactured.
  • the capacitor C1 includes a first conductor pattern 32A and a second conductor pattern 33A that are opposed to each other with the thermoplastic resin layers 22 and 23 therebetween.
  • the mounting components 120 and 130 are mounted on the mounting lands 121, 122, 131, 132, and 133 of the multilayer circuit board 101 (see FIGS. 1 and 2).
  • the laminated circuit board 101 is mounted on a printed wiring board (not shown), and the external connection terminals 31A and 31B are connected to the electrodes of the printed wiring board.
  • thermoplastic resins of the sheets 11 to 15 are softened and flowed by heat and pressure during thermocompression bonding, and are integrated without using an adhesive layer such as a bonding sheet or prepreg. Therefore, also in the laminated circuit board 101, the thermoplastic resin between the first conductor pattern 32A and the second conductor pattern 33A constituting the capacitor C1 is moved outside between the first conductor pattern 32A and the second conductor pattern 33A during thermocompression bonding. To flow.
  • the first main surface 91 facing the second conductor pattern 33A in the first conductor pattern 32A is roughened (see FIG. 5A).
  • the roughening process is also performed on the second main surface 92 of the second conductor pattern 33A facing the first conductor pattern 32A (see FIG. 5A).
  • the roughening process is, for example, etching.
  • the surface roughness of the first main surface 91 is larger than the surface roughness of the third main surface 93 opposite to the second conductor pattern 33A in the first conductor pattern 32A. Further, the surface roughness of the second main surface 92 is also larger than the surface roughness of the fourth main surface 94 on the opposite side of the first conductor pattern 32A in the second conductor pattern 33A.
  • the surface roughness of the first main surface 91 is, for example, about 1.3 to 15 ⁇ m, and is 2.7 ⁇ m in this embodiment.
  • the surface roughness of the first major surface 91 is the same as or substantially the same as the surface roughness of the second major surface 92.
  • the maximum height roughness [Rz] defined by [JIS B 0601-2001] is adopted.
  • the surface roughness of the third main surface 93 and the fourth main surface 94 is, for example, about 0.1 to 3 ⁇ m, and in the present embodiment is 1.5 ⁇ m.
  • the flow amount of resin near the 1st main surface 91 is smaller than the flow amount of resin near the 3rd main surface 93.
  • the surface roughness of the second main surface 92 is also larger than the surface roughness of the fourth main surface 94, the flow amount of the resin near the second main surface 92 is smaller than the flow amount of the resin near the fourth main surface 94.
  • the size of the arrow shown in FIG. 5B represents the amount of resin flow.
  • the flow rate of the resin near the third main surface 93 and the resin near the fourth main surface 94 is larger than the flow rate of the resin near the first main surface 91 and the resin near the second main surface 92, the first main surface The resin near 91 and the resin near the second main surface 92 are less likely to flow to the outside between the first and second conductor patterns 32A and 33A.
  • the capacitance between the first and second conductor patterns 32A and 33A does not easily change. That is, when manufacturing the laminated circuit board 101 by thermocompression bonding, the designed distance G and capacitance between the first and second conductor patterns 32A and 33A can be realized almost accurately.
  • the element value (capacitance in this embodiment) of the capacitor C1 does not easily change even if the temperature and pressure applied between the first and second conductor patterns 32A and 33A change slightly during thermocompression bonding.
  • the laminated circuit board 101 even if the laminated circuit board 101 is manufactured by laminating the sheets 11 to 15 and thermocompression bonding, the change in the element value can be suppressed. Therefore, according to the laminated circuit board 101, it is possible to easily form the capacitor C1 having a highly accurate element value (capacitance in this embodiment) with little individual difference between element values.
  • the surface roughness of the first main surface 91 is the same as the surface roughness of the second main surface 92. Therefore, the flow amount of the resin near the first main surface 91 and the flow amount of the resin near the second main surface 92 are the same. Therefore, at the time of thermocompression bonding, it is possible to suppress the end portion of one of the first and second conductor patterns 32A and 33A from approaching the other conductor pattern from the central portion located inside the end portion. That is, it can be further suppressed that the distance between the first and second conductor patterns 32A and 33A changes and the element value changes.
  • the second main surface 92 when the area of the second main surface 92 is larger than the area of the first main surface 91, a region that does not face the first conductor pattern 32A is formed in the second conductor pattern.
  • the area of the first main surface 91 is larger than the area of the second main surface 92, a region that does not face the second conductor pattern 33A is formed in the first conductor pattern 32A.
  • the non-opposing region of any one of the first and second conductor patterns 32A and 33A is caused by the flow of the resin depending on the temperature and pressure applied between the first and second conductor patterns 32A and 33A during thermocompression bonding. It is also possible to displace to.
  • the laminated circuit board 101 since the areas of the first and second main surfaces 91 and 92 are the same as described above, the non-opposing regions cannot be formed. Therefore, at the time of thermocompression bonding, it is possible to suppress displacement of one of the first and second conductor patterns 32A and 33A to the other side due to the flow of resin. That is, it can be further suppressed that the distance G between the first and second conductor patterns 32A and 33A changes and the element value changes.
  • FIG. 6 is a cross-sectional view showing a method for manufacturing the laminated circuit board 201 according to the second embodiment of the present invention.
  • FIG. 7A is an enlarged cross-sectional view of a portion that becomes the capacitor C2 shown in FIG.
  • FIG. 7B is an enlarged cross-sectional view showing a state in which a portion to be the capacitor C2 is thermocompression bonded.
  • the multilayer circuit board 201 according to the second embodiment is different from the multilayer circuit board 101 according to the first embodiment in that a capacitor C2 and sheets 211, 212, and 214 are provided instead of the capacitor C1 and sheets 11 to 14. is there.
  • the sheet 212 is provided with a via-hole conductor 242 instead of the via-hole conductors 42 and 43 of the sheets 12 and 13. Since the configuration of the other laminated circuit board 201 is the same as that of the laminated circuit board 101, description thereof is omitted. Since the manufacturing method of the laminated circuit board 201 is also the same as the manufacturing method of the laminated circuit board 101, description thereof is omitted.
  • the first main surface 91 facing the second conductor pattern 233A in the first conductor pattern 232A is roughened (see FIG. 7A).
  • the second main surface 92 facing the first conductor pattern 232A in the second conductor pattern 233A is also subjected to a roughening process (see FIG. 7A).
  • the third main surface 293 of the first conductor pattern 232A opposite to the second conductor pattern 233A is subjected to a roughening process (see FIG. 7A).
  • the fourth conductor surface 294 of the second conductor pattern 233A opposite to the first conductor pattern 232A is roughened (see FIG. 7A).
  • the surface roughness of the first main surface 91 is larger than the surface roughness of the third main surface 293 on the side opposite to the second conductor pattern 233A in the first conductor pattern 232A. Further, the surface roughness of the second main surface 92 is also larger than the surface roughness of the fourth main surface 294 on the opposite side of the first conductor pattern 232A in the second conductor pattern 233A.
  • the surface roughness of the first main surface 91 and the second main surface 92 is, for example, about 1.3 to 15 ⁇ m.
  • the surface roughness of the third main surface 293 and the fourth main surface 294 is a surface of about 0.1 to 3 ⁇ m, for example.
  • first main surface 91 and the second main surface 92 are also rough in the multilayer circuit board 201, when the sheets 211, 212, 214, and 15 are stacked and thermocompression bonded, the first and second conductor patterns 232A, The flow of the resin between 233A is blocked by the first main surface 91 and the second main surface 92. Therefore, at the time of this thermocompression bonding, the resin between the first and second conductor patterns 232A and 233A does not flow so much to the outside between the first and second conductor patterns 232A and 233A (see the arrow in FIG. 7B).
  • the flow amount of resin near the 1st main surface 91 is smaller than the flow amount of resin near the 3rd main surface 293.
  • the surface roughness of the second main surface 92 is also larger than the surface roughness of the fourth main surface 294, the flow amount of the resin near the second main surface 92 is smaller than the flow amount of the resin near the fourth main surface 294.
  • the size of the arrow shown in FIG. 7B represents the amount of resin flow.
  • the flow rate of the resin near the third main surface 293 is the resin near the third main surface 93. Is less than the flow rate.
  • the surface roughness of the fourth main surface 294 is also larger than the surface roughness of the fourth main surface 94 shown in FIG. 5, the flow rate of the resin near the fourth main surface 294 is that of the resin near the fourth main surface 94. Smaller than flow rate.
  • the first main surface The resin in the vicinity of 291 and the resin in the vicinity of the second main surface 292 are less likely to flow to the outside between the first and second conductor patterns 232A and 233A.
  • the distance G between the first and second conductor patterns 232A and 233A constituting the capacitor C2 can be suppressed, the distance between the first and second conductor patterns 232A and 233A is suppressed.
  • the capacity does not change easily. That is, when the laminated circuit board 201 is manufactured by thermocompression bonding, the designed distance G and capacitance between the first and second conductor patterns 232A and 233A can be realized almost accurately.
  • the laminated circuit board 201 the same effects as the laminated circuit board 101 can be obtained.
  • the area of the first main surface 91 is the same as the area of the second main surface 92, but is not limited thereto.
  • a conductor pattern 282 ⁇ / b> A having an area of the first main surface 91 smaller than that of the second main surface 92 may be formed on the sheet 211.
  • FIG. 9 is a cross-sectional view showing a method of manufacturing the multilayer circuit board 301 according to the third embodiment of the present invention.
  • FIG. 10 is a front view of the sheet 13 in which only the main part of the sheet 13 shown in FIG. 9 is viewed from the main surface Z2 side.
  • FIG. 11 is a front view of the sheet 12 when only the main part of the sheet 12 shown in FIG. 9 is viewed from the main surface Z1 side.
  • FIG. 12A is an enlarged cross-sectional view of a portion that becomes the capacitor C1 shown in FIG.
  • FIG. 12B is an enlarged cross-sectional view showing a state where a portion to be the capacitor C1 shown in FIG. 9 is thermocompression bonded.
  • the multilayer circuit board 301 according to the third embodiment is different from the multilayer circuit board 101 according to the first embodiment in that via-hole conductors 342A to 342J, 343A to 343J and a conductor pattern 332A are disposed around the capacitor C1 in the sheets 12 and 13. 332J, 333A to 333J. Since the other configuration of the multilayer circuit board 301 is the same as that of the multilayer circuit board 101, the description thereof is omitted. Further, the manufacturing method of the laminated circuit board 301 is also the same as the manufacturing method of the laminated circuit board 101, and thus the description thereof is omitted.
  • the resin flow between the first and second conductor patterns 32A and 33B is hindered by the via-hole conductors 342A to 342J and 343A to 343J. Therefore, at the time of thermocompression bonding, it can be suppressed that one of the first and second conductor patterns 32A and 33B approaches the other. That is, it can be further suppressed that the distance between the first and second conductor patterns 32A and 33B changes and the element value changes.
  • FIG. 13 is a cross-sectional view showing a method for manufacturing a laminated circuit board 401 according to the fourth embodiment of the present invention.
  • FIG. 14A is an enlarged cross-sectional view of a portion that becomes the coil L2 shown in FIG.
  • FIG. 14B is an enlarged cross-sectional view showing a state in which a portion to be the coil L2 is thermocompression bonded.
  • the laminated circuit board 401 according to the fourth embodiment is different from the laminated circuit board 101 according to the first embodiment in that a coil L2 and sheets 412 to 414 are provided instead of the coil L1 and sheets 12 to 14.
  • the sheet 412 is provided with a via-hole conductor 442 instead of the via-hole conductors 42 and 43 of the sheets 12 and 13. Since the other configuration of the laminated circuit board 401 is the same as that of the laminated circuit board 101, the description thereof is omitted. Further, the manufacturing method of the laminated circuit board 401 is also the same as the manufacturing method of the laminated circuit board 101, and thus the description thereof is omitted.
  • the coil L2 includes conductor patterns 34A, 34B, 33B, and 33C, via-hole conductors 442 to 444, and first and second conductor patterns 433D, 433E, 434C, and 434D.
  • the first main surfaces 491A and 491B facing the second conductor patterns 434C and 434D in the first conductor patterns 433D and 433E are roughened (see FIG. 14A). ).
  • the second conductor surfaces 492A and 492B facing the first conductor patterns 433D and 433E in the second conductor patterns 434C and 434D are also roughened (FIG. 14A). reference).
  • the surface roughness of the first main surfaces 491A and 491B is greater than the surface roughness of the third main surfaces 493A and 493B on the opposite side of the second conductor patterns 434C and 434D in the first conductor patterns 433D and 433E. It is getting bigger. Further, the surface roughness of the second main surfaces 492A and 492B is also larger than the surface roughness of the fourth main surfaces 494A and 494B on the opposite side of the first conductor patterns 433D and 433E in the second conductor patterns 434C and 434D.
  • first main surface 491A and the second main surface 492A are also rough in the laminated circuit board 401, when the sheets 11, 412 to 414, 15 are laminated and thermocompression bonded, the first and second conductor patterns 433D, The flow of resin between 434C is hindered by the first main surface 491A and the second main surface 492A.
  • first main surface 491B and the second main surface 492B are rough, the resin flow between the first and second conductor patterns 433E and 434D when the sheets 11, 412 to 414 and 15 are laminated and thermocompression bonded. Is blocked by the first main surface 491B and the second main surface 492B.
  • the flow volume of resin of 1st main surface 491A, 491B vicinity is 3rd main surface 493A, 493B. Smaller than the flow rate of nearby resin.
  • the surface roughness of the second main surfaces 492A and 492B is also larger than the surface roughness of the fourth main surfaces 494A and 494B, the amount of resin flow around the second main surfaces 492A and 492B is around the fourth main surfaces 494A and 494B. Less than the amount of resin flow.
  • the size of the arrow shown in FIG. 14B represents the amount of resin flow.
  • the flow rates of the resin near the third main surfaces 493A and 493B and the resin near the fourth main surfaces 494A and 494B are the flow rates of the resin near the first main surfaces 491A and 491B and the resins near the second main surfaces 492A and 492B. Therefore, the resin in the vicinity of the first main surfaces 491A and 491B and the resin in the vicinity of the second main surfaces 492A and 492B are less likely to flow to the outside between the first and second conductor patterns 433D, 433E, 434C, and 434D.
  • the laminated circuit board 401 it is possible to suppress a change in the distance G between the first and second conductor patterns 433D, 433E, 434C, and 434D constituting the coil L2, and thus the first and second conductor patterns 433D,
  • the line capacitance between 433E, 434C, and 434D does not change easily. That is, when the laminated circuit board 401 is manufactured by thermocompression bonding, the designed distance G and line capacitance between the first and second conductor patterns 433D, 433E, 434C, and 434D can be realized almost accurately.
  • the element value (inductance in this embodiment) of the coil L2 does not easily change.
  • the laminated circuit board 401 the same effects as the laminated circuit board 101 can be obtained.
  • FIG. 15 is an external perspective view of the first conductor pattern 32B and the coil L3 included in the multilayer circuit board 501 according to the fifth embodiment of the present invention.
  • FIG. 16A is an enlarged cross-sectional view of a portion that becomes the coil L3 shown in FIG.
  • FIG. 16B is an enlarged cross-sectional view showing a state in which a portion to be the coil L3 is thermocompression bonded.
  • 16A and 16B are cross-sectional views taken along line TT shown in FIG.
  • the laminated circuit board 501 according to the fifth embodiment is different from the laminated circuit board 101 according to the first embodiment in that a coil L3 and a sheet 514 are provided instead of the coil L1 and the sheets 13 and 14. Since the other configuration of the multilayer circuit board 501 is the same as that of the multilayer circuit board 101, the description thereof is omitted. Further, the manufacturing method of the laminated circuit board 501 is the same as the manufacturing method of the laminated circuit board 101, and thus the description thereof is omitted.
  • the coil L3 is composed of second conductor patterns 533A to 533D.
  • the first main surface 591 of the first conductor pattern 32B facing the second conductor patterns 533A to 533D is roughened (see FIG. 16A).
  • the second main surfaces 592A to 592D facing the first conductor pattern 32B in the second conductor patterns 533A to 533D are also roughened (see FIG. 16A). .
  • the surface roughness of the first main surface 591 is larger than the surface roughness of the third main surface 593 on the opposite side of the first conductor pattern 32B from the second conductor patterns 533A to 533D. Further, the surface roughness of the second main surfaces 592A to 592D is larger than the surface roughness of the fourth main surfaces 594A to 594D on the opposite side of the first conductor pattern 32B in the second conductor patterns 533A to 533D.
  • first main surface 591 and the second main surfaces 592A to 592D are also rough in the laminated circuit board 501, when the sheets 11 to 13 and 514 are stacked and thermocompression bonded, the first and second conductor patterns 32B, The flow of the resin between 533A to 533D is hindered by the first main surface 591 and the second main surfaces 592A to 592D.
  • the resin between the first and second conductor patterns 32B, 533A to 533D does not flow so much to the outside between the first and second conductor patterns 32B, 533A to 533D (see FIG. 16B). See arrow).
  • the flow amount of the resin near the first main surface 591 is smaller than the flow amount of the resin near the third main surface 593.
  • the surface roughness of the second main surfaces 592A to 592D is also larger than the surface roughness of the fourth main surfaces 594A to 594D, the amount of resin flow around the second main surfaces 592A to 592D is around the fourth main surfaces 594A to 594D. Less than the amount of resin flow.
  • the size of the arrow shown in FIG. 16B represents the amount of resin flow.
  • the stray capacitance between the first and second conductor patterns 32B and 533A does not easily change.
  • the distance G2 between 2nd conductor patterns 533A and 533B changes, the line capacity between 2nd conductor patterns 533A and 533B does not change easily.
  • the second conductor patterns 533B to 533D constituting the coil L3 are the same as the second conductor pattern 533A. That is, when the laminated circuit board 501 is manufactured by thermocompression bonding, the designed distances G1 and G2, the stray capacitance, and the line capacitance can be realized almost accurately.
  • the laminated circuit board 501 substantially the same effect as the laminated circuit board 101 is obtained. Therefore, according to the laminated circuit board 501, it is possible to easily form the coil L3 having a highly accurate element value (inductance in this embodiment) with little individual difference in element values.
  • FIG. 17 is an external perspective view of the first conductor pattern 32B and the coil L4 included in the multilayer circuit board 601 according to the sixth embodiment of the present invention.
  • FIG. 18A is an enlarged cross-sectional view of a portion that becomes the coil L4 shown in FIG.
  • FIG. 18B is an enlarged cross-sectional view showing a state where the portion to be the coil L4 is thermocompression bonded.
  • 18A and 18B are cross-sectional views taken along line SS shown in FIG.
  • the difference between the multilayer circuit board 601 according to the sixth embodiment and the multilayer circuit board 101 according to the first embodiment is that a coil L4 is provided instead of the coil L1. Since the configuration of the other laminated circuit board 601 is the same as that of the laminated circuit board 101, the description thereof is omitted. Further, the manufacturing method of the laminated circuit board 601 is also the same as the manufacturing method of the laminated circuit board 101, and thus the description thereof is omitted.
  • the coil L4 includes conductor patterns 635A to 635G and second conductor patterns 633A to 633G.
  • the conductor patterns 635A to 635G are formed on the sheet 15.
  • the second conductor patterns 633A to 633G are formed on the sheet 13.
  • the first conductor pattern 32B forms a ground, for example.
  • the first conductor pattern 32B is a conductor pattern having a larger area than the total area of the second conductor patterns 633A to 633G.
  • the first main surface 591 of the first conductor pattern 32B facing the second conductor patterns 633A to 633G is roughened (see FIG. 18A).
  • the second main surfaces 692A to 692G facing the first conductor pattern 32B in the second conductor patterns 633A to 633G are also roughened (see FIG. 18A). .
  • the capacitance of the second conductor patterns 633A to 633G and the first conductor pattern 32B is greater than the capacitance of the second conductor patterns 633A to 633G and the conductor patterns 635A to 635G.
  • the influence on the value (inductance in this embodiment) is large.
  • the first main surface 591 that faces the second conductor patterns 633A to 633G in the first conductor pattern 32B, and the second main surface that faces the first conductor pattern 32B in the second conductor patterns 633A to 633G. 692A to 692G are roughened.
  • the surface roughness of the first main surface 591 is larger than the surface roughness of the third main surface 593 on the opposite side of the first conductor pattern 32B from the second conductor patterns 633A to 633G. Further, the surface roughness of the second main surfaces 692A to 692G is larger than the surface roughness of the fourth main surfaces 694A to 694G on the opposite side of the first conductor pattern 32B in the second conductor patterns 633A to 633G.
  • first main surface 591 and the second main surfaces 692A to 692G are also rough in the laminated circuit board 601, when the sheets 11 to 15 are stacked and thermocompression bonded, the first and second conductor patterns 32B and 633A to The flow of the resin between 633G is hindered by the first main surface 591 and the second main surfaces 692A to 692G.
  • the resin between the first and second conductor patterns 32B and 633A to 633G does not flow so much to the outside between the first and second conductor patterns 32B and 633A to 633G (see FIG. 18B). See arrow).
  • the flow amount of the resin near the first main surface 591 is smaller than the flow amount of the resin near the third main surface 593.
  • the surface roughness of the second main surfaces 692A to 692G is also larger than the surface roughness of the fourth main surfaces 694A to 694G, the flow rate of the resin near the second main surfaces 692A to 692G is around the fourth main surfaces 694A to 694G. Less than the amount of resin flow.
  • the size of the arrow shown in FIG. 18B represents the amount of resin flow.
  • the stray capacitance between the first and second conductor patterns 32B and 633A does not easily change.
  • the change in the distance G2 between the second conductor patterns 633A and 633B can be suppressed, the line capacitance between the second conductor patterns 633A and 633B does not easily change.
  • the other second conductor patterns 633B to 633G constituting the coil L4 are the same as the second conductor pattern 633A. That is, when the laminated circuit board 601 is manufactured by thermocompression bonding, the designed distances G1 and G2, the stray capacitance, and the line-to-line capacitance can be realized almost accurately.
  • the element value (inductance in this embodiment) of the coil L4 does not easily change even if the temperature and pressure applied between the first and second conductor patterns 32B and 633A to 633G slightly change during thermocompression bonding. Further, since the surface roughness of the inner side surface of the coil L4 (that is, the second conductor patterns facing each other through the sheet 14) is relatively small, a coil having a large Q value can be formed.
  • the laminated circuit board 601 there are almost the same effects as the laminated circuit board 101. Therefore, according to the laminated circuit board 601, it is possible to easily form the coil L4 having a highly accurate element value (inductance in this embodiment) with little individual difference in element values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 シート(11)~(15)を積層し、積層方向の上下方向から治具(90)を用いて加熱しながら圧着する。これにより、コンデンサ(C1)及びコイル(L1)を内部に備える積層回路基板(101)が製造される。このコンデンサ(C1)は、熱可塑性樹脂層(22)、(23)を挟んで互いに対向する第1導体パターン(32A)及び第2導体パターン(33A)によって構成されている。積層回路基板(101)では、第1導体パターン(32A)において第2導体パターン(33A)に対向する第1主面(91)と、第2導体パターン(33A)において第1導体パターン(32A)に対向する第2主面(92)とに、粗化処理が施されている。

Description

積層回路基板
 本発明は、複数の熱可塑性樹脂層を積層して構成される積層回路基板に関するものである。
 特許文献1には、スマートフォンや携帯電話などの通信機器に実装される積層回路基板が開示されている。
 特許文献1の積層回路基板は、次のように製造されている。まず、片面に金属膜が貼付されているシートに対して金属膜のエッチングを行う。これにより、コンデンサの導体パターン及びコイルの導体パターンを形成する。シートは、熱可塑性樹脂からなる。そして、複数のシートを積層し、加熱した状態で積層方向の上下方向から圧着する。このようにして、特許文献1では、コンデンサ及びコイルを内部に備える積層回路基板が製造されている。
国際公開第2010/113539号パンフレット
 しかしながら、熱可塑性樹脂は、熱圧着時の熱と圧力によって軟化し流動する。そのため、特許文献1の積層回路基板では熱圧着時、コンデンサやコイルを構成する導体パターン間の熱可塑性樹脂が導体パターン間の外側へ多量に流動し、熱可塑性樹脂層を挟んで互いに対向する導体パターン間の距離が変位してしまうことがある。
 例えばコンデンサの場合、コンデンサを構成する導体パターン間の距離が変化すると、導体パターン間の容量が変化する。また、コイルの場合、コイルを構成する導体パターン間の距離が変化すると、導体パターン間の線間容量が変化する。そのため、熱圧着時に導体パターン間にかかる温度や圧力が変化すると、これらの素子値(キャパシタンス、インダクタンス)は容易に変化してしまう。
 したがって、熱可塑性樹脂層を積層し、熱圧着して製造する特許文献1の積層回路基板では、素子値の個体差が小さい、高精度の素子値を有するコンデンサやコイルを形成することが難しいという問題がある。
 そこで本発明の目的は、熱可塑性樹脂層を積層し、熱圧着することにより積層回路基板を製造する場合でも、素子値の変化を抑制できる積層回路基板を提供することにある。
 本発明の積層回路基板は、前記課題を解決するために以下の構成を備えている。
(1)複数の熱可塑性樹脂層を積層した積層回路基板であって、
 前記積層回路基板の内部には、前記複数の熱可塑性樹脂層のうち少なくとも一層の熱可塑性樹脂層を挟んで互いに対向する第1、第2導体パターンが形成されており、
 前記第1導体パターンにおいて前記第2導体パターンに対向する第1主面、及び前記第2導体パターンにおいて前記第1導体パターンに対向する第2主面には、粗化処理が施されている。
 この構成において第1、第2導体パターンは、例えばコンデンサやコイルを構成する。この構成では、第1主面と第2主面が粗いため、熱可塑性樹脂層を積層し、熱圧着したとき、第1、第2導体パターン間の樹脂の流動が第1主面と第2主面によって妨げられる。そのため、この熱圧着時、第1、第2導体パターン間の樹脂が、第1、第2導体パターン間の外側へ余り流動しない。
 よって、例えばコンデンサの場合、コンデンサを構成する第1、第2導体パターン間の距離が変化することを抑制できるため、第1、第2導体パターン間の容量が容易に変化しない。また、例えばコイルの場合、コイルを構成する第1、第2導体パターン間の距離が変化することを抑制できるため、各導体パターン間の浮遊容量または線間容量が容易に変化しない。
 そのため、熱圧着時に第1、第2導体パターン間にかかる温度や圧力が多少変化しても、これらの素子値(キャパシタンス、インダクタンス)は容易に変化しない。
 したがって、この構成によれば、熱可塑性樹脂層を積層し、熱圧着することにより積層回路基板を製造する場合でも、素子値の変化を抑制できる。そのため、この構成によれば、素子値の個体差が少ない、高精度の素子値を有するコンデンサやコイルを容易に形成することができる。
(2)前記第1主面の表面粗さは、前記第1導体パターンにおいて前記第2導体パターンとは逆側の第3主面の表面粗さより大きいことが好ましい。
 この構成では、第1主面付近の樹脂の流動量が、第3主面付近の樹脂の流動量より小さくなる。そのため、熱圧着時、第1主面付近の樹脂の流動量がさらに小さくなり第1導体パターンが第2導体パターンへ近づくことをさらに抑制できる。すなわち、第1、第2導体パターン間の距離が変化し、素子値が変化してしまうことをさらに抑制できる。
(3)前記第2主面の表面粗さは、前記第2導体パターンにおいて前記第1導体パターンとは逆側の第4主面の表面粗さより大きいことが好ましい。
 この構成では、第2主面付近の樹脂の流動量が、第4主面付近の樹脂の流動量より小さくなる。そのため、熱圧着時、第2主面付近の樹脂の流動量がさらに小さくなり第2導体パターンが第1導体パターンへ近づくことをさらに抑制できる。すなわち、第1、第2導体パターン間の距離が変化し、素子値が変化してしまうことをさらに抑制できる。
(4)前記第1、第2導体パターンのそれぞれは、前記熱可塑性樹脂層の表面に設けられた金属膜をパターニングしたものであることが好ましい。
(5)前記第1主面の表面粗さは、前記第2主面の表面粗さと実質的に同じであることが好ましい。
 この構成では、第1主面付近の樹脂の流動量と第2主面付近の樹脂の流動量とが同じになる。そのため、熱圧着時、第1、第2導体パターンのいずれか一方が他方へ近づくことを抑制できる。すなわち、第1、第2導体パターン間の距離が変化し、素子値が変化してしまうことをより抑制できる。
(6)前記第1主面の面積は、前記第2主面の面積と実質的に同じであることが好ましい。
 第2主面の面積が第1主面の面積より大きい場合、第2導体パターンにおいて第1導体パターンに対向しない領域ができる。反対に、第1主面の面積が第2主面の面積より大きい場合、第1導体パターンにおいて第2導体パターンに対向しない領域ができる。第1、第2導体パターンのいずれか一方の前記対向しない領域は、熱圧着時、第1、第2導体パターン間にかかる温度や圧力によっては、樹脂の流動により他方側へ変位することも考えられる。
 この構成では、第1、第2主面の面積が同じであるため、前記対向しない領域ができない。そのため、熱圧着時、第1、第2導体パターンのいずれか一方の前記対向しない領域が樹脂の流動によって他方側へ変位することを抑制できる。すなわち、第1、第2導体パターン間の距離が変化し、素子値が変化してしまうことをより抑制できる。
 なお、この構成において第1、第2導体パターンは例えばコンデンサを構成する。
(7)前記熱可塑性樹脂層における前記第1、第2導体パターン間の周囲には、ビアホール導体が形成されていることが好ましい。
 この構成では、熱可塑性樹脂層を積層し、熱圧着したとき、第1、第2導体パターン間の樹脂の流動がビアホール導体によって妨げられる。そのため、熱圧着時、第1、第2導体パターンのいずれか一方が他方へ近づくことを抑制できる。すなわち、第1、第2導体パターン間の距離が変化し、素子値が変化してしまうことをより抑制できる。
(8)前記第1、第2導体パターンはコンデンサを構成することが好ましい。
(9)前記第1、第2導体パターンはインダクタを構成することが好ましい。
(10)前記第1導体パターンはインダクタを構成し、前記第2導体パターンはグランドを構成することが好ましい。
 この発明によれば、熱可塑性樹脂層を積層し、熱圧着することにより積層回路基板を製造する場合でも、素子値の変化を抑制できる。
本発明の第1実施形態に係る積層回路基板101の外観図である。 図1のP-P線における断面図である。 図1に示す積層回路基板101の製造方法を示す断面図である。 図1に示す積層回路基板101の製造方法を示す断面図である。 図5(A)は、図3(B)に示すコンデンサC1となる部分の拡大断面図である。図5(B)は、そのコンデンサC1となる部分が熱圧着される様子を示す拡大断面図である。 本発明の第2実施形態に係る積層回路基板201の製造方法を示す断面図である。 図7(A)は、図6に示すコンデンサC2となる部分の拡大断面図である。図7(B)は、そのコンデンサC2となる部分が熱圧着される様子を示す拡大断面図である。 図8(A)は、図6に示すコンデンサC2の変形例に係るコンデンサC3となる部分の拡大断面図である。図8(B)は、そのコンデンサC3となる部分が熱圧着される様子を示す拡大断面図である。 本発明の第3実施形態に係る積層回路基板301の製造方法を示す断面図である。 図9に示すシート13の主要部の正面図である。 図9に示すシート12の主要部の正面図である。 図12(A)は、図9に示すコンデンサC1となる部分の拡大断面図である。図12(B)は、図9に示すコンデンサC1となる部分が熱圧着される様子を示す拡大断面図である。 本発明の第4実施形態に係る積層回路基板401の製造方法を示す断面図である。 図14(A)は、図13に示すコイルL2となる部分の拡大断面図である。図14(B)は、そのコイルL2となる部分が熱圧着される様子を示す拡大断面図である。 本発明の第5実施形態に係る積層回路基板501に含まれる第1導体パターン32B及びコイルL3の外観斜視図である。 図16(A)は、図15に示すコイルL3となる部分の拡大断面図である。図16(B)は、そのコイルL3となる部分が熱圧着される様子を示す拡大断面図である。 本発明の第6実施形態に係る積層回路基板601に含まれる第1導体パターン32B及びコイルL4の外観斜視図である。 図18(A)は、図17に示すコイルL4となる部分の拡大断面図である。図18(B)は、そのコイルL4となる部分が熱圧着される様子を示す拡大断面図である。
《本発明の第1実施形態》
 以下、本発明の第1実施形態に係る積層回路基板101について説明する。
 図1は、本発明の第1実施形態に係る積層回路基板101の外観図である。図2は、図1のP-P線における断面図である。なお、以下の説明では、積層回路基板101をプリント配線基板(不図示)に実装する際に、積層回路基板101に実装する面を主面Z1と称する。また、積層回路基板101の主面Z1とは反対側の面を主面Z2と称する。
 積層回路基板101は、コンデンサC1と、コイルL1と、実装用ランド121、122、131、132、133と、外部接続端子31A、31Bと、を備えている。積層回路基板101は表面実装型の構成となっている。積層回路基板101は、導体パターンが形成された複数の熱可塑性樹脂製のシート11~15を積層してなる積層体である。シート11~15のそれぞれは、所定の誘電率を有する。
 コンデンサC1は、平面状の第1導体パターン32Aと平面状の第2導体パターン33Aによって構成されている。また、コイルL1は、線状の導体パターン33B、33C、33D、33E、34A、34B、34C、34D及びビアホール導体44によって構成されている。導体パターン33B、33C、33D、33E、34A、34B、34C、34Dは、積層回路基板101の積層方向から視て、ループ状に重なるように設けられている。また、コイルL1の導体パターン33Cは、ビアホール導体43,42を介して導体パターン32Bに接続されている。
 外部接続端子31A、31Bは、積層回路基板101の主面Z1に形成されている。外部接続端子31A,31Bは、図示していないプリント配線基板等の電極に接続される。
 実装用ランド121、122、131、132、133は、積層回路基板101の主面Z2に形成されている。実装用ランド121、122の上には、実装部品120が実装されている。実装用ランド131、132、133の上には、実装部品130が実装されている。
 なお、実装用ランドとしては、実装用ランド131、132、133の3つのみを図示したが、これ以上の数の実装用ランドが主面Z2に配置されていてもよい。
 以下、積層回路基板101の製造方法について説明する。
 図3、図4は、図1に示す積層回路基板101の製造方法を示す断面図である。図5(A)は、図3(B)に示すコンデンサC1となる部分の拡大断面図である。図5(B)は、図3(B)に示すコンデンサC1となる部分が熱圧着される様子を示す拡大断面図である。
 なお、図3、図4では、単一の積層回路基板101となる部分のみを図中に示している。すなわち、実際には、シートに多数の積層回路基板101となる部分を設け、複数の積層回路基板101を一度に形成した後、各積層回路基板101を切り出すことにより、積層回路基板101は製造される。
 まず、図3(A)に示すように、シート11~15を用意する。シート11~15のそれぞれに関して、積層方向から正面視した外形は、矩形状である。
 シート11は、熱可塑性樹脂層21と、金属膜31とを備えている。金属膜31は、熱可塑性樹脂層21の主面Z1側の主面に貼付されている。シート12は、熱可塑性樹脂層22と、金属膜32とを備えている。金属膜32は、熱可塑性樹脂層22の主面Z1側の主面に貼付されている。
 シート13は、熱可塑性樹脂層23と、金属膜33とを備えている。金属膜33は、熱可塑性樹脂層23の主面Z2側の主面に貼付されている。シート14は、熱可塑性樹脂層24と、金属膜34とを備えている。金属膜34は、熱可塑性樹脂層24の主面Z2側の主面に貼付されている。シート15は、熱可塑性樹脂層25と、金属膜35とを備えている。金属膜35は、熱可塑性樹脂層25の主面Z2側の主面に貼付されている。
 なお、各シートにおいて、金属膜はアンカー効果によって固着されている。すなわち金属膜の両主面のうち、シートへの固着面が粗化処理面(マット面)であり、その反対面が光沢面(シャイニー面)である。
 熱可塑性樹脂層21~25の材料は、例えば液晶ポリマーである。金属膜31~35の材料は、例えば金属箔である銅である。なお、熱可塑性樹脂層21~25としては、液晶ポリマーの他、熱可塑性ポリイミド等の耐熱性および可撓性のある熱可塑性樹脂を用いることができる。金属膜31~35としては銅の他、銀等の金属箔を用いることができる。
 なお、詳細は後述するが、シート12は、金属膜32における主面Z2側の主面に粗化処理が予め施されたシートを用いる。金属膜32における主面Z2側の主面は、後述の第1主面91を含む面である。同様に、シート13は、金属膜33における主面Z1側の主面に粗化処理が予め施されたシートを用いる。金属膜33における主面Z1側の主面は、後述の第2主面92を含む面である。
 次に、図3(B)に示すように、シート11~15の金属膜31~35をエッチング等によりパターニングする。これにより、実装用ランド121、122、131、132、133と、外部接続端子31A、31Bと、コンデンサC1となる第1導体パターン32A及び第2導体パターン33Aと、コイルL1となる導体パターン33B、33C、33D、33E、34A、34B、34C、34Dと、が形成される。
 また、これらの導体パターン32A、33A、33B、33C、33D、33E、34A、34B、34C、34Dを接続するためのその他の配線導体(図示せず)も同時に形成される。ここで、第1導体パターン32Aにおいて第2導体パターン33Aに対向する第1主面91の面積は、第2導体パターン33Aにおいて第1導体パターン32Aに対向する第2主面92の面積と同じ又は実質的に同じである。
 さらに、図3(B)に示すように、シート12~14の熱可塑性樹脂層22~24にレーザー等により金属膜32~34は貫通しないが熱可塑性樹脂層22~24は貫通する貫通孔を形成した後、その貫通孔の内部に銀およびスズを主成分とする導電性ペーストなどの導電材を充填する。
 次に、図4(A)に示すように、シート11~15を積層し、積層方向の上下方向からプレス板等の治具90を用いて例えば300℃の温度で加熱しながら圧着する。これにより、各シート11~15が軟化流動して一体化されるとともに、貫通孔に充填した導電性ペーストが金属化(焼結)する。これにより、図4(B)に示すように、コンデンサC1及びコイルL1を内部に備える積層回路基板101が製造される。このコンデンサC1は、熱可塑性樹脂層22、23を挟んで互いに対向する第1導体パターン32A及び第2導体パターン33Aによって構成されている。
 その後、積層回路基板101の実装用ランド121、122、131、132、133上に実装部品120、130が実装される(図1、図2参照)。そして、積層回路基板101は図示していないプリント配線基板に実装され、外部接続端子31A,31Bがプリント配線基板の電極に接続される。
 ここで、シート11~15の熱可塑性樹脂は、熱圧着時の熱と圧力によって軟化、流動し、ボンディングシートやプリプレグのような接着剤層を利用することなく一体化する。そのため、積層回路基板101においても、熱圧着時、コンデンサC1を構成する第1導体パターン32A及び第2導体パターン33A間の熱可塑性樹脂が第1導体パターン32A及び第2導体パターン33A間の外側へ流動する。
 しかし、積層回路基板101では、第1導体パターン32Aにおいて第2導体パターン33Aに対向する第1主面91に、粗化処理が施されている(図5(A)参照)。また、積層回路基板101では、第2導体パターン33Aにおいて第1導体パターン32Aに対向する第2主面92にも、粗化処理が施されている(図5(A)参照)。粗化処理は例えばエッチングである。
 この粗化処理により、第1主面91の表面粗さは、第1導体パターン32Aにおいて第2導体パターン33Aとは逆側の第3主面93の表面粗さより大きくなっている。また、第2主面92の表面粗さも、第2導体パターン33Aにおいて第1導体パターン32Aとは逆側の第4主面94の表面粗さより大きくなっている。
 なお、第1主面91の表面粗さは、例えば1.3~15μm程度であり、本実施形態では2.7μmである。第1主面91の表面粗さは、第2主面92の表面粗さと同じまたは実質的に同じである。なお、本実施形態における表面粗さとしては、[JIS B 0601-2001]で規格が定められている最大高さ粗さ[Rz]を採用する。また、第3主面93,第4主面94の表面粗さは例えば0.1~3μm程度であり、本実施形態は1.5μmである。
 積層回路基板101では、第1主面91と第2主面92が粗いため、シート11~15を積層し、熱圧着したとき、第1、第2導体パターン32A、33A間の樹脂の流動が第1主面91と第2主面92によって妨げられる。そのため、この熱圧着時、第1、第2導体パターン32A、33A間の樹脂が、第1、第2導体パターン32A、33A間の外側(図5(B)の矢印参照)へ余り流動しない。
 そして、第1主面91の表面粗さは第3主面93の表面粗さより大きいため、第1主面91付近の樹脂の流動量は、第3主面93付近の樹脂の流動量より小さい。また、第2主面92の表面粗さも第4主面94の表面粗さより大きいため、第2主面92付近の樹脂の流動量は、第4主面94付近の樹脂の流動量より小さい。図5(B)に示す矢印の大きさは、樹脂の流動量を表している。
 第3主面93付近の樹脂および第4主面94付近の樹脂の流動量が、第1主面91付近の樹脂および第2主面92付近の樹脂の流動量より大きいため、第1主面91付近の樹脂および第2主面92付近の樹脂は第1、第2導体パターン32A、33A間の外側にさらに流動しにくくなる。
 よって、コンデンサC1を構成する第1、第2導体パターン32A、33A間の距離Gが変化することを抑制できるため、第1、第2導体パターン32A、33A間の容量が容易に変化しない。すなわち、熱圧着により積層回路基板101を製造する際、設計した第1、第2導体パターン32A、33A間の距離G及び容量をほとんど正確に実現することができる。
 そのため、熱圧着時に第1、第2導体パターン32A、33A間にかかる温度や圧力が多少変化しても、コンデンサC1の素子値(この実施形態ではキャパシタンス)は容易に変化しない。
 したがって、積層回路基板101によれば、シート11~15を積層し、熱圧着することにより積層回路基板101を製造しても、素子値の変化を抑制できる。そのため、積層回路基板101によれば、素子値の個体差が少ない、高精度の素子値(この実施形態ではキャパシタンス)を有するコンデンサC1を容易に形成することができる。
 また、前述したように、第1主面91の表面粗さは、第2主面92の表面粗さと同じである。そのため、第1主面91付近の樹脂の流動量と第2主面92付近の樹脂の流動量とが同じになる。そのため、熱圧着時、第1、第2導体パターン32A、33Aのいずれか一方の導体パターンの端部が、端部の内側に位置する中央部より他方の導体パターンへ近づくことを抑制できる。すなわち、第1、第2導体パターン32A、33A間の距離が変化し、素子値が変化してしまうことをより抑制できる。
 ここで、第2主面92の面積が第1主面91の面積より大きい場合、第2導体パターンにおいて第1導体パターン32Aに対向しない領域ができる。反対に、第1主面91の面積が第2主面92の面積より大きい場合、第1導体パターン32Aにおいて第2導体パターン33Aに対向しない領域ができる。第1、第2導体パターン32A、33Aのいずれか一方の前記対向しない領域は、熱圧着時、第1、第2導体パターン32A、33A間にかかる温度や圧力によっては、樹脂の流動により他方側へ変位することも考えられる。
 積層回路基板101では、前述したように第1、第2主面91、92の面積が同じであるため、前記対向しない領域ができない。そのため、熱圧着時、第1、第2導体パターン32A、33Aのいずれか一方の前記対向しない領域が樹脂の流動によって他方側へ変位することを抑制できる。すなわち、第1、第2導体パターン32A、33A間の距離Gが変化し、素子値が変化してしまうことをより抑制できる。
《本発明の第2実施形態》
 以下、本発明の第2実施形態に係る積層回路基板201について説明する。
 図6は、本発明の第2実施形態に係る積層回路基板201の製造方法を示す断面図である。図7(A)は、図6に示すコンデンサC2となる部分の拡大断面図である。図7(B)は、そのコンデンサC2となる部分が熱圧着される様子を示す拡大断面図である。
 第2実施形態に係る積層回路基板201が第1実施形態に係る積層回路基板101と相違する点は、コンデンサC1及びシート11~14の代わりにコンデンサC2及びシート211、212、214を備える点である。シート212には、シート12、13のビアホール導体42、43の代わりに、ビアホール導体242が設けられている。その他の積層回路基板201の構成については積層回路基板101と同じであるため、説明を省略する。積層回路基板201の製造方法についても、積層回路基板101の製造方法と同じであるため、説明を省略する。
 詳述すると、積層回路基板201でも、第1導体パターン232Aにおいて第2導体パターン233Aに対向する第1主面91に、粗化処理が施されている(図7(A)参照)。また、第2導体パターン233Aにおいて第1導体パターン232Aに対向する第2主面92にも、粗化処理が施されている(図7(A)参照)。
 積層回路基板201ではさらに、第1導体パターン232Aにおいて第2導体パターン233Aとは逆側の第3主面293に、粗化処理が施されている(図7(A)参照)。また、積層回路基板201では、第2導体パターン233Aにおいて第1導体パターン232Aとは逆側の第4主面294に、粗化処理が施されている(図7(A)参照)。
 ただし、第1主面91の表面粗さは、第1導体パターン232Aにおいて第2導体パターン233Aとは逆側の第3主面293の表面粗さより大きい。また、第2主面92の表面粗さも、第2導体パターン233Aにおいて第1導体パターン232Aとは逆側の第4主面294の表面粗さより大きい。
 なお、第1主面91及び第2主面92の表面粗さは、例えば1.3~15μm程度の面である。第3主面293及び第4主面294の表面粗さは、例えば0.1~3μm程度の面である。
 そのため、積層回路基板201においても、第1主面91と第2主面92が粗いため、シート211、212、214、15を積層し、熱圧着したとき、第1、第2導体パターン232A、233A間の樹脂の流動が第1主面91と第2主面92によって妨げられる。そのため、この熱圧着時、第1、第2導体パターン232A、233A間の樹脂が、第1、第2導体パターン232A、233A間の外側へ余り流動しない(図7(B)の矢印参照)。
 そして、第1主面91の表面粗さは第3主面293の表面粗さより大きいため、第1主面91付近の樹脂の流動量は、第3主面293付近の樹脂の流動量より小さい。また、第2主面92の表面粗さも第4主面294の表面粗さより大きいため、第2主面92付近の樹脂の流動量は、第4主面294付近の樹脂の流動量より小さい。図7(B)に示す矢印の大きさは、樹脂の流動量を表している。
 ただし、第3主面293の表面粗さは図5に示した第3主面93の表面粗さより大きいため、第3主面293付近の樹脂の流動量は、第3主面93付近の樹脂の流動量より小さい。また、第4主面294の表面粗さも図5に示した第4主面94の表面粗さより大きいため、第4主面294付近の樹脂の流動量は、第4主面94付近の樹脂の流動量より小さい。第3主面293付近の樹脂および第4主面294付近の樹脂の流動量が、第1主面291付近の樹脂および第2主面292付近の樹脂の流動量より大きいため、第1主面291付近の樹脂および第2主面292付近の樹脂は第1、第2導体パターン232A、233A間の外側にさらに流動しにくくなる。
 以上より、積層回路基板201においても、コンデンサC2を構成する第1、第2導体パターン232A、233A間の距離Gが変化することを抑制できるため、第1、第2導体パターン232A、233A間の容量が容易に変化しない。すなわち、熱圧着により積層回路基板201を製造する際、設計した第1、第2導体パターン232A、233A間の距離G及び容量をほとんど正確に実現することができる。
 そのため、熱圧着時に第1、第2導体パターン232A、233A間にかかる温度や圧力が多少変化しても、コンデンサC2の素子値(この実施形態ではキャパシタンス)は容易に変化しない。
 したがって、積層回路基板201によれば、積層回路基板101とほぼ同様の効果を奏する。
 なお、第1、第2実施形態において、第1主面91の面積は、第2主面92の面積と同じであるが、これに限るものではない。例えば図8に示すように、第1主面91の面積が、第2主面92の面積より小さい導体パターン282Aをシート211に形成しても構わない。
《本発明の第3実施形態》
 以下、本発明の第3実施形態に係る積層回路基板301について説明する。
 図9は、本発明の第3実施形態に係る積層回路基板301の製造方法を示す断面図である。図10は、図9に示すシート13の主要部のみを主面Z2側から正面視したシート13の正面図である。図11は、図9に示すシート12の主要部のみを主面Z1側から正面視したシート12の正面図である。図12(A)は、図9に示すコンデンサC1となる部分の拡大断面図である。図12(B)は、図9に示すコンデンサC1となる部分が熱圧着される様子を示す拡大断面図である。
 第3実施形態に係る積層回路基板301が第1実施形態に係る積層回路基板101と相違する点は、シート12、13におけるコンデンサC1の周囲にビアホール導体342A~342J、343A~343J及び導体パターン332A~332J、333A~333Jを備える点である。その他の積層回路基板301の構成については積層回路基板101と同じであるため、説明を省略する。また、積層回路基板301の製造方法についても積層回路基板101の製造方法と同じであるため、説明を省略する。
 積層回路基板301では、シート11~15を積層し、熱圧着したとき、第1、第2導体パターン32A、33B間の樹脂の流動がビアホール導体342A~342J、343A~343Jによって妨げられる。そのため、熱圧着時、第1、第2導体パターン32A、33Bのいずれか一方が他方へ近づくことを抑制できる。すなわち、第1、第2導体パターン32A、33B間の距離が変化し、素子値が変化してしまうことをより抑制できる。
《本発明の第4実施形態》
 以下、本発明の第4実施形態に係る積層回路基板401について説明する。
 図13は、本発明の第4実施形態に係る積層回路基板401の製造方法を示す断面図である。図14(A)は、図13に示すコイルL2となる部分の拡大断面図である。図14(B)は、そのコイルL2となる部分が熱圧着される様子を示す拡大断面図である。
 第4実施形態に係る積層回路基板401が第1実施形態に係る積層回路基板101と相違する点は、コイルL1及びシート12~14の代わりにコイルL2及びシート412~414を備える点である。シート412には、シート12、13のビアホール導体42、43の代わりに、ビアホール導体442が設けられている。その他の積層回路基板401の構成については積層回路基板101と同じであるため、説明を省略する。また、積層回路基板401の製造方法についても積層回路基板101の製造方法と同じであるため、説明を省略する。
 コイルL2は、導体パターン34A、34B、33B、33C、ビアホール導体442~444、及び第1、第2導体パターン433D、433E、434C、434Dによって構成されている。
 そして、積層回路基板401では、第1導体パターン433D、433Eにおいて第2導体パターン434C、434Dに対向する第1主面491A、491Bに、粗化処理が施されている(図14(A)参照)。また、積層回路基板401では、第2導体パターン434C、434Dにおいて第1導体パターン433D、433Eに対向する第2主面492A、492Bにも、粗化処理が施されている(図14(A)参照)。
 この粗化処理により、第1主面491A、491Bの表面粗さは、第1導体パターン433D、433Eにおいて第2導体パターン434C、434Dとは逆側の第3主面493A、493Bの表面粗さより大きくなっている。また、第2主面492A、492Bの表面粗さも、第2導体パターン434C、434Dにおいて第1導体パターン433D、433Eとは逆側の第4主面494A、494Bの表面粗さより大きくなっている。
 そのため、積層回路基板401においても、第1主面491Aと第2主面492Aが粗いため、シート11、412~414、15を積層し、熱圧着したとき、第1、第2導体パターン433D、434C間の樹脂の流動が第1主面491Aと第2主面492Aによって妨げられる。同様に、第1主面491Bと第2主面492Bが粗いため、シート11、412~414、15を積層し、熱圧着したとき、第1、第2導体パターン433E、434D間の樹脂の流動が第1主面491Bと第2主面492Bによって妨げられる。
 そのため、この熱圧着時、第1、第2導体パターン433D、433E、434C、434D間の樹脂が、第1、第2導体パターン433D、433E、434C、434D間の外側へ余り流動しない(図14(B)の矢印参照)。
 そして、第1主面491A、491Bの表面粗さは第3主面493A、493Bの表面粗さより大きいため、第1主面491A、491B付近の樹脂の流動量は、第3主面493A、493B付近の樹脂の流動量より小さい。また、第2主面492A、492Bの表面粗さも第4主面494A、494Bの表面粗さより大きいため、第2主面492A、492B付近の樹脂の流動量は、第4主面494A、494B付近の樹脂の流動量より小さい。図14(B)に示す矢印の大きさは、樹脂の流動量を表している。
 第3主面493A,493B付近の樹脂および第4主面494A、494B付近の樹脂の流動量が、第1主面491A、491B付近の樹脂および第2主面492A、492B付近の樹脂の流動量より大きいため、第1主面491A、491B付近の樹脂および第2主面492A、492B付近の樹脂は第1、第2導体パターン433D、433E、434C、434D間の外側にさらに流動しにくくなる。
 よって、積層回路基板401においても、コイルL2を構成する第1、第2導体パターン433D、433E、434C、434D間の距離Gが変化することを抑制できるため、第1、第2導体パターン433D、433E、434C、434D間の線間容量が容易に変化しない。すなわち、熱圧着により積層回路基板401を製造する際、設計した第1、第2導体パターン433D、433E、434C、434D間の距離G及び線間容量をほとんど正確に実現することができる。
 そのため、熱圧着時に第1、第2導体パターン433D、433E、434C、434D間にかかる温度や圧力が多少変化しても、コイルL2の素子値(この実施形態ではインダクタンス)は容易に変化しない。
 したがって、積層回路基板401によれば、積層回路基板101とほぼ同様の効果を奏する。
《本発明の第5実施形態》
 以下、本発明の第5実施形態に係る積層回路基板501について説明する。
 図15は、本発明の第5実施形態に係る積層回路基板501に含まれる第1導体パターン32B及びコイルL3の外観斜視図である。図16(A)は、図15に示すコイルL3となる部分の拡大断面図である。図16(B)は、そのコイルL3となる部分が熱圧着される様子を示す拡大断面図である。図16(A)(B)は、図15に示すT-T線の断面図である。
 第5実施形態に係る積層回路基板501が第1実施形態に係る積層回路基板101と相違する点は、コイルL1及びシート13、14の代わりにコイルL3及びシート514を備える点である。その他の積層回路基板501の構成については積層回路基板101と同じであるため、説明を省略する。また、積層回路基板501の製造方法についても積層回路基板101の製造方法と同じであるため、説明を省略する。
 コイルL3は、第2導体パターン533A~533Dによって構成されている。そして、積層回路基板501では、第1導体パターン32Bにおいて第2導体パターン533A~533Dに対向する第1主面591に、粗化処理が施されている(図16(A)参照)。また、積層回路基板501では、第2導体パターン533A~533Dにおいて第1導体パターン32Bに対向する第2主面592A~592Dにも、粗化処理が施されている(図16(A)参照)。
 この粗化処理により、第1主面591の表面粗さは、第1導体パターン32Bにおいて第2導体パターン533A~533Dとは逆側の第3主面593の表面粗さより大きくなっている。また、第2主面592A~592Dの表面粗さも、第2導体パターン533A~533Dにおいて第1導体パターン32Bとは逆側の第4主面594A~594Dの表面粗さより大きくなっている。
 そのため、積層回路基板501においても、第1主面591と第2主面592A~592Dが粗いため、シート11~13、514を積層し、熱圧着したとき、第1、第2導体パターン32B、533A~533D間の樹脂の流動が第1主面591と第2主面592A~592Dによって妨げられる。
 そのため、この熱圧着時、第1、第2導体パターン32B、533A~533D間の樹脂が、第1、第2導体パターン32B、533A~533D間の外側へ余り流動しない(図16(B)の矢印参照)。
 そして、第1主面591の表面粗さは第3主面593の表面粗さより大きいため、第1主面591付近の樹脂の流動量は、第3主面593付近の樹脂の流動量より小さい。また、第2主面592A~592Dの表面粗さも第4主面594A~594Dの表面粗さより大きいため、第2主面592A~592D付近の樹脂の流動量は、第4主面594A~594D付近の樹脂の流動量より小さい。図16(B)に示す矢印の大きさは、樹脂の流動量を表している。
 第3主面593付近の樹脂および第4主面594A~594D付近の樹脂の流動量が、第1主面591付近の樹脂および第2主面592A~592D付近の樹脂の流動量より大きいため、第1主面591付近の樹脂および第2主面592A~592D付近の樹脂は第1、第2導体パターン32B、533A~533D間の外側にさらに流動しにくくなる。
 よって、第1、第2導体パターン32B、533A間の距離G1が変化することを抑制できるため、第1、第2導体パターン32B、533A間の浮遊容量が容易に変化しない。また、第2導体パターン533A、533B間の距離G2が変化することも抑制できるため、第2導体パターン533A、533B間の線間容量が容易に変化しない。コイルL3を構成する第2導体パターン533B~533Dに関しても第2導体パターン533Aと同様である。すなわち、熱圧着により積層回路基板501を製造する際、設計した距離G1、G2、浮遊容量および線間容量をほとんど正確に実現することができる。
 そのため、熱圧着時に第1、第2導体パターン32B、533A~533D間にかかる温度や圧力が多少変化しても、コイルL3の素子値(この実施形態ではインダクタンス)は容易に変化しない。
 したがって、積層回路基板501によれば、積層回路基板101とほぼ同様の効果を奏する。そのため、積層回路基板501によれば、素子値の個体差が少ない、高精度の素子値(この実施形態ではインダクタンス)を有するコイルL3を容易に形成することができる。
《本発明の第6実施形態》
 以下、本発明の第6実施形態に係る積層回路基板601について説明する。
 図17は、本発明の第6実施形態に係る積層回路基板601に含まれる第1導体パターン32B及びコイルL4の外観斜視図である。図18(A)は、図17に示すコイルL4となる部分の拡大断面図である。図18(B)は、そのコイルL4となる部分が熱圧着される様子を示す拡大断面図である。図18(A)(B)は、図17に示すS-S線の断面図である。
 第6実施形態に係る積層回路基板601が第1実施形態に係る積層回路基板101と相違する点は、コイルL1の代わりにコイルL4を備える点である。その他の積層回路基板601の構成については積層回路基板101と同じであるため、説明を省略する。また、積層回路基板601の製造方法についても積層回路基板101の製造方法と同じであるため、説明を省略する。
 コイルL4は、導体パターン635A~635G及び第2導体パターン633A~633Gによって構成されている。導体パターン635A~635Gは、シート15に形成されている。また、第2導体パターン633A~633Gは、シート13に形成されている。なお、第1導体パターン32Bは例えばグランドを構成する。第1導体パターン32Bは第2導体パターン633A~633Gの合計面積より面積の大きい導体パターンである。
 そして、積層回路基板601では、第1導体パターン32Bにおいて第2導体パターン633A~633Gに対向する第1主面591に、粗化処理が施されている(図18(A)参照)。また、積層回路基板601では、第2導体パターン633A~633Gにおいて第1導体パターン32Bに対向する第2主面692A~692Gにも、粗化処理が施されている(図18(A)参照)。
 ここで、積層回路基板601では、第2導体パターン633A~633Gと導体パターン635A~635Gとの容量よりも、第2導体パターン633A~633Gと第1導体パターン32Bとの容量のほうがコイルL4の素子値(この実施形態ではインダクタンス)に与える影響が大きい。
 そのため、本実施形態では、第1導体パターン32Bにおいて第2導体パターン633A~633Gに対向する第1主面591、及び第2導体パターン633A~633Gにおいて第1導体パターン32Bに対向する第2主面692A~692Gに、粗化処理を施している。
 この粗化処理により、第1主面591の表面粗さは、第1導体パターン32Bにおいて第2導体パターン633A~633Gとは逆側の第3主面593の表面粗さより大きくなっている。また、第2主面692A~692Gの表面粗さも、第2導体パターン633A~633Gにおいて第1導体パターン32Bとは逆側の第4主面694A~694Gの表面粗さより大きくなっている。
 そのため、積層回路基板601においても、第1主面591と第2主面692A~692Gが粗いため、シート11~15を積層し、熱圧着したとき、第1、第2導体パターン32B、633A~633G間の樹脂の流動が第1主面591と第2主面692A~692Gによって妨げられる。
 そのため、この熱圧着時、第1、第2導体パターン32B、633A~633G間の樹脂が、第1、第2導体パターン32B、633A~633G間の外側へ余り流動しない(図18(B)の矢印参照)。
 そして、第1主面591の表面粗さは第3主面593の表面粗さより大きいため、第1主面591付近の樹脂の流動量は、第3主面593付近の樹脂の流動量より小さい。また、第2主面692A~692Gの表面粗さも第4主面694A~694Gの表面粗さより大きいため、第2主面692A~692G付近の樹脂の流動量は、第4主面694A~694G付近の樹脂の流動量より小さい。図18(B)に示す矢印の大きさは、樹脂の流動量を表している。
 第3主面593付近の樹脂および第4主面694A~694G付近の樹脂の流動量が、第1主面591付近の樹脂および第2主面692A~692G付近の樹脂の流動量より大きいため、第1主面591付近の樹脂および第2主面692A~692G付近の樹脂は第1、第2導体パターン32B、633A~633G間の外側にさらに流動しにくくなる。
 よって、第1、第2導体パターン32B、633A間の距離G1が変化することを抑制できるため、第1、第2導体パターン32B、633A間の浮遊容量が容易に変化しない。また、第2導体パターン633A、633B間の距離G2が変化することも抑制できるため、第2導体パターン633A、633B間の線間容量が容易に変化しない。コイルL4を構成する他の第2導体パターン633B~633Gに関しても第2導体パターン633Aと同様である。すなわち、熱圧着により積層回路基板601を製造する際、設計した距離G1、G2、浮遊容量および線間容量をほとんど正確に実現することができる。
 そのため、熱圧着時に第1、第2導体パターン32B、633A~633G間にかかる温度や圧力が多少変化しても、コイルL4の素子値(この実施形態ではインダクタンス)は容易に変化しない。また、コイルL4の内側面(すなわち、シート14を介して対向している第2導体パターン同士)の表面粗さが比較的小さいので、Q値の大きなコイルを形成できる。
 したがって、積層回路基板601によれば、積層回路基板101とほぼ同様の効果を奏する。そのため、積層回路基板601によれば、素子値の個体差が少ない、高精度の素子値(この実施形態ではインダクタンス)を有するコイルL4を容易に形成することができる。
 最後に、前述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Z1…主面
Z2…主面
11、12、13、14、15…シート
21、22、23、24、25…熱可塑性樹脂層
31…金属膜
31A、31B…外部接続端子
32…金属膜
32A、32B…第1導体パターン
33…金属膜
33A…第2導体パターン
33B~33E、34A~34D…導体パターン
34、35…金属膜
42、43、44…ビアホール導体
90…治具
91…第1主面
92…第2主面
93…第3主面
94…第4主面
101…積層回路基板
120…実装部品
121、122…実装用ランド
130…実装部品
131、132、133…実装用ランド
201…積層回路基板
211、212、214…シート
232A…第1導体パターン
233A…第2導体パターン
242…ビアホール導体
282A…導体パターン
293…第3主面
294…第4主面
301…積層回路基板
332A~332J、333A~332J…導体パターン
342A~342J、343A~343J…ビアホール導体
401…積層回路基板
412、414、413…シート
433D、433E…第1導体パターン
434C、434D…第2導体パターン
442…ビアホール導体
491A、491B…第1主面
492A、492B…第2主面
493A、493B…第3主面
494A、494B…第4主面
501…積層回路基板
514…シート
533A~533D…第2導体パターン
591…第1主面
592A~592D…第2主面
593…第3主面
594A~594D…第4主面
601…積層回路基板
633A~633G…第2導体パターン
692A~692G…第2主面
694A~694G…第4主面

Claims (10)

  1.  複数の熱可塑性樹脂層を積層した積層回路基板であって、
     前記積層回路基板の内部には、前記複数の熱可塑性樹脂層のうち少なくとも一層の熱可塑性樹脂層を挟んで互いに対向する第1、第2導体パターンが形成されており、
     前記第1導体パターンにおいて前記第2導体パターンに対向する第1主面、及び前記第2導体パターンにおいて前記第1導体パターンに対向する第2主面には、粗化処理が施されている、積層回路基板。
  2.  前記第1主面の表面粗さは、前記第1導体パターンにおいて前記第2導体パターンとは逆側の第3主面の表面粗さより大きい、請求項1に記載の積層回路基板。
  3.  前記第2主面の表面粗さは、前記第2導体パターンにおいて前記第1導体パターンとは逆側の第4主面の表面粗さより大きい、請求項1又は2に記載の積層回路基板。
  4.  前記第1、第2導体パターンのそれぞれは、前記熱可塑性樹脂層の表面に設けられた金属膜をパターニングしたものである、請求項1から3のいずれか1項に記載の積層回路基板。
  5.  前記第1主面の表面粗さは、前記第2主面の表面粗さと実質的に同じである、請求項1から4のいずれか1項に記載の積層回路基板。
  6.  前記第1主面の面積は、前記第2主面の面積と実質的に同じである、請求項1から5のいずれか1項に記載の積層回路基板。
  7.  前記熱可塑性樹脂層における前記第1、第2導体パターン間の周囲には、ビアホール導体が形成されている、請求項1から6のいずれか1項に記載の積層回路基板。
  8.  前記第1、第2導体パターンはコンデンサを構成する、請求項1から7のいずれか1項に記載の積層回路基板。
  9.  前記第1、第2導体パターンはインダクタを構成する、請求項1から7のいずれか1項に記載の積層回路基板。
  10.  前記第1導体パターンはインダクタを構成し、前記第2導体パターンはグランドを構成する、請求項1から7のいずれか1項に記載の積層回路基板。
PCT/JP2014/051455 2013-02-15 2014-01-24 積層回路基板 WO2014125894A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201490000434.5U CN204994111U (zh) 2013-02-15 2014-01-24 层叠电路基板
JP2015500170A JP6004078B2 (ja) 2013-02-15 2014-01-24 積層回路基板、積層回路基板の製造方法
US14/748,623 US9980383B2 (en) 2013-02-15 2015-06-24 Laminated circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027581 2013-02-15
JP2013-027581 2013-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/748,623 Continuation US9980383B2 (en) 2013-02-15 2015-06-24 Laminated circuit substrate

Publications (1)

Publication Number Publication Date
WO2014125894A1 true WO2014125894A1 (ja) 2014-08-21

Family

ID=51353904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051455 WO2014125894A1 (ja) 2013-02-15 2014-01-24 積層回路基板

Country Status (4)

Country Link
US (1) US9980383B2 (ja)
JP (1) JP6004078B2 (ja)
CN (1) CN204994111U (ja)
WO (1) WO2014125894A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066324A1 (ja) * 2016-10-07 2018-04-12 株式会社村田製作所 多層基板
WO2021261416A1 (ja) * 2020-06-24 2021-12-30 株式会社村田製作所 樹脂多層基板及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180007874A (ko) * 2016-07-14 2018-01-24 삼성전기주식회사 코일 부품 및 이의 제조 방법
KR102214641B1 (ko) * 2018-07-16 2021-02-10 삼성전기주식회사 인쇄회로기판

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735414Y2 (ja) * 1989-08-29 1995-08-09 利昌工業株式会社 電子部品搭載用多層回路基板
JP2007317955A (ja) * 2006-05-26 2007-12-06 Murata Mfg Co Ltd 部品内蔵回路モジュール基板
JP2008160042A (ja) * 2006-12-26 2008-07-10 Denso Corp 多層基板
JP2012015239A (ja) * 2010-06-30 2012-01-19 Denso Corp 部品内蔵配線基板
JP2012186451A (ja) * 2011-02-14 2012-09-27 Murata Mfg Co Ltd 多層配線板の製造方法および多層配線板
JP2012195423A (ja) * 2011-03-16 2012-10-11 Murata Mfg Co Ltd 多層配線板の製造方法および多層アンテナ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155655A (en) * 1989-08-23 1992-10-13 Zycon Corporation Capacitor laminate for use in capacitive printed circuit boards and methods of manufacture
JPH0735414A (ja) 1993-05-20 1995-02-07 Sumitomo Electric Ind Ltd 電気蓄熱暖房器の通風路構造
JP3619395B2 (ja) * 1999-07-30 2005-02-09 京セラ株式会社 半導体素子内蔵配線基板およびその製造方法
JP2003332749A (ja) * 2002-01-11 2003-11-21 Denso Corp 受動素子内蔵基板、その製造方法及び受動素子内蔵基板形成用素板
US6987307B2 (en) 2002-06-26 2006-01-17 Georgia Tech Research Corporation Stand-alone organic-based passive devices
US8345433B2 (en) 2004-07-08 2013-01-01 Avx Corporation Heterogeneous organic laminate stack ups for high frequency applications
US7808434B2 (en) 2006-08-09 2010-10-05 Avx Corporation Systems and methods for integrated antennae structures in multilayer organic-based printed circuit devices
CN101653053B (zh) 2008-01-25 2012-04-04 揖斐电株式会社 多层线路板及其制造方法
JP5240293B2 (ja) 2009-04-02 2013-07-17 株式会社村田製作所 回路基板
WO2010131529A1 (ja) * 2009-05-12 2010-11-18 株式会社村田製作所 回路基板及びその製造方法
CN102474978B (zh) * 2009-07-13 2015-08-19 株式会社村田制作所 信号线路及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735414Y2 (ja) * 1989-08-29 1995-08-09 利昌工業株式会社 電子部品搭載用多層回路基板
JP2007317955A (ja) * 2006-05-26 2007-12-06 Murata Mfg Co Ltd 部品内蔵回路モジュール基板
JP2008160042A (ja) * 2006-12-26 2008-07-10 Denso Corp 多層基板
JP2012015239A (ja) * 2010-06-30 2012-01-19 Denso Corp 部品内蔵配線基板
JP2012186451A (ja) * 2011-02-14 2012-09-27 Murata Mfg Co Ltd 多層配線板の製造方法および多層配線板
JP2012195423A (ja) * 2011-03-16 2012-10-11 Murata Mfg Co Ltd 多層配線板の製造方法および多層アンテナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066324A1 (ja) * 2016-10-07 2018-04-12 株式会社村田製作所 多層基板
WO2021261416A1 (ja) * 2020-06-24 2021-12-30 株式会社村田製作所 樹脂多層基板及びその製造方法
JPWO2021261416A1 (ja) * 2020-06-24 2021-12-30
JP7315102B2 (ja) 2020-06-24 2023-07-26 株式会社村田製作所 樹脂多層基板

Also Published As

Publication number Publication date
US20150296621A1 (en) 2015-10-15
US9980383B2 (en) 2018-05-22
CN204994111U (zh) 2016-01-20
JP6004078B2 (ja) 2016-10-05
JPWO2014125894A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
CN105474762B (zh) 多层基板的制造方法及多层基板
JPWO2016199516A1 (ja) コイル内蔵多層基板およびその製造方法
JP2015201606A (ja) 多層基板の製造方法および多層基板
JP5684958B1 (ja) プリント配線基板
JP6004078B2 (ja) 積層回路基板、積層回路基板の製造方法
CN112203394A (zh) 线路板及其制作方法
EP2965596B1 (en) The invention relates to a method for producing a printed circuit board with multilayer sub-areas in sections
JP5725152B2 (ja) 電気素子内蔵型多層基板およびその製造方法
JP2004040001A (ja) コイル部品及び回路装置
JPWO2015005029A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
JP6673304B2 (ja) 多層基板
JP5692473B1 (ja) 部品内蔵基板及び通信モジュール
KR101442423B1 (ko) 전자부품 내장기판 제조 방법 및 전자부품 내장기판
US10091886B2 (en) Component built-in multilayer board
JP5641072B2 (ja) 回路基板
CN210075747U (zh) 多层基板
JPWO2016132911A1 (ja) コイル内蔵基板およびその製造方法
JPWO2014125851A1 (ja) 回路基板およびその製造方法
TWI669035B (zh) 電路板及電路板的製作方法
KR101147343B1 (ko) 복수의 소자가 내장된 집적 인쇄회로기판 및 그 제조 방법
US20170223837A1 (en) Component built-in substrate and method for manufacturing component built-in substrate
JP5583815B1 (ja) 多層配線基板及びその製造方法
JP5585035B2 (ja) 回路基板の製造方法
JP2017204490A (ja) 部品実装基板、および、部品実装基板の製造方法
KR20190009499A (ko) 연성코일과 그 제조방법 및 이를 포함하는 전자부품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000434.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751018

Country of ref document: EP

Kind code of ref document: A1