WO2010131529A1 - 回路基板及びその製造方法 - Google Patents

回路基板及びその製造方法 Download PDF

Info

Publication number
WO2010131529A1
WO2010131529A1 PCT/JP2010/055873 JP2010055873W WO2010131529A1 WO 2010131529 A1 WO2010131529 A1 WO 2010131529A1 JP 2010055873 W JP2010055873 W JP 2010055873W WO 2010131529 A1 WO2010131529 A1 WO 2010131529A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
external electrode
conductor
insulator layer
insulator
Prior art date
Application number
PCT/JP2010/055873
Other languages
English (en)
French (fr)
Inventor
登 加藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43084908&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010131529(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201080021482.9A priority Critical patent/CN102422729B/zh
Priority to JP2011513286A priority patent/JP5344036B2/ja
Publication of WO2010131529A1 publication Critical patent/WO2010131529A1/ja
Priority to US13/286,318 priority patent/US8383953B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Definitions

  • the present invention relates to a circuit board and a manufacturing method thereof, and more particularly to a circuit board on which electronic components are mounted and a manufacturing method thereof.
  • FIG. 11 is a view showing a state in which a conventional circuit board 500 is mounted on a printed wiring board 600.
  • An electronic component 700 is mounted on the circuit board 500.
  • the circuit board 500 is composed of a main body 501 and external electrodes 502 and 503 as shown in FIG.
  • the main body 501 is configured by laminating ceramic layers and is a hard substrate.
  • the external electrodes 502 and 503 are provided on the upper surface and the lower surface of the main body 501, respectively.
  • the printed wiring board 600 is a mother board mounted on an electronic device such as a mobile phone, for example, and includes a main body 601 and external electrodes 602 as shown in FIG.
  • the main body 601 is a hard substrate made of resin or the like.
  • the external electrode 602 is provided on the upper surface of the main body 601.
  • the electronic component 700 is, for example, a semiconductor integrated circuit, and includes a main body 701 and an external electrode 702.
  • the main body 701 is a semiconductor substrate.
  • the external electrode 702 is provided on the lower surface of the main body 701.
  • the circuit board 500 is mounted on a printed wiring board 600 as shown in FIG. Specifically, the circuit board 500 is mounted by connecting the external electrode 502 and the external electrode 602 with solder.
  • the electronic component 700 is mounted on a circuit board 500 as shown in FIG. Specifically, the electronic component 700 is mounted by connecting the external electrode 503 and the external electrode 702 with solder.
  • the circuit board 500, the printed wiring board 600, and the electronic component 700 as described above are mounted on an electronic device such as a mobile phone.
  • the conventional circuit board 500 has a problem that it may be detached from the printed wiring board 600. More specifically, the printed wiring board 600 may bend due to an impact when an electronic device on which the circuit board 500 and the printed wiring board 600 are mounted falls. Even if the printed wiring board 600 is bent, the circuit board 500 is a hard board, and therefore cannot be greatly deformed following the bending of the printed wiring board 600. Therefore, a load is applied to the solder connecting the external electrode 502 and the external electrode 602. As a result, the solder may be damaged and the circuit board 500 may be detached from the printed wiring board 600.
  • the circuit board 500 can be manufactured by laminating sheets made of a flexible material.
  • a circuit board formed by laminating sheets made of such a flexible material for example, a printed circuit board described in Patent Document 1 is known. Note that FIG. 11 is used for the configuration of the printed circuit board 800.
  • the printed circuit board 800 described in Patent Document 1 includes a main body 801 and external electrodes (lands) 802 and 803 as shown in FIG.
  • the main body 801 is configured by laminating sheets made of a thermoplastic resin.
  • the external electrodes 802 and 803 are provided on the upper surface and the lower surface of the main body 801, respectively.
  • the printed board 800 is mounted on the printed wiring board 600 via the external electrodes 802 on the lower surface.
  • the electronic component 700 is mounted on the printed board 800 via the external electrode 803 on the upper surface.
  • the electronic component 700 may be detached. More specifically, since the printed circuit board 800 is constituted by a sheet made of a flexible material, the printed circuit board 800 can be bent. Therefore, even if the printed wiring board 600 is bent, the printed board 800 can be bent following the bending of the printed wiring board 600. Therefore, it is possible to prevent the printed circuit board 800 from being detached from the printed circuit board 600 due to breakage of the solder connecting the external electrode 602 and the external electrode 802.
  • the printed circuit board 800 has flexibility over the entire surface, it bends over the entire surface.
  • the electronic component 700 since the electronic component 700 is formed of a semiconductor substrate, it cannot be greatly bent. Therefore, a load is applied to the external electrodes 702 and 803 and the solder connecting them. As a result, the solder is damaged, or the external electrodes 702 and 803 are peeled off from the main bodies 701 and 801. That is, the connection between the electronic component 700 and the printed circuit board 800 is disconnected.
  • an object of the present invention is to provide a circuit board and a method for manufacturing the same that can prevent electronic components from being detached from the circuit board.
  • a circuit board includes a laminate formed by laminating a plurality of insulator layers made of a flexible material, an upper surface of the laminate, and an electronic component.
  • a method of manufacturing a circuit board comprising: forming the first external electrode, the second external electrode, and the slip generation layer on the plurality of insulator layers; Laminating the plurality of insulator layers so that the slip generation layer crosses a region obtained by connecting the first external electrode and the second external electrode located closest to the external electrode; It is characterized by having.
  • FIG. 1 is an external perspective view of a circuit board according to an embodiment of the present invention. It is a disassembled perspective view of the circuit board of FIG.
  • FIG. 2 is a cross-sectional structural view taken along line AA of the circuit board of FIG. It is an enlarged view in B of FIG. It is a block diagram of the module provided with the circuit board. It is a sectional structure figure of a circuit board concerning the 1st modification. It is an enlarged view in D of FIG. It is an enlarged view in E of FIG. It is the figure which showed the internal conductor which concerns on a modification. It is the figure which showed the internal conductor which concerns on a modification. It is the figure which showed a mode that the conventional circuit board was mounted on the printed wiring board.
  • FIG. 1 is an external perspective view of a circuit board 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the circuit board 10 of FIG.
  • FIG. 3 is a cross-sectional structural view taken along the line AA of the circuit board 10 of FIG.
  • FIG. 4 is an enlarged view of FIG. 3B. 1 to 4, the direction in which the insulator layers are stacked when the circuit board 10 is manufactured is defined as a stacking direction.
  • the stacking direction is the z-axis direction
  • the direction along the long side of the circuit board 10 is the x-axis direction
  • the direction along the short side of the circuit board 10 is the y-axis direction.
  • the surface on the positive direction side in the z-axis direction is referred to as an upper surface
  • the surface on the negative direction side in the z-axis direction is referred to as a lower surface
  • the other surfaces are referred to as side surfaces.
  • the circuit board 10 includes a multilayer body 11, external electrodes 12 (12a to 12d) and 14 (14a to 14f), internal conductors 18 (18a to 18d) and 20, and via-hole conductors b1 to b5 is provided.
  • the laminate 11 is configured by laminating rectangular insulator layers 16a to 16h made of a flexible material (for example, a thermoplastic resin such as a liquid crystal polymer). Thereby, the laminated body 11 has comprised the rectangular parallelepiped shape.
  • the surface of the insulator layer 16 refers to the main surface on the positive direction side in the z-axis direction
  • the back surface of the insulator layer 16 refers to the main surface on the negative direction side in the z-axis direction.
  • the external electrode 12 is a layer made of a metal foil of a conductive material (for example, copper), and is provided on the upper surface of the laminate 11 as shown in FIG. More specifically, the external electrode 12 is provided on the surface of the insulator layer 16a provided on the most positive side in the z-axis direction.
  • the external electrodes 12a and 12b are provided so as to be aligned in the y-axis direction.
  • the external electrodes 12c and 12d are provided so as to be aligned in the y-axis direction on the positive side in the x-axis direction than the external electrodes 12a and 12b.
  • the external electrode 12 is used for connection with an electronic component mounted on the upper surface of the multilayer body 11.
  • the external electrode 14 is a layer made of a metal foil of a conductive material (for example, copper), and is provided on the lower surface of the multilayer body 11 as shown in FIG. That is, the external electrode 14 is provided on the back surface of the insulator layer 16h provided on the most negative direction side in the z-axis direction. Further, the external electrodes 14a to 14c are provided along the short side located on the negative side of the lower surface of the multilayer body 11 in the x-axis direction. The external electrodes 14d to 14f are provided along the short side located on the positive side of the lower surface of the multilayer body 11 in the x-axis direction. The external electrode 14 is used for connection with a mother board such as a printed wiring board.
  • a mother board such as a printed wiring board.
  • the inner conductor 18 is a wiring layer made of a metal foil of a conductive material (for example, copper), and is built in the multilayer body 11 as shown in FIG. Specifically, the inner conductor 18 is provided on the back surface of the insulator layer 16a. A part of the inner conductors 18a to 18d overlaps the outer electrodes 12a to 12d when viewed in plan from the z-axis direction. In FIG. 2, the inner conductor 18 is shown only in the vicinity of the portion overlapping the outer electrode 12, and the other portions are omitted.
  • the inner conductor 20 is a film conductor having a large area such as a capacitor conductor or a ground conductor made of a metal foil of a conductive material (for example, copper), and is built in the laminate 11.
  • the inner conductor 20 is provided on the back surface of the insulator layer 16g. Thereby, the internal conductor 20 is located on the insulator layer 16 h that constitutes the lower surface of the multilayer body 11.
  • the internal conductor 20 lies across the regions A1 to A6 (see FIG. 1) obtained by connecting the external electrode 12 located closest to the external electrode 14 to the external electrode 14.
  • the region A1 is a region obtained by connecting the external electrode 14a and the external electrode 12a.
  • the region A2 is a region obtained by connecting the external electrode 14b and the external electrode 12b.
  • the region A3 is a region obtained by connecting the external electrode 14c and the external electrode 12b.
  • the region A4 is a region obtained by connecting the external electrode 14d and the external electrode 12c.
  • the region A5 is a region obtained by connecting the external electrode 14e and the external electrode 12d.
  • the region A6 is a region obtained by connecting the external electrode 14f and the external electrode 12d.
  • the region obtained by connecting the external electrode 12 and the external electrode 14 is a prismatic region having the external electrode 12 as an upper surface and the external electrode 14 as a lower surface.
  • the inner conductor 20 crosses the regions A1 to A6 (only the regions A2 and A5 are shown in FIG. 3).
  • the inner conductor 20 divides the regions A1 to A6 into an upper region in the z-axis direction and a lower region in the z-axis direction. It shows that.
  • the laminated body 11 includes coils (circuit elements) L1 and L2 and a capacitor (circuit element) C.
  • the coils L1 and L2 are constituted by internal conductors (not shown in FIG. 2) and via-hole conductors (not shown) provided on the back surfaces of the insulator layers 16b to 16f.
  • the capacitor C is composed of an internal conductor (not shown in FIG. 2) provided on the back surfaces of the insulator layers 16e and 16f.
  • the inner conductors 18 and 20 and the inner conductors constituting the coils L1 and L2 and the capacitor C are provided between two adjacent insulator layers 16, and are fixed to one insulator layer 16. In addition, it is not fixed to the other insulator layer 16.
  • the inner conductor 20 will be described in detail as an example.
  • the inner conductor 20 has main surfaces S1 and S2 as shown in FIG.
  • the main surface S1 is a main surface located on the positive direction side in the z-axis direction from the main surface S2.
  • the surface roughness Ra of the main surface S1 is larger than the surface roughness Ra of the main surface S2.
  • the surface roughness Ra of the main surface S2 is 10% or less of the thickness of the internal conductor 20, and the surface roughness Ra of the main surface S1 is larger than the surface roughness Ra of the main surface S2.
  • the internal conductor 20 is in contact with the back surface of the insulator layer 16g through the main surface S1.
  • the main surface S1 has irregularities.
  • the inner conductor 20 is fixed to the back surface of the insulator layer 16g by an anchor effect that is generated when the irregularities of the main surface S1 are recessed into the back surface of the insulator layer 16g. Therefore, no slip occurs in the x-axis direction and the y-axis direction between the inner conductor 20 and the back surface of the insulator layer 16g.
  • the inner conductor 20 may be fixed to the back surface of the insulating layer 16g by an adhesive such as an epoxy adhesive.
  • the inner conductor 20 is in contact with the surface of the insulating layer 16h via the main surface S2.
  • the main surface S2 has almost no unevenness, and no adhesive or the like is applied between the main surface S2 and the surface of the insulator layer 16h. Therefore, the inner conductor 20 is not fixed to the surface of the insulator layer 16h. Therefore, slip can occur between the inner conductor 20 and the surface of the insulating layer 16h in the x-axis direction and the y-axis direction.
  • the surface of the inner conductor 20 is preferably coated with silicon, chromium, zinc or the like. Further, the surface of the inner conductor 20 (interface with the insulator layer 16h) may be coated with a carbon resin paste. Further, by not performing plasma ion treatment or chemical treatment with caustic soda or the like only on this surface, the inner conductor 20 and the insulator layer 16h may be prevented from sticking to each other.
  • the via-hole conductors b1 to b5 are provided so as to connect the external electrodes 12 and 14, the internal conductors 18 and 20, the coils L1 and L2, and the capacitor C and penetrate the insulator layer 16 in the z-axis direction. Specifically, as shown in FIG. 2, each of the via-hole conductors b1 to b4 passes through the insulator layer 16a in the z-axis direction, and connects the external electrodes 12a to 12d and the internal conductors 18a to 18d. Yes.
  • the via-hole conductor b5 passes through the insulator layer 16g in the z-axis direction, and connects the coils L1, L2 or the capacitor C (not shown in FIG. 2) and the internal conductor 20. ing. In FIG. 2, only the via-hole conductors b1 to b5 are shown, but actually other via-hole conductors are provided.
  • the via hole conductor is preferably not connected to the internal conductor 20 in each of the regions A1 to A6.
  • FIG. 5 is a configuration diagram of the module 150 including the circuit board 10.
  • the module 150 includes a circuit board 10, an electronic component 50, and a printed wiring board 100.
  • the electronic component 50 is an element such as a semiconductor integrated circuit mounted on the circuit board 10 as shown in FIG.
  • the electronic component 50 has a main body 52 and external electrodes 54 (54a to 54d).
  • the main body 52 is a hard substrate constituted by a semiconductor substrate, for example.
  • the external electrode 54 is provided on the main surface (lower surface) of the main body 52 on the negative direction side in the z-axis direction.
  • the external electrodes 54a to 54d are connected to the external electrodes 12a to 12d by solder 60, respectively. Thereby, the electronic component 50 is mounted on the upper surface of the circuit board 10.
  • the printed wiring board 100 has a main body 102 and external electrodes 104 (104a to 104f).
  • the main body 102 is a hard substrate made of, for example, a resin.
  • the external electrode 104 is provided on the main surface (upper surface) of the main body 102 on the positive direction side in the z-axis direction.
  • the external electrodes 104a to 104f are connected to the external electrodes 14a to 14f by a bonding material such as solder 70, respectively.
  • the circuit board 10 is mounted on the printed wiring board 100 via the lower surface.
  • the module 150 as described above is mounted on an electronic device such as a mobile phone.
  • circuit board manufacturing method below, the manufacturing method of the circuit board 10 is demonstrated, referring drawings.
  • an insulator layer 16a having a copper foil formed on the entire surface of both main surfaces is prepared, and insulator layers 16b to 16h having a copper foil formed on the entire surface of one main surface are prepared.
  • the main surface on which the copper foil is formed is the back surface.
  • a laser beam is irradiated from the front surface side or the back surface side to the positions (see FIG. 2) where the via hole conductors b1 to b4 of the insulating layer 16a are formed to form via holes.
  • a via hole is formed by irradiating a laser beam from the surface side to a position (see FIG. 2) where the via hole conductor b5 of the insulator layer 16g is formed.
  • via holes are formed in the insulator layers 16b to 16f and 16h as necessary.
  • the external electrode 12 shown in FIG. 2 is formed on the surface of the insulator layer 16a by a photolithography process. Specifically, a resist having the same shape as that of the external electrode 12 shown in FIG. 2 is printed on the copper foil of the insulator layer 16a. And the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thereby, the external electrode 12 as shown in FIG. 2 is formed on the surface of the insulator layer 16a.
  • the internal conductor 18 shown in FIG. 2 is formed on the back surface of the insulator layer 16a by a photolithography process.
  • the photolithography process here is the same as the photolithography process in forming the external electrode 12, and thus the description thereof is omitted.
  • the inner conductor 20 shown in FIG. 2 is formed on the back surface of the insulator layer 16g by a photolithography process.
  • the inner conductors (not shown in FIG. 2) to be the coils L1 and L2 and the capacitor C in FIG. 3 are formed on the back surfaces of the insulator layers 16b to 16f by a photolithography process.
  • the external electrode 14 shown in FIG. 2 is formed on the back surface of the insulator layer 16h by a photolithography process. Note that these photolithography processes are the same as the photolithography process in forming the external electrode 12, and thus the description thereof is omitted.
  • the via holes formed in the insulator layers 16a and 16g are filled with a conductive paste containing copper as a main component to form the via hole conductors b1 to b5 shown in FIG.
  • the via holes are also filled with a conductive paste.
  • the insulator layers 16a to 16h are stacked in this order.
  • the internal conductor 20 crosses the external electrode 12 located closest to the external electrode 14 and the regions A1 to A6 (see FIG. 1) obtained by connecting the external electrode 14.
  • Insulator layers 16a to 16h are stacked.
  • the insulator layers 16a to 16h are pressure-bonded by applying a force to the insulator layers 16a to 16h from the vertical direction in the stacking direction. Thereby, the circuit board 10 shown in FIG. 1 is obtained.
  • the circuit board 10 can be prevented from being detached from the printed wiring board 100. More specifically, the printed wiring board 600 may bend due to an impact when an electronic device on which the conventional circuit board 500 and the printed wiring board 600 shown in FIG. 11 are mounted falls. Even if the printed wiring board 600 is bent, the circuit board 500 is a hard board, and therefore cannot be greatly deformed following the bending of the printed wiring board 600. Therefore, a load is applied to the solder connecting the external electrode 502 and the external electrode 602. As a result, the solder may be damaged and the circuit board 500 may be detached from the printed wiring board 600.
  • the laminate 11 is configured by laminating an insulating layer 16 made of a flexible material. Therefore, the circuit board 10 can be bent more easily than the circuit board 500. Therefore, even if the printed wiring board 100 is bent due to the drop of the electronic device on which the module 150 shown in FIG. 5 is mounted, the circuit board 10 can be deformed following the bending of the printed wiring board 100. . As a result, it is possible to suppress a load from being applied to the solder connecting the external electrode 14 and the external electrode 104, and to prevent the circuit board 10 from being detached from the printed wiring board 100.
  • the circuit board 10 can suppress the electronic component 50 from being detached from the circuit board 10 as described below. More specifically, since the printed circuit board 800 described in Patent Document 1 shown in FIG. 11 has flexibility over the entire surface, it bends over the entire surface. On the other hand, since the electronic component 700 is formed of a semiconductor substrate, it cannot be greatly bent. Therefore, a load is applied to the external electrodes 702 and 803 and the solder connecting them. As a result, the solder is damaged, or the external electrodes 702 and 803 are peeled off from the main bodies 701 and 801. That is, the connection between the electronic component 700 and the printed circuit board 800 is disconnected.
  • the internal conductor 20 crosses the external electrode 12 positioned closest to the external electrode 14 and regions A 1 to A 6 obtained by connecting the external electrode 14. Furthermore, the inner conductor 20 is fixed to the insulator layer 16g and is not fixed to the insulator layer 16h. As a result, the electronic component 50 is prevented from being detached from the circuit board 10 as described below. More specifically, when the printed wiring board 100 is bent in a convex shape, the external electrode 104 is displaced in the direction of arrow F as shown in FIG. The external electrode 104 is connected to the external electrode 14 via the solder 70. Furthermore, the laminated body 11 has flexibility. Therefore, the external electrode 14 receives stress in the direction of arrow F as the external electrode 104 is displaced. As a result, a tensile stress ⁇ 1 is generated in the insulator layer 16h in the x-axis direction. The stress ⁇ 1 tends to be transmitted to the positive direction side in the z-axis direction.
  • the internal conductor 20 is made of, for example, a metal foil such as copper, and the insulator layer 16h is made of a thermoplastic resin such as a liquid crystal polymer. Since the insulator layer 16h and the inner conductor 20 are merely pressure-bonded, there is no chemical bond between the surface of the insulator layer 16h and the inner conductor 20, and they are not fixed to each other. Therefore, the surface of the insulator layer 16 and the inner conductor 20 can slide with each other. Therefore, when a tensile stress is generated in the insulator layer 16h, a slip occurs between the surface of the insulator layer 16h and the internal conductor 20.
  • the stress is not efficiently transmitted from the insulator layer 16h to the insulator layer 16g.
  • the tensile stress ⁇ 2 generated in the insulator layer 16g is smaller than the tensile stress ⁇ 1 generated in the insulator layer 16h. Therefore, the elongation in the x-axis direction that occurs in the insulator layers 16a to 16h decreases as it goes from the negative direction side to the positive direction side in the z-axis direction. Therefore, the external electrodes 12a and 12b provided on the surface of the insulator layer 16a are hardly displaced. As a result, in the circuit board 10, the electronic component 50 can be prevented from being detached from the circuit board 10.
  • the stress from the external electrode 14 is most efficiently transmitted to the external electrode 12 located closest to the external electrode 14 among the plurality of external electrodes 12. That is, the stress from the external electrodes 14a to 14f is transmitted to the external electrodes 12a to 12d through the regions A1 to A6. Therefore, in the circuit board 10, the inner conductor 20 crosses the regions A1 to A6. Thereby, it is suppressed that the stress from the external electrode 14 is transmitted to the external electrode 12 located closest to the external electrode 14. As a result, in the circuit board 10, it is possible to effectively suppress the electronic component 50 from being detached from the circuit board 10.
  • the inner conductor 20 is in contact with the insulator layer 16 h constituting the lower surface of the multilayer body 11. That is, the internal conductor 20 is provided in the multilayer body 11 at the boundary between the insulator layers 16 closest to the lower surface of the multilayer body 11. Therefore, the stress ⁇ 1 shown in FIG. 5 is less likely to be transmitted to the insulator layers 16a to 16g located on the positive side in the z-axis direction relative to the internal conductor 20. Thereby, the deformation of the insulator layers 16a to 16g is suppressed, and the deformation of the coils L1 and L2 and the capacitor C is suppressed. As a result, changes in the characteristics of the coils L1 and L2 and the capacitor C are suppressed.
  • the internal conductor 18, and some of the internal conductors constituting the coils L1 and L2 and the capacitor C are also provided in the regions A1 to A6. Across. Therefore, the internal conductor 18 and a part of the internal conductors constituting the coils L ⁇ b> 1 and L ⁇ b> 2 and the capacitor C also contribute to suppressing the electronic component 50 from being detached from the circuit board 10.
  • the internal conductor 16 has been described as an example of the slip generation layer that can cause slip between the insulator layer 16, but the slip generation layer is not limited to the internal conductor 18, and the insulating layer 16 is stacked and pressed.
  • Various inorganic material layers or organic material layers that are sometimes not fused to the insulator layer 16 may be used. Further, it may be a material that disappears at the time of lamination and pressure bonding and can form a gap between insulator layers.
  • FIG. 6 is a cross-sectional structure diagram of a circuit board 10a according to a first modification.
  • FIG. 7 is an enlarged view of FIG. 6D.
  • FIG. 8 is an enlarged view of E in FIG.
  • the internal conductor 20 is connected to the external electrode 14e by a via-hole conductor b6 that penetrates the insulator layer 16h.
  • the via-hole conductor b ⁇ b> 6 is connected to the main surface S ⁇ b> 2 of the internal conductor 20. Since the via-hole conductor b6 and the inner conductor 20 are made of the same metal (for example, copper), they are metal-bonded at the time of pressure bonding. Therefore, when the via-hole conductor b6 is connected to the main surface S2 of the inner conductor 20, it is prevented that slip occurs between the inner conductor 20 and the surface of the insulator layer 16h. As a result, the stress ⁇ 1 from the external electrode 14e is transmitted to the positive side in the z-axis direction from the internal conductor 20.
  • the inner conductor 20 ′ does not cross the region A2. Therefore, sufficient slip does not occur between the inner conductor 20 ′ and the surface of the insulator layer 16h. As a result, the stress ⁇ 1 from the external electrode 14b is transmitted to the positive side in the z-axis direction from the internal conductor 20 ′.
  • the internal conductors 22a and 22b are provided so as to cross the regions A2 and A5 between the insulator layers 16f and 16g. Thereby, it is suppressed that stress (alpha) 1 is transmitted to the positive direction side of z-axis direction rather than internal conductor 22a, 22b. As a result, also in the circuit board 10a, it can suppress that the electronic component 50 remove
  • the via-hole conductor b3 is connected to the internal conductor 18c. Therefore, it is also considered that slippage hardly occurs between the inner conductor 18c and the surface of the insulating layer 16b.
  • the via-hole conductor b3 is connected to the main surface S1 of the internal conductor 18c and penetrates the insulator layer 16a.
  • the inner conductor 18c is fixed to the insulator layer 16a. Therefore, slip can occur between the inner conductor 18c and the surface of the insulator layer 16b. Therefore, the inner conductor 18c can also contribute to suppressing the electronic component 50 from being detached from the circuit board 10a.
  • FIG. 9 and 10 are diagrams showing inner conductors 20a to 20e according to modifications.
  • a plurality of via-hole conductors b penetrating the insulator layer 16g are connected to the internal conductor 20a.
  • the plurality of via-hole conductors b are arranged in the y-axis direction.
  • the x-axis direction corresponds to the longitudinal direction of the inner conductor 20a. Therefore, the inner conductor 20a is easier to expand and contract in the x-axis direction than in the y-axis direction. Therefore, it is desirable that the plurality of via-hole conductors b are arranged in the y-axis direction that is not easily affected by the expansion / contraction of the internal conductor 20a.
  • the via-hole conductor b may not be provided at all as in the internal conductor 20b shown in FIG. 9B.
  • the inner conductor 20b functions as a dummy conductor.
  • the via-hole conductor b when the via-hole conductor b is connected to the branch portion 30 provided in the internal conductors 20c to 20e as shown in the internal conductors 20c to 20e, the via-hole conductor b is x They may be arranged in the axial direction.
  • the via-hole conductor b is provided in the insulator layer 16g.
  • the via-hole conductor b is shown in FIGS. 9 and 10 even if it is provided in the insulator layer 16h. It is desirable that they are arranged as follows.
  • the inner conductor 20 crosses all the areas A1 to A6. However, the inner conductor 20 does not necessarily need to cross all the regions A1 to A6, and may only cross at least one of the regions A1 to A6. However, the inner conductor 20 has outer electrodes 12a, 12b, 12c, 12d positioned closest to the outer electrodes 14a, 14c, 14d, 14f positioned closest to the four corners of the lower surface of the multilayer body 11, and It is desirable to cross the regions A1, A3, A4, and A6 obtained by connecting the external electrodes 14a, 14c, 14d, and 14f. This is because the external electrodes 14a, 14c, 14d, and 14f located near the corners of the lower surface are more easily displaced than the external electrodes 14b and 14e.
  • the internal conductor 20 may be provided not on the back surface of the insulator layer 16g but on the surface of the insulator layer 16h.
  • a fluorine coating may be applied to the main surface S2.
  • the internal conductor may be a ground conductor, a capacitor conductor, a dummy conductor, or a wiring conductor.
  • the slip generation layer is provided not in a single layer but in a plurality of layers in the region A.
  • the present invention is useful for a circuit board, and is particularly excellent in that the electronic component can be prevented from being detached from the circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 回路基板から電子部品が外れることを抑制できる回路基板及びその製造方法を提供することである。 積層体(11)は、可撓性材料からなる複数の絶縁体層(16)が積層されることにより構成されている。外部電極(12)は、積層体(11)の上面に設けられ、かつ、電子部品が実装される。外部電極(14)は、積層体(11)の下面に設けられ、かつ、配線基板に実装される。内部導体(20)は、隣接する2つの絶縁体層(16g,16h)間に設けられ、かつ、絶縁体層(16g)には固着していると共に、絶縁体層(16h)には固着していない。内部導体(20)は、外部電極(14b,14e)の最も近くに位置する外部電極(12a,12c)と該外部電極(14b,14e)とを結んで得られる領域(A2,A5)を横切るように設けられている。

Description

回路基板及びその製造方法
 本発明は、回路基板及びその製造方法に関し、より特定的には、電子部品が実装される回路基板及びその製造方法に関する。
 従来の一般的な回路基板としては、セラミック層が積層されてなる回路基板が知られている。図11は、従来の回路基板500がプリント配線基板600上に実装された様子を示した図である。また、回路基板500には、電子部品700が実装されている。
 回路基板500は、図11に示すように、本体501及び外部電極502,503により構成されている。本体501は、セラミック層が積層されて構成されており、硬質基板である。外部電極502,503はそれぞれ、本体501の上面及び下面に設けられている。
 また、プリント配線基板600は、例えば、携帯電話等の電子機器に搭載されているマザーボードであり、図11に示すように、本体601及び外部電極602を備えている。本体601は、樹脂等からなる硬質基板である。外部電極602は、本体601の上面に設けられている。
 また、電子部品700は、例えば、半導体集積回路であり、本体701及び外部電極702を備えている。本体701は、半導体基板である。外部電極702は、本体701の下面に設けられている。
 回路基板500は、図11に示すように、プリント配線基板600上に実装される。具体的には、回路基板500は、外部電極502と外部電極602とがはんだにより接続されることにより実装されている。
 電子部品700は、図11に示すように、回路基板500上に実装される。具体的には、電子部品700は、外部電極503と外部電極702とがはんだにより接続されることにより実装されている。以上のような、回路基板500、プリント配線基板600及び電子部品700は、携帯電話等の電子機器に搭載される。
 ところで、従来の回路基板500は、プリント配線基板600から外れるおそれがあるという問題を有している。より詳細には、回路基板500及びプリント配線基板600が搭載された電子機器が落下した際の衝撃により、プリント配線基板600に撓みが発生する場合がある。プリント配線基板600に撓みが発生しても、回路基板500は、硬質基板であるので、プリント配線基板600の撓みに追従して大きく変形できない。そのため、外部電極502と外部電極602とを接続しているはんだに負荷がかかる。その結果、はんだが破損して、回路基板500がプリント配線基板600から外れてしまう場合がある。
 このような問題を解決する方法としては、可撓性材料からなるシートを積層することにより、回路基板500を作製することが挙げられる。このような可撓性材料からなるシートが積層されてなる回路基板としては、例えば、特許文献1に記載のプリント基板が知られている。なお、プリント基板800の構成については、図11を援用する。
 特許文献1に記載のプリント基板800は、図11に示すように、本体801及び外部電極(ランド)802,803を備えている。本体801は、熱可塑性樹脂からなるシートが積層されて構成されている。外部電極802,803はそれぞれ、本体801の上面及び下面に設けられている。プリント基板800は、回路基板500と同様に、下面の外部電極802を介してプリント配線基板600に実装される。また、電子部品700は、回路基板500と同様に、上面の外部電極803を介してプリント基板800に実装される。
 しかしながら、特許文献1に記載のプリント基板800では、電子部品700が外れるおそれがある。より詳細には、プリント基板800は、可撓性材料からなるシートにより構成されているので、撓むことができる。そのため、プリント配線基板600が撓んだとしても、プリント基板800は、プリント配線基板600の撓みに追従して撓むことができる。よって、外部電極602と外部電極802とを接続するはんだが破損して、プリント基板800がプリント配線基板600から外れることは抑制される。
 ところで、プリント基板800は、全面にわたって可撓性を有しているので、全面にわたって撓んでしまう。一方、電子部品700は、半導体基板により構成されているので、大きく撓むことができない。よって、外部電極702,803及びこれらを接続するはんだに負荷がかかる。その結果、はんだが破損したり、外部電極702,803が本体701,801から剥離したりする。すなわち、電子部品700とプリント基板800との接続が外れてしまう。
特開2006-93438号公報
 そこで、本発明の目的は、回路基板から電子部品が外れることを抑制できる回路基板及びその製造方法を提供することである。
 本発明の一形態に係る回路基板は、可撓性材料からなる複数の絶縁体層が積層されることにより構成されている積層体と、前記積層体の上面に設けられ、かつ、電子部品が接続される複数の第1の外部電極と、前記積層体の下面に設けられ、かつ、配線基板に接続される第2の外部電極と、隣接する2つの前記絶縁体層間に設けられ、かつ、前記第2の外部電極の最も近くに位置する前記第1の外部電極と該第2の外部電極とを結んで得られる領域を横切っていると共に、少なくとも一方の前記絶縁体層には固着していない滑り発生層と、を備えていること、を特徴とする。
 本発明の一形態に係る回路基板の製造方法は、前記第1の外部電極、前記第2の外部電極及び前記滑り発生層を、前記複数の絶縁体層に形成する工程と、前記第2の外部電極の最も近くに位置する前記第1の外部電極と該第2の外部電極とを結んで得られる領域を前記滑り発生層が横切るように、前記複数の絶縁体層を積層する工程と、を備えていること、を特徴とする。
 本発明によれば、回路基板から電子部品が外れることを抑制できる。
本発明の一実施形態に係る回路基板の外観斜視図である。 図1の回路基板の分解斜視図である。 図1の回路基板のA-Aにおける断面構造図である。 図3のBにおける拡大図である。 回路基板を備えたモジュールの構成図である。 第1の変形例に係る回路基板の断面構造図である。 図6のDにおける拡大図である。 図6のEにおける拡大図である。 変形例に係る内部導体を示した図である。 変形例に係る内部導体を示した図である。 従来の回路基板がプリント配線基板上に実装された様子を示した図である。
 以下に、本発明の実施形態に係る回路基板及びその製造方法について図面を参照しながら説明する。
(回路基板の構成)
 以下に、本発明の一実施形態に係る回路基板の構成について図面を参照しながら説明する。図1は、本発明の一実施形態に係る回路基板10の外観斜視図である。図2は、図1の回路基板10の分解斜視図である。図3は、図1の回路基板10のA-Aにおける断面構造図である。図4は、図3のBにおける拡大図である。図1ないし図4において、回路基板10の作製時に、絶縁体層が積層される方向を積層方向と定義する。そして、この積層方向をz軸方向とし、回路基板10の長辺に沿った方向をx軸方向とし、回路基板10の短辺に沿った方向をy軸方向とする。また、回路基板10において、z軸方向の正方向側の面を上面と称し、z軸方向の負方向側の面を下面と称し、その他の面を側面と称す。
 回路基板10は、図1及び図2に示すように、積層体11、外部電極12(12a~12d),14(14a~14f)、内部導体18(18a~18d),20及びビアホール導体b1~b5を備えている。積層体11は、図2に示すように、可撓性材料(例えば、液晶ポリマー等の熱可塑性樹脂)からなる長方形状の絶縁体層16a~16hが積層されて構成されている。これにより、積層体11は、直方体状をなしている。以下では、絶縁体層16の表面とは、z軸方向の正方向側の主面を指し、絶縁体層16の裏面とは、z軸方向の負方向側の主面を指すものとする。
 外部電極12は、導電性材料(例えば、銅)の金属箔からなる層であって、図1に示すように、積層体11の上面に設けられている。より詳細には、外部電極12は、z軸方向の最も正方向側に設けられている絶縁体層16aの表面に設けられている。外部電極12a,12bは、y軸方向に並ぶように設けられている。外部電極12c,12dは、外部電極12a,12bよりもx軸方向の正方向側において、y軸方向に並ぶように設けられている。外部電極12は、積層体11の上面に実装される電子部品との接続に用いられる。
 外部電極14は、導電性材料(例えば、銅)の金属箔からなる層であって、図1に示すように、積層体11の下面に設けられている。すなわち、外部電極14は、z軸方向の最も負方向側に設けられている絶縁体層16hの裏面に設けられている。更に、外部電極14a~14cは、積層体11の下面のx軸方向の負方向側に位置する短辺に沿って設けられている。また、外部電極14d~14fは、積層体11の下面のx軸方向の正方向側に位置する短辺に沿って設けられている。外部電極14は、プリント配線基板のようなマザーボードとの接続に用いられる。
 内部導体18は、導電性材料(例えば、銅)の金属箔からなる配線層であって、図2に示すように、積層体11に内蔵されている。具体的には、内部導体18は、絶縁体層16aの裏面に設けられている。内部導体18a~18dの一部はそれぞれ、z軸方向から平面視したときに、外部電極12a~12dと重なっている。なお、図2において、内部導体18は、外部電極12と重なっている部分近傍のみが示され、それ以外の部分については省略されている。
 内部導体20は、導電性材料(例えば、銅)の金属箔からなるコンデンサ導体又はグランド導体等の大面積を有する膜状の導体であり、積層体11に内蔵されている。内部導体20は、絶縁体層16gの裏面に設けられている。これにより、内部導体20は、積層体11の下面を構成している絶縁体層16h上に位置している。
 また、内部導体20は、図3に示すように、外部電極14の最も近くに位置する外部電極12と、該外部電極14とを結んで得られる領域A1~A6(図1参照)を横っている。より詳細には、領域A1は、外部電極14aと外部電極12aとを結んで得られる領域である。領域A2は、外部電極14bと外部電極12bとを結んで得られる領域である。領域A3は、外部電極14cと外部電極12bとを結んで得られる領域である。領域A4は、外部電極14dと外部電極12cとを結んで得られる領域である。領域A5は、外部電極14eと外部電極12dとを結んで得られる領域である。領域A6は、外部電極14fと外部電極12dとを結んで得られる領域である。外部電極12と外部電極14とを結んで得られる領域とは、外部電極12を上面、外部電極14を下面とする角柱状の領域である。
 そして、内部導体20は、図3に示すように、領域A1~A6(図3では、領域A2,A5のみ記載)を横切っている。内部導体20が領域A1~A6を横切るとは、図3に示すように、内部導体20により領域A1~A6がz軸方向の上側の領域とz軸方向の下側の領域とに分断されることを示す。
 また、積層体11は、図3に示すように、コイル(回路素子)L1,L2及びコンデンサ(回路素子)Cを内蔵している。コイルL1,L2は、絶縁体層16b~16fの裏面に設けられた内部導体(図2では省略)及びビアホール導体(図示せず)により構成されている。コンデンサCは、絶縁体層16e,16fの裏面に設けられた内部導体(図2では省略)により構成されている。
 ところで、内部導体18,20、並びに、コイルL1,L2及びコンデンサCを構成している内部導体は、隣接する2つの絶縁体層16間に設けられ、かつ、一方の絶縁体層16には固着していると共に、他方の絶縁体層16には固着していない。以下に、内部導体20を例に挙げて詳細に説明する。
 内部導体20は、図4に示すように、主面S1,S2を有している。主面S1は、主面S2よりもz軸方向の正方向側に位置する主面である。主面S1の表面粗さRaは、主面S2の表面粗さRaよりも大きい。例えば、主面S2の表面粗さRaは、内部導体20の厚みの10%以下とし、主面S1の表面粗さRaは、主面S2の表面粗さRaよりも大きい。内部導体20は、主面S1を介して、絶縁体層16gの裏面と接している。主面S1には凹凸が存在している。そこで、内部導体20は、主面S1の凹凸が絶縁体層16gの裏面にめり込むことによって生じるアンカー効果により、絶縁体層16gの裏面に固着している。よって、内部導体20と絶縁体層16gの裏面との間には、x軸方向及びy軸方向に滑りが発生しない。なお、内部導体20は、アンカー効果に加えて、エポキシ系接着剤等の接着剤によっても絶縁体層16gの裏面に固着していてもよい。
 一方、内部導体20は、図4に示すように、主面S2を介して、絶縁体層16hの表面と接している。主面S2には、凹凸が殆ど存在しておらず、更に、主面S2と絶縁体層16hの表面との間には接着剤なども塗布されない。故に、内部導体20は、絶縁体層16hの表面には固着していない。よって、内部導体20と絶縁体層16hの表面との間には、x軸方向及びy軸方向に滑りが発生しうる。内部導体20と絶縁体層16hとの固着を妨げるため、内部導体20の表面(絶縁体層16hとの界面)には、シリコン、クロム、亜鉛等のコーティングが施されていることが好ましい。また、内部導体20の表面(絶縁体層16hとの界面)に炭素樹脂ペーストによるコーティングを施してもよい。更に、プラズマイオン処理や、苛性ソーダ等による薬液処理をこの面にだけ行わないことにより、内部導体20と絶縁体層16hとの固着を防ぐようにしてもよい。
 ビアホール導体b1~b5は、外部電極12,14、内部導体18,20及びコイルL1,L2及びコンデンサCを接続し、絶縁体層16をz軸方向に貫通するように設けられている。具体的には、ビアホール導体b1~b4はそれぞれ、図2に示すように、絶縁体層16aをz軸方向に貫通しており、外部電極12a~12dと内部導体18a~18dとを接続している。
 ビアホール導体b5は、図2に示すように、絶縁体層16gをz軸方向に貫通しており、コイルL1,L2又はコンデンサC(図2には図示せず)と内部導体20とを接続している。なお、図2では、ビアホール導体b1~b5のみを示したが、実際には、その他のビアホール導体が設けられている。なお、ビアホール導体は、各領域A1~A6内では、内部導体20に接続されていないことが望ましい。
 以上のように構成された絶縁体層16a~16hが積層されることにより、図1に示すような回路基板10が得られる。
 図5は、回路基板10を備えたモジュール150の構成図である。モジュール150は、回路基板10、電子部品50及びプリント配線基板100を備えている。
 電子部品50は、図5に示すように、回路基板10に実装される半導体集積回路等の素子である。電子部品50は、本体52及び外部電極54(54a~54d)を有している。本体52は、例えば、半導体基板により構成される硬質基板である。外部電極54は、本体52のz軸方向の負方向側の主面(下面)に設けられている。そして、外部電極54a~54dはそれぞれ、外部電極12a~12dに対してはんだ60により接続されている。これにより、電子部品50は、回路基板10の上面に実装されている。
 プリント配線基板100は、本体102及び外部電極104(104a~104f)を有している。本体102は、例えば、樹脂等からなる硬質基板である。外部電極104は、本体102のz軸方向の正方向側の主面(上面)に設けられている。そして、外部電極104a~104fはそれぞれ、外部電極14a~14fに対してはんだ70のような接合材により接続されている。これにより、回路基板10は、下面を介してプリント配線基板100に実装されている。以上のような、モジュール150は、携帯電話等の電子機器に搭載される。
(回路基板の製造方法)
 以下に、回路基板10の製造方法について図面を参照しながら説明する。まず、両方の主面の全面に銅箔が形成された絶縁体層16aを準備すると共に、一方の主面の全面に銅箔が形成された絶縁体層16b~16hを準備する。ここで、絶縁体層16b~16hでは、銅箔が形成された主面を裏面とする。
 次に、絶縁体層16aのビアホール導体b1~b4が形成される位置(図2参照)に対して、表面側又は裏面側からレーザービームを照射して、ビアホールを形成する。また、絶縁体層16gのビアホール導体b5が形成される位置(図2参照)に対して、表面側からレーザービームを照射して、ビアホールを形成する。また、絶縁体層16b~16f,16hに対しても、必要に応じて、ビアホールを形成する。
 次に、フォトリソグラフィ工程により、図2に示す外部電極12を絶縁体層16aの表面に形成する。具体的には、絶縁体層16aの銅箔上に、図2に示す外部電極12と同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、レジストを除去する。これにより、図2に示すような、外部電極12が絶縁体層16aの表面に形成される。
 更に、フォトリソグラフィ工程により、図2に示す内部導体18を絶縁体層16aの裏面に形成する。なお、ここでのフォトリソグラフィ工程は、外部電極12を形成する際のフォトリソグラフィ工程と同様であるので、説明を省略する。
 次に、フォトリソグラフィ工程により、図2に示す内部導体20を絶縁体層16gの裏面に形成する。また、フォトリソグラフィ工程により、図3のコイルL1,L2及びコンデンサCとなる内部導体(図2には図示せず)を絶縁体層16b~16fの裏面に形成する。また、フォトリソグラフィ工程により、図2に示す外部電極14を絶縁体層16hの裏面に形成する。なお、これらのフォトリソグラフィ工程は、外部電極12を形成する際のフォトリソグラフィ工程と同様であるので、説明を省略する。
 次に、絶縁体層16a,16gに形成したビアホールに対して、銅を主成分とする導電性ペーストを充填し、図2に示すビアホール導体b1~b5を形成する。また、絶縁体層16b~16f,16hにビアホールを形成した場合には、該ビアホールに対しても、導電性ペーストを充填する。
 次に、絶縁体層16a~16hをこの順に積み重ねる。この際、図3に示すように、外部電極14の最も近くに位置する外部電極12と、該外部電極14とを結んで得られる領域A1~A6(図1参照)を内部導体20が横切るように、絶縁体層16a~16hを積層する。そして、絶縁体層16a~16hに対して積層方向の上下方向から力を加えることにより、絶縁体層16a~16hを圧着する。これにより、図1に示す回路基板10が得られる。
(効果)
 回路基板10では、以下に説明するように、プリント配線基板100が変形したとしても、回路基板10がプリント配線基板100から外れることを抑制できる。より詳細には、図11に示す従来の回路基板500及びプリント配線基板600が搭載された電子機器が落下した際の衝撃により、プリント配線基板600に撓みが発生する場合がある。プリント配線基板600に撓みが発生しても、回路基板500は、硬質基板であるので、プリント配線基板600の撓みに追従して大きく変形できない。そのため、外部電極502と外部電極602とを接続しているはんだに負荷がかかる。その結果、はんだが破損して、回路基板500がプリント配線基板600から外れてしまうことがある。
 そこで、回路基板10では、積層体11は、可撓性材料からなる絶縁体層16が積層されることにより構成されている。したがって、回路基板10は、回路基板500に比べて容易に撓むことができる。そのため、図5に示すモジュール150が搭載された電子機器が落下したことによって、プリント配線基板100が撓んだとしても、回路基板10がプリント配線基板100の撓みに追従して変形することができる。その結果、外部電極14と外部電極104とを接続するはんだに負荷がかかることが抑制され、回路基板10がプリント配線基板100から外れることが抑制される。
 更に、回路基板10では、以下に説明するように、電子部品50が回路基板10から外れることを抑制できる。より詳細には、図11に示す特許文献1に記載のプリント基板800は、全面にわたって可撓性を有しているので、全面にわたって撓んでしまう。一方、電子部品700は、半導体基板により構成されているので、大きく撓むことができない。よって、外部電極702,803及びこれらを接続するはんだに負荷がかかる。その結果、はんだが破損したり、外部電極702,803が本体701,801から剥離したりする。すなわち、電子部品700とプリント基板800との接続が外れてしまう。
 そこで、回路基板10では、内部導体20は、外部電極14の最も近くに位置する外部電極12と、該外部電極14とを結んで得られる領域A1~A6を横切っている。更に、内部導体20は、絶縁体層16gには固着していると共に、絶縁体層16hには固着していない。これにより、以下に説明するように、電子部品50が回路基板10から外れることを抑制している。より詳細には、プリント配線基板100が凸状に撓むと、外部電極104には、図5に示すように、矢印Fの方向に変位する。外部電極104は、外部電極14とはんだ70を介して接続されている。更に、積層体11は可撓性を有している。よって、外部電極14は、外部電極104の変位に伴って、矢印Fの方向に応力を受ける。その結果、絶縁体層16hには、x軸方向において引っ張り応力α1が発生する。そして、該応力α1は、z軸方向の正方向側へと伝わろうとする。
 ここで、内部導体20は、例えば、銅などの金属箔により作製され、絶縁体層16hは、液晶ポリマー等の熱可塑性樹脂により作製されている。絶縁体層16hと内部導体20とは、圧着されているだけであるので、絶縁体層16hの表面と内部導体20との間には化学結合などは存在せず、互いに固着していない。よって、絶縁体層16の表面と内部導体20とは、互いに滑ることができる。そのため、絶縁体層16hに引っ張り応力が発生した場合には、絶縁体層16hの表面と内部導体20との間で滑りが発生する。
 上記のように、絶縁体層16hの表面と内部導体20との間で滑りが発生すると、絶縁体層16hから絶縁体層16gへと応力が効率的に伝達されなくなる。これにより、絶縁体層16gに発生する引っ張り応力α2が、絶縁体層16hに発生する引っ張り応力α1よりも小さくなる。したがって、絶縁体層16a~16hに発生するx軸方向の伸びは、z軸方向の負方向側から正方向側にいくにしたがって小さくなっていく。よって、絶縁体層16aの表面に設けられている外部電極12a,12bは、殆ど変位しない。その結果、回路基板10では、電子部品50が回路基板10から外れることを抑制できる。
 特に、外部電極14からの応力は、複数の外部電極12の中で、該外部電極14の最も近くに位置する外部電極12に最も効率よく伝わる。すなわち、外部電極14a~14fからの応力は、領域A1~A6を伝わって、外部電極12a~12dへと伝わる。そこで、回路基板10では、内部導体20は、領域A1~A6を横切っている。これにより、外部電極14からの応力が、該外部電極14の最も近くに位置する外部電極12に伝わることが抑制される。その結果、回路基板10では、電子部品50が回路基板10から外れることを効果的に抑制できる。
 また、内部導体20は、図2及び図3に示すように、積層体11の下面を構成している絶縁体層16hに接している。すなわち、内部導体20は、積層体11内において、積層体11の下面から最も近い絶縁体層16同士の境界に設けられている。よって、図5に示す応力α1は、内部導体20よりもz軸方向の正方向側に位置する絶縁体層16a~16gに伝わりにくくなる。これにより、絶縁体層16a~16gの変形が抑制され、コイルL1,L2及びコンデンサCの変形が抑制されるようになる。その結果、コイルL1,L2及びコンデンサCの特性が変化することが抑制されるようになる。
 なお、回路基板10では、図3に示すように、内部導体20の他に、内部導体18、並びに、コイルL1,L2及びコンデンサCを構成している内部導体の一部も、領域A1~A6を横切っている。故に、内部導体18、並びに、コイルL1,L2及びコンデンサCを構成している内部導体の一部も、電子部品50が回路基板10から外れることを抑制することに貢献している。
 また、絶縁体層16との間で滑りを生じさせ得る滑り発生層として、内部導体16を例にとって説明したが、滑り発生層は、内部導体18に限らず、絶縁体層16の積層・圧着時に絶縁体層16に融着しない各種の無機材料層又は有機材料層であってもよい。更に、積層・圧着時に消失し、絶縁体層間に隙間を形成しうるような材料であってもよい。
(変形例)
 以下に、第1の変形例に係る回路基板10aについて図面を参照しながら説明する。図6は、第1の変形例に係る回路基板10aの断面構造図である。図7は、図6のDにおける拡大図である。図8は、図6のEにおける拡大図である。
 回路基板10aでは、内部導体20は、図6に示すように、絶縁体層16hを貫通するビアホール導体b6により外部電極14eと接続されている。この場合、図7に示すように、ビアホール導体b6は、内部導体20の主面S2に接続されることになる。ビアホール導体b6と内部導体20とは、同じ金属(例えば、銅)により作製されているため、圧着時に金属結合する。そのため、ビアホール導体b6が内部導体20の主面S2に接続されていると、内部導体20と絶縁体層16hの表面との間で滑りが発生することが阻害される。その結果、外部電極14eからの応力α1が、内部導体20よりもz軸方向の正方向側に伝わってしまう。
 また、回路基板10aでは、内部導体20'は、領域A2を横切っていない。そのため、内部導体20'と絶縁体層16hの表面との間で十分な滑りが発生しない。その結果、外部電極14bからの応力α1が、内部導体20'よりもz軸方向の正方向側に伝わってしまう。
 そこで、回路基板10aでは、内部導体22a,22bが、絶縁体層16f,16g間において、領域A2,A5を横切るように設けられている。これにより、応力α1が内部導体22a,22bよりもz軸方向の正方向側に伝わることが抑制される。その結果、回路基板10aにおいても、電子部品50が回路基板10aから外れることを抑制できる。
 なお、図6に示すように、内部導体18cには、ビアホール導体b3が接続されている。故に、内部導体18cと絶縁体層16bの表面との間では滑りが発生しにくいとも考えられる。しかしながら、図8に示すように、ビアホール導体b3は、内部導体18cの主面S1に接続されていると共に、絶縁体層16aを貫通している。そして、内部導体18cは、絶縁体層16aに固着している。故に、内部導体18cと絶縁体層16bの表面との間では、滑りが発生しうる。したがって、内部導体18cも、電子部品50が回路基板10aから外れることを抑制することに貢献しうる。
 次に、変形例に係る内部導体について図面を参照しながら説明する。図9及び図10は、変形例に係る内部導体20a~20eを示した図である。
 図9(a)に示すように、絶縁体層16gを貫通する複数のビアホール導体bが内部導体20aに接続されている。この場合、複数のビアホール導体bは、y軸方向に並んでいることが望ましい。x軸方向は、内部導体20aの長手方向に相当する。そのため、内部導体20aは、y軸方向よりもx軸方向に伸び縮みし易い。よって、複数のビアホール導体bは、内部導体20aの伸び縮みの影響を受けにくいy軸方向に並んでいることが望ましい。
 なお、図9(b)に示す内部導体20bのように、ビアホール導体bは、全く設けられていなくてもよい。この場合、内部導体20bは、ダミー導体として機能する。
 また、図10に示すように、内部導体20c~20eに示すように、内部導体20c~20eに設けられた枝部30にビアホール導体bが接続される場合には、該ビアホール導体bは、x軸方向に並んでいてもよい。
 なお、図9及び図10では、ビアホール導体bは、絶縁体層16gに設けられているものとしたが、例えば、絶縁体層16hに設けられていていても、図9及び図10に示したように配置されていることが望ましい。
 なお、回路基板10では、内部導体20は、全ての領域A1~A6を横切っている。しかしながら、内部導体20は、必ずしも全ての領域A1~A6を横切る必要はなく、領域A1~A6の少なくとも1つを横切っていればよい。ただし、内部導体20は、積層体11の下面の4つの角の最も近くに位置している外部電極14a,14c,14d,14fの最も近くに位置する外部電極12a,12b,12c,12dと、外部電極14a,14c,14d,14fとを結んで得られる領域A1,A3,A4,A6を横切っていることが望ましい。これは、下面の角近傍に位置する外部電極14a,14c,14d,14fが外部電極14b,14eに比べて変位し易いためである。
 なお、内部導体20は、絶縁体層16gの裏面ではなく、絶縁体層16hの表面に設けられていてもよい。
 また、主面S1の表面の表面粗さRaを主面S2の裏面の表面粗さRaよりも大きくするために、例えば、主面S2にフッ素コーティングを施すなどしてもよい。
 なお、内部導体は、グランド導体、コンデンサ導体、ダミー導体の他、配線導体であってもよい。
 また、滑り発生層は、領域Aにおいて1層ではなく、複数層にわたって設けられていることが好ましい。
 本発明は、回路基板に有用であり、特に、回路基板から電子部品が外れることを抑制できる点において優れている。
 C コンデンサ
 L1,L2 コイル
 b,b1~b6 ビアホール導体
 10,10a 回路基板
 11 積層体
 12a~12d,14a~14f 外部電極
 16a~16h 絶縁体層
 18a~18d,20,20',20a~20e,22a,22b 内部導体

Claims (9)

  1.  可撓性材料からなる複数の絶縁体層が積層されることにより構成されている積層体と、
     前記積層体の上面に設けられ、かつ、電子部品が接続される複数の第1の外部電極と、
     前記積層体の下面に設けられ、かつ、配線基板に接続される第2の外部電極と、
     隣接する2つの前記絶縁体層間に設けられ、かつ、前記第2の外部電極の最も近くに位置する前記第1の外部電極と該第2の外部電極とを結んで得られる領域を横切っていると共に、少なくとも一方の前記絶縁体層には固着していない滑り発生層と、
     を備えていること、
     を特徴とする回路基板。
  2.  前記滑り発生層は、一方の前記絶縁体層には固着しておらず、かつ、他方の前記絶縁体層に固着している内部導体であること、
     を特徴とする請求項1に記載の回路基板。
  3.  前記一方の絶縁体層と接している前記内部導体の主面の表面粗さは、前記他方の絶縁体層と接している該内部導体の主面の表面粗さよりも大きいこと、
     を特徴とする請求項2に記載の回路基板。
  4.  前記内部導体は、前記下面を構成している前記絶縁体層上に位置していること、
     を特徴とする請求項2又は請求項3のいずれかに記載の回路基板。
  5.  前記内部導体は、グランド導体、コンデンサ導体、コイル導体、配線導体、又は、ダミー導体のいずれかであること、
     を特徴とする請求項2ないし請求項4のいずれかに記載の回路基板。
  6.  前記下面は、長方形状をなしており、
     前記第2の外部電極は、前記下面の互いに平行な2つの辺に沿って並ぶように複数設けられており、
     前記滑り発生層は、前記下面の4つの角の最も近くに位置している前記第2の外部電極の最も近くに位置する前記第1の外部電極と該第2の外部電極とを結んで得られる領域を横切っていること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の回路基板。
  7.  前記一方の絶縁体層を貫通するように設けられ、かつ、前記内部導体に接続されているビアホール導体を、
     更に備えていること、
     を特徴とする請求項2ないし請求項5のいずれかに記載の回路基板。
  8.  前記ビアホール導体は、前記第1の外部電極と前記第2の外部電極とを結んで得られる領域内には設けられていないこと、
     を特徴とする請求項7に記載の回路基板。
  9.  請求項1ないし請求項8のいずれかに記載の回路基板の製造方法において、
     前記第1の外部電極、前記第2の外部電極及び前記滑り発生層を、前記複数の絶縁体層に形成する工程と、
     前記第2の外部電極の最も近くに位置する前記第1の外部電極と該第2の外部電極とを結んで得られる領域を前記滑り発生層が横切るように、前記複数の絶縁体層を積層する工程と、
     を備えていること、
     を特徴とする回路基板の製造方法。
PCT/JP2010/055873 2009-05-12 2010-03-31 回路基板及びその製造方法 WO2010131529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080021482.9A CN102422729B (zh) 2009-05-12 2010-03-31 电路基板及其制造方法
JP2011513286A JP5344036B2 (ja) 2009-05-12 2010-03-31 回路基板及びその製造方法
US13/286,318 US8383953B2 (en) 2009-05-12 2011-11-01 Circuit board and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009115213 2009-05-12
JP2009-115213 2009-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/286,318 Continuation US8383953B2 (en) 2009-05-12 2011-11-01 Circuit board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010131529A1 true WO2010131529A1 (ja) 2010-11-18

Family

ID=43084908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055873 WO2010131529A1 (ja) 2009-05-12 2010-03-31 回路基板及びその製造方法

Country Status (4)

Country Link
US (1) US8383953B2 (ja)
JP (1) JP5344036B2 (ja)
CN (1) CN102422729B (ja)
WO (1) WO2010131529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016158109A1 (ja) * 2015-03-27 2017-12-28 京セラ株式会社 撮像用部品およびこれを備える撮像モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004078B2 (ja) * 2013-02-15 2016-10-05 株式会社村田製作所 積層回路基板、積層回路基板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223353A (ja) * 1999-01-29 2000-08-11 Fuji Elelctrochem Co Ltd グリーンシートの製造方法およびその製造装置
WO2006027888A1 (ja) * 2004-09-08 2006-03-16 Murata Manufacturing Co., Ltd. 複合セラミック基板
JP2007080938A (ja) * 2005-09-12 2007-03-29 Fujikura Ltd 多層プリント配線板
JP2009064973A (ja) * 2007-09-06 2009-03-26 Shinko Electric Ind Co Ltd 配線基板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312469A (ja) * 1994-05-16 1995-11-28 Nippon Mektron Ltd 多層フレキシブル回路基板の屈曲部構造
JP3279294B2 (ja) * 1998-08-31 2002-04-30 三菱電機株式会社 半導体装置のテスト方法、半導体装置のテスト用プローブ針とその製造方法およびそのプローブ針を備えたプローブカード
US6879492B2 (en) * 2001-03-28 2005-04-12 International Business Machines Corporation Hyperbga buildup laminate
KR100971104B1 (ko) * 2004-02-24 2010-07-20 이비덴 가부시키가이샤 반도체 탑재용 기판
JP2006093438A (ja) 2004-09-24 2006-04-06 Denso Corp プリント基板及びその製造方法
US7626829B2 (en) * 2004-10-27 2009-12-01 Ibiden Co., Ltd. Multilayer printed wiring board and manufacturing method of the multilayer printed wiring board
JP2008227429A (ja) * 2007-03-16 2008-09-25 Alps Electric Co Ltd 電子回路モジュールおよび多層配線板
US9149463B2 (en) * 2007-09-18 2015-10-06 The Board Of Trustees Of The Leland Standford Junior University Methods and compositions of treating a Flaviviridae family viral infection
US8263878B2 (en) * 2008-03-25 2012-09-11 Ibiden Co., Ltd. Printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223353A (ja) * 1999-01-29 2000-08-11 Fuji Elelctrochem Co Ltd グリーンシートの製造方法およびその製造装置
WO2006027888A1 (ja) * 2004-09-08 2006-03-16 Murata Manufacturing Co., Ltd. 複合セラミック基板
JP2007080938A (ja) * 2005-09-12 2007-03-29 Fujikura Ltd 多層プリント配線板
JP2009064973A (ja) * 2007-09-06 2009-03-26 Shinko Electric Ind Co Ltd 配線基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016158109A1 (ja) * 2015-03-27 2017-12-28 京セラ株式会社 撮像用部品およびこれを備える撮像モジュール

Also Published As

Publication number Publication date
CN102422729A (zh) 2012-04-18
US8383953B2 (en) 2013-02-26
CN102422729B (zh) 2014-08-06
JPWO2010131529A1 (ja) 2012-11-01
JP5344036B2 (ja) 2013-11-20
US20120043129A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5240293B2 (ja) 回路基板
JP5720862B2 (ja) 回路基板
JP5360223B2 (ja) 回路基板
WO2011040393A1 (ja) 回路基板及びその製造方法
JP4985894B2 (ja) 信号線路
WO2015005029A1 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
JP5333577B2 (ja) 回路基板及びマザー積層体
KR20060043994A (ko) 임베디드 캐패시터와 임베디드 캐패시터의 제작 방법
JP5344036B2 (ja) 回路基板及びその製造方法
JPWO2018034161A1 (ja) 積層コイルおよびその製造方法
WO2021025025A1 (ja) 樹脂多層基板および樹脂多層基板の製造方法
JP4785473B2 (ja) 多層プリント配線板、多層プリント配線板の製造方法、及び電子装置
WO2011043382A1 (ja) 回路基板及びその製造方法
WO2013121977A1 (ja) 部品内蔵基板
JP5574067B2 (ja) 部品内蔵基板
JP2011091150A (ja) 樹脂多層基板の製造方法
JP2005019816A (ja) 配線基板及びその製造方法、半導体装置並びに電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021482.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513286

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774788

Country of ref document: EP

Kind code of ref document: A1