WO2015129283A1 - 亜鉛系めっき鋼板およびその製造方法 - Google Patents

亜鉛系めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015129283A1
WO2015129283A1 PCT/JP2015/001054 JP2015001054W WO2015129283A1 WO 2015129283 A1 WO2015129283 A1 WO 2015129283A1 JP 2015001054 W JP2015001054 W JP 2015001054W WO 2015129283 A1 WO2015129283 A1 WO 2015129283A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oxide layer
galvanized steel
zinc
producing
Prior art date
Application number
PCT/JP2015/001054
Other languages
English (en)
French (fr)
Inventor
克弥 星野
平 章一郎
名越 正泰
一利 花田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015530216A priority Critical patent/JP5884206B2/ja
Priority to EP15755178.9A priority patent/EP3112500B1/en
Priority to US15/122,036 priority patent/US10351960B2/en
Priority to CN201580010894.5A priority patent/CN106062250B/zh
Priority to KR1020167026480A priority patent/KR101878222B1/ko
Priority to MX2016011086A priority patent/MX2016011086A/es
Publication of WO2015129283A1 publication Critical patent/WO2015129283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers

Definitions

  • the present invention relates to a galvanized steel sheet excellent in slidability in press molding and alkali degreasing in an automobile manufacturing process, and a method for manufacturing the same.
  • galvanized steel sheet is described as including galvannealed steel sheet.
  • Zinc-based galvanized steel sheets are widely used in a wide range of fields centering on automobile body applications. Zinc-based plated steel sheets for such applications are used after being subjected to press forming and painting.
  • galvanized steel sheets have the disadvantage that they are inferior in press formability compared to cold-rolled steel sheets. This is because the sliding resistance of the galvanized steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the galvanized steel sheet is less likely to flow into the press mold at a portion where the sliding resistance between the mold and the bead is large, and the steel sheet is likely to break.
  • Patent Document 1 discloses that press-formability and chemical conversion treatment are performed by forming Ni oxide by subjecting the surface of a zinc-coated steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. Disclosed is a technology that improves chemical conversion ability.
  • an alloyed hot dip galvanized steel sheet (hot-dip galvannealed steel sheet) is brought into contact with an acidic solution to form an oxide layer mainly composed of Zn oxide on the surface of the steel sheet.
  • a technology for improving the slidability by suppressing adhesion between a plating layer (hot-dip galvannealed coating layer) and a press die is disclosed.
  • Patent Document 4 describes a technique for improving the degreasing property by washing the surface of an alloyed hot-dip galvanized steel sheet having an oxide layer with an alkaline solution.
  • Patent Document 5 describes a technique for improving the degreasing property by washing the surface of an alloyed hot-dip galvanized steel sheet having an oxide layer with a solution containing P.
  • the present invention has been made in view of such circumstances, has low sliding resistance during press molding, and has excellent degreasing properties even under severe alkaline degreasing conditions (conditions where the temperature is low and the line length is short). And providing a zinc-based plated steel sheet and a method for producing the same, in which dissolution of the formed oxide layer is suppressed, generation of unevenness due to cleaning treatment can be suppressed, and the treatment liquid does not need to contain an environmental load substance. With the goal.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the measured oxygen strength was adjusted to the thickness as the SiO 2 coating.
  • Zn is 50 mg / m 2 or more
  • S is 5 mg / m 2 or more
  • C is 0.2 mg / m 2 or more.
  • the oxide layer includes a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O (1) or ( 2) Zinc-based plated steel sheet.
  • X is a real number of 0 ⁇ X ⁇ 1
  • n is a real number of 0 ⁇ n ⁇ 10.
  • the galvanized steel sheet is an alloyed hot dip galvanized steel sheet (hot-dip galvannealed steel sheet), hot dip galvanized steel sheet (hot-dip galvanized steel sheet) or electrogalvanized steel sheet (electrogalvanized steel sheet).
  • the galvanized steel sheet according to any one of (1) to (3), which is characterized.
  • a method for producing a galvanized steel sheet according to any one of (1) to (4) The zinc-plated steel sheet is brought into contact with an acidic solution containing 0.3 g / L or more of sulfate ions and then held for 1 to 60 seconds, and then washed with water, and the oxide layer forming process.
  • the acidic solution has a pH buffering action, and the amount of 1.0 mol / L sodium hydroxide solution (L) required to raise the pH of 1 L of the acidic solution from 2.0 to 5.0
  • the method for producing a galvanized steel sheet according to (5) or (6), wherein the pH increase defined by (1) is in the range of 0.003 to 0.5.
  • the acidic solution comprises a total of at least one salt selected from acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate.
  • the surface of the galvanized steel sheet is activated by bringing the surface of the galvanized steel sheet into contact with an alkaline aqueous solution before the oxide layer forming step (5) to The method for producing a zinc-based plated steel sheet according to any one of (12).
  • a galvanized steel sheet having a low sliding resistance during press molding and having excellent degreasing properties even under severe alkaline degreasing conditions can be obtained.
  • the oxide layer formed in the oxide layer forming step when manufacturing the zinc-based plated steel sheet is not easily dissolved in the neutralization treatment step.
  • the treatment liquid used in the neutralization treatment step contains carbonate ions, so that it does not have to contain environmentally hazardous substances such as P ions.
  • FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus.
  • FIG. 2 is a schematic perspective view showing the shape and dimensions of the bead used in Condition 1 of the example.
  • FIG. 3 is a schematic perspective view showing the shape and dimensions of the bead used in Condition 2 of the example.
  • FIG. 4 is a schematic perspective view showing the shape and dimensions of the bead used in Condition 3 of the example.
  • FIG. 5 is a schematic diagram illustrating evaluation criteria for evaluating appearance unevenness.
  • the method for producing a zinc-based plated steel sheet according to the present invention is a method for producing a zinc-based plated steel sheet having an oxide layer on the surface, for example, a commercially available zinc-based plated steel sheet having no oxide layer on the surface.
  • an oxide layer formation process and a neutralization process process are provided.
  • the step of applying galvanization is a step of applying galvanization to a steel sheet.
  • the type of steel used in this process is not particularly limited. Low-carbon steel, ultra-low-carbon steel, IF steel, high-strength steel with various alloying elements, etc.
  • Various steel plates can be used.
  • a base material steel plate either a hot-rolled steel plate or a cold-rolled steel plate can be used.
  • the galvanizing method is not particularly limited, and general methods such as hot-dip galvanizing and electrogalvanizing can be employed.
  • the process conditions of electrogalvanization and hot dip galvanization are not specifically limited, What is necessary is just to employ
  • Al is added to the plating bath for the countermeasure against dross.
  • additive element components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al, the effect of the present invention is not impaired.
  • alloying treatment galvannealing
  • the conditions for the alloying treatment are not particularly limited, and preferable conditions may be adopted as appropriate.
  • the area ratio of the flat portion (the top surface of the concavo-convex convex portion) of the surface of the alloyed hot-dip galvanized layer be 20 to 80%.
  • the area ratio is less than 20%, the contact area with the press die in the portion (concave portion) excluding the flat portion becomes large, and the thickness of the oxide layer described later in the area actually in contact with the press die.
  • the area ratio of the flat portion that can be reliably controlled is reduced. As a result, the effect of improving press formability is reduced.
  • the part except a flat part has a role which hold
  • the flat part on the surface of the galvannealed layer can be easily identified by observing the surface with an optical microscope or a scanning electron microscope.
  • the area ratio of the flat portion on the surface of the alloyed hot-dip galvanized layer can be determined by image analysis of the above micrograph.
  • temper rolling may be performed before the oxide layer forming step is performed on a commercially available or obtained galvanized steel sheet as described above.
  • surface irregularities are alleviated by flattening by subjecting the surface to temper rolling.
  • the force required for the mold to crush the projections on the plating surface is reduced, and the sliding characteristics can be improved.
  • irregularities exist on the surface of the galvannealed steel plate. For this reason, in order to remarkably improve the slidability between the galvannealed steel sheet produced by the production method of the present invention and the press die, it is important to subject the steel sheet to temper rolling.
  • an activation treatment with an alkaline aqueous solution may be performed before the oxide layer forming step is performed on a commercially available zinc-plated steel sheet obtained as described above.
  • conventional hot-dip galvanized steel sheets and electrogalvanized steel sheets have an oxide layer (unnecessary oxide layer) of Zn or an impurity element such as Al whose thickness of the outermost layer is less than 10 nm. Yes.
  • the alkaline aqueous solution used in this activation treatment is preferably in the range of pH 10-14. If the pH is less than 10, the unnecessary oxide layer may not be completely removed. If the pH exceeds 14, the zinc-based plating layer is strongly dissolved, the surface becomes black, and burnt-deposit may occur. .
  • the temperature of the alkaline aqueous solution used for the activation treatment is desirably in the range of 20 ° C to 70 ° C.
  • the kind of alkaline aqueous solution is not limited, it is preferable to use chemicals, such as NaOH, from a viewpoint of cost. Further, the alkaline aqueous solution may contain substances other than the elements contained in zinc-based plating such as Zn, Al, and Fe, and other components.
  • the order is not particularly limited when both temper rolling and treatment with an alkaline aqueous solution are performed.
  • the subsequent oxide layer forming step refers to an acidic solution containing sulfuric acid on the surface of the zinc-based plated steel sheet (sulfuric acid is present in the acidic solution in the form of sulfate ions. Is held for 1 to 60 seconds, and then washed with water.
  • the mechanism by which the oxide layer is formed in this step is not clear, but can be considered as follows.
  • dissolution of zinc occurs from the steel sheet side. Since the dissolution of zinc causes a hydrogen generation reaction at the same time, as the dissolution of zinc proceeds, the concentration of hydrogen ions in the solution decreases, and as a result, the pH of the solution increases. And it is thought that the oxide layer which has Zn as a main body forms in the said steel plate surface.
  • the portion that comes into contact with the press die during press molding is preferably composed of a hard and high melting point material from the viewpoint of preventing adhesion between the galvanized steel sheet and the press die and improving slidability. .
  • the oxide layer as described above formed in the oxide layer forming step is hard and has a high melting point, it can prevent adhesion with the press die and is effective in improving the sliding characteristics.
  • the plating layer is hard, the deformation amount of the surface is small, so that the surface flat part of the tempered rolled galvannealed steel plate is uniformly oxidized. When the treatment for forming the physical layer is performed, good slidability can be stably obtained.
  • the oxide layer is worn away and scraped off due to the contact between the oxide layer and the press mold. For this reason, it is calculated
  • the required thickness varies depending on the degree of processing by press molding. For example, a thicker oxide layer is required when processing involving large deformation or when the contact area between the press die and the oxide layer is large.
  • the thickness of the oxide layer may be adjusted in the range of 20 to 200 nm depending on the application. By setting the average thickness of the oxide layer to 20 nm or more, a galvanized steel sheet having good slidability can be obtained.
  • the thickness of the oxide layer is 20 nm or more. This is because, in the press forming process where the contact area between the press die and the work piece (zinc-coated steel sheet) becomes large, even if the oxide layer on the surface layer is worn, the oxide layer remains and the slidability decreases. This is because there is almost no invitation.
  • the upper limit of the oxide layer thickness is not particularly limited, but when the thickness exceeds 200 nm, the reactivity of the surface is extremely lowered, and it may be difficult to form a chemical conversion treatment film. For this reason, it is desirable that the thickness be 200 nm or less.
  • the specific thickness adjustment may be performed by appropriately changing the conditions for forming the following oxide layer.
  • the oxide layer forming step may be carried out by bringing the steel sheet into contact with a sulfuric acid acidic solution and holding it for a predetermined time, followed by washing with water and drying.
  • Specific materials used and production conditions are as follows.
  • the pH of the sulfuric acid acidic solution used in the oxide layer forming step may be such that zinc can be dissolved to form an oxide layer.
  • Sulfuric acid is used to adjust the pH.
  • the sulfuric acid acidic solution becomes an acidic solution containing sulfate ions.
  • the sulfate ion concentration in the sulfuric acid acidic solution is preferably 0.3 to 50 g / L.
  • the sulfate ion concentration is less than 0.3 g / L, the amount of sulfate groups in the oxide is reduced, the amount of S in the oxide layer is less than 5 mg / m 2 , and Zn 4 (SO 4 ) 1-X ( A crystal structure represented by CO 3 ) X (OH) 6 .nH 2 O is difficult to form. If the sulfate ion concentration exceeds 50 g / L, there is no problem in quality, but it is not preferable because it leads to an increase in cost.
  • a sulfuric acid acidic solution having a pH buffering action is less likely to instantaneously raise the pH of the solution and forms a sufficient amount of an oxide layer, compared to a sulfuric acid acidic solution having no pH buffering action.
  • the sulfuric acid solution to be used has a pH buffering action, an oxide layer excellent in slidability can be stably formed. For this reason, even if a metal ion, an inorganic compound, or the like is contained in the solution as an impurity or intentionally, the effect of the present invention is not easily impaired.
  • the pH buffering action of a sulfuric acid acidic solution is a pH increase defined by the amount (L) of a 1.0 mol / L aqueous sodium hydroxide solution required to increase the pH of a 1 liter sulfuric acid acidic solution from 2.0 to 5.0. Can be evaluated in degrees. In the present invention, this value is preferably in the range of 0.003 to 0.5. If the degree of pH increase is less than 0.003, the pH increase may occur rapidly, so that sufficient dissolution of zinc for forming the oxide layer may not be obtained, and a sufficient amount of oxide layer may not be formed. .
  • the degree of pH increase exceeds 0.5, dissolution of zinc may be accelerated too much, it may take a long time to form the oxide layer, or damage to the plating layer may become severe. In some cases, the role of the original rust-proof steel sheet may be lost.
  • the pH increase degree of the sulfuric acid acidic solution having a pH exceeding 2.0 is obtained by adding an inorganic acid having almost no buffering property in the pH range of 2.0 to 5.0 such as sulfuric acid to the sulfuric acid acidic solution. The pH is once lowered to 2.0 for evaluation.
  • sulfuric acid acidic solution having a pH buffering action examples include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) C 6 H 4 (COOH)), and citric acid.
  • Citrate salts such as sodium (Na 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), and succinic acid such as sodium succinate (Na 2 C 4 H 4 O 4 )
  • aqueous solution containing in the range of ⁇ 50 g / L can be mentioned.
  • concentration is less than 5 g / L
  • the pH of the solution rises relatively quickly with the dissolution of zinc, so that an oxide layer sufficient for improving the slidability cannot be formed.
  • concentration exceeds 50 g / L
  • dissolution of zinc is promoted and not only has a long time to form the oxide layer, but also the plating layer is severely damaged, and loses its original role as a rust-proof steel plate. There is.
  • the sulfuric acid acidic solution as described above preferably has a pH of 0.5 to 5.0.
  • the pH of the sulfuric acid acidic solution is desirably 0.5 or more.
  • the pH of the sulfuric acid acidic solution is desirably 5.0 or less.
  • the liquid temperature of the sulfuric acid acidic solution is preferably 20 to 70 ° C. This is because if the liquid temperature is less than 20 ° C., the formation reaction of the oxide layer may take a long time, which may cause a decrease in productivity. On the other hand, when the liquid temperature exceeds 70 ° C., the reaction proceeds relatively quickly, but conversely, processing unevenness tends to occur on the steel sheet surface.
  • the method for bringing the steel sheet into contact with the sulfuric acid solution is not particularly limited.
  • the sulfuric acid solution is brought into contact with the zinc-based plated steel plate, it is desirable that a thin liquid film-like sulfuric acid solution film be present on the steel plate surface. If there is a large amount of sulfuric acid solution present on the surface of the steel plate, the pH of the solution will hardly rise even if zinc is dissolved, and zinc may be dissolved one after another, and it takes a long time to form an oxide layer. It may take time.
  • the amount of the sulfuric acid solution present on the surface of the steel plate is large, the alloyed hot-dip galvanized layer may be seriously damaged, and the original role as a rust-proof steel plate may be lost. From this viewpoint, it is effective to adjust the adhesion amount of the sulfuric acid acidic solution to 15 g / m 2 or less. Moreover, 1 g / m ⁇ 2 > or more is preferable from a viewpoint of preventing drying of a liquid film.
  • the amount of adhesion can be adjusted by a squeeze roll, air wiping or the like.
  • the adhesion amount of the sulfuric acid acidic solution can be measured using a CHINO CORPORATION infrared moisture gauge. The upper limit of the adhesion amount is appropriately set according to the desired thickness condition of the oxide layer.
  • the time from the contact with the pickling solution to the washing with water (the holding time until the washing with water) needs 1 to 60 seconds. If the time until washing with water is less than 1 second, the sulfuric acid acidic solution is washed out before the oxide layer mainly composed of Zn is formed due to the increase in pH of the solution, so that the effect of improving the slidability cannot be obtained. . Moreover, even if the time until washing exceeds 60 seconds, no change is observed in the amount of the oxide layer. In addition, it is preferable that the holding be performed in an atmosphere containing more oxygen than in the air because the oxidation is promoted.
  • the subsequent neutralization treatment step is a step in which the surface of the oxide layer formed in the oxide layer formation step is kept in contact with the alkaline aqueous solution for 0.5 seconds or longer, and then washed with water and dried. is there.
  • an alkaline aqueous solution containing carbonate ions is used as the alkaline aqueous solution.
  • the zinc-plated steel sheet By contacting an alkaline aqueous solution containing carbonate ions with the oxide layer, the zinc-plated steel sheet exhibits excellent degreasing properties even under harsh arikari degreasing conditions where the temperature is low and the processing time is short because the line length is short.
  • the low temperature means that the temperature is 35 to 40 ° C., for example.
  • a short line length and a short processing time means that the processing time is 60 to 90 seconds.
  • this degreasing improvement mechanism can be considered as follows.
  • the sulfuric acid acidic solution remains on the surface of the oxide layer after being washed with water and dried, the amount of etching on the surface is increased, micro unevenness is generated, and the affinity between the oxide layer surface and oil becomes strong. Washing with an alkaline aqueous solution and complete neutralization prevents the sulfuric acid acidic solution from remaining on the surface. If carbonate ions are present, the carbonate ions are taken into the oxide layer and change the crystal structure. At the same time, the physical properties are changed, the affinity between the oxide layer and the oil is dramatically reduced, and the degreasing property is greatly improved.
  • the oxide film layer into which carbonate ions have been taken in hardly undergoes a dissolution reaction in the neutralization treatment step. Therefore, in the present invention, which does not need to contain P ions, there is no reaction between the oxide layer and P ions generated when P ions are used, and the appearance is caused by a difference in oxide layer thickness. Problems such as unevenness and a decrease in the stability of press molding can be solved.
  • the materials used in the neutralization treatment process and the neutralization treatment conditions are as follows.
  • the concentration of carbonate ions in the alkaline aqueous solution is 0.1 g / L or more from the viewpoint of using carbonate ions.
  • the concentration is preferably in the range of 0.1 g / L to 100 g / L.
  • the carbonate ion concentration is desirably 100 g / L or less.
  • the substance that is the source of carbonate ions is not particularly limited.
  • carbon dioxide blowing, sodium carbonate, sodium hydrogen carbonate, manganese carbonate, nickel carbonate, potassium carbonate and hydrates thereof can be used as the carbonate ion source.
  • the use of carbon dioxide and carbonate exemplified above is preferable from the viewpoint of cost and procurement.
  • Components other than carbonate ions may be included as long as the effects of the present invention are not impaired.
  • S, N, B, Cl, Na, Zn, Al, Ca, K, Mg, Fe, Mn, Si, or the like may be included. These components are preferably in the range of 0 to 10 g / L in total.
  • the pH of the alkaline aqueous solution is 9-12. If pH is 9 or more, it can fully neutralize. Moreover, if pH is 12 or less, it will be easy to prevent melt
  • the method for bringing the alkaline aqueous solution into contact with the oxide layer is not particularly limited.
  • the time for contacting the alkaline aqueous solution with the oxide layer is set to 0.5 seconds or more. By setting it to 0.5 seconds or more, excellent degreasing properties can be imparted to the zinc-based plated steel sheet. Moreover, 10 second or less is preferable from a viewpoint of processing equipment length.
  • Oxide layer, Zn becomes O, H, S, C and unavoidable impurities, Zn and 50 mg / m 2 or more, the S 5 mg / m 2 or more, containing C 0.2 mg / m 2 or more.
  • the Zn content is 50 mg / m 2 or more and that the S content is 5 mg / m 2 or more. Moreover, it is preferable from a viewpoint of weldability or chemical conversion treatment property that Zn content is 1000 mg / m ⁇ 2 > or less, and S content is 100 mg / m ⁇ 2 > or less.
  • the manufacturing conditions are adopted in which the galvanized steel sheet is kept in contact with sulfuric acid acid treatment solution (acid solution), held for 1 to 60 seconds, and then washed with water. To do.
  • the C content of 0.2 mg / m 2 or more is necessary from the viewpoints of degreasing properties, appearance unevenness, and stability of press molding. Moreover, it is preferable from a viewpoint of weldability or chemical conversion treatment property that C content is 40 mg / m ⁇ 2 > or less.
  • the oxide layer contains H. Although it is difficult to quantitatively analyze H, the presence of H can be confirmed by analyzing the presence form of Zn using an X-ray photoelectron spectrometer. .
  • Zn is present as Zn (OH) 2
  • a peak is observed around 987 eV when a narrow scan measurement of a spectrum corresponding to Zn LMM is performed using an Al Ka monochrome source. Thereby, presence of H and presence of OH group can be confirmed.
  • the amount of H is not particularly specified, but it is considered that it increases as the amount of oxygen increases because it exists as OH.
  • a sulfate group, a carbonate group, and a hydroxyl group are present in the oxide layer.
  • the manufacturing conditions are adopted in which the galvanized steel sheet is brought into contact with the sulfuric acid acid treatment solution and then held for 1 to 60 seconds, then washed with water and brought into contact with an alkaline aqueous solution containing carbonate ions, sulfuric acid is contained in the oxide layer.
  • Groups, carbonate groups and hydroxyl groups can be present.
  • the oxide layer preferably contains a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O.
  • X is a real number of 0 ⁇ X ⁇ 1
  • n is a real number of 0 ⁇ n ⁇ 10.
  • the oxide layer may contain a metal oxide and / or hydroxide other than Zn and other components.
  • S, N, P, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, and the like may be taken into the oxide layer due to impurities contained in the sulfuric acid acidic solution.
  • the oxide layer formed in the present invention can be analyzed by the following method.
  • the thickness of the oxide layer is measured using fluorescent X-ray analysis, and the obtained oxygen intensity is calculated from the value of a silicon wafer on which a silicon oxide film having a known thickness is formed. As a standard, it can be measured in terms of silica film thickness.
  • a solution of the oxide layer dissolved in 2% ammonium dichromate + 14% aqueous ammonia solution (% means mass%) It is possible to quantify by analyzing using an ICP emission spectrometer (ICP emission spectrometry). About C contained in the oxide layer, the surface of the oxide layer is rubbed with a stainless brush and ethanol having a diameter of 0.2 mm or less and a length of 40 mm or more, and the resulting ethanol solution is filtered by suction. The component can be extracted as a powder component, and this can be quantified by performing a temperature rising analysis using a gas chromatograph mass spectrometer.
  • crystal water it is possible to analyze the powdered oxide layer components using a differential thermogravimetric analyzer, and a weight loss of 100 ° C. or less corresponds to crystal water.
  • the crystal water means water molecules taken into the crystal.
  • S, Zn and O can be analyzed using an X-ray photoelectron spectrometer.
  • the crystal structure it is possible to identify the crystal structure based on the diffraction peak of the oxide layer obtained from X-ray diffraction.
  • a hot-dip galvanizing treatment and an alloying treatment were performed on a cold-rolled steel plate having a thickness of 0.7 mm. Thereafter, temper rolling was performed on the treated steel sheet. Subsequently, as a treatment for forming the oxide layer, the steel sheet was immersed in a sulfuric acid acidic solution adjusted to the conditions shown in Table 1 (Table 1-1 and Table 1-2 together) and squeezed with a roll. Thereafter, the predetermined time shown in Table 1 was maintained. Next, after sufficiently washing with water, it was dried. Subsequently, neutralization was performed under the conditions shown in Table 1.
  • No. 1 in Table 1. 2-8 no.
  • the sulfate ion concentrations of 19 to 38 and No. 48 to 55 were 15 g / L.
  • the sulfate ion concentrations of 9 to 18 and 41 to 47 were also 0.5 to 30 g / L.
  • the sulfate ion concentration of No. 39-40 was 0 g / L.
  • the thickness and details of the oxide layer on the surface of the alloyed hot-dip galvanized steel sheet obtained above were measured, and press formability (sliding characteristics), degreasing properties, and appearance irregularities were evaluated.
  • the evaluation method is shown below.
  • composition analysis of oxide layer Using a solution of 2% ammonium dichromate + 14% aqueous ammonia (% means% by mass), only the oxide layer was dissolved, and the solution was analyzed using an ICP emission spectrometer. , Zn and S were quantitatively analyzed.
  • the surface of the oxide layer was rubbed with a stainless brush having a diameter of 0.15 mm and a length of 45 mm and ethanol, and the obtained ethanol solution was suction filtered to extract the film component as a powder component.
  • the film component collected as a powder was subjected to temperature analysis using a gas chromatograph mass spectrometer to perform quantitative analysis of C.
  • a pyrolysis furnace was connected to the front stage of the gas chromatograph mass spectrometer. About 2 mg of the powder sample collected in the pyrolysis furnace was inserted, and the gas generated in the pyrolysis furnace was raised from 30 ° C to 500 ° C at a heating rate of 5 ° C / min. Helium was transported into a gas chromatograph mass spectrometer and analyzed for gas composition.
  • the column temperature at the time of GC / MS measurement was set to 300 ° C.
  • Presence form of C Similarly, the coating component collected by pulverization was analyzed using gas chromatography bluff mass spectrometry, and the presence form of C was analyzed.
  • Presence form of Zn, S, O was analyzed using an X-ray photoelectron spectrometer. A narrow scan measurement of the spectrum corresponding to Zn LMM, S 2p was performed using an Al Ka monochrome source.
  • Determination of crystal water A weight loss amount of 100 ° C. or less was measured using a differential thermobalance. About 15 mg of powder sample was used for the measurement. After the sample was introduced into the apparatus, the temperature was raised from room temperature (about 25 ° C.) to 1000 ° C. at a rate of temperature rise of 10 ° C./min, and the thermogravimetric change at the time of temperature rise was recorded.
  • FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus.
  • a friction coefficient measurement sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally.
  • a slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6.
  • a first load cell 7 is attached to the slide table support 5.
  • a second load cell 8 for measuring a sliding resistance force F generated by moving the slide table 3 in the horizontal direction with the pressing force applied is attached to one end of the slide table 3. .
  • a lubricant Sugimura Chemical Industrial Co., Ltd. Wash Oil for Press Forming PRETON R352L was applied to the surface of Sample 1 and tested. .
  • FIG. 2 and 3 are schematic perspective views showing the shape and dimensions of the beads used.
  • the bead 6 slides with its lower surface pressed against the surface of the sample 1.
  • the bead 6 shown in FIG. 2 has a width of 10 mm, a length of 5 mm in the sliding direction of the sample, and lower portions at both ends of the sliding direction are curved surfaces having a curvature of 1 mmR. It has a flat surface of 3 mm.
  • the bead 6 shown in FIG. 3 has a width of 10 mm, a length of 59 mm in the sliding direction of the sample, and a lower portion at both ends in the sliding direction is formed by a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 50 mm.
  • FIG. 4 is a schematic view showing a static friction coefficient measuring apparatus using the test apparatus 10.
  • the sample 100 that has been removed is pulled out.
  • the constant load P and the load F necessary for pulling out the sample 100 were measured at intervals of 0.005 Hz.
  • the mold 11 has a width of 35 mm, a length of 14 mm in the sliding direction of the sample, and lower portions at both ends of the sliding direction are curved surfaces having a curvature of 2 mmR.
  • the lower surface of the bead to which the sample is pressed is 35 mm in width and the length in the sliding direction. It has a 10 mm plane.
  • the mold 12 has a width of 35 mm, a length of 24 mm in the sliding direction of the sample, and lower portions at both ends of the sliding direction are curved surfaces having a curvature of 2 mmR, and the bottom surface of the bead against which the sample is pressed has a width of 35 mm and a sliding direction length of 20 mm. It has a plane (hereinafter, condition 3).
  • a cleaning oil Preton (registered trademark) R352L for press manufactured by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 100 and tested.
  • Degreasing evaluation method Degreasing was evaluated based on the water wetting rate after degreasing. After applying 2.0 g / m 2 of cleaning oil Preton R352L for press made by Sugimura Chemical Industry Co., Ltd. to the prepared test piece, FC manufactured by NIHON PARKERIZING CO., LTD. The sample was degreased using an alkaline degreasing solution of L4460. The deterioration of the alkaline degreasing liquid in the automobile production line was simulated by adding 10 g / L of pre-cleaning oil Preton R352L for press produced by Sugimura Chemical Co., Ltd. to the degreasing liquid.
  • the degreasing time was 60 seconds, and the temperature was 37 ° C.
  • the degreasing liquid was stirred at a speed of 150 rpm using a propeller having a diameter of 10 cm. Degreasing was evaluated by measuring the water wetting rate of the test piece 20 seconds after the completion of degreasing.
  • Comparative Example 1 No. No film formation process.
  • the oxide layer thickness is less than 10 nm and the press formability is poor.
  • No. No. 2 is an example (comparative example) in which oxidation treatment and neutralization treatment are performed, but carbonate ions are not added to the neutralization treatment solution.
  • the amount of C deposited in the oxide layer is insufficient, and some of the press formability and appearance are good, but some of the press formability is insufficient and the degreasing property is poor.
  • No. No. 3 is carrying out oxidation treatment and neutralization treatment, but P ions are added to the neutralization treatment solution, but this is an insufficient example (comparative example) in that no carbonate ions are added. .
  • the amount of C deposited in the oxide layer is insufficient, the degreasing property and the appearance unevenness are insufficient, and some of the press formability is not insufficient due to the dissolution of the oxide film, but is reduced. Some press formability is insufficient.
  • No. No. 26 is an insufficient example (comparative example) in that carbonate ions are not sufficiently added to the neutralization solution.
  • the amount of C deposited in the oxide layer is insufficient, and some of the press formability is good, but some of the press formability, degreasing properties, and appearance irregularities are also insufficient.
  • No. Nos. 39 and 40 are insufficient examples (comparative examples) in that sulfate ions are not sufficiently present in the oxide layer forming treatment liquid. Although some press moldability is good, S and C are not contained in the oxide layer, and some press moldability, degreasing, and appearance unevenness are insufficient.
  • No. Nos. 52 to 54 are examples (comparative examples) in that carbonate ions are sufficiently present in the neutralization treatment solution, but the pH is outside the range of pH 9 to 12. Some press moldability is good, but sufficient C is not contained in the oxide layer, and some press moldability and degreasing properties are insufficient.
  • No. 55 is a comparative example in which water washing (water washing in the oxide layer forming step) is not performed between the oxide formation treatment and the neutralization treatment. Sufficient C cannot be taken into the film, and some press moldability is good, but some press moldability and degreasing properties are insufficient.
  • No. Nos. 4 to 25, 27 to 38, and 41 to 51 are invention examples in which an oxide layer forming process and a neutralizing process are performed, and the conditions are also in a suitable range. Sufficient Zn, S, and C are contained in the oxide layer, the press formability is excellent, the degreasing property is good, and the appearance unevenness is 4 or more in all conditions.
  • composition ratio and charge balance, it should contain a crystal structure material represented by Zn 4 (SO 4 ) 0.75 (CO 3 ) 0.25 (OH) 6 ⁇ 10.0H 2 O. I understand.
  • a hot-dip galvanizing treatment was applied to a cold-rolled steel sheet having a thickness of 0.7 mm. Temper rolling was performed on the steel plate after the above treatment. Subsequently, a surface activation treatment with an alkaline aqueous solution was performed using an alkaline aqueous solution adjusted to the conditions shown in Table 3. Next, as a reaction layer formation treatment, the steel sheet was immersed in a sulfuric acid acidic solution adjusted to the conditions shown in Table 3, and squeezed with a roll, and then held for a predetermined time shown in Table 3. Next, after sufficiently washing with water, it was dried. Subsequently, neutralization was performed under the conditions shown in Table 3. The sulfuric acid ion concentration in the sulfuric acid acidic solution was 15 g / L.
  • Tables 3 and 4 show the following matters. No. No film forming process was performed. In Comparative Example 1, the oxide layer thickness is less than 10 nm and the press formability is poor.
  • No. No. 2 is an example (comparative example) in which oxidation treatment and neutralization treatment are performed, but carbonate ions are not added to the neutralization treatment solution. Although some press moldability and appearance unevenness are good, sufficient C is not contained in the oxide layer, and the degreasing property is poor.
  • No. 3 shows an example (comparative example) in which oxidation treatment and neutralization treatment are carried out, but P ions are added to the neutralization treatment solution, but carbonate ions are not added. Sufficient C is not contained in the oxide layer, the degreasing properties and the appearance unevenness are insufficient, and the press formability is not insufficient due to dissolution of the oxide film, but is low.
  • Examples 4 to 8 are invention examples in which oxidation treatment and neutralization treatment are performed, and the conditions are also in a suitable range. These contain sufficient Zn, S, and C in the oxide layer, are excellent in press moldability, and have good degreasing properties and appearance irregularities.
  • Examples 9 to 18 are invention examples in which activation treatment, oxidation treatment, and neutralization treatment are performed, and the conditions are also in a suitable range. These contain sufficient Zn, S, and C in the oxide layer, are excellent in press moldability, and have good degreasing properties and appearance irregularities.
  • Example 2 confirmation of the presence of zinc hydroxide, sulfate, and carbonate in the same procedure as Example 1, and Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) It was investigated whether or not a crystal structure represented by 6 ⁇ nH 2 O was contained. The results of the investigation are shown in Table 4 as ⁇ for those whose presence and content were confirmed, and x for those whose presence was not confirmed (the presence or absence of crystal water is not shown in the table).
  • zinc hydroxide, sulfate, carbonate and water of crystallization are present in the same manner as in No. 27 to 29, 31 of Example 1, and Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) It can be seen that it contains a crystal structure represented by 6 ⁇ nH 2 O.
  • An electrogalvanizing treatment was applied to a cold-rolled steel plate having a thickness of 0.7 mm. Subsequently, a surface activation treatment with an alkaline aqueous solution was performed using an alkaline aqueous solution adjusted to the conditions shown in Table 5. Next, as a treatment for forming the oxide layer, the steel sheet was immersed in a sulfuric acid acidic solution adjusted to the conditions shown in Table 5, squeezed with a roll, and then held for a predetermined time shown in Table 5. Next, after sufficiently washing with water, it was dried. Subsequently, neutralization was performed under the conditions shown in Table 5. The sulfuric acid ion concentration in the sulfuric acid acidic solution was 15 g / L.
  • the thickness of the oxide layer on the surface of the hot-dip galvanized steel sheet obtained above was measured, and the details of the oxide layer, the press formability (sliding characteristics), and the degreasing property were the same as in Example 1. It was evaluated by. The results obtained above are shown in Table 6.
  • Tables 5 and 6 show the following matters. No. No film forming process was performed. In Comparative Example 1, the oxide layer thickness is 10 nm or less, and the press formability is inferior.
  • No. No. 2 is an example (comparative example) in which oxidation treatment and neutralization treatment are performed, but carbonate ions are not added to the neutralization treatment solution.
  • the press formability and appearance unevenness are good, but sufficient C is not contained in the oxide layer and the degreasing property is poor.
  • No. No. 3 is an oxidation treatment and neutralization treatment, but P ions are added to the neutralization treatment solution, but this is an insufficient example (comparative example) in that no carbonate ions are added. Sufficient C is not contained in the oxide layer, the degreasing property and the appearance unevenness are insufficient, and the press formability is not insufficient due to dissolution of the oxide film, but is low.
  • Examples 4 to 8 are invention examples in which oxidation treatment and neutralization treatment are performed, and the conditions are also in a suitable range. These contain sufficient Zn, S, and C in the oxide layer, are excellent in press moldability, and have good degreasing properties.
  • Examples 9 to 18 are invention examples in which activation treatment, oxidation treatment, and neutralization treatment are performed, and the conditions are also in a suitable range. These contain sufficient Zn, S, and C in the oxide layer, are excellent in press moldability, and have good degreasing properties.
  • Example 3 confirmation of the presence of zinc hydroxide, sulfate and carbonate in the same procedure as Example 1, and Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) It was investigated whether or not a crystal structure represented by 6 ⁇ nH 2 O was contained. The results of the investigation are shown in Table 6 as “O” for those whose presence and content were confirmed, and “X” for those whose presence was not confirmed (the presence or absence of crystal water is not shown in the table).
  • zinc hydroxide, sulfate, carbonate and water of crystallization are present in the same manner as in No. 27 to 29, 31 of Example 1, and Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) It can be seen that it contains a crystal structure represented by 6 ⁇ nH 2 O.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

 プレス成形時の摺動抵抗が小さく、過酷なアルカリ脱脂条件(温度が低く、ライン長が短い条件)においても優れた脱脂性を有し、形成された酸化物層の溶解が抑制され、洗浄処理によるムラの発生を抑制でき、且つ処理液に環境負荷物質を含まなくてもよい、亜鉛系めっき鋼板の製造方法を提供する。 表面に酸化物層を有する亜鉛系めっき鋼板の製造方法であって、亜鉛系めっき鋼板を、硫酸イオンを含有する酸性溶液に接触させた後1~60秒間保持し、その後水洗を行う酸化物層形成工程と、酸化物層形成工程で形成された酸化物層の表面を、アルカリ性水溶液に接触させた状態で0.5秒以上保持し、その後水洗、乾燥を行う中和処理工程と、を備え、アルカリ性水溶液として炭酸イオンを0.1g/L以上含有するものを用いる。

Description

亜鉛系めっき鋼板およびその製造方法
 本発明は、プレス成形における摺動性(slidability)および自動車の製造工程におけるアルカリ脱脂性(alkali degreasability)に優れた、亜鉛系めっき鋼板(galvanized steel sheet)およびその製造方法に関するものである。以降、「亜鉛系めっき鋼板(galvanized steel sheet)」とは、合金化亜鉛めっき鋼板(galvannealed steel sheet)をも含むものとして記載する。
 亜鉛系めっき鋼板は、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での亜鉛系めっき鋼板は、プレス成形(press forming)、塗装(paint)を施されて使用に供される。
 しかし、亜鉛系めっき鋼板は、冷延鋼板(cold-rolled steel)に比べてプレス成形性(press formability)が劣るという欠点を有する。これはプレス金型での亜鉛系めっき鋼板の摺動抵抗(sliding resistance)が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビード(bead)での摺動抵抗が大きい部分で亜鉛系めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
 亜鉛系めっき鋼板の使用時のプレス成形性を向上させる方法として、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、プレス成形時の油切れ(oil shortage)により、プレス性能が不安定になる等の問題がある。従って、亜鉛系めっき鋼板自身のプレス成形性が改善されることが強く要請されている。
 ところで、近年、生産工程の簡素化、生産工程における環境負荷物質の低減などが試みられている。特に、塗装工程の前処理である、アルカリ脱脂(alkali degreasing)工程のライン長の短縮化、アルカリ脱脂工程における作業環境の低温化が進んでいる。このような過酷な条件でも、塗装工程に悪影響を及ぼさない、優れた脱脂性を有する鋼板が求められている。
 上記の通り、自動車用の亜鉛系めっき鋼板として、優れたプレス成形性を有するとともに、従来よりも過酷なアルカリ脱脂条件下においても、優れた脱脂性を満足する鋼板が求められている。
 プレス成形性を改善させる方法としては、亜鉛系めっき鋼板の表面に潤滑皮膜(lubricant film)を形成する技術または酸化物層(oxide layer)を形成する技術が知られている。
 特許文献1は、亜鉛めっき鋼板(zinc coated steel sheet)の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことによって、Ni酸化物を生成させることにより、プレス成形性および化成処理性(chemical conversion ability)を向上させる技術を開示している。
 特許文献2、3は、合金化溶融亜鉛めっき鋼板(hot-dip galvannealed steel sheet)を酸性溶液に接触させることで鋼板表面にZn酸化物を主体とする酸化物層を形成させ、合金化溶融亜鉛めっき層(hot-dip galvannealed coating layer)とプレス金型の凝着を抑制し、摺動性を向上させる技術を開示している。
 脱脂性を改善させる方法としては、アルカリ性の溶液やP(リン)を含有する溶液で洗浄する技術が挙げられる。
 特許文献4には、酸化物層を有する合金化溶融亜鉛めっき鋼板の表面を、アルカリ性の溶液で洗浄することで、脱脂性を向上させる技術が記載されている。
 特許文献5には、酸化物層を有する合金化溶融亜鉛めっき鋼板の表面を、Pを含有する溶液で洗浄することで、脱脂性を向上させる技術が記載されている。
特開平03-191093号公報 特開2002-256448号公報 特開2003-306781号公報 特開2007-016266号公報 特開2007-016267号公報
 特許文献1~3に記載の技術では、含有する潤滑剤等または表面反応層による潤滑効果で、プレス金型と亜鉛系めっき鋼板との間の潤滑性が良くなる。しかし、これらの技術の脱脂性は要求特性を満足するものではない。
 特許文献4、5に記載の技術では、脱脂性改善効果が認められる。しかし、その効果は要求特性を満足するものではない。さらに、特許文献4、5に記載の技術では、形成した酸化物層がPイオンと反応し溶解してしまい、十分な摺動性を持つ亜鉛系めっき鋼板を得ることが困難である。加えて、特許文献4、5に記載の技術では、洗浄処理によるムラ(unevenness)が高い頻度で発生し、このムラ発生が歩留まりを低下させる原因となっている。またPイオンは環境負荷物質の1種であり使用しないことが望ましい。
 本発明は、かかる事情に鑑みてなされたものであって、プレス成形時の摺動抵抗が小さく、過酷なアルカリ脱脂条件(温度が低く、ライン長が短い条件)においても優れた脱脂性を有し、形成された酸化物層の溶解が抑制され、洗浄処理によるムラの発生を抑制でき、且つ処理液に環境負荷物質を含まなくてもよい、亜鉛系めっき鋼板およびその製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた。その結果、鋼板の表面に形成された酸化物層が、炭酸イオンを0.1g/L以上含有するアルカリ性水溶液を用いて中和処理した後に、測定した酸素強度をSiO被膜としての厚さに換算した値が20nm以上(酸化物層の厚みに相当)であり、Znを50mg/m以上、Sを5mg/m以上、Cを0.2mg/m以上含有することで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。
 (1)鋼板と、該鋼板上に形成された亜鉛系めっき層(galvanized coating layer)とを備え、前記めっき層は、表層に平均厚さ20nm以上の酸化物層を有し、前記酸化物層は、Zn、O、H、S、Cおよび不可避的不純物からなり、Znを50mg/m以上、Sを5mg/m以上、Cを0.2mg/m以上含有することを特徴とする亜鉛系めっき鋼板(galvanized steel sheet)。
 (2)前記酸化物層に、硫酸基、炭酸基及び水酸基が存在することを特徴とする(1)に記載の亜鉛系めっき鋼板。
 (3)前記酸化物層にZn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれることを特徴とする(1)または(2)に記載の亜鉛系めっき鋼板。
ここで、Xは0<X<1の実数、nは0≦n≦10の実数である。
 (4)亜鉛系めっき鋼板が、合金化溶融亜鉛めっき鋼板(hot-dip galvannealed steel sheet)、溶融亜鉛めっき鋼板(hot-dip galvanized steel sheet)又は電気亜鉛めっき鋼板(electrogalvanized steel sheet)であることを特徴とする(1)~(3)のいずれか1項に記載の亜鉛系めっき鋼板。
 (5)(1)~(4)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法であって、
 亜鉛系めっき鋼板を、0.3g/L以上の硫酸イオンを含有する酸性溶液に接触させた後1~60秒間保持し、その後水洗を行う酸化物層形成工程と、前記酸化物層形成工程で形成された酸化物層の表面を、pHが9~12のアルカリ性水溶液に接触させた状態で0.5秒以上保持し、その後水洗、乾燥を行う中和処理工程と、を備え、前記アルカリ性水溶液は炭酸イオンを0.1g/L以上含有することを特徴とする亜鉛系めっき鋼板の製造方法。
 (6)前記アルカリ性水溶液は、温度が20~70℃であることを特徴とする(5)に記載の亜鉛系めっき鋼板の製造方法。
 (7)前記酸性溶液は、pH緩衝作用を有し、1Lの前記酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/L水酸化ナトリウム溶液の量(L)で定義するpH上昇度が0.003~0.5の範囲にあることを特徴とする(5)または(6)に記載の亜鉛系めっき鋼板の製造方法。
 (8)前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、及びリン酸塩のうち少なくとも1種類の塩を合計で、5~50g/L含有し、pHが0.5~5.0、温度が20~70℃であることを特徴とする(5)~(7)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (9)前記酸化物層形成工程での、前記酸性溶液接触後の鋼板表面の前記酸性溶液付着量が15g/m以下であることを特徴とする(5)~(8)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (10)前記亜鉛系めっき鋼板が、合金化溶融亜鉛めっき鋼板であることを特徴とする(5)~(9)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (11)前記亜鉛系めっき鋼板が、溶融亜鉛めっき鋼板であることを特徴とする(5)~(9)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (12)前記亜鉛系めっき鋼板が、電気亜鉛めっき鋼板であることを特徴とする(5)~(9)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (13)前記酸化物層形成工程の前に、前記亜鉛系めっき鋼板表面を、アルカリ性の水溶液に接触させることにより、前記亜鉛系めっき鋼板の表面を活性化させることを特徴とする(5)~(12)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 (14)前記酸化物層形成工程の前に、前記亜鉛系めっき鋼板に調質圧延(temper rolling)を施すことを特徴とする(5)~(13)のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
 本発明によれば、プレス成形時の摺動抵抗が小さく、過酷なアルカリ脱脂条件においても優れた脱脂性を有する亜鉛系めっき鋼板が得られる。
 本発明によれば、亜鉛系めっき鋼板を製造する際の酸化物層形成工程で形成した酸化物層が、中和処理工程で溶解されにくい。その結果、本発明によれば、外観ムラの発生を抑えて亜鉛系めっき鋼板が得られる。
 また、本発明によれば、中和処理工程で用いる処理液が炭酸イオンを含むことで、Pイオン等の環境負荷物質を含まなくてもよい。
図1は、摩擦係数測定装置を示す概略正面図である。 図2は、実施例の条件1で使用したビードの形状・寸法を示す概略斜視図である。 図3は、実施例の条件2で使用したビードの形状・寸法を示す概略斜視図である。 図4は、実施例の条件3で使用したビードの形状・寸法を示す概略斜視図である。 図5は、外観ムラを評価するための評価基準を示した模式図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の亜鉛系めっき鋼板の製造方法とは、表面に酸化物層を有する亜鉛系めっき鋼板の製造方法であって、例えば、表面に酸化物層を有さない市販の亜鉛系めっき鋼板を原料として用いる場合には、酸化物層形成工程と、中和処理工程とを備える。なお、鋼板を原料とする場合には、酸化物層形成工程前に、亜鉛めっきを施す工程を備える必要がある。
 先ず、亜鉛めっきを施す工程について説明する。亜鉛めっきを施す工程とは、鋼板に亜鉛めっきを施す工程である。本工程に用いる鋼板の鋼種はとくに限定されるものではなく、低炭素鋼(low-carbon steel)、極低炭素鋼(ultralow-carbon steel)、IF鋼、各種合金元素を添加した高張力鋼板等の種々の鋼板を用いることができる。また、母材鋼板として、熱延鋼板、冷延鋼板のいずれも用いることができる。
 亜鉛めっきを施す工程において、亜鉛めっきを施す方法は特に限定されず、溶融亜鉛めっき(hot-dip galvanizing)、電気亜鉛めっき(electrogalvanizing)等の一般的な方法を採用可能である。また、電気亜鉛めっき、溶融亜鉛めっきの処理条件は、特に限定されず、適宜好ましい条件を採用すればよい。なお、溶融亜鉛めっき処理の場合、めっき浴中にAlが添加されていることがドロス対策になるという理由で好ましい。この場合Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。
 更には、亜鉛めっきを施す工程において、亜鉛めっきを施した後に、合金化処理(galvannealing)を施してもよい。本発明においては、合金化処理の条件は特に限定されず、適宜好ましい条件を採用すればよい。
 合金化溶融亜鉛めっき鋼板の場合、合金化溶融亜鉛めっき層の表面の平坦部(凹凸の凸部の頂面(top face))の面積率は、20~80%とするのが望ましい。上記面積率が20%未満では、平坦部を除く部分(凹部)でのプレス金型との接触面積が大きくなり、実際にプレス金型に接触する面積のうち、後述する酸化物層の厚さを確実に制御できる平坦部の面積率が小さくなる。その結果、プレス成形性の改善効果が小さくなる。また、平坦部を除く部分は、プレス成形時にプレス油を保持する役割を持つ。従って、平坦部の面積率が80%を超えると、合金化溶融亜鉛めっき鋼板のプレス成形時に油切れを起こしやすくなり、プレス成形性の改善効果が小さくなる。
 なお、合金化溶融亜鉛めっき層表面の平坦部は、光学顕微鏡あるいは走査型電子顕微鏡等で表面を観察することで容易に識別可能である。合金化溶融亜鉛めっき層表面における平坦部の面積率は、上記顕微鏡写真を画像解析することにより求めることができる。
 本発明では、市販の又は上記のようにして得られた亜鉛系めっき鋼板に対して酸化物層形成工程を施す前に調質圧延を行ってもよい。特に合金化溶融亜鉛めっき鋼板の場合、表面に調質圧延を施すことで、平坦化により表面の凹凸が緩和される。その結果、プレス成形時には、金型がめっき表面の凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。合金化処理時の鋼板-めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板表面には凹凸が存在する。このため、本発明の製造方法で製造される合金化溶融亜鉛めっき鋼板とプレス金型との間の摺動性を顕著に高めるために、鋼板に調質圧延を施すことが重要である。
 一方、溶融亜鉛めっき鋼板の場合、調質圧延前は、亜鉛の凝固組織で平滑であるため、油保持性が低く、型かじり(mold galling)を引き起こし易い。スキンパスロールと接触させて、一定の凹凸形状を付与することで、摺動時の金型との直接触が少なくなり、油保持性が向上する。
 電気亜鉛めっき鋼板の場合には、元々、表面にミクロな凹凸形状を有しているため、調質圧延を施す必要は無いが行っても構わない。
 また、本発明では、市販の又は上記のようにして得られた亜鉛系めっき鋼板に対して酸化物層形成工程を施す前に、アルカリ性の水溶液による活性化処理を行ってもよい。特に、従来から存在する溶融亜鉛めっき鋼板や電気亜鉛めっき鋼板は、最表層の厚さが10nmに満たない、Znや不純物元素であるAlなどの酸化物層(不要酸化物層)を有している。この不要酸化物層をアルカリ性の水溶液により除去することで、続く、酸化物層形成工程において、反応を促進させることができ、より短時間での酸化物層形成が可能となる。
 この活性化処理で用いるアルカリ性の水溶液は、pH10~14の範囲であることが好ましい。pH10未満では、上記不要酸化物層を除去しきれない場合があり、pH14を超えると、亜鉛系めっき層の溶解が強く、表面が黒くなり、焼きつき(burnt deposit)という状態になることがある。同様に、活性化処理に用いるアルカリ性の水溶液の温度は20℃~70℃の範囲であることが望ましい。アルカリ性の水溶液の種類は限定されないが、コストの観点からNaOHなどの薬品を用いることが好ましい。また、アルカリ性の水溶液には、Zn、Al、Feなどの亜鉛系めっきに含まれる元素以外の物質やその他の成分を含んでもよい。
 なお、調質圧延と、アルカリ性の水溶液による処理の両者を行う場合には、順序は特に限定されない。
 続いて行う酸化物層形成工程とは、亜鉛系めっき鋼板の表面を、硫酸を含む酸性溶液(硫酸は硫酸イオンの状態で酸性溶液中に存在する。また、以下、「硫酸酸性溶液」と標記する場合がある。)に接触させた後1~60秒間保持し、その後水洗を行う工程である。
 本工程で酸化物層が形成されるメカニズムについては明確ではないが、次のように考えることができる。上記鋼板を硫酸酸性溶液に接触させると、鋼板側からは亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生反応を生じるため、亜鉛の溶解が進行すると、溶液中の水素イオン濃度が減少し、その結果溶液のpHが上昇する。そして、上記鋼板表面にZnを主体とする酸化物層が形成すると考えられる。
 プレス成形時にプレス金型と接触する部分は、硬質且つ高融点の物質から構成されることが、亜鉛系めっき鋼板とプレス金型との凝着を防止して摺動性を向上させる観点から好ましい。酸化物層形成工程で形成される上記のような酸化物層は、硬質且つ高融点であるため、プレス金型との凝着を防止することができ、摺動特性の向上に有効である。特に、合金化溶融亜鉛めっきの場合、めっき層が硬質であるために、表面の変形量が少ないため、調質圧延が施された合金化溶融亜鉛めっき鋼鈑の表面平坦部に、均一に酸化物層を形成する処理を施すと良好な摺動性を安定的に得ることができる。
 一方、表面の変形量が大きい溶融亜鉛めっきや電気亜鉛めっきの場合には、平坦部や凹部に存在する酸化物層の総量が影響し、両方に均一に酸化物層を形成することが望ましい。
 また、プレス成形時には、酸化物層とプレス金型との接触により、酸化物層は磨耗し削り取られる。このため、酸化物層は、本発明の効果を害さない程度の厚みを有することが求められる。必要な厚みはプレス成形による加工の程度によって異なる。例えば、大きな変形を伴う加工やプレス金型と酸化物層との接触面積が大きい場合には、より厚みのある酸化物層が求められる。本発明においては、例えば、用途等に応じて、20~200nmの範囲で酸化物層の厚みを調整すればよい。酸化物層の平均厚さを20nm以上とすることにより、良好な摺動性を示す亜鉛系めっき鋼板が得られる。そして、酸化物層の厚さを20nm以上とするとより効果的である。これは、プレス金型と被加工物(亜鉛系めっき鋼板)の接触面積が大きくなるプレス成形加工において、表層の酸化物層が摩耗した場合でも、酸化物層が残存し、摺動性の低下を招くことがほとんどないためである。一方、酸化物層厚さの上限も特に限定されないが、上記厚さが200nmを超えると表面の反応性が極端に低下し、化成処理皮膜を形成するのが困難になる場合がある。このため、上記厚みは200nm以下とするのが望ましい。具体的な厚みの調整は、下記の酸化物層を形成する際の条件を適宜変更することで行えばよい。
 酸化物層形成工程は、具体的には、上記鋼板を硫酸酸性溶液と接触させ、所定時間保持した後、水洗、乾燥することによって行えばよい。具体的な、使用材料、製造条件は以下の通りである。
 酸化物層形成工程で使用する硫酸酸性溶液のpHは、亜鉛を溶解させ酸化物層を形成させられる程度であればよい。pHの調整には硫酸を用いる。硫酸を用いることで、硫酸酸性溶液は硫酸イオンを含む酸性溶液となる。硫酸酸性溶液中の硫酸イオン濃度は0.3~50g/Lであることが好ましい。硫酸イオン濃度が0.3g/L未満であると酸化物中の硫酸基の量が少なくなり、酸化物層中のS量が5mg/m未満となり、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が形成され難い。硫酸イオン濃度が50g/Lを超えて存在すると品質上の問題は無いがコスト上昇に繋がるため好ましくない。
 本発明においては、硫酸酸性溶液の中でもpH緩衝作用を持つ硫酸酸性溶液を使用することが好ましい。pH緩衝作用を有する硫酸酸性溶液は、pH緩衝作用を有さない硫酸酸性溶液と比較して、溶液のpHを瞬時に上昇させにくく、充分な量の酸化物層を形成させやすい。また、使用する硫酸酸性溶液がpH緩衝作用を有していれば、摺動性に優れる酸化物層を安定して形成できる。このため、溶液中に金属イオンや無機化合物などを不純物として、あるいは故意に含有していても本発明の効果が損なわれにくい。
 硫酸酸性溶液のpH緩衝作用は、1リットルの硫酸酸性溶液のpHを2.0から5.0まで上昇させるのに要する1.0mol/L水酸化ナトリウム水溶液の量(L)で定義するpH上昇度で評価できる。本発明においては、この値が0.003~0.5の範囲にあるとよい。pH上昇度が0.003未満であると、pHの上昇が速やかに起こって酸化物層の形成に十分な亜鉛の溶解が得られず十分な量の酸化物層の形成が生じない場合がある。一方で、pH上昇度が0.5を超えると、亜鉛の溶解が促進され過ぎる場合があったり、酸化物層の形成に長時間を要する場合があったり、めっき層の損傷が激しくなる場合があったりして、本来の防錆鋼板としての役割も失う場合が考えられる。ここで、pHが2.0を超える硫酸酸性溶液のpH上昇度は、硫酸などのpH=2.0~5.0の範囲でほとんど緩衝性を有しない無機酸を硫酸酸性溶液に添加してpHを一旦2.0に低下させて評価することとする。
 このようなpH緩衝作用を有する硫酸酸性溶液としては、酢酸ナトリウム(CHCOONa)などの酢酸塩、フタル酸水素カリウム((KOOC)C(COOH))などのフタル酸塩、クエン酸ナトリウム(Na)やクエン酸二水素カリウム(KH)などのクエン酸塩、コハク酸ナトリウム(Na)などのコハク酸塩、乳酸ナトリウム(CHCHOHCONa)などの乳酸塩、酒石酸ナトリウム(Na)などの酒石酸塩、ホウ酸塩、リン酸塩のうち少なくとも1種類を合計で、5~50g/Lの範囲で含有する水溶液が挙げられる。濃度が5g/L未満であると、亜鉛の溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができない。また、濃度が50g/Lを超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割を失う場合がある。
 また、上記のような硫酸酸性溶液は、pHが0.5~5.0であることが好ましい。硫酸酸性溶液のpHが低すぎると、亜鉛の溶解は促進されるが、酸化物層が生成しにくくなる場合がある。このため硫酸酸性溶液のpHは0.5以上であることが望ましい。一方、pHが高すぎると亜鉛溶解の反応速度が低くなる場合があるため、硫酸酸性溶液のpHは5.0以下であることが望ましい。
 また、硫酸酸性溶液の液温は20~70℃であることが好ましい。これは上記液温が20℃未満であると、酸化物層の生成反応に長時間を要する場合があり、生産性の低下を招くおそれがあるためである。一方、上記液温が70℃超えでは、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなる。
 上記鋼板を上記硫酸酸性溶液に接触させる方法には特に制限はなく、上記鋼板を硫酸酸性溶液に浸漬する方法、上記鋼板に硫酸酸性溶液をスプレーする方法、塗布ロールを介して硫酸酸性溶液を上記鋼板に塗布する方法等がある。本発明においては、上記亜鉛系めっき鋼板上に上記硫酸酸性溶液を接触させたときに、薄い液膜状の硫酸酸性溶液膜を鋼板表面に存在させられることが望ましい。鋼板表面に存在する硫酸酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇しにくく、次々と亜鉛の溶解が生じる可能性があり、酸化物層を形成するまでに長時間かかる場合がある。また、鋼板表面に存在する硫酸酸性溶液の量が多いと、合金化溶融亜鉛めっき層の損傷も激しくなる場合があると考えられ、本来の防錆鋼板としての役割を失う場合もある。この観点から、硫酸酸性溶液の付着量は、15g/m以下に調整すると有効である。また液膜の乾燥を防ぐ観点から1g/m以上が好ましい。付着量の調整は、絞りロール、エアワイピング等で行うことができる。硫酸酸性溶液の付着量は株式会社チノー製赤外線水分計(CHINO CORPORATION infrared moisture gauge)を用いて測定することが可能である。付着量の上限は、酸化物層の所望厚み条件等に応じて適宜設定される。
 また、酸洗溶液に接触後、水洗までの時間(水洗までの保持時間)は、1~60秒間必要である。水洗までの時間が1秒未満であると、溶液のpH上昇によりZnを主体とする酸化物層が形成される前に、硫酸酸性溶液が洗い流されるため、摺動性の向上効果が得られない。また、水洗までの時間が60秒を超えても、酸化物層の量に変化が見られない。また、上記保持は、大気中より酸素を多く含む雰囲気で行うことが酸化を促進するという理由で好ましい。
 酸化物層形成工程の最後に水洗を行う。ここで、水洗を行わない場合、酸性処理液中に存在するpH緩衝作用を有する塩が、この後に続く中和処理工程で炭酸イオンを含有するpH9-12のアルカリ性水溶液との反応を阻害することがある。特に、十分な炭酸イオンを取り込むことができず、脱脂性や、一部の摺動特性の低下を招く懸念があるため、1秒以上の十分な水洗を行うことが好ましい。
 続いて行う中和処理工程とは、酸化物層形成工程で形成された酸化物層の表面を、アルカリ性水溶液に接触させた状態で0.5秒以上保持し、その後水洗、乾燥を行う工程である。本発明においては、アルカリ性水溶液として、炭酸イオンを含有するアルカリ性水溶液を用いる。
 炭酸イオンを含有するアルカリ性水溶液を酸化物層に接触させることで、温度が低く、ライン長が短いため処理時間が短い過酷なアリカリ脱脂条件においても、亜鉛系めっき鋼板は優れた脱脂性を発現することが可能である。ここで、温度が低いとは例えば温度が35~40℃であることを指す。また、ライン長が短く処理時間が短いとは処理時間が60~90秒であることを指す。
 この脱脂性改善メカニズムについては明確ではないが、次のように考えることができる。硫酸酸性溶液が水洗、乾燥後の酸化物層表面に残存すると、表面のエッチング量が増加し、ミクロ的な凹凸が生成され、酸化物層表面と油との親和性が強くなる。アルカリ性水溶液で洗浄し完全に中和することで、表面に硫酸酸性溶液が残存することを防ぐ。ここで炭酸イオンが存在すると、酸化物層内に炭酸イオンが取り込まれ、結晶構造を変化させる。同時に、物性も変化し、酸化物層と油との親和力が劇的に低下し、脱脂性が大きくに向上する。さらに、炭酸イオンが取り込まれた酸化皮膜層は、中和処理工程において、溶解反応しにくい。したがって、Pイオンを含まなくてもよい本発明では、Pイオンを使用した場合に生じる酸化物層とPイオンの反応が無く、酸化物層厚さに差が生じることで発生していた、外観ムラ、プレス成形の安定性の低下等の問題を解決することができる。
 中和処理工程で用いる材料、中和処理条件は以下の通りである。
 本発明においてアルカリ性水溶液中の炭酸イオンの濃度は0.1g/L以上であることが、炭酸イオンを用いる目的の観点から必要である。また、上記濃度は0.1g/L~100g/Lの範囲にあることが好ましい。0.1g/L未満であると、酸化物層への炭酸イオンの取り込みが不十分となり、物性を十分に変化させることができないと考えられる。また、生産コストの観点から炭酸イオン濃度は100g/L以下が望ましい。
 また、炭酸イオンのもととなる物質については特に限定されない。例えば、二酸化炭素の吹き込み、炭酸ナトリウム、炭酸水素ナトリウム、炭酸マンガン、炭酸ニッケル、炭酸カリウム及びその水和物を炭酸イオン源として用いることができる。上記例示される二酸化炭素及び炭酸塩の使用はコストおよび調達の観点から好ましい。
 炭酸イオン以外の成分が、本発明の効果を害さない範囲で含まれていてもよい。例えば、S、N、B、Cl、Na、Zn、Al、Ca、K、Mg、Fe、Mn、Si等が含まれていてもよい。これらの成分は合計で、0~10g/Lの範囲であることが好ましい。
 上記アルカリ性水溶液のpHは9~12である。pHが9以上であれば充分に中和処理を行える。また、pHが12以下であれば酸化物層の溶解を防止しやすい。
 中和処理を行う際の上記アルカリ性水溶液の液温は特に限定されない。本発明においては上記液温が20~70℃であることが好ましい。液温が20℃以上であれば反応速度増加という理由で好ましく、液温が70℃以下であれば酸化皮膜溶解の抑制という理由で好ましい。
 アルカリ性水溶液を酸化物層に接触させる方法は特に限定されない。例えば、アルカリ性水溶液に酸化物層を浸漬させて接触させる方法、アルカリ性水溶液を酸化物層にスプレーして接触させる方法、塗布ロールを用いて酸化物層上にアルカリ性水溶液を塗布する方法等がある。
 本発明においては、アルカリ性水溶液を酸化物層に接触させる時間を0.5秒以上に設定する。0.5秒以上に設定することで、亜鉛系めっき鋼板に優れた脱脂性を付与できる。また、処理設備長の観点から10秒以下が好ましい。
 続いて、本発明の亜鉛系めっき鋼板の構成について説明する。
 酸化物層は、Zn、O、H、S、Cおよび不可避的不純物からなり、Znを50mg/m以上、Sを5mg/m以上、Cを0.2mg/m以上含有する。
 Zn含有量が50mg/m以上であることとS含有量が5mg/m以上であることは、摺動性の観点から必要である。また、Zn含有量が1000mg/m以下であることとS含有量が100mg/m以下であることが溶接性や化成処理性の観点から好ましい。また、Zn含有量及びS含有量を上記範囲にするためには亜鉛めっき鋼板を硫酸酸性処理液(酸性溶液)と接触させた後1~60秒間保持しその後水洗を行う、という製造条件を採用する。
 C含有量が0.2mg/m以上であることは、脱脂性、外観ムラ、プレス成形の安定性の観点から必要である。また、C含有量が40mg/m以下であることが溶接性や化成処理性の観点から好ましい。
 また、酸化物層にはHが含有される。Hについては定量的に分析することが困難であるが、X線光電子分光装置(X-ray photoelectron spectrometer)を用いて、Znの存在形態について分析することで、Hの存在を確認することができる。ZnがZn(OH)2として存在する場合、Al Ka モノクロ線源を使用し、Zn LMMに相当するスペクトルのナロースキャン測定(narrow scan measurement)を実施すると、ピークが987eV付近に観察される。これにより、Hの存在及びOH基の存在を確認することができる。Hの量については特に規定は無いが、OHとして存在することから、酸素量の増加に伴い、増加するものと考えられる。
 また、酸化物層中に、硫酸基、炭酸基、及び水酸基が存在することが皮膜安定性の観点で好ましい。また、亜鉛めっき鋼板を硫酸酸性処理液と接触させた後1~60秒間保持しその後水洗を行い、炭酸イオンを含有するアルカリ性水溶液と接触させるという製造条件を採用すれば、酸化物層中に硫酸基、炭酸基及び水酸基を存在させられる。
 また、酸化物層にZn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれることが好ましい。ここで、Xは0<X<1の実数、nは0≦n≦10の実数である。上記結晶構造物が含まれることで層状結晶のすべり変形による摺動特性の向上という効果が得られる。また、上記効果を得る観点から、上記結晶構造物の含有量は、後述する実施例で確認できる程度であることが好ましい。これは特に初期のすべり変形能の向上に寄与し静止摩擦係数等で影響が大きい。なお、亜鉛めっき鋼板を硫酸酸性処理液と接触させた後1~60秒間保持しその後水洗を行い、炭酸イオンを含有するアルカリ性水溶液と接触させるという製造条件を採用すれば、酸化物層にZn(SO1-X(CO(OH)・nHOで表される結晶構造物を含有させることができる。
 また、上記酸化物層には、Zn以外の金属酸化物及び/又は水酸化物やその他の成分を含んでもよい。硫酸酸性溶液中に不純物が含まれる等によりS、N、P、B、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどが酸化物層中に取り込まれる場合がある。
 本発明で形成した酸化物層は下記の方法で分析することが可能である。
 酸化物層の厚さについては、蛍光X線分析(fluorescent X-ray analysis)を用いて測定し、得られた酸素強度を、厚さが既知である酸化シリコン皮膜を形成したシリコンウエハーの値を基準として、シリカ膜厚に換算し測定することができる。
 酸化物層に含まれる、Zn、Sやその他の金属イオンについては、重クロム酸アンモニウム2%+アンモニア水14%溶液(%は質量%を意味する)で、酸化物層を溶解した溶液を、ICP発光分析装置(ICP emission spectrometry)を用いて分析することで定量することが可能である。酸化物層に含まれる、Cについては、酸化物層を直径0.2mm以下、長さ40mm以上のステンレスブラシとエタノールを用いて表面をこすり、得られたエタノール液を吸引ろ過することで、皮膜成分を粉末成分として抽出するこが可能であり、これを、ガスクロマトグラフ質量分析計(gas chromatograph mass spectrometer)を用いて昇温分析することで定量するこが可能である。
 Cの存在形態については、同様に粉末化した酸化物層成分を、ガスクロマトブラフ質量分析を用いて分析することが可能である。
 結晶水については、同様に粉末化した酸化物層成分を、示差熱天秤(differential thermogravimetric analyzer)を用いて分析することが可能であり100℃以下の重量減少が結晶水に相当する。なお、結晶水とは結晶内に取り込まれた水分子を意味する。
 S、ZnやOの存在形態はX線光電子分光装置を用いて分析することが可能である。
 さらに結晶構造については、X線回折から得られた酸化物層の回折ピークを基に結晶構造を特定することが可能である。
 以下、実施例により本発明を説明する。なお、本発明は以下の実施例に限定されない。
 板厚0.7mmの冷延鋼板に対して、溶融亜鉛めっき処理及び合金化処理を施した。その後、上記処理後の鋼板に対して調質圧延を行った。引き続き、酸化物層の形成処理として、表1(表1-1と表1-2を合わせて表1とする。)に示す条件に調整した硫酸酸性溶液に鋼板を浸漬し、ロールで絞った後、表1に示す所定時間保持した。次に、十分水洗を行った後、乾燥した。引き続き表1に示す条件で中和処理を行った。
 ここで、表1のNo.2~8、No.19~38、No48~55の硫酸イオン濃度は15g/Lであった。No.9~18、41~47の硫酸イオン濃度も0.5~30g/Lであった。No39~40の硫酸イオン濃度は0g/Lであった。
 上記により得られた合金化溶融亜鉛めっき鋼板に対して、表面の酸化物層の厚み及び詳細を測定し、プレス成形性(摺動特性)、脱脂性および外観ムラを評価した。評価方法を以下に示す。
 (1)酸化物層の分析
 酸化物層の厚さの測定
 合金化溶融亜鉛めっき鋼板に形成された酸化物層の厚さの測定には蛍光X線分析装置を使用した。測定時の管球(tube bulb)の電圧および電流は30kVおよび100mAとし、分光結晶(dispersive crystal)はTAPに設定してO-Kα線を検出した。O-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。
 また、試料ステージには、これら一連の試料と一緒に、適当な大きさに劈開した膜厚96nm、54nmおよび24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これらの酸化シリコン皮膜からもO-Kα線の強度を算出できるようにした。これらのデータを用いて酸化物層厚さとO-Kα線強度との検量線を作成し、供試材の酸化物層の厚さを酸化シリコン皮膜換算での酸化物層厚さとして算出するようにした。
 酸化物層の組成分析
 重クロム酸アンモニウム2%+アンモニア水14%溶液(%は質量%を意味する)を用いて、酸化物層のみを溶解し、その溶液を、ICP発光分析装置を用いて、Zn、Sの定量分析を実施した。
 酸化物層を直径0.15mm、長さ45mmのステンレスブラシとエタノールを用いて表面をこすり、得られたエタノール液を吸引ろ過することで、皮膜成分を粉末成分として抽出した。粉末として採取した皮膜成分を、ガスクロマトグラフ質量分析計を用いて昇温分析することでCの定量分析を実施した。ガスクロマトグラフ質量分析計の前段に熱分解炉を接続した。熱分解炉内に採取した粉末試料を約2mg挿入し、熱分解炉の温度を30℃から500℃まで、昇温速度5℃/minで昇温させた、熱分解炉内で発生するガスをヘリウムでガスクロマトグラフ質量分析計内に搬送し、ガス組成を分析した。GC/MS測定時のカラム温度は300℃に設定した。
 Cの存在形態
 同様に粉末化し採取した皮膜成分、ガスクロマトブラフ質量分析を用いて分析しCの存在形態について分析を実施した。
 Zn、S、Oの存在形態
 X線光電子分光装置を用いて、Zn、S、Oの存在形態について分析した。Al Ka モノクロ線源を使用し、Zn LMM, S 2pに相当するスペクトルのナロースキャン測定(narrow scan measurement)を実施した。
 結晶水の定量

 示差熱天秤を用いて100℃以下の重量減少量を測定した。測定には粉末試料は約15mgを用いた。試料を装置内に導入後、室温(約25℃)から1000℃まで、昇温速度10℃/minで昇温させ、昇温時の熱重量変化を記録した。
 結晶構造の特定
 同様に粉末化し採取した皮膜成分のX線回折を実施し、結晶構造を推定した。ターゲットにはCuを用い、加速電圧40kV、管電流(tube current)50mA、スキャン速度4deg/min、スキャン範囲2~90°の条件で測定を実施した。
 (2)プレス成形性(摺動特性)の評価方法
 プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
 (i)動摩擦係数測定試験:絞り・流入部を想定
 図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させることで生じる摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学工業(株)製のプレス用洗浄油プレトンR352L(Sugimura Chemical Industrial Co.,Ltd. Wash Oil for Press Forming PRETON R352L)を試料1の表面に塗布して試験を行った。
 図2、図3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ5mm、摺動方向両端の下部は曲率1mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。
 摩擦係数測定試験は以下に示す2条件で行った。
[条件1]
 図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
[条件2]
 図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。
 供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
 (ii)静止摩擦係数測定試験:張り出し部(stretch-formed part)を想定
 プレス成形シミュレーションを行った結果、面圧が7MPa以下で摺動速度が50mm/min以下の部位(張り出し成形部位など)においては、動摩擦係数より、静止摩擦係数のほうが、実際のプレス成形性との相関性が高いことが明らかになった。そこで、プレス成形性(特に張り出し部における成形性)を評価するために、各供試材の静止摩擦係数を以下のようにして測定した。図4は、試験装置10を用いた静止摩擦係数測定装置を示す概略図である。同図に示すように、供試材から採取した動摩擦係数測定用試料100を一定荷重P=370kgfで金型11、12を押し付けてから10mm/minの速度で、金型11、12で侠持されているサンプル100を引き抜く。これにより、一定荷重Pとサンプル100の引き抜きに必要な荷重Fを0.005Hzの間隔で測定した。静止摩擦係数μは、式:μ=F’/Pで算出し、摺動開始後のピーク値の摩擦係数を静止摩擦係数として取得した。なお、金型11の形状は幅35mm、試料の摺動方向長さ14mm、摺動方向両端の下部は曲率2mmRの曲面で構成され、試料が押し付けられるビード下面は幅35mm、摺動方向長さ10mmの平面を有する。金型12の形状は幅35mm、試料の摺動方向長さ24mm、摺動方向両端の下部は曲率2mmRの曲面で構成され、試料が押し付けられるビード下面は幅35mm、摺動方向長さ20mmの平面を有する(以下条件3)。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトン(登録商標)R352Lを試料100の表面に塗布して試験を行った。
 (3)脱脂性の評価方法
 脱脂性の評価は、脱脂後の水濡れ率で行った。作成した試験片に、スギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを片面2.0g/m塗油したのち、日本パーカライジング(株)製(NIHON PARKERIZING CO.,LTD.)のFC-L4460のアルカリ脱脂液を用いてサンプルの脱脂を行った。脱脂液にスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを10g/Lを予め添加することで自動車生産ラインにおけるアルカリ脱脂液の劣化をシミュレートした。ここで、脱脂時間は60秒とし、温度は37℃とした。脱脂時は、直径10cmのプロペラを用いて150rpmの速度で脱脂液を攪拌した。脱脂完了から20秒後の試験片の水濡れ率を測定することで、脱脂性の評価を行った。
 (4)外観ムラの評価
 外観ムラは目視により評価した。図5に示す外観見本を基準として、評点を1~5点を付与し評価した。なお4点以上が良好であることを示し、5点は更に良好であることを示している。
評点1:面積率が50%以上の明確なムラが存在する。
評点2:面積率が50%以上であるが、ムラは明確ではない。
評点3:面積率が20%以上の明確なムラが存在する。
評点4:面積率が20以上であるが、明確ではないムラが存在する。
評点5:目視で確認できるムラは存在しない。
 以上より得られた結果を表2(表2-1と表2-2を合わせて表2とする)に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1、2より以下の事項がわかる。
 成膜処理を行わなかったNo.1の比較例は、酸化物層厚が10nm未満でありプレス成形性に劣る。No.2は酸化処理、中和処理を実施しているが、中和処理液中に炭酸イオンが添加されていないという点で不十分な例(比較例)である。酸化物層中のC付着量が不足しており、一部のプレス成形性、外観は良好であるが、一部のプレス成形性が不十分であり脱脂性に劣る。
 No.3は酸化処理、中和処理を実施しているが、中和処理液中にPイオンが添加されているが、炭酸イオンが添加されていないという点で不十分な例(比較例)である。酸化物層中のC付着量が不足しており、脱脂性、外観ムラが不十分であり、酸化膜の溶解により一部のプレス成形性が不十分ではないが低下している。一部のプレス成形性は不十分である。
 No.26は中和処理液中に炭酸イオンが充分に添加されていないという点で不十分な例(比較例)である。酸化物層中のC付着量が不足しており、一部のプレス成形性は良好であるが、一部のプレス成形性、脱脂性、外観ムラも不十分である。
 No.39、40は酸化物層の形成処理液中に硫酸イオンが十分に存在していないという点で不十分な例(比較例)である。一部のプレス成形性は良好であるが、酸化物層中にS,Cが含まれず、一部のプレス成形性、脱脂性、外観ムラも不十分である。
 No.52~54は中和処理液中に炭酸イオンが十分に存在しているがpHがpH9~12の範囲外であるといという点で不十分な例(比較例)である。一部のプレス成形性は良好であるが、酸化物層中に十分なCが含まれず、一部のプレス成形性、脱脂性が不十分である。
 No.55は酸化物形成処理と中和処理の間で水洗(酸化物層形成工程における水洗)を実施しない比較例である。皮膜中に十分なCを取り込むことができず、一部のプレス成形性は良好であるが、一部のプレス成形性、脱脂性が不十分である。
 No.4~25、27~38、41~51は酸化物層形成処理、中和処理を行い、その条件も好適な範囲である、発明例である。酸化物層に十分なZn,S,Cが含まれ、全ての条件で、プレス成形性に優れ、脱脂性も良好であり、外観ムラも評点4以上である。
 No.27について詳細な皮膜分析を行った。
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。
 同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。
 示差熱天秤の結果から、100℃以下に11.2%の重量減少が認められ、結晶水を含有していることが分かった。
 X線回折の結果、2θが8.5°、15.0°、17.4°、21.3°、23.2°、26.3°、27.7°、28.7°、32.8°、34.1°、58.6°、59.4°付近に回折ピークが観察された。
 以上の結果と組成比率、電荷バランスから、Zn(SO0.95(CO0.05(OH)・3.3HOで示される結晶構造物質を含有していることが分かる。
 No.28について詳細な皮膜分析を行った。
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。
 同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。
 示差熱天秤の結果から、100℃以下に9.4%の重量減少が認められ、結晶水を含有していることが分かった。
 X線回折の結果、2θが8.8°、15.0°、17.9°、21.3°、23.2°、27.0°、29.2°、32.9°、34.7°、58.9°付近に回折ピークが観察された。
 以上の結果と組成比率,電荷バランスから,Zn(SO0.8(CO0.2(OH)・2.7HOで示される結晶構造物質を含有していることが分かる。
 No.29について詳細な皮膜分析を行った。
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。
 同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。
 示差熱天秤の結果から、100℃以下に35.5%の重量減少が認められ、結晶水を含有していることが分かった。
 X線回折の結果、2θが8.9°、15.0°、18.3°、21.3°、23.2°、27.4°、29.5°、32.9°、34.7°、58.9°付近に回折ピークが観察された。
 以上の結果と組成比率,電荷バランスから,Zn(SO0.75(CO0.25(OH)・10.0HOで示される結晶構造物質を含有していることが分かる。
 No.30について詳細な皮膜分析を行った。
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。
 同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。
 示差熱天秤の結果から、100℃以下に大きな重量減少が認められず、結晶水を含有していないことが分かった。
 X線回折の結果、2θが8.9°、15.0°、18.3°、21.3°、23.2°、27.4°、29.5°、32.9°、34.7°、58.9°付近に回折ピークが観察された。
 以上の結果と組成比率,電荷バランスから,Zn(SO0.7(CO0.3(OH)で示される結晶構造物質を含有していることが分かる。
 No.31について詳細な皮膜分析を行った。
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。
 同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。
 示差熱天秤の結果から、100℃以下に18.6%の重量減少が認められ、結晶水を含有していることが分かった。
 X線回折の結果、2θが9.1°、15.0°、18.4°、21.3°、23.2°、27.7°、29.7°、32.9°、34.7°、58.9°付近に回折ピークが観察された。
 以上の結果と組成比率,電荷バランスから,Zn(SO0.6(CO0.4(OH)・5.0HOで示される結晶構造物質を含有していることが分かる。
 他の、実施例についても、同様の手順で水酸化亜鉛、硫酸塩、炭酸塩の存在の確認と、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有するかどうかについて調査した。存在、及び含有が確認されたものについては○、確認されなかったものには×として、調査した結果を表2中に示した(結晶水の有無については表には示していない)。本発明例は、No27~29、31と同様に、水酸化亜鉛、硫酸塩、炭酸塩、結晶水が存在し、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有していることがわかる。
 板厚0.7mmの冷延鋼板に溶融亜鉛めっき処理を施した。上記処理後の鋼板に対して調質圧延を行った。引き続き、アルカリ性の水溶液による表面活性化処理を表3に示す条件に調整したアルカリ性の水溶液を用いて行った。次いで、反応層の形成処理として、表3に示す条件に調整した硫酸酸性溶液に鋼板を浸漬し、ロールで絞った後、表3に示す所定時間保持した。次に、十分水洗を行った後、乾燥した。引き続き表3に示す条件で中和処理を行った。硫酸酸性溶液中の硫酸イオン濃度は15g/Lであった。
 上記により得られた溶融亜鉛めっき鋼板に対して表面の酸化物層の厚みを測定するとともに、酸化物層の詳細、プレス成形性(摺動特性)、脱脂性及び外観ムラを上記実施例1と同様の手順により評価した。
 以上より得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3、4より以下の事項がわかる。成膜処理を行わなかったNo.1の比較例は、酸化物層厚が10nm未満でありプレス成形性に劣る。
 No.2は酸化処理、中和処理を実施しているが、中和処理液中に炭酸イオンが添加されていない点で不十分な例(比較例)である。一部のプレス成形性、外観ムラは良好であるが、酸化物層中に十分なCが含まれず、脱脂性に劣る。
 No.3は酸化処理、中和処理を実施しているが、中和処理液中にPイオンが添加されているが、炭酸イオンが添加されていない点で不十分な例(比較例)である。酸化物層中に十分なCが含まれず、脱脂性、外観ムラが不十分であり、酸化膜の溶解によりプレス成形性が不十分ではないが低い。
 No.4~8は酸化処理、中和処理を行い、その条件も好適な範囲である、発明例である。これらは、酸化物層に十分なZn、S、Cが含まれ、プレス成形性に優れ、脱脂性、外観ムラも良好である。
 No.9~18は活性化処理、酸化処理、中和処理を行い、その条件も好適な範囲である、発明例である。これらは、酸化物層に十分なZn、S、Cが含まれ、プレス成形性に優れ、脱脂性、外観ムラも良好である。
 実施例2の全ての実施例について、実施例1と同様の手順で水酸化亜鉛、硫酸塩、炭酸塩の存在の確認と、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有するかどうかについて調査した。存在、及び含有が確認されたものについては○,確認されなかったものには×として、調査した結果を表4中に示した(結晶水の有無については表には示していない)。本発明例は、実施例1のNo27~29、31と同様に、水酸化亜鉛、硫酸塩、炭酸塩、結晶水が存在し、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有していることがわかる。
 板厚0.7mmの冷延鋼板に電気亜鉛めっき処理を施した。引き続き、アルカリ水溶液による表面活性化処理を、表5に示す条件に調整したアルカリ性の水溶液を用いて行った。次いで酸化物層の形成処理として、表5に示す条件に調整した硫酸酸性溶液に鋼板を浸漬し、ロールで絞った後、表5に示す所定時間保持した。次に、十分水洗を行った後、乾燥した。引き続き表5に示す条件で中和処理を行った。硫酸酸性溶液中の硫酸イオン濃度は15g/Lであった。
 上記により得られた溶融亜鉛めっき鋼板に対して表面の酸化物層の厚みを測定するとともに、酸化物層の詳細、プレス成形性(摺動特性)および脱脂性を前記実施例1と同様の手順により評価した。以上より得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表5、6より以下の事項がわかる。成膜処理を行わなかったNo.1の比較例は、酸化物層厚が10nm以下でありプレス成形性に劣る。
 No.2は酸化処理、中和処理を実施しているが、中和処理液中に炭酸イオンが添加されていない点で不十分な例(比較例)である。プレス成形性、外観ムラは良好であるが、酸化物層中に十分なCが含まれず、脱脂性に劣る。
 No.3は酸化処理、中和処理を実施しているが、中和処理液中にPイオンは添加されているが、炭酸イオンが添加されていない点で不十分な例(比較例)である。酸化物層中に十分なCが含まれず、脱脂性、外観ムラが不十分であり、酸化膜の溶解によりプレス成形性は不十分ではないが低い。
 No.4~8は酸化処理、中和処理を行い、その条件も好適な範囲である、発明例である。これらは、酸化物層に十分なZn、S、Cが含まれ、プレス成形性に優れ、脱脂性も良好である。
 No.9~18は活性化処理、酸化処理、中和処理を行い、その条件も好適な範囲である、発明例である。これらは、酸化物層に十分なZn、S、Cが含まれ、プレス成形性に優れ、脱脂性も良好である。
 実施例3の全ての実施例について、実施例1と同様の手順で水酸化亜鉛、硫酸塩、炭酸塩の存在の確認と、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有するかどうかについて調査した。存在、及び含有が確認されたものについては○、確認されなかったものには×として、調査した結果を表6中に示した(結晶水の有無については表には示していない)。本発明例は、実施例1のNo27~29、31と同様に、水酸化亜鉛、硫酸塩、炭酸塩、結晶水が存在し、Zn(SO1-X(CO(OH)・nHOで示される結晶構造物を含有していることがわかる。
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
10 静止摩擦係数測定装置
11 金型
12 金型
100 摩擦係数測定用資料
P 押付荷重
F’ 引き抜き荷重

Claims (14)

  1.  鋼板と、該鋼板上に形成された亜鉛系めっき層とを備え、
     前記めっき層は、表層に平均厚さ20nm以上の酸化物層を有し、
     前記酸化物層は、Zn、O、H、S、Cおよび不可避的不純物からなり、Znを50mg/m以上、Sを5mg/m以上、Cを0.2mg/m以上含有することを特徴とする亜鉛系めっき鋼板。
  2.  前記酸化物層に、硫酸基、炭酸基及び水酸基が存在することを特徴とする請求項1に記載の亜鉛系めっき鋼板。
  3.  前記酸化物層にZn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれることを特徴とする請求項1または2に記載の亜鉛系めっき鋼板。
    ここで、Xは0<X<1の実数、nは0≦n≦10の実数である。
  4.  亜鉛系めっき鋼板が、合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板又は電気亜鉛めっき鋼板であることを特徴とする請求項1~3のいずれか1項に記載の亜鉛系めっき鋼板。
  5.  請求項1~4のいずれか1項に記載の亜鉛系めっき鋼板の製造方法であって、
     亜鉛系めっき鋼板を、0.3g/L以上の硫酸イオンを含有する酸性溶液に接触させた後1~60秒間保持し、その後水洗を行う酸化物層形成工程と、
     前記酸化物層形成工程で形成された酸化物層の表面を、pHが9~12のアルカリ性水溶液に接触させた状態で0.5秒以上保持し、その後水洗、乾燥を行う中和処理工程と、を備え、
     前記アルカリ性水溶液は炭酸イオンを0.1g/L以上含有することを特徴とする亜鉛系めっき鋼板の製造方法。
  6.  前記アルカリ性水溶液は、温度が20~70℃であることを特徴とする請求項5に記載の亜鉛系めっき鋼板の製造方法。
  7.  前記酸性溶液は、pH緩衝作用を有し、1Lの前記酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/L水酸化ナトリウム溶液の量(L)で定義するpH上昇度が0.003~0.5の範囲にあることを特徴とする請求項5または6に記載の亜鉛系めっき鋼板の製造方法。
  8.  前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、及びリン酸塩のうち少なくとも1種類の塩を合計で、5~50g/L含有し、pHが0.5~5.0、温度が20~70℃であることを特徴とする請求項5~7のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  9.  前記酸化物層形成工程での、前記酸性溶液接触後の鋼板表面の前記酸性溶液付着量が15g/m以下であることを特徴とする請求項5~8のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  10.  前記亜鉛系めっき鋼板が、合金化溶融亜鉛めっき鋼板であることを特徴とする請求項5~9のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  11.  前記亜鉛系めっき鋼板が、溶融亜鉛めっき鋼板であることを特徴とする請求項5~9のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  12.  前記亜鉛系めっき鋼板が、電気亜鉛めっき鋼板であることを特徴とする請求項5~9のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  13.  前記酸化物層形成工程の前に、前記亜鉛系めっき鋼板表面を、アルカリ性の水溶液に接触させることにより、前記亜鉛系めっき鋼板の表面を活性化させることを特徴とする請求項5~12のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
  14.  前記酸化物層形成工程の前に、前記亜鉛系めっき鋼板に調質圧延を施すことを特徴とする請求項5~13のいずれか1項に記載の亜鉛系めっき鋼板の製造方法。
PCT/JP2015/001054 2014-02-27 2015-02-27 亜鉛系めっき鋼板およびその製造方法 WO2015129283A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015530216A JP5884206B2 (ja) 2014-02-27 2015-02-27 亜鉛系めっき鋼板およびその製造方法
EP15755178.9A EP3112500B1 (en) 2014-02-27 2015-02-27 Galvanized steel sheet and method for manufacturing same
US15/122,036 US10351960B2 (en) 2014-02-27 2015-02-27 Galvanized steel sheet and method for producing the same
CN201580010894.5A CN106062250B (zh) 2014-02-27 2015-02-27 镀锌系钢板及其制造方法
KR1020167026480A KR101878222B1 (ko) 2014-02-27 2015-02-27 아연계 도금 강판 및 그 제조 방법
MX2016011086A MX2016011086A (es) 2014-02-27 2015-02-27 Lamina de acero galvanizada y metodo para la produccion de la misma.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-036381 2014-02-27
JP2014036381 2014-02-27
JP2014235497 2014-11-20
JP2014-235497 2014-11-20

Publications (1)

Publication Number Publication Date
WO2015129283A1 true WO2015129283A1 (ja) 2015-09-03

Family

ID=54008614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001054 WO2015129283A1 (ja) 2014-02-27 2015-02-27 亜鉛系めっき鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10351960B2 (ja)
EP (1) EP3112500B1 (ja)
JP (1) JP5884206B2 (ja)
KR (1) KR101878222B1 (ja)
CN (1) CN106062250B (ja)
MX (1) MX2016011086A (ja)
WO (1) WO2015129283A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075920A1 (ja) * 2014-11-12 2016-05-19 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
JP2017160506A (ja) * 2016-03-11 2017-09-14 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
JP2017206716A (ja) * 2016-05-16 2017-11-24 Jfeスチール株式会社 鋼板およびその製造方法
JP2017206715A (ja) * 2016-05-16 2017-11-24 Jfeスチール株式会社 鋼板およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494591B (zh) 2017-03-30 2022-02-25 杰富意钢铁株式会社 镀锌系钢板及其制造方法
KR102323645B1 (ko) * 2020-04-20 2021-11-08 현대제철 주식회사 도금강판 및 그 제조방법
DE102020208991A1 (de) 2020-07-17 2022-01-20 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines schmelztauchbeschichteten Stahlblechs und schmelztauchbeschichtetes Stahlblech

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016266A (ja) * 2005-07-06 2007-01-25 Jfe Steel Kk 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP2009127077A (ja) * 2007-11-22 2009-06-11 Jfe Steel Corp 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915444A (en) 1955-12-09 1959-12-01 Enthone Process for cleaning and plating ferrous metals
JPH03191093A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
JP3153098B2 (ja) * 1995-04-28 2001-04-03 新日本製鐵株式会社 潤滑性、化成処理性、接着剤適合性、溶接性に優れた亜鉛系めっき鋼板
JP3879268B2 (ja) * 1998-08-28 2007-02-07 住友金属工業株式会社 成形性と溶接性に優れた亜鉛系めっき鋼板の製造方法
JP3346338B2 (ja) * 1999-05-18 2002-11-18 住友金属工業株式会社 亜鉛系めっき鋼板およびその製造方法
JP3608519B2 (ja) 2001-03-05 2005-01-12 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP3807341B2 (ja) 2002-04-18 2006-08-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP4135576B2 (ja) * 2002-06-28 2008-08-20 Jfeスチール株式会社 表面処理亜鉛系めっき鋼板
KR20040054271A (ko) * 2002-12-18 2004-06-25 주식회사 포스코 마찰특성이 우수한 합금화 용융 아연 도금강판 제조방법
JP4650128B2 (ja) 2005-07-06 2011-03-16 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP4848737B2 (ja) 2005-10-31 2011-12-28 Jfeスチール株式会社 脱脂性に優れる合金化溶融亜鉛めっき鋼板
JP5044976B2 (ja) 2006-05-02 2012-10-10 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP5239570B2 (ja) * 2007-09-04 2013-07-17 Jfeスチール株式会社 亜鉛系めっき鋼板
JP5338226B2 (ja) 2008-09-26 2013-11-13 Jfeスチール株式会社 熱間プレス用亜鉛系めっき鋼板
JP5338243B2 (ja) * 2008-10-10 2013-11-13 Jfeスチール株式会社 熱間プレス成形用めっき鋼板およびその製造方法
JP5347434B2 (ja) * 2008-11-05 2013-11-20 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
JP5838542B2 (ja) * 2010-09-29 2016-01-06 Jfeスチール株式会社 冷延鋼板の製造方法
WO2015197430A1 (en) * 2014-06-27 2015-12-30 Henkel Ag & Co. Kgaa Dry lubricant for zinc coated steel
JP6822127B2 (ja) * 2016-06-23 2021-01-27 Tdk株式会社 磁気センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016266A (ja) * 2005-07-06 2007-01-25 Jfe Steel Kk 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP2009127077A (ja) * 2007-11-22 2009-06-11 Jfe Steel Corp 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007103B1 (ko) * 2014-11-12 2019-08-02 제이에프이 스틸 가부시키가이샤 아연계 도금 강판의 제조 방법
JPWO2016075920A1 (ja) * 2014-11-12 2017-04-27 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
KR20170067834A (ko) * 2014-11-12 2017-06-16 제이에프이 스틸 가부시키가이샤 아연계 도금 강판의 제조 방법
WO2016075920A1 (ja) * 2014-11-12 2016-05-19 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
JP2017160506A (ja) * 2016-03-11 2017-09-14 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
KR20180110073A (ko) 2016-03-11 2018-10-08 제이에프이 스틸 가부시키가이샤 아연계 도금 강판의 제조 방법
CN108713071A (zh) * 2016-03-11 2018-10-26 杰富意钢铁株式会社 镀锌系钢板的制造方法
WO2017154495A1 (ja) * 2016-03-11 2017-09-14 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
US10443116B2 (en) 2016-03-11 2019-10-15 Jfe Steel Corporation Method for manufacturing zinc-based coated steel sheet
KR102150365B1 (ko) * 2016-03-11 2020-09-01 제이에프이 스틸 가부시키가이샤 아연계 도금 강판의 제조 방법
CN108713071B (zh) * 2016-03-11 2020-11-06 杰富意钢铁株式会社 镀锌系钢板的制造方法
JP2017206716A (ja) * 2016-05-16 2017-11-24 Jfeスチール株式会社 鋼板およびその製造方法
JP2017206715A (ja) * 2016-05-16 2017-11-24 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
KR101878222B1 (ko) 2018-07-13
US20170016121A1 (en) 2017-01-19
MX2016011086A (es) 2016-11-25
EP3112500A1 (en) 2017-01-04
CN106062250B (zh) 2019-07-09
CN106062250A (zh) 2016-10-26
KR20160126046A (ko) 2016-11-01
EP3112500A4 (en) 2017-11-22
JP5884206B2 (ja) 2016-03-15
JPWO2015129283A1 (ja) 2017-03-30
EP3112500B1 (en) 2019-08-21
US10351960B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5884206B2 (ja) 亜鉛系めっき鋼板およびその製造方法
JP5884207B2 (ja) 亜鉛系めっき鋼板およびその製造方法
KR101788950B1 (ko) 아연계 도금 강판의 제조 방법
WO2017154495A1 (ja) 亜鉛系めっき鋼板の製造方法
JP4517887B2 (ja) 溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板
JP5648309B2 (ja) 溶融亜鉛系めっき鋼板の製造方法
JP6992831B2 (ja) 溶融亜鉛系めっき鋼板の製造方法
JP4604712B2 (ja) 溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板
JP5163218B2 (ja) 亜鉛系めっき鋼板の製造方法
JP2010077455A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5927995B2 (ja) 亜鉛系めっき鋼板の製造方法
JP5961967B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP2009235432A (ja) 亜鉛系めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/011086

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15122036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026480

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201606457

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2015755178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755178

Country of ref document: EP