WO2015129222A1 - 発光素子および発光装置 - Google Patents

発光素子および発光装置 Download PDF

Info

Publication number
WO2015129222A1
WO2015129222A1 PCT/JP2015/000813 JP2015000813W WO2015129222A1 WO 2015129222 A1 WO2015129222 A1 WO 2015129222A1 JP 2015000813 W JP2015000813 W JP 2015000813W WO 2015129222 A1 WO2015129222 A1 WO 2015129222A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
refractive index
photoluminescence
photoluminescence layer
Prior art date
Application number
PCT/JP2015/000813
Other languages
English (en)
French (fr)
Inventor
安寿 稲田
平澤 拓
嘉孝 中村
享 橋谷
充 新田
山木 健之
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580006195.3A priority Critical patent/CN105940494A/zh
Publication of WO2015129222A1 publication Critical patent/WO2015129222A1/ja
Priority to US15/215,595 priority patent/US9880336B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the present disclosure relates to a light-emitting element and a light-emitting device, and particularly to a light-emitting element and a light-emitting device having a photoluminescence layer.
  • Patent Document 1 discloses an illumination system that secures directivity using a light distribution plate and an auxiliary reflector.
  • the present disclosure provides a light emitting element having a novel structure capable of controlling the light emission efficiency, directivity, or polarization characteristics of a photoluminescence layer, and a light emitting device including the light emitting element.
  • a light-emitting device is formed on at least one of a photoluminescence layer, a light-transmitting layer disposed in proximity to the photoluminescence layer, the photoluminescence layer, and the light-transmitting layer.
  • the light emitted from the photoluminescent layer includes a first light having a wavelength of ⁇ a in the air, and includes a concave portion, a distance between adjacent convex portions or a distance between the concave portions is D int, and the light with respect to the first light
  • the refractive index of the photoluminescence layer is n wav-a
  • a relationship of ⁇ a / n wav-a ⁇ D int ⁇ a is established.
  • a light-emitting element and a light-emitting device have a novel configuration, and can control luminance, directivity, or polarization characteristics according to a novel mechanism.
  • FIG. 1A It is a perspective view which shows the structure of the light emitting element by other embodiment. It is a fragmentary sectional view of the light emitting element shown to FIG. 1C. It is a figure which shows the result of having calculated the increase
  • the excitation light that is coupled to the pseudo guided mode is a diagram for explaining the configuration of efficiently emitting light, (a) shows the one-dimensional periodic structure having a period p x in the x direction, (b ) Shows a two-dimensional periodic structure having a period p x in the x direction and a period py in the y direction, (c) shows the wavelength dependence of the light absorption rate in the configuration of (a), and (d) shows ( The wavelength dependence of the light absorptance in the structure of b) is shown. It is a figure which shows an example of a two-dimensional periodic structure. It is a figure which shows the other example of a two-dimensional periodic structure.
  • FIG. 19B is a diagram illustrating a result of calculating the enhancement of light output in the front direction by changing the emission wavelength and the period of the periodic structure in the configuration of FIG. 19A. It is a figure which shows the structure which mixed several powdery light emitting element. It is a top view which shows the example which arranged the several periodic structure from which a period differs on the photo-luminescence layer in two dimensions. It is a figure which shows an example of the light emitting element which has the structure where the several photo-luminescence layer 110 in which the uneven structure was formed on the surface was laminated
  • FIG. 6 is a cross-sectional view illustrating a configuration example in which a protective layer 150 is provided between a photoluminescence layer 110 and a periodic structure 120. It is a figure which shows the example which formed the periodic structure 120 by processing only a part of photo-luminescence layer 110.
  • FIG. It is a figure which shows the cross-sectional TEM image of the photo-luminescence layer formed on the glass substrate which has a periodic structure. It is a graph which shows the result of having measured the spectrum of the front direction of the emitted light of the light emitting element made as an experiment.
  • (A) And (b) is a graph which shows the result (upper stage) and the calculation result (lower stage) which measured the angle dependence of the emitted light of the light emitting element made as an experiment.
  • (A) And (b) is a graph which shows the result (upper stage) and the calculation result (lower stage) which measured the angle dependence of the emitted light of the light emitting element made as an experiment. It is a graph which shows the result of having measured the angle dependence of the emitted light (wavelength 610nm) of the light emitting element made as an experiment. It is a perspective view which shows typically an example of a slab type
  • optical components such as reflectors and lenses
  • This disclosure includes the light-emitting elements and light-emitting devices described in the following items.
  • a photoluminescence layer A translucent layer disposed proximate to the photoluminescence layer; A submicron structure formed on at least one of the photoluminescence layer and the light transmissive layer and extending in the plane of the photoluminescence layer or the light transmissive layer, The submicron structure includes a plurality of convex portions or a plurality of concave portions, The light emitted by the photoluminescence layer includes first light having a wavelength ⁇ a in the air, When the distance between adjacent convex portions or concave portions is D int and the refractive index of the photoluminescence layer with respect to the first light is n wav-a , ⁇ a / n wav-a ⁇ D int ⁇ a A light-emitting element in which the relationship is established.
  • the submicron structures comprising a plurality of at least one periodic structure formed by the projections or the plurality of recesses, said at least one periodic structure, when the period as p a, ⁇ a / n wav -a ⁇ p a ⁇ lambda relationship a comprises a first periodic structure holds the light-emitting device according to claim 1.
  • Item 3 The light-emitting element according to Item 1 or 2, wherein a refractive index n ta of the light transmitting layer with respect to the first light is smaller than a refractive index n wav-a of the photoluminescence layer with respect to the first light.
  • Item 5 The light-emitting element according to Item 4, wherein the first direction is a normal direction of the photoluminescence layer.
  • Item 6 The light-emitting element according to Item 4 or 5, wherein the first light emitted in the first direction is linearly polarized light.
  • the second light having a wavelength ⁇ b different from the wavelength ⁇ a of the first light has a maximum intensity in a second direction different from the first direction, according to any one of items 4 to 7 Light emitting element.
  • the photoluminescence layer has a flat main surface, 9.
  • Item 12 The light emitting device according to Item 11, wherein the photoluminescence layer is supported on a transparent substrate.
  • the translucent layer is a transparent substrate having the submicron structure on one main surface, 9.
  • the refractive index n ta of the translucent layer with respect to the first light is equal to or higher than the refractive index n wav-a of the photoluminescence layer with respect to the first light, and the plurality of convex portions of the submicron structure Item 3.
  • the submicron structures comprising a plurality of at least one periodic structure formed by the projections or the plurality of recesses, said at least one periodic structure, when the period as p a, ⁇ a / n wav -a ⁇ include p a ⁇ lambda first periodic structure relationship holds for a, Item 15.
  • the light-emitting element according to any one of Items 1 and 3 to 14, wherein the first periodic structure is a one-dimensional periodic structure.
  • the light emitted from the photoluminescence layer includes second light having a wavelength ⁇ b different from ⁇ a in the air, and the refractive index of the photoluminescence layer with respect to the second light is set to n wav ⁇ b
  • the periodic structure when the period as p b, further comprising a ⁇ b / n wav-b ⁇ p b ⁇ b second periodic structure relationship holds for, Item 16.
  • the submicron structure includes at least two periodic structures formed by the plurality of convex portions or the plurality of concave portions, and the at least two periodic structures include a two-dimensional periodic structure having periodicity in different directions.
  • the light emitting device according to any one of items 1 and 3 to 14.
  • the submicron structure includes a plurality of periodic structures formed by the plurality of convex portions or the plurality of concave portions, Item 15.
  • the light-emitting element according to any one of Items 1 and 3 to 14, wherein the plurality of periodic structures include a plurality of periodic structures arranged in a matrix.
  • the submicron structure includes a plurality of periodic structures formed by the plurality of convex portions or the plurality of concave portions, When the wavelength of the excitation light of the photoluminescence material of the photoluminescence layer in air is ⁇ ex and the refractive index of the photoluminescence layer with respect to the excitation light is n wav-ex , Item 15.
  • the light-emitting element according to any one of Items 1 and 3 to 14, wherein the plurality of periodic structures include a periodic structure in which a period p ex satisfies a relationship of ⁇ ex / n wav-ex ⁇ p ex ⁇ ex .
  • Item 21 The light-emitting element according to Item 20, wherein the plurality of photoluminescence layers and the plurality of light-transmitting layers are laminated.
  • a photoluminescence layer A translucent layer disposed proximate to the photoluminescence layer; A submicron structure formed on at least one of the photoluminescence layer and the light transmissive layer and extending in the plane of the photoluminescence layer or the light transmissive layer, The light emitting element which radiate
  • the submicron structures comprising a plurality of at least one periodic structure formed by the projections or the plurality of recesses, said at least one periodic structure, when the period as p ex, ⁇ ex / n wav -ex Item 25.
  • the submicron structure includes a plurality of convex portions or a plurality of concave portions,
  • the light emitted by the photoluminescence layer includes first light having a wavelength ⁇ a in the air
  • the submicron structure includes at least one periodic structure formed by the plurality of convex portions or the plurality of concave portions, The refractive index of the photoluminescence layer for said first light and n wav-a, wherein when the period of at least one periodic structure and p a, the relationship ⁇ a / n wav-a ⁇ p a ⁇ a A light-emitting element that holds.
  • a photoluminescence layer A submicron structure formed in the photoluminescence layer and extending in the plane of the photoluminescence layer, The submicron structure includes a plurality of convex portions or a plurality of concave portions, The light emitted by the photoluminescence layer includes first light having a wavelength ⁇ a in the air, The submicron structure includes at least one periodic structure formed by the plurality of convex portions or the plurality of concave portions, The refractive index of the photoluminescence layer for said first light and n wav-a, wherein when the period of at least one periodic structure and p a, the relationship ⁇ a / n wav-a ⁇ p a ⁇ a A light-emitting element that holds.
  • Item 24 The light emitting device according to Item 23, wherein the waveguide layer and the periodic structure are in contact with each other.
  • a light emitting device comprising: [Item 33] A photoluminescence layer; A translucent layer disposed proximate to the photoluminescence layer; A submicron structure formed on at least one of the photoluminescence layer and the light transmission layer and extending in a plane of the photoluminescence layer or the light transmission layer; A multilayer mirror laminated together with the photoluminescence layer and the translucent layer; Have The submicron structure includes at least a plurality of convex portions or a plurality of concave portions, The light emitted by the photoluminescence layer includes first light having a wavelength ⁇ a in the air, When the distance between adjacent convex portions or concave portions is D int and the refractive index of the photoluminescence layer with respect to the first light is n wav-a , ⁇ a / n wav-a ⁇
  • the multilayer mirror includes a plurality of low refractive index layers and a plurality of high refractive index layers having a higher refractive index than the plurality of low refractive index layers, Item 34.
  • the plurality of low refractive index layers and the plurality of high refractive index layers have refractive indexes of n L and n H , respectively, and the plurality of low refractive index layers and the plurality of high refractive index layers have thicknesses of t ML, respectively.
  • t MH , m R is an arbitrary positive integer, and the following formula (2m R ⁇ 1.2) ⁇ a / (4n L ) ⁇ t ML ⁇ (2 m R ⁇ 0.8) ⁇ a / ( 4n L) (2m R ⁇ 1.2) ⁇ a / (4n H ) ⁇ t MH ⁇ (2 m R ⁇ 0.8) ⁇ a / (4n H ) 35.
  • the light emitting device according to item 34 wherein
  • the translucent layer has the submicron structure; 38.
  • the light emitting device according to any one of items 33 to 37, wherein the photoluminescence layer is located between the light transmitting layer and the multilayer mirror.
  • the photoluminescence layer has a flat main surface,
  • the translucent layer is formed on the flat main surface of the photoluminescence layer, and has the submicron structure;
  • the adjustment layer is located on the photoluminescence layer so as to cover the translucent layer,
  • the light emitting device according to any one of items 33 to 37, wherein the multilayer mirror is located on the adjustment layer.
  • the translucent layer is a transparent substrate having the submicron structure on the surface,
  • the photoluminescence layer is located on the surface of the transparent substrate to fill the submicron structure; 40.
  • the light emitting device according to any one of items 33 to 39, wherein the multilayer mirror is located on the photoluminescence layer.
  • Item 42 The light-emitting element according to Item 41, wherein the main surface located on the opposite side of the photoluminescence layer from the transparent substrate is flat.
  • the main surface located on the opposite side of the photoluminescence layer from the transparent substrate has a concavo-convex shape following the plurality of convex portions or the plurality of concave portions of the submicron structure, 42.
  • the light-emitting element according to Item 41, wherein the multilayer mirror has a concavo-convex shape following the plurality of convex portions or the plurality of concave portions of the submicron structure.
  • a translucent structure including the photoluminescence layer and the translucent layer;
  • the multilayer mirror and the translucent structure are in contact with each other, and the refractive index of the translucent structure is the refractive index of the multilayer mirror at the interface portion between the multilayer mirror and the translucent structure.
  • Bigger than m T is an arbitrary positive integer, and the effective optical path length d T in the stacking direction of the translucent structure is expressed by the following formula (4m T ⁇ 1) ⁇ a / (8n wav-a ) ⁇ d T ⁇ (4m T +1) ⁇ a / (8n wav-a ) 44.
  • the multilayer mirror and the translucent structure are in contact with each other, and the refractive index of the translucent structure is the refractive index of the multilayer mirror at the interface portion between the multilayer mirror and the translucent structure.
  • Smaller than m T is an arbitrary positive integer, and the effective optical path length d T in the stacking direction of the translucent structure is expressed by the following formula (4m T -3) ⁇ a / (8n wav-a ) ⁇ d T ⁇ 44.
  • the light emitting device according to any one of items 33 to 43, wherein (4m T ⁇ 1) ⁇ a / (8n wav-a ) is satisfied.
  • a light emitting device according to any one of items 33 to 51; An excitation light source that irradiates the photoluminescence layer with excitation light; A light emitting device comprising:
  • a light emitting device is formed on at least one of a photoluminescence layer, a light transmission layer disposed in proximity to the photoluminescence layer, the photoluminescence layer, and the light transmission layer, and the photoluminescence
  • the light emitted from the photoluminescence layer includes first light having a wavelength ⁇ a in the air, and the refractive index of the photoluminescence layer with respect to the first light is n wav-a , ⁇ a / n
  • the relationship wav-a ⁇ D int ⁇ a holds.
  • the wavelength ⁇ a is, for example, in the wavelength range of visible light (for example, 380 nm to 780 nm).
  • the photoluminescence layer includes a photoluminescence material.
  • the photoluminescent material means a material that emits light upon receiving excitation light.
  • the photoluminescent material includes a fluorescent material and a phosphorescent material in a narrow sense, includes not only an inorganic material but also an organic material (for example, a dye), and further includes a quantum dot (that is, a semiconductor fine particle).
  • the photoluminescent layer may include a matrix material (ie, host material) in addition to the photoluminescent material.
  • the matrix material is, for example, an inorganic material such as glass or oxide, or a resin.
  • the light-transmitting layer disposed in the vicinity of the photoluminescence layer is formed of a material having a high transmittance with respect to light emitted from the photoluminescence layer, and is formed of, for example, an inorganic material or a resin.
  • the translucent layer is preferably formed of, for example, a dielectric (particularly an insulator that absorbs little light).
  • the light transmissive layer may be, for example, a substrate that supports the photoluminescence layer. Further, when the air-side surface of the photoluminescence layer has a submicron structure, the air layer can be a light-transmitting layer.
  • a submicron structure for example, a periodic structure formed in at least one of the photoluminescence layer and the light transmission layer.
  • a unique electric field distribution is formed inside the photoluminescence layer and the light transmission layer.
  • This is formed by the interaction of the guided light with the submicron structure, and can also be expressed as a pseudo-guide mode.
  • the term pseudo-waveguide mode may be used to describe a novel configuration and / or a novel mechanism found by the present inventors. However, this is merely an illustrative explanation. However, the present disclosure is not limited in any way.
  • Submicron structures for example, includes a plurality of convex portions, the distance between adjacent convex portions (i.e., center-to-center distance) when the the D int, ⁇ a / n wav -a ⁇ satisfy the relation D int ⁇ a To do.
  • the submicron structure may include a plurality of concave portions instead of the plurality of convex portions.
  • represents the wavelength of light
  • ⁇ a represents the wavelength of light in the air.
  • n wav is the refractive index of the photoluminescence layer.
  • n wav the average refractive index obtained by weighting the refractive index of each material by the respective volume ratio. Since generally the refractive index n depends on the wavelength, that is a refractive index to light of lambda a it is desirable to express the n wav-a, may be omitted for simplicity.
  • n wav is basically the refractive index of the photoluminescence layer.
  • n wav be the average refractive index obtained by weighting the refractive indices of the layers by their respective volume ratios. This is because this is optically equivalent to the case where the photoluminescence layer is composed of a plurality of layers of different materials.
  • n eff n wav sin ⁇ .
  • the effective refractive index n eff is determined by the refractive index of the medium existing in the region where the electric field of the pseudo waveguide mode is distributed, for example, when the submicron structure is formed in the light transmitting layer, the photoluminescence layer It depends not only on the refractive index but also on the refractive index of the translucent layer.
  • the electric field distribution varies depending on the polarization direction of the pseudo waveguide mode (TE mode and TM mode)
  • the effective refractive index n eff may be different between the TE mode and the TM mode.
  • the submicron structure is formed in at least one of the photoluminescence layer and the light transmission layer.
  • a submicron structure may be formed at the interface between the photoluminescence layer and the light transmission layer.
  • the photoluminescence layer and the translucent layer have a submicron structure.
  • the photoluminescent layer may not have a submicron structure.
  • the light-transmitting layer having a submicron structure is disposed in the vicinity of the photoluminescence layer.
  • the phrase “the light-transmitting layer (or its submicron structure) is close to the photoluminescence layer” typically means that the distance between them is not more than half the wavelength ⁇ a .
  • the electric field of the waveguide mode reaches the submicron structure, and the pseudo waveguide mode is formed.
  • the refractive index of the light-transmitting layer is larger than the refractive index of the photoluminescent layer, the light reaches the light-transmitting layer even if the above relationship is not satisfied. Therefore, the submicron structure of the light-transmitting layer and the photoluminescent layer the distance between the may be more than half of the wavelength lambda a.
  • the photoluminescence layer and the light-transmitting layer are in a positional relationship such that the electric field of the guided mode reaches a submicron structure and a pseudo-guided mode is formed, the two are associated with each other. Sometimes expressed.
  • the submicron structure satisfies the relationship of ⁇ a / n wav-a ⁇ D int ⁇ a , and is thus characterized by a size on the submicron order.
  • the submicron structure includes, for example, at least one periodic structure as in the light emitting device of the embodiment described in detail below. At least one of the periodic structure, when the period as p a, ⁇ a / n wav -a ⁇ p a ⁇ relationship a holds. That is, the submicron structure has a constant periodic structure with the distance D int between adjacent convex portions being pa.
  • the submicron structure includes a periodic structure
  • the light in the pseudo waveguide mode is diffracted by the submicron structure by repeating the interaction with the periodic structure while propagating. This is different from the phenomenon in which light propagating in free space is diffracted by the periodic structure, and is a phenomenon in which light acts on the periodic structure while being guided (that is, repeating total reflection). Therefore, even if the phase shift due to the periodic structure is small (that is, the height of the periodic structure is small), light can be efficiently diffracted.
  • the mechanism as described above is used, the luminous efficiency of photoluminescence increases due to the effect of the electric field being enhanced by the pseudo waveguide mode, and the generated light is coupled to the pseudo waveguide mode.
  • the directivity angle of the light emitted in the front direction is, for example, less than 15 °. Note that the directivity angle is an angle on one side with the front direction being 0 °.
  • the periodic structure may be a one-dimensional periodic structure with high polarization selectivity or a two-dimensional periodic structure capable of reducing the degree of polarization.
  • the submicron structure can include a plurality of periodic structures.
  • the plurality of periodic structures have different periods (pitch), for example.
  • the plurality of periodic structures are different from each other in the direction (axis) having periodicity, for example.
  • the plurality of periodic structures may be formed in the same plane or may be stacked.
  • the light-emitting element has a plurality of photoluminescence layers and a plurality of light-transmitting layers, and these may have a plurality of submicron structures.
  • the submicron structure can be used not only to control the light emitted from the photoluminescence layer, but also to efficiently guide the excitation light to the photoluminescence layer. That is, the excitation light is diffracted by the submicron structure and coupled to the pseudo-waveguide mode in which the excitation light is guided through the photoluminescence layer and the light transmission layer, so that the photoluminescence layer can be efficiently excited.
  • ⁇ ex / n wav-ex ⁇ D int ⁇ ex where ⁇ ex is the wavelength of light in the air that excites the photoluminescent material, and n wav-ex is the refractive index of the photoluminescence layer for this excitation light.
  • a sub-micron structure in which is satisfied may be used.
  • n wav-ex is the refractive index at the excitation wavelength of the photoluminescent material. If the period is p ex , a submicron structure having a periodic structure in which the relationship of ⁇ ex / n wav-ex ⁇ p ex ⁇ ex may be used.
  • the wavelength ⁇ ex of the excitation light is, for example, 450 nm, but may be shorter than visible light. When the wavelength of the excitation light is within the range of visible light, the excitation light may be emitted together with the light emitted from the photoluminescence layer.
  • the photoluminescent material used in fluorescent lamps, white LEDs, and the like emits isotropically, so that an optical component such as a reflector or a lens is required to illuminate a specific direction with light.
  • the photoluminescence layer itself emits light with directivity, the optical components as described above are not necessary (or can be reduced), so that the size of the optical device or instrument can be greatly reduced.
  • the present inventors have studied in detail the configuration of the photoluminescence layer in order to obtain directional light emission.
  • the inventors of the present invention first considered that the light emission itself has a specific directionality so that the light from the photoluminescence layer is biased in a specific direction.
  • the light emission rate ⁇ which is an index characterizing light emission, is expressed by the following formula (1) according to Fermi's golden rule.
  • r is a position vector
  • is the wavelength of light
  • d is a dipole vector
  • E is an electric field vector
  • is a density of states.
  • the dipole vector d has a random orientation.
  • the inventors of the present application considered controlling light emission by using a waveguide mode with a strong electric field.
  • the waveguide structure itself includes a photoluminescence material
  • light emission can be coupled to the waveguide mode.
  • the waveguide structure is simply formed using a photoluminescence material, the emitted light becomes a waveguide mode, so that almost no light is emitted in the front direction. Therefore, it was considered to combine a waveguide including a photoluminescent material with a periodic structure (formed at least one of a plurality of convex portions and a plurality of concave portions).
  • this pseudo waveguide mode is a waveguide mode limited by the periodic structure, and is characterized in that the antinodes of the electric field amplitude are generated in the same period as the period of the periodic structure.
  • This mode is a mode in which the electric field in a specific direction is strengthened by confining light in the waveguide structure. Furthermore, since this mode interacts with the periodic structure and is converted into propagating light in a specific direction by the diffraction effect, light can be emitted to the outside of the waveguide. Furthermore, since the light other than the pseudo waveguide mode has a small effect of being confined in the waveguide, the electric field is not enhanced. Therefore, most of the light emission is coupled to the pseudo waveguide mode having a large electric field component.
  • the inventors of the present application use a photoluminescence layer including a photoluminescence material (or a waveguide layer having a photoluminescence layer) as a waveguide provided with a periodic structure close thereto, thereby emitting light in a specific direction.
  • a photoluminescence layer including a photoluminescence material or a waveguide layer having a photoluminescence layer
  • a periodic structure close thereto, thereby emitting light in a specific direction.
  • the slab type waveguide is a waveguide in which a light guiding portion has a flat plate structure.
  • FIG. 30 is a perspective view schematically showing an example of the slab waveguide 110S.
  • the refractive index of the waveguide 110S is higher than the refractive index of the transparent substrate 140 that supports the waveguide 110S, there is a mode of light propagating in the waveguide 110S.
  • the electric field generated from the light emitting point has a large overlap with the electric field of the waveguide mode, so that most of the light generated in the photoluminescence layer Can be coupled to the guided mode.
  • the thickness of the photoluminescence layer to be approximately the wavelength of light, it is possible to create a situation in which only a waveguide mode having a large electric field amplitude exists.
  • the pseudo-waveguide mode is formed by the electric field of the waveguide mode interacting with the periodic structure. Even when the photoluminescence layer is composed of a plurality of layers, if the electric field of the waveguide mode reaches the periodic structure, a pseudo waveguide mode is formed. It is not necessary for all of the photoluminescence layer to be a photoluminescence material, and it is sufficient that at least a part of the photoluminescence layer has a function of emitting light.
  • the periodic structure is formed of metal, a guided mode and a mode due to the effect of plasmon resonance are formed, which is different from the pseudo-guided mode described above.
  • this mode since the absorption by the metal is large, the loss becomes large and the effect of enhancing the light emission becomes small. Therefore, it is desirable to use a dielectric material with low absorption as the periodic structure.
  • FIG. 1A is a perspective view schematically showing an example of a light-emitting element 100 having such a waveguide (for example, a photoluminescence layer) 110 and a periodic structure (for example, a light-transmitting layer) 120.
  • the light-transmitting layer 120 when the light-transmitting layer 120 has a periodic structure (that is, when a periodic submicron structure is formed in the light-transmitting layer 120), the light-transmitting layer 120 may be referred to as a periodic structure 120.
  • the periodic structure 120 is a one-dimensional periodic structure in which a plurality of stripe-shaped convex portions each extending in the y direction are arranged at equal intervals in the x direction.
  • FIG. 1B is a cross-sectional view of the light emitting device 100 taken along a plane parallel to the xz plane.
  • the pseudo-waveguide mode having the wave number k wav in the in-plane direction is converted into propagating light outside the waveguide, and the wave number k out is It can be represented by Formula (2).
  • M in the formula (2) is an integer and represents the order of diffraction.
  • the light guided in the waveguide approximately is a light beam propagating at an angle ⁇ wav , and the following equations (3) and (4) hold.
  • ⁇ 0 is the wavelength of light in the air
  • n wav is the refractive index of the waveguide
  • n out is the refractive index of the medium on the exit side
  • ⁇ out is the light emitted to the substrate or air outside the waveguide. Is the exit angle. From the equations (2) to (4), the emission angle ⁇ out can be expressed by the following equation (5).
  • n out becomes the refractive index of air (about 1.0).
  • the period p may be determined so as to satisfy 12).
  • a structure in which the photoluminescence layer 110 and the periodic structure 120 are formed on the transparent substrate 140 as illustrated in FIGS. 1C and 1D may be employed.
  • the period p is set so as to satisfy the following formula (15). It only has to be.
  • FIG. 2 shows the result of calculating the intensities of the light emitted in the front direction while changing each.
  • the calculation model was calculated with a uniform one-dimensional periodic structure in the y direction, and the polarization of light was a TM mode having an electric field component parallel to the y direction. From the result of FIG. 2, it can be seen that a peak of enhancement exists at a certain combination of wavelength and period.
  • the magnitude of the enhancement is represented by the shade of the color, and the darker (that is, black) has a larger enhancement and the lighter (that is, white) has a smaller enhancement.
  • the period of the periodic structure is 400 nm
  • the height is 50 nm
  • the refractive index is 1.5
  • the emission wavelength and the thickness t of the photoluminescence layer are changed.
  • the calculation model was assumed to be a one-dimensional periodic structure uniform in the y direction, as described above. In each figure, the black region indicates that the electric field strength is high, and the white region indicates that the electric field strength is low.
  • FIG. 7A is a plan view showing a part of a two-dimensional periodic structure 120 ′ in which concave and convex portions are arranged in both the x and y directions.
  • the black area in the figure indicates a convex portion
  • the white area indicates a concave portion.
  • Diffraction only in the x direction or only in the y direction is the same as in the one-dimensional case, but there is also diffraction in a direction having both x and y components (for example, an oblique 45 ° direction).
  • FIG. 7B shows the result of calculating the light enhancement for such a two-dimensional periodic structure.
  • the calculation conditions other than the periodic structure are the same as the conditions in FIG.
  • a peak position that coincides with the peak position in the TE mode shown in FIG. 6 was also observed.
  • This result shows that the TE mode is also converted and output by diffraction due to the two-dimensional periodic structure.
  • Such diffracted light is emitted in the direction of an angle corresponding to a period ⁇ 2 times (that is, 2 1/2 times) the period p. Therefore, in addition to the peak in the case of the one-dimensional periodic structure, it is considered that a peak is generated for a period that is ⁇ 2 times the period p. In FIG. 7B, such a peak can also be confirmed.
  • the two-dimensional periodic structure is not limited to a square lattice structure having the same period in the x direction and the y direction as shown in FIG. 7A, but is a lattice structure in which hexagons and triangles are arranged as shown in FIGS. 18A and 18B. Also good. Moreover, the structure where the period of a direction differs (for example, x direction and y direction in the case of a square lattice) may be sufficient.
  • the characteristic pseudo-waveguide mode light formed by the periodic structure and the photoluminescence layer is selectively emitted only in the front direction using the diffraction phenomenon due to the periodic structure. I was able to confirm that it was possible. With such a configuration, light emission having directivity can be obtained by exciting the photoluminescence layer with excitation light such as ultraviolet rays or blue light.
  • the refractive index of the periodic structure was examined.
  • the film thickness of the photoluminescence layer is 200 nm
  • the periodic structure is a uniform one-dimensional periodic structure in the y direction as shown in FIG. 1A
  • the height is 50 nm
  • the period is The calculation was performed on the assumption that the light polarization was TM mode having an electric field component parallel to the y direction.
  • FIG. 8 shows the result of calculating the enhancement of the light output in the front direction by changing the emission wavelength and the refractive index of the periodic structure.
  • FIG. 9 shows the results when the film thickness of the photoluminescence layer is 1000 nm under the same conditions.
  • the light intensity with respect to the change in the refractive index of the periodic structure is more peak when the film thickness is 1000 nm (FIG. 9) than when the film thickness is 200 nm (FIG. 8).
  • the peak wavelength becomes small. This is because the pseudo-waveguide mode is more susceptible to the refractive index of the periodic structure as the film thickness of the photoluminescence layer is smaller. That is, the higher the refractive index of the periodic structure, the higher the effective refractive index, and the corresponding peak wavelength shifts to the longer wavelength side. This effect becomes more pronounced as the film thickness decreases.
  • the effective refractive index is determined by the refractive index of the medium existing in the region where the electric field of the pseudo waveguide mode is distributed.
  • the refractive index of the dielectric (that is, the translucent layer) constituting the periodic structure may be made equal to or less than the refractive index of the photoluminescence layer. The same applies when the photoluminescence layer contains a material other than the photoluminescence material.
  • the peak intensity and the Q value that is, the line width of the peak
  • the peak intensity and the Q value are lowered. This is because, when the refractive index n wav of the photoluminescence layer is higher than the refractive index n p of the periodic structure (FIG. 10), the light is totally reflected, so that the electric field bleeds out (evanescent) in the pseudo waveguide mode. Only due to the interaction with the periodic structure.
  • the height of the periodic structure When the height of the periodic structure is sufficiently large, the influence of the interaction between the evanescent part of the electric field and the periodic structure is constant even if the height changes further.
  • the refractive index n wav of the photoluminescence layer is lower than the refractive index n p of the periodic structure (FIG. 11), the light reaches the surface of the periodic structure without being totally reflected, so the height of the periodic structure The larger the is, the more affected. As can be seen from FIG. 11, it is sufficient that the height is about 100 nm, and the peak intensity and the Q value are lowered in the region exceeding 150 nm.
  • the height of the periodic structure may be set to 150 nm or less in order to increase the peak intensity and the Q value to some extent.
  • FIG. 12 shows the result of calculation assuming that the polarization of light is a TE mode having an electric field component perpendicular to the y direction under the same conditions as those shown in FIG.
  • the electric field of the quasi-guided mode is larger than that in the TM mode, so that it is easily affected by the periodic structure. Therefore, in the region where the refractive index n p of the periodic structure is larger than the refractive index n wav of the photoluminescence layer, the peak intensity and the Q value are significantly decreased as compared with the TM mode.
  • the height should be 150 nm or less. It can be seen that the peak intensity and the Q value can be increased.
  • the light-emitting element may have a structure in which the photoluminescence layer 110 and the periodic structure 120 are formed on the transparent substrate 140 as illustrated in FIGS. 1C and 1D.
  • a thin film is formed on a transparent substrate 140 with a photoluminescent material (including a matrix material, if necessary, the same applies below) constituting the photoluminescent layer 110, A method of forming the periodic structure 120 thereon can be considered.
  • the refractive index n s of the transparent substrate 140 is less than the refractive index n wav of the photoluminescence layer. It is necessary to.
  • the transparent substrate 140 is provided so as to be in contact with the photoluminescence layer 110, it is necessary to set the period p so as to satisfy the equation (15) where the refractive index n out of the emission medium in the equation (10) is n s. .
  • FIG. 16 is a diagram illustrating a configuration example of a light-emitting device 200 including the light-emitting element 100 illustrated in FIGS. 1A and 1B and a light source 180 that causes excitation light to enter the photoluminescence layer 110.
  • light emission having directivity can be obtained by exciting the photoluminescence layer with excitation light such as ultraviolet light or blue light.
  • the light emitting device 200 having directivity can be realized.
  • the wavelength of the excitation light emitted from the light source 180 is typically a wavelength in the ultraviolet or blue region, but is not limited thereto, and is appropriately determined according to the photoluminescent material constituting the photoluminescent layer 110.
  • the light source 180 is arranged so that the excitation light is incident from the lower surface of the photoluminescence layer 110.
  • the present invention is not limited to such an example.
  • the excitation light is emitted from the upper surface of the photoluminescence layer 110. It may be incident.
  • FIG. 17 is a diagram for explaining such a method.
  • the photoluminescence layer 110 and the periodic structure 120 are formed on the transparent substrate 140 as in the configuration shown in FIGS. 1C and 1D.
  • the period p x is determined so as to satisfy the condition in which p is replaced with p x in Equation (10).
  • m is an integer equal to or larger than 1
  • the wavelength of the excitation light is ⁇ ex
  • the medium having the highest refractive index excluding the periodic structure 120 out of the medium in contact with the photoluminescence layer 110 is n out.
  • n out is n s of the transparent substrate 140 in the example of FIG. 17, but in the configuration in which the transparent substrate 140 is not provided as in FIG. 16, it is the refractive index of air (about 1.0).
  • the photoluminescence layer 110 can efficiently absorb the excitation light having the wavelength ⁇ ex .
  • the periodic structure 120 illustrated in FIG. 17B is a two-dimensional periodic structure having structures (periodic components) having different periods in the x direction and the y direction, respectively.
  • the excitation light is incident from the substrate side, but the same effect can be obtained even when incident from the periodic structure side.
  • FIG. 18A or 18B a configuration as shown in FIG. 18A or 18B may be adopted.
  • a plurality of main axes in the example shown, axes 1 to 3
  • a different period can be assigned to each axial direction.
  • Each of these periods may be set to increase the directivity of light having a plurality of wavelengths, or may be set to efficiently absorb the excitation light.
  • each cycle is set so as to satisfy the condition corresponding to the equation (10).
  • the periodic structure 120a may be formed on the transparent substrate 140, and the photoluminescence layer 110 may be provided thereon.
  • the periodic structure 120b having the same period is also formed on the surface of the photoluminescence layer 110.
  • the surface of the photoluminescence layer 110 is processed to be flat.
  • directional light emission can be realized by setting the period p of the periodic structure 120a so as to satisfy Expression (15).
  • the intensity of light output in the front direction was calculated by changing the emission wavelength and the period of the periodic structure.
  • the film thickness of the photoluminescence layer 110 is 1000 nm
  • the periodic structure 120a is a uniform one-dimensional periodic structure in the y direction
  • the height is 50 nm
  • the period 400 nm
  • the polarization of light was a TM mode having an electric field component parallel to the y direction.
  • the result of this calculation is shown in FIG. 19C.
  • a peak of light intensity was observed at a period satisfying the condition of Expression (15).
  • light emission of an arbitrary wavelength can be emphasized by adjusting the period of the periodic structure and the film thickness of the photoluminescence layer.
  • a photoluminescent material that emits light in a wide band is used as shown in FIGS. 1A and 1B, only light of a certain wavelength can be emphasized. Therefore, the structure of the light emitting element 100 as shown in FIGS. 1A and 1B may be powdered and used as a fluorescent material. 1A and 1B may be used by being embedded in a resin or glass.
  • each light emitting element 100 in one direction is, for example, about several ⁇ m to several mm, and may include, for example, a one-dimensional or two-dimensional periodic structure having several cycles to several hundred cycles.
  • FIG. 21 is a plan view showing an example in which a plurality of periodic structures having different periods are two-dimensionally arranged on the photoluminescence layer.
  • three types of periodic structures 120a, 120b, and 120c are arranged without a gap.
  • the periodic structures 120a, 120b, and 120c have a period set so as to emit light in the red, green, and blue wavelength ranges to the front.
  • directivity can be exhibited with respect to a spectrum in a wide wavelength region by arranging a plurality of structures with different periods on the photoluminescence layer.
  • the configuration of the plurality of periodic structures is not limited to the above, and may be set arbitrarily.
  • FIG. 22 illustrates an example of a light-emitting element having a structure in which a plurality of photoluminescence layers 110 having an uneven structure formed on the surface are stacked.
  • a transparent substrate 140 is provided between the plurality of photoluminescence layers 110, and the concavo-convex structure formed on the surface of the photoluminescence layer 110 of each layer corresponds to the periodic structure or the submicron structure.
  • the three-layer periodic structures having different periods are formed, and the periods are set so as to emit light in the red, blue, and green wavelength ranges to the front.
  • the material of the photoluminescence layer 110 of each layer is selected so as to emit light of a color corresponding to the period of each periodic structure. In this way, directivity can be exhibited with respect to a spectrum in a wide wavelength range by laminating a plurality of periodic structures having different periods.
  • the number of layers, the photoluminescence layer 110 of each layer, and the structure of the periodic structure are not limited to those described above, and may be arbitrarily set.
  • the first photoluminescence layer and the second photoluminescence layer are formed so as to face each other through the light-transmitting substrate, and the surface of the first and second photoluminescence layers is formed on the surface.
  • the first and second periodic structures will be formed respectively.
  • the condition corresponding to the equation (15) may be satisfied. That's fine.
  • the condition corresponding to the formula (15) may be satisfied for the photoluminescence layer and the periodic structure in each layer.
  • the positional relationship between the photoluminescence layer and the periodic structure may be reversed from that shown in FIG.
  • the period of each layer is different, but they may all be the same period. In that case, the spectrum cannot be widened, but the emission intensity can be increased.
  • FIG. 23 is a cross-sectional view illustrating a configuration example in which a protective layer 150 is provided between the photoluminescence layer 110 and the periodic structure 120.
  • the protective layer 150 for protecting the photoluminescence layer 110 may be provided.
  • an electric field of light oozes out only about half the wavelength inside the protective layer 150. Therefore, when the protective layer 150 is thicker than the wavelength, light does not reach the periodic structure 120. For this reason, there is no pseudo waveguide mode, and a function of emitting light in a specific direction cannot be obtained.
  • the refractive index of the protective layer 150 is about the same as or higher than the refractive index of the photoluminescence layer 110, the light reaches the inside of the protective layer 150. Therefore, there is no restriction on the thickness of the protective layer 150. However, even in that case, a larger light output can be obtained by forming most of a portion where light is guided (hereinafter, this portion is referred to as a “waveguide layer”) from a photoluminescent material. Therefore, it is desirable that the protective layer 150 is thin even in this case.
  • the protective layer 150 may be formed using the same material as the periodic structure (translucent layer) 120. At this time, the light-transmitting layer having a periodic structure also serves as a protective layer.
  • the refractive index of the light transmitting layer 120 is preferably smaller than that of the photoluminescent layer 110.
  • the photoluminescence layer (or waveguide layer) and the periodic structure are made of a material that satisfies the above conditions, directional light emission can be realized. Any material can be used for the periodic structure. However, if the light absorptivity of the medium forming the photoluminescence layer (or waveguide layer) or the periodic structure is high, the effect of confining light is reduced, and the peak intensity and the Q value are reduced. Therefore, a medium having a relatively low light absorption can be used as a medium for forming the photoluminescence layer (or waveguide layer) and the periodic structure.
  • a dielectric having low light absorption can be used as the material of the periodic structure.
  • the material of the periodic structure include, for example, MgF 2 (magnesium fluoride), LiF (lithium fluoride), CaF 2 (calcium fluoride), SiO 2 (quartz), glass, resin, MgO (magnesium oxide), ITO (indium tin oxide), TiO 2 (titanium oxide), SiN (silicon nitride), Ta 2 O 5 (tantalum pentoxide), ZrO 2 (zirconia), ZnSe (zinc selenide), ZnS (zinc sulfide), etc. Can be mentioned.
  • MgF 2 , LiF, CaF 2 , SiO 2 , glass, resin having a refractive index of about 1.3 to 1.5. can be used.
  • the photoluminescent material includes a fluorescent material and a phosphorescent material in a narrow sense, includes not only an inorganic material but also an organic material (for example, a dye), and further includes a quantum dot (that is, a semiconductor fine particle).
  • a fluorescent material having an inorganic material as a host tends to have a high refractive index.
  • quantum dots for example, materials such as CdS, CdSe, core-shell type CdSe / ZnS, alloy type CdSSe / ZnS can be used, and various emission wavelengths can be obtained depending on the material.
  • the matrix of quantum dots for example, glass or resin can be used.
  • the transparent substrate 140 shown in FIGS. 1C, 1D, and the like is made of a light-transmitting material having a refractive index lower than that of the photoluminescence layer 110.
  • a light-transmitting material having a refractive index lower than that of the photoluminescence layer 110.
  • examples of such materials include MgF (magnesium fluoride), LiF (lithium fluoride), CaF 2 (calcium fluoride), SiO 2 (quartz), glass, and resin.
  • a thin film of the photoluminescence layer 110 is formed on the transparent substrate 140 by a process such as vapor deposition, sputtering, and coating, and then a dielectric is formed.
  • a method of forming the periodic structure 120 by patterning by a method such as photolithography.
  • the periodic structure 120 may be formed by nanoimprinting.
  • the periodic structure 120 may be formed by processing only a part of the photoluminescence layer 110. In that case, the periodic structure 120 is formed of the same material as the photoluminescence layer 110.
  • the light-emitting element 100 illustrated in FIGS. 1A and 1B can be realized by, for example, manufacturing the light-emitting element 100a illustrated in FIGS. 1C and 1D and then performing a process of removing the portions of the photoluminescence layer 110 and the periodic structure 120 from the substrate 140. is there.
  • the material constituting the photoluminescence layer 110 is formed thereon by a method such as vapor deposition or sputtering. This is possible by doing.
  • the structure shown in FIG. 19B can be realized by embedding the concave portion of the periodic structure 120a with the photoluminescence layer 110 using a method such as coating.
  • said manufacturing method is an example and the light emitting element of this indication is not limited to said manufacturing method.
  • a sample of a light-emitting element having the same configuration as in FIG. 19A was prototyped and its characteristics were evaluated.
  • the light emitting element was manufactured as follows.
  • a glass substrate was provided with a one-dimensional periodic structure (stripe-shaped convex part) having a period of 400 nm and a height of 40 nm, and YAG: Ce, which is a photoluminescence material, was formed thereon to a thickness of 210 nm.
  • FIG. 25 shows a TEM image of this cross-sectional view
  • FIG. 26 shows the result of measuring the spectrum in the front direction when YAG: Ce is emitted by exciting it with a 450 nm LED.
  • FIG. 26 shows measurement results (ref) in the absence of a periodic structure, results of measuring a TM mode having a polarization component parallel to the one-dimensional periodic structure, and a TE mode having a perpendicular polarization component.
  • FIG. 27 shows a case where the axis parallel to the line direction of the one-dimensional periodic structure (periodic structure 120) is rotated as a rotation axis
  • FIG. The measurement result (upper stage) and the calculation result (lower stage) are shown for the case where the vertical axis is rotated about the rotation axis.
  • FIGS. 27 and 28 show the results of TM mode and TE mode linearly polarized light, respectively, FIG. 27 (a) shows the TM mode, FIG. 27 (b) shows the TE mode, and FIG. 28 (a).
  • FIG. 28B shows the results for the linearly polarized light in the TM mode.
  • the TM mode has a higher effect of enhancement, and it can be seen that the wavelength of the enhancement is shifted depending on the angle. For example, in the case of light at 610 nm, it can be seen that light is directional and polarized because light is only present in the TM mode and in the front direction.
  • the upper and lower parts of each figure are consistent, the validity of the above calculation was confirmed by experiments.
  • FIG. 29 shows the angle dependency of the intensity when rotating with the direction perpendicular to the line direction as the rotation axis in 610 nm light.
  • the directivity angle of the light emitted in the front direction is less than 15 °.
  • the directivity angle is an angle at which the intensity is 50% of the maximum intensity, and is expressed as an angle on one side with respect to the direction of the maximum intensity. That is, it can be seen that directional light emission is realized. Further, since all of these are TM mode components, it can be seen that polarized light emission is realized at the same time.
  • FIG. 31 is a cross-sectional view showing the light emitting device 300 according to the present embodiment.
  • the light-emitting element 300 includes a photoluminescence layer 110 and a light-transmitting layer including a periodic structure (for example, a submicron structure) 120 disposed in proximity to the photoluminescence layer 110.
  • a periodic structure for example, a submicron structure
  • the light emitted in the photoluminescence layer 110 by entering the excitation light is coupled to a specific pseudo waveguide mode determined by the periodic structure 120.
  • the light coupled to the pseudo waveguide mode is emitted to the outside from the photoluminescence layer 110 through the periodic structure 120 as propagating light L having high directivity in a specific direction.
  • the propagation light L is emitted in the front direction (the normal direction of one main surface 110a).
  • the light emitting element 300 further includes a multilayer mirror 310 provided on the other main surface 110b side of the photoluminescence layer 110.
  • the multilayer mirror 310 is laminated together with the photoluminescence layer 110 and the periodic structure 120.
  • the multilayer mirror 310 may be provided on the transparent substrate 140.
  • the multilayer mirror 310 is also called a dielectric reflection film, a dielectric mirror, a dielectric multilayer film, or the like, and suppresses propagation light from being emitted from the other main surface 110 b of the photoluminescence layer 110 to the outside of the light emitting element 300. Thereby, the intensity
  • the multilayer mirror 310 has at least one high refractive index layer 311 and at least one low refractive index layer 312.
  • the multilayer mirror 310 may have a plurality of high refractive index layers 311 and a plurality of low refractive index layers 312. In this case, the high refractive index layers 311 and the low refractive index layers 312 are alternately stacked, and the effect becomes greater as the number of films increases.
  • the high refractive index layer 311 has a higher refractive index than the low refractive index layer 312.
  • the refractive indexes of the low refractive index layer 312 and the high refractive index layer 311 are n L and n H , respectively, and the thicknesses of the low refractive index layer 312 and the high refractive index layer 311 are t ML and t MH , respectively.
  • m R is a positive integer (that is, a natural number). m R may be the same in the plurality of low refractive index layers 312 and the plurality of high refractive index layers 311, or may be different.
  • the low refractive index layer 312 may be formed of, for example, a material that satisfies 1.3 ⁇ n L ⁇ 1.7 and less absorbs the propagating light L. Specifically, it may be formed of a material in the above-described refractive index range among various materials exemplified as a material for forming the periodic structure.
  • the high refractive index layer 311 may be formed of, for example, a material that satisfies 1.5 ⁇ n L ⁇ 2.5 and has little absorption with respect to the propagating light L. Specifically, it may be formed of a material in the above-described refractive index range among various materials exemplified as a material for forming the periodic structure.
  • the high refractive index layer 311 may be made of the same material as the photoluminescence layer 110. Thereby, manufacture of a light emitting element becomes easy.
  • 32A and 32B show the results of calculating the thickness of the high refractive index layer 311 of the multilayer mirror 310 and the relationship between the wavelength of the propagating light, the reflectance, and the emission intensity, respectively.
  • the calculation conditions are as follows.
  • Refractive index n L of the low refractive index layer 312 1.5 Refractive index n H of the high refractive index layer 311: 1.75 Number of low refractive index layers 312 and high refractive index layers 311: each 4 layers
  • Low refractive index layer 312 thickness: 1.17 ( 1.75 / 1.5) times the thickness of high refractive index layer
  • Period of the periodic structure 120: 370 nm Height of the periodic structure 120: 80 nm 32A and 32B the horizontal axis indicates the wavelength of propagating light, and the vertical axis indicates the thickness of the high refractive index layer 311.
  • the shading in FIG. 32A indicates transmittance, and the darker the density, the higher the transmittance.
  • the shading in FIG. 32B indicates the emission intensity, and the higher the density, the higher the emission intensity.
  • the wavelength of propagating light is 570 nm
  • the thickness of the high refractive index layer 311 is set to about 65 to 95 nm
  • the reflectance in the multilayer mirror 310 can be increased, and the periodic structure 120 is provided.
  • the emission efficiency of propagating light from the one main surface 110a of the photoluminescence layer 110 is also improved.
  • the wavelength of propagating light is 560 nm
  • the thickness of the high refractive index layer 311 is set to about 225 to 255 nm
  • the reflectance in the multilayer mirror 310 is increased, and the photoluminescence layer provided with the periodic structure 120 is provided. It can be seen that the emission efficiency of propagating light from one main surface 110a of 110 is also increased.
  • the low refractive index layer 312 and the high refractive index layer 311 can be made the thinnest, so that the manufacture becomes easy.
  • the emission efficiency of light emitted from the light emitting element 300 is increased in a predetermined range including the thickness at which the reflection efficiency of the multilayer mirror 310 is highest.
  • the emission efficiency of the light emitting element 300 can be further improved by making the structure between the multilayer mirror 310 and the light emitting surface of the light emitting element 300 suitable for transmission of propagating light. .
  • the translucent structure is composed of a photoluminescence layer 110 and a layer through which light emitted from the photoluminescence layer 110 is transmitted, other than the multilayer mirror 310.
  • the translucent structure 320 includes the photoluminescence layer 110 and the periodic structure 120. Since the substrate 140 is provided on the side opposite to the photoluminescence layer 110 with respect to the multilayer mirror 310, it is not a “layer through which light emitted from the photoluminescence layer 110 is transmitted”.
  • the translucent structure 320 satisfies a condition for enhancing light by interference. Specifically, the thickness of the translucent structure 320 is set in a range where reflection due to interference is reduced. For example, when the periodic structure 120 has a height h p , a refractive index n p , and an exclusive area (filling factor) f on one main surface 110a, the effective optical path length of the periodic structure 120 is h p n p f expressed. When the photoluminescence layer 110 has a refractive index nw and a thickness tw, the effective optical path length of the photoluminescence layer 110 is represented by n W t W.
  • the translucent structure 320 and the multilayer mirror 310 are in contact with each other, and the refraction of the photoluminescence layer 110 is between the photoluminescence layer 110 and the low refractive index layer 312 that are in contact with each other at the interface.
  • the refractive index is larger than the refractive index of the low refractive index layer 312. For this reason, for light propagating from the multilayer mirror 310 to the translucent structure 320, the interface between the translucent structure 320 and the multilayer mirror 310 is free-end reflection (reflection whose phase does not change).
  • FIG. 33A and FIG. 33B show the results of calculating the thickness of the photoluminescence layer 110 and the relationship between the wavelength of propagating light and the emission intensity.
  • FIG. 33A shows the emission intensity of the light L emitted from one main surface 110a
  • FIG. 33B shows the emission intensity of the light L ′ emitted from the substrate 140 side.
  • the calculation conditions are as follows.
  • Refractive index n L of the low refractive index layer 312 1.5 Refractive index n H of the high refractive index layer 311: 1.75
  • the thickness of the low refractive index layer 312 93 nm High refractive index layer 311 thickness: 80 nm Number of low refractive index layers 312 and high refractive index layers 311: each four layers
  • Refractive index of photoluminescence layer 110 1.75
  • Period of the periodic structure 120 370 nm Height of the periodic structure 120: 80 nm Refractive index 1.5 of the periodic structure 120
  • Filling rate of periodic structure 120 0.5 33A and 33B, the horizontal axis indicates the wavelength of propagating light, and the vertical axis indicates the thickness of the photoluminescence layer.
  • the shading in FIGS. 33A and 33B indicates the emission intensity, and the higher the concentration, the higher the emission intensity.
  • the emission intensity is large when the thickness of the photoluminescence layer is about 85 to 165 nm.
  • the propagating light L can be emitted with high emission efficiency from the one main surface 110a that is the emission surface, regardless of the conditions assumed in the above calculation. .
  • the light emission intensity of the light L ′ emitted from the substrate 140 side is significantly smaller than the light emission intensity of the light L emitted from the one main surface 110a. From this, it can be seen that the multilayer mirror 310 efficiently reflects the light emitted from the other main surface 110b of the photoluminescence layer 110.
  • FIG. 34 is a cross-sectional view showing a light emitting element 301 in a first alternative example according to the present embodiment, and the same reference numerals are used for the same components as those in FIG.
  • the light emitting element 301 includes a translucent structure 320a including an adjustment layer 140 ′.
  • the translucent structure 320a includes the periodic structure 120, the photoluminescence layer 110, and the adjustment layer 140 ′.
  • the effective optical path length d T ′ of the translucent structure 320a is represented by the sum of the effective optical path lengths of the periodic structure 120, the photoluminescence layer 110, and the adjustment layer 140 ′.
  • the translucent structure 320a and the multilayer mirror 310 are in contact with each other, and the refractive index of the adjustment layer 140 ′ is the high refractive index layer 311 in the adjustment layer 140 ′ and the high refractive index layer 311 in contact with each other. Is smaller than the refractive index of. Therefore, for light propagating from the multilayer mirror 310 to the light transmissive structure 320a, the interface between the light transmissive structure 320a and the multilayer mirror 310 is fixed-end reflection (the phase is shifted by ⁇ during reflection). Therefore, the desirable range of the effective optical path length d T ′ is different from the above equation (19) by ⁇ a / (4n wav-a ), and it is desirable that the following equation (20) is satisfied.
  • FIG. 35 shows the calculation result of the relationship between the thickness of the adjustment layer 140 ′, the wavelength of propagating light, and the emission intensity.
  • the horizontal axis indicates the wavelength of propagating light, and the vertical axis indicates the thickness of the adjustment layer 140 ′.
  • the shading in FIG. 35 indicates the emission intensity, and the higher the density, the higher the emission intensity.
  • Refractive index n L of the low refractive index layer 312 1.5 Refractive index n H of the high refractive index layer 311: 1.75
  • the thickness of the low refractive index layer 312 93 nm
  • High refractive index layer 311 thickness 80 nm
  • Number of low refractive index layers 312 3 layers
  • Number of high refractive index layers 311 4 layers
  • Refractive index of photoluminescence layer 110 1.75
  • Filling rate of periodic structure 120 0.5 Refractive index of the adjustment layer 140 ′: 1.5 From FIG.
  • the emission intensity is large when the thickness of the adjustment layer 140 ′ is about 100 nm to 200 nm and about 270 nm to 380 nm.
  • the effective optical path length of the adjustment layer 140 ′ is 150 nm to 300 nm.
  • the thickness of the adjustment layer 140 ′ which is a part of the component of the translucent structure 320a
  • the effective optical path length of the translucent structure 320a satisfies the above formula (19).
  • the light-transmitting structure 320a can increase light transmittance, and the emission efficiency of the light-emitting element 301 can be increased. Therefore, the thickness of the photoluminescence layer 110 and the periodic structure 120 is set (that is, optimized) so as to increase the light emission efficiency by the pseudo-waveguide mode, and the thickness of the adjustment layer 140 ′ is adjusted independently.
  • FIG. 36 is a cross-sectional view showing a light emitting element 302 in a second alternative example according to the present embodiment, and the same reference numerals are used for the same configurations as those in FIG. 31 and FIG.
  • the translucent structure 320b includes photoluminescence layers 110 and 110 ′ and an adjustment layer 140 ′.
  • the effective optical path length d T ′ of the translucent structure 320b is represented by the sum of the effective optical path lengths of the photoluminescence layers 110 and 110 ′ and the adjustment layer 140 ′.
  • the multilayer mirror 310 is located between the translucent structure 320 and the transparent substrate 140.
  • FIG. 37 is a cross-sectional view showing a light emitting device 303 in a third other example according to the present embodiment, and the same reference numerals are used for the same configurations as those in FIGS. 31, 34, and 36.
  • a multilayer mirror 310 is formed on a light transmitting structure 320.
  • the transparent substrate 140 may support the multilayer mirror 310, and the multilayer mirror 310 may be sandwiched between the transparent substrate 140 and the translucent structure 320. Further, an air layer may be used instead of the transparent substrate 140.
  • An adjustment layer 140 ′ is provided on the translucent structure 320 so as to fill the irregularities of the periodic structure 120.
  • the adjustment layer 140 ′ has a flat main surface, and a multilayer mirror is formed on the main surface. 310 is located.
  • the translucent structure 320 further includes the transparent substrate 140, and the whole including the substrate 140 may satisfy Expression (20).
  • the multilayer mirror 310 is provided on the upper side of the translucent structure 320, it is possible to emit high intensity propagation light L 'from the substrate 140 side.
  • FIG. 38 is a cross-sectional view showing a light emitting device 304 according to a fourth example of the present embodiment.
  • the same reference numerals are used for the same configurations as those in FIGS. 31, 34, 36, and 37.
  • the light emitting element 304 has a structure in which the multilayer mirror 310 is disposed on the light transmitting structure 320c.
  • the translucent structure 320c includes a transparent substrate 140 on which the periodic structure 120 is provided on the surface, and a photoluminescence layer 110 provided on the transparent substrate 140 so as to fill the unevenness of the periodic structure 120.
  • the periodic structure 120 is formed of the same material as the transparent substrate 140, for example.
  • the effective optical path length of the translucent structure 320c is configured to satisfy the above formula (19).
  • the main surface of the photoluminescence layer 110 opposite to the transparent substrate 140 is flat.
  • a multilayer mirror 310 is formed on this main surface.
  • the high refractive index layer 311 and the low refractive index layer 312 of the multilayer mirror 310 each have a flat main surface.
  • the high refractive index layer 311 and the low refractive index layer 312 of the multilayer mirror 310 are configured to satisfy Expression (18).
  • the multilayer mirror 310 is provided on the upper side of the translucent structure 320, it is possible to emit high-intensity propagation light L 'from the substrate 140 side.
  • FIG. 39 is a cross-sectional view showing a light emitting device 305 according to a fifth alternative example of the present embodiment.
  • the same reference numerals are used for the same components as those in FIG.
  • the light-emitting element 305 is different from the light-emitting element 304 in that the light-emitting element 305 includes a photoluminescence layer 110 having a concavo-convex structure following the concavo-convex structure of the periodic structure 120 and a multilayer mirror 310.
  • the high refractive index layer 311 and the low refractive index layer 312 of the multilayer mirror 310 each satisfy the formula (18).
  • the translucent structure 320d including the photoluminescence layer 110 and the periodic structure 120 satisfies the formula (19). Therefore, like the light emitting element 304, the light emitting element 305 can emit high-emission high-intensity propagation light L 'from the substrate 140 side.
  • the light emitting element that emits the propagation lights L and L ′ in the normal direction of the main surface of the photoluminescence layer 110 has been described.
  • a light emitting element that emits light in a direction other than the normal direction may be realized.
  • a light emitting device having directivity can be realized, it can be applied to an optical device such as an illumination, a display, and a projector.
  • Light-emitting element 110 Photoluminescence layer (waveguide) 120, 120 ', 120a, 120b, 120c Translucent layer (periodic structure, submicron structure) 140 Transparent substrate 140 ′ Adjustment layer 150 Protective layer 180 Light source 200 Light emitting device 310 Multilayer mirror 311 High refractive index layer 312 Low refractive index layer 320, 320a, 320b, 320c, 320d Translucent structure

Abstract

 発光素子(100)は、フォトルミネッセンス層(110)と、フォトルミネッセンス層(110)に近接して配置された透光層(120)と、フォトルミネッセンス層(110)および透光層(120)の少なくとも一方に形成され、フォトルミネッセンス層(110)または透光層(120)の面内に広がるサブミクロン構造と、フォトルミネッセンス層および前記透光層と積層された多層ミラーとを有し、サブミクロン構造は、複数の凸部または複数の凹部を含み、フォトルミネッセンス層(110)が発する光は、空気中の波長がλaの第1の光を含み、隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ。

Description

発光素子および発光装置
 本開示は、発光素子および発光装置に関し、特に、フォトルミネッセンス層を有する発光素子および発光装置に関する。
 照明器具、ディスプレイ、プロジェクターといった光学デバイスでは、多くの用途において、必要な方向に光を出射することが求められる。蛍光灯、白色LEDなどで使用されるフォトルミネッセンス材料は等方的に発光する。よって、この様な材料は、特定の方向のみに光を出射させるために、リフレクターやレンズなどの光学部品とともに用いられる。例えば、特許文献1は、配光板および補助反射板を用いて指向性を確保した照明システムを開示している。
特開2010-231941号公報
 本開示は、フォトルミネッセンス層の発光効率、指向性、または偏光特性を制御することが可能な、新規な構造を有する発光素子およびそれを備える発光装置を提供する。
 本開示のある実施形態の発光素子は、フォトルミネッセンス層と、前記フォトルミネッセンス層に近接して配置された透光層と、前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーとを有し、前記サブミクロン構造は、複数の凸部または複数の凹部を含み、隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ。
 上記の包括的または具体的な態様は、素子、装置、システム、方法、またはこれらの任意の組み合わせで実現されてもよい。
 本開示のある実施形態による発光素子および発光装置は、新規な構成を有し、新規なメカニズムに従って、輝度、指向性、または偏光特性を制御することができる。
ある実施形態による発光素子の構成を示す斜視図である。 図1Aに示す発光素子の部分断面図である。 他の実施形態による発光素子の構成を示す斜視図である。 図1Cに示す発光素子の部分断面図である。 発光波長および周期構造の高さをそれぞれ変えて、正面方向に出射する光の増強度を計算した結果を示す図である。 式(10)におけるm=1およびm=3の条件を図示したグラフである。 発光波長およびフォトルミネッセンス層の厚さtを変えて正面方向に出力する光の増強度を計算した結果を示す図である。 厚さt=238nmのときに、x方向に導波するモードの電場分布を計算した結果を示す図である。 厚さt=539nmのときに、x方向に導波するモードの電場分布を計算した結果を示す図である。 厚さt=300nmのときに、x方向に導波するモードの電場分布を計算した結果を示す図である。 図2の計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードである場合について光の増強度を計算した結果を示す図である。 2次元の周期構造の例を示す平面図である。 2次元周期構造に関して図2と同様の計算を行った結果を示す図である。 発光波長および周期構造の屈折率を変えて正面方向に出力する光の増強度を計算した結果を示す図である。 図8と同様の条件でフォトルミネッセンス層の膜厚を1000nmにした場合の結果を示す図である。 発光波長および周期構造の高さを変えて正面方向に出力する光の増強度を計算した結果を示す図である。 図10と同様の条件で、周期構造の屈折率をnp=2.0とした場合の計算結果を示す図である。 光の偏光がy方向に垂直な電場成分を有するTEモードであるものとして図9に示す計算と同様の計算を行った結果を示す図である。 図9に示す計算と同様の条件で、フォトルミネッセンス層の屈折率nwavを1.5に変更した場合の結果を示す図である。 屈折率が1.5の透明基板の上に、図2に示す計算と同じ条件のフォトルミネッセンス層および周期構造を設けた場合の計算結果を示す図である。 式(15)の条件を図示したグラフである。 図1A、1Bに示す発光素子100と、励起光をフォトルミネッセンス層110に入射させる光源180とを備える発光装置200の構成例を示す図である。 励起光を擬似導波モードに結合させることで、効率よく光を出射させる構成を説明するための図であり、(a)はx方向の周期pxを有する1次元周期構造を示し、(b)はx方向の周期px、y方向の周期pyを有する2次元周期構造を示し、(c)は(a)の構成における光の吸収率の波長依存性を示し、(d)は(b)の構成における光の吸収率の波長依存性を示している。 2次元周期構造の一例を示す図である。 2次元周期構造の他の例を示す図である。 透明基板上に周期構造を形成した変形例を示す図である。 透明基板上に周期構造を形成した他の変形例を示す図である。 図19Aの構成において、発光波長および周期構造の周期を変えて正面方向に出力する光の増強度を計算した結果を示す図である。 複数の粉末状の発光素子を混ぜた構成を示す図である。 フォトルミネッセンス層の上に周期の異なる複数の周期構造を2次元に配列した例を示す平面図である。 表面に凹凸構造が形成された複数のフォトルミネッセンス層110が積層された構造を有する発光素子の一例を示す図である。 フォトルミネッセンス層110と周期構造120との間に保護層150を設けた構成例を示す断面図である。 フォトルミネッセンス層110の一部のみを加工することによって周期構造120を形成した例を示す図である。 周期構造を有するガラス基板上に形成されたフォトルミネッセンス層の断面TEM像を示す図である。 試作した発光素子の出射光の正面方向のスペクトルを測定した結果を示すグラフである。 (a)および(b)は、試作した発光素子の出射光の角度依存性を測定した結果(上段)および計算結果(下段)を示すグラフである。 (a)および(b)は、試作した発光素子の出射光の角度依存性を測定した結果(上段)および計算結果(下段)を示すグラフである。 試作した発光素子の出射光(波長610nm)の角度依存性を測定した結果を示すグラフである。 スラブ型導波路の一例を模式的に示す斜視図である。 多層ミラーを有する発光素子の実施形態を示す図である。 多層ミラーの高屈折率層の厚さおよび伝播光の波長と反射率との関係を計算した結果を示す図である。 多層ミラーの高屈折率層の厚さおよび伝播光の波長と発光強度との関係を計算した結果を示す図である。 フォトルミネッセンス層の厚さおよび伝播光の波長と周期構造側から出射する伝播光の発光強度との関係を計算した結果を示す図である。 フォトルミネッセンス層の厚さおよび伝播光の波長と透明基板側から出射する伝播光の発光強度との関係を計算した結果を示す図である。 多層ミラーを有する発光素子の他の例を示す図である。 透明基板の厚さおよび伝播光の波長と発光強度との関係を計算した結果を示す図である。 多層ミラーを有する発光素子の他の例を示す図である。 多層ミラーを有する発光素子の他の例を示す図である。 多層ミラーを有する発光素子の他の例を示す図である。 多層ミラーを有する発光素子の他の例を示す図である。
 光学デバイスにおいて、リフレクターやレンズなどの光学部品を配置すると、そのスペースを確保するために、光学デバイス自身のサイズを大きくする必要があり、これら光学部品は無くすか、少しでも小型化することが望ましい。
 本開示は、以下の項目に記載の発光素子および発光装置を含む。
 [項目1]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に近接して配置された透光層と、
 前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ、発光素子。
 [項目2]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含む、項目1に記載の発光素子。
 [項目3]
 前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-aよりも小さい、項目1または2に記載の発光素子。
 [項目4]
 前記第1の光は、前記サブミクロン構造によって予め決められた第1の方向において強度が最大になる、項目1から3のいずれかに記載の発光素子。
 [項目5]
 前記第1の方向は、前記フォトルミネッセンス層の法線方向である、項目4に記載の発光素子。
 [項目6]
 前記第1の方向に出射された前記第1の光は、直線偏光である、項目4または5に記載の発光素子。
 [項目7]
 前記第1の光の前記第1の方向を基準としたときの指向角は、15°未満である、項目4から6のいずれかに記載の発光素子。
 [項目8]
 前記第1の光の波長λaと異なる波長λbを有する第2の光は、前記第1の方向と異なる第2の方向において強度が最大となる、項目4から7のいずれかに記載の発光素子。
 [項目9]
 前記透光層が前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
 [項目10]
 前記フォトルミネッセンス層が前記サブミクロン構造を有する、項目1から9のいずれかに記載の発光素子。
 [項目11]
 前記フォトルミネッセンス層は、平坦な主面を有し、
 前記透光層は前記フォトルミネッセンス層の前記平坦な主面上に形成されており、かつ、前記サブミクロン構造を有する、項目1から8のいずれかに記載の発光素子。
 [項目12]
 前記フォトルミネッセンス層は、透明基板に支持されている、項目11に記載の発光素子。
 [項目13]
 前記透光層は、前記サブミクロン構造を一方の主面に有する透明基板であって、
 前記フォトルミネッセンス層は、前記サブミクロン構造の上に形成されている、項目1から8のいずれかに記載の発光素子。
 [項目14]
 前記第1の光に対する前記透光層の屈折率nt-aは、前記第1の光に対する前記フォトルミネッセンス層の屈折率nwav-a以上であって、前記サブミクロン構造が有する前記複数の凸部の高さまたは前記複数の凹部の深さは150nm以下である、項目1または2に記載の発光素子。
 [項目15]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ第1周期構造を含み、
 前記第1周期構造は、1次元周期構造である、項目1および3から14のいずれかに記載の発光素子。
 [項目16]
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaと異なるλbの第2の光を含み、前記第2の光前記第2の光に対する前記フォトルミネッセンス層の屈折率をnwav-bとすると、
 前記少なくとも1つの周期構造は、周期をpbとすると、λb/nwav-b<pb<λbの関係が成り立つ第2周期構造をさらに含み、
 前記第2周期構造は、1次元周期構造である、項目15に記載の発光素子。
 [項目17]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも2つの周期構造を含み、前記少なくとも2つの周期構造は、互いに異なる方向に周期性を有する2次元周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
 [項目18]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
 前記複数の周期構造は、マトリクス状に配列された複数の周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
 [項目19]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された複数の周期構造を含み、
 前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層の屈折率をnwav-exとすると、
 前記複数の周期構造は、周期pexが、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を含む、項目1および3から14のいずれかに記載の発光素子。
 [項目20]
 複数のフォトルミネッセンス層と、複数の透光層とを有し、
 前記複数のフォトルミネッセンス層の少なくとも2つと前記複数の透光層の少なくとも2つとは、それぞれ独立に、項目1から19のいずれかに記載の前記フォトルミネッセンス層と前記透光層とにそれぞれ該当する、発光素子。
 [項目21]
 前記複数のフォトルミネッセンス層と前記複数の透光層は、積層されている、項目20に記載の発光素子。
 [項目22]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に近接して配置された透光層と、
 前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
 前記フォトルミネッセンス層および前記透光層の内部に擬似導波モードを形成する光を出射する、発光素子。
 [項目23]
 光が導波することができる導波層と、
 前記導波層に近接して配置された周期構造と
を備え、
 前記導波層はフォトルミネッセンス材料を有し、
 前記導波層において、前記フォトルミネッセンス材料から発せられた光が前記周期構造と作用しながら導波する擬似導波モードが存在する、発光素子。
 [項目24]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に近接して配置された透光層と、
 前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が有するフォトルミネッセンス材料の励起光の空気中における波長をλexとし、前記励起光に対する前記フォトルミネッセンス層または前記透光層に至る光路に存在する媒質の内で最も屈折率が大きい媒質の屈折率をnwav-exとすると、λex/nwav-ex<Dint<λexの関係が成り立つ、発光素子。
 [項目25]
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、前記少なくとも1つの周期構造は、周期をpexとすると、λex/nwav-ex<pex<λexの関係が成り立つ第1周期構造を含む、項目24に記載の発光素子。
 [項目26]
 透光層と、
前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
前記サブミクロン構造に近接して配置されたフォトルミネッセンス層と、を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目27]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層よりも高い屈折率を有する透光層と、
 前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目28]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目29]
 前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目1から21、24から28のいずれかに記載の発光素子。
 [項目30]
 前記フォトルミネッセンス層と前記透光層とが互いに接している、項目1から22、24から27のいずれかに記載の発光素子。
 [項目31]
 前記導波層と前記周期構造とが互いに接している、項目23に記載の発光素子。
 [項目32]
 項目1から31のいずれかに記載の発光素子と、
 前記フォトルミネッセンス層に励起光を照射する、励起光源と、
 を備える発光装置。
[項目33]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に近接して配置された透光層と、
 前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、
 前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
 を有し、
 前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ、発光素子。
 [項目34]
 前記多層ミラーは、複数の低屈折率層と前記複数の低屈折率層よりも高い屈折率を有する複数の高屈折率層とを含み、
 各低屈折率層および各高屈折率層は交互に積層されている項目33に記載の発光素子。
 [項目35]
 前記複数の低屈折率層および前記複数の高屈折率層の屈折率はそれぞれnLおよびnHであり、前記複数の低屈折率層および前記複数の高屈折率層の厚さはそれぞれtMLおよびtMHであり、mRは任意の正の整数であり、下記式
 (2mR-1.2)λa/(4nL)≦tML≦(2mR-0.8)λa/(4nL
 (2mR-1.2)λa/(4nH)≦tMH≦(2mR-0.8)λa/(4nH
を満たしている項目34に記載の発光素子。
 [項目36]
 前記複数の高屈折率層は前記フォトルミネッセンス層と同じ材料によって形成されている項目33から35のいずれかに記載の発光素子。
 [項目37]
 前記mRは1である項目35に記載の発光素子。
 [項目38]
 前記透光層が前記サブミクロン構造を有し、
前記透光層と前記多層ミラーとの間に前記フォトルミネッセンス層が位置している項目33から37のいずれかに記載の発光素子。
 [項目39]
 前記多層ミラーと前記フォトルミネッセンス層との間に位置する調整層をさらに含む項目33から37のいずれかに記載の発光素子。
 [項目40]
 前記フォトルミネッセンス層を支持する透明基板と、
 調整層とをさらに備え、
 前記フォトルミネッセンス層は、平坦な主面を有し、
 前記透光層は前記フォトルミネッセンス層の前記平坦な主面上に形成されており、かつ、前記サブミクロン構造を有し、
 前記調整層は、前記透光層を覆って前記フォトルミネッセンス層上に位置しており、
 前記多層ミラーは前記調整層上に位置している項目33から37のいずれかに記載の発光素子。
 [項目41]
 前記透光層は、前記サブミクロン構造を表面に有する透明基板であり、
 前記フォトルミネッセンス層は、前記サブミクロン構造を埋めるように前記透明基板の表面に位置しており、
 前記多層ミラーは前記フォトルミネッセンス層上に位置している項目33から39のいずれかに記載の発光素子。
 [項目42]
 前記フォトルミネッセンス層の前記透明基板と反対側に位置する主面は平坦である項目41に記載の発光素子。
 [項目43]
 前記フォトルミネッセンス層の前記透明基板と反対側に位置する主面は、前記サブミクロン構造の複数の凸部または複数の凹部に追随した凹凸形状を有し、
 前記多層ミラーは、前記サブミクロン構造の複数の凸部または複数の凹部に追随した凹凸形状を有する項目41に記載の発光素子。
 [項目44]
 前記フォトルミネッセンス層および前記透光層を含む透光性構造体を備え、
 前記多層ミラーと前記透光性構造体とは互いに接しており、前記多層ミラーと前記透光性構造体との界面部分において、前記透光性構造体の屈折率は、前記多層ミラーの屈折率よりも大きく、
 mTは任意の正の整数であり、前記透光性構造体の前記積層方向における実効光路長dTは、下記式
 (4mT-1)λa/(8nwav-a)<dT<(4mT+1)λa/(8nwav-a
 を満たしている項目33から43のいずれかに記載の発光素子。
 [項目45]
 前記フォトルミネッセンス層および前記透光層を含む透光性構造体を備え、
 前記多層ミラーと前記透光性構造体とは互いに接しており、前記多層ミラーと前記透光性構造体との界面部分において、前記透光性構造体の屈折率は、前記多層ミラーの屈折率よりも小さく、
 mTは任意の正の整数であり、前記透光性構造体の前記積層方向における実効光路長dTは、下記式(4mT-3)λa/(8nwav-a)<dT<(4mT-1)λa/(8nwav-a)を満たしている項目33から43のいずれかに記載の発光素子。
 [項目46]
 前記mTは1である項目44または45に記載の発光素子。
 [項目47]
 透光層と、
 前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
 前記サブミクロン構造に近接して配置されたフォトルミネッセンス層と、
 前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
 を有し、
 前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目48]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層よりも高屈折率を有する透光層と、
 前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
 前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
 を有し、
 前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目49]
 前記フォトルミネッセンス層と前記透光層とが互いに接している、項目33から47のいずれかに記載の発光素子。
 [項目50]
 フォトルミネッセンス層と、
 前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、
 前記フォトルミネッセンス層とともに積層された多層ミラーと、
 を有し、
 前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
 前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
 前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
 前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
 [項目51]
 前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、項目33から50のいずれかに記載の発光素子。
 [項目52]
 項目33から51のいずれかに記載の発光素子と、
 前記フォトルミネッセンス層に励起光を照射する、励起光源と、
 を備える発光装置。
 本開示の実施形態による発光素子は、フォトルミネッセンス層と、前記フォトルミネッセンス層に近接して配置された透光層と、前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造とを有し、前記サブミクロン構造は、複数の凸部または複数の凹部を含み、隣接する凸部間または凹部間の距離をDintとし、前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ。波長λaは、例えば、可視光の波長範囲内(例えば、380nm以上780nm以下)にある。
 フォトルミネッセンス層は、フォトルミネッセンス材料を含む。フォトルミネッセンス材料は、励起光を受けて発光する材料を意味する。フォトルミネッセンス材料は、狭義の蛍光材料および燐光材料を包含し、無機材料だけなく、有機材料(例えば色素)を包含し、さらには、量子ドット(即ち、半導体微粒子)を包含する。フォトルミネッセンス層は、フォトルミネッセンス材料に加えて、マトリクス材料(即ち、ホスト材料)を含んでもよい。マトリクス材料は、例えば、ガラスや酸化物などの無機材料や樹脂である。
 フォトルミネッセンス層に近接して配置される透光層は、フォトルミネッセンス層が発する光に対して透過率が高い材料で形成され、例えば、無機材料や樹脂で形成される。透光層は、例えば誘電体(特に、光の吸収が少ない絶縁体)で形成されていることが望ましい。透光層は、例えば、フォトルミネッセンス層を支持する基板であってよい。また、フォトルミネッセンス層の空気側の表面がサブミクロン構造を有する場合、空気層が透光層となり得る。
 本開示の実施形態による発光素子においては、後に計算結果および実験結果を参照して詳述するように、フォトルミネッセンス層および透光層の少なくとも一方に形成されたサブミクロン構造(例えば、周期構造)によって、フォトルミネッセンス層および透光層の内部に、ユニークな電場分布を形成する。これは、導波光がサブミクロン構造と相互作用して形成されるものであり、擬似導波モードと表現することもできる。この擬似導波モードを活用することで、以下で説明するように、フォトルミネッセンスの発光効率の増大、指向性の向上、偏光の選択性の効果を得ることができる。なお、以下の説明において、擬似導波モードという用語を使って、本発明者らが見出した、新規な構成および/または新規なメカニズムを説明することがあるが、1つの例示的な説明に過ぎず、本開示をいかなる意味においても限定するものではない。
 サブミクロン構造は、例えば複数の凸部を含み、隣接する凸部間の距離(即ち、中心間距離)をDintとすると、λa/nwav-a<Dint<λaの関係を満足する。サブミクロン構造は、複数の凸部に代えて複数の凹部を含んでもよい。以下では、簡単のために、サブミクロン構造が複数の凸部を有する場合を説明する。λは光の波長を表し、λaは空気中での光の波長であることを表現する。nwavはフォトルミネッセンス層の屈折率である。フォトルミネッセンス層が複数の材料を混合した媒質である場合、各材料の屈折率をそれぞれの体積比率で重み付けした平均屈折率をnwavとする。一般に屈折率nは波長に依存するので、λaの光に対する屈折率であることをnwav-aと明示することが望ましいが、簡単のために省略することがある。nwavは基本的にフォトルミネッセンス層の屈折率であるが、フォトルミネッセンス層に隣接する層の屈折率がフォトルミネッセンス層の屈折率よりも大きい場合、当該屈折率が大きい層の屈折率およびフォトルミネッセンス層の屈折率をそれぞれの体積比率で重み付けした平均屈折率をnwavとする。この場合は、光学的には、フォトルミネッセンス層が複数の異なる材料の層で構成されている場合と等価であるからである。
 擬似導波モードの光に対する媒質の有効屈折率をneffとすると、na<neff<nwavを満たす。ここで、naは空気の屈折率である。擬似導波モードの光を、フォトルミネッセンス層の内部を入射角θで全反射しながら伝搬する光であると考えると、有効屈折率neffは、neff=nwavsinθと書ける。また、有効屈折率neffは、擬似導波モードの電場が分布する領域に存在する媒質の屈折率によって決まるので、例えば、サブミクロン構造が透光層に形成されている場合、フォトルミネッセンス層の屈折率だけでなく、透光層の屈折率にも依存する。また、擬似導波モードの偏光方向(TEモードとTMモード)により、電場の分布は異なるので、TEモードとTMモードとでは有効屈折率neffは異なり得る。
 サブミクロン構造は、フォトルミネッセンス層および透光層の少なくとも一方に形成される。フォトルミネッセンス層と透光層とが互いに接するとき、フォトルミネッセンス層と透光層との界面にサブミクロン構造が形成されてもよい。このとき、フォトルミネッセンス層および透光層がサブミクロン構造を有する。フォトルミネッセンス層はサブミクロン構造を有さなくてもよい。このとき、サブミクロン構造を有する透光層がフォトルミネッセンス層に近接して配置される。ここで、透光層(またはそのサブミクロン構造)がフォトルミネッセンス層に近接するとは、典型的には、これらの間の距離が、波長λaの半分以下であることをいう。これにより、導波モードの電場がサブミクロン構造に到達し、擬似導波モードが形成される。ただし、透光層の屈折率がフォトルミネッセンス層の屈折率よりも大きいときには上記の関係を満足しなくても透光層まで光が到達するため、透光層のサブミクロン構造とフォトルミネッセンス層との間の距離は、波長λaの半分超であってもよい。本明細書では、フォトルミネッセンス層と透光層とが、導波モードの電場がサブミクロン構造に到達し、擬似導波モードが形成されるような配置関係にあるとき、両者が互いに関連付けられていると表現することがある。
 サブミクロン構造は、上記のように、λa/nwav-a<Dint<λaの関係を満足するので、サブミクロンオーダーの大きさで特徴づけられる。サブミクロン構造は、例えば、以下に詳細に説明する実施形態の発光素子におけるように、少なくとも1つの周期構造を含む。少なくとも1つの周期構造は、周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ。すなわち、サブミクロン構造は、隣接する凸部間の距離Dintがpaで一定の周期構造を有する。サブミクロン構造が周期構造を含むと、擬似導波モードの光は、伝搬しながら周期構造と相互作用を繰り返すことにより、サブミクロン構造によって回折される。これは、自由空間を伝播する光が周期構造により回折する現象とは異なり、光が導波しながら(即ち、全反射を繰り返しながら)周期構造と作用する現象である。したがって、周期構造による位相シフトが小さくても(即ち、周期構造の高さが小さくても)効率よく光の回折を起こすことができる。
 以上のようなメカニズムを利用すれば、擬似導波モードにより電場が増強される効果によって、フォトルミネッセンスの発光効率が増大するとともに、発生した光が擬似導波モードに結合する。擬似導波モードの光は、周期構造で規定される回折角度だけ進行角度が曲げられる。これを利用することによって、特定の波長の光を特定の方向に出射することができる(指向性が顕著に向上)。さらに、TEとTMモードで有効屈折率neff(=nwavsinθ)が異なるので、高い偏光の選択性を同時に得ることもできる。例えば、後に実験例を示すように、特定の波長(例えば610nm)の直線偏光(例えばTMモード)を正面方向に強く出射する発光素子を得ることができる。このとき、正面方向に出射される光の指向角は例えば15°未満である。なお、指向角は正面方向を0°とした片側の角度とする。
 逆に、サブミクロン構造の周期性が低くなると、指向性、発光効率、偏光度および波長選択性が弱くなる。必要に応じて、サブミクロン構造の周期性を調整すればよい。周期構造は、偏光の選択性が高い1次元周期構造であってもよいし、偏光度を小さくできる2次元周期構造であってもよい。
 また、サブミクロン構造は、複数の周期構造を含み得る。複数の周期構造は、例えば、周期(ピッチ)が互いに異なる。あるいは、複数の周期構造は、例えば、周期性を有する方向(軸)が互いに異なる。複数の周期構造は、同一面内に形成されてもよいし、積層されてもよい。もちろん、発光素子は、複数のフォトルミネッセンス層と複数の透光層とを有し、これらが複数のサブミクロン構造を有してもよい。
 サブミクロン構造は、フォトルミネッセンス層が発する光を制御するためだけでなく、励起光を効率よくフォトルミネッセンス層に導くためにも用いることができる。すなわち、励起光がサブミクロン構造により回折されフォトルミネッセンス層および透光層を導波する擬似導波モードに結合することで、効率よくフォトルミネッセンス層を励起することができる。フォトルミネッセンス材料を励起する光の空気中における波長をλexとし、この励起光に対するフォトルミネッセンス層の屈折率をnwav-exとすると、λex/nwav-ex<Dint<λexの関係が成り立つサブミクロン構造を用いればよい。nwav-exはフォトルミネッセンス材料の励起波長における屈折率である。周期をpexとすると、λex/nwav-ex<pex<λexの関係が成り立つ周期構造を有するサブミクロン構造を用いてもよい。励起光の波長λexは、例えば、450nmであるが、可視光よりも短波長であってもよい。励起光の波長が可視光の範囲内にある場合、フォトルミネッセンス層が発する光とともに、励起光を出射するようにしてもよい。
 [1.本開示の基礎となった知見]
 本開示の具体的な実施形態を説明する前に、まず、本開示の基礎となった知見を説明する。上述のように、蛍光灯、白色LEDなどで使われるフォトルミネッセンス材料は等方的に発光するので、特定の方向を光で照らすためには、リフレクターやレンズなどの光学部品が必要である。しかしながら、もしフォトルミネッセンス層自身が指向性をもって発光すれば、上記のような光学部品は不要になるので(若しくは小さくできるので)、光学デバイスや器具の大きさを大幅に小さくすることができる。本発明者らは、このような着想に基づき、指向性発光を得るために、フォトルミネッセンス層の構成を詳細に検討した。
 本発明者らは、まず、フォトルミネッセンス層からの光が特定の方向に偏るようにするため、発光自体に特定の方向性をもたせることを考えた。発光を特徴付ける指標である発光レートΓは、フェルミの黄金則により、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、rは位置を表すベクトル、λは光の波長、dは双極子ベクトル、Eは電場ベクトル、ρは状態密度である。一部の結晶性物質を除く多くの物質では、双極子ベクトルdはランダムな方向性を有している。また、フォトルミネッセンス層のサイズと厚さが光の波長よりも十分に大きい場合、電場Eの大きさも向きに依らずほとんど一定である。よって、ほとんどの場合、<(d・E(r))>2の値は方向に依らない。即ち、発光レートΓは方向に依らず一定である。このため、ほとんどの場合においてフォトルミネッセンス層は等方的に発光する。
 一方、式(1)から、異方的な発光を得るためには、双極子ベクトルdを特定の方向に揃えるか、電場ベクトルの特定方向の成分を増強するかのいずれかの工夫が必要である。これらのいずれかの工夫を行うことで、指向性発光を実現できる。本開示では、フォトルミネッセンス層へ光を閉じ込める効果により、特定方向の電場成分が増強された擬似導波モードを利用するための構成について検討し、詳細に分析した結果を以下に説明する。
 [2.特定の方向の電場のみを強くする構成]
 本願発明者らは、電場が強い導波モードを用いて、発光の制御を行うことを考えた。導波構造自体がフォトルミネッセンス材料を含む構成とすることで、発光を導波モードに結合させることができる。しかし、ただ単にフォトルミネッセンス材料を用いて導波構造を形成しただけでは、発せられた光が導波モードとなるため、正面方向へはほとんど光は出てこない。そこで、フォトルミネッセンス材料を含む導波路と周期構造(複数の凸部および複数の凹部の少なくとも一方で形成された)とを組み合わせることを考えた。導波路に周期構造が近接し、光の電場が周期構造と重なりながら導波する場合、周期構造の作用により擬似導波モードが存在する。つまり、この擬似導波モードは、周期構造により制限された導波モードであり、電場振幅の腹が周期構造の周期と同じ周期で発生することを特徴とする。このモードは、光が導波構造に閉じ込められることにより特定方向への電場が強められたモードである。さらに、このモードは周期構造と相互作用することで、回折効果により特定方向の伝播光へと変換されるため、導波路外部へと光を出射することができる。さらに、擬似導波モード以外の光は導波路内に閉じ込められる効果が小さいため、電場は増強されない。よって、発光のほとんどは大きな電場成分を有する擬似導波モードへと結合することになる。
 つまり、本願発明者らは、周期構造が近接して設けられた導波路を、フォトルミネッセンス材料を含むフォトルミネッセンス層(あるいはフォトルミネッセンス層を有する導波層)とすることで、発光を特定方向の伝播光へと変換される擬似導波モードへ結合させ、指向性のある光源を実現することを考えた。
 導波構造の簡便な構成として、スラブ型導波路に着目した。スラブ型導波路とは、光の導波部分が平板構造を有する導波路のことである。図30は、スラブ型導波路110Sの一例を模式的に示す斜視図である。導波路110Sの屈折率が導波路110Sを支持する透明基板140の屈折率よりも高いとき、導波路110S内を伝播する光のモードが存在する。このようなスラブ型導波路をフォトルミネッセンス層を含む構成とすることで、発光点から生じた光の電場が導波モードの電場と大きく重なりをもつので、フォトルミネッセンス層で生じた光の大部分を導波モードに結合させることができる。さらに、フォトルミネッセンス層の厚さを光の波長程度とすることにより、電場振幅の大きい導波モードのみが存在する状況を作り出すことができる。
 さらに、フォトルミネッセンス層に周期構造が近接する場合には、導波モードの電場が周期構造と相互作用することで擬似導波モードが形成される。フォトルミネッセンス層が複数の層で構成されている場合でも、導波モードの電場が周期構造に達していれば、擬似導波モードが形成されることになる。フォトルミネッセンス層の全てがフォトルミネッセンス材料である必要はなく、その少なくとも一部の領域が発光する機能を有していればよい。
 また、周期構造を金属で形成した場合には、導波モードとプラズモン共鳴の効果によるモードが形成され、上で述べた擬似導波モードとは異なる性質となる。また、このモードは金属による吸収が大きいためロスが大きくなり、発光増強の効果は小さくなる。したがって、周期構造としては、吸収の少ない誘電体を用いるのが望ましい。
 本発明者らは、まずこのような導波路(例えば、フォトルミネッセンス層)の表面に、周期構造を形成することで、特定の角度方向の伝播光として出射することのできる擬似導波モードに発光を結合させることについて検討を行った。図1Aは、そのような導波路(例えば、フォトルミネッセンス層)110と周期構造(例えば、透光層)120とを有する発光素子100の一例を模式的に示す斜視図である。以下、透光層120が周期構造を形成している場合(即ち、透光層120に周期的なサブミクロン構造が形成されている場合)、透光層120を周期構造120ということがある。この例では、周期構造120は、各々がy方向に延びるストライプ状の複数の凸部がx方向に等間隔に並んだ1次元周期構造である。図1Bは、この発光素子100をxz面に平行な平面で切断したときの断面図である。導波路110に接するように周期pの周期構造120を設けると、面内方向の波数kwavをもつ擬似導波モードは、導波路外の伝播光へと変換され、その波数koutは以下の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)におけるmは整数であり、回折の次数を表す。
 ここで、簡単のため、近似的に導波路内を導波する光を角度θwavで伝播する光線であると考え、以下の式(3)および(4)が成立するとする。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 これらの式において、λ0は光の空気中の波長、nwavは導波路の屈折率、noutは出射側の媒質の屈折率、θoutは光が導波路外の基板または空気に出射するときの出射角度である。式(2)~(4)から、出射角度θoutは、以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 式(5)より、nwavsinθwav=mλ0/pが成立するとき、θout=0となり、導波路の面に垂直な方向(即ち、正面)に光を出射させることができることがわかる。
 以上のような原理に基づけば、発光を特定の擬似導波モードに結合させ、さらに周期構造を利用して特定の出射角度の光に変換することにより、その方向に強い光を出射させることができると考えられる。
 上記のような状況を実現するためには、いくつかの制約条件がある。まず、擬似導波モードが存在するためには、導波路内で伝播する光が全反射することが必要である。このための条件は、以下の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 この擬似導波モードを周期構造によって回折させて導波路外に光を出射させるためには、式(5)において-1<sinθout<1である必要がある。よって、以下の式(7)を満足する必要がある。
Figure JPOXMLDOC01-appb-M000007
 これに対し、式(6)を考慮すると、以下の式(8)が成立すればよいことがわかる。
Figure JPOXMLDOC01-appb-M000008
 さらに、導波路110から出射される光の方向を正面方向(θout=0)にするためには、式(5)から、以下の式(9)が必要であることがわかる。
Figure JPOXMLDOC01-appb-M000009
 式(9)および式(6)から、必要な条件は、以下の式(10)であることがわかる。
Figure JPOXMLDOC01-appb-M000010
 なお、図1Aおよび図1Bに示すような周期構造を設けた場合には、mが2以上の高次の回折効率は低いため、m=1である1次の回折光を主眼に設計すると良い。このため、本実施形態における周期構造では、m=1として、式(10)を変形した以下の式(11)を満足するように周期pが決定される。
Figure JPOXMLDOC01-appb-M000011
 図1Aおよび図1Bに示すように、導波路(フォトルミネッセンス層)110が透明基板に接していない場合には、noutは空気の屈折率(約1.0)となるため、以下の式(12)を満足するように周期pを決定すればよい。
Figure JPOXMLDOC01-appb-M000012
 一方、図1Cおよび図1Dに例示するような透明基板140上にフォトルミネッセンス層110および周期構造120を形成した構造を採用してもよい。この場合には、透明基板140の屈折率nsが空気の屈折率よりも大きいことから、式(11)においてnout=nsとした次式(13)を満足するように周期pを決定すればよい。
Figure JPOXMLDOC01-appb-M000013
 なお、式(12)、(13)では、式(10)においてm=1の場合を想定したが、m≧2であってもよい。すなわち、図1Aおよび図1Bに示すように発光素子100の両面が空気層に接している場合には、mを1以上の整数として、以下の式(14)を満足するように周期pが設定されていればよい。
Figure JPOXMLDOC01-appb-M000014
 同様に、図1Cおよび図1Dに示す発光素子100aのようにフォトルミネッセンス層110が透明基板140上に形成されている場合には、以下の式(15)を満足するように周期pが設定されていればよい。
Figure JPOXMLDOC01-appb-M000015
 以上の不等式を満足するように周期構造の周期pを決定することにより、フォトルミネッセンス層110から発生した光を正面方向に出射させることができるため、指向性を有する発光装置を実現できる。
 [3.計算による検証]
 [3-1.周期、波長依存性]
 本発明者らは、以上のような特定方向への光の出射が実際に可能であるかを光学解析によって検証した。光学解析は、サイバネット社のDiffractMODを用いた計算によって行った。これらの計算では、発光素子に対して外部から垂直に光を入射したときに、フォトルミネッセンス層における光の吸収の増減を計算することで、外部へ垂直に出射する光の増強度を求めた。外部から入射した光が擬似導波モードに結合しフォトルミネッセンス層で吸収されるという過程は、フォトルミネッセンス層における発光が擬似導波モードへと結合し、外部へ垂直に出射する伝播光へと変換される過程と逆の過程を計算していることに対応する。また、擬似導波モードの電場分布の計算においても、同様に外部から光を入射した場合における電場を計算した。
 フォトルミネッセンス層の膜厚を1μm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造の高さを50nm、周期構造の屈折率を1.5とし、発光波長および周期構造の周期をそれぞれ変えて、正面方向に出射する光の増強度を計算した結果を図2に示す。計算モデルは、図1Aに示すように、y方向には均一な1次元周期構造とし、光の偏光はy方向に平行な電場成分を有するTMモードであるとして計算を行った。図2の結果から、増強度のピークが、ある特定の波長と周期との組み合わせにおいて存在することがわかる。なお、図2において、増強度の大きさは色の濃淡で表されており、濃い(即ち黒い)方が増強度が大きく、淡い(即ち白い)方が増強度が小さい。
 上記の計算において、周期構造の断面は、図1Bに示すような矩形であるものとしている。式(10)におけるm=1およびm=3の条件を図示したグラフを図3に示す。図2と図3とを比較すると、図2におけるピーク位置はm=1とm=3に対応するところに存在することがわかる。m=1の方が強度が強いのは、3次以上の高次の回折光よりも1次の回折光の回折効率の方が高いからである。m=2のピークが存在しないのは、周期構造における回折効率が低いためである。
 図3で示したm=1およびm=3のそれぞれに対応する領域内において、図2では複数のラインが存在することが確認できる。これは、擬似導波モードが複数存在するからであると考えられる。
 [3-2.厚さ依存性]
 図4は、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造の周期を400nm、高さを50nm、屈折率を1.5とし、発光波長およびフォトルミネッセンス層の厚さtを変えて正面方向に出力する光の増強度を計算した結果を示す図である。フォトルミネッセンス層の厚さtが特定の値であるときに光の増強度がピークに達することがわかる。
 図4においてピークが存在する波長600nm、厚さt=238nm、539nmのときに、x方向に導波するモードの電場分布を計算した結果を図5Aおよび図5Bにそれぞれ示す。比較のため、ピークが存在しないt=300nmの場合について同様の計算を行った結果を図5Cに示す。計算モデルは、上記と同様、y方向に均一な1次元周期構造であるとした。各図において、黒い領域ほど電場強度が高く、白い領域ほど電場強度が低いことを表している。t=238nm、539nmの場合には高い電場強度の分布があるのに対して、t=300nmでは全体的に電場強度が低い。これは、t=238nm、539nmの場合には、導波モードが存在し、光が強く閉じ込められているからである。さらに、凸部または凸部の直下に電場が最も強い部分(腹)が必ず存在しており、周期構造120と相関のある電場が発生している特徴が見て取れる。つまり、周期構造120の配置に従って、導波するモードが得られていることがわかる。また、t=238nmの場合とt=539nmの場合とを比較すると、z方向の電場の節(白い部分)の数が1つだけ異なるモードであることが分かる。
 [3-3.偏光依存性]
 次に偏光依存性を確認するために、図2の計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードである場合について光の増強度の計算を行った。本計算の結果を図6に示す。TMモードのとき(図2)に比べ、ピーク位置は多少変化しているものの、図3で示した領域内にピーク位置が納まっている。よって、本実施形態の構成は、TMモード、TEモードのいずれの偏光についても有効であることが確認できた。
 [3-4.2次元周期構造]
 さらに、2次元の周期構造による効果の検討を行った。図7Aは、x方向およびy方向の両方向に凹部および凸部が配列された2次元の周期構造120’の一部を示す平面図である。図中の黒い領域が凸部、白い領域が凹部を示している。このような2次元周期構造では、x方向とy方向の両方の回折を考慮する必要がある。x方向のみ、あるいはy方向のみの回折に関しては1次元の場合と同様であるが、x、y両方の成分を有する方向(例えば、斜め45°方向)の回折も存在するため、1次元の場合とは異なる結果が得られることが期待できる。このような2次元周期構造に関して光の増強度を計算した結果を図7Bに示す。周期構造以外の計算条件は図2の条件と同じである。図7Bに示すように、図2に示すTMモードのピーク位置に加えて、図6に示すTEモードにおけるピーク位置と一致するピーク位置も観測された。この結果は、2次元周期構造により、TEモードも、回折により変換されて出力されていることを示している。また、2次元周期構造については、x方向およびy方向の両方について、同時に1次の回折条件を満足する回折も考慮する必要がある。このような回折光は、周期pの√2倍(即ち、21/2倍)の周期に対応する角度の方向に出射する。よって、1次元周期構造の場合のピークに加えて、周期pの√2倍の周期についてもピークが発生すると考えられる。図7Bでは、このようなピークも確認できる。
 2次元周期構造としては、図7Aに示すようなx方向およびy方向の周期が等しい正方格子の構造に限らず、図18Aおよび図18Bのような六角形や三角形を並べた格子構造であってもよい。また、方位方向によって(例えば、正方格子の場合x方向およびy方向)の周期が異なる構造であってもよい。
 以上のように、本実施形態では、周期構造とフォトルミネッセンス層とによって形成される特徴的な擬似導波モードの光を、周期構造による回折現象を利用して、正面方向にのみ選択的に出射できることが確認できた。このような構成で、フォトルミネッセンス層を紫外線や青色光などの励起光で励起させることにより、指向性を有する発光が得られる。
 [4.周期構造およびフォトルミネッセンス層の構成の検討]
 次に、周期構造およびフォトルミネッセンス層の構成や屈折率などの各種条件を変えたときの効果について説明する。
 [4-1.周期構造の屈折率]
 まず、周期構造の屈折率に関して検討を行った。フォトルミネッセンス層の膜厚を200nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造とし、高さを50nm、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の屈折率を変えて正面方向に出力する光の増強度を計算した結果を図8に示す。また、同様の条件でフォトルミネッセンス層の膜厚を1000nmにした場合の結果を図9に示す。
 まず、フォトルミネッセンス層の膜厚に着目すると、膜厚が200nmの場合(図8)に比べ、膜厚が1000nmの場合(図9)のほうが、周期構造の屈折率の変化に対する光強度がピークとなる波長(ピーク波長と称する。)のシフトが小さいことがわかる。これは、フォトルミネッセンス層の膜厚が小さいほど、擬似導波モードが周期構造の屈折率の影響を受けやすいからである。即ち、周期構造の屈折率が高いほど、有効屈折率が大きくなり、その分ピーク波長が長波長側にシフトするが、この影響は、膜厚が小さいほど顕著になる。なお、有効屈折率は、擬似導波モードの電場が分布する領域に存在する媒質の屈折率によって決まる。
 次に、周期構造の屈折率の変化に対するピークの変化に着目すると、屈折率が高いほどピークが広がり強度が下がっていることがわかる。これは、周期構造の屈折率が高いほど擬似導波モードの光を外部に放出するレートが高いため、光を閉じ込める効果が減少する、すなわちQ値が低くなることが原因である。ピーク強度を高く保つためには、光を閉じ込める効果が高い(即ちQ値が高い)擬似導波モードを利用して、適度に光を外部に放出する構成にすればよい。これを実現するためには、屈折率がフォトルミネッセンス層の屈折率に比べて大き過ぎる材料を周期構造に用いるのは望ましくないことがわかる。したがって、ピーク強度およびQ値をある程度高くするためには、周期構造を構成する誘電体(即ち、透光層)の屈折率を、フォトルミネッセンス層の屈折率と同等以下にすればよい。フォトルミネッセンス層がフォトルミネッセンス材料以外の材料を含むときも同様である。
 [4-2.周期構造の高さ]
 次に、周期構造の高さに関して検討を行った。フォトルミネッセンス層の膜厚を1000nm、フォトルミネッセンス層の屈折率をnwav=1.8、周期構造は図1Aに示すようなy方向に均一な1次元周期構造で屈折率をnp=1.5、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとして計算を行った。発光波長および周期構造の高さを変えて正面方向に出力する光の増強度を計算した結果を図10に示す。同様の条件で、周期構造の屈折率をnp=2.0とした場合の計算結果を図11に示す。図10に示す結果では、ある程度以上の高さではピーク強度やQ値(即ち、ピークの線幅)が変化していないのに対して、図11に示す結果では、周期構造の高さが大きいほどピーク強度およびQ値が低下していることがわかる。これは、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも高い場合(図10)には、光が全反射するので、擬似導波モードの電場の染み出し(エバネッセント)部分のみが周期構造と相互作用することに起因する。電場のエバネッセント部分と周期構造との相互作用の影響は、周期構造の高さが十分大きい場合には、それ以上高さが変化しても一定である。一方、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合(図11)は、全反射せずに周期構造の表面にまで光が到達するので、周期構造の高さが大きいほどその影響を受ける。図11を見る限り、高さは100nm程度あれば十分であり、150nmを超える領域ではピーク強度およびQ値が低下していることがわかる。したがって、フォトルミネッセンス層の屈折率nwavが周期構造の屈折率npよりも低い場合に、ピーク強度およびQ値をある程度高くするためには、周期構造の高さを150nm以下に設定すればよい。
 [4-3.偏光方向]
 次に、偏光方向に関して検討を行った。図9に示す計算と同じ条件で、光の偏光がy方向に垂直な電場成分を有するTEモードであるものとして計算した結果を図12に示す。TEモードでは、擬似導波モードの電場の染み出しがTMモードに比べて大きいため、周期構造による影響を受けやすい。よって、周期構造の屈折率npがフォトルミネッセンス層の屈折率nwavよりも大きい領域では、ピーク強度およびQ値の低下がTMモードよりも著しい。
 [4-4.フォトルミネッセンス層の屈折率]
 次に、フォトルミネッセンス層の屈折率に関して検討を行った。図9に示す計算と同様の条件で、フォトルミネッセンス層の屈折率nwavを1.5に変更した場合の結果を図13に示す。フォトルミネッセンス層の屈折率nwavが1.5の場合においても概ね図9と同様の効果が得られていることがわかる。ただし、波長が600nm以上の光は正面方向に出射していないことがわかる。これは、式(10)より、λ0<nwav×p/m=1.5×400nm/1=600nmとなるからである。
 以上の分析から、周期構造の屈折率はフォトルミネッセンス層の屈折率と同等以下にするか、周期構造の屈折率がフォトルミネッセンス層の屈折率以上の場合には、高さを150nm以下にすれば、ピーク強度およびQ値を高くできることがわかる。
 [5.変形例]
 以下、本実施形態の変形例を説明する。
 [5-1.基板を有する構成]
 上述のように、発光素子は、図1Cおよび図1Dに示すように、透明基板140の上にフォトルミネッセンス層110および周期構造120が形成された構造を有していてもよい。このような発光素子100aを作製するには、まず、透明基板140上にフォトルミネッセンス層110を構成するフォトルミネッセンス材料(必要に応じて、マトリクス材料を含む、以下同じ。)で薄膜を形成し、その上に周期構造120を形成する方法が考えられる。このような構成において、フォトルミネッセンス層110と周期構造120とにより、光を特定の方向に出射する機能をもたせるためには、透明基板140の屈折率nsはフォトルミネッセンス層の屈折率nwav以下にする必要がある。透明基板140をフォトルミネッセンス層110に接するように設けた場合、式(10)における出射媒質の屈折率noutをnsとした式(15)を満足するように周期pを設定する必要がある。
 このことを確認するために、屈折率が1.5の透明基板140の上に、図2に示す計算と同じ条件のフォトルミネッセンス層110および周期構造120を設けた場合の計算を行った。本計算の結果を図14に示す。図2の結果と同様、波長ごとに特定の周期において光強度のピークが現れることが確認できるが、ピークが現れる周期の範囲が図2の結果とは異なることがわかる。これに対して、式(10)の条件をnout=nsとした式(15)の条件を図15に示す。図14において、図15に示される範囲に対応する領域内に、光強度のピークが現れていることがわかる。
 したがって、透明基板140上にフォトルミネッセンス層110と周期構造120とを設けた発光素子100aでは、式(15)を満足する周期pの範囲において効果が得られ、式(13)を満足する周期pの範囲において特に顕著な効果が得られる。
 [5-2.励起光源を有する発光装置]
 図16は、図1A、1Bに示す発光素子100と、励起光をフォトルミネッセンス層110に入射させる光源180とを備える発光装置200の構成例を示す図である。上述のように、本開示の構成では、フォトルミネッセンス層を紫外線や青色光などの励起光で励起させることにより、指向性をもつ発光が得られる。そのような励起光を出射するように構成された光源180を設けることにより、指向性をもつ発光装置200を実現できる。光源180から出射される励起光の波長は、典型的には紫外または青色領域の波長であるが、これらに限らず、フォトルミネッセンス層110を構成するフォトルミネッセンス材料に応じて適宜決定される。なお、図16では、光源180がフォトルミネッセンス層110の下面から励起光を入射させるように配置されているが、このような例に限定されず、例えば、フォトルミネッセンス層110の上面から励起光を入射させてもよい。
 励起光を擬似導波モードに結合させることで、効率よく光を出射させる方法もある。図17は、そのような方法を説明するための図である。この例では、図1C、1Dに示す構成と同様、透明基板140上にフォトルミネッセンス層110および周期構造120が形成されている。まず、図17(a)に示すように、発光増強のためにx方向の周期pxを決定し、続いて、図17(b)に示すように、励起光を擬似導波モードに結合させるためにy方向の周期pyを決定する。周期pxは、式(10)においてpをpxに置き換えた条件を満足するように決定される。一方、周期pyは、mを1以上の整数、励起光の波長をλex、フォトルミネッセンス層110に接する媒質のうち、周期構造120を除く最も屈折率の高い媒質の屈折率をnoutとして、以下の式(16)を満足するように決定される。
Figure JPOXMLDOC01-appb-M000016
 ここで、noutは、図17の例では透明基板140のnsであるが、図16のように透明基板140を設けない構成では、空気の屈折率(約1.0)である。
 特に、m=1として、次の式(17)を満足するように周期pyを決定すれば、励起光を擬似導波モードに変換する効果をより高くすることができる。
Figure JPOXMLDOC01-appb-M000017
 このように、式(16)の条件(特に式(17)の条件)を満足するように周期pyを設定することで、励起光を擬似導波モードに変換することができる。その結果、フォトルミネッセンス層110に効率的に波長λexの励起光を吸収させることができる。
 図17(c)、(d)は、それぞれ、図17(a)、(b)に示す構造に対して光を入射したときに光が吸収される割合を波長ごとに計算した結果を示す図である。この計算では、px=365nm、py=265nmとし、フォトルミネッセンス層110からの発光波長λを約600nm、励起光の波長λexを約450nm、フォトルミネッセンス層110の消衰係数は0.003としている。図17(d)に示すように、フォトルミネッセンス層110から生じた光だけでなく、励起光である約450nmの光に対して高い吸収率を示している。これは、入射した光が効果的に擬似導波モードに変換されることで、フォトルミネッセンス層に吸収される割合を増大させることができているためである。また、発光波長である約600nmに対しても吸収率が増大しているが、これは、もし約600nmの波長の光をこの構造に入射した場合には、同様に効果的に擬似導波モードに変換されるということである。このように、図17(b)に示す周期構造120は、x方向およびy方向のそれぞれに周期の異なる構造(周期成分)を有する2次元周期構造である。このように、複数の周期成分を有する2次元周期構造を用いることにより、励起効率を高めつつ、出射強度を高めることが可能になる。なお、図17では励起光を基板側から入射しているが、周期構造側から入射しても同じ効果が得られる。
 さらに、複数の周期成分を有する2次元周期構造としては、図18Aまたは図18Bに示すような構成を採用してもよい。図18Aに示すように六角形の平面形状を有する複数の凸部または凹部を周期的に並べた構成や、図18Bに示すように三角形の平面形状を有する複数の凸部または凹部を周期的に並べた構成とすることにより、周期とみなすことのできる複数の主軸(図の例では軸1~3)を定めることができる。このため、それぞれの軸方向について異なる周期を割り当てることができる。これらの周期の各々を、複数の波長の光の指向性を高めるために設定してもよいし、励起光を効率よく吸収させるために設定してもよい。いずれの場合も、式(10)に相当する条件を満足するように各周期が設定される。
 [5-3.透明基板上の周期構造]
 図19Aおよび図19Bに示すように、透明基板140上に周期構造120aを形成し、その上にフォトルミネッセンス層110を設けてもよい。図19Aの構成例では、基板140上の凹凸からなる周期構造120aに追従するようにフォトルミネッセンス層110が形成された結果、フォトルミネッセンス層110の表面にも同じ周期の周期構造120bが形成されている。一方、図19Bの構成例では、フォトルミネッセンス層110の表面は平坦になるように処理されている。これらの構成例においても、周期構造120aの周期pを式(15)を満足するように設定することにより、指向性発光を実現できる。
 この効果を検証するため、図19Aの構成において、発光波長および周期構造の周期を変えて正面方向に出力する光の増強度を計算した。ここで、フォトルミネッセンス層110の膜厚を1000nm、フォトルミネッセンス層110の屈折率をnwav=1.8、周期構造120aはy方向に均一な1次元周期構造で高さを50nm、屈折率をnp=1.5、周期を400nmとし、光の偏光はy方向に平行な電場成分を有するTMモードであるものとした。本計算の結果を図19Cに示す。本計算においても、式(15)の条件を満足する周期で光強度のピークが観測された。
 [5-4.粉体]
 以上の実施形態によれば、周期構造の周期や、フォトルミネッセンス層の膜厚を調整することで任意の波長の発光を強調することができる。例えば、広い帯域で発光するフォトルミネッセンス材料を用いて図1A、1Bのような構成にすれば、ある波長の光のみを強調することが可能である。よって、図1A、1Bのような発光素子100の構成を粉末状にして、蛍光材料として利用してもよい。また、図1A、1Bのような発光素子100を樹脂やガラスなどに埋め込んで利用してもよい。
 図1A、1Bのような単体の構成では、ある特定の波長しか特定の方向に出射できないため、例えば広い波長域のスペクトルを持つ白色などの発光を実現することは難しい。そこで、図20に示すように周期構造の周期やフォトルミネッセンス層の膜厚などの条件の異なる複数の粉末状の発光素子100を混ぜたものを用いることにより、広い波長域のスペクトルを持つ発光装置を実現できる。この場合、個々の発光素子100の一方向のサイズは、例えば数μm~数mm程度であり、その中に例えば数周期~数百周期の1次元または2次元の周期構造を含み得る。
 [5-5.周期の異なる構造を配列]
 図21は、フォトルミネッセンス層の上に周期の異なる複数の周期構造を2次元に配列した例を示す平面図である。この例では、3種類の周期構造120a、120b、120cが隙間なく配列されている。周期構造120a、120b、120cは、例えば、赤、緑、青の波長域の光をそれぞれ正面に出射するように周期が設定されている。このように、フォトルミネッセンス層の上に周期の異なる複数の構造を並べることによっても広い波長域のスペクトルに対し指向性を発揮させることができる。なお、複数の周期構造の構成は、上記のものに限定されず、任意に設定してよい。
 [5-6.積層構造]
 図22は、表面に凹凸構造が形成された複数のフォトルミネッセンス層110が積層された構造を有する発光素子の一例を示している。複数のフォトルミネッセンス層110の間には、透明基板140が設けられ、各層のフォトルミネッセンス層110の表面に形成された凹凸構造が上記の周期構造またはサブミクロン構造に相当する。図22に示す例では、3層の周期の異なる周期構造が形成されており、それぞれ、赤、青、緑の波長域の光を正面に出射するように周期が設定されている。また、各周期構造の周期に対応する色の光を発するように各層のフォトルミネッセンス層110の材料が選択されている。このように、周期の異なる複数の周期構造を積層することによっても、広い波長域のスペクトルに対し指向性を発揮させることができる。
 なお、層数や各層のフォトルミネッセンス層110および周期構造の構成は上記のものに限定されず、任意に設定してよい。例えば2層の構成では、透光性の基板を介して第1のフォトルミネッセンス層と第2のフォトルミネッセンス層とが対向するように形成され、第1および第2のフォトルミネッセンス層の表面に、それぞれ第1および第2の周期構造が形成されることになる。この場合、第1のフォトルミネッセンス層および第1の周期構造の対と、第2のフォトルミネッセンス層および第2の周期構造の対のそれぞれについて、式(15)に相当する条件を満足していればよい。3層以上の構成においても同様に、各層におけるフォトルミネッセンス層および周期構造について、式(15)に相当する条件を満足していればよい。フォトルミネッセンス層と周期構造との位置関係が図22に示すものとは逆転していてもよい。図22に示す例では、各層の周期が異なっているが、これらを全て同じ周期にしてもよい。その場合、スペクトルを広くすることはできないが、発光強度を大きくすることができる。
 [5-7.保護層を有する構成]
 図23は、フォトルミネッセンス層110と周期構造120との間に保護層150を設けた構成例を示す断面図である。このように、フォトルミネッセンス層110を保護するための保護層150を設けても良い。ただし、保護層150の屈折率がフォトルミネッセンス層110の屈折率よりも低い場合は、保護層150の内部に波長の半分程度しか光の電場が染み出さない。よって、保護層150が波長よりも厚い場合には、周期構造120に光が届かない。このため、擬似導波モードが存在せず、光を特定方向に放出する機能を得ることができない。保護層150の屈折率がフォトルミネッセンス層110の屈折率と同程度あるいはそれ以上の場合には、保護層150の内部にまで光が到達する。よって、保護層150に厚さの制約は無い。ただし、その場合でも、光が導波する部分(以下、この部分を「導波層」と呼ぶ。)の大部分をフォトルミネッセンス材料で形成したほうが大きな光の出力が得られる。よって、この場合でも保護層150は薄いほうが望ましい。なお、保護層150を周期構造(透光層)120と同じ材料を用いて形成してもよい。このとき、周期構造を有する透光層が保護層を兼ねる。透光層120の屈折率はフォトルミネッセンス層110よりも小さいことが望ましい。
 [6.材料および製造方法]
 以上のような条件を満たす材料でフォトルミネッセンス層(あるいは導波層)および周期構造を構成すれば、指向性発光を実現できる。周期構造には任意の材料を用いることができる。しかしながら、フォトルミネッセンス層(あるいは導波層)や周期構造を形成する媒質の光吸収性が高いと、光を閉じ込める効果が低下し、ピーク強度およびQ値が低下する。よって、フォトルミネッセンス層(あるいは導波層)および周期構造を形成する媒質として、光吸収性の比較的低いものが用いられ得る。
 周期構造の材料としては、例えば、光吸収性の低い誘電体が使用され得る。周期構造の材料の候補としては、例えば、MgF2(フッ化マグネシウム)、LiF(フッ化リチウム)、CaF2(フッ化カルシウム)、SiO2(石英)、ガラス、樹脂、MgO(酸化マグネシウム)、ITO(酸化インジウム錫)、TiO2(酸化チタン)、SiN(窒化シリコン)、Ta25(五酸化タンタル)、ZrO2(ジルコニア)、ZnSe(セレン化亜鉛)、ZnS(硫化亜鉛)などが挙げられる。ただし、前述のとおり周期構造の屈折率をフォトルミネッセンス層の屈折率よりも低くする場合、屈折率が1.3~1.5程度であるMgF2、LiF、CaF2、SiO2、ガラス、樹脂を用いることができる。
 フォトルミネッセンス材料は、狭義の蛍光材料および燐光材料を包含し、無機材料だけなく、有機材料(例えば色素)を包含し、さらには、量子ドット(即ち、半導体微粒子)を包含する。一般に、無機材料をホストとする蛍光材料は屈折率が高い傾向にある。青色に発光する蛍光材料としては、例えば、M10(PO46Cl2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、BaMgAl1017:Eu2+、M3MgSi28:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M5SiO4Cl6:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。緑色に発光する蛍光材料としては、例えば、M2MgSi27:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、SrSi5AlO27:Eu2+、SrSi222:Eu2+、BaAl24:Eu2+、BaZrSi39:Eu2+、M2SiO4:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、BaSi342:Eu2+Ca8Mg(SiO44Cl2:Eu2+、Ca3SiO4Cl2:Eu2+、CaSi12-(m+n)Al(m+n)n16-n:Ce3+、β-SiAlON:Eu2+を用いることができる。赤色に発光する蛍光材料としては、例えば、CaAlSiN3:Eu2+、SrAlSi47:Eu2+、M2Si58:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、MSiN2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、MSi222:Yb2+(M=SrおよびCaから選ばれる少なくとも1種)、Y22S:Eu3+,Sm3+、La22S:Eu3+,Sm3+、CaWO4:Li1+,Eu3+,Sm3+、M2SiS4:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M3SiO5:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。黄色に発光する蛍光材料としては、例えば、Y3Al512:Ce3+、CaSi222:Eu2+、Ca3Sc2Si312:Ce3+、CaSc24:Ce3+、α-SiAlON:Eu2+、MSi222:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)、M7(SiO36Cl2:Eu2+(M=Ba,SrおよびCaから選ばれる少なくとも1種)を用いることができる。
 量子ドットについては、例えば、CdS、CdSe、コア・シェル型CdSe/ZnS、合金型CdSSe/ZnSなどの材料を用いることができ、材質によって様々な発光波長を得ることができる。量子ドットのマトリクスとしては、例えば、ガラスや樹脂を用いることができる。
 図1C、1Dなどに示す透明基板140は、フォトルミネッセンス層110の屈折率よりも低い透光性材料によって構成される。そのような材料として、例えば、MgF(フッ化マグネシウム)、LiF(フッ化リチウム)、CaF2(フッ化カルシウム)、SiO2(石英)、ガラス、樹脂が挙げられる。
 続いて、製造方法の一例を説明する。
 図1C、1Dに示す構成を実現する方法として、例えば、透明基板140上に蛍光材料を蒸着、スパッタリング、塗布などの工程によってフォトルミネッセンス層110の薄膜を形成し、その後、誘電体を成膜し、フォトリソグラフィなどの方法によってパターニングすることによって周期構造120を形成する方法がある。上記方法の代わりに、ナノインプリントによって周期構造120を形成してもよい。また、図24に示すように、フォトルミネッセンス層110の一部のみを加工することによって周期構造120を形成してもよい。その場合、周期構造120はフォトルミネッセンス層110と同じ材料で形成されることになる。
 図1A、1Bに示す発光素子100は、例えば、図1C、1Dに示す発光素子100aを作製した後、基板140からフォトルミネッセンス層110および周期構造120の部分を剥がす工程を行うことで実現可能である。
 図19Aに示す構成は、例えば、透明基板140上に半導体プロセスやナノインプリントなどの方法で周期構造120aを形成した後、その上にフォトルミネッセンス層110を構成する材料を蒸着やスパッタリングなどの方法で形成することによって実現可能である。あるいは、塗布などの方法を用いて周期構造120aの凹部をフォトルミネッセンス層110で埋め込むことによって図19Bに示す構成を実現することもできる。
 なお、上記の製造方法は一例であり、本開示の発光素子は上記の製造方法に限定されない。
 [実験例]
 以下に、本開示の実施形態による発光素子を作製した例を説明する。
 図19Aと同様の構成を有する発光素子のサンプルを試作し、特性を評価した。発光素子は以下の様にして作製した。
 ガラス基板に、周期400nm、高さ40nmの1次元周期構造(ストライプ状の凸部)を設け、その上からフォトルミネッセンス材料であるYAG:Ceを210nm成膜した。この断面図のTEM像を図25に示し、これを450nmのLEDで励起することでYAG:Ceを発光させたときの、正面方向のスペクトルを測定した結果を図26に示す。図26には、周期構造がない場合の測定結果(ref)と、1次元周期構造に対して平行な偏光成分を持つTMモードと、垂直な偏光成分を持つTEモードを測定した結果について示した。周期構造がある場合は、周期構造がない場合に対して、特定の波長の光が著しく増加していることが見て取れる。また、1次元周期構造に対して平行な偏光成分を持つTMモードの方が、光の増強効果が大きいことが分かる。
 さらに、同じサンプルにおいて、出射光強度の角度依存性を測定した結果および計算結果を図27および図28に示す。図27は、1次元周期構造(周期構造120)のライン方向と平行な軸を回転軸として回転させた場合について、図28は、1次元周期構造(即ち、周期構造120)のライン方向に対して垂直な方向を回転軸として回転させた場合についての測定結果(上段)および計算結果(下段)を示している。
 また、図27および図28のそれぞれにおいて、TMモードおよびTEモードの直線偏光についての結果を示しており、図27(a)はTMモード、図27(b)はTEモード、図28(a)はTEモード、図28(b)はTMモードの直線偏光についての結果をそれぞれ示している。図27および図28から明らかなように、TMモードの方が増強する効果が高く、また増強される波長は角度によってシフトしていく様子が見て取れる。例えば、610nmの光においては、TMモードでかつ正面方向にしか光が存在しないため、指向性かつ偏光発光していることがわかる。また、各図の上段と下段とが整合していることから、上述の計算の妥当性が実験によって裏付けられた。
 上記の測定結果から例えば、610nmの光において、ライン方向に対して垂直な方向を回転軸として回転させた場合の強度の角度依存性を示したのが図29である。正面方向に強い発光増強が起きており、そのほかの角度に対しては、ほとんど光が増強されていない様子がみてとれる。正面方向に出射される光の指向角は15°未満であることがわかる。なお、指向角は、強度が最大強度の50%となる角度であり、最大強度の方向を中心に片側の角度で表す。つまり、指向性発光が実現していることがわかる。さらにこれは、全てTMモードの成分であるため、同時に偏光発光も実現していることがわかる。
 以上の検証は、広帯域の波長帯で発光するYAG:Ceを使って実験を行ったが、発光が狭帯域のフォトルミネッセンス材料で同様の構成としても、その波長の光に対して指向性や偏光発光を実現することができる。さらに、この場合、他の波長の光は発生しないために他の方向や偏光状態の光は発生しないような光源を実現することができる。
 [7.多層ミラーを有する実施形態]
 以下、多層ミラーを有する実施形態を説明する。
 図31は、本実施形態による発光素子300を示す断面図である。発光素子300は、他の実施形態の発光素子と同様に、フォトルミネッセンス層110と、フォトルミネッセンス層110に近接して配置された周期構造(例えば、サブミクロン構造)120を含む透光層とを有している。励起光を入射することによってフォトルミネッセンス層110において発せられた光は、周期構造120によって決まる特定の疑似導波モードに結合される。疑似導波モードに結合された光は、特定方向に高い指向性を有する伝播光Lとして、フォトルミネッセンス層110から周期構造120を介して外部に出射される。本実施形態では、伝播光Lは正面方向(一方の主面110aの法線方向)に出射する。
 発光素子300は、フォトルミネッセンス層110の他方の主面110b側に設けられた多層ミラー310をさらに備える。多層ミラー310は、フォトルミネッセンス層110および周期構造120とともに積層されている。多層ミラー310は透明基板140上に設けられていてもよい。多層ミラー310は、誘電体反射膜、誘電体ミラー、誘電体多層膜等とも呼ばれ、フォトルミネッセンス層110の他方の主面110bから発光素子300外部に伝播光が出射するのを抑制する。これにより、多層ミラー310が位置していない一方の主面110a側から出射する伝播光Lの強度を高めることができる。
 多層ミラー310は、少なくとも1つの高屈折率層311と少なくとも1つの低屈折率層312とを有する。多層ミラー310は、複数の高屈折率層311と複数の低屈折率層312とを有していてもよい。この場合、各高屈折率層311および各低屈折率層312は交互に積層されおり、膜数が多いほど効果が大きくなる。高屈折率層311は低屈折率層312よりも高い屈折率を有する。
 低屈折率層312および高屈折率層311の屈折率をそれぞれnLおよびnHとし、低屈折率層312および高屈折率層311の厚さをそれぞれtMLおよびtMHとする。また、mRを正の整数(即ち、自然数)とする。mRは、複数の低屈折率層312および複数の高屈折率層311で同じあってもよいし、異なっていてもよい。多層ミラー310は、下記式
 tML=(2mR-1)λa/(4nL
 tMH=(2mR-1)λa/(4nH
を満たしている場合、光の干渉を利用して最も高い効率で光を反射することができる。このため、フォトルミネッセンス層110における、疑似導波モードによる光閉じ込めの効果が大きくなり、一方の主面110aから出射する伝播光の出射強度を高めることができる。
 低屈折率層312は、例えば、1.3≦nL≦1.7を満たし、伝播光Lに対して吸収の少ない材料によって形成されていてもよい。具体的には、周期構造を形成する材料として例示した種々の材料のうち前述の屈折率の範囲にある材料によって形成されていてもよい。高屈折率層311は、例えば、1.5≦nL≦2.5を満たし、伝播光Lに対して吸収の少ない材料によって形成されていてもよい。具体的には、周期構造を形成する材料として例示した種々の材料のうち前述の屈折率の範囲にある材料によって形成されていてもよい。また、高屈折率層311はフォトルミネッセンス層110と同じ材料によって構成されていてもよい。これにより発光素子の製造が容易になる。
 図32Aおよび図32Bに、多層ミラー310の高屈折率層311の厚さおよび伝播光の波長と反射率および発光強度との関係を計算した結果をそれぞれ示す。
 計算条件は以下のとおりである。
  低屈折率層312の屈折率nL:1.5
  高屈折率層311の屈折率nH:1.75
  低屈折率層312および高屈折率層311の数:各4層
  低屈折率層312の厚さ:高屈折率層の厚さの1.17(=1.75/1.5)倍
  フォトルミネッセンス層110の厚さ:130nm
  フォトルミネッセンス層110の屈折率:1.75
  周期構造120の周期:370nm
  周期構造120の高さ:80nm
 図32Aおよび図32Bにおいて、横軸は伝播光の波長を示し、縦軸は、高屈折率層311の厚さを示す。図32Aにおける濃淡は、透過率示を示し、濃度が濃いほど透過率が高いことを示している。図32Bにおける濃淡は、発光強度を示し、濃度が濃いほど発光強度が高いことを示している。
 図32Aおよび図32Bより、例えば伝播光の波長が570nmの場合、高屈折率層311の厚さを約65~95nmに設定すれば、多層ミラー310における反射率が高められ、周期構造120が設けられたフォトルミネッセンス層110の一方の主面110aからの伝播光の出射効率も高められることが分かる。また、例えば伝播光の波長が560nmの場合、高屈折率層311の厚さを約225~255nmに設定すれば、多層ミラー310における反射率がたかまり、周期構造120が設けられたフォトルミネッセンス層110の一方の主面110aからの伝播光の出射効率も高められることが分かる。
 これらの範囲は、0.2λa/nH~0.3λa/nHおよび0.7λa/nH~0.8λa/nHに対応する。つまり、発光素子300が以下の式(18)を満たす場合、上記計算で仮定した条件(即ち、各層の屈折率や周期構造の周期、高さ、フォトルミネッセンス層の厚さ)によらず、出射面である一方の主面110aから高い出射効率で伝播光Lを出射させることできる。
  (2mR-1.2)λa/(4nL)≦tML≦(2mR-0.8)λa/(4nL
  (2mR-1.2)λa/(4nH)≦tMH≦(2mR-0.8)λa/(4nH
                     ・・・・・・・・・・(18)
 図32Aおよび図32Bに示される、波長λa=570nmと、高屈折率層311の厚さtMH=約65~95nmとは、式(18)において、mR=1の場合に相当し、波長λa=560nmと、高屈折率層311の厚さtMH=約225~255nmとは、式(18)において、mR=2の場合に相当する。mR=1の場合、低屈折率層312および高屈折率層311を最も薄くすることができることから、製造が容易となる。このように、多層ミラー310の反射効率が最も高くなる厚さを含む所定の範囲において、発光素子300から出射する光の出射効率が高められる。
 また、発光素子300において、多層ミラー310と発光素子300における光の出射面との間の構造を伝播光の透過に適した構造にすることによって、発光素子300の出射効率をより高めることができる。具体的には、発光素子300において、透光性構造体が干渉による光の出射効率を高める条件を満たしていればよい。ここで、透光性構造体は、多層ミラー310以外の、フォトルミネッセンス層110およびフォトルミネッセンス層110から出射する光が透過する層によって構成される。図31に示す発光素子300の場合、透光性構造体320はフォトルミネッセンス層110および周期構造120によって構成される。基板140は、多層ミラー310に対してフォトルミネッセンス層110とは反対側に設けられているため、「フォトルミネッセンス層110から出射する光が透過する層」ではない。
 透光性構造体320は、干渉によって光を強めあう条件を満たしている。具体的には、透光性構造体320の厚さが、干渉による反射が小さくなる範囲に設定されている。例えば、周期構造120が、高さhp、屈折率np、および一方の主面110aにおける専有面積(充填率)fを有する場合、周期構造120が実効光路長は、hppfで表される。また、フォトルミネッセンス層110が屈折率nwおよび厚さtwを有する場合、フォトルミネッセンス層110の実効光路長は、nWWで表される。
 図31に示すように、透光性構造体320と多層ミラー310とは互いに接しており、これらの界面において接しているフォトルミネッセンス層110と低屈折率層312とにおいて、フォトルミネッセンス層110の屈折率は低屈折率層312の屈折率よりも大きい。このため、多層ミラー310から透光性構造体320へ伝播する光にとって、透光性構造体320と多層ミラー310との界面は自由端反射(位相が変化しない反射)となる。
 したがって、これらの合計である透光性構造体320の積層方向における実効光路長をdT=hppf+nWWとし、mTを正の任意の整自然数とした場合、dTがmTλa/(2nwav-a)であれば、干渉効果によって、最も光を透過させることができる。逆に、(2m-1)λa/(4nwav-a)を満たす場合、透光性構造体320における光の反射性が最も高くなり、発光増強効果が最も小さくなる。よって、望ましい範囲は下記の通りである。
  (4mT-1)λa/(8nwav-a)<dT<(4mT+1)λa/(8nwav-a) 
   ・・・(19)
 図33Aおよび図33Bに、フォトルミネッセンス層110の厚さおよび伝播光の波長と発光強度との関係を計算した結果を示す。図33Aは、一方の主面110aから出射する光Lの発光強度を示し、図33Bは、基板140側から出射する光L’の発光強度を示している。
 計算条件は以下のとおりである。
  低屈折率層312の屈折率nL:1.5
  高屈折率層311の屈折率nH:1.75
  低屈折率層312の厚さ:93nm
  高屈折率層311の厚さ:80nm
  低屈折率層312および高屈折率層311の数:各4層
  フォトルミネッセンス層110の屈折率:1.75
  周期構造120の周期:370nm
  周期構造120の高さ:80nm
  周期構造120の屈折率1.5
  周期構造120の充填率:0.5
  図33Aおよび図33Bにおいて、横軸は伝播光の波長を示し、縦軸は、フォトルミネッセンス層の厚さを示す。図33Aおよび図33Bにおける濃淡は発光強度を示し、濃度が濃いほど発光強度が高いことを示している。図33Aより、例えば伝播光の波長が560nmの場合、フォトルミネッセンス層の厚さが、約85~165nmにおいて、発光強度は大きい。このとき、周期構造120の実効光路長は、nppf=1.5×80nm×0.5=60nmであり、フォトルミネッセンス層の実効光路長は149nm<nWW<289nmとなる。よって、209nm<dT<349nmとなる。この関係は、dTに関する上記式(19)の範囲とほぼ一致する。
 つまり、発光素子300がdTに関する上記式(19)を満たす場合、上記計算で仮定した条件によらず、出射面である一方の主面110aから高い出射効率で伝播光Lを出射させることできる。
 また、図33Aと図33Bとを比べると、基板140側から出射する光L’の発光強度は、一方の主面110aから出射する光Lの発光強度に比べて大幅に小さいことが分かる。このことから、多層ミラー310がフォトルミネッセンス層110の他方の主面110bから出射する光を効率よく反射させることが分かる。
 図34は、本実施形態による第1の別例における発光素子301を示す断面図であり、図31と同じ構成には同じ符号を用いている。発光素子301は、調整層140’を含む透光性構造体320aを備えている。具体的には、透光性構造体320aは、周期構造120と、フォトルミネッセンス層110と調整層140’とによって構成されている。この場合、透光性構造体320aの実効光路長dT’は、周期構造120、フォトルミネッセンス層110および調整層140’のそれぞれの実効光路長の和で表される。
 透光性構造体320aと多層ミラー310とは互いに接しており、これらの界面において接している調整層140’と高屈折率層311とにおいて、調整層140’の屈折率は高屈折率層311の屈折率よりも小さい。このため、多層ミラー310から透光性構造体320aへ伝播する光にとって透光性構造体320aと多層ミラー310と界面は固定端反射(反射時に位相がπずれる)となる。よって、実効光路長dT’の望ましい範囲は、上記式(19)とλa/(4nwav-a)だけ異なり、下記式(20)の条件を満たす場合が望ましい。
  (4mT-3)λa/(8nwav-a)<dT<(4mT-1)λa/(8nwav-a
    ・・・(20)
 図35は、調整層140'の厚さおよび伝播光の波長と発光強度との関係を計算した結果を示す。横軸は伝播光の波長を示し、縦軸は、調整層140'の厚さを示す。図35における濃淡は発光強度を示し、濃度が濃いほど発光強度が高いことを示している。計算条件は以下のとおりである。
  低屈折率層312の屈折率nL:1.5
  高屈折率層311の屈折率nH:1.75
  低屈折率層312の厚さ:93nm
  高屈折率層311の厚さ:80nm
  低屈折率層312の数:3層
  高屈折率層311の数:4層
  フォトルミネッセンス層110の屈折率:1.75
  フォトルミネッセンス層110の厚さ:80nm
  周期構造120の周期:370nm
  周期構造120の高さ:80nm
  周期構造120の屈折率1.5
  周期構造120の充填率:0.5
  調整層140'の屈折率:1.5
 図35より、例えば伝播光の波長が560nmの場合、調整層140'の厚さが、約100nm~200nm、約270nm~380nmにおいて、発光強度は大きい。このとき、周期構造120の実効光路長は、nppf=1.5×80nm×0.5=60nmであり、フォトルミネッセンス層110の実効光路長は1.75×80=140nmであり、調整層140'の実効光路長は、150nm~300nmである。よって、透光性構造体320の実効光路長は、350nm<dT<500nm、605nm<dT<770nmとなる。この関係は、mT=2,3の場合の上記式(20)の範囲とほぼ一致する。
 このように、透光性構造体320aの一部の構成要素である調整層140'の厚さを調整することによって、透光性構造体320aの実効光路長が上記式(19)を満たす場合、透光性構造体320a全体として光の透過性を高めることができ、発光素子301の出射効率を高めることができる。したがって、フォトルミネッセンス層110および周期構造120の厚さは、擬似導波モードによる発光効率が高くなるように設定(即ち、最適化)し、独立して調整層140'の厚さを調整することによって、透光性構造体320a全体として光の透過性を高めることができる。つまり、擬似導波モードによる発光効率の向上と、生成した光の透過性の向上とを同時に実現し得る。
 図36は、本実施形態による第2の別例における発光素子302を示す断面図であり、図31や図34と同様の構成には同じ符号を用いている。透光性構造体320bは、フォトルミネッセンス層110、110’と調整層140'とを備えている。この場合、透光性構造体320bの実効光路長dT’は、フォトルミネッセンス層110,110’および調整層140'のそれぞれの実効光路長の和で表される。多層ミラー310は、透光性構造体320と透明基板140との間に位置している。
 図37は、本実施形態による第3の別例における発光素子303を示す断面図であり、図31、図34、図36と同様の構成には同じ符号を用いている。発光素子303は、透光性構造体320の上に多層ミラー310が形成されている。この場合において、透明基板140は多層ミラー310を支持し、多層ミラー310が透明基板140と透光性構造体320で挟まれるような構成にしてもよい。また、透明基板140に代えて空気層を用いてもよい。
 透光性構造体320の上には、その周期構造120の凹凸を埋めるように調整層140'が設けられ、調整層140'は平坦な主面を有し、その主面上に、多層ミラー310が位置している。透光性構造体320は、透明基板140をさらに含み、基板140を含む全体で、式(20)を満たしていてもよい。
 発光素子303は、多層ミラー310が透光性構造体320の上側に設けられているので、基板140側から高強度の伝播光L’を出射することができる。
 図38は、本実施形態による第4の別例における発光素子304を示す断面図であり、図31、図34、図36、図37と同様の構成には同じ符号を用いている。発光素子304は、発光素子303と同様に、透光性構造体320cの上に多層ミラー310が配置された構造である。透光性構造体320cは、周期構造120が表面に設けられた透明基板140と、周期構造120の凹凸を埋めるように、透明基板140に設けられたフォトルミネッセンス層110とを含む。周期構造120は、例えば、透明基板140と同じ材料によって形成されている。透光性構造体320cの実効光路長は上記式(19)を満たすように構成されている。
 フォトルミネッセンス層110における透明基板140と反対側の主面は平坦である。この主面上に、多層ミラー310が形成されている。このため、多層ミラー310の高屈折率層311および低屈折率層312は、それぞれ平坦な主面を有している。多層ミラー310の高屈折率層311と低屈折率層312とは、式(18)を満たすように構成されている。
 発光素子304は、多層ミラー310が透光性構造体320の上側に設けられているので、基板140側から高強度の伝播光L’を出射することができる。
 図39は、本実施形態による第5の別例における発光素子305を示す断面図であり、図38と同様の構成には同じ符号を用いている。発光素子305は、周期構造120の凹凸に追随した凹凸構造を有するフォトルミネッセンス層110および多層ミラー310を備えている点で、発光素子304と異なる。
 発光素子305において、多層ミラー310の層高屈折率層311および低屈折率層312はそれぞれ式(18)を満たしている。また、フォトルミネッセンス層110および周期構造120を含む透光性構造体320dは式(19)を満たしている。よって、発光素子305は、発光素子304と同様に基板140側から高発光高強度の伝播光L’を出射することができる。
 以上、本実施形態では、フォトルミネッセンス層110の主面の法線方向に伝播光L、L’を出射する発光素子を説明した。しかし、法線方向以外の方向へ出射する発光素子を実現してもよい。この場合、本実施形態の「厚さ」を出射する方向に平行な「光路長」に置き換えることにより、本実施形態と同様の特徴を備える発光素子を実現することができる。
 また、本実施形態は、本実施形態より前に説明した種々の他の実施形態や変形例と組み合わせてもよい。
 本開示の発光素子によれば、指向性を有する発光装置を実現できるため、例えば、照明、ディスプレイ、プロジェクターといった光学デバイスに適用可能である。
 100,100a,300,300’  発光素子
 110  フォトルミネッセンス層(導波路)
 120,120’,120a,120b,120c  透光層(周期構造、サブミクロン構造)
 140  透明基板
 140’  調整層
 150  保護層
 180  光源
 200  発光装置
 310  多層ミラー
 311  高屈折率層
 312  低屈折率層
 320,320a,320b,320c,320d  透光性構造体

Claims (20)

  1.  フォトルミネッセンス層と、
     前記フォトルミネッセンス層に近接して配置された透光層と、
     前記フォトルミネッセンス層および前記透光層の少なくとも一方に形成され、前記フォトルミネッセンス層または前記透光層の面内に広がるサブミクロン構造と、
     前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
    を有し、
     前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
     前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
     隣接する凸部間または凹部間の距離をDintとし、前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとすると、λa/nwav-a<Dint<λaの関係が成り立つ、発光素子。
  2.  前記多層ミラーは、複数の低屈折率層と前記複数の低屈折率層よりも高い屈折率を有する複数の高屈折率層とを含み、
     各低屈折率層および各高屈折率層は交互に積層されている請求項1に記載の発光素子。
  3.  前記複数の低屈折率層および前記複数の高屈折率層の屈折率はそれぞれnLおよびnHであり、前記複数の低屈折率層および前記複数の高屈折率層の厚さはそれぞれtMLおよびtMHであり、mRは任意の正の整数であり、下記式
    (2mR-1.2)λa/(4nL)≦tML≦(2mR-0.8)λa/(4nL
    (2mR-1.2)λa/(4nH)≦tMH≦(2mR-0.8)λa/(4nH
    を満たしている請求項2に記載の発光素子。
  4.  前記複数の高屈折率層は前記フォトルミネッセンス層と同じ材料によって形成されている請求項1から3のいずれかに記載の発光素子。
  5.  前記mRは1である請求項3に記載の発光素子。
  6.  前記透光層が前記サブミクロン構造を有し、
    前記透光層と前記多層ミラーとの間に前記フォトルミネッセンス層が位置している請求項1から5のいずれかに記載の発光素子。
  7.  前記多層ミラーと前記フォトルミネッセンス層との間に位置する調整層をさらに含む請求項1から5のいずれかに記載の発光素子。
  8.  前記フォトルミネッセンス層を支持する透明基板と、
     調整層と
    をさらに備え、
     前記フォトルミネッセンス層は、平坦な主面を有し、
     前記透光層は前記フォトルミネッセンス層の前記平坦な主面上に形成されており、かつ、前記サブミクロン構造を有し、
     前記調整層は、前記透光層を覆って前記フォトルミネッセンス層上に位置しており、
     前記多層ミラーは前記調整層上に位置している請求項1から5のいずれかに記載の発光素子。
  9.  前記透光層は、前記サブミクロン構造を表面に有する透明基板であり、
     前記フォトルミネッセンス層は、前記サブミクロン構造を埋めるように前記透明基板の表面に位置しており、
     前記多層ミラーは前記フォトルミネッセンス層上に位置している請求項1から7のいずれかに記載の発光素子。
  10.  前記フォトルミネッセンス層の前記透明基板と反対側に位置する主面は平坦である請求項9に記載の発光素子。
  11.  前記フォトルミネッセンス層の前記透明基板と反対側に位置する主面は、前記サブミクロン構造の複数の凸部または複数の凹部に追随した凹凸形状を有し、
     前記多層ミラーは、前記サブミクロン構造の複数の凸部または複数の凹部に追随した凹凸形状を有する請求項9に記載の発光素子。
  12.  前記フォトルミネッセンス層および前記透光層を含む透光性構造体を備え、
     前記多層ミラーと前記透光性構造体とは互いに接しており、前記多層ミラーと前記透光性構造体との界面部分において、前記透光性構造体の屈折率は、前記多層ミラーの屈折率よりも大きく、
     mTは任意の正の整数であり、前記透光性構造体の前記積層方向における実効光路長dTは、下記式
    (4mT-1)λa/(8nwav-a)<dT<(4mT+1)λa/(8nwav-a
    を満たしている請求項1から11のいずれかに記載の発光素子。
  13.  前記フォトルミネッセンス層および前記透光層を含む透光性構造体を備え、
     前記多層ミラーと前記透光性構造体とは互いに接しており、前記多層ミラーと前記透光性構造体との界面部分において、前記透光性構造体の屈折率は、前記多層ミラーの屈折率よりも小さく、
     mTは任意の正の整数であり、前記透光性構造体の前記積層方向における実効光路長dTは、下記式(4mT-3)λa/(8nwav-a)<dT<(4mT-1)λa/(8nwav-a)を満たしている請求項1から11のいずれかに記載の発光素子。
  14.  前記mTは1である請求項12または13に記載の発光素子。
  15.  透光層と、
     前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
     前記サブミクロン構造に近接して配置されたフォトルミネッセンス層と、
     前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
    を有し、
     前記サブミクロン構造は、複数の凸部または複数の凹部を含み、
     前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
     前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
     前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
  16.  フォトルミネッセンス層と、
     前記フォトルミネッセンス層よりも高屈折率を有する透光層と、
     前記透光層に形成され、前記透光層の面内に広がるサブミクロン構造と、
     前記フォトルミネッセンス層および前記透光層とともに積層された多層ミラーと、
    を有し、
     前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
     前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
     前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
     前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
  17.  前記フォトルミネッセンス層と前記透光層とが互いに接している、請求項1から15のいずれかに記載の発光素子。
  18.  フォトルミネッセンス層と、
     前記フォトルミネッセンス層に形成され、前記フォトルミネッセンス層の面内に広がるサブミクロン構造と、
     前記フォトルミネッセンス層とともに積層された多層ミラーと、
    を有し、
     前記サブミクロン構造は、少なくとも複数の凸部または複数の凹部を含み、
     前記フォトルミネッセンス層が発する光は、空気中の波長がλaの第1の光を含み、
     前記サブミクロン構造は、少なくとも前記複数の凸部または前記複数の凹部によって形成された少なくとも1つの周期構造を含み、
     前記第1の光に対する前記フォトルミネッセンス層の屈折率をnwav-aとし、前記少なくとも1つの周期構造の周期をpaとすると、λa/nwav-a<pa<λaの関係が成り立つ、発光素子。
  19.  前記サブミクロン構造は、前記複数の凸部と前記複数の凹部との双方を含む、請求項1から18のいずれかに記載の発光素子。
  20.  請求項1から19のいずれかに記載の発光素子と、
     前記フォトルミネッセンス層に励起光を照射する、励起光源と、
    を備える発光装置。
PCT/JP2015/000813 2014-02-28 2015-02-20 発光素子および発光装置 WO2015129222A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006195.3A CN105940494A (zh) 2014-02-28 2015-02-20 发光器件以及发光装置
US15/215,595 US9880336B2 (en) 2014-02-28 2016-07-21 Light-emitting device including photoluminescent layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-037992 2014-02-28
JP2014037992 2014-02-28
JP2014-154135 2014-07-29
JP2014154135 2014-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/215,595 Continuation US9880336B2 (en) 2014-02-28 2016-07-21 Light-emitting device including photoluminescent layer

Publications (1)

Publication Number Publication Date
WO2015129222A1 true WO2015129222A1 (ja) 2015-09-03

Family

ID=54008559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000813 WO2015129222A1 (ja) 2014-02-28 2015-02-20 発光素子および発光装置

Country Status (4)

Country Link
US (1) US9880336B2 (ja)
JP (1) JP2016034012A (ja)
CN (1) CN105940494A (ja)
WO (1) WO2015129222A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034014A (ja) * 2014-02-28 2016-03-10 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP2016034017A (ja) * 2014-02-28 2016-03-10 パナソニックIpマネジメント株式会社 発光装置
JP6569856B2 (ja) 2015-03-13 2019-09-04 パナソニックIpマネジメント株式会社 発光装置および内視鏡
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10031276B2 (en) * 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059905A (ja) * 1999-06-16 2001-03-06 Matsushita Electronics Industry Corp 回折型光学素子および当該回折型光学素子を用いた光ピックアップ
WO2007034827A1 (ja) * 2005-09-22 2007-03-29 Sharp Kabushiki Kaisha 導光体、表示装置用基板および表示装置
JP2008130279A (ja) * 2006-11-17 2008-06-05 Nichia Chem Ind Ltd 面状発光装置及びその製造方法
JP2010210824A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 光学素子及び照明装置
JP2012182376A (ja) * 2011-03-02 2012-09-20 Stanley Electric Co Ltd 波長変換部材および光源装置
WO2014024218A1 (ja) * 2012-08-06 2014-02-13 パナソニック株式会社 蛍光体光学素子、その製造方法及び光源装置

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517039A (en) 1994-11-14 1996-05-14 Hewlett-Packard Company Semiconductor devices fabricated with passivated high aluminum-content III-V material
FR2728399B1 (fr) 1994-12-20 1997-03-14 Bouadma Nouredine Composant laser a reflecteur de bragg en materiau organique et procede pour sa realisation
JP3931355B2 (ja) 1995-09-06 2007-06-13 日亜化学工業株式会社 面状光源
JP2991183B2 (ja) 1998-03-27 1999-12-20 日本電気株式会社 有機エレクトロルミネッセンス素子
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
GB2353400B (en) * 1999-08-20 2004-01-14 Cambridge Display Tech Ltd Mutiple-wavelength light emitting device and electronic apparatus
JP2001155520A (ja) 1999-11-22 2001-06-08 Sharp Corp 面状光源、並びにそれを用いたバックライト光学系およびディスプレイ
WO2002054119A1 (fr) 2000-12-28 2002-07-11 Fuji Electric Co., Ltd. Plaque de guidage de la lumiere et dispositif d'affichage a cristaux liquides comprenant cette plaque
US20030021314A1 (en) 2001-07-27 2003-01-30 The Furukawa Electric Co, Ltd. Distributed bragg reflector semiconductor laser suitable for use in an optical amplifier
KR100464358B1 (ko) 2002-03-11 2005-01-03 삼성전자주식회사 분배 브락 반사경을 갖는 반도체 레이저의 제조 방법
US7699482B2 (en) * 2002-09-25 2010-04-20 Fujifilm Corporation Light-emitting element
JP4220305B2 (ja) * 2003-05-22 2009-02-04 三星エスディアイ株式会社 有機エレクトロルミネセンス素子
JP4425571B2 (ja) 2003-06-11 2010-03-03 株式会社半導体エネルギー研究所 発光装置及び素子基板
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
WO2005089098A2 (en) 2004-01-14 2005-09-29 The Regents Of The University Of California Ultra broadband mirror using subwavelength grating
JP2008521211A (ja) 2004-07-24 2008-06-19 ヨン ラグ ト 二次元ナノ周期構造体を有する薄膜蛍光体を備えるled装置
US20060039433A1 (en) * 2004-08-20 2006-02-23 Simpson John T Silicon nanocrystal/erbium doped waveguide (SNEW) laser
US7447246B2 (en) 2004-10-27 2008-11-04 Jian-Jun He Q-modulated semiconductor laser
US8134291B2 (en) 2005-01-07 2012-03-13 Samsung Mobile Display Co., Ltd. Electroluminescent device and method for preparing the same
US8128272B2 (en) 2005-06-07 2012-03-06 Oree, Inc. Illumination apparatus
JP4971672B2 (ja) 2005-09-09 2012-07-11 パナソニック株式会社 発光装置
JP2007080996A (ja) 2005-09-13 2007-03-29 Sony Corp GaN系半導体発光素子及びその製造方法
US20070103931A1 (en) 2005-11-09 2007-05-10 Kun-Chui Lee Assembly device for a sidelight light source module and liquid crystal panel
CN101379164B (zh) 2006-02-10 2012-11-21 三菱化学株式会社 荧光体及其制造方法、含荧光体的组合物、发光装置、图像显示装置和照明装置
JP4934331B2 (ja) 2006-03-06 2012-05-16 ハリソン東芝ライティング株式会社 面状発光デバイス
EP1995794A4 (en) 2006-03-10 2011-08-31 Panasonic Elec Works Co Ltd LIGHT EMITTING DEVICE
US20080069497A1 (en) 2006-09-15 2008-03-20 Yann Tissot Optical waveguide tap monitor
US7745843B2 (en) 2006-09-26 2010-06-29 Stanley Electric Co., Ltd. Semiconductor light emitting device
US7868542B2 (en) 2007-02-09 2011-01-11 Canon Kabushiki Kaisha Light-emitting apparatus having periodic structure and sandwiched optical waveguide
KR100862532B1 (ko) 2007-03-13 2008-10-09 삼성전기주식회사 발광 다이오드 패키지 제조방법
US7781779B2 (en) 2007-05-08 2010-08-24 Luminus Devices, Inc. Light emitting devices including wavelength converting material
KR20090002835A (ko) 2007-07-04 2009-01-09 엘지전자 주식회사 질화물계 발광 소자 및 그 제조방법
WO2009054160A1 (ja) * 2007-10-23 2009-04-30 Sharp Kabushiki Kaisha バックライト装置、及び表示装置
US8619363B1 (en) 2007-11-06 2013-12-31 Fusion Optix, Inc. Light redirecting element comprising a forward diffracting region and a scattering region
JP5219493B2 (ja) 2007-11-14 2013-06-26 キヤノン株式会社 発光素子及びそれを用いた発光装置
CN101939857B (zh) 2008-02-07 2013-05-15 三菱化学株式会社 半导体发光装置、背光源、彩色图像显示装置以及这些中使用的荧光体
JP2010015874A (ja) 2008-07-04 2010-01-21 Kyoto Institute Of Technology 有機光学デバイス、その製造方法、及び増幅又は狭線化した光を発する方法
JP5010549B2 (ja) 2008-07-25 2012-08-29 株式会社東芝 液晶表示装置
WO2010010634A1 (ja) 2008-07-25 2010-01-28 国立大学法人東京工業大学 有機el素子及びその製造方法
JP2010237311A (ja) 2009-03-30 2010-10-21 Sanyo Electric Co Ltd 投写型映像表示装置
JP2010097178A (ja) 2008-09-22 2010-04-30 Mitsubishi Electric Corp 光源ユニット、及び画像表示装置
JP2010114337A (ja) * 2008-11-10 2010-05-20 Hitachi Cable Ltd 発光素子
WO2010073585A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 シート及び発光装置
JP2010199357A (ja) 2009-02-26 2010-09-09 Nichia Corp 発光装置及びその製造方法
JP5212947B2 (ja) 2009-03-26 2013-06-19 パナソニック株式会社 アンビエント照明システム
TW201041190A (en) 2009-05-01 2010-11-16 Univ Nat Taiwan Science Tech Polarized white light emitting diode (LED)
EP2484955A1 (en) 2009-09-30 2012-08-08 Nec Corporation Optical element, light source device, and projection display device
KR20110049578A (ko) 2009-11-05 2011-05-12 삼성모바일디스플레이주식회사 유기 전계 발광 표시장치
KR100969100B1 (ko) 2010-02-12 2010-07-09 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
CN102742352B (zh) 2010-04-22 2016-08-31 出光兴产株式会社 有机电致发光元件、照明装置及光输出层的形成方法
WO2012041851A1 (en) * 2010-09-29 2012-04-05 Basf Se Security element
CN103154804B (zh) 2010-10-15 2015-12-02 日本电气株式会社 光学装置、光源以及投影型显示装置
JP5672949B2 (ja) 2010-10-25 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP2012099362A (ja) 2010-11-02 2012-05-24 Toshiba Corp 発光装置
JP2012109334A (ja) 2010-11-16 2012-06-07 Toyota Central R&D Labs Inc 発光装置
JP2012109400A (ja) 2010-11-17 2012-06-07 Sharp Corp 発光素子、発光装置および発光素子の製造方法
WO2012108384A1 (ja) 2011-02-10 2012-08-16 シャープ株式会社 蛍光体基板、およびこれを用いた表示装置、照明装置
US20140022818A1 (en) 2011-04-07 2014-01-23 Nec Corporation Optical element, illumination device, and projection display device
US9541694B2 (en) 2011-04-28 2017-01-10 L.E.S.S. Ltd Waveguide apparatus for illumination systems
JP5552573B2 (ja) 2011-07-12 2014-07-16 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
JP5832210B2 (ja) 2011-09-16 2015-12-16 キヤノン株式会社 有機el素子
JP5307307B1 (ja) 2011-12-07 2013-10-02 パナソニック株式会社 シート及び発光装置
KR101289844B1 (ko) 2012-01-18 2013-07-26 한국전자통신연구원 유기 발광 소자
JP2015092434A (ja) 2012-02-24 2015-05-14 シャープ株式会社 バックライトユニット及び液晶表示装置
JP2013183020A (ja) 2012-03-01 2013-09-12 Toshiba Corp 半導体発光装置およびその製造方法
DE112013002508B4 (de) 2012-05-16 2020-09-24 Panasonic Intellectual Property Management Co., Ltd. Wellenlängen-Umwandlungselement, Verfahren zu seiner Herstellung und LED-Element und Laserlicht emittierendes Halbleiterbauteil, die das Wellenlängen-Umwandlungselement verwenden
JP2014082401A (ja) 2012-10-18 2014-05-08 Ushio Inc 蛍光光源装置
JP2014092645A (ja) 2012-11-02 2014-05-19 Dainippon Printing Co Ltd 偽造防止構造並びにそれを有するラベル、転写箔及び偽造防止用紙
KR20140089014A (ko) 2012-12-31 2014-07-14 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN104969370A (zh) 2013-02-04 2015-10-07 优志旺电机株式会社 荧光光源装置
CN104103722B (zh) 2013-04-15 2017-03-01 展晶科技(深圳)有限公司 发光二极管晶粒及其制造方法
JP6111960B2 (ja) 2013-09-30 2017-04-12 ウシオ電機株式会社 蛍光光源装置
US9929368B2 (en) 2014-02-06 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, lighting device, and electronic appliance
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
WO2015133999A1 (en) 2014-03-04 2015-09-11 Empire Technology Development Llc Backlight units and methods of making the same
JP2016171228A (ja) 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 発光素子、発光装置および検知装置
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059905A (ja) * 1999-06-16 2001-03-06 Matsushita Electronics Industry Corp 回折型光学素子および当該回折型光学素子を用いた光ピックアップ
WO2007034827A1 (ja) * 2005-09-22 2007-03-29 Sharp Kabushiki Kaisha 導光体、表示装置用基板および表示装置
JP2008130279A (ja) * 2006-11-17 2008-06-05 Nichia Chem Ind Ltd 面状発光装置及びその製造方法
JP2010210824A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 光学素子及び照明装置
JP2012182376A (ja) * 2011-03-02 2012-09-20 Stanley Electric Co Ltd 波長変換部材および光源装置
WO2014024218A1 (ja) * 2012-08-06 2014-02-13 パナソニック株式会社 蛍光体光学素子、その製造方法及び光源装置

Also Published As

Publication number Publication date
US9880336B2 (en) 2018-01-30
US20160327716A1 (en) 2016-11-10
JP2016034012A (ja) 2016-03-10
CN105940494A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP2016034018A (ja) 発光素子および発光装置
WO2015129224A1 (ja) 発光装置
JP2016034016A (ja) 発光素子および発光装置
WO2015129223A1 (ja) 発光装置
JP2016036008A (ja) 発光素子および発光装置
WO2015129222A1 (ja) 発光素子および発光装置
JP2016171228A (ja) 発光素子、発光装置および検知装置
JP6748898B2 (ja) 発光素子および発光装置
WO2015129220A1 (ja) 発光素子および発光装置
JP2017040818A (ja) 発光素子
JP6719094B2 (ja) 発光素子
WO2015129219A1 (ja) 発光素子および発光装置
WO2015129221A1 (ja) 発光素子および発光装置
US9899577B2 (en) Light-emitting apparatus including photoluminescent layer
CN106486574B (zh) 具备光致发光层的发光元件
JP6916073B2 (ja) 光デバイス
Danz et al. OLED design: combined micro-and nanophotonics modeling, and routes to a complex optimization algorithm
JP2016033664A (ja) 発光素子
JP2016021072A (ja) 発光素子
JP2015179657A (ja) 発光素子および発光装置
US20170062659A1 (en) Light-emitting device having photoluminescent layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755001

Country of ref document: EP

Kind code of ref document: A1