WO2015125605A1 - 厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物 - Google Patents

厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物 Download PDF

Info

Publication number
WO2015125605A1
WO2015125605A1 PCT/JP2015/053117 JP2015053117W WO2015125605A1 WO 2015125605 A1 WO2015125605 A1 WO 2015125605A1 JP 2015053117 W JP2015053117 W JP 2015053117W WO 2015125605 A1 WO2015125605 A1 WO 2015125605A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thick film
water
film
aqueous
Prior art date
Application number
PCT/JP2015/053117
Other languages
English (en)
French (fr)
Inventor
中村 公彦
秀和 椋野
惇 ▲桑▼原
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to SG11201605931XA priority Critical patent/SG11201605931XA/en
Priority to CN201580008809.1A priority patent/CN106029799A/zh
Priority to JP2016504022A priority patent/JPWO2015125605A1/ja
Priority to AU2015220158A priority patent/AU2015220158B2/en
Publication of WO2015125605A1 publication Critical patent/WO2015125605A1/ja
Priority to PH12016501626A priority patent/PH12016501626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters

Definitions

  • the present invention relates to an aqueous resin composition for thick film construction, a manufacturing method thereof, a surface treatment method, and a concrete structure. Specifically, the present invention relates to a thick film construction water-based resin composition for surface treatment of a concrete structure used in the field of civil engineering and / or architecture, a method for producing the same, a surface treatment method, and a concrete structure. .
  • an aqueous resin composition in which an organic filler is blended in a synthetic resin emulsion for example, an adhesive containing at least one of a styrene-butadiene copolymer resin latex and a chloroprene rubber latex, and an acrylic resin powder (organic filler)
  • Patent Document 3 A composition has been proposed (see Patent Document 3). However, this is not for the purpose of forming a thick film like the surface treatment of a concrete structure because it is intended for use with an adhesive.
  • a vibration-damping composition characterized by containing an organic filler in a base emulsion using a core-shell emulsion is disclosed (see Patent Document 4), but a thick film is formed depending on drying conditions. Cracks may occur.
  • the present inventors have included a water-based synthetic resin emulsion and an organic filler or a glass filler, and a water-based resin composition for thick film construction having a nonvolatile content of 65 to 80% by mass.
  • This water-based resin composition for thick film construction can be applied to a surface to be treated such as a concrete structure, and can be dried within 12 hours after application, and the formed film is durable. For example, it has water resistance, acid resistance and alkali resistance.
  • the surface treatment of concrete structures is currently required to cope with a more severe construction environment.
  • corrosion of the concrete structures due to the generation of sulfuric acid has become serious as a result of the progress of covering the facilities.
  • the surface treatment of concrete structures is stipulated in the Sewerage Concrete Structure Corrosion Inhibition Technology and Anticorrosion Technology Manual (April 2012) issued by the Sewerage Business Support Center. It is required to meet the standards C and D quality standards.
  • the present invention has been made in order to solve the above problems, and can be dried within 12 hours after thick film construction and application, does not generate odor during work, and has water resistance, acid resistance and Films with excellent alkali resistance can be formed, and in particular, films that comply with the standards C and D of the quality standards specified in the Sewerage Concrete Structure Corrosion Inhibition Technology and Anticorrosion Technology Manual (April 2012)
  • An object of the present invention is to provide a water-based resin composition for thick film construction that can form a film, a manufacturing method thereof, a surface treatment method, and a concrete structure.
  • the present inventors have evacuated an aqueous resin composition for thick film construction containing an aqueous synthetic resin emulsion and a filler and having a nonvolatile content of 65 to 80% by mass.
  • the present invention includes the following (1) to (8).
  • a water-based resin composition for thick film construction containing a water-based synthetic resin emulsion (A) and a filler (B) and having a nonvolatile content of 65 to 80% by mass, An aqueous resin composition for thick film construction, wherein the ratio of the measured specific gravity to the theoretical specific gravity is 97% or more.
  • the water-based resin composition for thick film construction according to item (1) wherein a vacuum defoaming treatment is performed.
  • the filler (B) is at least one selected from the group consisting of polystyrene, polyethylene, polypropylene, glass frit, glass flakes, talc, and clay.
  • the aqueous resin composition for thick film construction according to any one of items 3).
  • Thick film construction aqueous resin composition containing an aqueous synthetic resin emulsion (A) and a filler (B), having a nonvolatile content of 65 to 80% by mass and a ratio of measured specific gravity to theoretical specific gravity of 97% or more
  • a manufacturing method of A method for producing a water-based resin composition for thick film construction, which comprises performing a vacuum defoaming treatment after mixing the water-based synthetic resin emulsion (A) and the filler (B).
  • a film is formed by applying the aqueous resin composition for thick film construction according to any one of items (1) to (4) to the surface of an object to be treated and drying it. Surface treatment method.
  • the surface treatment method according to item (6), wherein the object to be treated is a concrete structure.
  • a concrete structure having a protective film on the surface, The protective film is formed by applying the thick film construction water-based resin composition according to any one of Items (1) to (4) to the surface of an object to be processed and drying it.
  • Water-based resin composition for thick film construction capable of forming a film conforming to the quality standards of standards C and D specified in the corrosion control technology and anti-corrosion technology manual (April 2012) for sewer concrete structures
  • An object, a manufacturing method thereof, a surface treatment method, and a concrete structure can be provided.
  • the aqueous resin composition for thick film construction of the present invention contains an aqueous synthetic resin emulsion (A) and a filler (B).
  • the water-based synthetic resin emulsion (A) is an emulsion polymer or latex polymer that can be obtained by radical polymerization of a composition containing an ethylenically unsaturated monomer using a water-soluble polymer or a surfactant. It is.
  • Emulsion polymers include styrene-acrylic resin emulsions, acrylic resin emulsions, ethylene-vinyl acetate emulsions, vinyl acetate emulsions, urethane emulsions, urethane-acrylic emulsions, polyester-based emulsions, polyester-acrylic emulsions, etc. Is mentioned.
  • the latex polymer include styrene-butadiene resin latex, acrylonitrile-butadiene resin latex, chloroprene resin latex, and the like. These can be used alone or in combination of two or more.
  • a suspension obtained by emulsifying and dispersing an organic resin in water can be used in combination with an emulsion polymer or a latex polymer.
  • styrene-acrylic resin emulsions and acrylic resin emulsions are preferred from the viewpoints of adjusting the properties of the nonvolatile content of the water-based synthetic resin emulsion (A), Tg design of the resin, miscibility and physical properties.
  • Styrene-acrylic resin emulsions are particularly preferred because of their excellent acid resistance and alkali resistance.
  • the styrene-acrylic resin emulsion can be obtained by radical polymerization of a composition containing an ethylenically unsaturated monomer in the presence of a water-soluble or water-dispersible polyester.
  • the component derived from the styrene monomer is preferably 10 to 80% by mass, more preferably 40 to 60% by mass.
  • the toughness of the film may be lowered.
  • the film formability may be lowered and the physical properties of the film may be lowered.
  • An organic filler, an inorganic filler, or a mixture thereof can be used.
  • it does not specifically limit as an organic filler, It is preferable that it is a powder of the organic polymer hardly soluble in water.
  • sparingly soluble in water means that the solubility in 100 g of water at 23 ° C. and 1 atm is 0.1 g or less.
  • contraction agent) etc. which are used for the crack of the unsaturated polyester resin molding or warpage prevention etc. can be used.
  • organic fillers examples include polyethylene, polypropylene, polystyrene, polymethyl methacrylate and copolymers thereof, vinyl acetate and copolymers thereof, unsaturated polyester (aliphatic ester, aromatic ester), cellulose acetate butyrate, ⁇ -Caprolactone polymers, polybutadiene, polyvinyl chloride and the like.
  • an elastomeric polymer such as styrene-butadiene-styrene (SBS) block polymer, starch powder, or cellulose powder may be used. These can be used individually or in mixture of 2 or more types.
  • SBS styrene-butadiene-styrene
  • polystyrene, polyethylene, and polypropylene are preferable, and polystyrene is particularly preferable from the viewpoints of miscibility and durability.
  • the inorganic filler is not particularly limited.
  • glass frit, glass flakes, talc and clay are particularly preferable from the viewpoints of miscibility and durability.
  • content of a filler (B) is not specifically limited, Preferably it is 15 mass% or more with respect to the non volatile matter of the aqueous resin composition for thick film construction, More preferably, it is 20 mass% or more, More preferably, it is 25 mass%. Above, most preferably 30% by mass or more.
  • content of the filler (B) with respect to the nonvolatile content of the thick film construction aqueous resin composition is less than 15% by mass, the water-stopping property, acid resistance, and alkali resistance tend to decrease in addition to the thick film drying property.
  • a filler (B) is not specifically limited, Preferably it is 85 mass% or less with respect to the non volatile matter of the aqueous resin composition for thick film construction, More preferably, it is 80 mass% or less, More preferably, it is 75. % By mass or less, most preferably 70% by mass or less.
  • the average particle diameter of the filler (B) is not particularly limited, but from the viewpoint of dispersibility, it is 1 ⁇ m to 150 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m.
  • the “average particle diameter” means an average particle diameter measured by a laser diffraction / scattering method or a Coulter counter method, but is an average particle diameter measured by a laser diffraction / scattering method. Preferably there is.
  • the average particle size measured by a laser diffraction / scattering method, a Coulter counter method, or the like means a particle size at an integrated value of 50% in the particle size distribution obtained by these methods.
  • the filler (B) When the average particle size of the filler (B) is less than 1 ⁇ m, the filler (B) is likely to aggregate and the desired dispersibility may not be obtained. On the other hand, when the average particle diameter of the filler (B) exceeds 150 ⁇ m, it is difficult to uniformly disperse in the aqueous resin composition for thick film construction, and it is difficult to form a uniform film. , Durability) may also decrease.
  • the ratio (mass ratio) of the solid content (nonvolatile component) of the aqueous synthetic resin emulsion (A) and the solid content of the filler (B) is not particularly limited, It is preferably 8/2 to 2/8, more preferably 7/3 to 3/7, and most preferably 6/4 to 4/6.
  • the solid content of the water-based synthetic resin emulsion (A) and the filler (B) means a non-volatile component remaining in the film without being volatilized when the film is formed.
  • solid content ratio When the ratio of the solid content of the aqueous synthetic resin emulsion (A) to the solid content of the filler (B) (hereinafter referred to as “solid content ratio”) is greater than 8/2, that is, the aqueous synthetic resin emulsion (A). When there is too much solid content, desired drying property cannot be obtained and the physical properties (strength, durability, etc.) of a film may fall. On the other hand, when the solid content ratio is smaller than 2/8, that is, when the solid content of the filler (B) is too large, the stability of the aqueous resin composition for thick film construction cannot be sufficiently obtained and a uniform film is obtained. Since it becomes difficult to form the film, the durability (water resistance, acid resistance, alkali resistance) of the film may be lowered.
  • the water-based resin composition for thick film construction of the present invention is a known plasticizer, tackifier resin, thickener, curing agent, antifoaming agent, preservative according to the purpose of use within the range not inhibiting the effects of the present invention. Etc. can be suitably blended.
  • the aqueous film composition for thick film construction of the present invention can be prepared by performing vacuum defoaming treatment after mixing the above components.
  • the “vacuum defoaming process” in this specification means that the mixing process is performed by a mixing device while reducing the pressure using a vacuum pump or the like.
  • the mixing apparatus is not particularly limited, and a dissolver, a Banbury (trademark) mixer, a planetary mixer, a grain mixer, an open kneader, a vacuum kneader, or the like can be used.
  • the ratio of the measured specific gravity to the theoretical specific gravity is 97% or more.
  • the theoretical specific gravity means the theoretical value of the specific gravity calculated from the specific gravity of the components contained in the thick film construction aqueous resin composition
  • the measured specific gravity is the actually prepared thick film construction aqueous resin composition.
  • the specific gravity can be measured using a gravimetric method.
  • a method for adjusting the ratio of the measured specific gravity to the theoretical specific gravity to 97% or more is not particularly limited, but can be adjusted by performing the vacuum defoaming treatment.
  • the minimum film formation temperature of the aqueous resin composition for thick film construction of the present invention is not particularly limited, but is preferably 0 to 5 ° C., more preferably 0 ° C. When the minimum film forming temperature is higher than 5 ° C., the film is easily affected by the drying temperature condition, so that the film forming property is lowered and a film having a desired durability may not be obtained.
  • the method for adjusting the minimum film forming temperature of the thick film construction aqueous resin composition is not particularly limited, but a film forming aid is added or an aqueous synthetic resin emulsion (A) having a low minimum film forming temperature is formed at the minimum. It can be performed by adding to the aqueous synthetic resin emulsion (A) having a high film temperature.
  • the water-based resin composition for thick film construction of the present invention has a nonvolatile content of 65 to 80% by mass, preferably 65 to 75% by mass.
  • a nonvolatile content of 65 to 80% by mass, preferably 65 to 75% by mass.
  • the non-volatile content is not particularly limited and can be measured according to a method known in the technical field, but is preferably a value measured by the method described in Examples.
  • the viscosity of the aqueous resin composition for thick film construction of the present invention is not particularly limited, but is preferably 8,000 mPa ⁇ s to 80,000 mPa ⁇ s, more preferably 9,000 mPa ⁇ s to 60,000 mPa ⁇ s, most preferably Preferably, it is 10,000 mPa ⁇ s to 50,000 mPa ⁇ s.
  • a thick film of 1 mm or more can be applied. If the viscosity is less than 8,000 mPa ⁇ s, sagging occurs after coating, and defects such as cracks may occur during drying.
  • the viscosity is not particularly limited and can be measured according to a method known in the technical field, but is preferably a value measured by the method described in Examples.
  • the aqueous resin composition for thick film construction of the present invention has a film thickness of preferably 0.1 mm to 2 mm, more preferably 0.5 mm to 2 mm after being applied to the surface of the object to be processed and dried. is there.
  • membrane it does not specifically limit as a measuring method of the film thickness of a film
  • membrane It can measure using a commercially available film thickness meter. If the film thickness is less than 0.1 mm, depending on the surface state of the object to be processed, the continuity of the film may not be sufficiently obtained due to the occurrence of pinholes or the like. On the other hand, if the film thickness exceeds 2 mm, it may cause a delay in drying and may fail to exhibit sufficient performance.
  • the water-based resin composition for thick film construction of the present invention does not contain an organic solvent or the like, or contains only a small amount of an organic solvent or the like, so it does not generate odor during work, is environmentally friendly, and has good drying properties.
  • the water-based resin composition for thick film construction of the present invention is applied to the surface of an object to be treated such as a concrete structure and dried naturally at room temperature to form a film excellent in water resistance, acid resistance and alkali resistance. Therefore, this film is considered to lead to improvement in durability of the surface of the object to be processed as a protective film.
  • the concrete structure is a concept including a structure made of ordinary concrete, mortar or the like.
  • the coating amount may be appropriately determined according to the purpose of use, but is preferably 0.1 kg / m 2 to 3.0 kg / m 2 , more preferably 0.5 kg / m 2 to 2.5 kg. / M 2 . If the coating amount is less than 0.1 kg / m 2 , film continuity cannot be obtained sufficiently, and pinholes and the like may occur. On the other hand, when the coating amount exceeds 3.0 kg / m 2 , it may cause a drying delay and may not be able to exhibit sufficient performance.
  • the undercoat paint include an acrylic emulsion base coat (primer, sealer), an epoxy base coat, and a urethane base coat.
  • Non-volatile content About 1 g of the water-based synthetic resin emulsion was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour, and the residue was weighed. (viscosity) Using a Brookfield type rotational viscometer, the liquid temperature was 23 ° C., the rotational speed was 10 rpm, Measured with 5 rotors. (PH) The pH of the aqueous resin composition for thick film construction was measured using a pH meter. (Minimum deposition temperature (MFT)) According to JIS K 6828, MFT of the water-based resin composition for thick film construction was measured.
  • MFT Minimum deposition temperature
  • the ratio of the measured specific gravity to the theoretical specific gravity was calculated by actual measured specific gravity / theoretical specific gravity ⁇ 100.
  • the measured specific gravity of the water-based resin composition for thick film construction was obtained by placing the water-based resin composition for thick film construction into a constant volume container and measuring using a weight method.
  • the theoretical specific gravity of the thick film construction aqueous resin composition was calculated using the following formula (1) by determining the volume of each component from the blending amount of each component based on the specific gravity at 23 ° C. of each of the following components. .
  • Emulsion styrene-acrylic acid ester copolymer, nonvolatile content 50% by mass, styrene-derived component 50% by mass in resin component, acrylic acid ester-derived component 50% by mass, viscosity 4500 mPa ⁇ s, minimum film forming temperature 0 ° C.
  • Polystyrene powder resin SGP-70C: 1.05 mg / mL
  • Glass filler C0007-05B
  • PGP-80 2.8 mg / mL
  • Antifoaming agent Nopco 8034L
  • Example 1 As an aqueous synthetic resin emulsion (A), an emulsion (styrene-acrylic acid ester copolymer, nonvolatile content 50% by mass, styrene-derived component 50% by mass in the resin component, acrylic acid ester-derived component 50% by mass, viscosity 4500 mPa ⁇ s, A minimum powder forming temperature of 0 ° C. was used, and a polystyrene powder resin (SGP-70C, manufactured by Soken Chemical Co., Ltd., average particle diameter of 19 ⁇ m) was used as the filler (B).
  • SGP-70C polystyrene powder resin
  • Example 2 Thick film construction aqueous resin composition as in Example 1, except that the same emulsion as in Example 1 and glass filler (CF0007-05B, manufactured by Nippon Frit Co., Ltd., average particle size: 15 ⁇ m) were used as the filler. Got. As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth, it was confirmed that there was no generation of coarse particles and aggregates.
  • Example 3 The same aqueous synthetic resin emulsion (A) as Example 1 and polystyrene powder resin (SGP-70C, manufactured by Soken Chemical Co., Ltd., average particle size 19 ⁇ m) and glass filler (CF0007-05B, Nippon Frit Co., Ltd.) as filler (B)
  • SGP-70C polystyrene powder resin
  • glass filler CF0007-05B, Nippon Frit Co., Ltd.
  • B An aqueous resin composition for thick film construction was obtained in the same manner as in Example 1 except that the average particle size of 15 ⁇ m was used.
  • the addition amounts of the polystyrene-based powder resin and the glass filler were each 25 parts by mass with respect to 100 parts by mass of the emulsion.
  • As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth it was confirmed that there was no generation of coarse particles and aggregates.
  • Example 4 The same aqueous synthetic resin emulsion (A) as in Example 1 and polystyrene powder resin (SGP-70C, manufactured by Soken Chemical Co., Ltd., average particle size 19 ⁇ m) and talc (PKP-80, Fuji Talc Industrial Co., Ltd.) as filler (B)
  • SGP-70C polystyrene powder resin
  • PGP-80 talc
  • B An aqueous resin composition for thick film construction was obtained in the same manner as in Example 1, except that the average particle size was 13 ⁇ m.
  • the addition amounts of polystyrene powder resin and PKP-80 were 25 parts by mass with respect to 100 parts by mass of the emulsion, respectively.
  • As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth it was confirmed that there was no generation of coarse particles and aggregates.
  • Example 1 The same material as in Example 1 was used. After adding 50 parts by mass of polystyrene powder resin to 100 parts by mass of the aqueous synthetic resin emulsion (A), and further adding 0.05 part by mass of an antifoaming agent (Nopco 8034L: manufactured by San Nopco Co., Ltd.) An aqueous resin composition for thick film construction was obtained by mixing and stirring at 3000 rpm for 10 minutes with a disper. As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth, it was confirmed that there was no generation of coarse particles and aggregates.
  • an antifoaming agent Nopco 8034L: manufactured by San Nopco Co., Ltd.
  • Comparative Example 2 An aqueous resin composition for thick film construction was obtained in the same manner as in Comparative Example 1 except that glass filler (CF0007-05B, manufactured by Nippon Frit Co., Ltd., average particle size: 15 ⁇ m) was used as the filler (B). As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth, it was confirmed that there was no generation of coarse particles and aggregates.
  • glass filler CF0007-05B, manufactured by Nippon Frit Co., Ltd., average particle size: 15 ⁇ m
  • Comparative Example 4 An aqueous resin composition for thick film construction was obtained in the same manner as in Comparative Example 3 except that the blending amount of the antifoaming agent was changed to 0.25 parts by mass. As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth, it was confirmed that there was no generation of coarse particles and aggregates.
  • Comparative Example 5 An aqueous resin composition for thick film construction was obtained in the same manner as in Comparative Example 3 except that the blending amount of the antifoaming agent was changed to 0.50 parts by mass. As a result of filtering the obtained thick film construction water-based resin composition with a 80th filter cloth, it was confirmed that there was no generation of coarse particles and aggregates.
  • Table 1 summarizes the composition and various characteristics of the thick film construction aqueous resin compositions prepared in the above Examples and Comparative Examples.
  • the water-based resin compositions for thick film construction of Examples 1 to 4 have good drying properties like the water-based resin compositions for thick film construction of Comparative Examples 1 to 5, It was found that cracks did not occur even as a thick film.
  • Thick film construction aqueous resin compositions prepared in the above Examples and Comparative Examples were coated with a release film and a film thickness of 2 mm (coating amount (solid content): 2.5 kg / m) on a glass plate on which a frame was formed. 2 ) was poured into Next, after drying at room temperature for 4 days, the film was once peeled from the glass plate, and the back surface was dried for 3 days at room temperature with the front and back sides of the film being reversed to prepare a film. The following evaluation was performed about the obtained membrane
  • coat The following evaluation was performed about the obtained membrane
  • the produced film (25 ⁇ 100 mm) was cut into the shape of dumbbell No. 2 and subjected to a tensile test at a temperature of 23 ° C. and a tensile speed of 200 mm / min. Based on the maximum strength and the elongation of a marked line of 20 mm, the strength of the film before immersion And the elongation was measured.
  • a separately prepared film (25 ⁇ 100 mm) was immersed in a 10% aqueous sulfuric acid solution at 40 ° C. for 7 days, then dried at 40 ° C. for 12 hours, and the film after immersion drying was cut into a dumbbell No. 2 shape.
  • the strength and elongation were measured by the same method.
  • the film strength retention rate and the film elongation retention rate were calculated by the following equations.
  • the film strength retention rate and the film elongation retention rate are preferably 80% to 120% from the viewpoint of acid resistance.
  • Film strength retention strength of film after immersion drying / strength of film before immersion ⁇ 100
  • Film elongation retention film elongation after immersion drying / film elongation before immersion ⁇ 100
  • the results of the film swelling rate, film elution rate, film strength retention rate, and film elongation retention rate were good. It was.
  • Adhesiveness with concrete was evaluated according to JIS A6909: 2003 (7.9.2).
  • the standard adhesion evaluation was performed by applying a thick film construction water-based resin composition on a cement mortar board (70 ⁇ 70 ⁇ 20 mm) prepared in accordance with JIS R5201: 1997 (10.4). This was carried out using the specimens cured in (1).
  • Adhesion evaluation in a water-absorbing state was determined by immersing a cement mortar board (70 ⁇ 70 ⁇ 20 mm) prepared in accordance with JIS R5201: 1997 (10.4) in clean water at 23.2 ° C. for 24 hours, and then cleaning it.
  • the surface was wiped off with a cloth, and a thick film construction water-based resin composition was applied thereon, followed by a test specimen cured in a room for 24 hours.
  • the standard state is at 1.5 N / mm 2 or more in both species standard C and D, it is required in the water absorption state is 1.2 N / mm 2 or more in both species standard C and D.
  • the acid resistance of standard D type is 7 days indoors by applying a thick film construction water-based resin composition on a cement mortar board (150 ⁇ 70 ⁇ 20 mm) prepared based on JIS R5201: 1997 (10.4). After immersing the test body cured in 10% in a 10% sulfuric acid aqueous solution at 20 ° C. for 60 days, the film of the test body was visually evaluated for blistering, cracking, softening, and elution. In this evaluation, the case where there was no blistering, cracking, softening or elution on the film was indicated as ⁇ , and the case where the film was blistering, cracking, softening or elution was indicated as x.
  • EPMA electron probe microanalyzer
  • the element to be analyzed was sulfur
  • the sulfur penetration depth was evaluated as a region where sulfur penetrated a portion where the X-ray count of sulfur was 15 counts or more with respect to the background.
  • the measurement conditions in EPMA were as follows. Acceleration voltage: 15 kV Irradiation current: 100 ⁇ 10 nA Electron beam diameter: 2 ⁇ m Sampling time: 50 ms Data point: X direction 512 ⁇ Y direction 512
  • the sulfur penetration depth from the surface is 10% or less and 200 ⁇ m or less with respect to the design film thickness.
  • the sulfur penetration depth from the surface is the design film. It is required to be 5% or less and 100 ⁇ m or less with respect to the thickness.
  • Alkali resistance was evaluated according to JIS K5600-6-1: 1999 (Section 7). Standard C type alkali resistance is 7 days indoors when a thick film construction water-based resin composition is applied on a cement mortar board (150 x 70 x 20 mm) prepared in accordance with JIS R5201: 1997 (10.4). After immersing the test body cured in (2) in a calcium hydroxide saturated solution at 20 ° C. for 45 days, the film of the test body was visually evaluated for blistering, cracking, softening, and elution.
  • Standard D type alkali resistance is measured by applying a thick film construction water-based resin composition on a cement mortar board (150 ⁇ 70 ⁇ 20 mm) prepared in accordance with JIS R5201: 1997 (10.4). After immersing the test body cured in the above in a calcium hydroxide saturated solution at 20 ° C. for 60 days, the film of the test body was visually evaluated for blistering, cracking, softening, and elution. In this evaluation, the case where there was no blistering, cracking, softening or elution on the film was indicated as ⁇ , and the case where the film was blistering, cracking, softening or elution was indicated as x.
  • aqueous resin composition for thick film construction a method for producing the same, a surface treatment method, and a concrete structure can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

 本発明は、水系合成樹脂エマルジョン(A)及びフィラー(B)を含有し、不揮発分が65~80質量%である厚膜施工用水系樹脂組成物であって、理論比重に対する実測比重の割合が97%以上であることを特徴とする厚膜施工用水系樹脂組成物である。この厚膜施工用水系樹脂組成物によれば、厚膜施工及び塗布後12時間以内の乾燥が可能であり、作業時に臭気を発生せず、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができ、特に、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合する皮膜を形成することができる。

Description

厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物
 本発明は、厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物に関する。詳細には、本発明は、土木及び/又は建築分野において使用されるコンクリート構造物の表面処理を行うための厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物に関する。
 コンクリート構造物では、各種環境条件下での劣化が問題となっているため、コンクリート構造物の耐久性を向上させることを目的として、様々な樹脂材料を用いた表面処理が行われている。
 他方、VOC規制強化の流れや社会の環境保護意識の急速な高まりにより、表面処理に用いられる樹脂材料においても、有機溶剤系樹脂材料から水系樹脂材料への転換が進められている。特に、土木及び/又は建築分野におけるコンクリート構造物の表面処理では、環境問題等の観点から、臭気及び揮発成分の規制や、使用原料の規制等が厳しくなってきており、水系樹脂材料の開発が切望されている。
 しかしながら、コンクリート構造物の表面処理に水系樹脂材料を用いる場合、水系樹脂材料の塗膜が完全に乾燥するまでに長時間を要するため、十分な処理効率が得られない。また、形成される皮膜の耐久性の面からみても、ビニルエステル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレア、ウレタン樹脂等を用いた有機溶剤系樹脂材料の方が、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができるため、有機溶剤系樹脂材料を一般に使用しているのが現状である。このように、水系樹脂材料は、施工性をはじめとして、有機溶剤系樹脂材料のように多くの架橋点を存在させることができないために皮膜の強度も十分に得られないことから、コンクリート構造物の表面処理に使用するのに適していなかった。
 このような状況の中、高分子エマルジョンと、アクリルエマルジョン又は合成ゴムエマルジョンと、タルクとを含むコンクリート構造物用の水性下地調整材が提案されている(特許文献1参照)。しかしながら、この下地調整材は施工方法に制約がある上、厚膜施工では耐酸性、耐アルカリ性が十分な皮膜を得ることができない。
 また、酢酸ビニル-エチレン性共重合体エマルジョンに、ガラス繊維、セメント、砂等を配合した強化モルタル用組成物が提案されている(特許文献2参照)。しかしながら、この強化モルタル用組成物は不揮発分が多すぎるため、粘度が急激に上昇してしまい、作業性に問題があった。
 一方、合成樹脂エマルジョンに有機フィラーを配合した水系樹脂組成物として、例えば、スチレン-ブタジエン共重合系樹脂ラテックスとクロロプレンゴムラテックスの少なくともいずれか、及びアクリル系樹脂粉末(有機フィラー)を含有する接着剤組成物が提案されている(特許文献3参照)。しかしながら、これは接着剤で使用する目的のため、コンクリート構造物の表面処理のように、厚膜を形成させるという目的のものではない。
 その他、コアシェルエマルションを使用したベースエマルションに、有機フィラーを含有してなることを特徴とする制振性組成物が開示されている(特許文献4参照)が、乾燥条件によっては厚膜を形成する際にクラックが発生する可能性がある。
 そこで、本発明者等は、上記のような問題を解決するために、水系合成樹脂エマルジョン及び有機フィラー又はガラスフィラーを含有し、不揮発分が65~80質量%である厚膜施工用水系樹脂組成物を提案した(特許文献5及び6参照)。この厚膜施工用水系樹脂組成物は、コンクリート構造物等の被処理面への厚膜施工が可能で、なお且つ塗布後12時間以内に乾燥が可能であり、形成される皮膜が耐久性、例えば、耐水性、耐酸性及び耐アルカリ性を有している。
特開2009-149767号公報 特開2002-179450号公報 特開2009-102606号公報 特開2005-126645号公報 特開2011-256289号公報 特開2011-57802号公報
 コンクリート構造物の表面処理には、現在、より厳しい施工環境に対応することが要求されている。例えば、下水道施設に広く採用されているコンクリート構造物は、施設の覆蓋化が進められた結果、硫酸の生成によるコンクリート構造物の腐食が深刻になってきている。このような背景の下、コンクリート構造物の表面処理には、一般財団法人下水道事業支援センターから発行されている下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合することが要求されている。
 しかしながら、本発明者らが特許文献5及び6で提案した厚膜施工用水系樹脂組成物は、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができるものの、上記の規格C及びD種の品質規格に適合する特性を有するまでに至っていない。
 本発明は、上記のような問題を解決するためになされたものであり、厚膜施工及び塗布後12時間以内の乾燥が可能であり、作業時に臭気を発生せず、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができ、特に、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合する皮膜を形成することが可能な厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物を提供することを目的とする。
 本発明者らは、上記の問題を解決すべく鋭意検討を行った結果、水系合成樹脂エマルジョン及びフィラーを含有し、不揮発分が65~80質量%である厚膜施工用水系樹脂組成物を真空脱泡処理して理論比重に対する実測比重の割合を97%以上に調整することにより、上記の規格C及びD種の品質規格に適合する皮膜を形成し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の(1)~(8)である。
 (1)水系合成樹脂エマルジョン(A)及びフィラー(B)を含有し、不揮発分が65~80質量%である厚膜施工用水系樹脂組成物であって、
 理論比重に対する実測比重の割合が97%以上であることを特徴とする厚膜施工用水系樹脂組成物。
 (2)真空脱泡処理が行われていることを特徴とする第(1)項に記載の厚膜施工用水系樹脂組成物。
 (3)前記水系合成樹脂エマルジョン(A)はスチレン-アクリル系樹脂エマルジョンであることを特徴とする第(1)項又は第(2)項に記載の厚膜施工用水系樹脂組成物。
 (4)前記フィラー(B)は、ポリスチレン、ポリエチレン、ポリプロピレン、ガラスフリット、ガラスフレーク、タルク及びクレーからなる群から選択される少なくとも1種であることを特徴とする第(1)項~第(3)項のいずれか一項に記載の厚膜施工用水系樹脂組成物。
 (5)水系合成樹脂エマルジョン(A)及びフィラー(B)を含有し、不揮発分が65~80質量%、及び理論比重に対する実測比重の割合が97%以上である厚膜施工用水系樹脂組成物の製造方法であって、
 前記水系合成樹脂エマルジョン(A)及び前記フィラー(B)を混合した後、真空脱泡処理を行うことを特徴とする厚膜施工用水系樹脂組成物の製造方法。
 (6)第(1)~第(4)項のいずれか一項に記載の厚膜施工用水系樹脂組成物を被処理物の表面に塗布して乾燥させることで皮膜を形成することを特徴とする表面処理方法。
 (7)前記被処理物がコンクリート構造物であることを特徴とする第(6)項に記載の表面処理方法。
 (8)表面に保護皮膜を有するコンクリート構造物であって、
 前記保護皮膜が、第(1)項~第(4)項のいずれか一項に記載の厚膜施工用水系樹脂組成物を被処理物の表面に塗布して乾燥させることにより形成される皮膜であることを特徴とするコンクリート構造物。
 本発明によれば、厚膜施工及び塗布後12時間以内の乾燥が可能であり、作業時に臭気を発生せず、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができ、特に、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合する皮膜を形成することが可能な厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物を提供することができる。
 以下、本発明を詳細に説明する。
 本発明の厚膜施工用水系樹脂組成物は、水系合成樹脂エマルジョン(A)及びフィラー(B)を含有する。
 水系合成樹脂エマルジョン(A)は、水溶性高分子又は界面活性剤等を用い、エチレン性不飽和単量体を含む組成物等をラジカル重合することで得ることができるエマルジョン重合体又はラテックス重合体である。
 エマルジョン重合体としては、スチレン-アクリル系樹脂エマルジョン、アクリル系樹脂エマルジョン、エチレン-酢酸ビニル系エマルジョン、酢酸ビニル系エマルジョン、ウレタン系エマルジョン、ウレタン-アクリル系エマルジョン、ポリエステル系エマルジョン、ポリエステル-アクリル系エマルジョン等が挙げられる。また、ラテックス重合体としては、スチレン-ブタジエン系樹脂ラテックス、アクリロニトリル-ブタジエン系樹脂ラテックス、クロロプレン系樹脂ラテックス等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。また、エマルジョン重合体やラテックス重合体と共に、有機樹脂を水に乳化、分散させてなる懸濁液も併用することも可能である。
 また、上記の各種成分の中でも、水系合成樹脂エマルジョン(A)の不揮発分等の性状調整、樹脂のTg設計、混和性及び物性の観点から、スチレン-アクリル系樹脂エマルジョン、アクリル系樹脂エマルジョンが好ましく、耐酸性、耐アルカリ性に優れている点でスチレン-アクリル系樹脂エマルジョンが特に好ましい。
 スチレン-アクリル系樹脂エマルジョンは、水溶性又は水分散性ポリエステルの存在下で、エチレン性不飽和単量体を含む組成物等をラジカル重合することで得ることができる。
 スチレン-アクリル系樹脂エマルジョンの樹脂成分のうち、スチレン単量体由来の成分は、好ましくは10~80質量%、より好ましくは40~60質量%である。スチレン単量体由来の成分が10質量%より少なくなると、皮膜の靭性が低下することがある。一方、スチレン単量体由来の成分が80質量%より多くなると、成膜性が低下し、皮膜の物性が低下することがある。また、成膜性を高めるために、成膜助剤量の増加が必要となることがある。
 フィラー(B)としては、特に限定されず、有機フィラー、無機フィラー又はこれらの混合物を用いることができる。
 有機フィラーとしては、特に限定されないが、水に難溶性の有機ポリマーの粉末であることが好ましい。ここで、水に難溶性とは、23℃、1atmにおける水100gに対する溶解度が0.1g以下であることを意味する。
 有機フィラーとしては、特に限定されないが、不飽和ポリエステル樹脂成形物のクラック又はソリ防止等に使用される熱可塑性樹脂粉末(低収縮剤)等を用いることができる。有機フィラーの例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメタクリル酸メチル及びその共重合体、酢酸ビニル及びその共重合体、不飽和ポリエステル(脂肪族エステル、芳香族エステル)、セルロースアセテートブチレート、ε-カプロラクトンポリマー、ポリブタジエン、ポリ塩化ビニル等が挙げられる。また、スチレン-ブタジエン-スチレン(SBS)ブロックポリマーといったエラストマー系のポリマーや、澱粉粉末、セルロース粉末を用いてもよい。これらは、単独又は2種以上を混合して用いることができる。また、これらの成分の中でも、混和性及び耐久性の観点から、ポリスチレン、ポリエチレン、ポリプロピレンが好ましく、ポリスチレンが特に好ましい。
 無機フィラーとしては、特に限定されないが、例えば、ガラスフリット、ガラスフレーク、ガラスビーズ、ガラス繊維、珪砂、タルク、マイカ、カオリンクレーや焼成クレー等のクレー、水酸化アルミ、酸化亜鉛、酸化チタン、珪酸、珪酸塩、酸化マグネシウム、シリカ等が挙げられる。これらは、単独又は2種以上を混合して用いることができる。また、これらの成分の中でも、混和性及び耐久性の観点から、ガラスフリット、ガラスフレーク、タルク、クレーが特に好ましい。
 フィラー(B)の含有量は、特に限定されないが、厚膜施工用水系樹脂組成物の不揮発分に対して、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上、最も好ましくは30質量%以上である。厚膜施工用水系樹脂組成物の不揮発分に対するフィラー(B)の含有量が15質量%未満であると、厚膜乾燥性に加えて止水性、耐酸性、耐アルカリ性が低下する傾向にある。フィラー(B)の含有量の上限は、特に限定されないが、厚膜施工用水系樹脂組成物の不揮発分に対して、好ましくは85質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下、最も好ましくは70質量%以下である。
 フィラー(B)の平均粒子径は、特に限定されないが、分散性の観点から、1μm~150μm、好ましくは1μm~100μm、より好ましくは1μm~50μmである。ここで、本明細書において「平均粒子径」とは、レーザー回折・散乱法やコールターカウンター法等により測定される平均粒子径を意味するが、レーザー回折・散乱法により測定される平均粒子径であることが好ましい。レーザー回折・散乱法やコールターカウンター法等により測定される平均粒子径とは、これらの方法によって得られた粒度分布における積算値50%での粒子径を意味する。フィラー(B)の平均粒子径が1μm未満であると、フィラー(B)が凝集し易くなり、所望の分散性が得られないことがある。一方、フィラー(B)の平均粒子径が150μmを超えると、厚膜施工用水系樹脂組成物中で均一に分散させることが難しくなる上、均一な皮膜を形成することが難しく、皮膜物性(強度、耐久性)も低下することがある。
 本発明の厚膜施工用水系樹脂組成物において、水系合成樹脂エマルジョン(A)の固形分(不揮発成分)とフィラー(B)との固形分との比(質量比)は、特に限定されないが、好ましくは8/2~2/8、より好ましくは7/3~3/7、最も好ましくは6/4~4/6である。ここで、本明細書において、水系合成樹脂エマルジョン(A)及びフィラー(B)の固形分とは、皮膜を形成した際に揮発せずに皮膜中に残存する不揮発成分のことを意味する。水系合成樹脂エマルジョン(A)の固形分とフィラー(B)の固形分との比(以下、「固形分比」という。)が8/2よりも大きい場合、すなわち、水系合成樹脂エマルジョン(A)の固形分が多すぎる場合、所望の乾燥性が得られず、皮膜の物性(強度、耐久性等)が低下することがある。一方、固形分比が2/8よりも小さい場合、すなわち、フィラー(B)の固形分が多すぎる場合、厚膜施工用水系樹脂組成物の安定性が十分に得られないと共に、均一な皮膜の形成が難しくなるため、皮膜の耐久性(耐水性、耐酸性、耐アルカリ性)が低下することがある。
 本発明の厚膜施工用水系樹脂組成物は、本発明の効果を阻害しない範囲において、使用目的に応じて周知の可塑剤、粘着付与樹脂、増粘剤、硬化剤、消泡剤、防腐剤等を適宜配合することができる。
 本発明の厚膜施工用水系樹脂組成物は、上記の成分を混合した後、真空脱泡処理を行うことによって調製することができる。ここで、本明細書において「真空脱泡処理」とは、真空ポンプ等を用いて減圧しながら混合装置にて混合処理を行うことを意味する。混合装置としては、特に限定されず、ディゾルバー、バンバリー(商標)ミキサー、プラネタリーミキサー、グレインミキサー、オープンニーダー、真空ニーダー等を用いることができる。
 本発明の厚膜施工用水系樹脂組成物は、理論比重に対する実測比重の割合が97%以上である。ここで、理論比重とは、厚膜施工用水系樹脂組成物に含まれる成分の比重から算出される比重の理論値を意味し、実測比重とは、実際に調製した厚膜施工用水系樹脂組成物の比重の測定値を意味する。比重の測定は、重量法を用いて測定することができる。
 理論比重に対する実測比重の割合を97%以上に調整する方法としては、特に限定されないが、上記の真空脱泡処理を行うことによって調整することができる。理論比重に対する実測比重の割合を97%以上に調整することにより、形成される皮膜の耐酸性を著しく高めることができ、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合する皮膜を形成することが可能となる。また、一般に、理論比重に対する実測比重の割合を97%以上に調整するためには、多量(一般に通常の配合量の10倍以上)の消泡剤を配合する必要があるが、真空脱泡処理を用いることで消泡剤の量を増加させる必要がない。
 本発明の厚膜施工用水系樹脂組成物の最低成膜温度は、特に限定されないが、好ましくは0~5℃、より好ましくは0℃である。最低成膜温度が5℃よりも高いと、乾燥温度条件の影響を受け易くなるため、成膜性が低下し、所望の耐久性を有する皮膜が得られないことがある。なお、厚膜施工用水系樹脂組成物の最低成膜温度の調整方法は、特に限定されないが、成膜助剤を添加したり、最低成膜温度の低い水系合成樹脂エマルジョン(A)を最低成膜温度の高い水系合成樹脂エマルジョン(A)に添加したりすることにより行うことができる。
 本発明の厚膜施工用水系樹脂組成物は、不揮発分が65~80質量%、好ましくは65~75質量%である。不揮発分を上記の範囲に調整することにより、優れた乾燥性を発現させることが可能となる。不揮発分が65質量%未満であると、乾燥性が不十分となり、作業性確保のために多くの添加剤が必要となる。一方、不揮発分が80質量%を超えると、厚膜施工用水系樹脂組成物の安定性が低下し、粘度が急激に上昇するために作業性に問題が生じる。なお、不揮発分は、特に限定されず、当該技術分野において公知の方法に従って測定することができるが、実施例に記載の方法によって測定される値であることが好ましい。
 本発明の厚膜施工用水系樹脂組成物の粘度は、特に限定されないが、好ましくは8,000mPa・s~80,000mPa・s、より好ましくは9,000mPa・s~60,000mPa・s、最も好ましくは10,000mPa・s~50,000mPa・sである。粘度を上記の範囲に調整することにより、1mm以上の厚膜を施工することが可能となる。粘度が8,000mPa・s未満であると、塗布後にタレが発生する上、乾燥時にクラック等の欠陥が発生することがある。一方、粘度が80,000mPa・sを超えると、施工性が低下するため、当該用途において実用的でないことが多い。なお、粘度は、特に限定されず、当該技術分野において公知の方法に従って測定することができるが、実施例に記載の方法によって測定される値であることが好ましい。
 本発明の厚膜施工用水系樹脂組成物は、被処理物の表面に塗布して乾燥させた後の皮膜の膜厚が、好ましくは0.1mm~2mm、より好ましくは0.5mm~2mmである。ここで、皮膜の膜厚の測定方法としては、特に限定されず、市販の膜厚計を用いて測定することができる。皮膜の膜厚が0.1mm未満であると、被処理物の表面状態にも依存するが、ピンホール等の発生によって皮膜の連続性が十分に得られないことがある。一方、皮膜の膜厚が2mmを超えると、乾燥遅延の要因となり、十分な性能を発揮することができなくなることがある。
 本発明の厚膜施工用水系樹脂組成物は、有機溶剤等を含有しないか、有機溶剤等を少量しか含有しないので、作業時に臭気を発生せず、環境に優しい上、乾燥性も良好である。また、本発明の厚膜施工用水系樹脂組成物をコンクリート構造物等の被処理物の表面に塗布し、常温で自然乾燥させることにより、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができるため、この皮膜は保護皮膜として被処理物の表面の耐久性向上につながると考えられる。ここで、コンクリート構造物とは、通常のコンクリート、モルタル等からなる構造物を含む概念である。
 本発明の厚膜施工用水系樹脂組成物の塗布方法としては、特に限定されず、例えば、スプレー塗布、ローラー塗布、コテ塗り等を挙げることができる。塗布量(固形分)としては、使用目的に応じて適宜決定すればよいが、好ましくは0.1kg/m2~3.0kg/m2、より好ましくは0.5kg/m2~2.5kg/m2である。塗布量が0.1kg/m2未満であると、皮膜の連続性が十分に得られず、ピンホール等が発生することがある。一方、塗布量が3.0kg/m2を超えると、乾燥遅延の要因となり、十分な性能を発揮することができなくなることがある。
 本発明の厚膜施工用水系樹脂組成物をコンクリート構造物等の被処理物の表面に塗布する際には、下塗り塗料を用いることも可能である。下塗り塗料としては、例えば、アクリルエマルジョン系下塗り塗料(プライマー、シーラー)、エポキシ系下塗り塗料、ウレタン系下塗り塗料等が挙げられる。
 以下、実施例及び比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではない。なお、実施例及び比較例で用いた水系合成樹脂エマルジョン、調製した厚膜施工用水系樹脂組成物の各種特性については下記の方法にて評価した。
 (不揮発分)
 直径5cmのアルミ皿に水系合成樹脂エマルジョンを約1g秤量し、105℃で1時間乾燥させ、残分を秤量することで算出した。
 (粘度)
 ブルックフィールド型回転粘度計を用いて、液温23℃、回転数10rpm、No.5ローターにて測定した。
 (pH)
 pH測定器を用いて厚膜施工用水系樹脂組成物のpHを測定した。
 (最低成膜温度(MFT))
 JIS K 6828に準じて、厚膜施工用水系樹脂組成物のMFTを測定した。
 (乾燥性)
 ガラス板上に枠を作製し、その中に乾燥後の膜厚が2mmとなるように厚膜施工用水系樹脂組成物を流し込み、20℃×50%RH環境下で表面が乾燥し、手触にて跡がつかない状態になるまでの時間を測定した。
 (クラック)
 上記の乾燥性の評価において、乾燥後のクラックの発生の有無を目視で評価した。
 ○:クラックの発生なし
 △:皮膜表面にしわ等が発生(乾燥工程にて外観変化がみられる)
 ×:クラックの発生あり
 (理論比重に対する実測比重の割合)
 理論比重に対する実測比重の割合は、実測比重/理論比重×100によって算出した。
 厚膜施工用水系樹脂組成物の実測比重は、一定容積の容器に厚膜施工用水系樹脂組成物を入れ、重量法を用いて測定することで得た。
 厚膜施工用水系樹脂組成物の理論比重は、下記の各成分の23℃における比重を基に、各成分の配合量から各成分の体積を求め、以下の式(1)を用いて算出した。
 ・エマルジョン(スチレン-アクリル酸エステル共重合体、不揮発分50質量%、樹脂成分中のスチレン由来成分50質量%、アクリル酸エステル由来成分50質量%、粘度4500mPa・s、最低成膜温度0℃):1.06mg/mL
 ・ポリスチレン系粉末樹脂(SGP-70C):1.05mg/mL
 ・ガラスフィラー(CF0007-05B):2.6mg/mL
 ・タルク(PKP-80):2.8mg/mL
 ・消泡剤(ノプコ8034L):0.92mg/mL
 理論比重(mg/mL)=構成成分の全重量(mg)/構成成分の全体積(mL) (1)
 (実施例1)
 水系合成樹脂エマルジョン(A)としてエマルジョン(スチレン-アクリル酸エステル共重合体、不揮発分50質量%、樹脂成分中のスチレン由来成分50質量%、アクリル酸エステル由来成分50質量%、粘度4500mPa・s、最低成膜温度0℃)を用い、フィラー(B)としてポリスチレン系粉末樹脂(SGP-70C、綜研化学株式会社製、平均粒子径19μm)を使用した。
 100質量部のエマルジョンに対し、50質量部のポリスチレン系粉末樹脂を添加し、さらに0.05質量部の消泡剤(ノプコ8034L:株式会社サンノプコ製)を添加した後、プラネタリーミキサー(プライミクス株式会社製T.K.ハイビスディスパーミックス3D-5型)を用い、プラネタリーミキサーを45rpmにて回転させて5分間混合撹拌した。その後、オイルロータリー真空ポンプにてゲージ圧を-0.09MPaGになるまで減圧し、混合撹拌を10分間続けることにより、厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (実施例2)
 実施例1と同じエマルジョン、フィラーとしてガラスフィラー(CF0007-05B、日本フリット株式会社製、平均粒子径:15μm)を用いたこと以外は、実施例1と同様にして厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (実施例3)
 実施例1と同じ水系合成樹脂エマルジョン(A)、フィラー(B)としてポリスチレン系粉末樹脂(SGP-70C、綜研化学株式会社製、平均粒子径19μm)及びガラスフィラー(CF0007-05B、日本フリット株式会社製、平均粒子径:15μm)を用いたこと以外は、実施例1と同様にして厚膜施工用水系樹脂組成物を得た。ここで、ポリスチレン系粉末樹脂及びガラスフィラーの添加量はそれぞれ、100質量部のエマルジョンに対し、25質量部とした。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (実施例4)
 実施例1と同じ水系合成樹脂エマルジョン(A)、フィラー(B)としてポリスチレン系粉末樹脂(SGP-70C、綜研化学株式会社製、平均粒子径19μm)及びタルク(PKP-80、富士タルク工業株式会社製、平均粒子径:13μm)を用いたこと以外は、実施例1と同様にして厚膜施工用水系樹脂組成物を得た。ここで、ポリスチレン系粉末樹脂及びPKP-80の添加量はそれぞれ、100質量部のエマルジョンに対し、25質量部とした。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (比較例1)
 実施例1と同じ材料を使用した。
 100質量部の水系合成樹脂エマルジョン(A)に対し、50質量部のポリスチレン系粉末樹脂を添加し、さらに0.05質量部の消泡剤(ノプコ8034L:株式会社サンノプコ製)を添加した後、ディスパーにて3000rpmで10分混合撹拌を行うことにより、厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (比較例2)
 フィラー(B)としてガラスフィラー(CF0007-05B、日本フリット株式会社製、平均粒子径:15μm)を用いたこと以外は、比較例1と同様にして厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (比較例3)
 フィラー(B)としてポリスチレン系粉末樹脂(SGP-70C、綜研化学株式会社製、平均粒子径19μm)及びガラスフィラー(CF0007-05B、日本フリット株式会社製、平均粒子径:15μm)を用いたこと以外は、比較例1と同様にして厚膜施工用水系樹脂組成物を得た。ここで、ポリスチレン系粉末樹脂及びガラスフィラーの添加量はそれぞれ、100質量部の水系合成樹脂エマルジョン(A)に対し、25質量部とした。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (比較例4)
 消泡剤の配合量を0.25質量部に変更したこと以外は比較例3と同様にして厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 (比較例5)
 消泡剤の配合量を0.50質量部に変更したこと以外は比較例3と同様にして厚膜施工用水系樹脂組成物を得た。得られた厚膜施工用水系樹脂組成物を80目の濾布にて濾過を行った結果、粗粒、凝集物の発生が無いことを確認した。
 上記の実施例及び比較例で調製した厚膜施工用水系樹脂組成物の組成及び各種特性を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、実施例1~4の厚膜施工用水系樹脂組成物は、比較例1~5の厚膜施工用水系樹脂組成物と同様に乾燥性が良好であり、厚膜としてもクラックが発生しないことがわかった。
 上記の実施例及び比較例で調製した厚膜施工用水系樹脂組成物を、離型フィルムを貼ると共に枠を形成したガラス板上に膜厚2mm(塗布量(固形分):2.5kg/m2)となるように流し込んだ。次に、常温で4日乾燥させた後、皮膜をガラス板から一旦剥がし、皮膜の表裏を逆にして裏面の乾燥を常温で3日行い、皮膜を作製した。
 得られた皮膜について、以下の評価を行った。
 (皮膜膨潤率)
 作製した皮膜を40×40mmに切り出して質量を測定することで、浸漬前の皮膜の質量を得た。次に、この皮膜を10%硫酸水溶液に40℃で7日間浸漬した後、皮膜を取り出して質量を測定することで、浸漬後の皮膜の質量を得た。これらの質量を用いた以下の式により、皮膜膨潤率を算出した。なお、皮膜膨潤率としては、耐酸性の観点から、10%以下であることが好ましい。
 皮膜膨潤率=(浸漬後の皮膜の質量-浸漬前の皮膜の質量)/浸漬前の皮膜の質量×100
 (皮膜溶出率)
 作製した皮膜を40×40mmに切り出して質量を測定することで、浸漬前の皮膜の質量を得た。次に、この皮膜を10%硫酸水溶液に40℃で7日間浸漬した後、浸漬した皮膜を取り出して水洗し、50℃で24時間乾燥させた後に質量を測定することで浸漬乾燥後の皮膜の質量を得た。これらの質量を用いた以下の式により、皮膜溶出率を算出した。皮膜溶出率としては、耐酸性の観点から、5%以下であることが好ましい。
 皮膜溶出率=(浸漬前の皮膜の質量-浸漬乾燥後の皮膜の質量)/浸漬前の皮膜の質量×100
 (皮膜強度保持率及び皮膜伸度保持率)
 作製した皮膜(25×100mm)をダンベル2号の形状に切り出し、温度23℃、引張速度200mm/分にて引張試験を行い、最大強度及び標線20mmの伸びに基づいて浸漬前の皮膜の強度及び伸度を測定した。次に、別に作製した皮膜(25×100mm)を10%硫酸水溶液に40℃で7日間浸漬した後、40℃で12時間乾燥させ、浸漬乾燥後の皮膜をダンベル2号の形状に切り出し、上記と同様の方法にて強度及び伸度を測定した。皮膜強度保持率及び皮膜伸度保持率は、以下の式により算出した。なお、皮膜強度保持率及び皮膜伸度保持率としては、耐酸性の観点から、80%~120%であることが好ましい。
 皮膜強度保持率=浸漬乾燥後の皮膜の強度/浸漬前の皮膜の強度×100
 皮膜伸度保持率=浸漬乾燥後の皮膜の伸度/浸漬前の皮膜の伸度×100
 上記の各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、真空脱法処理を行うことで理論比重に対する実測比重の割合を97%以上に調整した実施例1~4の厚膜施工用水系樹脂組成物から形成される皮膜は、比較例1~5の厚膜施工用水系樹脂組成物から形成される皮膜と同様に、皮膜膨潤率、皮膜溶出率、皮膜強度保持率、及び皮膜伸度保持率の結果が良好であった。
 (下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格試験)
 <1>外観
 JIS K5600-1-1:1999(4.4項)に準じて試験体を作製し、その外観を目視によって評価した。試験体は、JIS A5430:2004に規定されるフレキシブル板(200mm×150mm×6mm)上に厚膜施工用水系樹脂組成物を塗布して24時間室内で養生することによって作製した。なお、規格C種では設計膜厚を0.6mm、規格D種では設計膜厚を0.8mmに設定した(以下の各試験においても設計膜厚を同様に設定した)。
 この評価において、皮膜にしわ、むら、剥がれ、割れがなかったものを○、皮膜にしわ、むら、剥がれ、割れがあったものを×として表す。
 <2>コンクリートとの接着性
 JIS A6909:2003(7.9.2項)に準じて標準状態及び吸水状態の接着性を評価した。
 標準状態の接着性評価は、JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(70×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して24時間室内で養生した試験体を用いて行った。
 吸水状態の接着性評価は、JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(70×70×20mm)を23・2℃の清水中に24時間浸漬した後、清潔な布で表面をふき取り、その上に厚膜施工用水系樹脂組成物を塗布して24時間室内で養生した試験体を用いて行った。
 この評価において、標準状態では規格C及びD種ともに1.5N/mm2以上であること、吸水状態では規格C及びD種ともに1.2N/mm2以上であることが要求される。
 <3>耐酸性
 JIS K5600-6-1:1999(7項)に準じて耐酸性を評価した。
 規格C種の耐酸性は、JISR 5201:1997(10.4項)に基づいて作製したセメントモルタル板(150×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して7日間室内で養生した試験体を20℃の10%硫酸水溶液に45日間浸漬した後、試験体の皮膜にふくれ、割れ、軟化、溶出がないかを目視によって評価した。
 規格D種の耐酸性は、JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(150×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して7日間室内で養生した試験体を20℃の10%硫酸水溶液に60日間浸漬した後、試験体の皮膜にふくれ、割れ、軟化、溶出がないかを目視によって評価した。
 この評価において、皮膜にふくれ、割れ、軟化、溶出がなかったものを○、皮膜にふくれ、割れ、軟化、溶出があったものを×として表す。
 <4>硫黄侵入深さ
 JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(150×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して7日間室内で養生した試験体を20℃の10%硫酸水溶液に120日間浸漬した後、試験体を取り出し、モルタル用カッターを用いて試験体の中央部から厚さ1cmのサンプルを切り出した。次に、切断面を電子分析用の研磨機で鏡面になるまで研磨し、その上に金属蒸着を施したものを分析に用いた。分析は、電子プローブマイクロアナライザー(EPMA)を用い、分析する元素を硫黄とし、マッピング画像において表面からの硫黄侵入深さを測定した。硫黄侵入深さは、バックグラウンドに対して、硫黄のX線カウントが15カウント以上である部分を硫黄が侵入した領域であるとして評価した。なお、EPMAにおける測定条件は、以下の通りとした。
 加速電圧:15kV
 照射電流:100・10nA
 電子ビーム径:2μm
 サンプリング時間:50ms
 データポイント:X方向512×Y方向512
 この評価において、規格C種では、表面からの硫黄侵入深さが設計膜厚に対して10%以下であり且つ200μm以下であること、規格D種では、表面からの硫黄侵入深さが設計膜厚に対して5%以下であり且つ100μm以下であることが要求される。
 <5>耐アルカリ性
 JIS K5600-6-1:1999(7項)に準じて耐アルカリ性を評価した。
 規格C種の耐アルカリ性は、JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(150×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して7日間室内で養生した試験体を20℃の水酸化カルシウム飽和液に45日間浸漬した後、試験体の皮膜にふくれ、割れ、軟化、溶出がないかを目視によって評価した。
 規格D種の耐アルカリ性は、JIS R5201:1997(10.4項)に基づいて作製したセメントモルタル板(150×70×20mm)上に厚膜施工用水系樹脂組成物を塗布して7日間室内で養生した試験体を20℃の水酸化カルシウム飽和液に60日間浸漬した後、試験体の皮膜にふくれ、割れ、軟化、溶出がないかを目視によって評価した。
 この評価において、皮膜にふくれ、割れ、軟化、溶出がなかったものを○、皮膜にふくれ、割れ、軟化、溶出があったものを×として表す。
 <6>透水性
 JIS A1404:1999(11.5項)に準じて透水性を評価した。
 JIS A5430:2004に規定されるフレキシブル板上に厚膜施工用水系樹脂組成物を塗布して24時間室内で養生することによって作製した試験体に3kgf/cm2の水圧をかけた後、透水量を測定した。
 この評価において、規格C種の透水量は0.20g以下であること、規格D種の透水量は0.15g以下であることが要求される。
 上記の各評価結果を表3及び表4に示す。表3は規格C種の評価結果、表4は規格D種の評価結果である。なお、比較例については規格D種の評価のみを行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
  表3及び表4に示されているように、真空脱法処理を行うことで理論比重に対する実測比重の割合を97%以上に調整した実施例1~4の厚膜施工用水系樹脂組成物から形成される皮膜は、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合することがわかった。これに対して比較例1~5の厚膜施工用水系樹脂組成物から形成される皮膜は、硫黄侵入深さ試験の結果が十分でなく、少なくとも規格D種の品質規格に適合しないことがわかった。特に、消泡剤の量を高めることで理論比重に対する実測比重の割合を高めることができたものの(比較例4及び5)、硫黄侵入深さ試験の結果は十分でなかった。
 以上の結果からわかるように、本発明によれば、厚膜施工及び塗布後12時間以内の乾燥が可能であり、作業時に臭気を発生せず、耐水性、耐酸性及び耐アルカリ性に優れた皮膜を形成することができ、特に、下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル(平成24年4月)に規定される規格C及びD種の品質規格に適合する皮膜を形成することが可能な厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物を提供することができる。
 なお、本国際出願は、2014年2月18日に出願した日本国特許出願第2014-028218号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本国際出願に援用する。

Claims (8)

  1.  水系合成樹脂エマルジョン(A)及びフィラー(B)を含有し、不揮発分が65~80質量%である厚膜施工用水系樹脂組成物であって、
     理論比重に対する実測比重の割合が97%以上であることを特徴とする厚膜施工用水系樹脂組成物。
  2.  真空脱泡処理が行われていることを特徴とする請求項1に記載の厚膜施工用水系樹脂組成物。
  3.  前記水系合成樹脂エマルジョン(A)はスチレン-アクリル系樹脂エマルジョンであることを特徴とする請求項1又は2に記載の厚膜施工用水系樹脂組成物。
  4.  前記フィラー(B)は、ポリスチレン、ポリエチレン、ポリプロピレン、ガラスフリット、ガラスフレーク、タルク及びクレーからなる群から選択される少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の厚膜施工用水系樹脂組成物。
  5.  水系合成樹脂エマルジョン(A)及びフィラー(B)を含有し、不揮発分が65~80質量%、及び理論比重に対する実測比重の割合が97%以上である厚膜施工用水系樹脂組成物の製造方法であって、
     前記水系合成樹脂エマルジョン(A)及び前記フィラー(B)を混合した後、真空脱泡処理を行うことを特徴とする厚膜施工用水系樹脂組成物の製造方法。
  6.  請求項1~4のいずれか一項に記載の厚膜施工用水系樹脂組成物を被処理物の表面に塗布して乾燥させることで皮膜を形成することを特徴とする表面処理方法。
  7.  前記被処理物がコンクリート構造物であることを特徴とする請求項6に記載の表面処理方法。
  8.  表面に保護皮膜を有するコンクリート構造物であって、
     前記保護皮膜が、請求項1~4のいずれか一項に記載の厚膜施工用水系樹脂組成物を被処理物の表面に塗布して乾燥させることにより形成される皮膜であることを特徴とするコンクリート構造物。
PCT/JP2015/053117 2014-02-18 2015-02-04 厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物 WO2015125605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201605931XA SG11201605931XA (en) 2014-02-18 2015-02-04 Aqueous resin composition for forming thick film, manufacturing method therefor, surface treatment method, and a concrete structure
CN201580008809.1A CN106029799A (zh) 2014-02-18 2015-02-04 厚膜施工用水性树脂组合物及其制备方法、表面处理方法、以及混凝土结构物
JP2016504022A JPWO2015125605A1 (ja) 2014-02-18 2015-02-04 厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物
AU2015220158A AU2015220158B2 (en) 2014-02-18 2015-02-04 Aqueous resin composition for forming thick film, manufacturing method therefor, surface treatment method, and concrete structure
PH12016501626A PH12016501626A1 (en) 2014-02-18 2016-08-15 Aqueous resin composition for forming thick film, manufacturing method therefor, surface treatment method, and concrete structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-028218 2014-02-18
JP2014028218 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125605A1 true WO2015125605A1 (ja) 2015-08-27

Family

ID=53878116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053117 WO2015125605A1 (ja) 2014-02-18 2015-02-04 厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物

Country Status (7)

Country Link
JP (1) JPWO2015125605A1 (ja)
CN (1) CN106029799A (ja)
AU (1) AU2015220158B2 (ja)
MY (1) MY177821A (ja)
PH (1) PH12016501626A1 (ja)
SG (1) SG11201605931XA (ja)
WO (1) WO2015125605A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141320A (ja) * 2016-02-08 2017-08-17 旭化成アドバンス株式会社 水道施設用水系ライニング材
CN114181556A (zh) * 2021-11-23 2022-03-15 苏州大乘环保新材有限公司 水性eau高阻隔厚膜防腐涂料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI749787B (zh) * 2020-09-25 2021-12-11 譚詠雪 塗料層及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157709A (ja) * 1993-12-10 1995-06-20 Toyo Ink Mfg Co Ltd 水性コーティング組成物
JP2002309181A (ja) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd コーティング材及びコーティング方法
JP2011057802A (ja) * 2009-09-08 2011-03-24 Showa Denko Kk 厚膜施工用水系樹脂組成物及びこれを用いた表面処理方法
JP2011102373A (ja) * 2009-11-12 2011-05-26 Toray Ind Inc ペーストおよびこれを用いた光導波路
JP2011256289A (ja) * 2010-06-09 2011-12-22 Showa Denko Kk 厚膜施工用水系樹脂組成物およびこれを用いた表面処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551632A (en) * 1978-06-20 1980-01-08 Hitachi Maxell Ltd Production of magnetic recording medium
JPS551633A (en) * 1978-06-20 1980-01-08 Hitachi Maxell Ltd Production of magnetic recording medium
JPH10330958A (ja) * 1997-05-28 1998-12-15 Laser Noshuku Gijutsu Kenkyu Kumiai コーティング材料及びコーティング方法
JP2000044843A (ja) * 1998-08-04 2000-02-15 Mitsubishi Heavy Ind Ltd コーティング材料及びその製造方法
JP2007039573A (ja) * 2005-08-04 2007-02-15 Kinki Kankyo Service Kk 構造物保護用未硬化樹脂含浸シート
JP4796469B2 (ja) * 2005-09-30 2011-10-19 ニッタ株式会社 シート体、アンテナ装置および電子情報伝達装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157709A (ja) * 1993-12-10 1995-06-20 Toyo Ink Mfg Co Ltd 水性コーティング組成物
JP2002309181A (ja) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd コーティング材及びコーティング方法
JP2011057802A (ja) * 2009-09-08 2011-03-24 Showa Denko Kk 厚膜施工用水系樹脂組成物及びこれを用いた表面処理方法
JP2011102373A (ja) * 2009-11-12 2011-05-26 Toray Ind Inc ペーストおよびこれを用いた光導波路
JP2011256289A (ja) * 2010-06-09 2011-12-22 Showa Denko Kk 厚膜施工用水系樹脂組成物およびこれを用いた表面処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141320A (ja) * 2016-02-08 2017-08-17 旭化成アドバンス株式会社 水道施設用水系ライニング材
CN114181556A (zh) * 2021-11-23 2022-03-15 苏州大乘环保新材有限公司 水性eau高阻隔厚膜防腐涂料
CN114181556B (zh) * 2021-11-23 2022-05-27 苏州大乘环保新材有限公司 水性eau高阻隔厚膜防腐涂料

Also Published As

Publication number Publication date
AU2015220158B2 (en) 2016-12-01
MY177821A (en) 2020-09-23
JPWO2015125605A1 (ja) 2017-03-30
SG11201605931XA (en) 2016-09-29
CN106029799A (zh) 2016-10-12
PH12016501626A1 (en) 2017-02-06
AU2015220158A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5362494B2 (ja) 厚膜施工用水系樹脂組成物及びこれを用いた表面処理方法
JP5611677B2 (ja) 厚膜施工用水系樹脂組成物およびこれを用いた表面処理方法
JP6218812B2 (ja) 溶剤不含のポリアクリレートバインダーを有する非水系の制振材
CN107140911A (zh) 可刮涂的聚合物水泥防水涂料及其制备方法和应用
CA3124895A1 (en) Highly water-resistant, flexible cementitious coating
CN106700814B (zh) 水性高附着力分格缝底漆及其制备方法和应用
WO2015125605A1 (ja) 厚膜施工用水系樹脂組成物及びその製造方法、表面処理方法、並びにコンクリート構造物
DE102010003919A1 (de) Oberflächenbehandlung von zementären Untergründen
JP2008285367A (ja) モルタルないしコンクリート用塗膜養生強化剤
JP6177657B2 (ja) 砂壁状水系塗料組成物及びこの施工方法
CN108473608B (zh) 耐有机酸性水系树脂组合物及其制造方法、以及表面处理方法
JP5307442B2 (ja) 水系塗材組成物
JP5307443B2 (ja) 水系仕上材組成物
JP4564571B1 (ja) 建築物の外壁に意匠性を付与する一液型水系塗材組成物
JP6139969B2 (ja) 水系塗材組成物
JP6236491B2 (ja) 防水材用ポリマーセメント組成物、及び防水材の製造方法
JP7279340B2 (ja) 水系樹脂組成物及び表面処理方法
JP2015093901A (ja) 水系塗材組成物
JP7261536B2 (ja) 塗料組成物とこれを用いたコンクリート構造物の表面保護方法
JP2014028960A (ja) 厚膜施工用水系樹脂組成物及びこれを用いた表面処理方法
JP4810404B2 (ja) 素地調整材
KR20180106536A (ko) 건축물 바닥의 친환경 표면강화 시공방법
CN109896776B (zh) 石漆组合物
JP2004161894A (ja) 水性低汚染塗料組成物
CN115725214A (zh) 底漆组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604970

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 12016501626

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015220158

Country of ref document: AU

Date of ref document: 20150204

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15752652

Country of ref document: EP

Kind code of ref document: A1