WO2015122379A1 - 球状窒化ホウ素微粒子およびその製造方法 - Google Patents

球状窒化ホウ素微粒子およびその製造方法 Download PDF

Info

Publication number
WO2015122379A1
WO2015122379A1 PCT/JP2015/053489 JP2015053489W WO2015122379A1 WO 2015122379 A1 WO2015122379 A1 WO 2015122379A1 JP 2015053489 W JP2015053489 W JP 2015053489W WO 2015122379 A1 WO2015122379 A1 WO 2015122379A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
ammonia
fine particles
boric acid
inert gas
Prior art date
Application number
PCT/JP2015/053489
Other languages
English (en)
French (fr)
Inventor
黒川 史裕
清太郎 小林
川崎 卓
豪 竹田
板東 義雄
デミトリー ゴルバーグ
Original Assignee
電気化学工業株式会社
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社, 独立行政法人物質・材料研究機構 filed Critical 電気化学工業株式会社
Priority to CN201580008547.9A priority Critical patent/CN105980298B/zh
Priority to KR1020167021931A priority patent/KR102258544B1/ko
Priority to JP2015562810A priority patent/JP6467650B2/ja
Priority to EP15749281.0A priority patent/EP3106430B1/en
Priority to US15/117,853 priority patent/US10017386B2/en
Publication of WO2015122379A1 publication Critical patent/WO2015122379A1/ja
Priority to US15/955,211 priority patent/US20180230012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to spherical boron nitride fine particles suitable for high thermal conductive fillers and the like and a method for producing the same.
  • Hexagonal boron nitride (hereinafter referred to as “boron nitride”) has lubricity, high thermal conductivity, insulation, etc., for solid lubricants, mold release agents such as molten gas and aluminum, and heat dissipation materials Widely used for fillers. Particularly in recent years, the importance of heat dissipation measures has increased due to the high performance of computers and electronic devices, and the high thermal conductivity of boron nitride has attracted attention.
  • boron nitride has been studied for the purpose of imparting high thermal conductivity and insulating properties to resin layers such as resin substrates for printed wiring boards and flexible copper-clad laminates.
  • the average particle diameter of general boron nitride is several ⁇ m to 20 ⁇ m, but the thickness of resin layers such as resin substrates for printed wiring boards and flexible copper clad laminates is about several tens of ⁇ m. If the average particle size of the resin is large, the dispersibility in the resin is poor and the surface smoothness cannot be obtained.
  • Submicron class (0.1 ⁇ m) boron nitride fine particles are required.
  • boron nitride In order for boron nitride to exhibit high thermal conductivity, it needs to be highly pure and highly crystalline. This does not change even with submicron class (0.1 ⁇ m) boron nitride fine particles.
  • boron nitride has a characteristic scaly shape, and its thermal characteristics are overwhelmingly superior in the major axis or minor axis direction compared to the thickness direction. Therefore, for example, the thermal characteristics of a composite material in which boron nitride is filled in a resin such as silicone are greatly influenced by the directionality of the boron nitride fine particles in the composite material. However, for example, when a sheet-shaped composite material is produced, in many cases, the boron nitride fine particles lie down in the horizontal direction and do not exhibit sufficient thermal characteristics required in the vertical direction.
  • boron nitride in order for boron nitride to be suitable as a highly thermally conductive filler, it is necessary to reduce the influence of directionality by making it spherical or agglomerated.
  • Boron nitride is generally obtained by reacting a boron source (boric acid, borax, etc.) and a nitrogen source (urea, melamine, ammonia, etc.) at a high temperature, and scaly primary particles are formed from boric acid and melamine.
  • a boron source boric acid, borax, etc.
  • a nitrogen source urea, melamine, ammonia, etc.
  • Aggregated “pine cone” boron nitride has been proposed (Patent Document 1).
  • the aggregated particle diameter of boron nitride produced by this method is 50 ⁇ m or more, and it is difficult to produce submicron-class boron nitride fine particles that are the object of the present invention.
  • Patent Documents 2 to 4 methods for obtaining boron nitride fine particles by vapor phase synthesis have been reported.
  • Patent Documents 2 to 4 methods for obtaining boron nitride fine particles by vapor phase synthesis have been reported.
  • the boron nitride fine particles obtained by these methods have low crystallinity, the lubricity and high thermal conductivity that are characteristic of boron nitride are insufficient.
  • An object of the present invention is to provide submicron spherical boron nitride fine particles with high sphericity.
  • the present invention employs the following means in order to solve the above problems.
  • Spherical boron nitride fine particles having an average particle diameter of 0.01 to 1.0 ⁇ m, an orientation index of 1 to 15, a boron nitride purity of 98.0% by mass or more, and an average circularity of 0.80 or more.
  • Ammonia / boric acid alkoxide boric acid alkoxide having a molar ratio of 1 to 10 and ammonia are reacted in an inert gas stream at 750 ° C or more within 30 seconds, and then inert with ammonia gas or ammonia gas.
  • submicron spherical boron nitride fine particles having high sphericity can be provided.
  • FIG. 1 It is the schematic of the manufacturing apparatus of the boron nitride fine particle of the baking conditions 1.
  • FIG. 1 It is the schematic of the manufacturing apparatus of the boron nitride fine particle of the baking conditions 2.
  • a white powder is continuously synthesized by a so-called gas phase reaction between volatilized boric acid alkoxide and ammonia in an inert gas stream using a tubular furnace 3 (firing condition 1).
  • this white powder is fired in a tubular furnace 3 (resistance heating furnace) (firing condition 2).
  • the fired product is placed in a boron nitride crucible and fired in an induction heating furnace to produce boron nitride fine particles (firing condition 3).
  • “%” is based on a mass standard unless otherwise specified.
  • firing condition 1 750 ° C. or higher
  • firing condition 2 1,000 to 1,600 ° C.
  • firing condition 3 1,800 to 2,200.
  • a resistance heating method can be used as the tubular furnace 3
  • an induction heating type electric furnace can be used as the tubular furnace 3 as the firing condition 3.
  • the apparatus for producing boron nitride fine particles used in firing condition 1 includes a tubular furnace 3 (resistance heating furnace), a reaction tube (quartz tube) 2, a borate alkoxide container 1, a borate alkoxide introduction tube 4, and introduction of ammonia gas. It consists of a tube 5 and a sample collection container 6.
  • the spherical boron nitride fine particles of the present invention are continuously synthesized by a so-called gas phase reaction between volatilized boric acid alkoxide and ammonia. For this reason, an apparatus capable of continuous synthesis is required, and in firing condition 1, for example, an apparatus using a tubular furnace 3 illustrated in FIG. 1 is preferably used.
  • the tubular furnace 3 is not particularly limited, but it is preferable to use an electric furnace that is easy to handle.
  • the basic principle of an electric furnace is to heat a heating element or the like constituting the furnace by energization to heat the inside of the furnace, and the electric furnace is subdivided according to the heating method and the material of the heating element.
  • heating up to around 1,700 ° C. is possible by a resistance heating method using a heating element, but heating around 2,000 ° C. requires an induction heating method using a coil.
  • silicon carbide, carbon, etc. are used for the material of a heat generating body, it is not specifically limited.
  • the material of the reaction tube 2 used in the present invention is not particularly limited, but it is preferable to use alumina or quartz that is chemically stable and has good heat resistance.
  • the quartz tube 2 is installed in the resistance heating furnace 3 and heated to a predetermined temperature. Trimethyl borate is put in the container 1 and introduced into the quartz tube 2 through the introduction tube 4 by nitrogen. On the other hand, ammonia is also introduced into the quartz tube 2 via the introduction tube 5. The introduced trimethyl borate and ammonia react in the heated quartz tube 2 to produce white powder (firing condition 1). Part of the generated white powder adheres to the quartz tube 2, but most of it is transported to the recovery container 6 by nitrogen or unreacted ammonia. A white powder (product 7) as a product is recovered from the recovery container 6.
  • the temperature of the tubular furnace 3 is preferably 750 ° C. or higher.
  • the average particle diameter of the boron nitride fine particles to be generated may be larger than 1.0 ⁇ m.
  • the reaction between trimethyl borate and ammonia is completed within 30 seconds. If it exceeds 30 seconds, the average particle diameter of the boron nitride fine particles may be larger than 1.0 ⁇ m.
  • trimethyl borate triethyl borate, triisopropyl borate and the like can be used. From the viewpoint of easy reaction with ammonia and availability, trimethyl borate is used. It is preferable to use it.
  • trimethyl borate there is a trade name “TMB” manufactured by Tama Chemical Industry Co., Ltd. in addition to the reagents of each company.
  • ammonia used in the present invention is not particularly limited, but a so-called “high purity” type containing no impurities is preferable.
  • the inert gas is not particularly limited, but is a gas that does not easily cause a chemical reaction.
  • Examples thereof include noble gases such as helium, neon, and argon, and nitrogen.
  • the mixing ratio of boric acid alkoxide and ammonia is 1 to 10 in terms of molar ratio of ammonia / boric acid alkoxide.
  • ammonia / boric acid alkoxide molar ratio is less than 1, the purity of the boron nitride fine particles may be lower than 98.0%, and when the molar ratio is higher than 10, the average particle diameter of the boron nitride fine particles is smaller than 0.01 ⁇ m. There is.
  • boric acid alkoxide and ammonia The introduction of boric acid alkoxide and ammonia is stopped, the power of the tubular furnace 3 is turned off, and the white powder synthesized under the firing condition 1 is collected and fired under the firing condition 2 using, for example, the apparatus shown in FIG.
  • the apparatus used under the firing condition 2 uses an alumina tube as the reaction tube 2 ′ in the resistance heating furnace 3 ′, and fills the center of the reaction tube with the white powder (product 7) synthesized under the firing condition 1, After setting in the heating furnace 3 ′, nitrogen was introduced from the introduction pipe 4 ′ and ammonia was introduced from the introduction pipe 5 ′. After raising the temperature to a predetermined temperature, baking is performed for a predetermined time. After firing, the resistance heating furnace 3 'is cooled and the fired product is recovered. In firing condition 2, it is also possible to use an induction heating furnace.
  • the temperature of the resistance heating furnace 3 is 1,000 to 1,600 ° C. Outside this range, the orientation index of boron nitride fine particles may be greater than 15.
  • the reaction time under calcination condition 2 is 1 hour or more. If it is less than 1 hour, the orientation index of the boron nitride fine particles may be larger than 15, and the boron nitride fine particles may have a scale shape and low circularity.
  • the atmosphere of firing condition 2 is preferably an atmosphere of ammonia gas or a mixed gas of ammonia gas and inert gas.
  • the boron nitride fine particles may have an orientation index greater than 15, a purity less than 98.0%, or a scale-like and low average circularity.
  • the fired product fired under firing condition 2 is placed in a boron nitride crucible and further fired under firing condition 3 in which it is fired at a predetermined temperature in a nitrogen atmosphere in an induction heating furnace. Since the firing temperature is as high as about 2,000 ° C., it is preferable to use an induction heating furnace as the firing furnace.
  • the temperature under firing condition 3 is 1,800-2,200 ° C. If it is lower than 1,800 ° C., the purity of the boron nitride fine particles may be lower than 98.0%, and if it is higher than 2,200 ° C., the boron nitride fine particles may be collapsed.
  • the reaction time in calcination condition 3 is 0.5 hours or more. If it is less than 0.5 hour, the purity of the boron nitride fine particles may be lower than 98.0%.
  • the average particle size of the boron nitride fine particles produced in the present invention is 0.05 to 1.0 ⁇ m. Outside this range, the dispersibility in the resin is poor and the surface smoothness cannot be obtained, and when dispersed, there is a problem that the resin layer cannot be kept high in strength.
  • the alignment index of boron nitride particles produced in the present invention the ratio of the intensity I 100 of the by powder X-ray diffraction (002) plane and intensity I 002 of diffraction line (100) plane of the diffraction line (I 002 / I 100 ) and 1 to 15 from the viewpoint of obtaining high thermal conductivity.
  • the boron nitride purity of the boron nitride fine particles produced in the present invention is 98.0% or more from the viewpoint of obtaining high thermal conductivity.
  • the average circularity of the boron nitride fine particles produced in the present invention is 0.80 or more from the viewpoint of obtaining high thermal conductivity.
  • the white powder recovered under firing condition 1 was fired with the apparatus shown in FIG.
  • the white powder (product) collected under the firing condition 1 was filled in the center of the alumina tube 2 ′ and set in the resistance heating furnace 3 ′, and then nitrogen and ammonia were introduced from the introduction tubes 4 ′ and 5 ′, respectively.
  • Firing condition 3 The fired product obtained under firing condition 2 was placed in a boron nitride crucible and fired at a predetermined temperature shown in Table 1 in an induction heating furnace in a nitrogen atmosphere. The average particle diameter, orientation index, boron nitride purity, and average circularity of the obtained boron nitride fine particles were measured. The results are shown in Table 1. The temperature, time, and firing atmosphere of firing conditions 1, 2, and 3 are also shown in firing conditions 1, 2, and 3, respectively. Moreover, the electron micrograph of the Example of this invention is shown in FIG. 3, and the electron micrograph of a comparative example is shown in FIG.
  • Trimethyl borate Reagents manufactured by Wako Pure Chemical Industries, Ltd. Trimethoxyborane ammonia: High purity type commercial product
  • Average particle diameter The average particle diameter was measured using a Coulter laser diffraction scattering particle size distribution analyzer, trade name “LS-230”.
  • SEM scanning electron microscope
  • TEM transmission electron microscope

Abstract

【課題】 高熱伝導フィラーなどに好適な、球形度の高い球状窒化ホウ素微粒子およびその製造方法を提供すること。 【解決手段】 平均粒子径0.01~1.0μm、配向性指数1~15、窒化ホウ素純度98.0質量%以上、及び平均円形度0.80以上である球状窒化ホウ素微粒子、アンモニア/ホウ酸アルコキシドのモル比が1~10のホウ酸アルコキシドとアンモニアを不活性ガス気流中、750℃以上、30秒以内で反応させた後、アンモニアガス、又は、アンモニアガスと不活性ガスの混合ガスの雰囲気下、1,000~1,600℃、1時間以上で熱処理後、さらに、不活性ガス雰囲気下、1,800~2,200℃、0.5時間以上で焼成する球状窒化ホウ素微粒子の製造方法を構成要件とする。

Description

球状窒化ホウ素微粒子およびその製造方法
 本発明は、高熱伝導フィラーなどに好適な球状窒化ホウ素微粒子およびその製造方法に関する。
 六方晶窒化ホウ素(以下、「窒化ホウ素」という)は、潤滑性、高熱伝導性、及び絶縁性等を有しており、固体潤滑剤、溶融ガスやアルミニウムなどの離形剤、及び放熱材料用充填材等に幅広く利用されている。
 特に近年、コンピューターや電子機器の高性能化により、放熱対策の重要性が増しており、窒化ホウ素の高熱伝導性が注目されている。
 近年、プリント配線板用樹脂基板、フレキシブル銅張積層板等の樹脂層に、高熱伝導性や絶縁性を付与させる目的で窒化ホウ素を添加することが検討されている。
 一般的な窒化ホウ素の平均粒子径は、数μm~20μmであるが、プリント配線板用樹脂基板やフレキシブル銅張積層板等の樹脂層の厚みには数十μm程度のものもあり、窒化ホウ素の平均粒子径が大きいと、樹脂への分散性が悪く、表面の平滑性が得られない、また、分散させた場合、ブツが発生し、樹脂層の強度を高く保つことができないことがあり、サブミクロンクラス(0.1μm)の窒化ホウ素微粒子が要求されている。
 窒化ホウ素が高熱伝導性を示すには、高純度で、高結晶性である必要がある。これはサブミクロンクラス(0.1μm)の窒化ホウ素微粒子であっても変わらない。
 一方、窒化ホウ素は、特徴的な鱗片形状であり、その熱特性は、長径もしくは短径方向の方が厚み方向に比べて圧倒的に優れている。そのため、例えば、窒化ホウ素をシリコーンなどの樹脂に充填した複合材料の熱特性は、複合材料中での窒化ホウ素微粒子の方向性に大きく影響を受ける。
 しかしながら、例えば、シート形状の複合材料を作製した場合、多くの場合、窒化ホウ素微粒子は横方向に寝てしまい、縦方向に必要な充分な熱特性を示さない。
 つまり窒化ホウ素が高熱伝導性フィラーとして好適であるためには、球形状、もしくは凝集形状にすることで、方向性の影響を小さくする必要がある。
 窒化ホウ素は、一般的に、ホウ素源(ホウ酸、硼砂等)と窒素源(尿素、メラミン、及びアンモニアなど)を高温で反応させることで得られ、ホウ酸とメラミンから鱗片状の一次粒子が凝集した「松ぼっくり」状の窒化ホウ素が提案されている(特許文献1)。
 しかしながら、この方法で作製された窒化ホウ素の凝集粒子径は50μm以上であり、本発明の目的のサブミクロンクラスの窒化ホウ素微粒子を作製するのは困難である。
 一方、気相合成法により窒化ホウ素微粒子を得る方法が報告されている(特許文献2~特許文献4)。
 しかしながら、これらの方法で得られた窒化ホウ素微粒子は、結晶性が低いため、窒化ホウ素の特徴である潤滑性や高熱伝導性が不充分である。
特開平09-202663号公報 特開2000-327312号公報 特開2004-182572号公報 特開2010-180066号公報
 本発明の目的は、球形度の高いサブミクロンの球状窒化ホウ素微粒子を提供することである。
 本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)平均粒子径0.01~1.0μm、配向性指数1~15、窒化ホウ素純度98.0質量%以上、及び平均円形度0.80以上であることを特徴とする球状窒化ホウ素微粒子である。
(2)アンモニア/ホウ酸アルコキシドのモル比1~10のホウ酸アルコキシドとアンモニアを不活性ガス気流中、750℃以上、30秒以内で反応させた後、アンモニアガス、又は、アンモニアガスと不活性ガスの混合ガスの雰囲気下、1,000~1,600℃、1時間以上で熱処理後、さらに、不活性ガス雰囲気下、1,800~2,200℃、0.5時間以上で焼成することを特徴とする球状窒化ホウ素微粒子の製造方法である。
 本発明によれば、球形度の高いサブミクロンの球状窒化ホウ素微粒子を提供することができる。
焼成条件1の窒化ホウ素微粒子の製造装置の概略図である。
焼成条件2の窒化ホウ素微粒子の製造装置の概略図である。
本発明の実施例の球状窒化ホウ素微粒子の電子顕微鏡写真である。
本発明の比較例の窒化ホウ素微粒子の電子顕微鏡写真である。
 本発明では、まず、不活性ガス気流中で、管状炉3を用いて、揮発したホウ酸アルコキシドと、アンモニアによる、いわゆる気相反応により、連続的に白色粉末を合成する(焼成条件1)。次に、この白色粉末を管状炉3(抵抗加熱炉)で焼成する(焼成条件2)。そして最後に、この焼成物を窒化ホウ素製のルツボに入れ、誘導加熱炉で焼成して窒化ホウ素微粒子を生成する(焼成条件3)。
 なお、本発明における%は、特に断らない限り質量規準で示す。
 本発明においては、上記のとおり、焼成条件が3段階あり、その焼成条件の温度が低い順に、焼成条件1:750℃以上、焼成条件2:1,000~1,600℃、及び焼成条件3:1,800~2,200℃とし、焼成条件1、2については、管状炉3として、抵抗加熱方式を用い、焼成条件3については、管状炉3として、誘導加熱方式の電気炉を用いることができる。もちろん焼成条件1、2において誘導加熱方式の電気炉を用いても問題はない。
 以下、本発明を、図を用いて説明する。
 焼成条件1で使用する窒化ホウ素微粒子の製造装置は、管状炉3(抵抗加熱炉)、反応管(石英管)2、ホウ酸アルコキシドの容器1、ホウ酸アルコキシドの導入管4、アンモニアガスの導入管5、及びサンプルの回収容器6などからなるものである。
 本発明の球状窒化ホウ素微粒子は、揮発したホウ酸アルコキシドと、アンモニアによる、いわゆる気相反応により連続的に合成する。そのため連続的な合成が可能な装置が必要であり、焼成条件1では、例えば、図1に例示される管状炉3を用いた装置を用いることが好ましい。
 管状炉3は特に限定されるものではないが、取り扱いが容易な電気炉を用いることが好ましい。
 電気炉は、通電により炉を構成する発熱体等を発熱させ、炉内を加温することが基本原理であり、加熱方式や発熱体の材質で細分化される。
 一般的に、1,700℃付近までの加熱は、発熱体を用いた抵抗加熱方式で可能であるが、2,000℃付近の加熱は、コイルを用いた誘導加熱方式が必要となる。
 なお発熱体の材質には、炭化ケイ素やカーボンなどが用いられるが特に限定されるものではない。
 本発明で使用する反応管2の材質は特に限定されるものではないが、化学的に安定で耐熱性が良好なアルミナや石英を用いることが好ましい。
 以下、反応管2として石英管を用い、ホウ酸アルコキシドとして、ホウ酸トリメチルを使用した焼成条件1の概要を図1に基づいて説明する。
 抵抗加熱炉3に石英管2を設置し、加熱して所定の温度まで昇温する。ホウ酸トリメチルを容器1に入れ、窒素により、導入管4を経由して石英管2に導入する。一方、アンモニアも、導入管5を経由して石英管2に導入する。導入したホウ酸トリメチルとアンモニアは加熱された石英管2内で反応し、白色粉末が生成する(焼成条件1)。生成した白色粉末は、一部は石英管2内に付着するが、多くは窒素や未反応のアンモニアにより回収容器6に輸送される。生成物である白色粉末(生成物7)はこの回収容器6より回収される。
 管状炉3の温度は、750℃以上が好ましい。750℃より低いと生成する窒化ホウ素微粒子の平均粒子径が1.0μmより大きくなる場合がある。
 ホウ酸トリメチルとアンモニアとの反応は30秒以内で終了する。30秒を超えると、窒化ホウ素微粒子の平均粒子径が1.0μmより大きくなる場合がある。
 本発明で使用するホウ酸アルコキシドとしては、ホウ酸トリメチル、ホウ酸トリエチル、及びホウ酸トリイソプロピルなどを用いることができるが、アンモニアとの反応のし易さや入手の容易さから、ホウ酸トリメチルを用いることが好ましい。ホウ酸トリメチルとしては、各社試薬の他に多摩化学工業社製商品名「TMB」などがある。
 一方、本発明で使用するアンモニアは特に限定されるものではないが、不純物を含まない、いわゆる「高純度」タイプのものが好ましい。
 不活性ガスとしては特に限定されるものではないが、化学反応を起こしにくいガスで、例えば、ヘリウム、ネオン、及びアルゴンなどの希ガスや窒素などが挙げられる。
 ホウ酸アルコキシドとアンモニアの配合割合は、アンモニア/ホウ酸アルコキシドのモル比で1~10である。アンモニア/ホウ酸アルコキシドのモル比が1未満では、窒化ホウ素微粒子の純度が98.0%より低くなる場合があり、モル比が10より大きくなると、窒化ホウ素微粒子の平均粒子径が0.01μmより小さくなる場合がある。
 ホウ酸アルコキシドとアンモニアの導入を止め、管状炉3の電源を切り、焼成条件1で合成した白色粉末を回収し、例えば、図2に示す装置で、焼成条件2の焼成を行う。
 焼成条件2で使用する装置は、抵抗加熱炉3’に、反応管2’としてアルミナ管を使用し、反応管の中心に焼成条件1で合成した白色粉末(生成物7)を充填し、抵抗加熱炉3’にセットした後、導入管4'から窒素を、導入管5’からアンモニアを導入した。所定温度まで昇温した後、所定時間焼成する。焼成終了後、抵抗加熱炉3’を冷却し、焼成物を回収する。
 焼成条件2では、誘導加熱炉を用いることも可能である。
 抵抗加熱炉3の温度は、1,000~1,600℃である。この範囲外では、窒化ホウ素微粒子の配向性指数が15より大きくなる場合がある。
 焼成条件2の反応時間は、1時間以上である。1時間未満では、窒化ホウ素微粒子の配向性指数が15より大きくなる場合があり、窒化ホウ素微粒子は鱗片形状で円形度が低い場合がある。
 焼成条件2の雰囲気は、アンモニアガス、又は、アンモニアガスと不活性ガスの混合ガスの雰囲気が好ましい。アンモニアガスが存在しないと、窒化ホウ素微粒子は、配向性指数が15より大きくなる場合や、純度が98.0%より低くなる場合や、鱗片形状で平均円形度が低い場合がある。
 焼成条件2の反応が終了した後、電気炉の電源を切り、窒素やアンモニアの導入を停止し、冷却する。
 焼成条件2で焼成した焼成物を、窒化ホウ素製ルツボに入れ、誘導加熱炉で窒素雰囲気下、所定温度で焼成する焼成条件3でさらに焼成する。
 なお焼成温度が2,000℃前後と高温のため、焼成炉として誘導加熱炉を用いることが好ましい。
 焼成条件3における温度は、1,800~2,200℃である。1,800℃より低いと窒化ホウ素微粒子の純度が98.0%より低くなる場合があり、2,200℃より高いと窒化ホウ素微粒子が崩壊する場合がある。
 焼成条件3における反応時間は0.5時間以上である。0.5時間未満では窒化ホウ素微粒子の純度が98.0%より低くなる場合がある。
 本発明で生成する窒化ホウ素微粒子の平均粒子径は、0.05~1.0μmである。この範囲外では、樹脂への分散性が悪く、表面の平滑性が得られない、また、分散させた場合、ブツが発生し、樹脂層の強度を高く保つことができないことがある。
 また、本発明で生成する窒化ホウ素微粒子の配向性指数は、粉末X線回折法による(002)面の回折線の強度I002と(100)面の回折線の強度I100との比(I002/I100)で示され、高熱伝導性を得る面から、1~15である。
 本発明で生成する窒化ホウ素微粒子の窒化ホウ素純度は、高熱伝導性を得る面から、98.0%以上である。
 本発明で生成する窒化ホウ素微粒子の平均円形度は、高熱伝導性を得る面から、0.80以上である。
 以下、実験例に基づき本発明をさらに説明する。
実験例1
 焼成条件1
 石英管2を抵抗加熱炉3に設置し、所定温度に加熱する。ホウ酸トリメチルを容器1に入れ、窒素により導入管4を経由して石英管2に導入した。一方、アンモニアも導入管5を経由して石英管2に導入した。導入されたホウ酸トリメチルとアンモニアは加熱された石英管2内で反応し、白色粉末を生成した。生成した白色粉末(生成物)を回収容器6より回収した。
 焼成条件2
 焼成条件1で回収した白色粉末を図2に示す装置で焼成した。
 アルミナ管2’の中心に焼成条件1で回収した白色粉末(生成物)を充填し、抵抗加熱炉3’にセットした後、導入管4’、5’より窒素、アンモニアをそれぞれ導入した。表1に示す所定温度まで昇温した後に所定時間焼成し、焼成終了後、冷却し、焼成物を回収した。
 焼成条件3
 焼成条件2で得られた焼成物を窒化ホウ素製ルツボに入れ、誘導加熱炉で窒素雰囲気下、表1に示す所定温度で焼成した。得られた窒化ホウ素微粒子の平均粒子径、配向性指数、窒化ホウ素純度、及び平均円形度を測定した。結果を表1に示す。
 なお、焼成条件1、2、及び3の温度、時間、及び焼成雰囲気を各々焼成条件1、2、及び3に併記した。
 また、本発明の実施例の電子顕微鏡写真を図3に、比較例の電子顕微鏡写真を図4に示す。
<使用材料>
ホウ酸トリメチル:和光純薬工業社製試薬、トリメトキシボラン
アンモニア:高純度タイプ市販品
<測定方法>
平均粒子径:平均粒子径の測定にはコールター製レーザー回折散乱法粒度分布測定装置、商品名「LS-230」を用いた。
配向性指数:X線回折装置(理学電機社製「Geiger Flex 2013型」)にて2θ=30°~25°の範囲で測定し、2θ=27~28°付近((002)面)の回折線の強度I002、2θ=41°付近((100)面)の回折線の強度I100を求めた。配向性指数は窒化ホウ素のX線回折のピーク強度比より、配向性指数=I002/I100で算出した。
窒化ホウ素純度:窒化ホウ素純度は次の方法により求めた。試料を水酸化ナトリウムでアルカリ分解後、水蒸気蒸留法によってアンモニアを蒸留し、これをホウ酸液に捕集した。この捕集液を硫酸規定液で滴定し、窒素量(N)を求めた後、以下の式より窒化ホウ素純度(BN)を算出した。
BN(%)=N(%)×1.772
平均円形度:走査型電子顕微鏡(SEM)もしくは透過型電子顕微鏡(TEM)で粒子像を撮影した後、画像解析(例えば、マウンテック社製、商品名「MacView」)を用いて粒子の投影面積(S)と周囲長(L)を測定した。円形度は以下の式で求めた。
 円形度=4πS/L2
 任意に選んだ100個の粒子について円形度を測定し、それらの平均値を該試料の平均円形度とした。
Figure JPOXMLDOC01-appb-T000001
1 ホウ酸アルコキシドの容器
2 反応管(石英管)
2' 反応官(アルミナ管)
3、3’ 管状炉(抵抗加熱炉)
4 ホウ酸アルコキシドの導入管
4' 窒素の導入管
5、5’ アンモニアガスの導入管
6 サンプルの回収容器
7 生成物

Claims (2)

  1.  平均粒子径0.01~1.0μm、配向性指数1~15、窒化ホウ素純度98.0質量%以上、及び平均円形度0.80以上であることを特徴とする球状窒化ホウ素微粒子。
  2.  アンモニア/ホウ酸アルコキシドのモル比が1~10のホウ酸アルコキシドとアンモニアを不活性ガス気流中、750℃以上、30秒以内で反応させた後、アンモニアガス、又は、アンモニアガスと不活性ガスの混合ガスの雰囲気下、1,000~1,600℃、1時間以上で熱処理後、さらに、不活性ガス雰囲気下、1,800~2,200℃、0.5時間以上で焼成することを特徴とする球状窒化ホウ素微粒子の製造方法。
PCT/JP2015/053489 2014-02-12 2015-02-09 球状窒化ホウ素微粒子およびその製造方法 WO2015122379A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580008547.9A CN105980298B (zh) 2014-02-12 2015-02-09 球状氮化硼微粒及其制造方法
KR1020167021931A KR102258544B1 (ko) 2014-02-12 2015-02-09 구상 질화붕소 미립자 및 그 제조 방법
JP2015562810A JP6467650B2 (ja) 2014-02-12 2015-02-09 球状窒化ホウ素微粒子およびその製造方法
EP15749281.0A EP3106430B1 (en) 2014-02-12 2015-02-09 Spherical boron nitride particles and production method thereof
US15/117,853 US10017386B2 (en) 2014-02-12 2015-02-09 Spherical boron nitride fine particles and production method thereof
US15/955,211 US20180230012A1 (en) 2014-02-12 2018-04-17 Method of producing spherical boron nitride fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-024009 2014-02-12
JP2014024009 2014-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/117,853 A-371-Of-International US10017386B2 (en) 2014-02-12 2015-02-09 Spherical boron nitride fine particles and production method thereof
US15/955,211 Division US20180230012A1 (en) 2014-02-12 2018-04-17 Method of producing spherical boron nitride fine particles

Publications (1)

Publication Number Publication Date
WO2015122379A1 true WO2015122379A1 (ja) 2015-08-20

Family

ID=53800122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053489 WO2015122379A1 (ja) 2014-02-12 2015-02-09 球状窒化ホウ素微粒子およびその製造方法

Country Status (7)

Country Link
US (2) US10017386B2 (ja)
EP (1) EP3106430B1 (ja)
JP (1) JP6467650B2 (ja)
KR (1) KR102258544B1 (ja)
CN (1) CN105980298B (ja)
TW (1) TWI639553B (ja)
WO (1) WO2015122379A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
WO2017034003A1 (ja) * 2015-08-26 2017-03-02 デンカ株式会社 熱伝導性樹脂組成物
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
KR20190071686A (ko) * 2016-10-21 2019-06-24 덴카 주식회사 구형상 질화 붕소 미분말, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
KR20210031755A (ko) 2018-08-07 2021-03-22 덴카 주식회사 육방정 질화붕소 분말, 및 육방정 질화붕소 분말의 제조 방법
WO2021193028A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 成形用樹脂組成物及び電子デバイス
KR20210138720A (ko) 2019-03-28 2021-11-19 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 및 복합재 및 방열 부재
JP2022022091A (ja) * 2020-07-23 2022-02-03 南亞塑膠工業股▲分▼有限公司 プリプレグ及び板金属張り積層板
KR20220088418A (ko) 2019-10-23 2022-06-27 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 탄질화 붕소 분말, 및 복합재 및 방열 부재
KR20220103699A (ko) 2019-11-19 2022-07-22 덴카 주식회사 육방정 질화 붕소 분말
WO2023162598A1 (ja) * 2022-02-22 2023-08-31 デンカ株式会社 窒化ホウ素粉末の製造方法、窒化ホウ素粉末及び樹脂封止材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526492B2 (en) * 2016-05-27 2020-01-07 Saint-Gobain Ceramics & Plastics, Inc. Process for manufacturing boron nitride agglomerates
JP7040529B2 (ja) * 2017-09-04 2022-03-23 東亞合成株式会社 粉体塗料用組成物及び塗装物品
CN112295535A (zh) * 2019-07-31 2021-02-02 东泰高科装备科技有限公司 氮化硼吸附材料及其合成方法和合成装置
TW202124263A (zh) * 2019-11-21 2021-07-01 日商電化股份有限公司 氮化硼粒子及樹脂組成物
WO2021111909A1 (ja) * 2019-12-06 2021-06-10 デンカ株式会社 窒化ホウ素粒子及びその製造方法
CN113753866B (zh) * 2021-08-03 2023-02-07 湖南大学 一种六方氮化硼纳米晶及其固相制备方法
CN114132904B (zh) * 2021-12-06 2023-04-25 湖南大学 一种化妆品用高吸油美白六方氮化硼多孔微球

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442897A (ja) * 1990-06-04 1992-02-13 Shin Etsu Chem Co Ltd 単結晶引き上げ用るつぼおよびその製造方法
JPH08290905A (ja) * 1995-04-19 1996-11-05 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末及びその製造方法
JP2004182572A (ja) * 2002-12-05 2004-07-02 National Institute For Materials Science サブミクロンサイズの窒化ホウ素球状粒子の製造方法
JP2008266101A (ja) * 2007-04-25 2008-11-06 National Institute For Materials Science 窒化ホウ素ナノチューブ及びその製造方法
JP2010180066A (ja) * 2009-02-03 2010-08-19 National Institute For Materials Science 窒化ホウ素球状ナノ粒子とその製造方法
WO2011043082A1 (ja) * 2009-10-09 2011-04-14 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461651B2 (ja) 1996-01-24 2003-10-27 電気化学工業株式会社 六方晶窒化ほう素粉末及びその用途
US6348179B1 (en) 1999-05-19 2002-02-19 University Of New Mexico Spherical boron nitride process, system and product of manufacture
CN1189249C (zh) * 2002-07-09 2005-02-16 中国科学院长春应用化学研究所 纳米立方氮化硼的制备方法
CN100402417C (zh) * 2005-12-01 2008-07-16 华中师范大学 一种六方氮化硼纳米微球及合成方法和应用
WO2011021366A1 (ja) * 2009-08-20 2011-02-24 株式会社カネカ 球状化窒化ほう素の製造法
CA2857154C (en) 2011-11-29 2019-09-24 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442897A (ja) * 1990-06-04 1992-02-13 Shin Etsu Chem Co Ltd 単結晶引き上げ用るつぼおよびその製造方法
JPH08290905A (ja) * 1995-04-19 1996-11-05 Denki Kagaku Kogyo Kk 六方晶窒化ほう素粉末及びその製造方法
JP2004182572A (ja) * 2002-12-05 2004-07-02 National Institute For Materials Science サブミクロンサイズの窒化ホウ素球状粒子の製造方法
JP2008266101A (ja) * 2007-04-25 2008-11-06 National Institute For Materials Science 窒化ホウ素ナノチューブ及びその製造方法
JP2010180066A (ja) * 2009-02-03 2010-08-19 National Institute For Materials Science 窒化ホウ素球状ナノ粒子とその製造方法
WO2011043082A1 (ja) * 2009-10-09 2011-04-14 水島合金鉄株式会社 六方晶窒化ホウ素粉末およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGCHUN TANG ET AL.: "Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles", ADVANCED FUNCTIONAL MATERIALS, vol. 18, no. 22, 24 November 2008 (2008-11-24), pages 3653 - 3661, XP001517179 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193504A (ja) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 窒化ホウ素粒子、樹脂組成物および熱伝導性シート
WO2017034003A1 (ja) * 2015-08-26 2017-03-02 デンカ株式会社 熱伝導性樹脂組成物
CN107922743A (zh) * 2015-08-26 2018-04-17 电化株式会社 导热性树脂组合物
KR20180048612A (ko) * 2015-08-26 2018-05-10 덴카 주식회사 열전도성 수지 조성물
JPWO2017034003A1 (ja) * 2015-08-26 2018-06-14 デンカ株式会社 熱伝導性樹脂組成物
CN107922743B (zh) * 2015-08-26 2019-03-08 电化株式会社 导热性树脂组合物
KR102560615B1 (ko) * 2015-08-26 2023-07-27 덴카 주식회사 열전도성 수지 조성물
EP3530614A4 (en) * 2016-10-21 2020-04-29 Denka Company Limited SPHERICAL BORNITRIDE FINE POWDER, METHOD FOR THE PRODUCTION THEREOF AND HEAT-CONDUCTING RESIN COMPOSITION THEREFOR
KR102360935B1 (ko) 2016-10-21 2022-02-09 덴카 주식회사 구형상 질화 붕소 미분말, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
US10752503B2 (en) 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
KR20190071686A (ko) * 2016-10-21 2019-06-24 덴카 주식회사 구형상 질화 붕소 미분말, 그 제조 방법 및 이를 이용한 열전도 수지 조성물
JPWO2019073690A1 (ja) * 2017-10-13 2019-12-26 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
KR20200068673A (ko) * 2017-10-13 2020-06-15 덴카 주식회사 질화붕소 분말, 그 제조 방법 및 그것을 사용한 방열 부재
KR102619752B1 (ko) 2017-10-13 2023-12-29 덴카 주식회사 질화붕소 분말, 그 제조 방법 및 그것을 사용한 방열 부재
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
KR20210031755A (ko) 2018-08-07 2021-03-22 덴카 주식회사 육방정 질화붕소 분말, 및 육방정 질화붕소 분말의 제조 방법
KR20210138720A (ko) 2019-03-28 2021-11-19 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 및 복합재 및 방열 부재
KR20220088418A (ko) 2019-10-23 2022-06-27 덴카 주식회사 질화 붕소 분말 및 그의 제조 방법, 탄질화 붕소 분말, 및 복합재 및 방열 부재
KR20220103699A (ko) 2019-11-19 2022-07-22 덴카 주식회사 육방정 질화 붕소 분말
WO2021193028A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 成形用樹脂組成物及び電子デバイス
JP2022022091A (ja) * 2020-07-23 2022-02-03 南亞塑膠工業股▲分▼有限公司 プリプレグ及び板金属張り積層板
JP7193575B2 (ja) 2020-07-23 2022-12-20 南亞塑膠工業股▲分▼有限公司 プリプレグ及び板金属張り積層板
US11890832B2 (en) 2020-07-23 2024-02-06 Nan Ya Plastics Corporation Prepreg and metallic clad laminate
WO2023162598A1 (ja) * 2022-02-22 2023-08-31 デンカ株式会社 窒化ホウ素粉末の製造方法、窒化ホウ素粉末及び樹脂封止材

Also Published As

Publication number Publication date
TWI639553B (zh) 2018-11-01
US20160368769A1 (en) 2016-12-22
EP3106430B1 (en) 2018-07-18
JPWO2015122379A1 (ja) 2017-03-30
CN105980298A (zh) 2016-09-28
TW201536671A (zh) 2015-10-01
EP3106430A4 (en) 2017-11-08
KR102258544B1 (ko) 2021-05-28
JP6467650B2 (ja) 2019-02-13
KR20160122725A (ko) 2016-10-24
US10017386B2 (en) 2018-07-10
US20180230012A1 (en) 2018-08-16
CN105980298B (zh) 2018-12-18
EP3106430A1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6467650B2 (ja) 球状窒化ホウ素微粒子およびその製造方法
TWI638768B (zh) 氮化硼微粒子及其製造方法
JP6698953B2 (ja) 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP5673539B2 (ja) 球状化窒化ほう素の製造法
JP6692050B2 (ja) 窒化ホウ素含有樹脂組成物
JP2010180066A (ja) 窒化ホウ素球状ナノ粒子とその製造方法
KR20180048612A (ko) 열전도성 수지 조성물
Wyatt et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2T x) MXene
WO2020032060A1 (ja) 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
CN102515233A (zh) 一种利用热等离子体制备氧化铝的方法及其产品
JP2004182572A (ja) サブミクロンサイズの窒化ホウ素球状粒子の製造方法
Daiki et al. Synthesis of highly purified and crystallized h‐BN using calcium‐assisted carbothermal reduction nitridation
WO2021193764A1 (ja) 窒化ホウ素粒子、並びに、該窒化ホウ素粒子を含む樹脂組成物及び収容体
Gurses et al. The characterisation of mcallisterite synthesised from bischofite via the hydrothermal method
CN116140630A (zh) 基于蒸发冷凝法制备石墨烯掺杂金属粉末的方法及其粉末
JP2015051903A (ja) アモルファスLi3BO3の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562810

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021931

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015749281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015749281

Country of ref document: EP