WO2015115648A1 - 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ - Google Patents

光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ Download PDF

Info

Publication number
WO2015115648A1
WO2015115648A1 PCT/JP2015/052874 JP2015052874W WO2015115648A1 WO 2015115648 A1 WO2015115648 A1 WO 2015115648A1 JP 2015052874 W JP2015052874 W JP 2015052874W WO 2015115648 A1 WO2015115648 A1 WO 2015115648A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
linear
substituted
Prior art date
Application number
PCT/JP2015/052874
Other languages
English (en)
French (fr)
Inventor
慎一郎 門脇
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2015560067A priority Critical patent/JP6127159B2/ja
Priority to KR1020167021272A priority patent/KR101821078B1/ko
Priority to US15/113,146 priority patent/US20170002176A1/en
Priority to CN201580005810.9A priority patent/CN105934458A/zh
Priority to EP15742535.6A priority patent/EP3103822B1/en
Publication of WO2015115648A1 publication Critical patent/WO2015115648A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6677Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polymerizable composition for an optical material containing a photochromic compound, an optical material obtained from the composition, and a plastic lens.
  • Plastic lenses are rapidly spreading to optical elements such as eyeglass lenses and camera lenses because they are lighter and harder to break than inorganic lenses.
  • plastic lenses having photochromic performance have been developed.
  • a lens obtained from poly (thio) urethane is attracting attention because of its high refractive index and excellent physical properties such as strength.
  • Patent Document 1 describes a lens made of a composition containing a predetermined photochromic compound and a di (meth) acrylate compound.
  • the paragraph [0009] describes that when a urethane resin or thiourethane resin having a high refractive index is used, isocyanate as a resin raw material reacts with the photochromic compound at the monomer stage and does not exhibit photochromic performance at all.
  • Patent Document 2 discloses a lens in which a coating layer made of a composition containing a photochromic compound having a chromene skeleton and a phenol compound is provided on the surface of a thiourethane plastic lens.
  • Patent Document 3 discloses a photochromic lens having a lens substrate made of a thiourethane resin and a photochromic film formed by applying a solution containing a photochromic compound and a radical polymerizable monomer on the substrate. Is disclosed. Patent Document 4 discloses a compound having photochromic properties.
  • Patent Document 5 discloses a polymerizable composition for an optical material, which includes at least one isocyanate compound selected from an aliphatic isocyanate compound and an alicyclic isocyanate compound, a bifunctional or more active hydrogen compound, and a photochromic compound. Things are disclosed.
  • JP-A-8-272036 Japanese Patent Laid-Open No. 2005-23238 JP 2008-30439 A JP 2011-144181 A International Publication No. 2014/002844 Pamphlet US Pat. No. 6,506,538 JP-A-2005-305306 International Publication No. 2005/087829 Pamphlet International Publication No. 2006/109765 Pamphlet International Publication 2007/020817 Pamphlet International Publication 2007/020818 Pamphlet International Publication No. 2014/002844 Pamphlet
  • Patent Document 5 describes that according to a poly (thio) urethane-based composition for optical materials using a specific polyisocyanate compound, photochromic performance is imparted to the obtained optical material.
  • a poly (thio) urethane-based composition for optical materials using a specific polyisocyanate compound photochromic performance is imparted to the obtained optical material.
  • B represents a numerical value of 0 or more
  • d represents a numerical value of 0 or more
  • e represents a numerical value of 1 or more
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 1 may be the same or different
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 2 may be the same or different
  • Z includes an aromatic group A divalent organic group having 1 to 30 carbon atoms which may be present, and a plurality of Z may be the same or different.
  • C a bifunctional or higher functional active hydrogen compound (excluding the compound (B)),
  • D a photochromic compound;
  • a polymerizable composition for an optical material comprising: [2]
  • the polyisocyanate compound (A) is hexamethylene diisocyanate, pentamethylene diis
  • the polyol compound (B) has a number average molecular weight of 100 or more and is one or more compounds selected from compounds represented by the following general formula (I) to the following general formula (IV): 1] or a polymerizable composition for an optical material according to [2];
  • p represents a numerical value of 4 to 100
  • X represents a hydrogen atom or a methyl group, and a plurality of Xs may be the same or different.
  • q and r may be the same or different and each represents a numerical value of 1 or more, and the sum of q and r represents a numerical value of 2 to 100.
  • R 1 and R 2 are They may be the same or different and each represents a hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different from each other, Z is a substituted or unsubstituted divalent aromatic group, A divalent aliphatic group which may contain a substituted or unsubstituted aromatic group having 1 to 20 carbon atoms is shown.)
  • q and r may be the same or different and each represents a numerical value of 1 or more, and the sum of q and r represents a numerical value of 2 to 100.
  • R 1 and R 2 are And may be the same or different, each represents a hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different.
  • m represents a numerical value of 1 to 20
  • k represents 0 to 2 m
  • n represents a numerical value of 1 to 20
  • l represents 0 to 2n
  • f represents a numerical value of 0 or more.
  • G represents a numerical value of 1 or more
  • h represents a numerical value of 1 or more
  • j represents a numerical value of 1 or more
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 1 may be the same or different
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 2 may be the same or different
  • R 3 has 1 to 20 carbon atoms
  • Polymerizable composition for materials [12] The polymerizable composition for an optical material according to any one of [1] to [11], wherein the active hydrogen compound (C) is a trifunctional or higher functional active hydrogen compound.
  • the active hydrogen compound (C) is glycerin, pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6- Dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, and trimethylolpropane tris (3-mercaptopropio 1) or more selected from the group consisting of [1 to [12]
  • the polymerizable composition for optical materials according to any one of the above.
  • the photochromic compound (D) is a polymerizable composition for an optical material according to any one of [1] to [13], represented by the following general formula (5); Wherein R 1 and R 2 may be the same or different and are independently hydrogen; A linear or branched alkyl group having 1 to 12 carbon atoms; A cycloalkyl group having 3 to 12 carbon atoms; A substituted or unsubstituted aryl group having 6 to 24 carbon atoms or a heteroaryl group having 4 to 24 carbon atoms (the substituent is a halogen atom, a hydroxy group, a linear or branched alkyl group having 1 to 12 carbon atoms) , A linear or branched alkoxy group having 1 to 12 carbon atoms, a linear or branched haloalkyl group having 1 to 12 carbon atoms substituted with at least one halogen atom, a carbon substituted with at least one halogen atom A linear or branched haloalkoxy
  • An aralkyl or heteroaralkyl group (a linear or branched alkyl group having 1 to 4 carbon atoms is substituted with the aryl group or heteroaryl group); A substituted or unsubstituted phenoxy or naphthoxy group (having at least one substituent selected from a linear or branched alkyl group having 1 to 6 carbon atoms or an alkoxy group as a substituent); —NH 2 , —NHR, —CONH 2 , or —CONHR (R is a linear or branched alkyl group having 1 to 6 carbon atoms); —OCOR 8 or —COOR 8 (wherein R 8 is a linear or branched alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms, or a substituent in R 1 or R 2) A phenyl group substituted by at least one substituent of an aryl or substituted heteroaryl group or an unsubstituted
  • the functional group equivalent ratio (B / A) of the polyol compound (B) to the polyisocyanate compound (A) is 0.02 to 0.6, and the functional group of the active hydrogen compound (C) to the polyisocyanate compound (A)
  • a molded article comprising a cured product of the polymerizable composition for an optical material according to any one of [1] to [15].
  • An optical material comprising the molded article according to [16].
  • a plastic lens comprising the molded article according to [16].
  • B represents a numerical value of 0 or more
  • d represents a numerical value of 0 or more
  • e represents a numerical value of 1 or more
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 1 may be the same or different
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 2 may be the same or different
  • Z includes an aromatic group A divalent organic group having 1 to 30 carbon atoms which may be present, and a plurality of Z may be the same or different.
  • C a bifunctional or higher functional active hydrogen compound (excluding the compound (B))
  • D a step of mixing a photochromic compound to prepare a polymerizable composition for an optical material; Forming a lens substrate by cast polymerization of the polymerizable composition for optical material into a mold; and A method for
  • An optical material or a polythiourethane optical material can be obtained.
  • the polymerizable composition for optical materials of the present invention will be described based on the following embodiments.
  • the polymerizable composition for an optical material of the present embodiment is (A) a polyisocyanate compound; (B) a polyol compound represented by the following general formula (1) and having a number average molecular weight of 100 or more; (C) a bifunctional or higher functional active hydrogen compound (excluding the compound (B)), (D) a photochromic compound; including.
  • m represents a numerical value of 1 to 20
  • k represents a numerical value of 0 to 2 m
  • n represents a numerical value of 1 to 20
  • l represents 0 to 2n
  • a represents a numerical value of 0 or more.
  • B represents 0 or more
  • d represents a numerical value of 0 or more
  • e represents a numerical value of 1 or more
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • a plurality of Q 1 are present.
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a plurality of Q 2 may be the same or different
  • Z may contain an aromatic group A good divalent organic group having 1 to 30 carbon atoms, and a plurality of Z may be the same or different.
  • the polymerizable composition for an optical material includes the compounds (A) to (C) in the composition, so that the isomerization reaction of the photochromic compound (D) within the polymer matrix of the composition is performed. It is presumed that the obstacle of this is effectively suppressed. That is, by adding the compound (B), which is an essential component of the present invention, to a conventional resin used for eyeglass lenses comprising the compounds (A) and (C), the photochromic is incorporated into the matrix molecular chain. It is considered that an appropriate space that facilitates the isomerization reaction of the compound is formed, and as a result, good photochromic performance is realized. In addition, this configuration can provide an optical material with excellent balance that exhibits high photochromic performance and has excellent mechanical properties that are characteristic of a poly (thio) urethane-based resin.
  • each component will be described.
  • polyisocyanate compound (A) examples include hexamethylene diisocyanate, pentamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m -Xylylene diisocyanate, o-xylylene diisocyanate, p-xylylene diisocyanate, xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalene, mesitylylene triisocyanate Bis (isocyanatomethyl) sulfide, bis (isocyanatoethyl) sulfide, bis (isocyanatomethyl) disulfide, bis
  • the polyisocyanate compound (A) includes, in addition to monomers, modified products and / or mixtures with modified products.
  • modified isocyanate products include multimers, biuret modified products, allophanate modified products, An oxadiazine trione modified body, a polyol modified body, etc. are mentioned.
  • multimers include dimers such as uretdione, uretoimine, and carbodiimide, and multimers higher than trimers such as isocyanurate and iminooxadiandione.
  • polyisocyanate compound (A) examples include hexamethylene diisocyanate, pentamethylene diisocyanate, m-xylylene diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, tolylene diisocyanate, phenylene diisocyanate, diphenylmethane diisocyanate are preferred, m-xylylene diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis
  • polyol compound (B) As the polyol compound (B), one or more compounds selected from compounds represented by the following general formula (1) and having a number average molecular weight of 100 or more can be used.
  • the lower limit of the number average molecular weight of the polyol compound (B) is 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably 400 or more, and the upper limit is 4000 or less, more preferably 3000 or less, still more preferably. 2000 or less.
  • the upper and lower limits can be combined as appropriate.
  • m represents a numerical value of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
  • n represents a numerical value of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
  • a represents a numerical value of 0 or more, preferably 0 to 100, more preferably 0 to 25.
  • b represents a numerical value of 0 or more, preferably 0 to 200, more preferably 0 to 100.
  • d represents a numerical value of 0 or more, preferably 1 to 200, more preferably 1 to 100.
  • e represents a numerical value of 1 or more, preferably 1 to 200, more preferably 1 to 100.
  • k represents 0 to 2 m
  • l represents 0 to 2n.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. A plurality of Q 1 may be the same or different.
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Q 2 to which there is a plurality may be the same or different.
  • Z is a divalent organic group having 1 to 30 carbon atoms which may contain an aromatic group, preferably a divalent organic group having 1 to 20 carbon atoms which may contain an aromatic group.
  • a plurality of Z may be the same or different.
  • Examples of the “divalent organic group having 1 to 30 carbon atoms that may contain an aromatic group” include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a cyclopentylene group, and a hexamethylene group.
  • Cyclohexylene group heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tridecamethylene group, tetradecamethylene group, pentadecamethylene group, etc.
  • Substituted or unsubstituted chain or cyclic aliphatic groups Phenylene group, naphthylene group, anthracene group, diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, diphenylpropane group, diphenylether group, diphenylsulfide group, diphenylsulfoxide group, diphenylsulfone group, A substituted or unsubstituted aromatic group having 6 to 30 carbon atoms, such as diphenyl ketone group, phenylbenzoate group, biphenyl group, stilbene group, diazobenzene group, aniline benzylidene group; —C 6 H 4 —CH 2 — group, —CH 2 —C 6 H 4 —CH 2 — group, —CH 2 —C 6 H 3 (Cl) —CH 2 — group, —C 10 H 6 —CH 2 A
  • -Aliphatic group or -C (O) -R 7 -C (O)-(R 7 is a substituted or unsubstituted straight or branched alkylene group having 1 to 20 carbon atoms, substituted or unsubstituted carbon number 6 to 20 aromatic group), and —C (O) —R 8 — (R 8 represents a substituted or unsubstituted straight or branched alkylene group having 1 to 20 carbon atoms).
  • a carbonyl group-containing compound having a number in the range of 1 to 30; Etc.
  • These organic groups may be substituted with a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkoxy group having 1 to 10 carbon atoms, or the like.
  • polyol compound (B) one or more compounds selected from compounds represented by the general formula (I) to the general formula (IV) can be used.
  • p represents a numerical value of 4 to 100, preferably a numerical value of 15 to 50.
  • X represents a hydrogen atom or a methyl group, and a plurality of Xs may be the same or different.
  • X is preferably a methyl group.
  • Examples of the compound represented by the general formula (I) include polyethylene glycol and polypropylene glycol, which may contain a low-molecular oligomer such as ethylene glycol, diethylene glycol, or triethylene glycol, or used alone. May also be used as a mixture of two or more.
  • the number average molecular weight of the compound represented by the general formula (I) has a lower limit of 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably 400 or more, and an upper limit of 4000 or less, more preferably 3000 or less. More preferably, it is 2000 or less.
  • the upper and lower limits can be combined as appropriate.
  • the photochromic performance is effectively expressed without impairing excellent properties such as mechanical strength of the poly (thio) urethane resin. be able to.
  • the compound represented by the general formula (I) is polyethylene glycol, if the number average molecular weight is less than 400, the coloring performance cannot be sufficiently improved, and if the number average molecular weight exceeds 2000, the polymer becomes cloudy. There is a case.
  • the compound represented by the general formula (I) is polypropylene glycol
  • the number average molecular weight is less than 400, the coloring performance cannot be sufficiently improved, and if the number average molecular weight exceeds 1000, the polymer becomes cloudy.
  • polypropylene glycol higher heat resistance and rigidity are given to the polymer obtained than polyethylene glycol. Accordingly, polypropylene glycol may be more preferable than polyethylene glycol for applications such as spectacle lenses used in various environments and conditions.
  • q and r may be the same or different and each represents a numerical value of 1 or more, preferably a numerical value of 6 to 25.
  • q and r can take a numerical value such that the sum of q and r satisfies a numerical value of 2 to 100, preferably a numerical value of 12 to 50.
  • R 1 and R 2 may be the same or different and each represents a hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different.
  • Z represents a substituted or unsubstituted divalent aromatic group or a divalent aliphatic group which may contain a substituted or unsubstituted aromatic group having 1 to 20 carbon atoms. Z does not include —Ph—C (CH 3 ) 2 —Ph— (Ph: phenylene group).
  • Examples of the substituted or unsubstituted divalent aromatic group include phenylene group, naphthylene group, anthracene group, diphenylmethane group, 1,1-diphenylethane group, 1,1,1-methyldiphenylethane group, 1,3-diphenyl Propane group, 1,2-diphenylpropane group, diphenyl ether group, diphenyl sulfide group, diphenyl sulfoxide group, diphenyl sulfone group, diphenyl ketone group, phenyl benzoate group, biphenyl group, stilbene group, diazobenzene group, aniline benzylidene group and these Derivatives and the like.
  • Examples of the divalent aliphatic group which may contain a substituted or unsubstituted aromatic group having 1 to 20 carbon atoms include a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms and bis having 1 to 20 carbon atoms. Examples thereof include a divalent group derived from an alkoxy aromatic compound. Examples of the substituted or unsubstituted alkylene group having 1 to 20 carbon atoms include a butylene group, a pentylene group, and a nonylene group.
  • Examples of the bisalkoxy aromatic compound having 1 to 20 carbon atoms include 1,4-bis (hydroxyethoxy) benzene, (1,3-bis (m-hydroxyethoxy) benzene, 2,2-[(1,1-biphenyl ) -4,4-diylbis (oxy)] bisethanol, etc.
  • Examples of the substituent for the divalent aromatic group and divalent aliphatic group include an alkyl group having 1 to 10 carbon atoms and a carbon number of 1 -10 alkoxy groups and the like can be mentioned.
  • Z is preferably a phenylene group, a naphthylene group, or a biphenylene group.
  • Examples of the compound represented by the general formula (II) include 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 1,4-bis (hydroxyethoxy) benzene, Polyethylene glycol adducts such as 1,2-bis (m-hydroxyethoxy) benzene, 2,2-[(1,1-biphenyl) -4,4-diylbis (oxy)] bisethanol, and polypropylene glycol adducts. These may be used alone or as a mixture of two or more. In addition, the compound represented by general formula (II) does not include the compound represented by general formula (III).
  • the number average molecular weight of the compound represented by the general formula (II) has a lower limit of 200 or more, preferably 3000 or more, more preferably 400 or more, further preferably 500 or more, and an upper limit of 4000 or less, preferably 3000 or less, More preferably, it is 2000 or less, More preferably, it is 1000 or less.
  • the upper and lower limits can be combined as appropriate.
  • q and r may be the same or different and each represents a numerical value of 1 or more, preferably a numerical value of 6 to 25.
  • q and r can take a numerical value such that the sum of q and r satisfies a numerical value of 2 to 100, preferably a numerical value of 12 to 50.
  • R 1 and R 2 may be the same or different and each represents a hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different.
  • Examples of the compound represented by the general formula (III) include a polyethylene glycol adduct of bisphenol A and a polypropylene glycol adduct of bisphenol A. These may be used alone or as a mixture of two or more. Also good.
  • the number average molecular weight of the compound represented by the general formula (III) has a lower limit of 200 or more, preferably 300 or more, more preferably 400 or more, further preferably 500 or more, and an upper limit of 4000 or less, preferably 3000 or less, More preferably, it is 2000 or less, More preferably, it is 1500 or less.
  • the upper and lower limits can be combined as appropriate.
  • the compound represented by the general formula (III) is a polyethylene glycol adduct of bisphenol A or a polypropylene glycol adduct of bisphenol A
  • the number average molecular weight is less than 400, color development performance cannot be sufficiently improved.
  • the number average molecular weight exceeds 1000, the polymer may become cloudy.
  • m represents a numerical value of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
  • n represents a numerical value of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
  • f represents a numerical value of 0 or more, preferably 0 to 100, more preferably 0 to 25.
  • g represents a numerical value of 1 or more, preferably 1 to 200, more preferably 1 to 100.
  • h represents a numerical value of 1 or more, preferably 1 to 200, more preferably 1 to 100.
  • j represents a numerical value of 1 or more, preferably 1 to 200, more preferably 1 to 100.
  • k represents 0 to 2 m
  • l represents 0 to 2n.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. A plurality of Q 1 may be the same or different.
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Q 2 to which there is a plurality may be the same or different.
  • R 3 represents a linear or branched alkylene group having 1 to 20 carbon atoms, or a phenylene group optionally having a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent. A plurality of R 3 may be the same or different.
  • Examples of the compound represented by the general formula (IV) include a polyester compound composed of a diol compound and a dicarboxylic acid.
  • the diol compound constituting the polyester compound is not particularly limited, but an aliphatic diol having 2 to 12 carbon atoms in the main chain is preferably used. Examples thereof include ethylene glycol, propylene glycol, 1,4-butanediol, Examples include 3-methyl-1,5-pentanediol and 1,9-nonanediol.
  • the dicarboxylic acid constituting the polyester compound is not particularly limited, but an aliphatic dicarboxylic acid or aromatic dicarboxylic acid having 2 to 12 carbon atoms in the main chain is preferably used.
  • polyester compound examples thereof include succinic acid and adipic acid. , Sebacic acid, isophthalic acid, terephthalic acid and the like.
  • the polyester compound can be used by appropriately combining one or more of these diol compounds and one or more of the dicarboxylic acids.
  • a polyester compound obtained by ring-opening polymerization of a lactone can also be used in the present invention.
  • the lactone compound include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and the like.
  • the lower limit of the number average molecular weight of the compound represented by the general formula (IV) is 600 or more, preferably 800 or more, more preferably 1000 or more, and the upper limit is 4000 or less, more preferably 3000 or less, further preferably 2000 or less. It is.
  • the upper and lower limits can be combined as appropriate.
  • the photochromic performance is effectively expressed without impairing excellent properties such as mechanical strength of the poly (thio) urethane resin.
  • the compound represented by the general formula (IV) is a polyester compound obtained by reacting 3-methyl-1,5-pentanediol with an equimolar mixture of adipic acid and isophthalic acid
  • the number average molecular weight is If the number average molecular weight is more than 2000, the polymer may become cloudy.
  • polyol compound (B) one or more compounds selected from the compound represented by the general formula (I) to the compound represented by the general formula (IV) can be used. From the viewpoint of effects, compounds represented by general formula (I), general formula (III) or general formula (IV) can be preferably used.
  • the polyol compound (B) can be used in a range of 0.3 to 6 times by weight with respect to the weight of the bifunctional or higher active hydrogen compound (C). In this embodiment, it is used within the said range so that the resin performance calculated
  • the range is preferably 0.7 to 5 times by weight.
  • the weight ratio of the polyol compound (B) to the active hydrogen compound (C) is in the above range, high dimming performance, that is, high color density and quick density change can be suitably exhibited. Furthermore, since the crosslink density is in the optimum range, an optical material superior in rigidity, surface hardness, heat resistance and the like can be obtained.
  • the bifunctional or higher functional hydrogen compound (C) (hereinafter simply referred to as “active hydrogen compound (C)”) is not particularly limited, and examples thereof include polyol compounds, polythiol compounds, and thiol compounds having a hydroxy group. be able to. These can be used in appropriate combination.
  • the active hydrogen compound (C) does not contain the polyol compound (B).
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, neopentyl glycol, glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, butanetriol, 1,2- Methyl glucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dolitol, iditol, glycol, inositol, hexanetriol, triglycerose, diglycerol, triethylene Glycol, polyethylene glycol, tris (2-hydroxyethyl) isocyanurate, cyclobutane
  • polyol compounds include oxalic acid, glutamic acid, adipic acid, acetic acid, propionic acid, cyclohexanecarboxylic acid, ⁇ -oxocyclohexanepropionic acid, dimer acid, phthalic acid, isophthalic acid, salicylic acid, 3-bromopropionic acid, 2
  • a condensation reaction product of an organic acid such as bromoglycol, dicarboxycyclohexane, pyromellitic acid, butanetetracarboxylic acid, bromophthalic acid and the above polyol
  • An addition reaction product of the above polyol with an alkylene oxide such as ethylene oxide or propylene oxide
  • An addition reaction product of an alkylene polyamine and an alkylene oxide such as ethylene oxide or propylene oxide
  • polythiol compound examples include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, Diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis (3-mercaptopropionate), ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane tris (2-mercapto) Acetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethanetris (3-mercaptopro Onate), pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), bis (mercap
  • a and b independently represent an integer of 1 to 4
  • c represents an integer of 1 to 3.
  • Z represents hydrogen or a methyl group, and when there are a plurality of Z, And may be different from each other), but is not limited to these exemplified compounds. In the present embodiment, at least one selected from these can be used in combination.
  • Examples of the thiol compound having a hydroxy group include 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glycerol bis (mercaptoacetate), 4-mercaptophenol, 2,3-dimercapto-1-propanol, and pentaerythritol.
  • Examples include tris (3-mercaptopropionate), pentaerythritol tris (thioglycolate), and the like, but are not limited to these exemplified compounds.
  • oligomers of these active hydrogen compounds and halogen-substituted products such as chlorine-substituted products and bromine-substituted products may be used.
  • These active hydrogen compounds can be used alone or in combination of two or more.
  • a trifunctional or higher functional active hydrogen compound as the active hydrogen compound (C) from the viewpoint of physical properties such as mechanical strength of the obtained molded body.
  • glycerin pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercapto At least selected from methyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, trimethylolpropane tri
  • polyol compound (B) and the active hydrogen compound (C) A combination of polyethylene glycol and at least one selected from glycerin, pentaerythritol tetrakis (2-mercaptoacetate), and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane; A combination of polypropylene glycol and at least one selected from pentaerythritol tetrakis (2-mercaptoacetate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane; A combination of a polypropylene glycol adduct of bisphenol A and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane; Combinations of at least one selected from polyester compounds consisting of 3-methyl-1,5-pentanediol, adipic acid and isophthalic acid and 4-mercapto
  • photochromic compound there is no restriction
  • a photochromic compound (D) From arbitrary conventionally well-known compounds which can be used for a photochromic lens, arbitrary things can be selected suitably and can be used. For example, one or more of spiropyran compounds, spirooxazine compounds, fulgide compounds, naphthopyran compounds, and bisimidazole compounds can be used depending on the desired coloration.
  • spiropyran compounds examples include indole and spirobenzopyran indole rings and benzene rings substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl groups, etc., indolinospironaphthopyran indole rings and Each substituted product in which the naphthalene ring is substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl group, etc., each substitution in which the indole ring of indinospiroquinolinopyran is substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl group, etc. And indolinospiropyridopyran indole ring substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl group and the like.
  • spirooxazine-based compounds examples include indolinospirobenzoxazine substituted with indole ring and benzene ring substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl group, etc., indolinospironaphthoxazine
  • indole and naphthalene ring is substituted with halogen, methyl, ethyl, methylene, ethylene, hydroxyl group, etc.
  • indole ring of indinospirophenanthrooxazine is halogen, methyl, ethyl, methylene, ethylene, hydroxyl group, etc.
  • Examples of the fulgide compound include N-cyanomethyl-6,7-dihydro-4-methyl-2-phenylspiro (5,6-benzo [b] thiophenedicarboximide-7,2′-tricyclo [3. 3.1.1 3,7 ] decane], N-cyanomethyl-6,7-dihydro-2- (p-methoxyphenyl) -4-methylspiro (5,6-benzo [b] thiophenedicarboximide-7, 2′-tricyclo [3.3.1.1 3,7 ] decane), 6,7-dihydro-N-methoxycarbonylmethyl-4-methyl-2-phenylspiro (5,6-benzo [b] thiophene Carboximido-7,2′-tricyclo [3.3.1.1 3,7 ] decane), 6,7-dihydro-4-methyl-2- (p-methylphenyl) -N-nitromethylspiro (5 , 6-Benzo [b Thiophene-dicarboximi
  • naphthopyran compounds examples include spiro [norbornane-2,2 ′-[2H] benzo [h] chromene], spiro [bicyclo [3.3.1] nonane-9,2 ′-[2H] benzo [ h] chromene], 7'-methoxyspiro [bicyclo [3.3.1] nonane-9,2 '-[2H] benzo [h] chromene], 7'-methoxyspir [norbornane-2,2'-[2H] ] Benzo [f] chromene], 2,2-dimethyl-7-octoxy [2H] benzo [h] chromene, spiro [2-bicyclo [3.3.1] nonene-9,2 '-[2H] benzo [ h] chromene], spiro [2-bicyclo [3.3.1] nonene-9,2 ′-[2H] benzo [f] chromene], 6-morpholino-3,3-bis (3-
  • R 1 and R 2 may be the same or different and independently represent hydrogen; A linear or branched alkyl group having 1 to 12 carbon atoms; A cycloalkyl group having 3 to 12 carbon atoms; A substituted or unsubstituted aryl group having 6 to 24 carbon atoms or a heteroaryl group having 4 to 24 carbon atoms; An aralkyl group or a heteroaralkyl group (a linear or branched alkyl group having 1 to 4 carbon atoms is substituted with the aryl group or heteroaryl group);
  • the substituent of the substituted aryl group having 6 to 24 carbon atoms or the substituted heteroaryl group having 4 to 24 carbon atoms is a halogen atom, a hydroxy group, a linear or branched alkyl group having 1 to 12 carbon atoms, Straight chain or branched alkoxy group having 1 to 12 carbon atoms, straight chain or branched haloalkyl group having 1 to 12 carbon atoms substituted with at least one halogen atom, carbon number substituted with at least one halogen atom
  • R 3 may be the same or different and independently represents a halogen atom;
  • An aralkyl or heteroaralkyl group (a linear or branched alkyl group having 1 to 4 carbon atoms is substituted with the aryl group or heteroaryl group); A substituted or unsubstituted phenoxy or naphthoxy group (having at least one substituent selected from a linear or branched alkyl group having 1 to 6 carbon atoms or an alkoxy group as a substituent); —NH 2 , —NHR, —CONH 2 , or —CONHR (R is a linear or branched alkyl group having 1 to 6 carbon atoms); —OCOR 8 or —COOR 8 (wherein R 8 is a linear or branched alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms, or a substituent in R 1 or R 2) A phenyl group substituted by at least one substituent of an aryl or substituted heteroaryl group or an unsubstituted
  • At least two adjacent R 3 bonded to each other include a carbon atom to which R 3 is attached, can form one or more aromatic ring group or non-aromatic ring group.
  • the aromatic ring group or non-aromatic ring group includes one ring or two annelated rings that may contain a heteroatom selected from the group consisting of oxygen, sulfur, and nitrogen.
  • l is an integer from 0 to 2.
  • m is an integer from 0 to 4.
  • a naphthopyran-based compound at least one terminal of each of the polysiloxane oligomer, polyalkylene oxide, and polyalkyl ester described in WO2013 / 78086, WO2012 / 149599, WO2010 / 020770, and WO2009 / 146509 Examples include compounds to which a photochromic dye molecule is added, and compounds having the structure represented by the general formula (3) or the general formula (4) described above bonded by a linking group and having two or more naphthopyran rings in one molecule. It is done.
  • Preferred examples of the naphthopyran compound represented by the general formula (3) include a compound represented by the following general formula (5) (hereinafter also referred to as the compound (5)).
  • R 1, R 2, R 3 , m is the same as defined above, A is the following formula (A 1) ⁇ (A 5 ) represents a Aner of rings.
  • the dotted line represents the carbon C 5 carbon C 6 bond of the naphthopyran ring of the general formula (5).
  • the ⁇ bond of the annelated ring (A 4 ) or (A 5 ) is bonded to carbon C 5 or carbon C 6 of the naphthopyran ring of the general formula (5).
  • R 4 is the same or different and independently represents OH, a linear or branched alkyl or alkoxy group having 1 to 6 carbon atoms, or two R 4 form carbonyl (CO).
  • R 5 , R 6 and R 7 are independently a halogen atom (preferably fluorine, chlorine or bromine); A linear or branched alkyl group having 1 to 12 carbon atoms (preferably a linear or branched alkyl group having 1 to 6 carbon atoms); A straight-chain or branched haloalkyl group having 1 to 6 carbon atoms (preferably a fluoroalkyl group) substituted by at least one halogen atom; A cycloalkyl group having 3 to 12 carbon atoms; A straight-chain or branched alkoxy group having 1 to 6 carbon atoms; A substituted or unsubstituted phenyl or benzyl group (as a substituent, when the R 1 and R 2 groups of the general formula (5) independently correspond to an aryl or heteroaryl group, the definition of the R 1 and R 2 groups described above) At least one of the substituted groups)); -NH 2 , -NHR (Wherein R is a linear or branched
  • n is an integer from 0 to 6
  • o is an integer from 0 to 2
  • p is an integer from 0 to 4
  • q is an integer from 0 to 3.
  • n is an integer from 0 to 2
  • p is an integer from 0 to 4
  • n is from 0 to 2. Is an integer.
  • the photochromic compound (D) of the general formula (5) is combined with a discoloration reaction rate applied to the required use, and has high coloring suitability even at 40 ° C. Easily achievable colors range from orange to blue.
  • a compound represented by the following general formula (6) can be preferably used as the compound (5).
  • Ar 1 and Ar 2 are aromatic groups, which may be the same or different and each represents an optionally substituted benzene ring or thiophene ring.
  • substituent on the benzene ring or thiophene ring include linear or branched alkyl groups having 1 to 10 carbon atoms, linear or branched alkoxy groups having 1 to 10 carbon atoms, and linear or branched alkyl groups having 1 to 6 carbon atoms. Mention may be made of alkylmono (or di) substituted amino groups.
  • R 3 , R 4 , R 5 , m, n, and p are as defined above.
  • a compound represented by the following general formula (7) can be more preferably used.
  • R 10 and R 11 may be the same as or different from each other, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkoxy group having 1 to 10 carbon atoms, A linear or branched alkylmono (or di) substituted amino group having 1 to 6 carbon atoms is represented.
  • m 2
  • bonded to adjacent R 3 together can form a ring structure containing a carbon atom R 3 is attached.
  • r and s are integers from 0 to 4.
  • the ring structure is a substituted or unsubstituted aryl group having 6 to 24 carbon atoms or a heteroaryl group having 3 to 24 carbon atoms.
  • R 3 , R 4 , R 5 , m, n, and p are as defined above.
  • Specific examples of the compound represented by the general formula (7) include a compound represented by the following formula (8) or the following formula (9). In this embodiment, the compound shown by Formula (8) and Formula (9) is preferable.
  • the compound represented by the general formula (5) which is the photochromic compound (D) can be synthesized by a known method. For example, it can be synthesized by the method described in JP-T-2004-500319.
  • naphthopyran compound one or more compounds selected from the compounds described above may be used.
  • a polymerization catalyst in addition to the components (A) to (D), a polymerization catalyst, an internal mold release agent, a resin modifier, and the like may be further included.
  • a polymerization catalyst a tertiary amine compound and its inorganic acid salt or organic acid salt, a metal compound, a quaternary ammonium salt, or organic sulfonic acid can be mentioned.
  • an acidic phosphate ester can be used as the internal mold release agent.
  • acidic phosphoric acid esters include phosphoric acid monoesters and phosphoric acid diesters, which can be used alone or in combination of two or more.
  • the resin modifier examples include olefin compounds including episulfide compounds, alcohol compounds, amine compounds, epoxy compounds, organic acids and anhydrides thereof, (meth) acrylate compounds, and the like.
  • the polymerizable composition for an optical material of the present embodiment can be prepared by mixing an isocyanate compound (A), a polyol compound (B), an active hydrogen compound (C), and a photochromic compound (D).
  • the lower limit of the functional group equivalent ratio (B / A) of the polyol compound (B) to the polyisocyanate compound (A) is 0.02 or more, preferably 0.10 or more, more preferably 0.15 or more. More preferably, it is 0.20 or more, particularly preferably 0.25 or more, and the upper limit is 0.60 or less, preferably 0.50 or less, more preferably 0.40 or less, and further preferably 0.30 or less.
  • the upper and lower limits can be combined as appropriate.
  • the lower limit of the functional group equivalent ratio (C / A) of the active hydrogen compound (C) to the polyisocyanate compound (A) is 0.30 or more, preferably 0.40 or more, more preferably 0.50 or more, and further preferably It is 0.60 or more, and the upper limit is 0.99 or less, preferably 0.98 or less, more preferably 0.90 or less, and still more preferably 0.80 or less.
  • the upper and lower limits can be combined as appropriate.
  • the compound represented by the general formula (I) when the compound represented by the general formula (I) is polyethylene glycol, if the functional group equivalent ratio (B / A) is less than 0.1, the color development performance may not be sufficiently improved. When the functional group equivalent ratio (B / A) exceeds 0.6, the polymer may become cloudy. Further, when the compound represented by the general formula (I) is polypropylene glycol, if the functional group equivalent ratio (B / A) is less than 0.06, the coloring performance may not be sufficiently improved. When the functional group equivalent ratio (B / A) exceeds 0.6, the polymer may become cloudy.
  • the color development performance may not be sufficiently improved.
  • the functional group equivalent ratio (B / A) exceeds 0.6, the polymer may become cloudy.
  • the compound represented by the general formula (III) is a polyethylene glycol adduct of bisphenol A or a polypropylene glycol adduct of bisphenol A
  • color development occurs when the functional group equivalent ratio (B / A) is less than 0.06. In some cases, the performance cannot be sufficiently improved.
  • the functional group equivalent ratio (B / A) exceeds 0.6, the polymer may become cloudy.
  • the compound represented by the general formula (IV) is a polyester compound obtained by reacting 3-methyl-1,5-pentanediol with an equimolar mixture of adipic acid and isophthalic acid
  • the functional group equivalent ratio If (B / A) is less than 0.02, color development performance may not be sufficiently improved. If the functional group equivalent ratio (B / A) exceeds 0.2, the polymer may become cloudy.
  • the molar ratio of the sum of OH groups and SH groups in the active hydrogen compound (C) and the polyol compound (B) to the NCO groups in the polyisocyanate compound (A) (NCO groups / (OH groups + SH groups). )) Is usually in the range of 0.8 to 1.2, preferably in the range of 0.85 to 1.15, more preferably in the range of 0.9 to 1.1. If the NCO group / (OH group + SH group) molar ratio is 0.8 or more, no unreacted OH group or SH group remains, the composition is sufficiently cured, and is excellent in heat resistance, moisture resistance, and light resistance.
  • Resin is obtained, and if the ratio of NCO group / (OH group + SH group) is 1.2 or less, an unreacted NCO group does not remain and a resin excellent in heat resistance, moisture resistance, and light resistance is obtained. It is not necessary to raise the reaction temperature in order to reduce the NCO group, and defects such as coloring are not observed, which is preferable as a resin material.
  • the photochromic compound (D) can be used at 10 ppm to 5000 ppm with respect to the total amount of the isocyanate compound (A), the polyol compound (B) and the active hydrogen compound (C).
  • the temperature for preparing a polymerizable composition by mixing the polyisocyanate compound (A), the polyol compound (B), the active hydrogen compound (C), the photochromic compound (D), and other additives is usually 25. It is carried out at a temperature below °C. From the viewpoint of the pot life of the polymerizable composition, it may be preferable that the temperature is further lowered. However, when the solubility of the catalyst, the internal mold release agent and the additive in the monomer is not good, it is possible to preheat and dissolve in the monomer and the resin modifier.
  • the mixing order and mixing method of each component in the composition are not particularly limited as long as each component can be uniformly mixed, and can be performed by a known method. As a known method, for example, there is a method of preparing a master batch containing a predetermined amount of an additive and dispersing and dissolving the master batch in a solvent.
  • the method for producing the optical material is not particularly limited, but cast polymerization may be mentioned as a preferred production method.
  • a polymerizable composition is injected between molding molds held by a gasket or a tape.
  • a defoaming treatment under reduced pressure, a filtration treatment such as pressurization or reduced pressure, and the like.
  • the polymerization conditions are not limited because the conditions vary greatly depending on the composition of the polymerizable composition, the type and amount of the catalyst used, the shape of the mold, etc., but are approximately 1 to 50 at a temperature of ⁇ 50 to 150 ° C. Done over time. In some cases, it is preferable to hold in the temperature range of 10 to 150 ° C. or gradually raise the temperature and cure in 1 to 25 hours.
  • the optical material may be subjected to a treatment such as annealing as necessary.
  • the treatment temperature is usually 50 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C.
  • a chain extender when molding the resin, in addition to the above “other components”, a chain extender, a crosslinking agent, a light stabilizer, an ultraviolet absorber, Various additives such as antioxidants, bluing agents, oil-soluble dyes, fillers, and adhesion improvers may be added.
  • the polymerizable composition of the present embodiment can be obtained as molded articles having various shapes by changing the type of mold at the time of cast polymerization.
  • the molded body has photochromic performance, high refractive index and high transparency, and can be used for various optical materials such as plastic lenses. In particular, it can be suitably used as a plastic spectacle lens.
  • the plastic spectacle lens using the lens substrate made of the molded body of the present embodiment may be used with a coating layer on one side or both sides, as necessary.
  • the plastic spectacle lens of this embodiment is composed of a lens substrate made of the above-described polymerizable composition and a coating layer.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stain proof layer, and a water repellent layer.
  • a primer layer a hard coat layer
  • an antireflection layer an antifogging coat layer
  • a stain proof layer a water repellent layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • Each of these coating layers is an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays, an infrared absorber for the purpose of protecting the eyes from infrared rays, a light stabilizer, an antioxidant, and a lens for the purpose of improving the weather resistance of the lens.
  • an ultraviolet absorber for the purpose of protecting the lens and eyes from ultraviolet rays
  • an infrared absorber for the purpose of protecting the eyes from infrared rays
  • a light stabilizer for the purpose of protecting the eyes from infrared rays
  • an antioxidant for the purpose of improving the weather resistance of the lens.
  • a lens for the purpose of improving the weather resistance of the lens.
  • dyes, pigments, antistatic agents, and other known additives for enhancing lens performance may be used in combination.
  • various leveling agents for the purpose of improving coating properties may be used.
  • the primer layer is usually formed between a hard coat layer, which will be described later, and the lens.
  • the primer layer is a coating layer for the purpose of improving the adhesion between the hard coat layer formed thereon and the lens, and in some cases, the impact resistance can also be improved.
  • Any material can be used for the primer layer as long as it has high adhesion to the obtained lens, but usually a primer mainly composed of urethane resin, epoxy resin, polyester resin, melanin resin, or polyvinyl acetal.
  • a composition or the like is used.
  • the primer composition may use an appropriate solvent that does not affect the lens for the purpose of adjusting the viscosity of the composition. Of course, you may use it without a solvent.
  • the primer layer can be formed by either a coating method or a dry method.
  • the primer layer is formed by solidifying after applying the primer composition to the lens by a known coating method such as spin coating or dip coating.
  • a dry method it forms by well-known dry methods, such as CVD method and a vacuum evaporation method.
  • the surface of the lens may be subjected to a pretreatment such as an alkali treatment, a plasma treatment, or an ultraviolet treatment as necessary for the purpose of improving adhesion.
  • the hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, warm water resistance, heat resistance, and weather resistance to the lens surface.
  • the hard coat layer is generally composed of an organic silicon compound having a curing property and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti.
  • a hard coat composition containing at least one kind of fine particles composed of one or more kinds of oxide fine particles and / or a composite oxide of two or more elements selected from these element groups is used.
  • the hard coat composition includes at least amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds. It is preferable to include any of them.
  • a suitable solvent that does not affect the lens may be used for the hard coat composition, or it may be used without a solvent.
  • the hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing.
  • a known coating method such as spin coating or dip coating and then curing.
  • the curing method include thermal curing, a curing method by irradiation with energy rays such as ultraviolet rays and visible rays, and the like.
  • the refractive index of the hard coat layer is preferably in the range of ⁇ 0.1 in the difference in refractive index from the lens.
  • the antireflection layer is usually formed on the hard coat layer as necessary.
  • inorganic oxides such as SiO 2 and TiO 2 are used, and vacuum deposition, sputtering, ion plating, ion beam assist, and CVD are used. It is formed by the dry method.
  • an organic type it is formed by a wet method using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
  • the antireflection layer has a single layer and a multilayer, and when used in a single layer, the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer.
  • a multilayer antireflection film is preferably used. In that case, a low refractive index film and a high refractive index film are alternately laminated. Also in this case, the refractive index difference between the low refractive index film and the high refractive index film is preferably 0.1 or more.
  • Examples of the high refractive index film include ZnO, TiO 2 , CeO 2 , Sb 2 O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5, and examples of the low refractive index film include an SiO 2 film. .
  • an antifogging layer, an antifouling layer and a water repellent layer may be formed as necessary.
  • the processing method and processing materials are not particularly limited, and a known antifogging treatment is possible. Methods, antifouling treatment methods, water repellent treatment methods, and materials can be used.
  • a method of covering the surface with a surfactant for example, a method of adding a hydrophilic film to the surface to make it water absorbent, a method of covering the surface with fine irregularities and increasing water absorption
  • a method of covering the surface with fine irregularities and increasing water absorption examples thereof include a method of absorbing water by utilizing photocatalytic activity, and a method of preventing water droplet adhesion by applying a super water-repellent treatment.
  • a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc.
  • Fading half-life (F1 / 2): defined as the time required for the absorbance at ⁇ max of the molded product sample to recover to an intermediate value before and after the color development after the irradiation for 5 minutes after the color development for 5 minutes. . The shorter the time, the faster the fading speed, and the higher the photochromic performance.
  • ⁇ Light source Metal halide light source device “LA-180ME” manufactured by Hayashi Clock Industry Co., Ltd.
  • Integrated light meter Integrated light meter “UIT-102 (receiver UVD365PD)” manufactured by Ushio Electric Co., Ltd. Transmission measurement system: “MV-3150” manufactured by JASCO Corporation
  • Tensile test sample A hole with a diameter of 1.6 mm is drilled in a disk-shaped molded body having a diameter of 45 mm and a thickness of 2.0 mm at two points facing the diameter direction at a position 5.0 mm from the outer periphery. A sample for a tensile test was obtained.
  • Example 1 To 49.6 parts by mass of 1,3-bis (isocyanatomethyl) cyclohexane, 0.05 part by mass of the compound of formula (9) and 0.15 part by mass of dimethyltin dichloride were added as a photochromic compound, and dissolved by mixing and stirring. . To this mixed solution, 40.9 parts by mass of polyethylene glycol having a number average molecular weight of 400 and 9.5 parts by mass of glycerin were added and mixed and stirred. When the liquid became transparent, it was deaerated under 5 mmHg for 20 minutes, and this solution was poured into a polyethylene sheet mold. This was put into a furnace at 20 ° C. and kept for 8 hours, and further heated to 120 ° C.
  • Example 2 To 39.3 parts by mass of 1,3-bis (isocyanatomethyl) cyclohexane, 0.05 part by mass of the compound of formula (9) and 0.15 part by mass of dimethyltin dichloride were added as a photochromic compound, and dissolved by mixing and stirring. . To this mixture, 29.1 parts by mass of polyethylene glycol having a number average molecular weight of 400 and 31.6 parts by mass of pentaerythritol tetrakis (2-mercaptoacetate) were added, and after sufficiently mixed and stirred, deaerated under 5 mmHg for 20 minutes. Then, this solution was poured into a polyethylene sheet mold. This was put into a furnace at 20 ° C.
  • Example 3 As in Example 1, 0.05 part by weight of the compound of formula (9) and 0.70 part by weight of dimethyltin dichloride were added to 45.8 parts by weight of dicyclohexylmethane-4,4′-diisocyanate as a photochromic compound in the same manner as in Example 1. And dissolved. To this mixed solution, 28.4 parts by mass of polyethylene glycol having a number average molecular weight of 1000 and 25.8 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and dissolved. When the liquid became transparent, it was deaerated under 5 mmHg for 20 minutes, and this solution was poured into a polyethylene sheet mold.
  • Example 4 As in Example 1, 0.05 part by weight of the compound of formula (9) and 0.70 part by weight of dimethyltin dichloride were added to 44.7 parts by weight of dicyclohexylmethane-4,4′-diisocyanate as a photochromic compound in the same manner as in Example 1. And dissolved. To this mixture, 27.7 parts by mass of polyethylene glycol having a number average molecular weight of 2000 and 27.6 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and dissolved. When the liquid became transparent, it was deaerated under 5 mmHg for 20 minutes, and this solution was poured into a polyethylene sheet mold.
  • Example 5 As in Example 1, 0.05 part by weight of the compound of the formula (9) and 0.70 part by weight of dimethyltin dichloride were added to 43.2 parts by weight of dicyclohexylmethane-4,4′-diisocyanate as a photochromic compound in the same manner as in Example 1. And dissolved. To this mixture, 33.5 parts by mass of polypropylene glycol having a number average molecular weight of 1000 and 23.3 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and dissolved. When the liquid became transparent, it was deaerated under 5 mmHg for 20 minutes, and this solution was poured into a polyethylene sheet mold.
  • Example 6 To 40.8 parts by mass of m-xylylene diisocyanate, 0.05 part by mass of the compound of formula (9) and 0.01 part by mass of dimethyltin dichloride were added as a photochromic compound, and dissolved by mixing and stirring. To this mixture, 26.1 parts by mass of polyethylene glycol having a number average molecular weight of 1000 and 33.1 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and stirred. When the liquid became uniform, it was deaerated for 20 minutes under 5 mmHg, and this solution was poured into a polyethylene sheet mold. This was put into a furnace at 20 ° C.
  • Example 7 To 40.8 parts by mass of m-xylylene diisocyanate, 0.05 part by mass of the compound of formula (9) and 0.01 part by mass of dimethyltin dichloride were added as a photochromic compound, and dissolved by mixing and stirring. To this mixed solution, 26.1 parts by mass of polypropylene glycol having a number average molecular weight of 1000 and 33.1 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and stirred. When the liquid became uniform, it was deaerated for 20 minutes under 5 mmHg, and this solution was poured into a polyethylene sheet mold. This was put into a furnace at 20 ° C.
  • Example 8 2,5 (2,6) -bis (isocyanatomethyl) bicyclo [2.2.1] heptane in 42.8 parts by mass, 0.05 parts by mass of the compound of formula (9) as a photochromic compound, and dimethyltin dichloride 0 .10 parts by mass was added and mixed and stirred to dissolve.
  • 25.2 parts by mass of polypropylene glycol having a number average molecular weight of 1000 and 32.0 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added, mixed and stirred. When the liquid became uniform, it was deaerated for 20 minutes under 5 mmHg, and this solution was poured into a polyethylene sheet mold.
  • Example 10 2,5 (2,6) -bis (isocyanatomethyl) bicyclo [2.2.1] heptane in 38.6 parts by mass, 0.05 part by mass of the compound of formula (9) as a photochromic compound, and dimethyltin dichloride 0 .10 parts by mass was added and mixed and stirred to dissolve.
  • a molded body (disk shape having a diameter of 45 mm and a thickness of 2.0 mm) obtained by polymerization was taken out.
  • the molded body was colorless and transparent, and had a good light control performance of being colored purple immediately when placed under sunlight and decoloring when shielded from light.
  • the light transmittance change ( ⁇ T% max) before and after color development at the maximum absorption wavelength ( ⁇ max: 570 nm) was 61.9%, and the fading half-life (F1 / 2) was 145. It showed good results of seconds.
  • the tensile strength was 56 kgf and the elongation was 7.0%. The results are shown in Table 1.
  • Example 2 As in Example 1, 0.05 part by weight of the compound of formula (9) and 0.70 part by weight of dimethyltin dichloride were added to 59.4 parts by weight of dicyclohexylmethane-4,4′-diisocyanate as a photochromic compound in the same manner as in Example 1. And dissolved. To this mixed solution, 40.6 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane was added, mixed and dissolved. When the liquid became transparent, it was deaerated under 5 mmHg for 20 minutes, and this solution was poured into a polyethylene sheet mold. This was put into a furnace at 20 ° C.
  • Each component described in Table 1 is as follows.
  • b-2 polyethylene glycol with number average molecular weight 1000
  • b-3 polyethylene glycol with number average molecular weight 2000
  • the photochromic optical material of the present invention obtained by polymerizing the composition was able to impart high photochromic performance to a poly (thio) urethane resin, which is unprecedented. Therefore, it is extremely useful as an optical material having photochromic performance used for spectacle lenses and the like.
  • the polyisocyanate compound (A) more than bifunctional, the polyol compound (B) represented by General formula (1), and the active hydrogen compound (C) more than bifunctional are included.
  • a photochromic compound (D) is previously dissolved in the monomer mixture to prepare a polymerizable composition, and the composition is injected into a mold and then polymerized to obtain a photochromic lens.
  • dimming performance is provided at the same time as lens molding, so there is no need to provide a separate coating layer to provide photochromic performance, and there are fewer man-hours in manufacturing, improving production efficiency and further reducing production costs. It is also superior in terms.
  • it is easy to uniformly disperse the photochromic compound in the lens substrate obtained by curing the polymerizable composition a stable lens having a constant light control performance regardless of the lens shape. It is extremely useful as a mass production method.
  • the present invention can also take the following aspects.
  • A one or more bifunctional or higher polyisocyanate compounds;
  • B one or more compounds selected from compounds represented by general formula (I) or general formula (III);
  • p represents a numerical value of 4 to 100
  • X represents a hydrogen atom or a methyl group, and a plurality of Xs may be the same or different.
  • q and r each represent a numerical value of 1 or more, and the sum of q and r represents a numerical value of 2 to 100.
  • R 1 and R 2 may be the same or different, A hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different from each other.
  • a polymerizable composition for an optical material comprising: [A2] The polymerizable composition for an optical material according to [a1], wherein the active hydrogen compound (C) is one or more selected from the group consisting of a polyol compound, a polythiol compound, and a thiol compound having a hydroxy group. [A3] The polymerizable composition for an optical material according to [a1] or [a2], wherein the active hydrogen compound (C) is a trifunctional or higher functional active hydrogen compound.
  • the active hydrogen compound (C) is glycerin, pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), 4-mercaptomethyl-1,8-dimercapto-3,6- Dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, and trimethylolpropane tris (3-mercaptopropio 1) or more selected from the group consisting of a3]
  • the polymerizable composition for optical materials according to any one of the above.
  • the photochromic compound (D) is a polymerizable composition for an optical material according to any one of [a1] to [a8], represented by the following general formula (5); Wherein R 1 and R 2 may be the same or different and are independently hydrogen; A linear or branched alkyl group having 1 to 12 carbon atoms; A cycloalkyl group having 3 to 12 carbon atoms; A substituted or unsubstituted aryl group having 6 to 24 carbon atoms or a heteroaryl group having 4 to 24 carbon atoms (the substituent is a halogen atom, a hydroxy group, a linear or branched alkyl group having 1 to 12 carbon atoms) , A linear or branched alkoxy group having 1 to 12 carbon atoms, a
  • An aralkyl or heteroaralkyl group (a linear or branched alkyl group having 1 to 4 carbon atoms is substituted with the aryl group or heteroaryl group); A substituted or unsubstituted phenoxy or naphthoxy group (having at least one substituent selected from a linear or branched alkyl group having 1 to 6 carbon atoms or an alkoxy group as a substituent); —NH 2 , —NHR, —CONH 2 , or —CONHR (R is a linear or branched alkyl group having 1 to 6 carbon atoms); —OCOR 8 or —COOR 8 (wherein R 8 is a linear or branched alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms, or a substituent in R 1 or R 2) A phenyl group substituted by at least one substituent of an aryl or substituted heteroaryl group or an unsubstituted
  • the polyisocyanate compound (A) is one or more selected from the group consisting of xylylene diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, and any one of [a1] to [a9] The polymerizable composition for optical materials described.
  • a molded article comprising a cured product of the polymerizable composition for an optical material according to any one of [a1] to [a10].
  • An optical material comprising the molded article according to [a11].
  • a plastic lens comprising the molded product according to [a11].
  • A one or more bifunctional or higher polyisocyanate compounds;
  • B one or more compounds selected from compounds represented by general formula (I) or general formula (III);
  • p represents a numerical value of 4 to 100
  • X represents a hydrogen atom or a methyl group, and a plurality of Xs may be the same or different.
  • q and r may be the same or different and each represents a numerical value of 1 or more, and the sum of q and r represents a numerical value of 2 to 100.
  • R 1 and R 2 are And may be the same or different, each represents a hydrogen atom or a methyl group, and a plurality of R 1 or R 2 may be the same or different.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の光学材料用重合性組成物は、(A)ポリイソシアネート化合物と、(B)下記一般式(1)で表され、数平均分子量が100以上であるポリオール化合物と、(C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、(D)フォトクロミック化合物と、を含む、光学材料用重合性組成物。

Description

光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ
 本発明は、フォトクロミック化合物を含む光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズに関する。
 プラスチックレンズは、無機レンズに比べ、軽量で割れ難いことから、眼鏡レンズ、カメラレンズ等の光学素子に急速に普及してきている。近年では、フォトクロミック性能を有するプラスチックレンズの開発が進められている。
 またその中でもポリ(チオ)ウレタンから得られるレンズは、高屈折率であり、また強度などの物性に優れている点から、注目されている。
 特許文献1には、所定のフォトクロミック化合物と、ジ(メタ)アクリレート化合物とを含む組成物からなる、レンズが記載されている。0009段落には、屈折率の高いウレタン樹脂やチオウレタン樹脂を用いた場合、モノマーの段階で樹脂原料であるイソシアネートがフォトクロミック化合物と反応し、全くフォトクロミック性能を呈しなくなると記載されている。
 特許文献2には、クロメン骨格を有するフォトクロミック化合物とフェノール化合物を含む組成物からなるコーティング層を、チオウレタン系プラスチックレンズの表面に設けたレンズが開示されている。
 特許文献3には、チオウレタン樹脂からなるレンズ基材と、該基材上に、フォトクロミック化合物とラジカル重合性単量体とを含む溶液を塗布することで形成されたフォトクロミック膜とを有するフォトクロミックレンズが開示されている。特許文献4には、フォトクロミック特性を有する化合物が開示されている。
 特許文献5には、脂肪族イソシアネート化合物および脂環族イソシアネート化合物から選択される1種以上のイソシアネート化合物と、二官能以上の活性水素化合物と、フォトクロミック化合物と、を含む、光学材料用重合性組成物が開示されている。
特開平8-272036号公報 特開2005-23238号公報 特開2008-30439号公報 特開2011-144181号公報 国際公開2014/002844号パンフレット 米国特許6506538号 特開2005-305306号公報 国際公開2005/087829号パンフレット 国際公開2006/109765号パンフレット 国際公開2007/020817号パンフレット 国際公開2007/020818号パンフレット 国際公開2014/002844号パンフレット
 ポリ(チオ)ウレタンからなるフォトクロミック性能を有する光学材料を得ようとしても、特許文献1の0009段落に記載されているように、フォトクロミック化合物が、モノマーであるイソシアネートと反応し、全くフォトクロミック性能を呈しないという問題があった。
 また、特許文献5には、特定のポリイソシネート化合物を用いたポリ(チオ)ウレタン系の光学材料用組成物によれば、得られる光学材料にフォトクロミック性能が付与されることが記載されている。しかし、サングラスのような遮光を主目的とするような用途には光線透過率の変化量という点で、更なる改善の余地があった。
 本発明は以下に示すことができる。
[1] (A)ポリイソシアネート化合物と、
 (B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式(1)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、aは0以上の数値を示し、bは0以上の数値を示し、dは0以上の数値を示し、eは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基を示し、複数存在するZは同一でも異なっていてもよい。)
で表され、数平均分子量が100以上であるポリオール化合物と、
(C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
(D)フォトクロミック化合物と、
を含む、光学材料用重合性組成物。
[2] ポリイソシアネート化合物(A)が、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、トリレンジイソシアネート、フェニレンジイソシアネート、およびジフェニルメタンジイソシアネートよりなる群から選択される1種以上である、[1]に記載の光学材料用重合性組成物。
[3] ポリオール化合物(B)は、数平均分子量が100以上であり、下記一般式(I)~下記一般式(IV)で表される化合物から選択される1種以上の化合物である、[1]または[2]に記載の光学材料用重合性組成物;
Figure JPOXMLDOC01-appb-C000010
(式(I)中、pは4~100の数値を示し、Xは水素原子またはメチル基を示し、複数存在するXは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(II)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。Zは、置換または無置換の2価の芳香族基、置換または無置換の炭素数1~20の芳香族基を含んでいても良い2価の脂肪族基を示す。)
Figure JPOXMLDOC01-appb-C000012
(式(III)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000013
(式(IV)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、fは0以上の数値を示し、gは1以上の数値を示し、hは1以上の数値を示し、jは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Rは炭素数1~20の直鎖または分岐アルキレン基、または、炭素数1~10の直鎖または分岐アルキル基を置換基として有していても良いフェニレン基を示し、複数存在するRは同一でも異なっていてもよい。)
[4] ポリオール化合物(B)が一般式(I)、一般式(III)または一般式(IV)で表される化合物である、[3]に記載の光学材料用重合性組成物。
[5] 前記一般式(I)で表される化合物がポリエチレングリコールまたはポリプロピレングリコールである、[3]または[4]に記載の光学材料用重合性組成物。
[6] 前記一般式(I)で表される化合物の数平均分子量が200~4000である、[3]~[5]のいずれかに記載の光学材料用重合性組成物。
[7] 前記一般式(I)で表される化合物の数平均分子量が300~3000である、[3]~[5]のいずれかに記載の光学材料用重合性組成物。
[8] 前記一般式(II)で表される化合物の数平均分子量が400~2000である、[3]または[4]に記載の光学材料用重合性組成物。
[9] 前記一般式(III)で表される化合物の数平均分子量が400~2000である、[3]または[4]に記載の光学材料用重合性組成物。
[10] 前記一般式(IV)で表される化合物の数平均分子量が600~3000である、[3]または[4]に記載の光学材料用重合性組成物。
[11] 活性水素化合物(C)が、ポリオール化合物、ポリチオール化合物およびヒドロキシ基を有するチオール化合物よりなる群から選択される1種以上である、[1]~[10]のいずれかに記載の光学材料用重合性組成物。
[12] 活性水素化合物(C)が三官能以上の活性水素化合物である、[1]~[11]のいずれかに記載の光学材料用重合性組成物。
[13] 活性水素化合物(C)が、グリセリン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、およびトリメチロールプロパントリス(3-メルカプトプロピオネート)よりなる群から選択される1種以上である、[1~[12のいずれかに記載の光学材料用重合性組成物。
[14] フォトクロミック化合物(D)は、下記一般式(5)で表される、[1]~[13]のいずれかに記載の光学材料用重合性組成物;
Figure JPOXMLDOC01-appb-C000014
(式中、RおよびRは同一でも異なっていてもよく、独立して、水素;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、-NH基、-NHR基、-N(R)基(Rが炭素数1~6の直鎖または分枝のアルキル基である。Rが2つ存在する場合、2つのRは同一でも異なっていてもよい。)、およびメタクリロイル基またはアクリロイル基から選択される少なくとも1つの置換基を有する。);
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。)
を表し、
 R3は同一でも異なっていてもよく、独立して、ハロゲン原子;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
炭素数1~12の直鎖または分岐アルコキシ基;
少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数3~12のハロシクロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分岐ハロアルコキシ基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、およびアミノ基、から選択される少なくとも1つの置換基を有する。);
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。);
置換または無置換のフェノキシまたはナフトキシ基(置換基として、炭素数1~6の直鎖または分岐アルキル基またはアルコキシ基から選択される少なくとも1つの置換基を有する。);
-NH2、-NHR、-CONH2、または-CONHR
(Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
-OCOR8または-COOR8(ここで、R8が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、またはR1、R2において、置換アリールまたは置換ヘテロアリール基の置換基の少なくとも1つにより置換されているフェニル基または無置換のフェニル基である。);
を表し、
mが0から4までの整数であり;
Aが、下記式(A2)または式(A4
Figure JPOXMLDOC01-appb-C000015
のアネル化環を表し、これらのアネル化環において、
点線が、一般式(5)のナフトピラン環の炭素C5炭素C6結合を表し;
アネル化環(A4)のα結合が、一般式(5)のナフトピラン環の炭素C5または炭素C6に結合されることができ;
4が、同じかまたは異なり、独立して、OH、炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を表し、もしくは2つのR4がカルボニル(CO)を形成し;
5が、ハロゲン;
炭素数1~12の直鎖または分枝のアルキル基;
少なくとも1つのハロゲン原子により置換された、炭素数1~6の直鎖または分枝のハロアルキル基;
炭素数3~12のシクロアルキル基;
炭素数1~6の直鎖または分枝のアルコキシ基;
置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。);
-NH2、-NHR
(ここで、Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
置換または無置換であるフェノキシまたはナフトキシ基(置換基として、少なくとも炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を有する。);
-COR9、-COOR9または-CONHR9基(ここで、R9が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、または置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。));
Aが(A)を示す場合、nが0から2までの整数であり、pが0から4までの整数であり、Aが(A)を示す場合、nが0から2までの整数である。)。
[15] ポリイソシアネート化合物(A)に対するポリオール化合物(B)の官能基当量比(B/A)が0.02~0.6、ポリイソシアネート化合物(A)に対する活性水素化合物(C)の官能基当量比(C/A)が0.4~0.98である、[1~14のいずれかに記載の光学材料用重合性組成物。
[16] [1]~15]のいずれかに記載の光学材料用重合性組成物の硬化物からなる成形体。
[17] [16]に記載の成形体からなる光学材料。
[18] [16]に記載の成形体からなるプラスチックレンズ。
[19] (A)ポリイソシアネート化合物と、
 (B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000016
(式(1)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、aは0以上の数値を示し、bは0以上の数値を示し、dは0以上の数値を示し、eは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基を示し、複数存在するZは同一でも異なっていてもよい。)
で表され、数平均分子量が100以上であるポリオール化合物と、
(C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
(D)フォトクロミック化合物と、を混合して、光学材料用重合性組成物を調製する工程と、
 前記光学材料用重合性組成物を鋳型内に注型重合することによりレンズ基材を形成する工程と、
を含む、プラスチックレンズの製造方法。
 本発明の光学材料用重合性組成物によれば、フォトクロミック化合物の性能低下を起こすことなく、優れたフォトクロミック性能を発揮するとともに、機械的強度などの物性にも優れた、フォトクロミック化合物を含むポリウレタン系光学材料またはポリチオウレタン系光学材料を得ることができる。
 本発明の光学材料用重合性組成物を、以下の実施の形態に基づいて説明する。
 本実施形態の光学材料用重合性組成物は、
 (A)ポリイソシアネート化合物と、
 (B)下記一般式(1)で表され、数平均分子量が100以上であるポリオール化合物と、
(C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
(D)フォトクロミック化合物と、
を含む。
Figure JPOXMLDOC01-appb-C000017
(式(1)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、aは0以上の数値を示し、bは0以上を示し、dは0以上の数値を示し、eは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基を示し、複数存在するZは同一でも異なっていてもよい。)
 本実施形態の光学材料用重合性組成物は、前記、(A)~(C)の化合物を構成に含むことで、当該組成物の重合体マトリックス内でのフォトクロミック化合物(D)の異性化反応の障害を効果的に抑えていると推察される。すなわち、(A)および(C)の化合物からなる眼鏡用レンズ等に利用されている従来樹脂に、本発明の必須成分である(B)の化合物を加えることにより、マトリックス分子鎖の中にフォトクロミック化合物の異性化反応が起きやすくなるような適度な空間が形成され、その結果、良好なフォトクロミック性能を実現していると考えられる。また、この構成により、高いフォトクロミック性能を発揮するとともに、ポリ(チオ)ウレタン系樹脂の特徴である優れた機械的物性を有するという、バランスに優れた光学材料を提供することができる。
 以下、各成分について説明する。
[(A)ポリイソシアネート化合物]
 ポリイソシアネート化合物(A)としては、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、o-キシリレンジイソシアネート、p-キシリレンジイソシアネート、キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等の脂肪族ポリイソシアネート化合物;
イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、ジシクロヘキシルメタン-2,4'-ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;
ジフェニルスルフィド-4,4-ジイソシアネート、トリレンジイソシアネート、フェニレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ポリイソシアネート化合物;
2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物等を挙げることができる。ポリイソシアネート化合物(A)としては、これらから選択される少なくとも1種を用いることができる。
 ポリイソシアネート化合物(A)としては、単量体以外に、変性体および/または変性体との混合物の場合も含み、イソシアネートの変性体としては、例えば、多量体、ビウレット変性体、アロファネート変性体、オキサジアジントリオン変性体、ポリオール変性体などが挙げられる。多量体としては、例えば、ウレットジオン、ウレトイミン、カルボジイミド等の二量体、イソシアヌレート、イミノオキサジアンジオン等の三量体以上の多量体が挙げられる。
 ポリイソシアネート化合物(A)としては、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、m-キシリレンジイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、トリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタンジイソシアネートが好ましく、
 m-キシリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンがより好ましい。これらのポリイソシアネート化合物は単独で用いてもよく、2種以上の混合物として用いてもよい。
[(B)ポリオール化合物]
 本実施形態において、ポリオール化合物(B)としては、下記一般式(1)で表され、数平均分子量が100以上である化合物から選択される1種以上の化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000018
 ポリオール化合物(B)の数平均分子量は、下限が、100以上、好ましくは200以上、より好ましくは300以上、さらに好ましくは400以上であり、上限が4000以下、より好ましくは3000以下、さらに好ましくは2000以下である。上限と下限は適宜組み合わせることができる。
 式(1)中、mは1~20、好ましくは1~10、さらに好ましくは2~5の数値を示す。
 nは1~20、好ましくは1~10、さらに好ましくは2~5の数値を示す。
 aは0以上、好ましくは0~100、さらに好ましくは0~25の数値を示す。
 bは0以上、好ましくは0~200、さらに好ましくは0~100の数値を示す。
 dは0以上、好ましくは1~200、さらに好ましくは1~100の数値を示す。
 eは1以上、好ましくは1~200、さらに好ましくは1~100の数値を示す。
 kは0~2mを示し、lは0~2nを示す。
 Qは水素原子または炭素数1~6のアルキル基、好ましくは水素原子または炭素数1~3のアルキル基を示す。複数存在するQは同一でも異なっていてもよい。
 Qは水素原子または炭素数1~6のアルキル基、好ましくは水素原子または炭素数1~3のアルキル基を示す。複数存在するQは同一でも異なっていてもよい。
 Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基、好ましくは芳香族基を含んでいてもよい炭素数1~20の2価の有機基である。複数存在するZは同一でも異なっていてもよい。
 「芳香族基を含んでいてもよい炭素数1~30の2価の有機基」としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、シクロペンチレン基、ヘキサメチレン基、シクロヘキシレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基等の炭素数1~30の置換または無置換の鎖状または環状脂肪族基;
フェニレン基、ナフチレン基、アントラセン基、ジフェニルメタン基、1,1-ジフェニルエタン基、1,1,1-メチルジフェニルエタン基、ジフェニルプロパン基、ジフェニルエーテル基、ジフェニルスルフィド基、ジフェニルスルホキシド基、ジフェニルスルホン基、ジフェニルケトン基、フェニルベンゾエート基、ビフェニル基、スチルベン基、ジアゾベンゼン基、アニリンベンジリデン基等の置換または無置換の炭素数6以上30以下の芳香族基;
-C64-CH2-基、-CH2-C64-CH2-基、-CH2-C63(Cl)-CH2-基、-C106-CH2-基、-CH2-C106-CH2-基、-CH2CH2-C64-CH2CH2-基等の置換または無置換の炭素数6以上30以下の芳香族-脂肪族基;または
-C(O)-R-C(O)-(Rは、置換または無置換の炭素数1~20の直鎖または分岐アルキレン基、置換または無置換の炭素数6~20の芳香族基を示す。)、-C(O)-R-(Rは、置換または無置換の炭素数1~20の直鎖または分岐アルキレン基を示す。)等の炭素数1以上30以下のカルボニル基含有化合物;
等が挙げられる。
 これらの有機基は、炭素数1~10直鎖または分岐アルキル基、炭素数1~10直鎖または分岐アルコキシ基等で置換されていてもよい。
 本実施形態の重合性組成物から得られる重合体(成形体)に良好な発色性能を付与するには、添加するポリオール化合物(B)の分子量を適切な範囲に設定することが必要である。
 本実施形態において、ポリオール化合物(B)としては、一般式(I)~一般式(IV)で表される化合物から選択される1種以上の化合物を用いることができる。
(一般式(I)で表される化合物)
Figure JPOXMLDOC01-appb-C000019
 式(I)中、pは4~100の数値を示し、好ましくは15~50の数値を示す。Xは水素原子またはメチル基を示し、複数存在するXは同一でも異なっていてもよい。Xは好ましくはメチル基である。
 一般式(I)で表される化合物としては、ポリエチレングリコール、ポリプロピレングリコールが挙げられ、これらはエチレングリコールやジエチレングリコール、トリエチレングリコールなどの低分子オリゴマーを含んでいてもよく、また、単独で用いても、2種以上の混合物として用いてもよい。
 一般式(I)で表される化合物の数平均分子量は、下限が100以上、好ましくは200以上、より好ましくは300以上、さらに好ましくは400以上であり、上限が4000以下、より好ましくは3000以下、さらに好ましくは2000以下である。上限と下限は適宜組み合わせることができる。
 一般式(I)で表される化合物の数平均分子量が、上記の範囲にあることにより、ポリ(チオ)ウレタン樹脂の機械強度などの優れた特性を損なうことなくフォトクロミック性能が効果的に発現することができる。
 例えば、一般式(I)で表される化合物がポリエチレングリコールの場合、数平均分子量が400未満であると発色性能の改善が十分に得られず、数均分子量が2000を超えると重合体が白濁する場合がある。
 また、一般式(I)で表される化合物がポリプロピレングリコールの場合、数平均分子量が400未満であると発色性能の改善が十分に得られず、数平均分子量が1000を超えると重合体が白濁する場合がある。
 また、ポリプロピレングリコールの場合はポリエチレングリコールよりも得られる重合体により高い耐熱性、剛性を与える。従って、眼鏡用レンズのようなさまざまな環境、条件で使用される用途にはポリエチレングリコールよりもポリプロピレングリコールの方がより好ましい場合がある。
(一般式(II)で表される化合物)
Figure JPOXMLDOC01-appb-C000020
 式(II)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、好ましくは6~25の数値を示す。qおよびrは、qとrの合計が2~100の数値、好ましくは12~50の数値を満たすように数値を取り得るものである。
 RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。
 Zは、置換または無置換の2価の芳香族基、置換または無置換の炭素数1~20の芳香族基を含んでいても良い2価の脂肪族基、を示す。なお、Zは、-Ph-C(CH-Ph-(Ph:フェニレン基)を含まない。
 置換または無置換の2価の芳香族基としては、フェニレン基、ナフチレン基、アントラセン基、ジフェニルメタン基、1,1-ジフェニルエタン基、1,1,1-メチルジフェニルエタン基、1,3-ジフェニルプロパン基、1,2-ジフェニルプロパン基、ジフェニルエーテル基、ジフェニルスルフィド基、ジフェニルスルホキシド基、ジフェニルスルホン基、ジフェニルケトン基、フェニルベンゾエート基、ビフェニル基、スチルベン基、ジアゾベンゼン基、アニリンベンジリデン基及びこれらの誘導体等が挙げられる。
 置換または無置換の炭素数1~20の芳香族基を含んでいても良い2価の脂肪族基としては、置換または無置換の炭素数1~20のアルキレン基、炭素数1~20のビスアルコキシ芳香族化合物から誘導される2価の基等を挙げることができる。
 置換または無置換の炭素数1~20のアルキレン基としては、ブチレン基、ペンチレン基、ノニレン基等を挙げることができる。
 炭素数1~20のビスアルコキシ芳香族化合物としては、1,4-ビス(ヒドロキシエトキシ)ベンゼン、(1,3-ビス(m-ヒドロキシエトキシ)ベンゼン、2,2- [(1,1-ビフェニル)-4,4-ジイルビス(オキシ)]ビスエタノール、等を挙げることができる
 2価の芳香族基および2価の脂肪族基の置換基としては、炭素数1~10アルキル基、炭素数1~10アルコキシ基等を挙げることができる。
 本実施形態において、Zが、フェニレン基、ナフチレン基、ビフェニレン基であることが好ましい。
 一般式(II)で表される化合物としては、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、1,4-ビス(ヒドロキシエトキシ)ベンゼン、1,3-ビス(m-ヒドロキシエトキシ)ベンゼン、2,2- [(1,1-ビフェニル)-4,4-ジイルビス(オキシ)]ビスエタノール等のポリエチレングリコール付加体あるいはポリプロピレングリコール付加体等が挙げられ、これらは単独で用いてもよく、2種以上の混合物として用いてもよい。
 なお、一般式(II)で表される化合物は、一般式(III)で表される化合物を含まない。
 一般式(II)で表される化合物の数平均分子量は、下限が200以上、好ましくは3000以上、より好ましくは400以上、さらに好ましくは500以上であり、上限が4000以下、好ましくは3000以下、より好ましくは2000以下、さらに好ましくは1000以下である。上限と下限は適宜組み合わせることができる。
 一般式(II)で表される化合物の数平均分子量が、上記の範囲にあることにより、ポリ(チオ)ウレタン樹脂の機械強度などの優れた特性を損なうことなくフォトクロミック性能が効果的に発現することができる。
(一般式(III)で表される化合物)
Figure JPOXMLDOC01-appb-C000021
 式(III)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、好ましくは6~25の数値を示す。qおよびrは、qとrの合計が2~100の数値、好ましくは12~50の数値を満たすように数値を取り得るものである。
 RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。
 一般式(III)で表される化合物としては、ビスフェノールAのポリエチレングリコール付加体やビスフェノールAのポリプロピレングリコール付加体等が挙げられ、これらは単独で用いてもよく、2種以上の混合物として用いてもよい。
 一般式(III)で表される化合物の数平均分子量は、下限が200以上、好ましくは300以上、より好ましくは400以上、さらに好ましくは500以上であり、上限が4000以下、好ましくは3000以下、より好ましくは2000以下、さらに好ましくは1500以下である。上限と下限は適宜組み合わせることができる。
 一般式(III)で表される化合物の数平均分子量が、上記の範囲にあることにより、ポリ(チオ)ウレタン樹脂の機械強度などの優れた特性を損なうことなくフォトクロミック性能が効果的に発現することができる。
 例えば、一般式(III)で表される化合物がビスフェノールAのポリエチレングリコール付加体やビスフェノールAのポリプロピレングリコール付加体の場合、数平均分子量が400未満であると発色性能の改善が十分に得られず、数平均分子量が1000を超えると重合体が白濁する場合がある。
(一般式(IV)で表される化合物)
Figure JPOXMLDOC01-appb-C000022
 式(IV)中、mは1~20、好ましくは1~10、さらに好ましくは2~5の数値を示す。
 nは1~20、好ましくは1~10、さらに好ましくは2~5の数値を示す。
 fは0以上、好ましくは0~100、さらに好ましくは0~25の数値を示す。
 gは1以上、好ましくは1~200、さらに好ましくは1~100の数値を示す。
 hは1以上、好ましくは1~200、さらに好ましくは1~100の数値を示す。
 jは1以上、好ましくは1~200、さらに好ましくは1~100の数値を示す。
 kは0~2mを示し、lは0~2nを示す。
 Qは水素原子または炭素数1~6のアルキル基、好ましくは水素原子または炭素数1~3のアルキル基を示す。複数存在するQは同一でも異なっていてもよい。
 Qは水素原子または炭素数1~6のアルキル基、好ましくは水素原子または炭素数1~3のアルキル基を示す。複数存在するQは同一でも異なっていてもよい。
 Rは炭素数1~20の直鎖または分岐アルキレン基、または、炭素数1~10の直鎖または分岐アルキル基を置換基として有していても良いフェニレン基を示す。複数存在するRは同一でも異なっていてもよい。
 一般式(IV)で表される化合物としては、ジオール化合物とジカルボン酸からなるポリエステル化合物を挙げることができる。
 ポリエステル化合物を構成するジオール化合物としては特に限定はないが、主鎖の炭素数2~12の脂肪族ジオールが好適に用いられ、これらの例としてエチレングリコール、プロピレングリコール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール等があげられる。
 また、ポリエステル化合物を構成するジカルボン酸としても特に限定はないが、主鎖の炭素数2~12の脂肪族ジカルボン酸や芳香族ジカルボン酸が好適に用いられ、これらの例としてコハク酸、アジピン酸、セバシン酸、イソフタル酸、テレフタル酸等があげられる。
 ポリエステル化合物はこれらのジオール化合物の1種または2種以上と、ジカルボン酸の1種または2種以上とを適宜組み合わせて使用することができる。
 また、ラクトンを開環重合して得られるポリエステル化合物も本発明に使用することができる。ラクトン化合物の例としては、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン等があげられる。
 一般式(IV)で表される化合物の数平均分子量は、下限が600以上、好ましくは800以上、さらに好ましくは1000以上であり、上限は4000以下、より好ましくは3000以下、さらに好ましくは2000以下である。上限と下限は適宜組み合わせることができる。
 一般式(IV)で表される化合物の数平均分子量が、上記の範囲にあることにより、ポリ(チオ)ウレタン樹脂の機械強度などの優れた特性を損なうことなくフォトクロミック性能が効果的に発現することができる。
 例えば、一般式(IV)で表される化合物が、3-メチル-1,5-ペンタンジオールにアジピン酸とイソフタル酸の等モル混合物を等モルで反応させたポリエステル化合物の場合、数平均分子量が1000未満であると発色性能の改善が十分に得られず、数平均分子量が2000を超えると重合体が白濁する場合がある。
 上記のような化合物からなるポリオール化合物(B)を用いることにより、フォトクロミック性能を効果的に発現することができる。
 本実施形態においては、ポリオール化合物(B)として、一般式(I)で表される化合物~一般式(IV)で表される化合物から選択される1種以上の化合物を用いることができ、上記効果の観点から、一般式(I)、一般式(III)または一般式(IV)で表される化合物を好ましく用いることができる。
 本実施形態において、ポリオール化合物(B)は、二官能以上の活性水素化合物(C)の重量に対して、0.3重量倍~6重量倍の範囲で用いることができる。本実施形態においては、高いフォトクロミック性能を維持したまま用途によって求められる樹脂性能が得られるように当該範囲内で用いられる。好ましくは0.7重量倍~5重量倍の範囲である。
 活性水素化合物(C)に対するポリオール化合物(B)の重量倍が、上記の範囲にあることにより、高い調光性能、すなわち、濃い発色濃度と早い濃度変化を好適に発揮することができる。さらに、架橋密度が最適な範囲となるため、剛性、表面硬度、耐熱性等により優れた光学材料を得ることができる。
[(C)二官能以上の活性水素化合物]
 二官能以上の活性水素化合物(C)(以下、単に「活性水素化合物(C)」)としては、特に限定されるものではないが、ポリオール化合物、ポリチオール化合物、ヒドロキシ基を有するチオール化合物等を挙げることができる。これらは適宜組み合わせて用いることができる。なお、活性水素化合物(C)は、前記ポリオール化合物(B)を含まない。
 ポリオール化合物としては、たとえばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ブタントリオール、 1,2-メチルグルコサイド、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロース、ジグリペロール、トリエチレングリコール、ポリエチレングリコール、トリス(2-ヒドロキシエチル)イソシアヌレート、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ[5.2.1.02,6]デカン-ジメタノール、ビシクロ[4,3,0]-ノナンジオール、ジシクロヘキサンジオール、トリシクロ[5,3,1,1]ドデカンジオール、ビシクロ[4,3,0]ノナンジメタノール、トリシクロ[5,3,1,1]ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ[5,3,1,1]ドデカノール、スピロ[3,4]オクタンジオール、ブチルシクロヘキサンジオール、1,1'-ビシクロヘキシリデンジオール、シクロヘキサントリオール、マルチトール、ラクトース等の脂肪族ポリオール;
ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシベンゼン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン、ビスフェノールA、ビスフェノールF、キシリレングリコール、ジ(2-ヒドロキシエトキシ)ベンゼン、ビスフェノールA-ビス-(2-ヒドロキシエチルエーテル)、テトラブロムビスフェノールA、テトラブロムビスフェノールA-ビス-(2-ヒドロキシエチルエーテル)等の芳香族ポリオール;
ジブロモネオペンチルグリコール等のハロゲン化ポリオール;
エポキシ樹脂等の高分子ポリオールが挙げられる。本実施形態においては、これらから選択される少なくとも1種を組み合わせて用いることができる。
 また、ポリオール化合物として他に、シュウ酸、グルタミン酸、アジピン酸、酢酸、プロピオン酸、シクロヘキサンカルボン酸、β-オキソシクロヘキサンプロピオン酸、ダイマー酸、フタル酸、イソフタル酸、サリチル酸、3-ブロモプロピオン酸、2-ブロモグリコール、ジカルボキシシクロヘキサン、ピロメリット酸、ブタンテトラカルボン酸、ブロモフタル酸などの有機酸と上記ポリオールとの縮合反応生成物;
上記ポリオールとエチレンオキサイドやプロピレンオキサイドなどアルキレンオキサイドとの付加反応生成物;
アルキレンポリアミンとエチレンオキサイドや、プロピレンオキサイドなどアルキレンオキサイドとの付加反応生成物;さらには、
ビス-[4-(ヒドロキシエトキシ)フェニル]スルフィド、ビス-[4-(2-ヒドロキシプロポキシ)フェニル]スルフィド、ビス-[4-( 2,3-ジヒドロキシプロポキシ)フェニル]スルフィド、ビス-[4-(4-ヒドロキシシクロヘキシロキシ)フェニル]スルフィド、ビス-[2-メチル-4-(ヒドロキシエトキシ)-6-ブチルフェニル]スルフィドおよびこれらの化合物に水酸基当たり平均3分子以下のエチレンオキシドおよび/またはプロピレンオキシドが付加された化合物;
ジ-(2-ヒドロキシエチル)スルフィド、1,2-ビス-(2-ヒドロキシエチルメルカプト)エタン、ビス(2-ヒドロキシエチル)ジスルフィド、1,4-ジチアン-2,5-ジオール、ビス(2,3-ジヒドロキシプロピル)スルフィド、テトラキス(4-ヒドロキシ-2-チアブチル)メタン、ビス(4-ヒドロキシフェニル)スルホン(商品名ビスフェノールS)、テトラブロモビスフェノールS、テトラメチルビスフェノールS、4,4'-チオビス(6-tert-ブチル-3-メチルフェノール)、1,3-ビス(2-ヒドロキシエチルチオエチル)-シクロヘキサンなどの硫黄原子を含有したポリオール等が挙げられる。本実施形態においては、これらから選択される少なくとも1種を組み合わせて用いることができる。
 ポリチオール化合物としては、例えば、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2―メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3―メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;
1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;
2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物;
下記一般式(2)
Figure JPOXMLDOC01-appb-C000023
(式中、a、bは、独立して1~4の整数を示し、cは1~3の整数を示す。Zは水素またはメチル基であり、Zが複数存在する場合は、それぞれ同一でも異なっていてもよい。)で表される化合物等
を挙げることができるが、これら例示化合物のみに限定されるものではない。本実施形態においては、これらから選択される少なくとも1種を組み合わせて用いることができる。
 ヒドロキシ基を有するチオール化合物としては、例えば、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルセリンビス(メルカプトアセテート)、4-メルカプトフェノール、2,3-ジメルカプト-1-プロパノール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)等
を挙げることができるが、これら例示化合物のみに限定されるものではない。
 さらにこれら活性水素化合物のオリゴマーや塩素置換体、臭素置換体等のハロゲン置換体を使用しても良い。これら活性水素化合物は単独でも、2種類以上を混合しても使用することができる。
 本実施形態においては、得られる成形体の機械的強度などの物性の観点から、活性水素化合物(C)として、三官能以上の活性水素化合物を用いることが好ましい。
 具体的には、グリセリン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、トリメチロールプロパントリス(3-メルカプトプロピオネート)から選択される少なくとも1種が好ましく使用される。
 また、ポリオール化合物(B)と活性水素化合物(C)の好ましい組合せとしては、
ポリエチレングリコールと、グリセリン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、および4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンから選択される少なくとも1種との組み合わせ、
ポリプロピレングリコールと、ペンタエリスリトールテトラキス(2-メルカプトアセテート)および4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンから選択される少なくとも1種との組み合わせ、
ビスフェノールAのポリプロピレングリコール付加体と、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンとの組み合わせ、
3-メチル-1,5-ペンタンジオール、アジピン酸、イソフタル酸から成るポリエステル化合物から選択される少なくとも1種と、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンとの組み合わせ、等を挙げることができるが、これらの組み合わせに限定されるものではない。
[(D)フォトクロミック化合物]
 本実施形態において、フォトクロミック化合物(D)としては、特に制限はなく、フォトクロミックレンズに使用しうる従来公知の化合物の中から、任意のものを適宜選択して用いることができる。例えば、スピロピラン系化合物、スピロオキサジン系化合物、フルギド系化合物、ナフトピラン系化合物、ビスイミダゾール化合物から所望の着色に応じて、1種または2種以上を用いることができる。
 前記スピロピラン系化合物の例としては、インドリノスピロベンゾピランのインドール環及びベンゼン環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロナフトピランのインドール環及びナフタリン環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロキノリノピランのインドール環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロピリドピランのインドール環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、等が挙げられる。
 前記スピロオキサジン系化合物の例としては、インドリノスピロベンゾオキサジンがインドール環及びベンゼン環で置換されたハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロナフトオキサジンのインドール環及びナフタリン環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロフェナントロオキサジンのインドール環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、インドリノスピロキノリノオキサジンのインドール環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、ピペリジノスピロナフトオキサジンのピペリジン環及びナフタリン環がハロゲン、メチル、エチル、メチレン、エチレン、水酸基等で置換された各置換体、等が挙げられる。
 前記フルギド系化合物の例としては、N-シアノメチル-6,7-ジヒドロ-4-メチル-2-フェニルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン〕、N-シアノメチル-6,7-ジヒドロ-2-(p-メトキシフェニル)-4-メチルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、6,7-ジヒドロ-N-メトキシカルボニルメチル-4-メチル-2-フェニルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、6,7-ジヒドロ-4-メチル-2-(p-メチルフェニル)-N-ニトロメチルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、N-シアノメチル-6,7-ジヒドロ-4-シクロプロピル-3-メチルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、N-シアノメチル-6,7-ジヒドロ-4-シクロプロピルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、N-シアノメチル-6,7-ジヒドロ-2-(p-メトキシフェニル)-4-シクロプロピルスピロ(5,6-ベンゾ〔b〕チオフェンジカルボキシイミド-7,2'-トリシクロ〔3.3.1.13,7〕デカン)、等が挙げられる。
 前記ナフトピラン系化合物の例としては、スピロ〔ノルボルナン-2,2'-〔2H〕ベンゾ〔h〕クロメン〕、スピロ〔ビシクロ〔3.3.1〕ノナン-9,2'-〔2H〕ベンゾ〔h〕クロメン〕、7'-メトキシスピロ〔ビシクロ〔3.3.1〕ノナン-9,2'-〔2H〕ベンゾ〔h〕クロメン〕、7'-メトキシスピ〔ノルボルナン-2,2'-〔2H〕ベンゾ〔f〕クロメン〕、2,2-ジメチル-7-オクトキシ〔2H〕ベンゾ〔h〕クロメン、スピロ〔2-ビシクロ〔3.3.1〕ノネン-9,2'-〔2H〕ベンゾ〔h〕クロメン〕、スピロ〔2-ビシクロ〔3.3.1〕ノネン-9,2'-〔2H〕ベンゾ〔f〕クロメン〕、6-モルホリノ-3,3-ビス(3-フルオロ-4-メトキシフェニル)-3H-ベンゾ(f)クロメン、5-イソプロピル-2,2-ジフェニル-2H-ベンゾ(h)クロメン、等や、下記の一般式(3)で表される化合物や下記一般式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 一般式(3)および一般式(4)中、RおよびRは同一でも異なっていてもよく、独立して、水素;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基;
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。)を示す。
 置換された炭素数6~24のアリール基または置換された炭素数4~24のヘテロアリール基の置換基は、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、-NH基、-NHR基、-N(R)基(Rは炭素数1~6の直鎖または分枝のアルキル基である。Rが2つ存在する場合、2つのRは同一でも異なっていてもよい。)、およびメタクリロイル基またはアクリロイル基から少なくとも1つ選択される。
 Rは同一でも異なっていてもよく、独立して、ハロゲン原子;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
炭素数1~12の直鎖または分岐アルコキシ基;
少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数3~12のハロシクロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分岐ハロアルコキシ基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、およびアミノ基、から選択される少なくとも1つの置換基を有する。);
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。);
置換または無置換のフェノキシまたはナフトキシ基(置換基として、炭素数1~6の直鎖または分岐アルキル基またはアルコキシ基から選択される少なくとも1つの置換基を有する。);
-NH2、-NHR、-CONH2、または-CONHR
(Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
-OCOR8または-COOR8(ここで、R8が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、またはR1、R2において、置換アリールまたは置換ヘテロアリール基の置換基の少なくとも1つにより置換されているフェニル基または無置換のフェニル基である。);
を表す。
 少なくとも2つの隣接するR同士が結合し、Rが結合している炭素原子を含んで、1つ以上の芳香環基または非芳香環基を形成することができる。芳香環基または非芳香環基は、酸素、硫黄、及び窒素からなる群より選択されるヘテロ原子を含んでいてもよい1つの環または2つのアネル化された環を含む。
 lは、0から2までの整数である。mは、0から4までの整数である。
 また、その他に、ナフトピラン系化合物として、WO2013/78086公報、WO2012/149599公報、WO2010/020770公報、WO2009/146509公報に記載のポリシロキサンオリゴマー、ポリアルキレンオキサイド、ポリアルキルエステルそれぞれの少なくとも1つの末端に調光染料分子が付加した化合物や、上記記載の一般式(3)または一般式(4)で示される構造が連結基で結合され、1分子中にナフトピラン環を2個以上含む化合物などが挙げられる。
 一般式(3)で表されるナフトピラン系化合物において、下記一般式(5)で表される化合物(以下、化合物(5)とも表記する。)が好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000026
 R、R、R、mは、前記と同じであり、Aは、下記式(A)~(A)をアネル化環を表す。
Figure JPOXMLDOC01-appb-C000027
 これらのアネル化環(A1)から(A5)において、点線が、一般式(5)のナフトピラン環の炭素C5炭素C6結合を表す。アネル化環(A4)または(A5)のα結合が、一般式(5)のナフトピラン環の炭素C5または炭素C6に結合される。
 R4が、同じかまたは異なり、独立して、OH、炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を表し、もしくは2つのR4がカルボニル(CO)を形成する。
 R5、R6およびR7が、独立して、ハロゲン原子(好ましくはフッ素、塩素または臭素);
炭素数1~12の直鎖または分枝のアルキル基(好ましくは、炭素数1~6の直鎖または分枝のアルキル基);
少なくとも1つのハロゲン原子により置換された、炭素数1~6の直鎖または分枝のハロアルキル基(好ましくは、フルオロアルキル基);
炭素数3~12のシクロアルキル基;
炭素数1~6の直鎖または分枝のアルコキシ基;
置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R、R基の定義において上述した置換基の少なくとも1つを有する。);
-NH2、-NHR
(ここで、Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
置換または無置換であるフェノキシまたはナフトキシ基(置換基として、少なくとも炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を有する。);
-COR9、-COOR9または-CONHR9基(ここで、R9が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、または置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する)を表す。)を表す。
 nが0から6までの整数であり、oが0から2までの整数であり、pが0から4までの整数であり、qが0から3までの整数である。
 なお、Aが(A)を示す場合、nが0から2までの整数であり、pが0から4までの整数であり、Aが(A)を示す場合、nが0から2までの整数である。
 一般式(5)のフォトクロミック化合物(D)は、求められている用途に適用される変色反応速度と組み合わされ、40℃でさえ高い着色適性を有する。容易に達成できる色は、オレンジから青にまで及ぶ。
 なお、本実施態様において、A=(A1)である化合物(5)、A=(A2)である化合物(5)、A=(A3)である化合物(5)、A=(A4)である化合物(5)、およびA=(A5)である化合物(5)からなる群より選択される少なくとも1つの異なる種類に属する化合物(5)の混合物も包含する。
 本実施形態では、化合物(5)として、下記一般式(6)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000028
 Ar、Arは、芳香族基であり、これらは同一でも異なっていてもよく、置換されていてもよいベンゼン環またはチオフェン環を表す。ベンゼン環またはチオフェン環の置換基としては、炭素数1~10の直鎖または分岐のアルキル基、炭素数1~10の直鎖または分岐のアルコキシ基、炭素数1~6の直鎖または分岐のアルキルモノ(またはジ)置換アミノ基を挙げることができる。R、R、R、m、n、pは前記と同義である。
 化合物(5)として、下記一般式(7)で表される化合物をさらに好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000029
 式(7)中、R10、R11はお互いに同一でも異なっていてもよく、炭素数1~10の直鎖または分岐のアルキル基、炭素数1~10の直鎖または分岐のアルコキシ基、炭素数1~6の直鎖または分岐のアルキルモノ(またはジ)置換アミノ基を表す。mが2のとき、隣接するR同士が結合し、Rが結合している炭素原子を含んで環構造を形成することができる。r、sは、0~4の整数である。上記環構造は、置換または無置換である、炭素数6~24のアリール基または炭素数3~24のヘテロアリール基である。
 R、R、R、m、n、pは前記と同義である。
 一般式(7)で示される化合物の具体例としては、下記式(8)または下記式(9)で示される化合物が挙げられる。本実施形態においては、式(8)及び式(9)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 フォトクロミック化合物(D)である一般式(5)で表される化合物は、公知の方法で合成することができる。たとえば、特表2004-500319号に記載の方法で合成することもできる。
 また、さらに一般式(3)で表されるナフトピラン系化合物の具体例としては、下記式(10)で示される化合物を好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 ナフトピラン系化合物としては、前記に記載の化合物から選ばれる1種または2種以上の化合物を用いてよい。
[その他の成分]
 本実施形態においては、上記(A)~(D)成分に加えて、重合触媒、内部離型剤、樹脂改質剤等をさらに含んでいてもよい。
 重合触媒としては、3級アミン化合物およびその無機酸塩または有機酸塩、金属化合物、4級アンモニウム塩、または有機スルホン酸を挙げることができる。
 内部離型剤としては、酸性リン酸エステルを用いることができる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独または2種類以上混合して使用することできる。
 樹脂改質剤としては、例えば、エピスルフィド化合物、アルコール化合物、アミン化合物、エポキシ化合物、有機酸及びその無水物、(メタ)アクリレート化合物等を含むオレフィン化合物等が挙げられる。
<光学材料用重合性組成物の製造方法>
 本実施形態の光学材料用重合性組成物は、イソシアネート化合物(A)、ポリオール化合物(B)、活性水素化合物(C)、およびフォトクロミック化合物(D)を混合して、調製することができる。
 本実施形態において、ポリイソシアネート化合物(A)に対するポリオール化合物(B)の官能基当量比(B/A)は、下限が0.02以上、好ましくは0.10以上、より好ましくは0.15以上、さらに好ましくは0.20以上、特に好ましくは0.25以上、上限が0.60以下、好ましくは0.50以下、より好ましくは0.40以下、さらに好ましくは0.30以下である。上限と下限は適宜組み合わせることができる。
 ポリイソシアネート化合物(A)に対する活性水素化合物(C)の官能基当量比(C/A)は、下限が0.30以上、好ましくは0.40以上、より好ましくは0.50以上、さらに好ましくは0.60以上、上限が0.99以下、好ましくは0.98以下、より好ましくは0.90以下、さらに好ましくは0.80以下である。上限と下限は適宜組み合わせることができる。
 当該当量比の範囲であることにより、高いフォトクロミック性能を発揮するとともに、ポリ(チオ)ウレタン系樹脂の特徴である優れた機械的物性を有するという、バランスに優れた光学材料を提供することができる。
 例えば、一般式(I)で表される化合物がポリエチレングリコールの場合、官能基当量比(B/A)が0.1未満であると発色性能の改善が十分に得られない場合がある。また官能基当量比(B/A)が0.6を超えると重合体が白濁する場合がある。
 また、一般式(I)で表される化合物がポリプロピレングリコールの場合、官能基当量比(B/A)が0.06未満であると発色性能の改善が十分に得られない場合がある。また官能基当量比(B/A)が0.6を超えると重合体が白濁する場合がある。
 また、一般式(II)で表される化合物については、官能基当量比(B/A)が0.06未満であると発色性能の改善が十分に得られない場合がある。また官能基当量比(B/A)が0.6を超えると重合体が白濁する場合がある。
 また、一般式(III)で表される化合物が、ビスフェノールAのポリエチレングリコール付加体やビスフェノールAのポリプロピレングリコール付加体の場合、官能基当量比(B/A)が0.06未満であると発色性能の改善が十分に得られない場合がある。また官能基当量比(B/A)が0.6を超えると重合体が白濁する場合がある。
 また、一般式(IV)で表される化合物が、3-メチル-1,5-ペンタンジオールにアジピン酸とイソフタル酸の等モル混合物を等モルで反応させたポリエステル化合物の場合、官能基当量比(B/A)が0.02未満であると発色性能の改善が十分に得られない場合がある。また官能基当量比(B/A)が0.2を超えると重合体が白濁する場合がある。
 前記組成物において、ポリイソシアネート化合物(A)中のNCO基に対する、活性水素化合物(C)とポリオール化合物(B)中のOH基とSH基の総和のモル比(NCO基/(OH基+SH基))は、通常0.8~1.2の範囲内であり、好ましくは0.85~1.15の範囲内であり、さらに好ましくは0.9~1.1の範囲内である。
 NCO基/(OH基+SH基)のモル比が0.8以上であれば未反応のOH基やSH基が残らず、組成物が十分硬化し、耐熱性、耐湿性、耐光性に優れた樹脂が得られ、NCO基/(OH基+SH基)の比率が1.2以下であれば未反応のNCO基が残らず耐熱性、耐湿性、耐光性に優れた樹脂が得られ、未反応のNCO基を減らすために反応温度を上げる必要もなく、着色等の欠点が見られず、樹脂材料として好ましい。
 フォトクロミック化合物(D)は、イソシアネート化合物(A)、ポリオール化合物(B)および活性水素化合物(C)の合計量に対して、10ppm~5000ppm、で用いることができる。
 ポリイソシアネート化合物(A)と、ポリオール化合物(B)と、活性水素化合物(C)と、フォトクロミック化合物(D)と、その他添加剤を混合して重合性組成物を調製する場合の温度は通常25℃以下で行われる。重合性組成物のポットライフの観点から、さらに低温にすると好ましい場合がある。ただし、触媒、内部離型剤、添加剤のモノマーへの溶解性が良好でない場合は、あらかじめ加温して、モノマー、樹脂改質剤に溶解させることも可能である。
 組成物中の各成分の混合順序や混合方法は、各成分を均一に混合することができれば特に限定されず、公知の方法で行うことができる。公知の方法としては、例えば、添加剤を所定量含むマスターバッチを作製して、このマスターバッチを溶媒に分散・溶解させる方法などがある。
 本実施形態において、光学材料の製造方法は、特に限定されないが、好ましい製造方法として注型重合が挙げられる。はじめに、ガスケットまたはテープ等で保持された成型モールド間に重合性組成物を注入する。この時、得られるプラスチックレンズに要求される物性によっては、必要に応じて、減圧下での脱泡処理や加圧、減圧等の濾過処理等を行うことが好ましい場合が多い。
 重合条件については、重合性組成物の組成、触媒の種類と使用量、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ、-50~150℃の温度で1~50時間かけて行われる。場合によっては、10~150℃の温度範囲で保持または徐々に昇温して、1~25時間で硬化させることが好ましい。
 光学材料は、必要に応じて、アニール等の処理を行ってもよい。処理温度は通常50~150℃の間で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
 本実施形態において、樹脂を成形する際には、上記「その他の成分」に加えて、目的に応じて公知の成形法と同様に、鎖延長剤、架橋剤、光安定剤、紫外線吸収剤、酸化防止剤、ブルーイング剤、油溶染料、充填剤、密着性向上剤などの種々の添加剤を加えてもよい。
<用途>
 本実施形態の重合性組成物は、注型重合時のモールドの種類を変えることにより種々の形状の成形体として得ることができる。成形体は、フォトクロミック性能を備えるともに、高い屈折率及び高い透明性を備え、プラスチックレンズ等の各種光学材料に使用することが可能である。特に、プラスチック眼鏡レンズとして好適に用いることができる。
[プラスチック眼鏡レンズ]
 本実施形態の成形体からなるレンズ基材を用いたプラスチック眼鏡レンズは必要に応じて、片面又は両面にコーティング層を施して用いてもよい。
 本実施形態のプラスチック眼鏡レンズは、上述の重合性組成物からなるレンズ基材とコーティング層とからなる。
 コーティング層として、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 これらのコーティング層はそれぞれ、紫外線からレンズや目を守る目的で紫外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐候性を向上する目的で光安定剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
 プライマー層は通常、後述するハードコート層とレンズとの間に形成される。プライマー層は、その上に形成するハードコート層とレンズとの密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層には得られたレンズに対する密着性の高いものであればいかなる素材でも使用できるが、通常、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラニン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物などが使用される。プライマー組成物は組成物の粘度を調整する目的でレンズに影響を及ぼさない適当な溶剤を用いてもよい。無論、無溶剤で使用してもよい。
 プライマー層は塗布法、乾式法のいずれの方法によっても形成することができる。塗布法を用いる場合、プライマー組成物を、スピンコート、ディップコートなど公知の塗布方法でレンズに塗布した後、固化することによりプライマー層が形成される。乾式法で行う場合は、CVD法や真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズの表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理を行っておいてもよい。
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能を与えることを目的としたコーティング層である。
 ハードコート層は、一般的には硬化性を有する有機ケイ素化合物とSi,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる元素の酸化物微粒子の1種以上および/またはこれら元素群から選ばれる2種以上の元素の複合酸化物から構成される微粒子の1種以上を含むハードコート組成物が使用される。
 ハードコート組成物には上記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物および多官能性エポキシ化合物の少なくともいずれかを含むことが好ましい。ハードコート組成物にはレンズに影響を及ぼさない適当な溶剤を用いてもよいし、無溶剤で用いてもよい。
 ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、熱硬化、紫外線や可視光線などのエネルギー線照射による硬化方法等が挙げられる。干渉縞の発生を抑制するため、ハードコート層の屈折率は、レンズとの屈折率の差が±0.1の範囲にあるのが好ましい。
 反射防止層は、通常、必要に応じて前記ハードコート層の上に形成される。反射防止層には無機系および有機系があり、無機系の場合、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。有機系の場合、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
 反射防止層は単層および多層があり、単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。効果的に反射防止機能を発現するには多層膜反射防止膜とすることが好ましく、その場合、低屈折率膜と高屈折率膜とを交互に積層する。この場合も低屈折率膜と高屈折率膜との屈折率差は0.1以上であることが好ましい。高屈折率膜としては、ZnO、TiO、CeO、Sb、SnO、ZrO、Ta等の膜があり、低屈折率膜としては、SiO膜等が挙げられる。
 反射防止層の上には、必要に応じて防曇層、防汚染層、撥水層を形成させてもよい。防曇層、防汚染層、撥水層を形成する方法としては、反射防止機能に悪影響をもたらすものでなければ、その処理方法、処理材料等については特に限定されずに、公知の防曇処理方法、防汚染処理方法、撥水処理方法、材料を使用することができる。例えば、防曇処理方法、防汚染処理方法では、表面を界面活性剤で覆う方法、表面に親水性の膜を付加して吸水性にする方法、表面を微細な凹凸で覆い吸水性を高める方法、光触媒活性を利用して吸水性にする方法、超撥水性処理を施して水滴の付着を防ぐ方法などが挙げられる。また、撥水処理方法では、フッ素含有シラン化合物等を蒸着やスパッタによって撥水処理層を形成する方法や、フッ素含有シラン化合物を溶媒に溶解したあと、コーティングして撥水処理層を形成する方法等が挙げられる。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、実施例および比較例において、評価に用いた方法と使用した装置は以下のとおりである。
(a)発色前後の光線透過率変化量(ΔT%max):メタルハライドランプ(180W)光源装置を用いて、温度19℃、積算光量計で測定した紫外線強度1.2mW/cm2の条件で、2.0mm厚に加工した成形体サンプルを5分間発色させたときの発色前後の分光を透過測定システムで測定し、下記式にて求める。
発色前後の光線透過率変化量(ΔT%max)=発色時の極大吸収波長(λmax)での光線透過率(T%max)-発色前の(λmax)での光線透過率(T%0)
 この透過率変化量が大きいほど退色時に明るく発色時に遮光性が高いのでフォトクロミック性能が高いことになる。
(b)退色半減期(F1/2):前記5分間の発色後、光線照射を止めてから成形体サンプルのλmaxにおける吸光度が発色前後の吸光度の中間値まで回復するのに要する時間と定義する。この時間が短いほど退色速度が速いのでフォトクロミック性能が高いことになる。
・光源:林時計工業(株)製メタルハライド光源装置「LA-180ME」
・積算光量計:ウシオ電気(株)製積算光量計「UIT-102(受光器UVD365PD)」
・透過測定システム:日本分光(株)製「MV-3150」
(c)引張り試験:島津製作所製オートグラフAGS-Jを用いて樹脂サンプルに開けた2つの穴に通した鋼鉄製シャフトを毎分5mmの速度で破損するまで引張り、降伏点までの伸びとこのときの応力を引張り強度として記録した。両者数値が大きいほど破損しにくい材料である。
・引張り試験用サンプル:直径45mm、厚さ2.0mmの円盤状の成形体に、外周縁から中心方向5.0mmの位置において、直径方向に対向する2点に直径1.6mmの穴を開け、引張り試験用サンプルとした。
[実施例1]
 1,3-ビス(イソシアナトメチル)シクロヘキサン49.6質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.15質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量400のポリエチレングリコール40.9質量部、および、グリセリン9.5質量部を添加して混合、撹拌を続けた。液が透明になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が65.2%、退色半減期(F1/2)が375秒という良好な結果を示した。さらに、引張り試験における、引張り強さが32kgf、伸びが12.6%という良好な結果を示した。結果を表-1に示す。
[実施例2]
 1,3-ビス(イソシアナトメチル)シクロヘキサン39.3質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.15質量部を加え、混合撹拌して溶解した。この混合液に、数平均分子量400のポリエチレングリコール29.1質量部、および、ペンタエリスリトールテトラキス(2-メルカプトアセテート)31.6質量部を添加し、十分混合、撹拌したところで5mmHg下20分間脱気してこの溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が32.5%、退色半減期(F1/2)が1500秒であった。さらに、引張り試験における、引張り強さが38kgf、伸びが5.9%という良好な結果を示した。結果を表-1に示す。
[実施例3]
 ジシクロヘキシルメタン-4,4'-ジイソシアネート45.8質量部に実施例1と同様にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.70質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量1000のポリエチレングリコール28.4質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン25.8質量部を添加して混合、溶解した。液が透明になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が60.6%、退色半減期(F1/2)が345秒という良好な結果を示した。次に、成形体から得られた引張り試験用サンプルを用いて、引張り試験を行ったところ、引張り強さは45kgf、伸びは7.7%であった。結果を表-1に示す。
[実施例4]
 ジシクロヘキシルメタン-4,4'-ジイソシアネート44.7質量部に実施例1と同様にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.70質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量2000のポリエチレングリコール27.7質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン27.6質量部を添加して混合、溶解した。液が透明になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が65.9%、退色半減期(F1/2)が210秒という良好な結果を示した。さらに、引張り試験における、引張り強さが39kgf、伸びが6.9%という良好な結果を示した。結果を表-1に示す。
[実施例5]
 ジシクロヘキシルメタン-4,4'-ジイソシアネート 43.2質量部に実施例1と同様にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.70質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量1000のポリプロピレングリコール33.5質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン23.3質量部を添加して混合、溶解した。液が透明になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が70.6%、退色半減期(F1/2)が165秒という良好な結果を示した。さらに、引張り試験における、引張り強さが34kgf、伸びが7.8%という良好な結果を示した。結果を表-1に示す。
[実施例6]
 m-キシリレンジイソシアネート40.8質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.01質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量1000のポリエチレングリコール26.1質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン33.1質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が49.6%、退色半減期(F1/2)が1100秒という良好な結果を示した。さらに、引張り試験における、引張り強さが42kgf、伸びが8.3%という良好な結果を示した。結果を表-1に示す。
[実施例7]
 m-キシリレンジイソシアネート40.8質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.01質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量1000のポリプロピレングリコール26.1質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン33.1質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が75.5%、退色半減期(F1/2)が115秒という良好な結果を示した。さらに、引張り試験における、引張り強さが41kgf、伸びが8.4%という良好な結果を示した。結果を表-1に示す。
[実施例8]
 2,5(2,6)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン42.8質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.10質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量1000のポリプロピレングリコール25.2質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン32.0質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が71.8%、退色半減期(F1/2)が135秒という良好な結果を示した。さらに、引張り試験における、引張り強さが50kgf、伸びが6.7%という良好な結果を示した。結果を表-1に示す。
[実施例9]
 2,5(2,6)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン41.0質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.10質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量700のポリプロピレングリコール22.5質量部、および、ペンタエリスリトールテトラキス(2-メルカプトアセテート)36.5質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が57.1%、退色半減期(F1/2)が190秒という良好な結果を示した。さらに、引張り試験における、引張り強さが58kgf、伸びが6.9%という良好な結果を示した。結果を表-1に示す。
[実施例10]
 2,5(2,6)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン38.6質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.10質量部を加え、混合撹拌して溶解した。この混合液に数平均分子量927の2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)のポリプロピレングリコール付加体(付加PPGの数平均分子量換算で701)35.2質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン26.2質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が55.1%、退色半減期(F1/2)が1100秒という良好な結果を示した。さらに、引張り試験における、引張り強さが59kgf、伸びが7.4%という良好な結果を示した。結果を表-1に示す。
[実施例11]
 2,5(2,6)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン41.9質量部にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.10質量部を加え、混合撹拌して溶解した。この混合液に3-メチル-1,5-ペンタンジオールにアジピン酸とイソフタル酸の等モル混合物を等モルで反応させた数平均分子量2000のポリエステル化合物24.6質量部、および、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン33.5質量部を添加して混合、撹拌した。液が均一になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下に置くと直ちに紫色に着色し、光線を遮蔽すると消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:570nm)での発色前後の光線透過率変化量(ΔT%max)が61.9%、退色半減期(F1/2)が145秒という良好な結果を示した。さらに、引張り試験における、引張り強さが56kgf、伸びが7.0%という良好な結果を示した。結果を表-1に示す。
[比較例1]
 2,2'-ビス〔4-(メタクリロイルオキシエトキシ)フェニル〕プロパン50質量部、トリエチレングリコールジメタクリレート50質量部の混合溶液100質量部に、フォトクロミック化合物として前記式(9)化合物を0.05質量部溶解させて、重合開始剤としてt-ブチルパーオキシネオデカネート1.0質量部、重合度調整剤として2,4-ジフェニル-4-メチル-1-ペンテン1.0質量部を加えて混合、5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに90℃まで12時間かけて昇温した。そのまま90℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は無色透明であり、太陽光線下で紫色に着色し、光線を遮蔽すると直ちに消色するという良好な調光性能を有するものであった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が75.4%、退色半減期(F1/2)が255秒であった。しかし、成形体から得られた引張り試験用サンプルを用いて、引張り試験を行ったところ、引張り強さは14kgf、伸びは0.9%であった。結果を表-1に示す。
[比較例2]
 ジシクロヘキシルメタン-4,4'-ジイソシアネート 59.4質量部に実施例1と同様にフォトクロミック化合物として前記式(9)化合物を0.05質量部、ジメチルチンジクロリド0.70質量部を加え、混合撹拌して溶解した。この混合液に4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン40.6質量部を添加して混合、溶解した。液が透明になったところで5mmHg下20分間脱気し、この溶液をポリエチレン製のシート型に注入した。これを20℃の炉に投入して8時間保ち、さらに120℃まで12時間かけて昇温した。そのまま120℃で3時間加熱した後、炉から成形型を取り出し、成形型をはずして、重合して得られた成形体(直径45mm、厚さ2.0mmの円盤状)を取り出した。
 成形体は紫色の着色があり、太陽光線下に置くとわずかに着色が濃くなった。成形体の調光性能を評価したところ、極大吸収波長(λmax:575nm)での発色前後の光線透過率変化量(ΔT%max)が10.0%、退色半減期(F1/2)は光線照射を止めてから1時間経過してもλmaxにおける吸光度が発色前の吸光度に対して1/2まで回復せず、測定不能とした。一方、引張り試験において、引張り強さが69kgf、伸びが4.1%となった。結果を表-1に示す。
 実施例1~11と比較例2の結果から、実施例では、発色前後の光線透過率変化量、および退色半減期(F1/2)が共に、比較例に比べ良好であり、フォトクロミック性能に優れていることが分かった。また、比較例1で得られた樹脂は、本実施例で得られたポリ(チオ)ウレタン樹脂と比較すると、退色半減期(F1/2)が測定できず、さらに脆く、強度など物性が劣る結果であった。
Figure JPOXMLDOC01-appb-T000033
 表-1に記載の各成分は以下のとおり。
(A成分)
a-1: 1,3-ビス(イソシアナトメチル)シクロヘキサン
a-2: ジシクロヘキシルメタン-4,4'-ジイソシアネート
a-3: m-キシリレンジイソシアネート
a-4: 2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンと2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンとの混合物
(B成分)
b-1: 数平均分子量400のポリエチレングリコール
b-2: 数平均分子量1000のポリエチレングリコール
b-3: 数平均分子量2000のポリエチレングリコール
b-4: 数平均分子量1000のポリプロピレングリコール
b-5: 数平均分子量700のポリプロピレングリコール
b-6: 数平均分子量927の2,2-ビス(4-ヒドロキシフェニル)プロパン(別名:ビスフェノールA)のポリプロピレングリコール付加体
b-7: 3-メチル-1,5-ペンタンジオールにアジピン酸とイソフタル酸の等モル混合物を等モルで反応させた数平均分子量2000のポリエステル化合物
(C成分)
c-1: グリセリン
c-2: ペンタエリスリトールテトラキス(2-メルカプトアセテート)
c-3: 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
 以上より、二官能以上のポリイソシアネート化合物(A)、一般式(1)で表されるポリオール化合物(B)、二官能以上の活性水素化合物(C)、およびフォトクロミック化合物(D)を含む重合性組成物を重合して得られる、本発明のフォトクロミック光学材料は、ポリ(チオ)ウレタン樹脂に従来例がない程の高いフォトクロミック性能を付与することができた。従って、眼鏡用レンズ等に用いられるフォトクロミック性能をもつ光学用材料として極めて有用である。
 また、本発明の製造方法によれば、二官能以上のポリイソシアネート化合物(A)、一般式(1)で表されるポリオール化合物(B)、および二官能以上の活性水素化合物(C)を含むモノマー混合物に予めフォトクロミック化合物(D)を溶解して重合性組成物を調製し、当該組成物をモールドに注入後、重合させてフォトクロミックレンズを得ることができる。つまり、レンズ成型と同時に調光性能が付与されることから、フォトクロミック性能を付与するためのコーティング層等を別途設ける必要がなく製造上の工数が少ないため、生産効率が向上し、さらに生産コストの面でも優位である。さらに、重合性組成物を硬化して得られるレンズ基材中に、フォトクロミック化合物を均一に分散させることが容易であるため、レンズ形状に関わらず一定の調光性能を有する品質の安定したレンズを量産する方法としても極めて有用である。
 この出願は、2014年2月3日に出願された日本出願特願2014-018928号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は以下の態様も取り得る。
[a1] (A)1種以上の二官能以上のポリイソシアネート化合物と、
 (B)一般式(I)または一般式(III)で表される化合物から選択される1種以上の化合物と、
Figure JPOXMLDOC01-appb-C000034
(式(I)中、pは4~100の数値を示し、Xは水素原子またはメチル基を示し、複数存在するXは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000035
(式(III)中、q、rは、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。)
(C)1種以上の、二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
(D)フォトクロミック化合物と、
を含む、光学材料用重合性組成物。
[a2] 活性水素化合物(C)が、ポリオール化合物、ポリチオール化合物およびヒドロキシ基を有するチオール化合物よりなる群から選択される1種以上である、[a1]に記載の光学材料用重合性組成物。
[a3] 活性水素化合物(C)が三官能以上の活性水素化合物である、[a1]または[a2]に記載の光学材料用重合性組成物。
[a4] 活性水素化合物(C)が、グリセリン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、およびトリメチロールプロパントリス(3-メルカプトプロピオネート)よりなる群から選択される1種以上である、[a1]~[a3]のいずれかに記載の光学材料用重合性組成物。
[a5] 化合物(B)が一般式(I)で表される化合物である、[a1]~[a4]のいずれかに記載の光学材料用重合性組成物。
[a6] 前記一般式(I)で表される化合物がポリエチレングリコールまたはポリプロピレングリコールである、[a1]~[a5]のいずれかに記載の光学材料用重合性組成物。
[a7] 前記一般式(I)で表される化合物の数平均分子量が200~4000である、[a1]~[a6]のいずれかに記載の光学材料用重合性組成物。
[a8] 前記一般式(I)で表される化合物の数平均分子量が1000~3000である、[a1]~[a7]のいずれかに記載の光学材料用重合性組成物。
[a9] フォトクロミック化合物(D)は、下記一般式(5)で表される、[a1]~[a8]のいずれかに記載の光学材料用重合性組成物;
Figure JPOXMLDOC01-appb-C000036
(式中、RおよびRは同一でも異なっていてもよく、独立して、水素;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、-NH基、-NHR基、-N(R)基(Rが炭素数1~6の直鎖または分枝のアルキル基である。Rが2つ存在する場合、2つのRは同一でも異なっていてもよい。)、およびメタクリロイル基またはアクリロイル基から選択される少なくとも1つの置換基を有する。);
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。)
を表し、
 R3は同一でも異なっていてもよく、独立して、ハロゲン原子;
炭素数1~12の直鎖または分岐アルキル基;
炭素数3~12のシクロアルキル基;
炭素数1~12の直鎖または分岐アルコキシ基;
少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数3~12のハロシクロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分岐ハロアルコキシ基;
置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、およびアミノ基、から選択される少なくとも1つの置換基を有する。);
アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。);
置換または無置換のフェノキシまたはナフトキシ基(置換基として、炭素数1~6の直鎖または分岐アルキル基またはアルコキシ基から選択される少なくとも1つの置換基を有する。);
-NH2、-NHR、-CONH2、または-CONHR
(Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
-OCOR8または-COOR8(ここで、R8が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、またはR1、R2において、置換アリールまたは置換ヘテロアリール基の置換基の少なくとも1つにより置換されているフェニル基または無置換のフェニル基である。);
を表し、
mが0から4までの整数であり;
Aが、下記式(A2)または式(A4
Figure JPOXMLDOC01-appb-C000037
のアネル化環を表し、これらのアネル化環において、
点線が、一般式(5)のナフトピラン環の炭素C5炭素C6結合を表し;
アネル化環(A4)のα結合が、一般式(5)のナフトピラン環の炭素C5または炭素C6に結合されることができ;
4が、同じかまたは異なり、独立して、OH、炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を表し、もしくは2つのR4がカルボニル(CO)を形成し;
5が、ハロゲン;
炭素数1~12の直鎖または分枝のアルキル基;
少なくとも1つのハロゲン原子により置換された、炭素数1~6の直鎖または分枝のハロアルキル基;
炭素数3~12のシクロアルキル基;
炭素数1~6の直鎖または分枝のアルコキシ基;
置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。);
-NH2、-NHR
(ここで、Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
置換または無置換であるフェノキシまたはナフトキシ基(置換基として、少なくとも炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を有する。);
-COR9、-COOR9または-CONHR9基(ここで、R9が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、または置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。));
Aが(A)を示す場合、nが0から2までの整数であり、pが0から4までの整数であり、Aが(A)を示す場合、nが0から2までの整数である。)。
[a10] ポリイソシアネート化合物(A)は、キシリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネートよりなる群から選択される1種以上である、[a1]~[a9]のいずれかに記載の光学材料用重合性組成物。
[a11] [a1]~[a10]のいずれかに記載の光学材料用重合性組成物の硬化物からなる成形体。
[a12] [a11]に記載の成形体からなる光学材料。
[a13] [a11]に記載の成形体からなるプラスチックレンズ。
[a14] (A)1種以上の二官能以上のポリイソシアネート化合物と、
 (B)一般式(I)または一般式(III)で表される化合物から選択される1種以上の化合物と、
Figure JPOXMLDOC01-appb-C000038
(式(I)中、pは4~100の数値を示し、Xは水素原子またはメチル基を示し、複数存在するXは同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
(式(III)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。)
(C)1種以上の、二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
(D)フォトクロミック化合物と、を混合して、光学材料用重合性組成物を調製する工程と、
 前記光学材料用重合性組成物を鋳型内に注型重合することによりレンズ基材を形成する工程と、を含む、プラスチックレンズの製造方法。

Claims (19)

  1.  (A)ポリイソシアネート化合物と、
     (B)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、aは0以上の数値を示し、bは0以上の数値を示し、dは0以上の数値を示し、eは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基を示し、複数存在するZは同一でも異なっていてもよい。)
    で表され、数平均分子量が100以上であるポリオール化合物と、
    (C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
    (D)フォトクロミック化合物と、
    を含む、光学材料用重合性組成物。
  2.  ポリイソシアネート化合物(A)が、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、トリレンジイソシアネート、フェニレンジイソシアネート、およびジフェニルメタンジイソシアネートよりなる群から選択される1種以上である、請求項1に記載の光学材料用重合性組成物。
  3.  ポリオール化合物(B)は、数平均分子量が100以上であり、下記一般式(I)~下記一般式(IV)で表される化合物から選択される1種以上の化合物である、請求項1または2に記載の光学材料用重合性組成物;
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、pは4~100の数値を示し、Xは水素原子またはメチル基を示し、複数存在するXは同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式(II)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。Zは、置換または無置換の2価の芳香族基、置換または無置換の炭素数1~20の芳香族基を含んでいても良い2価の脂肪族基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(III)中、q、rは、同一でも異なっていてもよく、それぞれ1以上の数値を示し、かつqとrの合計は2~100の数値を示す。RおよびRは、同一でも異なっていてもよく、水素原子またはメチル基を示し、複数存在するRまたはRは、それぞれ同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(IV)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、fは0以上の数値を示し、gは1以上の数値を示し、hは1以上の数値を示し、jは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Rは炭素数1~20の直鎖または分岐アルキレン基、または、炭素数1~10の直鎖または分岐アルキル基を置換基として有していても良いフェニレン基を示し、複数存在するRは同一でも異なっていてもよい。)
  4.  ポリオール化合物(B)が一般式(I)、一般式(III)または一般式(IV)で表される化合物である、請求項3に記載の光学材料用重合性組成物。
  5.  前記一般式(I)で表される化合物がポリエチレングリコールまたはポリプロピレングリコールである、請求項3または4に記載の光学材料用重合性組成物。
  6.  前記一般式(I)で表される化合物の数平均分子量が200~4000である、請求項3~5のいずれかに記載の光学材料用重合性組成物。
  7.  前記一般式(I)で表される化合物の数平均分子量が300~3000である、請求項3~5のいずれかに記載の光学材料用重合性組成物。
  8.  前記一般式(II)で表される化合物の数平均分子量が400~2000である、請求項3または4に記載の光学材料用重合性組成物。
  9.  前記一般式(III)で表される化合物の数平均分子量が400~2000である、請求項3または4に記載の光学材料用重合性組成物。
  10.  前記一般式(IV)で表される化合物の数平均分子量が600~3000である、請求項3または4に記載の光学材料用重合性組成物。
  11.  活性水素化合物(C)が、ポリオール化合物、ポリチオール化合物およびヒドロキシ基を有するチオール化合物よりなる群から選択される1種以上である、請求項1~10のいずれかに記載の光学材料用重合性組成物。
  12.  活性水素化合物(C)が三官能以上の活性水素化合物である、請求項1~11のいずれかに記載の光学材料用重合性組成物。
  13.  活性水素化合物(C)が、グリセリン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、およびトリメチロールプロパントリス(3-メルカプトプロピオネート)よりなる群から選択される1種以上である、請求項1~12のいずれかに記載の光学材料用重合性組成物。
  14.  フォトクロミック化合物(D)は、下記一般式(5)で表される、請求項1~13のいずれかに記載の光学材料用重合性組成物;
    Figure JPOXMLDOC01-appb-C000006
    (式中、RおよびRは同一でも異なっていてもよく、独立して、水素;
    炭素数1~12の直鎖または分岐アルキル基;
    炭素数3~12のシクロアルキル基;
    置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、-NH基、-NHR基、-N(R)基(Rが炭素数1~6の直鎖または分枝のアルキル基である。Rが2つ存在する場合、2つのRは同一でも異なっていてもよい。)、およびメタクリロイル基またはアクリロイル基から選択される少なくとも1つの置換基を有する。);
    アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。)
    を表し、
     R3は同一でも異なっていてもよく、独立して、ハロゲン原子;
    炭素数1~12の直鎖または分岐アルキル基;
    炭素数3~12のシクロアルキル基;
    炭素数1~12の直鎖または分岐アルコキシ基;
    少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数3~12のハロシクロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分岐ハロアルコキシ基;
    置換または無置換である、炭素数6~24のアリール基または炭素数4~24のヘテロアリール基(置換基として、ハロゲン原子、ヒドロキシ基、炭素数1~12の直鎖または分枝のアルキル基、炭素数1~12の直鎖または分枝のアルコキシ基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルキル基、少なくとも1つのハロゲン原子で置換された炭素数1~12の直鎖または分枝のハロアルコキシ基、少なくとも一つの炭素数1~12の直鎖または分枝のアルキル基またはアルコキシ基により置換されたフェノキシ基またはナフトキシ基、炭素数2~12の直鎖または分枝のアルケニル基、およびアミノ基、から選択される少なくとも1つの置換基を有する。);
    アラルキルまたはヘテロアラルキル基(炭素数1~4の直鎖または分岐アルキル基が前記のアリール基またはヘテロアリール基で置換されている。);
    置換または無置換のフェノキシまたはナフトキシ基(置換基として、炭素数1~6の直鎖または分岐アルキル基またはアルコキシ基から選択される少なくとも1つの置換基を有する。);
    -NH2、-NHR、-CONH2、または-CONHR
    (Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
    -OCOR8または-COOR8(ここで、R8が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、またはR1、R2において、置換アリールまたは置換ヘテロアリール基の置換基の少なくとも1つにより置換されているフェニル基または無置換のフェニル基である。);
    を表し、
    mが0から4までの整数であり;
    Aが、下記式(A2)または式(A4
    Figure JPOXMLDOC01-appb-C000007
    のアネル化環を表し、これらのアネル化環において、
    点線が、一般式(5)のナフトピラン環の炭素C5炭素C6結合を表し;
    アネル化環(A4)のα結合が、一般式(5)のナフトピラン環の炭素C5または炭素C6に結合されることができ;
    4が、同じかまたは異なり、独立して、OH、炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を表し、もしくは2つのR4がカルボニル(CO)を形成し;
    5が、ハロゲン;
    炭素数1~12の直鎖または分枝のアルキル基;
    少なくとも1つのハロゲン原子により置換された、炭素数1~6の直鎖または分枝のハロアルキル基;
    炭素数3~12のシクロアルキル基;
    炭素数1~6の直鎖または分枝のアルコキシ基;
    置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。);
    -NH2、-NHR
    (ここで、Rが、炭素数1~6の直鎖または分枝のアルキル基である。);
    置換または無置換であるフェノキシまたはナフトキシ基(置換基として、少なくとも炭素数1~6の直鎖または分枝のアルキル基またはアルコキシ基を有する。);
    -COR9、-COOR9または-CONHR9基(ここで、R9が、炭素数1~6の直鎖または分枝のアルキル基、または炭素数3~6のシクロアルキル基、または置換または無置換のフェニルまたはベンジル基(置換基として、一般式(5)のR、R基が独立してアリールまたはヘテロアリール基に対応する場合、R1、R2基の定義において上述した置換基の少なくとも1つを有する。));
    Aが(A)を示す場合、nが0から2までの整数であり、pが0から4までの整数であり、Aが(A)を示す場合、nが0から2までの整数である。)。
  15.  ポリイソシアネート化合物(A)に対するポリオール化合物(B)の官能基当量比(B/A)が0.02~0.6、ポリイソシアネート化合物(A)に対する活性水素化合物(C)の官能基当量比(C/A)が0.4~0.98である、請求項1~14のいずれかに記載の光学材料用重合性組成物。
  16.  請求項1~15のいずれかに記載の光学材料用重合性組成物の硬化物からなる成形体。
  17.  請求項16に記載の成形体からなる光学材料。
  18.  請求項16に記載の成形体からなるプラスチックレンズ。
  19.  (A)ポリイソシアネート化合物と、
     (B)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000008
    (式(1)中、mは1~20の数値を示し、kは0~2mを示し、nは1~20の数値を示し、lは0~2nを示し、aは0以上の数値を示し、bは0以上の数値を示し、dは0以上の数値を示し、eは1以上の数値を示す。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Qは水素原子または炭素数1~6のアルキル基を示し、複数存在するQは同一でも異なっていてもよい。Zは、芳香族基を含んでいてもよい炭素数1~30の2価の有機基を示し、複数存在するZは同一でも異なっていてもよい。)
    で表され、数平均分子量が100以上であるポリオール化合物と、
    (C)二官能以上の活性水素化合物(ただし、前記化合物(B)を除く)と、
    (D)フォトクロミック化合物と、を混合して、光学材料用重合性組成物を調製する工程と、
     前記光学材料用重合性組成物を鋳型内に注型重合することによりレンズ基材を形成する工程と、
    を含む、プラスチックレンズの製造方法。
PCT/JP2015/052874 2014-02-03 2015-02-02 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ WO2015115648A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015560067A JP6127159B2 (ja) 2014-02-03 2015-02-02 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ
KR1020167021272A KR101821078B1 (ko) 2014-02-03 2015-02-02 광학 재료용 중합성 조성물, 당해 조성물로부터 얻어지는 광학 재료 및 플라스틱 렌즈
US15/113,146 US20170002176A1 (en) 2014-02-03 2015-02-02 Polymerizable composition for optical materials, optical material and plastic lens obtained from composition
CN201580005810.9A CN105934458A (zh) 2014-02-03 2015-02-02 光学材料用聚合性组合物、由该组合物得到的光学材料及塑料透镜
EP15742535.6A EP3103822B1 (en) 2014-02-03 2015-02-02 Polymerizable composition for optical material, and optical material and plastic lens obtained from said composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014018928 2014-02-03
JP2014-018928 2014-02-03

Publications (1)

Publication Number Publication Date
WO2015115648A1 true WO2015115648A1 (ja) 2015-08-06

Family

ID=53757213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052874 WO2015115648A1 (ja) 2014-02-03 2015-02-02 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ

Country Status (6)

Country Link
US (1) US20170002176A1 (ja)
EP (1) EP3103822B1 (ja)
JP (1) JP6127159B2 (ja)
KR (1) KR101821078B1 (ja)
CN (1) CN105934458A (ja)
WO (1) WO2015115648A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047744A1 (ja) * 2015-09-16 2017-03-23 三井化学株式会社 成形体および光学材料用重合性組成物
WO2017047745A1 (ja) * 2015-09-16 2017-03-23 三井化学株式会社 光学材料用重合性組成物、該組成物から得られる光学材料およびプラスチックレンズ
JP6307209B1 (ja) * 2016-09-30 2018-04-04 三井化学株式会社 フォトクロミックレンズおよび重合性組成物
WO2018070383A1 (ja) 2016-10-11 2018-04-19 三井化学株式会社 光学材料用重合性組成物およびその用途
WO2018124063A1 (ja) * 2016-12-28 2018-07-05 伊藤光学工業株式会社 光学要素およびその製造方法
JPWO2018124063A1 (ja) * 2016-12-28 2019-01-10 伊藤光学工業株式会社 光学要素およびその製造方法
WO2019009230A1 (ja) 2017-07-03 2019-01-10 三井化学株式会社 光学材料用重合性組成物および成形体
JP2019183087A (ja) * 2018-04-17 2019-10-24 株式会社トクヤマ フォトクロミック硬化体の製造方法
WO2020158813A1 (ja) 2019-01-30 2020-08-06 三井化学株式会社 光学材料用重合性組成物の製造方法
WO2022158348A1 (ja) 2021-01-25 2022-07-28 株式会社トクヤマ 樹脂組成物、光学積層体、光学物品、レンズ及び眼鏡
WO2024080103A1 (ja) * 2022-10-13 2024-04-18 株式会社トクヤマ 光学材料用組成物、硬化体、光学物品、レンズ、及び眼鏡

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855032B1 (ko) * 2014-05-02 2018-05-04 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물 및 그로부터 얻어지는 광학 재료 및 그 제조 방법
CN108546325B (zh) * 2018-04-26 2019-07-09 山东益丰生化环保股份有限公司 一种树脂镜片及其制备方法
CN109294208A (zh) * 2018-09-30 2019-02-01 上海康耐特光学有限公司 光致变色聚氨酯组合物及其制备方法和应用、包含其的变色镜片
WO2020230882A1 (ja) * 2019-05-16 2020-11-19 三井化学株式会社 光学材料用重合性組成物およびその用途
CN110330784A (zh) * 2019-07-24 2019-10-15 上海康耐特光学有限公司 一种聚氨酯混合物及其制备方法和应用、包含其的改性镜片
CN110982034B (zh) * 2019-11-29 2021-07-23 万华化学集团股份有限公司 一种1,3-二异氰酸甲酯基环己烷组合物及其制备的光学树脂

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433154A (en) * 1987-05-22 1989-02-03 Pilkington Plc Photochromic article and its production
JPH08272036A (ja) 1994-10-17 1996-10-18 Seiko Epson Corp フォトクロミック組成物およびそれを用いたフォトクロミック樹脂
JP2000515904A (ja) * 1996-07-23 2000-11-28 コーニング インコーポレイテッド フォトクロミック製品用の安定化マトリクス
JP2001512516A (ja) * 1997-02-21 2001-08-21 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド ホトクロミックポリウレタン被覆およびこのような被覆を有する物品
US6506538B1 (en) 1998-09-11 2003-01-14 Corning S.A. Naphthopyrans annelated in C5-C6, their preparation and compositions and (co)polymer matrices containing them
JP2005023238A (ja) 2003-07-04 2005-01-27 Tokuyama Corp フォトクロミック組成物
WO2005087829A1 (ja) 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. ポリウレタン系重合性組成物およびそれからなる光学用樹脂の製造方法
JP2005305306A (ja) 2004-04-21 2005-11-04 Fuji Kasei Kk プラスチックス調光レンズ体の製造方法、プラスチックス調光レンズ体、該レンズ体製造に用いる塗膜シート状調光体および被覆シート
JP2006513276A (ja) * 2002-04-17 2006-04-20 コーニング インコーポレイテッド フォトクロミック組成物、その調製およびそれから製造されたまたはそれにより被覆された製品
WO2006109765A1 (ja) 2005-04-11 2006-10-19 Mitsui Chemicals, Inc. ポリチオウレタン系重合性組成物およびそれを用いた光学用樹脂の製造方法
WO2007020817A1 (ja) 2005-08-18 2007-02-22 Mitsui Chemicals, Inc. ポリチオウレタン系重合性組成物およびそれらからなる光学用樹脂
WO2007020818A1 (ja) 2005-08-18 2007-02-22 Mitsui Chemicals, Inc. ポリウレタン・チオウレタン系光学用樹脂およびその製造方法
JP2007091595A (ja) * 2005-09-27 2007-04-12 Tokuyama Corp ナフトピラン化合物の製造方法
JP2008030439A (ja) 2006-06-30 2008-02-14 Hoya Corp フォトクロミックレンズの製造方法
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
WO2010020770A1 (en) 2008-08-18 2010-02-25 James Robinson Limited Polydialkylsiloxane-bridged bi-photochromic molecules
WO2012141250A1 (ja) * 2011-04-13 2012-10-18 株式会社トクヤマ フォトクロミック組成物
WO2012149599A1 (en) 2011-05-03 2012-11-08 Advanced Polymerik Pty Ltd Photochromic polymer
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2014002844A1 (ja) 2012-06-26 2014-01-03 三井化学株式会社 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057106A1 (en) * 2000-02-04 2001-08-09 Ppg Industries Ohio, Inc. Photochromic coated articles
US20070142602A1 (en) * 2005-12-16 2007-06-21 Rukavina Thomas G Polyurethanes and sulfur-containing polyurethanes and methods of preparation
US7465414B2 (en) * 2002-11-14 2008-12-16 Transitions Optical, Inc. Photochromic article
CN102186897B (zh) 2009-08-05 2016-01-20 三井化学株式会社 光学材料用聚合性组合物、光学材料及光学材料的制造方法
JP5559497B2 (ja) * 2009-08-18 2014-07-23 山本光学株式会社 光学物品
JP5604352B2 (ja) 2010-04-02 2014-10-08 大日精化工業株式会社 バイオポリウレタン樹脂

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433154A (en) * 1987-05-22 1989-02-03 Pilkington Plc Photochromic article and its production
JPH08272036A (ja) 1994-10-17 1996-10-18 Seiko Epson Corp フォトクロミック組成物およびそれを用いたフォトクロミック樹脂
JP2000515904A (ja) * 1996-07-23 2000-11-28 コーニング インコーポレイテッド フォトクロミック製品用の安定化マトリクス
JP2001512516A (ja) * 1997-02-21 2001-08-21 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド ホトクロミックポリウレタン被覆およびこのような被覆を有する物品
JP2011144181A (ja) 1998-09-11 2011-07-28 Corning Sa C5−c6においてアネル化されたナフトピラン、その調製並びにそれらを含有する組成物および(コ)ポリマーマトリクス
US6506538B1 (en) 1998-09-11 2003-01-14 Corning S.A. Naphthopyrans annelated in C5-C6, their preparation and compositions and (co)polymer matrices containing them
JP2004500319A (ja) 1998-09-11 2004-01-08 コーニング ソシエテ アノニム C5−c6においてアネル化されたナフトピラン、その調製並びにそれらを含有する組成物および(コ)ポリマーマトリクス
JP2006513276A (ja) * 2002-04-17 2006-04-20 コーニング インコーポレイテッド フォトクロミック組成物、その調製およびそれから製造されたまたはそれにより被覆された製品
JP2005023238A (ja) 2003-07-04 2005-01-27 Tokuyama Corp フォトクロミック組成物
WO2005087829A1 (ja) 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. ポリウレタン系重合性組成物およびそれからなる光学用樹脂の製造方法
JP2005305306A (ja) 2004-04-21 2005-11-04 Fuji Kasei Kk プラスチックス調光レンズ体の製造方法、プラスチックス調光レンズ体、該レンズ体製造に用いる塗膜シート状調光体および被覆シート
WO2006109765A1 (ja) 2005-04-11 2006-10-19 Mitsui Chemicals, Inc. ポリチオウレタン系重合性組成物およびそれを用いた光学用樹脂の製造方法
WO2007020818A1 (ja) 2005-08-18 2007-02-22 Mitsui Chemicals, Inc. ポリウレタン・チオウレタン系光学用樹脂およびその製造方法
WO2007020817A1 (ja) 2005-08-18 2007-02-22 Mitsui Chemicals, Inc. ポリチオウレタン系重合性組成物およびそれらからなる光学用樹脂
JP2007091595A (ja) * 2005-09-27 2007-04-12 Tokuyama Corp ナフトピラン化合物の製造方法
JP2008030439A (ja) 2006-06-30 2008-02-14 Hoya Corp フォトクロミックレンズの製造方法
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
WO2010020770A1 (en) 2008-08-18 2010-02-25 James Robinson Limited Polydialkylsiloxane-bridged bi-photochromic molecules
WO2012141250A1 (ja) * 2011-04-13 2012-10-18 株式会社トクヤマ フォトクロミック組成物
WO2012149599A1 (en) 2011-05-03 2012-11-08 Advanced Polymerik Pty Ltd Photochromic polymer
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2014002844A1 (ja) 2012-06-26 2014-01-03 三井化学株式会社 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055077B1 (ko) * 2015-09-16 2019-12-11 미쯔이가가꾸가부시끼가이샤 성형체 및 광학 재료용 중합성 조성물
WO2017047745A1 (ja) * 2015-09-16 2017-03-23 三井化学株式会社 光学材料用重合性組成物、該組成物から得られる光学材料およびプラスチックレンズ
JPWO2017047744A1 (ja) * 2015-09-16 2018-02-22 三井化学株式会社 成形体および光学材料用重合性組成物
JPWO2017047745A1 (ja) * 2015-09-16 2018-03-01 三井化学株式会社 光学材料用重合性組成物、該組成物から得られる光学材料およびプラスチックレンズ
WO2017047744A1 (ja) * 2015-09-16 2017-03-23 三井化学株式会社 成形体および光学材料用重合性組成物
KR20180041180A (ko) 2015-09-16 2018-04-23 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물, 해당 조성물로부터 얻어지는 광학 재료 및 플라스틱 렌즈
KR20180041710A (ko) 2015-09-16 2018-04-24 미쯔이가가꾸가부시끼가이샤 성형체 및 광학 재료용 중합성 조성물
CN108026241A (zh) * 2015-09-16 2018-05-11 三井化学株式会社 成型体和光学材料用聚合性组合物
CN108026240A (zh) * 2015-09-16 2018-05-11 三井化学株式会社 光学材料用聚合性组合物、由该组合物得到的光学材料及塑料透镜
KR102081524B1 (ko) * 2015-09-16 2020-02-25 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물, 해당 조성물로부터 얻어지는 광학 재료 및 플라스틱 렌즈
JP6307209B1 (ja) * 2016-09-30 2018-04-04 三井化学株式会社 フォトクロミックレンズおよび重合性組成物
WO2018062385A1 (ja) * 2016-09-30 2018-04-05 三井化学株式会社 フォトクロミックレンズおよび重合性組成物
WO2018070383A1 (ja) 2016-10-11 2018-04-19 三井化学株式会社 光学材料用重合性組成物およびその用途
JPWO2018070383A1 (ja) * 2016-10-11 2018-10-11 三井化学株式会社 光学材料用重合性組成物およびその用途
US11639413B2 (en) 2016-10-11 2023-05-02 Mitsui Chemicals, Inc. Polymerizable composition for optical materials and application of same
KR20190051005A (ko) 2016-10-11 2019-05-14 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물 및 그의 용도
JP2019073728A (ja) * 2016-10-11 2019-05-16 三井化学株式会社 光学材料用重合性組成物およびその用途
WO2018124063A1 (ja) * 2016-12-28 2018-07-05 伊藤光学工業株式会社 光学要素およびその製造方法
JPWO2018124063A1 (ja) * 2016-12-28 2019-01-10 伊藤光学工業株式会社 光学要素およびその製造方法
WO2019009230A1 (ja) 2017-07-03 2019-01-10 三井化学株式会社 光学材料用重合性組成物および成形体
JP2019183087A (ja) * 2018-04-17 2019-10-24 株式会社トクヤマ フォトクロミック硬化体の製造方法
JP7152173B2 (ja) 2018-04-17 2022-10-12 株式会社トクヤマ フォトクロミック硬化体の製造方法
WO2020158813A1 (ja) 2019-01-30 2020-08-06 三井化学株式会社 光学材料用重合性組成物の製造方法
US11866648B2 (en) 2019-01-30 2024-01-09 Mitsui Chemicals, Inc. Process for producing polymerizable composition for optical materials
WO2022158348A1 (ja) 2021-01-25 2022-07-28 株式会社トクヤマ 樹脂組成物、光学積層体、光学物品、レンズ及び眼鏡
KR20230137306A (ko) 2021-01-25 2023-10-04 가부시끼가이샤 도꾸야마 수지 조성물, 광학 적층체, 광학 물품, 렌즈 및 안경
WO2024080103A1 (ja) * 2022-10-13 2024-04-18 株式会社トクヤマ 光学材料用組成物、硬化体、光学物品、レンズ、及び眼鏡

Also Published As

Publication number Publication date
US20170002176A1 (en) 2017-01-05
EP3103822A4 (en) 2017-09-13
KR20160106122A (ko) 2016-09-09
EP3103822A1 (en) 2016-12-14
JP6127159B2 (ja) 2017-05-10
JPWO2015115648A1 (ja) 2017-03-23
EP3103822B1 (en) 2019-11-06
CN105934458A (zh) 2016-09-07
KR101821078B1 (ko) 2018-01-22

Similar Documents

Publication Publication Date Title
JP6127159B2 (ja) 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ
JP6472890B2 (ja) 光学材料用重合性組成物、該組成物から得られる光学材料およびプラスチックレンズ
JP6041876B2 (ja) 光学材料用重合性組成物、当該組成物から得られる光学材料およびプラスチックレンズ
JP6431987B2 (ja) 成形体および光学材料用重合性組成物
JP6833034B2 (ja) 光学材料用重合性組成物および成形体
JP6335274B2 (ja) 光学材料の製造方法
JP7357451B2 (ja) 光学材料用重合性組成物
JP2020181127A (ja) 光学材料用チオール含有組成物、光学材料用重合性組成物
JP2020094128A (ja) フォトクロミック光学材料用組成物およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560067

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015742535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015742535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15113146

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167021272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE