WO2015115405A1 - 位置測定方法、自己位置測定装置及び車載器 - Google Patents

位置測定方法、自己位置測定装置及び車載器 Download PDF

Info

Publication number
WO2015115405A1
WO2015115405A1 PCT/JP2015/052154 JP2015052154W WO2015115405A1 WO 2015115405 A1 WO2015115405 A1 WO 2015115405A1 JP 2015052154 W JP2015052154 W JP 2015052154W WO 2015115405 A1 WO2015115405 A1 WO 2015115405A1
Authority
WO
WIPO (PCT)
Prior art keywords
position information
vehicle
information
acquired
self
Prior art date
Application number
PCT/JP2015/052154
Other languages
English (en)
French (fr)
Inventor
近藤 一海
英明 村田
哲也 安達
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167020236A priority Critical patent/KR101889635B1/ko
Priority to GB1612928.0A priority patent/GB2536846B8/en
Priority to SG11201606153WA priority patent/SG11201606153WA/en
Priority to US15/113,961 priority patent/US10094671B2/en
Publication of WO2015115405A1 publication Critical patent/WO2015115405A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/017Detecting state or type of motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • G01S5/0289Relative positioning of multiple transceivers, e.g. in ad hoc networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a position measurement method, a self-position measurement device, and an on-vehicle device.
  • a wireless communication device installed at each billing point communicates with a wireless communication device provided in a vehicle passing through the point, or by reading a vehicle license plate or the like with a camera installed on the roadside.
  • a method of recognizing that the vehicle has passed the point and charging is widely used.
  • the position of the vehicle is measured using a global navigation satellite system (GNSS) and the passage of the charging point is determined by comparing the position information with the map information to which the charging point information is added.
  • GNSS global navigation satellite system
  • Patent Document 1 describes a method of receiving a signal from a sequential zenith satellite using a receiver mounted on an on-vehicle device and measuring an accurate position of the vehicle.
  • the interior of the vehicle in which the vehicle-mounted device is installed has an environmental temperature higher than that of a general industrial product, and can be 80 ° C. or higher.
  • the influence of vibrations caused by running of the vehicle or starting and stopping on the equipment of the vehicle is great.
  • in-vehicle devices for next-generation road billing systems the configuration of equipment is complicated to obtain accurate position information, and the number of parts and modules is greatly increased. For these reasons, in the next-generation road billing system, there is a high risk of failure of equipment mounted on the vehicle.
  • a device fails, for example, if a receiver that receives a signal from a GNSS satellite fails, accurate vehicle location information cannot be obtained, and appropriate charging cannot be performed.
  • the present invention provides a position measurement method, a self-position measurement device, and an in-vehicle device that can solve the above-described problems.
  • the vehicle position measuring method includes a step of determining whether or not the position information of the host vehicle can be acquired from the outside with a predetermined quality, and the position information is acquired with a predetermined quality.
  • the method includes a step of acquiring position information of surrounding vehicles existing in the information acquisition possible area of the own vehicle, and a step of replacing the acquired position information of surrounding vehicles with the position information of the own vehicle.
  • the position measuring method acquires a plurality of position information of the surrounding vehicles by communication, and the received radio waves in the communication used for the acquisition and the acquired plurality of position information.
  • the position information of the host vehicle is calculated from the strength.
  • the position measurement method in the process of acquiring the position information of the surrounding vehicle, the position measurement method further acquires information indicating the reliability of the position information, and the position information of the host vehicle is predetermined. If it is determined that the information cannot be acquired with the quality of the vehicle, the position information with higher reliability than the own vehicle is selected from the position information of the surrounding vehicles.
  • the position measurement method in the process of acquiring the position information of the surrounding vehicle, the position measurement method further acquires information indicating the reliability of the position information, and the position information of the host vehicle is predetermined. And calculating the position information by adding weights to the position information of the host vehicle and the surrounding vehicles and replacing the position information with the position information of the host vehicle.
  • the quality is determined based on the presence / absence of communication abnormality in acquiring the position information from the outside.
  • the quality determination is performed based on whether there is an abnormality in the data acquired from the outside.
  • the quality is determined by the position indicated by the position information recorded when the engine of the host vehicle is stopped and the position indicated by the position information estimated when the engine is started. This is done depending on whether or not there is a divergence over a predetermined level.
  • the determination of the quality is performed by estimating the position of the host vehicle based on the position information acquired from the outside and the position of the host vehicle estimated from the acquired position information of surrounding vehicles. And whether or not they are more than a predetermined difference.
  • a ninth aspect of the present invention there is a difference between the displacement at a predetermined time of the position information of the own vehicle acquired from the outside and the displacement at the predetermined time measured by a sensor included in the own vehicle. It is performed depending on whether or not it is a predetermined value or more.
  • the self-position measuring device includes a failure monitoring unit that determines whether or not the position information of the own vehicle has been acquired from the outside with a predetermined quality, and the position information is acquired with a predetermined quality.
  • the surrounding vehicle position acquisition unit that acquires the position information of the surrounding vehicle existing in the information acquisition area of the own vehicle, and the position that estimates the position information of the own vehicle from the acquired position information of the surrounding vehicle An estimation processing unit.
  • the surrounding vehicle position acquisition unit acquires a plurality of pieces of position information of the surrounding vehicles by communication, and the acquired plurality of position information and the acquisition
  • a radio wave intensity position calculating unit that calculates position information of the host vehicle from the received radio wave intensity in each communication used in the above.
  • the self-position measuring device acquires information indicating the reliability of the position information of the surrounding vehicle, and the position having higher reliability than the own vehicle from the position information of the surrounding vehicle.
  • a reliability level check unit for selecting information is provided.
  • the reliability level check unit obtains a weight according to the reliability level, and calculates the position information by adding the weight to the position information of the host vehicle and the surrounding vehicles. .
  • the failure monitoring unit determines the quality based on the presence / absence of communication abnormality in acquiring the position information from the outside.
  • the failure monitoring unit determines the quality based on whether there is an abnormality in the data acquired from the outside.
  • the failure monitoring unit determines the quality by the position indicated by the position information recorded when the engine of the host vehicle is stopped and the position estimated when the engine is started. This is performed depending on whether or not the position indicated by the information deviates more than a predetermined amount.
  • the failure monitoring unit estimates the quality determination from the position of the host vehicle estimated based on the position information acquired from the outside and the acquired position information of the surrounding vehicle. The position of the subject vehicle is compared, and it is determined by whether or not they are more than a predetermined distance.
  • the failure monitoring unit measures the quality determination using a displacement of the position information of the host vehicle acquired from the outside in a predetermined time and a sensor included in the host vehicle. This is performed depending on whether or not the deviation from the displacement is greater than or equal to a predetermined value.
  • the vehicle-mounted device includes the self-position measuring device that measures the current position of the host vehicle by any one of the position measuring methods described above.
  • the position of the vehicle can be measured even if a component of the vehicle-mounted device breaks down.
  • FIG. 1 is a functional block diagram of the self-position measuring apparatus according to the first embodiment.
  • the self-position measuring device 1 of this embodiment includes a failure monitoring unit 10, a position detection unit 20, a movement amount estimation processing unit 30, a position estimation processing unit 40, a billing processing unit 50, A surrounding vehicle position acquisition unit 60, a communication unit 70, a storage unit 80, and an IC card reader 90 are provided.
  • the failure monitoring unit 10 determines whether there is an abnormality in the position detection unit 20 based on whether or not the position information of the host vehicle has been acquired from the outside with a predetermined quality, and if there is an abnormality, performs a temporary position detection.
  • the peripheral vehicle position acquisition unit 60 is instructed.
  • the outside is a GNSS satellite, and the failure monitoring unit 10 determines whether the GNSS receiver 21 can normally receive a signal from the satellite.
  • the position detection unit 20 acquires information necessary for estimating the position information of the host vehicle by using various sensors.
  • the position detection unit 20 includes a GNSS receiver 21, an acceleration sensor 22, a gyro sensor 23, and an orientation sensor 24.
  • the GNSS receiver 21 receives a signal including position information transmitted from a GNSS artificial satellite and outputs the position information to the position estimation processing unit 40.
  • the acceleration sensor 22 detects the acceleration of the vehicle and outputs it to the movement amount estimation processing unit 30.
  • the gyro sensor 23 detects the angular velocity of the vehicle and outputs it to the movement amount estimation processing unit 30.
  • the azimuth sensor 24 detects the azimuth in the traveling direction of the vehicle and outputs it to the movement amount estimation processing unit 30.
  • the positioning by the GNSS receiver 21 is not always effective. For example, signals are often not received in tunnels or underground, and in high-rise buildings, the signals are reflected by high-rise buildings, and positioning errors are likely to occur.
  • the acceleration sensor 22 and the like do not require an external signal, but errors tend to accumulate when the position is estimated by integrating information acquired from the acceleration sensor 22 and the like.
  • the current position of the vehicle is calculated by combining the position information obtained by GNSS and the method of calculating the amount of movement from the previous position using information acquired by other sensors and accumulating the amount of movement to estimate the current position. Estimate the position.
  • the movement amount estimation processing unit 30 calculates a movement amount such as a travel distance and a traveling direction of the vehicle in a predetermined period based on information such as acceleration and angular velocity acquired from each sensor periodically.
  • the position estimation processing unit 40 adds the movement amount calculated by the movement amount estimation processing unit 30 to the position information obtained from the GNSS acquired from the GNSS receiver 21, estimates the current position of the host vehicle, and charges the position information.
  • the billing processing unit 50 identifies the travel route of the vehicle based on the position information calculated by the position estimation processing unit 40, compares the travel information with map information including information on the billing point and the area to be charged, The billing amount is calculated by a predetermined method.
  • the surrounding vehicle position acquisition unit 60 acquires position information of surrounding vehicles using wireless communication means when the failure monitoring unit 10 detects an abnormality / failure of the position detection unit 20.
  • the communication unit 70 performs data communication between the host vehicle and another device.
  • the communication unit 70 includes a public line communication unit 71, a wireless LAN 72, and a DSRC (Dedicated Short Range Communications) 73.
  • the public line communication unit 71 is, for example, a mobile phone and transmits the charging information calculated by the charging processing unit 50 to the management center of the road charging system via the mobile phone network, or from the management center to the charging table, map information, etc. Receive.
  • the wireless LAN 72 is a communication means using a wireless LAN. When the failure monitoring unit 10 detects an abnormality in the position detection unit 20, the wireless LAN 72 is used by the surrounding vehicle position acquisition unit 60 inquiring position information from the surrounding vehicle and acquiring position information from the surrounding vehicle.
  • the DSRC 73 is a communication means based on the DSRC method.
  • the DSRC 73 communicates with an antenna installed on the roadside of the billing point by the DSRC method, and receives identification information of a place where the antenna is installed.
  • the information received by the DSRC 73 is transmitted to the management center of the road billing system via the public line communication unit 71, for example, and billing processing is performed. In the road billing system of this embodiment, not only billing by position information using GNSS and sensors but also billing by DSRC is performed.
  • the storage unit 80 stores map information, a billing table, and the like received from the management center.
  • the IC card reader 90 is an IC card reader mounted on the self-position measuring device.
  • the IC card reader 90 performs security processing such as read / write processing and authentication processing of a billing IC card.
  • the failure monitoring unit 10, the movement amount estimation processing unit 30, the position estimation processing unit 40, the billing processing unit 50, and the surrounding vehicle position acquisition unit 60 are programmed by a CPU (Central Processing Unit) provided in the self-position measurement device 1. It is a function provided by execution.
  • CPU Central Processing Unit
  • FIG. 2 is a process flow diagram of the positioning method for the host vehicle in the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the positioning method for the host vehicle in the first embodiment of the present invention.
  • the own vehicle positioning method according to the present embodiment will be described with reference to FIGS.
  • the host vehicle 100 starts positioning of the current position by a predetermined operation in the host vehicle 100 (step S1). For example, when the GNSS receiver 21 can satisfactorily receive a signal from a satellite, the position estimation processing unit 40 acquires the position information received from the satellite by the GNSS receiver 21 every predetermined time, and the position information is automatically acquired.
  • the current position information of the vehicle 100 may be used.
  • the movement amount estimation processing unit 30 calculates the movement amount from the position where the signal from the satellite was last received by a known technique. Then, the position estimation processing unit 40 may add the movement amount to the position information last received from the satellite to obtain the current position information of the host vehicle 100. Further, when the host vehicle 100 passes a point where the roadside antenna is installed, the position estimation processing unit 40 uses the antenna identification information obtained by the DSRC 73 by wireless communication to store the antenna stored in the storage unit 80.
  • the current position of the host vehicle 100 may be estimated by referring to map information including the position information and adding the position information of the passing point specified thereby to the position information obtained by other means.
  • the failure monitoring unit 10 determines whether or not an abnormality has occurred in the GNSS receiver 21 based on the quality of the position information acquired by the GNSS receiver 21 (step S2). For example, if there is an abnormality in the data received by the GNSS receiver 21, the failure monitoring unit 10 may determine that the quality of the position information is inferior and an abnormality has occurred in the GNSS receiver 21. Further, the failure monitoring unit 10 may determine that an abnormality has occurred in the GNSS receiver 21 if there is a communication abnormality in receiving a signal by the GNSS receiver 21.
  • the communication abnormality means, for example, a case where the GNSS receiver 21 cannot receive a signal for a predetermined time.
  • a method for determining whether or not an abnormality has occurred in the GNSS receiver 21 due to a communication abnormality may be performed as follows, for example.
  • the quality prediction information indicating the prediction of the quality of the signal that can be received from the satellite is added to the map information stored in the storage unit 80, and the failure monitoring unit 10 reads the quality prediction information at the current estimated position from the storage unit 80.
  • the failure monitoring part 10 performs abnormality determination of the GNSS receiver 21 due to communication abnormality only when the quality prediction information can be determined to be good compared to a predetermined standard.
  • quality prediction information indicating that the quality of the received signal is inferior is added to the position indicating the tunnel of the map information, and the position information and movement amount estimation processing received from the previous GNSS by the position estimation processing unit 40 It is assumed that the current position estimated based on the subsequent movement amount calculated by the unit 30 indicates the tunnel. In that case, the failure monitoring unit 10 reads out the quality prediction information of the current position added to the map information using the estimated current position from the storage unit 80, and compares the predetermined reference value with the quality prediction information. When it can be determined that the predicted quality of the received signal at the current position is inferior, it may not be determined that an abnormality has occurred in the GNSS receiver 21 even if the GNSS receiver 21 cannot receive the signal for a predetermined time.
  • the position estimation processing unit 40 records the estimated position at that time in the storage unit 80, and when the engine is started again, the current position estimated by the position estimation processing unit 40 and the engine stop If the position recorded sometimes deviates by a predetermined distance or more, the failure monitoring unit 10 may determine that the quality of the position information is inferior and the GNSS receiver 21 is abnormal. In addition, it is within a predetermined period that the displacement between the position information based on the signal received this time and the position information received from the previous satellite, for example, deviates more than a predetermined distance compared to the displacement between them calculated by the movement amount estimation processing unit 30. If it occurs more than a predetermined number of times, the failure monitoring unit 10 may determine that the quality of the position information is poor and an abnormality has occurred in the GNSS receiver 21.
  • step S2 No
  • the surrounding vehicle position acquisition unit 60 acquires the instruction signal, it transmits a position information request signal 301 via the wireless LAN 72 (step S3). Then, the surrounding vehicle 200 existing in the information acquirable area receives the position information request signal transmitted by the host vehicle 100.
  • the surrounding vehicle 200 that has received the signal is provided with means for estimating the current position in the same manner as the own vehicle 100, and the response signal 302 including the current estimated position information of the surrounding vehicle 200 estimated by the means is sent to the own vehicle 100.
  • Send Alternatively, when the surrounding vehicle 200 receives the position information request signal 301 from the own vehicle 100, the surrounding vehicle 200 may re-receive the latest position information from the satellite and transmit the answer signal 302 to the own vehicle 100. And the own vehicle 100 receives the reply signal 302 with respect to the positional information request signal containing positional information from the surrounding vehicle 200 via wireless LAN72 (step S4).
  • the surrounding vehicle position acquisition unit 60 acquires the position information and records it in the storage unit 80 instead of the position information of the host vehicle received from the GNSS receiver 21 satellite (step S5). After that, the position estimation processing unit 40 adds the movement amount calculated by the movement amount estimation processing unit 30 to the position information recorded by the surrounding vehicle position acquisition unit 60 in the same manner as the current position estimation method in the normal time. 100 current positions are estimated. This processing flow is completed.
  • the GNSS receiver 21 even when the GNSS receiver 21 breaks down due to high temperature or vibration, it is possible to estimate the position of the own vehicle from the position information owned by the surrounding vehicle. Thereby, even if the GNSS receiver is out of order, the billing process can be performed.
  • the failure monitoring unit 10 periodically acquires position information from the surrounding vehicle 200 via the wireless LAN 72. Then, the failure monitoring unit 10 compares the acquired position information with the position information estimated by the position estimation processing unit 40. If the failure monitoring unit 10 is separated by a predetermined distance or more, the failure monitoring unit 10 causes an abnormality in the GNSS receiver 21. It is determined that In addition, when there is one peripheral vehicle 200, it is possible that a GNSS receiver mounted on the other vehicle is out of order. Therefore, it is preferable to acquire position information from a plurality of peripheral vehicles 200.
  • the difference between the positioning results when the engine of the host vehicle 100 is stopped and the subsequent start is used as a criterion for failure determination.
  • the position estimation processing unit 40 while the vehicle is stopped by pulling the side brake. If the current position is continuously measured and a change in the current position is confirmed, it can be determined that a failure has occurred. Similarly, when a change in the current position calculated by the position estimation processing unit 40 is confirmed in a state where there is no change in the output value of the acceleration sensor or the gyro sensor, it can be determined that there is a failure.
  • FIG. 4 is a functional block diagram of the self-position measuring apparatus according to the second embodiment.
  • the self-position measuring apparatus 1 according to the present embodiment includes a radio wave intensity position calculating unit 61, and the other configuration is the same as that of the first embodiment.
  • the radio wave intensity position calculation unit 61 according to the present embodiment uses the position information of each of the plurality of surrounding vehicles 200 included in the answer signals received from the plurality of surrounding vehicles 200 and the received radio wave intensity of the answer signal, and The current position is calculated.
  • the radio wave intensity position calculating unit 61 is a function provided when the CPU provided in the self-position measuring device 1 executes a program.
  • FIG. 5 is a process flow diagram of the positioning method for the host vehicle in the second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a positioning method for the host vehicle in the second embodiment of the present invention.
  • the own vehicle positioning method in the present embodiment will be described with reference to FIGS.
  • steps S1 to S3 are the same as those in the first embodiment. That is, when the failure monitoring unit 10 determines that an abnormality has occurred in the GNSS receiver 21, the surrounding vehicle position acquisition unit 60 transmits the position information request signals 301-1, 301-2, and 301-3.
  • the host vehicle 100 receives response signals 302-1, 302-2, and 302-3 including position information from at least three neighboring vehicles 200-1, 200-2, and 200-3. .
  • the answer signal received by the surrounding vehicle position acquisition unit 60 via the wireless LAN 72 is output to the radio wave intensity position calculation unit 61.
  • the radio wave intensity position calculation unit 61 acquires the radio wave intensity of the answer signals 302-1, 302-2, and 302-3 received from the surrounding vehicles 200 detected by the wireless LAN 72 from the wireless LAN 72. Then, the radio wave intensity position calculating unit 61 estimates the current position of the vehicle 100 from the acquired position information and radio wave intensity using triangulation or the like (step S11).
  • the method for estimating the current position may be, for example, the following method.
  • the storage unit 80 stores a table that prescribes the relationship between the radio LAN signal strength of the wireless LAN and the distance from the partner vehicle when an answer signal is received with the signal strength.
  • the radio wave intensity position calculating unit 61 reads distance information corresponding to each acquired radio wave intensity from this table.
  • the radio wave intensity position calculation unit 61 draws a circle whose radius is the length indicated by the distance information read centered on the position indicated by the position information acquired from each of the surrounding vehicles 200-1, 200-2, 200-3. The intersections of all the circles are obtained and the current position of the host vehicle 100 is estimated.
  • the current position may be estimated by a predetermined method, such as using the center of gravity of a polygon connecting the intersections of a plurality of circles as the current position of the host vehicle 100.
  • the radio wave intensity position calculation unit 61 outputs the position information to the surrounding vehicle position acquisition unit 60, and the surrounding vehicle position acquisition unit 60 outputs the position information to the GNSS.
  • the receiver 21 records in the storage unit 80 instead of the position information received from the satellite (step S5).
  • the subsequent positioning method is the same as in the first embodiment. This processing flow is completed.
  • the present embodiment it is possible to perform positioning with higher accuracy by estimating the current position of the host vehicle using position information of a plurality of surrounding vehicles. Thereby, even if the GNSS receiver is out of order, the billing process can be performed based on the more accurate travel route and stay position information of the vehicle.
  • FIG. 7 is a functional block diagram of the self-position measuring apparatus according to the third embodiment.
  • the self-position measuring apparatus 1 according to the present embodiment includes a reliability level check unit 62, and other configurations are the same as those of the second embodiment.
  • the reliability level check unit 62 of the present embodiment evaluates the reliability of the position information received from the surrounding vehicle 200 according to the reliability level information included in the answer signal.
  • the reliability level check unit 62 compares the reliability level of positioning in the own vehicle 100 with the reliability level acquired from the surrounding vehicle 200 when the failure monitoring unit 10 of the own vehicle 100 does not detect an abnormality. Then, the reliability level check unit 62 determines the position estimated using the position information acquired from the surrounding vehicle 200 and the received radio wave intensity only when the reliability level acquired from the surrounding vehicle 200 is equal to or higher than the reliability level of the own vehicle. Adopted as position information of own vehicle.
  • the reliability level check unit 62 is a function provided when the CPU provided in the self-position measuring device 1 executes a program.
  • FIG. 8 is an example of a position information reliability level table used in the third embodiment of the present invention.
  • the reliability level of position information used in this embodiment will be described with reference to FIG.
  • the value in the “reliability level” column of the table illustrated in FIG. 8 indicates the reliability of the position information transmitted by each surrounding vehicle 200. The larger this value is, the higher the reliability is.
  • Each peripheral vehicle 200 transmits the reliability level of the position information to the own vehicle 100 together with its own position information.
  • the value in the “content” column describes the measurement technique corresponding to the reliability level. In the example of FIG.
  • the method of positioning by combining the position information obtained by receiving the signal from the GNSS and the movement amount based on the measurement value by the acceleration sensor or the gyro sensor has the reliability level of “2” and is the most reliable. high.
  • the reliability level is “1”.
  • the reliability level is “1” even when the GNSS receiver 21 is provided, the reliability level is “1” even when the GNSS receiver 21 is malfunctioning and positioning is performed using only a DSRC or an acceleration sensor.
  • the reliability level of the position information that can be acquired from the vehicle is “0”.
  • the position information by the vehicle having the reliability level “0” is, for example, position information that the vehicle has periodically acquired from the other surrounding vehicles 200 via the wireless LAN.
  • the reliability level check unit 62 of the own vehicle 100 reads the table illustrated in FIG. 8 from the storage unit 80, evaluates the reliability level information acquired from the surrounding vehicle 200 based on this table, and Whether to estimate the position of the host vehicle 100 using the position information acquired from the vehicle 200 is determined.
  • FIG. 9 is a process flow diagram of the positioning method for the host vehicle in the third embodiment of the present invention.
  • a positioning method of the host vehicle 100 in the present embodiment will be described with reference to FIG. First, steps S1 to S3 are the same as those in the second embodiment. That is, when the failure monitoring unit 10 determines that an abnormality has occurred in the GNSS receiver 21, the surrounding vehicle position acquisition unit 60 transmits a position information request signal.
  • the radio wave intensity position calculation unit 61 obtains response signals and radio wave intensity from the three or more neighboring vehicles 200 from the wireless LAN 72.
  • the answer signal includes reliability level information in addition to the position information of each vehicle, and the radio wave intensity position calculation unit 61 includes the position information, radio wave intensity, and reliability included in the acquired answer signal.
  • the level is output to the reliability level check unit 62 (step S4).
  • the radio wave intensity position calculation unit 61 calculates the position information of the host vehicle 100 as in the second embodiment (step S11), and the surrounding vehicle position acquisition unit 60 uses the position information as the position information of the host vehicle 100.
  • the GNSS receiver 21 records it in the storage unit 80 instead of the position information received from the satellite (step S5).
  • step S12 No
  • the reliability level check unit 62 outputs an error signal to the surrounding vehicle position acquisition unit 60, The processing from step S4 is repeated. This processing flow is completed.
  • the above-described method may be used when answer signals can be received from many neighboring vehicles 200, but answer signals cannot be obtained from neighboring vehicles 200 having positioning means of a desired reliability level or higher, such as when there are few traveling vehicles. It is also possible. In such a case, even if the reliability level is low, the current position of the host vehicle 100 may be estimated using the position information.
  • the table illustrated in FIG. 8 includes weighting information for each reliability level, and is not compared with the reliability level of the positioning means included in the host vehicle 100 in step S12 of the processing flow of FIG. In S11, the reliability level check unit 62 may calculate the position information in consideration of weighting.
  • a “weighting” column is added to the table illustrated in FIG. 8. If the reliability level is “2”, the weight is “3”, and if the reliability level is “1”, the weight is “1”. If the degree level is “0”, the weight is set to “0”. Further, it is assumed that there are only two surrounding vehicles, and the own vehicle 100 acquires position information and a reliability level from each of the two surrounding vehicles. Further, it is assumed that the reliability levels of the acquired surrounding vehicles are “2” and “1”, respectively. In this case, first, the reliability level check unit 62 acquires each answer signal from the surrounding vehicle position acquisition unit 60. The reliability level check unit 62 reads weighting information corresponding to the reliability level included in each signal from the above table.
  • the reliability level check unit 62 estimates the current position using the position information included in the answer signal.
  • the current position estimated by the position information (weighting “3”) with the reliability level “2” is “A”
  • the current position estimated by the position information (weighting “1”) with the reliability level “1”. Is “B”.
  • the reliability level check unit 62 equally divides the straight line connecting “A” and “B” into 4 (3 + 1) using the weighting information, and sets the point closest to the position “A” among those points to the current position. May be estimated.
  • the point that is newly estimated as the current position is a distance of “1: 3” from “A” and “B”, and is a position that reflects the weight of the reliability level for the position information estimated by the two neighboring vehicles.
  • the reliability level check unit 62 outputs the position information to the surrounding vehicle position acquisition unit 60, and the surrounding vehicle position acquisition unit 60 stores the estimated position information instead of the position information received from the satellite by the GNSS receiver 21. Part 80 is recorded.
  • the above self-position measuring apparatus has a computer inside.
  • Each process of the self-position measuring apparatus described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the means for acquiring the position information from the surrounding vehicle may be other wireless communication means instead of the wireless LAN.
  • the position of the vehicle can be measured even if a component of the vehicle-mounted device breaks down.

Abstract

 車両の位置測定方法は、自車両の位置情報が所定の品質で外部から取得できたか否かを判定する過程と、所定の品質で前記位置情報が取得できないと判定した場合に自車両の情報取得可能領域内に存在する周辺車両の位置情報を取得する過程と、取得した周辺車両の位置情報を自車両の位置情報に置き換える過程と、を有する。

Description

位置測定方法、自己位置測定装置及び車載器
 本発明は、位置測定方法、自己位置測定装置及び車載器に関する。
 本願は、2014年1月28日に、日本に出願された特願2014-013248号に基づき優先権を主張し、その内容をここに援用する。
 道路課金システムでは、課金地点ごとに設置された無線通信装置とその地点を通過する車両に備えられた無線通信装置とが通信したり、路側に設置したカメラで車両のナンバープレート等を読み取ることによって車両がその地点を通過したことを認識し課金する方式が広く用いられている。その他にも、全地球的航法衛星システム(GNSS:Global Navigation Satellite System)を用いて車両の位置を測位し、その位置情報を課金地点の情報を付加した地図情報と比べて課金地点の通過を判定し課金する方法なども存在する。
 また、次世代道路課金システムでは、GNSSによる測位と車両に備わる加速度センサ等を用いた自律的な測位方法とを組み合わせて車両位置を推定し、車両の走行経路や特定エリア内での滞在時間等に基づいて課金する仕組みが検討されている。この次世代道路課金システムを実現するためには、車両の正確な位置情報を把握する必要がある。例えば特許文献1には、順天頂衛星からの信号を車載器に搭載した受信機を用いて受信し、車両の正確な位置を測定する方法について記載がある。
特開2013-101013号公報
 車載器が設置される車内は一般的な工業製品と比較して環境温度が高く、80℃以上にもなり得る。また、車両の走行、又は発車及び停止による振動が車両の設備機器に与える影響も大きい。また、次世代道路課金システム向け車載器では正確な位置情報を取得するために機器の構成が複雑になり部品やモジュール数が大幅に増加している。これらのことから、次世代道路課金システムでは、車両に搭載する機器類の故障リスクが高くなっている。
 機器が故障した場合、例えばGNSSの衛星からの信号を受信する受信機が故障すれば、正確な車両の位置情報を得ることができないため、適切な課金を行うことができなくなる。
 本発明は、上述の課題を解決することのできる位置測定方法、自己位置測定装置及び車載器を提供する。
 本発明の第1の態様によれば、車両の位置測定方法は、自車両の位置情報を所定の品質で外部から取得できた否かを判定する過程と、所定の品質で前記位置情報が取得できなかったと判定した場合に自車両の情報取得可能領域内に存在する周辺車両の位置情報を取得する過程と、取得した周辺車両の位置情報を自車両の位置情報に置き換える過程と、を有する。
 本発明の第2の態様によれば、前記位置測定方法は、前記周辺車両の位置情報を通信にて複数取得し、前記取得した複数の位置情報と前記取得に用いたそれぞれの通信における受信電波強度とから自車両の位置情報を算出する。
 本発明の第3の態様によれば、前記位置測定方法は、前記周辺車両の位置情報を取得する過程では、さらに当該位置情報の信頼度を示す情報を取得し、自車両の位置情報が所定の品質で取得できないと判定した場合に、周辺車両の位置情報から、自車両以上に信頼度の高い位置情報を選択する過程を有する。
 本発明の第4の態様によれば、前記位置測定方法は、前記周辺車両の位置情報を取得する過程では、さらに当該位置情報の信頼度を示す情報を取得し、自車両の位置情報が所定の品質で取得できないと判定した場合に、自車両及び周辺車両の位置情報に重み付けを付加して位置情報を算出し自車両の位置情報に置き換える過程と、を有する。
 本発明の第5の態様によれば、前記品質の判定を、前記位置情報の外部からの取得における通信異常の有無により行う。
 本発明の第6の態様によれば、前記品質の判定を、前記外部から取得したデータの異常の有無により行う。
 本発明の第7の態様によれば、前記品質の判定を、自車両のエンジン停止の際に記録された位置情報が示す位置と、エンジン始動の際に推測された位置情報が示す位置とが所定以上乖離しているか否かにより行う。
 本発明の第8の態様によれば、前記品質の判定を、前記外部から取得した位置情報に基づいて推定した自車両の位置と前記取得した周辺車両の位置情報から推定した自車両の位置とを比較し、それらが所定以上乖離しているか否かにより行う。
 本発明の第9の態様によれば、前記品質の判定を、前記外部から取得した自車両の位置情報の所定時間における変位と自車両が備えるセンサにより測位した前記所定時間における変位との乖離が所定以上であるか否かにより行う。
 本発明の第10の態様によれば、自己位置測定装置は、自車両の位置情報が所定の品質で外部から取得できたか否かを判定する故障監視部と、所定の品質で前記位置情報が取得できないと判定した場合に自車両の情報取得可能領域内に存在する周辺車両の位置情報を取得する周辺車両位置取得部と、取得した周辺車両の位置情報を自車両の位置情報を推定する位置推定処理部と、を備える。
 本発明の第11の態様によれば、前記自己位置測定装置において、前記周辺車両位置取得部が、前記周辺車両の位置情報を通信にて複数取得し、前記取得した複数の位置情報と前記取得に用いたそれぞれの通信における受信電波強度とから自車両の位置情報を算出する電波強度位置算出部を備える。
 本発明の第12の態様によれば、前記自己位置測定装置は、前記周辺車両の位置情報の信頼度を示す情報を取得し、周辺車両の位置情報から、自車両以上に信頼度の高い位置情報を選択する信頼度レベルチェック部を備える。
 本発明の第13の態様によれば、前記信頼度レベルチェック部が、信頼度レベルに応じた重み付けを取得し、自車両及び周辺車両の位置情報に前記重み付けを付加して位置情報を算出する。
 本発明の第14の態様によれば、前記故障監視部が、前記品質の判定を、前記位置情報の外部からの取得における通信異常の有無により行う。
 本発明の第15の態様によれば、前記故障監視部が、前記品質の判定を、前記外部から取得したデータの異常の有無により行う。
 本発明の第16の態様によれば、前記故障監視部が、前記品質の判定を、自車両のエンジン停止の際に記録された位置情報が示す位置と、エンジン始動の際に推測された位置情報が示す位置とが所定以上乖離しているか否かにより行う。
 本発明の第17の態様によれば、前記故障監視部が、前記品質の判定を、前記外部から取得した位置情報に基づいて推定した自車両の位置と前記取得した周辺車両の位置情報から推定した自車両の位置とを比較し、それらが所定以上乖離しているか否かにより行う。
 本発明の第18の態様によれば、前記故障監視部が、前記品質の判定を、前記外部から取得した自車両の位置情報の所定時間における変位と自車両が備えるセンサにより測位した前記所定時間における変位との乖離が所定以上であるか否かにより行う。
 本発明の第19の態様によれば、車載器は、上述した何れかの位置測定方法で自車両の現在位置を測定する自己位置測定装置を備える。
 上記した位置測定方法、自己位置測定装置及び車載器によれば、車載器の構成部品が故障しても車両の位置を測位できるようになる。
本発明の第一の実施形態における自己位置測定装置の機能ブロック図である。 本発明の第一の実施形態における自車両の測位方法の処理フロー図である。 本発明の第一の実施形態における自車両の測位方法の説明図である。 本発明の第二の実施形態における自己位置測定装置の機能ブロック図である。 本発明の第二の実施形態における自車両の測位方法の処理フロー図である。 本発明の第二の実施形態における自車両の測位方法の説明図である。 本発明の第三の実施形態における自己位置測定装置の機能ブロック図である。 本発明の第三の実施形態において使用する位置情報信頼度レベルテーブルの一例である。 本発明の第三の実施形態における自車両の測位方法の処理フロー図である。
<第一の実施形態>
 以下、本発明の第一の実施形態による車両の位置測定方法を図1~図3を参照して説明する。
 図1は第1の実施形態における自己位置測定装置の機能ブロック図である。
 図1に示すように本実施形態の自己位置測定装置1は、故障監視部10と、位置検出部20と、移動量推定処理部30と、位置推定処理部40と、課金処理部50と、周辺車両位置取得部60と、通信部70と、記憶部80と、ICカードリーダ90とを備えている。
 故障監視部10は、位置検出部20の異常の有無を自車両の位置情報が所定の品質で外部から取得できたか否かによって判定し、異常があった場合、暫定的な位置検出を行うよう周辺車両位置取得部60に指示する。具体的には外部とはGNSSの人工衛星であり、故障監視部10は、GNSS受信機21が衛星からの信号を正常に受信できるかどうかを判定する。
 位置検出部20は、各種センサ類などにより自車両の位置情報の推定に必要な情報を取得する。位置検出部20は、GNSS受信機21と、加速度センサ22と、ジャイロセンサ23と、方位センサ24とを備えている。
 GNSS受信機21は、GNSSの人工衛星から発信された位置情報を含む信号を受信し、その位置情報を位置推定処理部40に出力する。
 加速度センサ22は、車両の加速度を検出し、移動量推定処理部30に出力する。
 ジャイロセンサ23は、車両の角速度を検出し、移動量推定処理部30に出力する。
 方位センサ24は、車両の進行方向の方位を検出し、移動量推定処理部30に出力する。
 GNSS受信機21による測位は、常に有効であるとは限らない。例えばトンネル内や地下などでは信号を受信できないことが多く、また、高層ビル街では、高層ビルによって信号が反射され測位誤差を発生しやすい。一方、加速度センサ22等は、外部からの信号を必要としないが、加速度センサ22等から取得した情報を積算して位置を推定すると誤差が蓄積されやすい傾向がある。本実施形態ではGNSSによって得られる位置情報と、他のセンサが取得した情報を用いて直前の位置からの移動量を計算しそれを累積して現在位置を推定する方法とを組み合わせて車両の現在位置を推定する。
 移動量推定処理部30は、定期的に各センサから取得した加速度や角速度などの情報に基づいて、所定期間における車両の走行距離や進行方向などの移動量を算出する。
 位置推定処理部40は、GNSS受信機21から取得したGNSSによって得られる位置情報に移動量推定処理部30が算出した移動量を加え、自車両の現在位置を推定し、その位置情報を課金処理部50に出力する。
 課金処理部50は、位置推定処理部40が算出した位置情報に基づいて車両の走行経路を特定し、課金地点や課金対象となる区域の情報を含んだ地図情報と走行経路とを比較し、所定の方法により課金金額を計算する。
 周辺車両位置取得部60は、故障監視部10が位置検出部20の異常・故障を検出したときに無線通信手段を用いて周辺車両の位置情報を取得する。
 通信部70は、自車両と他の装置とのデータ通信を行う。通信部70は、公衆回線通信部71と、無線LAN72と、DSRC(Dedicated Short Range Communications)73とを備えている。
 公衆回線通信部71は、例えば携帯電話機であって携帯電話網を介して課金処理部50が計算した課金情報を道路課金システムの管理センタへ送信したり、当該管理センタから課金テーブルや地図情報などを受信する。
 無線LAN72は、無線LANによる通信手段である。無線LAN72は、故障監視部10が位置検出部20の異常を検出した場合、周辺車両位置取得部60が周囲車両に位置情報を問い合わせ、周囲車両から位置情報を取得するために使用する。
 DSRC73は、DSRC方式による通信手段である。DSRC73は、課金地点の路側に設置されたアンテナとDSRC方式で通信し、そのアンテナが設置された場所の識別情報などを受信する。DSRC73が受信した情報は、例えば公衆回線通信部71を介して道路課金システムの管理センタへ送信され、課金処理が行われる。本実施形態の道路課金システムでは、GNSSとセンサを用いた位置情報による課金だけでなく、DSRCによる課金も行われる。
 記憶部80は、管理センタから受信した地図情報や課金テーブル等を記憶している。
 ICカードリーダ90は、自己位置測定装置に搭載されたICカードリーダである。ICカードリーダ90は、課金用のICカードのリード・ライト処理及び認証処理などのセキュリティ処理を行う。
 なお、これら故障監視部10、移動量推定処理部30、位置推定処理部40、課金処理部50、周辺車両位置取得部60は、自己位置測定装置1に備わるCPU(Central Processing Unit)がプログラムを実行することにより備わる機能である。
 図2は本発明の第一の実施形態における自車両の測位方法の処理フロー図である。
 図3は本発明の第一の実施形態における自車両の測位方法の説明図である。
 図2、図3を用いて、本実施形態における自車両の測位方法について説明する。
 前提として図3が示すように自車両100と近隣において周辺車両200が走行又は停止しているものとする。
 まず、自車両100における所定の操作により自車両100は現在位置の測位を開始する(ステップS1)。例えば、GNSS受信機21が衛星からの信号を良好に受信できる場合、位置推定処理部40は、GNSS受信機21が所定の時間ごとに衛星から受信した位置情報を取得し、その位置情報を自車両100の現在における位置情報としてもよい。
 また、GNSS受信機21が衛星からの信号を受信できない地区を走行しているときは、最後に衛星からの信号を受信した位置からの移動量を移動量推定処理部30が公知の技術によって計算し、位置推定処理部40は最後に衛星から受信した位置情報にその移動量を加算して自車両100の現在における位置情報としてもよい。また、位置推定処理部40は、自車両100が、路側アンテナが設置された地点を通過した際には、DSRC73が無線通信によって得たそのアンテナの識別情報を用いて記憶部80が記憶するアンテナ位置情報を含む地図情報を参照し、それによって特定した通過地点の位置情報を他の手段で得た位置情報に加えて自車両100の現在位置を推定してもよい。
 次に故障監視部10は、GNSS受信機21が取得する位置情報の品質によりGNSS受信機21に異常が発生したか否かを判定する(ステップS2)。例えばGNSS受信機21が受信したデータに異常があれば、故障監視部10は、位置情報の品質が劣悪でありGNSS受信機21に異常が発生したと判定してもよい。また、故障監視部10は、GNSS受信機21による信号の受信に際し通信異常があればGNSS受信機21に異常が発生したと判定してもよい。通信異常とは、例えばGNSS受信機21が所定時間にわたり信号を受信できない場合などのことをいう。通信異常によってGNSS受信機21に異常が発生したか否かを判定する方法は、例えば次のようにして行ってもよい。記憶部80の記憶する地図情報に衛星から受信できる信号の品質の予測を示す品質予測情報が付加されていて、故障監視部10は、現在の推定位置における品質予測情報を記憶部80から読み取る。そして、故障監視部10は、その品質予測情報が所定の基準と比較して良好と判断できる場合のみ通信異常によるGNSS受信機21の異常判定を行う。また、例えば地図情報のトンネルを示す位置には受信信号の品質が劣悪であることを示す品質予測情報が付加されていて、位置推定処理部40が前回GNSSから受信した位置情報と移動量推定処理部30が算出したその後の移動量とに基づいて推定した現在位置が当該トンネルであることを示しているとする。その場合、故障監視部10は、推定した現在位置を用いて地図情報に付加された現在位置の品質予測情報を記憶部80から読み出して、所定の基準値とその品質予測情報とを比較して現在位置における受信信号の予測品質が劣悪であると判定できる場合には、GNSS受信機21によって所定時間信号が受信できなくてもGNSS受信機21に異常が発生したと判定しなくてもよい。
 また、エンジンを停止した際に位置推定処理部40がそのときの推定位置を記憶部80に記録していて、再びエンジンを始動した際に位置推定処理部40が推定した現在位置と、エンジン停止時に記録した位置とが所定の距離以上乖離していれば、故障監視部10は、位置情報の品質が劣悪でありGNSS受信機21に異常があると判定してもよい。また、今回受信した信号による位置情報と例えば前回衛星から受信した位置情報との変位が、移動量推定処理部30が算出したその間における変位と比較して所定距離以上乖離することが所定期間内に所定回数以上発生すれば、故障監視部10は、位置情報の品質が劣悪でありGNSS受信機21に異常が発生したと判定してもよい。
 故障監視部10が、GNSS受信機21の異常を検出しない場合(ステップS2=No)、ステップS1の測位を繰り返す。
 GNSS受信機21の異常を検出した場合(ステップS2=Yes)、故障監視部10は、暫定的な測位を行う旨の指示信号を周辺車両位置取得部60に出力する。
 周辺車両位置取得部60は、その指示信号を取得すると無線LAN72を介して位置情報要求信号301を発信する(ステップS3)。すると情報取得可能領域内に存在している周辺車両200が、自車両100が送信した位置情報要求信号を受信する。信号を受信した周辺車両200は、自車両100と同様に現在位置を推定する手段を備えており、その手段によって推定した周辺車両200の現在の推定位置情報を含む回答信号302を自車両100に送信する。あるいは周辺車両200は、自車両100から位置情報要求信号301を受信すると衛星から最新の位置情報を再受信して自車両100へ回答信号302を送信してもよい。そして自車両100は、無線LAN72を介して周辺車両200から位置情報を含む位置情報要求信号に対する回答信号302を受信する(ステップS4)。周辺車両位置取得部60は、その位置情報を取得し、GNSS受信機21衛星から受信した自車両の位置情報の代わりに記憶部80に記録する(ステップS5)。その後は、通常時における現在位置推定方法と同様に、位置推定処理部40が、周辺車両位置取得部60の記録した位置情報に移動量推定処理部30が算出した移動量を加算して自車両100の現在位置を推定する。
 以上で本処理フローを終了する。
 本実施形態によれば、高温や振動などでGNSS受信機21が故障したときにも周辺車両が所有する位置情報から自車両の位置を推定することが可能である。それによって、GNSS受信機が故障した場合であっても課金処理を行うことができる。
<変形例>
 なお、図2の処理フローのステップS2において、次のような判定方法も考えられる。故障監視部10が、定期的に無線LAN72を介して周辺車両200から位置情報を取得する。そして故障監視部10は、取得した位置情報と位置推定処理部40が推定した位置情報とを比較し、所定の距離以上離れていれば、故障監視部10は、GNSS受信機21に異常が発生したと判定する。なお、周辺車両200が1台の場合、相手の車両に搭載したGNSS受信機が故障していることも考えられるので複数の周辺車両200から位置情報を取得することが好ましい。全車両が互いに複数の周辺車両200から得られる位置情報を参照して自車両100の位置情報の精度を確認する方式をとることで、何らかの原因によって生じた測位誤差による車両間の課金金額の不均衡を防止する効果も期待できる。
 また、図2の説明では自車両100のエンジン停止時とその後の始動時における測位結果の乖離を故障判定の基準としたが、例えばサイドブレーキを引いて停止している間に位置推定処理部40にて現在位置を測定し続け、現在位置の変動が確認された場合は故障と判断することができる。同様に、加速度センサやジャイロセンサの出力値に変化がない状態にて位置推定処理部40で算出した現在位置の変動が確認された場合は故障と判断することができる。
<第二の実施形態>
 以下、本発明の第二の実施形態による車両の位置測定方法を図4~図6を参照して説明する。
 図4は第二の実施形態による自己位置測定装置の機能ブロック図である。図4に示すように、本実施形態による自己位置測定装置1は、電波強度位置算出部61を備えており、他の構成は第一の実施形態と同じである。
 本実施形態の電波強度位置算出部61は、複数の周辺車両200から受信した回答信号に含まれる複数の周辺車両200それぞれの位置情報と回答信号の受信電波強度を利用して、自車両100の現在位置を算出する。電波強度位置算出部61は、自己位置測定装置1に備わるCPUがプログラムを実行することにより備わる機能である。
 図5は本発明の第二の実施形態における自車両の測位方法の処理フロー図である。
 図6は本発明の第二の実施形態における自車両の測位方法の説明図である。
 図5、図6を用いて、本実施形態における自車両の測位方法について説明する。
 まず、ステップS1からステップS3までは実施形態1と同じである。つまり、故障監視部10が、GNSS受信機21に異常が発生したことを判定すると周辺車両位置取得部60が位置情報要求信号301-1、301-2、301-3を送信する。
 そして次のステップS4では、自車両100は、少なくとも3台の周辺車両200-1、200-2、200-3から位置情報を含む回答信号302-1、302-2、302-3を受信する。このとき本実施形態では周辺車両位置取得部60が無線LAN72を介して受信した回答信号を電波強度位置算出部61へ出力する。また、電波強度位置算出部61は、位置情報の他に無線LAN72が検出した各周辺車両200から受信した回答信号302-1、302-2、302-3の電波強度を無線LAN72より取得する。そして電波強度位置算出部61は、取得した位置情報と電波強度から自車両100の現在位置を、三角測量などを用いて推定する(ステップS11)。
 現在位置を推定する方法は、例えば以下のような方法であってもよい。まず記憶部80には、予め無線LANの電波強度とその電波強度で回答信号を受信した場合の相手車両からの距離との関係を規定したテーブルが格納されている。電波強度位置算出部61は、取得した各電波強度に対応する距離情報をこのテーブルから読み出す。次に電波強度位置算出部61は、各周辺車両200-1、200-2、200-3から取得した位置情報が示す位置を中心として読み出した距離情報が示す長さを半径とする円を描いたときの全ての円の交点を求め、それを自車両100の現在位置と推定する。なお、全ての円が1点で交わらない場合などは、複数の円の交点を結ぶ多角形の重心を自車両100の現在位置とするなど所定の方法で現在位置を推定してもよい。
 電波強度位置算出部61は、例えば上述の方法で自車両100の現在位置を推定すると、その位置情報を周辺車両位置取得部60に出力し、周辺車両位置取得部60は、その位置情報をGNSS受信機21が衛星から受信した位置情報の代わりに記憶部80に記録する(ステップS5)。その後の測位方法については第一の実施形態と同じである。
 以上で本処理フローを終了する。
 本実施形態によれば、複数の周辺車両の位置情報を用いて自車両の現在位置を推定することでより精度の高い測位が可能となる。それによって、GNSS受信機が故障した場合であってもより正確な車両の走行経路や滞在位置情報に基づいて課金処理を行うことができる。
<第三の実施形態>
 以下、本発明の第三の実施形態による車両の位置測定方法を図7~図9を参照して説明する。本実施形態での特徴のある構成は第一の実施形態と組み合わせることも可能であるが第二の実施形態と組み合わせた例を用いて説明する。
 図7は第三の実施形態による自己位置測定装置の機能ブロック図である。図7に示すように、本実施形態による自己位置測定装置1は、信頼度レベルチェック部62を備えており、他の構成は第二の実施形態と同じである。
 本実施形態の信頼度レベルチェック部62は、周辺車両200から受信した位置情報の信頼度を回答信号に含まれる信頼度レベル情報に応じて評価する。例えば、信頼度レベルチェック部62は、自車両100の故障監視部10が異常を検出しない場合における自車両100における測位の信頼度レベルと周辺車両200から取得した信頼度レベルとを比較する。そして信頼度レベルチェック部62は、周辺車両200から取得した信頼度レベルが自車両の信頼度レベル以上の場合のみその周辺車両200から取得した位置情報と受信電波強度とを用いて推定した位置を自車両の位置情報として採用する。信頼度レベルチェック部62は、自己位置測定装置1に備わるCPUがプログラムを実行することにより備わる機能である。
 図8は本発明の第三の実施形態において使用する位置情報信頼度レベルテーブルの一例である。
 図8を用いて本実施形態で用いる位置情報の信頼度レベルについて説明する。図8に例示するテーブルの「信頼度レベル」欄の値は、各周辺車両200が送信する自身の位置情報の信頼度を示している。この値は、大きい程、信頼度が高いことを示している。各周辺車両200は、自身の位置情報と共にその位置情報の信頼度レベルを自車両100に送信する。「内容」欄の値は、その信頼度レベルに対応する測定技術が記載されている。図8の例では、GNSSからの信号受信によって得られる位置情報と加速度センサやジャイロセンサでの測定値に基づく移動量とを組み合わせて測位する方法は信頼度レベルが「2」で最も信頼性が高い。また、例えばGNSS受信機21を備えておらず、加速度センサなど自律センサによる測定値だけで測位する場合は信頼度レベルが「1」である。例えば、GNSS受信機21を備えていても故障しており、DSRCや加速度センサ等だけで測位する場合なども信頼度レベルが「1」となる。また、GNSS受信機21もセンサ類も備えていない場合、その車両から取得できる位置情報の信頼度レベルは「0」である。信頼度レベルが「0」の車両による位置情報とは、例えばその車両が定期的に無線LANで他の周辺車両200から取得した位置情報であることが考えられる。
 本実施形態では自車両100の信頼度レベルチェック部62が、図8で例示したテーブルを記憶部80から読み出し、周辺車両200から取得した信頼度レベル情報をこのテーブルに基づいて評価し、どの周辺車両200から取得した位置情報を用いて自車両100の位置を推測するかを決定する。
 図9は本発明の第三の実施形態における自車の測位方法の処理フロー図である。
 図9を用いて本実施形態における自車両100の測位方法について説明する。
 まず、ステップS1からステップS3までは第二の実施形態と同じである。つまり、故障監視部10が、GNSS受信機21に異常が発生したことを判定すると周辺車両位置取得部60が位置情報要求信号を送信する。そしてステップS4において、電波強度位置算出部61は、3以上の周辺車両200から回答信号と電波強度を無線LAN72より取得する。本実施形態では回答信号には各車両の位置情報等に加えて信頼度レベル情報が含まれており、電波強度位置算出部61は、取得した回答信号に含まれる位置情報と電波強度と信頼度レベルとを信頼度レベルチェック部62へ出力する(ステップS4)。次に信頼度レベルチェック部62は、記憶部80から自車両100の信頼度レベル情報を読み出し、取得した全ての周辺車両200の信頼度レベルと比較する。そして信頼度レベルチェック部62は、信頼度レベルが自車両100の信頼度レベル以上の位置情報を選択する。そして選択した情報の数が3以上であれば(ステップS12=Yes)、信頼度レベルチェック部62は、選択した位置情報及び電波強度を含む情報を電波強度位置算出部61へ出力する。
 そして電波強度位置算出部61は、第二の実施形態と同様に自車両100の位置情報を算出し(ステップS11)、周辺車両位置取得部60は、その位置情報を自車両100の位置情報としてGNSS受信機21が衛星から受信した位置情報の代わりに記憶部80に記録する(ステップS5)。
 一方、自車両100以上の信頼度レベルを含む位置情報の数が3未満であれば(ステップS12=No)、信頼度レベルチェック部62は、エラー信号を周辺車両位置取得部60へ出力し、ステップS4からの処理を繰り返す。
 以上で本処理フローを終了する。
 本実施形態によれば、信頼度の低い周辺車両の位置情報を計算から除外することが可能である。それによって精度の高い位置情報に基づいて課金処理を行うことが可能になる。
 なお、多くの周辺車両200から回答信号が受信できる場合などは上述の方法でもよいが、走行車両が少ない場合など所望の信頼度レベル以上の測位手段を有する周辺車両200から回答信号を得られないことも考えられる。そのような場合、たとえ信頼度レベルが低くてもその位置情報を用いて自車両100の現在位置を推定してもよい。
 例えば図8で例示したテーブルが各信頼度レベルに対して重み付け情報を備えており、図9の処理フローのステップS12において自車両100が備える測位手段の信頼度レベルとの比較を行わず、ステップS11において信頼度レベルチェック部62が重み付けを考慮して位置情報の算出を行ってもよい。
 一例をあげると図8で例示したテーブルに「重み付け」欄を追加し、信頼度レベルが「2」ならば重み付けは「3」、信頼度レベルが「1」ならば重み付けは「1」、信頼度レベルが「0」ならば重み付けは「0」のように設定されているとする。また、周辺車両は2台のみであるとし、自車両100はこの2台の周辺車両からそれぞれ位置情報と信頼度レベルを取得したとする。また、取得した周辺車両の信頼度レベルはそれぞれ「2」と「1」であるとする。この場合、まず信頼度レベルチェック部62は、周辺車両位置取得部60からそれぞれの回答信号を取得する。また、信頼度レベルチェック部62は、上記のテーブルからそれぞれの信号に含まれる信頼度レベルに対応する重み付けの情報を読み取る。そして信頼度レベルチェック部62は回答信号に含まれる位置情報を用いて現在位置を推定する。ここで信頼度レベルが「2」の位置情報(重み付け「3」)によって推定した現在位置を「A」とし、信頼度レベルが「1」の位置情報(重み付け「1」)によって推定した現在位置を「B」とする。すると例えば信頼度レベルチェック部62は、重み付け情報を用いて「A」と「B」を結ぶ直線を4(3+1)等分し、それらの点のうち最も位置「A」に近い点を現在位置と推定してもよい。新しく現在位置と推定した点は、「A」と「B」とから「1:3」の距離にあり、2台の周辺車両が推定した位置情報に対する信頼度レベルの重み付けを反映した位置である。信頼度レベルチェック部62はこの位置情報を周辺車両位置取得部60に出力し、周辺車両位置取得部60は、この推定した位置情報をGNSS受信機21が衛星から受信した位置情報の代わりに記憶部80に記録する。
 なお、上述の自己位置測定装置は内部にコンピュータを有している。そして、上述した自己位置測定装置の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、周辺車両から位置情報を取得する手段は無線LANでなく、他の無線通信手段であってもよい。
 上述した位置測定方法、自己位置測定装置及び車載器によれば、車載器の構成部品が故障しても車両の位置を測位できるようになる。
 1   自己位置測定装置
 10  故障監視部
 20  位置検出部
 21  GNSS受信機
 22  加速度センサ
 23  ジャイロセンサ
 24  方位センサ
 30  移動量推定処理部
 40  位置推定処理部
 50  課金処理部
 60  周辺車両位置取得部
 61  電波強度位置算出部
 62  信頼度レベルチェック部
 70  通信部
 71  携帯電話
 72  無線LAN
 73  DSRC
 80  記憶部
 90  ICカードリーダ
 100  自車両
 200  他車両
 301  位置情報要求信号
 302  回答信号

Claims (19)

  1.  自車両の位置情報を所定の品質で外部から取得できた否かを判定する過程と、
     所定の品質で前記位置情報が取得できなかったと判定した場合に自車両の情報取得可能領域内に存在する周辺車両の位置情報を取得する過程と、
     取得した周辺車両の位置情報を自車両の位置情報に置き換える過程と、
     を有する車両の位置測定方法。
  2.  前記周辺車両の位置情報を通信にて複数取得し、前記取得した複数の位置情報と前記取得に用いたそれぞれの通信における受信電波強度とから自車両の位置情報を算出する
     請求項1の車両の位置測定方法。
  3.  前記周辺車両の位置情報を取得する過程では、さらに当該位置情報の信頼度を示す情報を取得し、
     自車両の位置情報が所定の品質で取得できないと判定した場合に、周辺車両の位置情報から、自車両以上に信頼度の高い位置情報を選択する過程
     を有する請求項1または請求項2に記載の位置測定方法。
  4.  前記周辺車両の位置情報を取得する過程では、さらに当該位置情報の信頼度を示す情報を取得し、
     自車両の位置情報が所定の品質で取得できないと判定した場合に、自車両及び周辺車両の位置情報に重み付けを付加して位置情報を算出し自車両の位置情報に置き換える過程と、
     を有する請求項1から請求項3の何れか1項に記載の位置測定方法。
  5.  前記品質の判定を、前記位置情報の外部からの取得における通信異常の有無により行う
     請求項1から請求項4の何れか1項に記載の位置測定方法。
  6.  前記品質の判定を、前記外部から取得したデータの異常の有無により行う
     請求項1から請求項5の何れか1項に記載の位置測定方法。
  7.  前記品質の判定を、自車両のエンジン停止の際に記録された位置情報が示す位置と、エンジン始動の際に推測された位置情報が示す位置とが所定以上乖離しているか否かにより行う
     請求項1から請求項6の何れか1項に記載の位置測定方法。
  8.  前記品質の判定を、前記外部から取得した位置情報に基づいて推定した自車両の位置と前記取得した周辺車両の位置情報から推定した自車両の位置とを比較し、それらが所定以上乖離しているか否かにより行う
     請求項1から請求項7の何れか1項に記載の位置測定方法。
  9.  前記品質の判定を、前記外部から取得した自車両の位置情報の所定時間における変位と自車両が備えるセンサにより測位した前記所定時間における変位との乖離が所定以上であるか否かにより行う
     請求項1から請求項8の何れか1項に記載の位置測定方法。
  10.  自車両の位置情報が所定の品質で外部から取得できたか否かを判定する故障監視部と、
     所定の品質で前記位置情報が取得できないと判定した場合に自車両の情報取得可能領域内に存在する周辺車両の位置情報を取得する周辺車両位置取得部と、
     取得した周辺車両の位置情報を自車両の位置情報を推定する位置推定処理部と、
     を有する自己位置測定装置。
  11.  前記周辺車両位置取得部は、前記周辺車両の位置情報を通信にて複数取得し、
     前記取得した複数の位置情報と前記取得に用いたそれぞれの通信における受信電波強度とから自車両の位置情報を算出する電波強度位置算出部
     を備える請求項10に記載の自己位置測定装置。
  12.  前記周辺車両の位置情報の信頼度を示す情報を取得し、周辺車両の位置情報から、自車両以上に信頼度の高い位置情報を選択する信頼度レベルチェック部
     を備える請求項10または請求項11に記載の自己位置測定装置。
  13.  前記信頼度レベルチェック部は、信頼度レベルに応じた重み付けを取得し、自車両及び周辺車両の位置情報に前記重み付けを付加して位置情報を算出する
     請求項12に記載の自己位置測定装置。
  14.  前記故障監視部は、前記品質の判定を、前記位置情報の外部からの取得における通信異常の有無により行う
     請求項10から請求項13の何れか1項に記載の自己位置測定装置。
  15.  前記故障監視部は、前記品質の判定を、前記外部から取得したデータの異常の有無により行う
     請求項10から請求項14の何れか1項に記載の自己位置測定装置。
  16.  前記故障監視部は、前記品質の判定を、自車両のエンジン停止の際に記録された位置情報が示す位置と、エンジン始動の際に推測された位置情報が示す位置とが所定以上乖離しているか否かにより行う
     請求項10から請求項15の何れか1項に記載の自己位置測定装置。
  17.  前記故障監視部は、前記品質の判定を、前記外部から取得した位置情報に基づいて推定した自車両の位置と前記取得した周辺車両の位置情報から推定した自車両の位置とを比較し、それらが所定以上乖離しているか否かにより行う
     請求項10から請求項16の何れか1項に記載の自己位置測定装置。
  18.  前記故障監視部は、前記品質の判定を、前記外部から取得した自車両の位置情報の所定時間における変位と自車両が備えるセンサにより測位した前記所定時間における変位との乖離が所定以上であるか否かにより行う
     請求項10から請求項17の何れか1項に記載の自己位置測定装置。
  19.  請求項1から請求項9の何れか1項に記載の位置測定方法で自車両の現在位置を測定する自己位置測定装置を備えることを特徴とする車載器。
PCT/JP2015/052154 2014-01-28 2015-01-27 位置測定方法、自己位置測定装置及び車載器 WO2015115405A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167020236A KR101889635B1 (ko) 2014-01-28 2015-01-27 위치 측정 방법, 자기 위치 측정 장치 및 차량 탑재 기기
GB1612928.0A GB2536846B8 (en) 2014-01-28 2015-01-27 Position measurement method, own position measurement device, and on-board unit
SG11201606153WA SG11201606153WA (en) 2014-01-28 2015-01-27 Position measurement method, own position measurement device, and on-board unit
US15/113,961 US10094671B2 (en) 2014-01-28 2015-01-27 Position measurement method, own position measurement device, and on-board unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013248A JP6312304B2 (ja) 2014-01-28 2014-01-28 位置測定方法、自己位置測定装置及び車載器
JP2014-013248 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115405A1 true WO2015115405A1 (ja) 2015-08-06

Family

ID=53756978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052154 WO2015115405A1 (ja) 2014-01-28 2015-01-27 位置測定方法、自己位置測定装置及び車載器

Country Status (6)

Country Link
US (1) US10094671B2 (ja)
JP (1) JP6312304B2 (ja)
KR (1) KR101889635B1 (ja)
GB (1) GB2536846B8 (ja)
SG (1) SG11201606153WA (ja)
WO (1) WO2015115405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069645A (ja) * 2015-09-28 2017-04-06 富士通株式会社 位置推定プログラム、位置推定装置および位置推定方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10055976B2 (en) * 2014-07-25 2018-08-21 Lenovo (Singapore) Pte. Ltd. Using device data collected from other proximate devices
KR101778558B1 (ko) * 2015-08-28 2017-09-26 현대자동차주식회사 물체 인식 장치, 그를 가지는 차량 및 그 제어 방법
JP6347243B2 (ja) * 2015-09-15 2018-06-27 トヨタ自動車株式会社 車両制御装置
GB2561104B (en) * 2015-11-30 2021-08-18 Mitsubishi Heavy Ind Mach Systems Ltd Toll collection system, position measurement method, and program
WO2017163611A1 (ja) * 2016-03-23 2017-09-28 クラリオン株式会社 車載装置および車両
TWI597513B (zh) * 2016-06-02 2017-09-01 財團法人工業技術研究院 定位系統、車載定位裝置及其定位方法
WO2018047254A1 (ja) * 2016-09-07 2018-03-15 三菱重工機械システム株式会社 走行距離算出装置、課金システム、走行距離算出方法、プログラム及び記憶媒体
WO2018061425A1 (ja) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 センサ故障検出装置およびそのための制御方法
KR101896783B1 (ko) * 2016-10-17 2018-10-18 현대자동차주식회사 V2x 데이터 신뢰도 검증을 위한 v2x 통신 장치, 그를 포함한 v2x 통신 시스템 및 그 방법
KR102452536B1 (ko) * 2016-12-01 2022-10-07 현대자동차주식회사 주변차량 정보 전송 장치 및 방법
CN110383102B (zh) * 2017-03-07 2023-06-23 三菱电机株式会社 故障检测装置、故障检测方法及计算机可读取存储介质
EP3376249A1 (en) * 2017-03-17 2018-09-19 Veoneer Sweden AB Enhanced object position detection
US10499193B2 (en) * 2017-03-20 2019-12-03 Satori Worldwide, Llc Collaborative geo-positioning of electronic devices
JP6942414B2 (ja) * 2017-07-04 2021-09-29 アルパイン株式会社 車載装置
EP3432473A1 (en) * 2017-07-17 2019-01-23 Nxp B.V. A communications system
WO2019043444A1 (en) * 2017-09-04 2019-03-07 Ebrahimian Ziba SYSTEM AND METHOD FOR MONITORING VEHICLE HISTORY
DE102017220483A1 (de) 2017-11-16 2019-05-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer Position für ein hochautomatisiertes Fahrzeug
EP3640665A1 (en) * 2018-10-16 2020-04-22 Aptiv Technologies Limited Method to improve the determination of a position of a roadside unit, roadside unit and system to provide position information
WO2021167393A1 (ko) * 2020-02-20 2021-08-26 엘지전자 주식회사 사이드링크 측위 방법 및 이를 위한 장치
CN111669711B (zh) * 2020-06-03 2023-11-03 腾讯科技(深圳)有限公司 车辆信息存储的实现方法、装置及计算机设备
JP2022074917A (ja) * 2020-11-05 2022-05-18 本田技研工業株式会社 自律作業システム
JP7274806B1 (ja) * 2023-02-17 2023-05-17 株式会社日本電機サービス 車載ナビゲーションシステム用のアダプター

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311734A (ja) * 1997-05-09 1998-11-24 Japan Aviation Electron Ind Ltd ハイブリッド型測位装置
JP2004069536A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd データ検定装置および方法
JP2004301725A (ja) * 2003-03-31 2004-10-28 Japan Radio Co Ltd ナビゲーション用gps受信方法及び受信機
JP2007178270A (ja) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd 自位置認識システム
JP2009058242A (ja) * 2007-08-30 2009-03-19 Alpine Electronics Inc 車両位置・方位修正方法及び車両位置・方位修正装置
JP2009257763A (ja) * 2006-06-30 2009-11-05 Nec Corp 車輌用位置推定装置、車輌用位置推定方法、および車輌用位置推定プログラム
WO2010081544A1 (en) * 2009-01-14 2010-07-22 Tomtom International B.V. Mapping system and method
JP2011058909A (ja) * 2009-09-09 2011-03-24 Toyota Motor Corp 車車間通信装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296229A (ja) * 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
NL1016371C2 (nl) * 2000-10-10 2002-04-11 Tno Signaleringsinrichting voor een motorvoertuig.
US7653349B1 (en) * 2003-06-18 2010-01-26 The Directv Group, Inc. Adaptive return link for two-way satellite communication systems
JP4172368B2 (ja) 2003-10-07 2008-10-29 株式会社デンソー 車両検知装置
EP1560186B1 (en) * 2004-01-30 2007-10-24 Nec Corporation Vehicle information collection system having point issuing device
JP2005292082A (ja) * 2004-04-05 2005-10-20 Denso Corp 衛星航法用制御装置
US7230568B2 (en) * 2004-11-05 2007-06-12 Trimble Navigation Limited GPS receiver having a phase lock loop hold off
US8041469B2 (en) * 2005-01-05 2011-10-18 GM Global Technology Operations LLC Determining relative spatial information between vehicles
JP2006189393A (ja) * 2005-01-07 2006-07-20 Toyota Motor Corp 周辺物体情報取得装置及びこれを用いる駐車支援装置
US7636632B2 (en) * 2005-06-09 2009-12-22 Toyota Motor Engineering & Manufacturing North America, Inc. Intelligent navigation system
DE102006027326A1 (de) * 2006-06-13 2007-12-20 Robert Bosch Gmbh Spurwechselassistent für Kraftfahrzeuge
DE102007020434B4 (de) * 2007-04-19 2011-01-05 Navigon Ag Verfahren zum Betrieb einer Einrichtung
US8229663B2 (en) * 2009-02-03 2012-07-24 GM Global Technology Operations LLC Combined vehicle-to-vehicle communication and object detection sensing
CA2710189C (en) * 2009-08-20 2012-05-08 Certusview Technologies, Llc Methods and apparatus for assessing marking operations based on acceleration information
US8531333B2 (en) * 2009-12-10 2013-09-10 Maxlinear, Inc. Intermittent tracking for GNSS
US8441398B2 (en) * 2010-02-03 2013-05-14 Texas Instruments Incorporated Receivers, circuits, and methods to improve GNSS time-to-fix and other performances
JP5345125B2 (ja) 2010-12-22 2013-11-20 三菱重工業株式会社 情報処理装置、料金収受システム、及び料金収受方法
US20120188938A1 (en) * 2011-01-20 2012-07-26 Atheros Communications, Inc. System and method for providing a location aware wireless network
DE102012216211A1 (de) * 2011-09-12 2013-03-14 Continental Teves Ag & Co. Ohg Verfahren zum Auswählen eines Satelliten
JP2013101013A (ja) 2011-11-08 2013-05-23 Mitsubishi Electric Corp 位置標定装置、車載器、位置標定方法、位置標定プログラム、運転支援方法、運転支援プログラム、道路課金方法、道路課金プログラム、位置標定システム、運転支援システムおよび道路課金システム
US20130197800A1 (en) * 2012-01-31 2013-08-01 Autotalks Ltd. Method and system for gps augmentation using cooperative altitude learning
EP2944101A4 (en) * 2013-01-09 2016-12-28 Paxgrid Telemetric Systems Inc Vehicle communication via a vehicle environment with wireless access
EP2990991A1 (en) * 2014-08-29 2016-03-02 Honda Research Institute Europe GmbH Method and system for using global scene context for adaptive prediction and corresponding program, and vehicle equipped with such system
US10466366B2 (en) * 2015-12-29 2019-11-05 Automotive Research & Testing Center Optimizing method for vehicle cooperative object positioning and vehicle cooperative positioning apparatus
US9924318B2 (en) * 2016-07-01 2018-03-20 Lear Corporation Passive entry systems employing time of flight distance measurements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311734A (ja) * 1997-05-09 1998-11-24 Japan Aviation Electron Ind Ltd ハイブリッド型測位装置
JP2004069536A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd データ検定装置および方法
JP2004301725A (ja) * 2003-03-31 2004-10-28 Japan Radio Co Ltd ナビゲーション用gps受信方法及び受信機
JP2007178270A (ja) * 2005-12-28 2007-07-12 Aisin Aw Co Ltd 自位置認識システム
JP2009257763A (ja) * 2006-06-30 2009-11-05 Nec Corp 車輌用位置推定装置、車輌用位置推定方法、および車輌用位置推定プログラム
JP2009058242A (ja) * 2007-08-30 2009-03-19 Alpine Electronics Inc 車両位置・方位修正方法及び車両位置・方位修正装置
WO2010081544A1 (en) * 2009-01-14 2010-07-22 Tomtom International B.V. Mapping system and method
JP2011058909A (ja) * 2009-09-09 2011-03-24 Toyota Motor Corp 車車間通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069645A (ja) * 2015-09-28 2017-04-06 富士通株式会社 位置推定プログラム、位置推定装置および位置推定方法

Also Published As

Publication number Publication date
GB2536846B8 (en) 2021-01-27
SG11201606153WA (en) 2016-09-29
GB2536846A (en) 2016-09-28
GB201612928D0 (en) 2016-09-07
KR20160102533A (ko) 2016-08-30
JP6312304B2 (ja) 2018-04-18
JP2015141073A (ja) 2015-08-03
US10094671B2 (en) 2018-10-09
KR101889635B1 (ko) 2018-08-17
US20160341557A1 (en) 2016-11-24
GB2536846B (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6312304B2 (ja) 位置測定方法、自己位置測定装置及び車載器
KR101755944B1 (ko) Gps, uwb 및 v2x를 접목하여 차량의 위치를 결정하는 자율 주행 방법 및 시스템
EP2616774B1 (en) Indoor positioning using pressure sensors
US9897455B2 (en) Travel route information generation apparatus
US9495867B2 (en) Traffic information processing system, server device, traffic information processing method, and program
US9307369B2 (en) Wireless position detection apparatus and storage medium
US11352034B2 (en) Trusted vehicle accident avoidance control
KR101915363B1 (ko) Gps 음영 지역에서 차량을 측위하는 장치 및 그 방법
US10132915B2 (en) System and method for integrated navigation with wireless dynamic online models
WO2014132432A1 (ja) 車両位置表示制御装置および車両位置特定プログラム
JP2018513370A (ja) 自動車用アドホックリアルタイムキネマティックロービングネットワーク
JP2018513370A5 (ja)
JP2016169974A (ja) 位置測定装置、位置測定方法、プログラム、および位置測定システム
JP7150969B2 (ja) 車両の位置を特定する方法
US10282983B2 (en) Traffic volume determination system, traffic volume determination method, and non-transitory computer-readable storage medium storing traffic volume determination program
US20220358837A1 (en) Method and control arrangement for autonomy enabling infra-structure features
US20150220848A1 (en) Method and apparatus for determining a value of a movement-dependent variable
JP2012002782A (ja) 地図更新システム
WO2014080969A1 (ja) 交通情報処理システム、検出装置、サーバ装置、交通情報処理方法、及びプログラム
CN111198391A (zh) 用于定位车辆的系统和方法
JP2021503087A (ja) 高度に自動化された車両に関する位置を特定するための方法及び装置
JP2007257421A (ja) 交通情報の作成装置並びにその方法及びプログラム
Lei et al. Inertial Measurement Units-based probe vehicles: Path reconstruction and map matching
JP7440616B2 (ja) 異常検出装置、車載器、異常検出方法、及びプログラム
Tsai et al. An Automated Superelevation Measurement Method for Horizontal Curve Safety Assessment Using a Low-Cost Mobile Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020236

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113961

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201612928

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150127

WWE Wipo information: entry into national phase

Ref document number: 1612928

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742703

Country of ref document: EP

Kind code of ref document: A1