WO2018061425A1 - センサ故障検出装置およびそのための制御方法 - Google Patents
センサ故障検出装置およびそのための制御方法 Download PDFInfo
- Publication number
- WO2018061425A1 WO2018061425A1 PCT/JP2017/026419 JP2017026419W WO2018061425A1 WO 2018061425 A1 WO2018061425 A1 WO 2018061425A1 JP 2017026419 W JP2017026419 W JP 2017026419W WO 2018061425 A1 WO2018061425 A1 WO 2018061425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- detection device
- failure detection
- reference information
- sensor failure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0841—Registering performance data
- G07C5/085—Registering performance data using electronic data carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q9/00—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
- B60Q9/008—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
- G01S7/4972—Alignment of sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52004—Means for monitoring or calibrating
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
- B60W2050/0215—Sensor drifts or sensor failures
Definitions
- the present invention relates to a failure detection technique, and more particularly to a sensor failure detection device that detects the occurrence of a sensor failure and a control method therefor.
- In-vehicle sensors are generally used for automatic driving of vehicles. This in-vehicle sensor should be determined whether it can be used for automatic driving before automatic driving. Therefore, for example, whether or not to drive automatically by comparing the relative movement history by autonomous navigation starting from the detection of the marker embedded in the road surface and the shape point information of the lane acquired from the latest map data Is determined (see, for example, Patent Document 1).
- the present invention provides a technique for easily detecting the occurrence of a sensor failure.
- the sensor failure detection device is a sensor failure detection device that can be installed in a vehicle, and includes an input circuit and an output circuit.
- the input circuit is set so as to be connected to a sensor arranged in the vehicle, and is set so that reference information and vehicle position information are input.
- the output circuit outputs that the sensor has failed when there is a predetermined relationship between the detection result by the sensor, the reference information, and the position information input to the input circuit.
- any combination of the above components, the expression of the present invention converted between a method, an apparatus, a system, a recording medium (including a non-transitory recording medium), a computer program, and the like are also included in the present invention. It is effective as an embodiment of
- FIG. 1 is a diagram showing a configuration of a vehicle according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing an outline of failure detection processing by the failure detection apparatus of FIG.
- FIG. 3 is a flowchart showing a failure detection processing procedure performed by the failure detection apparatus shown in FIG.
- FIG. 4 is a flowchart showing another processing procedure of failure detection by the failure detection apparatus of FIG.
- FIG. 5 is a flowchart showing still another processing procedure of failure detection by the failure detection apparatus of FIG.
- FIG. 6 is a flowchart showing still another processing procedure of failure detection by the failure detection apparatus of FIG.
- FIG. 7 is a diagram showing the configuration of the detection unit according to Embodiment 2 of the present invention.
- FIG. 8 is a diagram showing an outline of the failure detection processing by the detection unit of FIG.
- FIG. 9 is a flowchart illustrating a failure detection processing procedure performed by the failure detection apparatus according to the second embodiment of the present invention.
- a plurality of types of sensors are mounted in various places on the vehicle. Therefore, it is desirable to detect whether or not a failure has occurred for each sensor individually. Moreover, it is preferable that there is no new equipment investment to embed a marker on the road surface in order to detect the occurrence of a sensor failure.
- Embodiment 1 of the present invention relates to a failure detection device for detecting a failure of a sensor mounted on a vehicle capable of performing automatic driving.
- the sensor detects an object such as an obstacle existing around the vehicle, and the vehicle performs automatic driving so as to avoid the detected object.
- the situation around the vehicle is recognized using the detection result of the sensor instead of a human sense.
- the sensor may not be able to detect the position of an object due to the influence of noise or the like, or may output an abnormal value due to a failure. It is not preferable to use the detection result of such a sensor for automatic driving. Therefore, it is necessary to detect that the reliability of the detection result of the sensor is low and that the sensor is out of order.
- a vehicle is equipped with a plurality of sensors, and the types of sensors to be mounted include a plurality of types.
- Each sensor is set so that the range in which an object can be detected (hereinafter referred to as “search range”) is different.
- the search range of a predetermined sensor may partially overlap with the search range of another sensor.
- the detection results of each sensor are different from the detection results of other sensors, so compare the detection results of each sensor with the detection results of other sensors, It is not preferable to detect that the detection result of the sensor is low in reliability or that the sensor is malfunctioning.
- the reliability of a plurality of sensors may be low, or a failure may occur. Therefore, it should be detected for every sensor that the reliability of the detection result of the sensor is low or that the sensor is broken.
- the position information of an object for example, a traffic light
- reference information information on the type of the object
- the failure detection device acquires reference information from map information and compares the detection result of the sensor with reference information to detect that the reliability of the sensor is low or that the sensor is broken.
- the reference information may be included in the signal received in the road-to-vehicle communication instead of the map information. Also, past detection results may be used as reference information.
- FIG. 1 shows a configuration of a vehicle 200 according to Embodiment 1 of the present invention.
- the vehicle 200 includes a sensor 10, a positioning unit 12, a sensor processing unit 14, a storage unit 16, a storage unit 18, a receiving unit 20, an automatic operation control unit 22, and a failure detection device 100.
- the failure detection device (sensor failure detection device) 100 includes a first acquisition unit 30, a second acquisition unit 32, a detection unit 34, and a notification unit 36.
- the detection unit 34 includes a derivation unit 40 and a determination unit 42.
- the 1st acquisition part 30 and the 2nd acquisition part 32 can also be comprised as the input circuit 33 collectively.
- the sensor 10 is a stereo camera (imaging device of a camera device), LIDAR (Light Detection and Ranging, or Laser Imaging Detection and Ranging), a millimeter wave radar, an ultrasonic sonar, an infrared laser sensor, or the like.
- a plurality of sensors 10 are mounted on the vehicle 200, and the plurality of sensors 10 includes a plurality of types, but only one sensor 10 is shown here. Since a well-known technique should just be used for the sensor 10, description is abbreviate
- the sensor 10 outputs the measurement result to the sensor processing unit 14.
- the positioning unit 12 measures the position, speed, traveling direction, etc. of the vehicle 200.
- the position is indicated by latitude and longitude.
- the positioning unit 12 is, for example, a GNSS (Global Navigation Satellite System) receiver, but may be an autonomous navigation device such as a gyro sensor or a combination thereof.
- the positioning unit 12 outputs the measured position, speed, traveling direction, and the like (hereinafter collectively referred to as “position information”) to the sensor processing unit 14, the automatic operation control unit 22, and the second acquisition unit 32.
- the sensor processing unit 14 inputs the measurement result from the sensor 10 and the position information from the positioning unit 12. Based on these, the sensor processing unit 14 specifies the position where the object detected by the sensor 10 exists. For example, the sensor processing unit 14 specifies the relative position of the object with respect to the traveling direction of the vehicle 200 based on the measurement result from the sensor 10. In addition, the sensor processing unit 14 converts the relative position of the object into a position indicated by latitude and longitude based on the position and the traveling direction in the position information.
- the sensor processing unit 14 may specify the type of the object based on the detection result.
- the sensor processing unit 14 stores information related to the shapes of a plurality of types of objects in advance, and selects a shape closest to the shape indicated by the measurement result. Further, the sensor processing unit 14 specifies an object for the selected shape.
- the sensor processing unit 14 outputs information on the position and type of the object to the automatic operation control unit 22 and the first acquisition unit 30 as a detection result.
- the first acquisition unit 30 acquires the detection result from the sensor processing unit 14, that is, the detection result by the sensor 10. That is, the first acquisition unit 30 of the input circuit 33 is set so as to be connected to the sensor 10 disposed in the vehicle 200 and set so that the reference information is input.
- the first acquisition unit 30 outputs the detection result to the storage unit 16 and the detection unit 34.
- the accumulation unit 16 inputs the detection result from the first acquisition unit 30 and accumulates the detection result. That is, the accumulation unit 16 accumulates detection results acquired in the past by the first acquisition unit 30.
- the storage unit 18 stores map information, for example, map information of ADAS (Advanced Driving Assistant System).
- the map information includes reference information.
- the reference information includes at least the type of the object and position information where the object is installed.
- the storage unit 18 stores the type of the object and the position information where the object is installed.
- the receiving unit 20 corresponds to road-to-vehicle communication and vehicle-to-vehicle communication, and receives signals from a roadside device and an in-vehicle device (not shown).
- a signal from a roadside machine is received.
- the roadside machine is installed in a traffic signal, for example, and the signal from the roadside machine includes information on the position where the roadside machine is arranged, that is, the position where the traffic signal is installed. This information corresponds to “reference information”.
- the second acquisition unit 32 inputs the position information from the positioning unit 12.
- the second acquisition unit 32 investigates whether at least one of the storage unit 16, the storage unit 18, and the reception unit 20 includes reference information that exists in the vicinity of the position information.
- the vicinity is set to be in a range where the sensor 10 can detect an object (hereinafter referred to as “search range”). Note that the width of the search range may be set to be different for each type of sensor 10.
- the second acquisition unit 32 acquires reference information from the storage unit 16 when reference information included in the vicinity is stored in the storage unit 16. In addition, when the reference information included in the vicinity is stored in the storage unit 18, the second acquisition unit 32 acquires the reference information from the storage unit 18.
- the second acquisition unit 32 acquires the reference information from the reception unit 20 when the reference information included in the vicinity is received by the reception unit 20.
- Such reference information is information to be compared with the detection result acquired in the first acquisition unit 30.
- the second acquisition unit 32 outputs the reference information to the detection unit 34.
- the detection unit 34 inputs the detection result from the first acquisition unit 30 and the reference information from the second acquisition unit 32.
- the detection unit 34 detects the occurrence of a failure in the sensor 10 based on the reference information and the detection result.
- FIG. 2 shows an outline of the failure detection process performed by the failure detection apparatus 100. This shows a case where the vehicle 200 is traveling upward along the road 300 in the drawing.
- a sensor 10 (not shown) is disposed in front of the vehicle 200 in order to detect an object existing in the traveling direction of the vehicle 200.
- the sensor 10 can detect an object arranged in the detection range 310, and the vicinity described above is set so as to include the detection range 310.
- a plurality of areas each having a certain size are defined so as not to overlap.
- one area is indicated as “X01-Y01”.
- the size of one area is determined as an allowable size as a measurement error in the sensor 10. That is, the size of one area is determined as the measurement accuracy of the sensor 10.
- the size of one region may be determined to be different for each type of sensor 10.
- the traffic signal 320 is installed as an object in the detection range 310.
- the position where the traffic signal 320 is installed is indicated in the reference information 330.
- the reference information 330 indicates the region “X07-Y01”.
- the detection result 340 when the sensor 10 detects the traffic light 320 indicates the region “X11-Y01”, which is different from the region of the reference information 330.
- the deriving unit 40 of the detecting unit 34 confirms whether or not the area indicated in the reference information 330 matches the area indicated in the detection result 340.
- the case of coincidence corresponds to the case where the reference information 330 and the detection result 340 coincide within an error range.
- the deriving unit 40 increases the reliability of the sensor 10 if they match.
- leading-out part 40 reduces the reliability of the sensor 10, when it does not correspond. For example, the increase / decrease of the reliability is performed in units of “+1” and “ ⁇ 1”.
- the deriving unit 40 derives the reliability of the sensor 10 based on the reference information 330 and the detection result 340.
- the determination unit 42 determines that a failure has occurred in the sensor 10 when the reliability derived by the deriving unit 40 is lower than a threshold value. On the other hand, the determination unit 42 determines that the sensor 10 is operating normally when the reliability is equal to or higher than the threshold value. The determination unit 42 outputs a failure or normal determination result to the notification unit 36. Note that the processing of the derivation unit 40 and the detection unit 34 is executed only once for one traffic signal 320 by using one reference information 330 of the storage unit 16, the storage unit 18, and the reception unit 20. Just do it. The processing of the derivation unit 40 and the detection unit 34 uses the reference information 330 of the storage unit 16, the reference information 330 of the storage unit 18, and the reference information 330 of the reception unit 20 for each traffic light 320. It may be executed three times.
- the notification unit 36 notifies the automatic operation control unit 22 of the occurrence of the failure detected by the detection unit 34. That is, when the notification unit 36 has a predetermined relationship between the detection result of the sensor 10 and the reference information input to at least one of the first acquisition unit 30 and the second acquisition unit 32 of the input circuit 33, Outputs that the sensor 10 has failed. Note that the notification unit 36 may notify the automatic operation control unit 22 that it is normal. Further, the notification unit 36 may notify the automatic driving control unit 22 of the reliability derived by the deriving unit 40.
- the automatic operation control unit 22 inputs the position information from the positioning unit 12 and the detection result from the sensor processing unit 14.
- the automatic driving control unit 22 determines the travel route of the vehicle 200 based on the position information while avoiding the object indicated by the detection result. At that time, when the notification of the failure of the sensor 10 is notified from the notification unit 36, the automatic driving control unit 22 determines the travel route of the vehicle 200 without reflecting the detection result of the sensor 10. Further, when the reliability of the sensor 10 notified from the notification unit 36 is low, the automatic driving control unit 22 may determine the travel route of the vehicle 200 while reducing the influence of the detection result of the sensor 10. Since a known technique may be used to determine the travel route of the vehicle 200 in the automatic driving control unit 22, the description thereof is omitted here.
- This configuration can be realized by a CPU (Central Processing Unit), memory, or other LSI (Large-Scale Integration) of any computer in hardware, and by a program loaded into the memory in software.
- CPU Central Processing Unit
- LSI Large-Scale Integration
- functional blocks realized by their cooperation are depicted. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
- the 1st acquisition part 30, the 2nd acquisition part 32, the detection part 34, and the notification part 36 of the failure detection apparatus 100 are a hardware circuit as a 1st acquisition circuit, a 2nd acquisition circuit, a detection circuit, and a notification circuit, respectively. It can also be configured.
- the first acquisition unit 30 and the second acquisition unit 32 may be configured as a hardware circuit as the input circuit 33 together.
- the notification unit 36 can also be configured as a hardware circuit as an output circuit.
- the detection unit 34 can also be configured as a hardware circuit as a control circuit.
- the receiving unit 20 can also be configured as a hardware circuit as a communication circuit.
- the storage unit 16 can also be configured as a hardware circuit as a storage circuit.
- the input circuit 33 is set so as to be connected to the sensor 10 arranged in the vehicle 200, and is set so that the reference information and the position information of the vehicle 200 are input.
- the output circuit (notification unit 36) outputs that the sensor 10 has failed.
- the input circuit 33 is set so as to be connected to the positioning unit 12 arranged in the vehicle 200, and is set so that the position information of the vehicle 200 is input from the positioning unit 12.
- control circuit detection unit 34
- the output circuit notification unit 36
- the control circuit (detection unit 34) has a processor, and by executing a predetermined program in the processor, a predetermined result is input between the detection result by the sensor 10 input to the input circuit 33, the reference information, and the position information. If there is a relationship, the output circuit (notification unit 36) performs control to output that the sensor 10 has failed.
- FIG. 3 is a flowchart illustrating a failure detection processing procedure performed by the failure detection apparatus 100.
- the second acquisition unit 32 acquires position information from the positioning unit 12.
- the second acquisition unit 32 obtains the reference information 330 in the detection range 310 corresponding to the acquired position information from the map information.
- the 1st acquisition part 30 acquires the detection result 340 (S16).
- the derivation unit 40 increases the reliability (S20).
- the derivation unit 40 decreases the reliability (S22).
- the determination unit 42 determines that the sensor 10 is out of order (S26).
- the determination unit 42 determines that the sensor 10 is normal (S28). If the map information is not available (N in S10), or if the reference information 330 does not exist within the detection range 310 (N in S14), the process ends.
- FIG. 4 is a flowchart showing another processing procedure for failure detection by the failure detection apparatus 100.
- the second acquisition unit 32 acquires reference information 330 from the received signal (S52).
- the first acquisition unit 30 acquires the detection result 340 (S56).
- the deriving unit 40 increases the reliability (S60).
- the deriving unit 40 decreases the reliability (S62).
- the determination unit 42 determines that the sensor 10 is out of order (S66). When the reliability is not less than the threshold value (N in S64), the determination unit 42 determines that the sensor 10 is normal (S68). If road-to-vehicle communication is not available (N in S50), or if the reference information 330 does not exist within the detection range 310 (N in S54), the process ends.
- FIG. 5 is a flowchart showing yet another processing procedure for detecting a failure by the failure detection apparatus 100.
- the second acquisition unit 32 acquires the reference information 330 from the past detection result 340 (S102).
- the first acquisition unit 30 acquires the detection result 340 (S106).
- the deriving unit 40 increases the reliability (S110).
- the deriving unit 40 decreases the reliability (S112).
- the determination unit 42 determines that the sensor 10 has failed (S116). When the reliability is not less than the threshold value (N in S114), the determination unit 42 determines that the sensor 10 is normal (S118). If the detection result 340 acquired in the past is not available (N in S100), or if the reference information 330 does not exist in the detection range 310 (N in S104), the process is terminated.
- FIG. 6 is a flowchart showing still another processing procedure for failure detection by the failure detection apparatus 100.
- the detection unit 34 performs failure diagnosis using map information (S150).
- the detection unit 34 performs failure diagnosis using road-to-vehicle communication (S152).
- the detection unit 34 performs failure diagnosis using the past detection result 340 (S154).
- the process can be executed for each sensor. Further, since the process is executed for each sensor, the occurrence of a failure of each sensor can be easily detected.
- the reference information is included in the map information and stored in advance, the reference information can be acquired by simply extracting the reference information from the storage unit. Further, since the reference information is acquired by simply extracting the reference information from the storage unit, it is possible to easily acquire the reference information.
- the reference information is acquired from the received signal, the latest reference information can be acquired even if the reference information is updated. Moreover, since the latest reference information is acquired even if the reference information is updated, it is possible to cope with the case where the reference information is updated. In addition, since detection results acquired in the past are used as reference information, preparation of reference information can be made unnecessary. In addition, since it is not necessary to prepare reference information, the setup of the failure detection device can be facilitated. Further, since the occurrence of a failure is determined by adjusting the reliability based on the comparison result between the reference information and the detection result, the determination accuracy can be improved. In addition, by notifying the reliability to the automatic operation control unit 22 or the like, it is possible to realize automatic operation control or the like corresponding to the reliability.
- the second embodiment relates to a failure detection apparatus for detecting a failure of a sensor mounted on a vehicle capable of performing automatic driving, as in the first embodiment.
- the failure detection apparatus according to the second embodiment also obtains reference information from the map information and compares the detection result of the sensor with the reference information, so that the reliability of the sensor is low or the sensor is broken. Detect that.
- the object is not detected by the sensor.
- the failure detection apparatus 100 according to Embodiment 2 is the same type as that in FIG. Here, it demonstrates centering on the difference from before.
- FIG. 7 shows the configuration of the detection unit 34 according to Embodiment 2 of the present invention.
- the detection unit 34 includes a derivation unit 40, a determination unit 42, and an obstacle identification unit 50.
- the obstacle identifying unit 50 detects that the detection result acquired by the first acquisition unit 30 is an object targeted by the reference information acquired by the second acquisition unit 32 (for example, a traffic signal 320, a roadside device installed in the traffic signal 320, or the like). ) Is specified as to whether or not an object different from (1) is targeted.
- FIG. 8 is used here.
- FIG. 8 shows an outline of the failure detection process by the detection unit 34.
- FIG. 8 is shown in the same manner as FIG.
- the detection result 340 from the first acquisition unit 30 corresponds to the obstacle 350. Therefore, the obstacle 350 targeted by the detection result 340 is different from the traffic signal 320 targeted by the reference information 330.
- the obstacle identifying unit 50 confirms the information of the object included in the detection result 340 and identifies whether or not the reference information 330 is the same as the target object. If they are the same, the derivation unit 40 and the determination unit 42 perform the same processing as before. On the other hand, if different, the obstacle identifying unit 50 identifies the presence of the obstacle 350 and notifies the deriving unit 40 of the presence of the obstacle 350. When the derivation unit 40 is notified of the presence of the obstacle 350 from the obstacle identification unit 50, the derivation unit 40 stops the above-described process for adjusting the reliability. Therefore, the determination unit 42 does not detect the occurrence of a failure in the sensor 10. That is, when the detection result 340 acquired by the first acquisition unit 30 targets an object different from the reference information 330 acquired by the second acquisition unit 32, the detection unit 34 does not detect the occurrence of a failure in the sensor 10. And
- FIG. 9 is a flowchart illustrating a failure detection processing procedure performed by the failure detection apparatus 100 according to Embodiment 2 of the present invention.
- the reference information 330 is acquired from the storage unit 18 as an example, but the same applies to the case where the reference information 330 is acquired from the storage unit 16 or the reception unit 20.
- map information is available (Y of S200)
- the 2nd acquisition part 32 acquires reference information 330 from map information (S202).
- the first acquisition unit 30 acquires the detection result 340 (S206).
- the deriving unit 40 increases the reliability (S212). When the reference information 330 and the detection result 340 do not match (N in S210), the deriving unit 40 decreases the reliability (S214). When the reliability is less than the threshold value (Y in S216), the determination unit 42 determines that the sensor 10 is out of order (S218). When the reliability is not less than the threshold value (N in S216), the determination unit 42 determines that the sensor 10 is normal (S220). If the map information is not available (N in S200), or if the reference information 330 does not exist within the detection range 310 (N in S204), or if an obstacle is detected (Y in S208), the process is terminated. The
- the output circuit indicates that the sensor 10 has failed. It may be output.
- the determination accuracy can be improved.
- the output circuit (notification unit 36) may output reliability in addition to outputting that the sensor 10 has failed. In this case, since the reliability is notified, the reliability can be used.
- the deriving unit 40 of the control unit may derive a scheduled detection result scheduled to be detected by the sensor 10 based on the reference information.
- the scheduled detection result is a detection result scheduled from the reference information (or a detection result expected from the reference information). Further, when the similarity between the detection result by the sensor 10 and the scheduled detection result is equal to or less than a predetermined value, the output circuit (notification unit 36) may output that the sensor 10 has failed.
- a predetermined value of the similarity is set as a first predetermined value, and the similarity between the detection result by the sensor 10 and the scheduled detection result is equal to or lower than a second predetermined value smaller than the first predetermined value, and the second
- the output circuit may not output that the sensor 10 has failed. In this case, even when the reference information targets an object that is different from the target object, the risk of erroneously determining a failure can be suppressed.
- the present embodiment when an obstacle exists between the object and the object, an increase / decrease in reliability is not performed, so that the influence of the obstacle can be reduced. Further, even when an object different from the reference information is targeted, the risk of erroneously determining a failure can be suppressed.
- a sensor failure detection device is a sensor failure detection device that can be installed in a vehicle, and includes an input circuit and an output circuit.
- the input circuit is set so as to be connected to a sensor arranged in the vehicle, and is set so that reference information is input.
- the output circuit outputs that the sensor has failed when there is a predetermined relationship between the detection result by the sensor input to the input circuit and the reference information.
- the occurrence of the failure is output based on the reference information and the detection result, the occurrence of the failure of each sensor can be easily detected.
- the sensor failure detection device may further have a control circuit.
- the control circuit has a predetermined relationship between the detection result by the sensor input to the input circuit and the reference information, the output circuit controls that the sensor has failed.
- the control circuit may have a processor. By executing a predetermined program in the processor, when there is a predetermined relationship between the detection result by the sensor input to the input circuit and the reference information, the output circuit outputs that the sensor has failed. And control.
- the input circuit may include a first acquisition unit to which the detection result by the sensor is input and a second acquisition unit to which reference information is input.
- the output circuit may be set to be connected to an external automatic operation control device.
- the sensor may be at least one of the following (1) to (6).
- (1) Image sensor of camera device (2) Millimeter wave radar (3) LIDAR (Light Detection and Ranging) (4) LIDAR (Laser Imaging Detection and Ranging) (5) Ultrasonic sonar (6) Infrared laser sensor
- the reference information may be included in the map information.
- the sensor failure detection apparatus may further include a storage unit that stores map information. In this case, since the reference information is included in the map information and stored in advance, the reference information can be easily acquired.
- the sensor failure detection device may further include a communication circuit set to communicate with the outside.
- the reference information may be set to be input to the input circuit via the communication circuit. In this case, since the reference information is acquired from the received signal, it is possible to cope with the case where the reference information is updated.
- the sensor failure detection apparatus may further include a storage circuit that stores detection results acquired previously for the sensor.
- the reference information may include at least a detection result acquired previously for the sensor stored in the storage circuit. In this case, since detection results acquired in the past are used as reference information, preparation of reference information can be made unnecessary.
- the sensor reliability may be derived based on the detection result by the sensor and the reference information. Further, when the derived reliability is lower than a predetermined threshold value, the output circuit may output that the sensor has failed. In this case, since the occurrence of a failure is determined by adjusting the reliability based on the comparison result between the reference information and the detection result, the determination accuracy can be improved.
- the output circuit may output reliability in addition to outputting that the sensor has failed. In this case, since the reliability is notified, the reliability can be used.
- a scheduled detection result scheduled to be detected by the sensor may be derived. Further, when the similarity between the detection result by the sensor and the scheduled detection result is equal to or less than a predetermined value, the output circuit may output that the sensor has failed.
- the similarity predetermined value is set as the first predetermined value, and the similarity between the detection result by the sensor and the scheduled detection result is equal to or smaller than the second predetermined value smaller than the first predetermined value, and the second predetermined value. If it is greater than a third predetermined value that is less than the value, the output circuit may not output that the sensor has failed. In this case, even when the reference information targets an object that is different from the target object, the risk of erroneously determining a failure can be suppressed.
- the vehicle 200 according to Embodiments 1 and 2 is performing automatic driving.
- the present invention is not limited to this.
- the vehicle 200 may not execute automatic driving. In that case, the vehicle 200 outputs a warning to the driver based on the detection result.
- the application range of the failure detection apparatus 100 can be expanded.
- the second acquisition unit 32 acquires reference information from each of the storage unit 16, the storage unit 18, and the reception unit 20.
- the present invention is not limited to this.
- the second acquisition unit 32 may acquire reference information from one or two of the storage unit 16, the storage unit 18, and the reception unit 20. According to this modification, the configuration can be simplified.
- the derivation unit 40 of the detection unit 34 checks whether or not the area indicated in the reference information 330 matches the area indicated in the detection result 340. In doing so, latitude and longitude are used to identify the region.
- latitude and longitude are used to identify the region.
- the present invention is not limited to this. For example, altitude may be used in addition to latitude and longitude. According to this modification, since information about the height of the object is also used, the detection accuracy can be further improved.
- the present invention can easily detect the occurrence of a failure in each sensor even in a situation where a plurality of sensors are used, it is useful as a sensor failure detection device, a control method therefor, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Human Computer Interaction (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
センサ故障検出装置は、入力回路と、出力回路と、を有し、車両に設置可能である。入力回路は、車両に配置されたセンサに接続されるように設定され、かつ、参照情報及び車両の位置情報が入力されるように設定される。出力回路は、入力回路に入力された、センサによる検出結果と参照情報と位置情報との間に所定の関係がある場合、センサが故障したことを出力する。
Description
本発明は、故障検出技術に関し、特にセンサの故障発生を検出するセンサ故障検出装置およびそのための制御方法に関する。
車両の自動運転のために、一般的に車載センサが使用される。この車載センサは、自動運転の前に、自動運転に使用できる状態にあるか否かを判定されるべきである。そのため、例えば、路面に埋め込まれたマーカを検出したことを起点とした自律航法による相対移動履歴と、最新の地図データから取得した車線の形状点情報とを比較することによって、自動運転するか否かが判定される(例えば、特許文献1参照)。
本発明は、センサの故障の発生を簡易に検出する技術を提供する。
本発明の一態様のセンサ故障検出装置は、車両に設置可能なセンサ故障検出装置であって、入力回路と、出力回路と、を有する。入力回路は、車両に配置されたセンサに接続されるように設定され、かつ、参照情報及び車両の位置情報が入力されるように設定される。出力回路は、入力回路に入力された、センサによる検出結果と参照情報と位置情報との間に所定の関係がある場合、センサが故障したことを出力する。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体(非一過性の記録媒体を含む)、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、複数のセンサが使用される状況においても、各センサの故障の発生を簡易に検出できる。
本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。車両には複数種類のセンサがさまざまな箇所に搭載される。そのため、各センサに対して個別に故障が発生しているか否かを検出する方が望ましい。また、センサの故障の発生を検出するために、路面にマーカを埋め込むような新たな設備投資はない方が好ましい。
(実施の形態1)
本発明の実施の形態を具体的に説明する前に、概要を述べる。本発明の実施の形態1は、自動運転を実行可能な車両に搭載されたセンサの故障を検出するための故障検出装置に関する。センサは、車両の周囲に存在する障害物等の物体を検出し、車両は、検出された物体を回避するように自動運転を実行する。つまり、自動運転を実行する車両では、人間の感覚の代わりに、センサの検出結果を使用して車両の周囲の状況を認識する。センサには、ノイズ等の影響によって物体の位置を検出できない場合や、故障によって異常な値を出力する場合がある。このようなセンサの検出結果を自動運転に使用することは好ましくない。そのため、センサの検出結果の信頼性が低いことや、センサが故障していることを検出することが必要になる。
本発明の実施の形態を具体的に説明する前に、概要を述べる。本発明の実施の形態1は、自動運転を実行可能な車両に搭載されたセンサの故障を検出するための故障検出装置に関する。センサは、車両の周囲に存在する障害物等の物体を検出し、車両は、検出された物体を回避するように自動運転を実行する。つまり、自動運転を実行する車両では、人間の感覚の代わりに、センサの検出結果を使用して車両の周囲の状況を認識する。センサには、ノイズ等の影響によって物体の位置を検出できない場合や、故障によって異常な値を出力する場合がある。このようなセンサの検出結果を自動運転に使用することは好ましくない。そのため、センサの検出結果の信頼性が低いことや、センサが故障していることを検出することが必要になる。
一方、車両には、複数のセンサが搭載されるとともに、搭載されるセンサの種類も複数種類に及ぶ。各センサは、物体を検出可能な範囲(以下、「検索範囲」という)が互いに異なるように設定される。なお、所定のセンサの検索範囲は別のセンサの検索範囲と一部重複してもよい。これにより、各センサが正常に動作している場合であっても各センサの検出結果は他のセンサの検出結果と異なるので、各センサの検出結果と他のセンサの検出結果を比較して、センサの検出結果の信頼性が低いことや、センサが故障していることを検出することは好ましくない。また、複数のセンサにおいて信頼性が低くなったり、故障が発生していたりする場合もある。そのため、センサの検出結果の信頼性が低いことや、センサが故障していることは、センサ毎に検出されるべきである。
これに対応するために本実施の形態では、予め設置位置が知られている物体(例えば信号機)の位置情報および物体の種別に関する情報(以下、「参照情報」と総称する)が地図情報に含まれている。故障検出装置は、地図情報から参照情報を取得するとともに、センサの検出結果と参照情報とを比較することによって、センサの信頼性が低いことや、センサが故障していることを検出する。なお、参照情報は、地図情報ではなく、路車間通信において受信した信号に含まれていてもよい。また、過去の検出結果が参照情報として使用されてもよい。
図1は、本発明の実施の形態1に係る車両200の構成を示す。車両200は、センサ10、測位部12、センサ処理部14、蓄積部16、記憶部18、受信部20、自動運転制御部22、故障検出装置100を含む。また、故障検出装置(センサ故障検出装置)100は、第1取得部30、第2取得部32、検出部34、通知部36を含む。検出部34は、導出部40、判定部42を含む。なお、第1取得部30と第2取得部32とはまとめて入力回路33として構成することもできる。
センサ10は、ステレオカメラ(カメラ装置の撮像素子)、LIDAR(Light Detection and Ranging、または、Laser Imaging Detection and Ranging)、ミリ波レーダ、超音波ソナー、赤外線レーザセンサ等である。前述のごとく、車両200には複数のセンサ10が搭載され、かつ当該複数のセンサ10は複数種類に及ぶが、ここでは1つのセンサ10のみを示す。センサ10には公知の技術が使用されればよいので、ここでは説明を省略する。センサ10は、測定結果をセンサ処理部14に出力する。
測位部12は、車両200の位置、速度、進行方向等を測位する。位置は、緯度、経度によって示される。測位部12は、例えば、GNSS(Global Navigation Satellite System)受信機であるが、ジャイロセンサ等の自律航法の装置であってもよく、それらの組合せであってもよい。測位部12は、測位した位置、速度、進行方向等(以下、「位置情報」と総称する)をセンサ処理部14、自動運転制御部22、第2取得部32に出力する。
センサ処理部14は、センサ10からの測定結果を入力するとともに、測位部12からの位置情報を入力する。センサ処理部14は、これらをもとに、センサ10において検出した物体が存在する位置を特定する。例えば、センサ処理部14は、センサ10からの測定結果をもとに、車両200の進行方向に対する物体の相対的な位置を特定する。また、センサ処理部14は、位置情報における位置と進行方向とをもとに、物体の相対的な位置を、緯度と経度で示される位置に変換する。
また、センサ処理部14は、検出結果をもとに物体の種類を特定してもよい。例えば、センサ処理部14は、複数種類の物体の形状に関する情報を予め記憶しており、測定結果によって示される形状に最も近い形状を選択する。さらに、センサ処理部14は、選択された形状に対する物体を特定する。センサ処理部14は、物体の位置と種類に関する情報を検出結果として自動運転制御部22、第1取得部30に出力する。
第1取得部30は、センサ処理部14からの検出結果、つまりセンサ10による検出結果を取得する。すなわち、入力回路33の第1取得部30は、車両200に配置されたセンサ10に接続されるように設定され、かつ、参照情報が入力されるように設定される。第1取得部30は、検出結果を蓄積部16、検出部34に出力する。蓄積部16は、第1取得部30からの検出結果を入力し、検出結果を蓄積する。つまり、蓄積部16は、第1取得部30において過去に取得した検出結果を蓄積する。記憶部18は、地図情報、例えばADAS(Advanced Driving Assistant System)の地図情報を記憶する。地図情報には、参照情報が含まれる。参照情報には、少なくとも物体の種類と、その物体が設置されている位置情報とが含まれる。すなわち、記憶部18には物体の種類と、その物体が設置された位置情報とが記憶されている。受信部20は、路車間通信、車車間通信に対応しており、図示しない路側機、車載器からの信号を受信する。ここでは、例えば、路側機からの信号を受信する。路側機は、例えば、信号機に設置されており、路側機からの信号には、路側機が配置された位置、つまり信号機が設置された位置に関する情報が含まれる。この情報が「参照情報」に相当する。
第2取得部32は、測位部12からの位置情報を入力する。第2取得部32は、蓄積部16、記憶部18、受信部20のうちの少なくとも1つにおいて、位置情報の近傍に存在する参照情報が含まれるかを調査する。近傍は、センサ10によって物体を検出可能な範囲(以下、「探索範囲」という)程度となるように設定される。なお、探索範囲の広さは、センサ10の種類毎に異なるように設定されてもよい。第2取得部32は、近傍に含まれる参照情報が蓄積部16に蓄積されている場合、蓄積部16から参照情報を取得する。また、第2取得部32は、近傍に含まれる参照情報が記憶部18に記憶されている場合、記憶部18から参照情報を取得する。さらに、第2取得部32は、近傍に含まれる参照情報が受信部20において受信されている場合、受信部20から参照情報を取得する。このような参照情報は、第1取得部30において取得される検出結果と比較すべき情報である。第2取得部32は、参照情報を検出部34に出力する。
検出部34は、第1取得部30からの検出結果を入力するとともに、第2取得部32からの参照情報を入力する。検出部34は、参照情報と検出結果とをもとに、センサ10における故障の発生を検出する。ここでは、図2を使用しながら、この処理を具体的に説明する。図2は、故障検出装置100による故障検出処理の概要を示す。これは、車両200が道路300に沿って図面の上向きに走行している場合を示す。また、車両200の進行方向に存在する物体を検出するために、図示しないセンサ10が車両200の前方に配置される。センサ10は、検出範囲310に配置される物体を検出可能であり、検出範囲310を含むように前述の近傍が設定される。
図示のごとく、各々一定の大きさを有した領域が、重複しないように、複数規定される。例えば、1つの領域は「X01-Y01」のように示される。1つの領域の大きさは、センサ10における測定誤差として許容できるサイズとして決められる。つまり、1つの領域の大きさは、センサ10の測定精度として定められる。ここで、1つの領域の大きさは、センサ10の種類毎に異なるように定められてもよい。
このような状況において検出範囲310内には、物体として信号機320が設置される。信号機320が設置された位置は、参照情報330において示される。ここで、参照情報330は領域「X07-Y01」を示す。一方、信号機320をセンサ10が検出した場合の検出結果340は、領域「X11-Y01」を示しており、参照情報330の領域とは異なる。図1に戻る。
検出部34の導出部40は、参照情報330において示される領域と、検出結果340において示される領域が一致するか否かを確認する。一致する場合とは、参照情報330と検出結果340とが誤差の範囲内で一致することに相当する。導出部40は、一致する場合、センサ10の信頼度を増加させる。一方、導出部40は、一致しない場合、センサ10の信頼度を減少させる。例えば、信頼度の増減は、「+1」、「-1」を単位としてなされる。このように、導出部40は、参照情報330と検出結果340とをもとに、センサ10の信頼度を導出する。
判定部42は、導出部40において導出した信頼度がしきい値よりも低下した場合に、センサ10において故障が発生したことを判定する。一方、判定部42は、信頼度がしきい値以上である場合に、センサ10が正常に動作していると判定する。判定部42は、故障あるいは正常の判定結果を通知部36に出力する。なお、導出部40と検出部34の処理は、1つの信号機320に対して、蓄積部16、記憶部18、受信部20のうちの1つの参照情報330を使用して、1回だけ実行されればよい。また、導出部40と検出部34の処理は、1つの信号機320に対して、蓄積部16の参照情報330、記憶部18の参照情報330、受信部20の参照情報330のそれぞれを使用して3回実行されてもよい。
通知部36は、検出部34において検出した故障の発生を自動運転制御部22に通知する。すなわち、通知部36は、入力回路33の第1取得部30および第2取得部32の少なくとも1つに入力された、センサ10による検出結果と参照情報との間に所定の関係がある場合、センサ10が故障したことを出力する。なお、通知部36は、正常であることを自動運転制御部22に通知してもよい。さらに、通知部36は、導出部40において導出した信頼度も自動運転制御部22に通知してもよい。
自動運転制御部22は、測位部12からの位置情報を入力するとともに、センサ処理部14からの検出結果を入力する。自動運転制御部22は、検出結果によって示された物体を回避しながら、位置情報をもとに車両200の走行経路を決定する。その際、自動運転制御部22は、センサ10の故障の発生を通知部36から通知された場合、センサ10の検出結果を反映させずに、車両200の走行経路を決定する。また、自動運転制御部22は、通知部36から通知されたセンサ10の信頼度が低い場合、センサ10の検出結果の影響を小さくしながら、車両200の走行経路を決定してもよい。自動運転制御部22における車両200の走行経路の決定には公知の技術が使用されればよいので、ここでは説明を省略する。
この構成は、ハードウエア的には、任意のコンピュータのCPU(Central Processing Unit)、メモリ、その他のLSI(Large-Scale Integration)で実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
なお、故障検出装置100の第1取得部30、第2取得部32、検出部34、通知部36は、それぞれ第1取得回路、第2取得回路、検出回路、通知回路としてハードウエアの回路として構成することもできる。また、第1取得部30および第2取得部32はまとめて入力回路33としてハードウエアの回路として構成することもできる。また、通知部36は、出力回路としてハードウエアの回路として構成することもできる。また、検出部34は、制御回路としてハードウエアの回路として構成することもできる。また、受信部20は、通信回路としてハードウエアの回路として構成することもできる。また、蓄積部16は、蓄積回路としてハードウエアの回路として構成することもできる。
入力回路33は、車両200に配置されたセンサ10に接続されるように設定され、かつ、参照情報及び車両200の位置情報が入力されるように設定される。また、入力回路33に入力された、センサ10による検出結果と参照情報と位置情報との間に所定の関係がある場合、出力回路(通知部36)が、センサ10が故障したことを出力する。入力回路33は、車両200に配置された測位部12に接続されるように設定され、測位部12より車両200の位置情報を入力されるように設定される。
制御回路(検出部34)が、入力回路33に入力された、センサ10による検出結果と参照情報と位置情報との間に所定の関係がある場合、出力回路(通知部36)が、センサが故障したことを出力する、との制御を行う。
制御回路(検出部34)はプロセッサを有し、プロセッサにおいて所定のプログラムを実行することで、入力回路33に入力された、センサ10による検出結果と、参照情報と位置情報との間に所定の関係がある場合、出力回路(通知部36)が、センサ10が故障したことを出力する、との制御を行う。
以上の構成による故障検出装置100の動作を説明する。図3は、故障検出装置100による故障検出の処理手順を示すフローチャートである。第2取得部32が測位部12から位置情報を取得する。そして、取得した位置情報の位置において、地図情報が利用可能である場合(S10のY)、第2取得部32は、地図情報から、取得した位置情報に対応する検出範囲310における参照情報330を取得する(S12)。参照情報330が検出範囲310内に存在する場合(S14のY)、第1取得部30は、検出結果340を取得する(S16)。参照情報330と検出結果340とが一致する場合(S18のY)、導出部40は信頼度を上げる(S20)。参照情報330と検出結果340とが一致しない場合(S18のN)、導出部40は信頼度を下げる(S22)。信頼度がしきい値未満である場合(S24のY)、判定部42はセンサ10を故障と判定する(S26)。信頼度がしきい値未満でない場合(S24のN)、判定部42はセンサ10を正常と判定する(S28)。地図情報が利用可能でない場合(S10のN)、あるいは参照情報330が検出範囲310内に存在しない場合(S14のN)、処理は終了される。
図4は、故障検出装置100による故障検出の別の処理手順を示すフローチャートである。路車間通信が利用可能である場合(S50のY)、第2取得部32は、受信した信号から参照情報330を取得する(S52)。参照情報330が検出範囲310内に存在する場合(S54のY)、第1取得部30は、検出結果340を取得する(S56)。参照情報330と検出結果340とが一致する場合(S58のY)、導出部40は信頼度を上げる(S60)。参照情報330と検出結果340とが一致しない場合(S58のN)、導出部40は信頼度を下げる(S62)。信頼度がしきい値未満である場合(S64のY)、判定部42はセンサ10を故障と判定する(S66)。信頼度がしきい値未満でない場合(S64のN)、判定部42はセンサ10を正常と判定する(S68)。路車間通信が利用可能でない場合(S50のN)、あるいは参照情報330が検出範囲310内に存在しない場合(S54のN)、処理は終了される。
図5は、故障検出装置100による故障検出のさらに別の処理手順を示すフローチャートである。過去に取得した検出結果340が利用可能である場合(S100のY)、第2取得部32は、過去の検出結果340から参照情報330を取得する(S102)。参照情報330が検出範囲310内に存在する場合(S104のY)、第1取得部30は、検出結果340を取得する(S106)。参照情報330と検出結果340とが一致する場合(S108のY)、導出部40は信頼度を上げる(S110)。参照情報330と検出結果340とが一致しない場合(S108のN)、導出部40は信頼度を下げる(S112)。信頼度がしきい値未満である場合(S114のY)、判定部42はセンサ10を故障と判定する(S116)。信頼度がしきい値未満でない場合(S114のN)、判定部42はセンサ10を正常と判定する(S118)。過去に取得した検出結果340が利用可能でない場合(S100のN)、あるいは参照情報330が検出範囲310内に存在しない場合(S104のN)、処理は終了される。
図6は、故障検出装置100による故障検出のさらに別の処理手順を示すフローチャートである。検出部34は、地図情報を利用した故障診断を実行する(S150)。検出部34は、路車間通信を利用した故障診断を実行する(S152)。検出部34は、過去の検出結果340を利用した故障診断を実行する(S154)。
本実施の形態によれば、参照情報と検出結果とをもとに故障の発生を通知するので、センサ毎に処理を実行できる。また、センサ毎に処理が実行されるので、各センサの故障の発生を簡易に検出できる。また、参照情報を地図情報に含ませて予め記憶しておくので、記憶部から参照情報を抽出するだけの処理で参照情報を取得できる。また、記憶部から参照情報を抽出するだけの処理で参照情報が取得されるので、参照情報の取得を容易にできる。
また、受信した信号から参照情報を取得するので、参照情報が更新されても、最新の参照情報を取得できる。また、参照情報が更新されても最新の参照情報が取得されるので、参照情報が更新される場合にも対応できる。また、過去に取得した検出結果を参照情報として使用するので、参照情報の用意を不要にできる。また、参照情報の用意が不要になるので、故障検出装置のセットアップを容易にできる。また、参照情報と検出結果との比較結果をもとに信頼度を調節して故障の発生を判定するので、判定精度を向上できる。また、信頼度を自動運転制御部22等に通知することで、信頼度に対応した自動運転制御等を実現することができる。
(実施の形態2)
次に、実施の形態2を説明する。実施の形態2は、実施の形態1と同様に、自動運転を実行可能な車両に搭載されたセンサの故障を検出するための故障検出装置に関する。実施の形態2に係る故障検出装置も、地図情報から参照情報を取得するとともに、センサの検出結果と参照情報とを比較することによって、センサの信頼性が低いことや、センサが故障していることを検出する。ここで、参照情報によって示される物体とセンサの間に障害物が存在する場合、センサによって物体は検出されない。実施の形態2では、このような場合も考慮してセンサの信頼性が低いことや、センサが故障していることを検出する。実施の形態2に係る故障検出装置100は、図1と同様のタイプである。ここではこれまでとの差異を中心に説明する。
次に、実施の形態2を説明する。実施の形態2は、実施の形態1と同様に、自動運転を実行可能な車両に搭載されたセンサの故障を検出するための故障検出装置に関する。実施の形態2に係る故障検出装置も、地図情報から参照情報を取得するとともに、センサの検出結果と参照情報とを比較することによって、センサの信頼性が低いことや、センサが故障していることを検出する。ここで、参照情報によって示される物体とセンサの間に障害物が存在する場合、センサによって物体は検出されない。実施の形態2では、このような場合も考慮してセンサの信頼性が低いことや、センサが故障していることを検出する。実施の形態2に係る故障検出装置100は、図1と同様のタイプである。ここではこれまでとの差異を中心に説明する。
図7は、本発明の実施の形態2に係る検出部34の構成を示す。検出部34は、導出部40、判定部42、障害物特定部50を含む。障害物特定部50は、第1取得部30において取得した検出結果が、第2取得部32において取得した参照情報が対象としている物体(例えば、信号機320、信号機320に設置されている路側機など)とは異なる物体を対象としているか否かを特定する。障害物特定部50での処理を説明するために、ここでは、図8を使用する。図8は、検出部34による故障検出処理の概要を示す。図8は図2と同様に示されるが、車両200と信号機320との間に障害物350が存在する。そのため、第1取得部30からの検出結果340は、障害物350に対応する。そのため、検出結果340が対象とする障害物350は、参照情報330が対象とする信号機320とは異なる。図7に戻る。
障害物特定部50は、検出結果340に含まれた物体の情報を確認し、参照情報330が対象とする物体と同一であるか否かを特定する。同一である場合、導出部40、判定部42は、これまでと同様の処理を実行する。一方、異なる場合、障害物特定部50は、障害物350の存在を特定し、障害物350の存在を導出部40に通知する。導出部40は、障害物特定部50から、障害物350の存在を通知された場合、前述の信頼度を加減する処理を中止する。そのため、判定部42において、センサ10における故障の発生が検出されることもない。つまり、検出部34は、第1取得部30において取得した検出結果340が、第2取得部32において取得した参照情報330とは異なる物体を対象としている場合、センサ10における故障の発生を非検出とする。
以上の構成による故障検出装置100の動作を説明する。図9は、本発明の実施の形態2に係る故障検出装置100による故障検出の処理手順を示すフローチャートである。ここでは、一例として記憶部18から参照情報330を取得するが、蓄積部16あるいは受信部20から参照情報330を取得する場合も同様である。地図情報が利用可能である場合(S200のY)、第2取得部32は、地図情報から参照情報330を取得する(S202)。参照情報330が検出範囲310内に存在する場合(S204のY)、第1取得部30は、検出結果340を取得する(S206)。
障害物が検出されていなく(S208のN)、参照情報330と検出結果340とが一致する場合(S210のY)、導出部40は信頼度を上げる(S212)。参照情報330と検出結果340とが一致しない場合(S210のN)、導出部40は信頼度を下げる(S214)。信頼度がしきい値未満である場合(S216のY)、判定部42はセンサ10を故障と判定する(S218)。信頼度がしきい値未満でない場合(S216のN)、判定部42はセンサ10を正常と判定する(S220)。地図情報が利用可能でない場合(S200のN)、あるいは参照情報330が検出範囲310内に存在しない場合(S204のN)、あるいは障害物が検出された場合(S208のY)、処理は終了される。
本発明の実施の形態2に係る故障検出装置100の動作において、導出された信頼度が、所定のしきい値よりも低い場合、出力回路(通知部36)が、センサ10が故障したことを出力してもよい。この場合、参照情報と検出結果との比較結果をもとに信頼度を調節して故障の発生を判定するので、判定精度を向上できる。
出力回路(通知部36)は、センサ10が故障したことを出力することに加え、信頼度を出力してもよい。この場合、信頼度を通知するので、信頼度を使用させることができる。
制御部(検出部34)の導出部40は、参照情報を基に、センサ10で検出が予定される予定検出結果を導出してもよい。予定検出結果とは、参照情報から予定される検出結果(または参照情報から予想される検出結果)である。また、センサ10による検出結果と、予定検出結果との類似度が所定値以下の場合、出力回路(通知部36)が、センサ10が故障したことを出力してもよい。
類似度の所定値を、第1の所定値とし、センサ10による検出結果と、予定検出結果との類似度が、第1の所定値より小さい第2の所定値以下で、かつ、第2の所定値より小さい第3の所定値より大きい場合、出力回路(通知部36)は、センサ10が故障したことを出力しないようにしてもよい。この場合、参照情報が対象としている物体とは異なる物体を対象としている場合でも、誤って故障と判定するおそれを抑制できる。
本実施の形態によれば、物体との間に障害物が存在する場合に、信頼度の増減を実行しないので、障害物の影響を低減できる。また、参照情報とは異なる物体を対象としている場合でも、誤って故障と判定するおそれを抑制できる。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの構成要素あるいは処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の一態様の概要は、次の通りである。本発明の一態様のセンサ故障検出装置は、車両に設置可能なセンサ故障検出装置であって、入力回路と、出力回路と、を有する。入力回路は、車両に配置されたセンサに接続されるように設定され、かつ、参照情報が入力されるように設定される。出力回路は、入力回路に入力された、センサによる検出結果と参照情報との間に所定の関係がある場合、センサが故障したことを出力する。
この態様によると、参照情報と検出結果とをもとに故障の発生を出力するので、各センサの故障の発生を簡易に検出できる。
センサ故障検出装置は、更に、制御回路を有してもよい。制御回路が、入力回路に入力された、センサによる検出結果と参照情報との間に所定の関係がある場合、出力回路が、センサが故障したことを出力する、との制御を行う。
制御回路はプロセッサを有してもよい。プロセッサにおいて所定のプログラムを実行することで、入力回路に入力された、センサによる検出結果と、参照情報との間に所定の関係がある場合、出力回路が、センサが故障したことを出力する、との制御を行う。
入力回路は、センサによる前記検出結果が入力される第1取得部と、参照情報が入力される第2取得部と、を有してもよい。
出力回路は、外部の自動運転制御装置に接続されるように設定されてもよい。
センサは、以下の(1)~(6)の内の少なくとも1つであってもよい。
(1)カメラ装置の撮像素子
(2)ミリ波レーダ
(3)LIDAR(Light Detection and Ranging)
(4)LIDAR(Laser Imaging Detection and Ranging)
(5)超音波ソナー
(6)赤外線レーザセンサ
参照情報は、地図情報に含まれていてもよい。また、センサ故障検出装置は、地図情報を記憶する記憶部を、更に有してもよい。この場合、参照情報を地図情報に含ませて予め記憶しておくので、参照情報の取得を容易にできる。
(1)カメラ装置の撮像素子
(2)ミリ波レーダ
(3)LIDAR(Light Detection and Ranging)
(4)LIDAR(Laser Imaging Detection and Ranging)
(5)超音波ソナー
(6)赤外線レーザセンサ
参照情報は、地図情報に含まれていてもよい。また、センサ故障検出装置は、地図情報を記憶する記憶部を、更に有してもよい。この場合、参照情報を地図情報に含ませて予め記憶しておくので、参照情報の取得を容易にできる。
センサ故障検出装置は、外部と通信するように設定された通信回路を、更に有してもよい。また、参照情報は、通信回路を経由して入力回路に入力されるように設定されてもよい。この場合、受信した信号から参照情報を取得するので、参照情報が更新される場合にも対応できる。
センサ故障検出装置は、センサについて、以前に取得された検出結果を蓄積する蓄積回路を、更に有してもよい。また、参照情報は、蓄積回路に蓄積されたセンサについて以前に取得された検出結果を、少なくとも含んでもよい。この場合、過去に取得した検出結果を参照情報として使用するので、参照情報の用意を不要にできる。
センサによる検出結果と参照情報とを基に、センサの信頼度を導出してもよい。また、導出された信頼度が、所定のしきい値よりも低い場合、出力回路が、センサが故障したことを出力してもよい。この場合、参照情報と検出結果との比較結果をもとに信頼度を調節して故障の発生を判定するので、判定精度を向上できる。
出力回路は、センサが故障したことを出力することに加え、信頼度を出力してもよい。この場合、信頼度を通知するので、信頼度を使用させることができる。
参照情報を基に、センサで検出が予定される予定検出結果を導出してもよい。また、センサによる検出結果と、予定検出結果との類似度が所定値以下の場合、出力回路が、センサが故障したことを出力してもよい。
類似度の所定値を、第1の所定値とし、センサによる検出結果と、予定検出結果との類似度が、第1の所定値より小さい第2の所定値以下で、かつ、第2の所定値より小さい第3の所定値より大きい場合、出力回路は、センサが故障したことを出力しないようにしてもよい。この場合、参照情報が対象としている物体とは異なる物体を対象としている場合でも、誤って故障と判定するおそれを抑制できる。
実施の形態1および2に係る車両200は自動運転を実行している。しかしながらこれに限らず例えば、車両200は、自動運転を実行しなくてもよい。その場合、車両200は、検出結果をもとに運転者に警告を出力する。本変形例によれば、故障検出装置100の適用範囲を拡大できる。
実施の形態1および2において、第2取得部32は、蓄積部16、記憶部18、受信部20のそれぞれからの参照情報を取得する。しかしながらこれに限らず例えば、第2取得部32は、蓄積部16、記憶部18、受信部20のうちの1つ、あるいは2つからの参照情報を取得してもよい。本変形例によれば、構成を簡易にできる。
実施の形態1および2において、検出部34の導出部40は、参照情報330において示される領域と、検出結果340において示される領域が一致するか否かを確認している。その際、領域を特定するために緯度と経度が使用される。しかしながらこれに限らず例えば、緯度と経度に加えて高度が使用されてもよい。本変形例によれば、物体の高さに関する情報も使用するので、検出精度をさらに向上できる。
本発明は、複数のセンサが使用される状況においても各センサの故障の発生を簡易に検出できるので、センサ故障検出装置、そのための制御方法等として有用である。
10 センサ
12 測位部
14 センサ処理部
16 蓄積部(蓄積回路)
18 記憶部
20 受信部(通信回路)
22 自動運転制御部
30 第1取得部
32 第2取得部
33 入力回路
34 検出部(制御回路)
36 通知部(出力回路)
40 導出部
42 判定部
50 障害物特定部
100 故障検出装置(センサ故障検出回路)
200 車両
300 道路
310 検出範囲
320 信号機
330 参照情報
340 検出結果
350 障害物
12 測位部
14 センサ処理部
16 蓄積部(蓄積回路)
18 記憶部
20 受信部(通信回路)
22 自動運転制御部
30 第1取得部
32 第2取得部
33 入力回路
34 検出部(制御回路)
36 通知部(出力回路)
40 導出部
42 判定部
50 障害物特定部
100 故障検出装置(センサ故障検出回路)
200 車両
300 道路
310 検出範囲
320 信号機
330 参照情報
340 検出結果
350 障害物
Claims (16)
- 車両に設置可能なセンサ故障検出装置であって、
前記車両に配置されたセンサに接続されるように設定され、かつ、参照情報及び前記車両の位置情報が入力されるように設定された入力回路と、
出力回路と、を備え、
前記入力回路に入力された、前記センサによる検出結果と前記参照情報と前記位置情報との間に所定の関係がある場合、前記出力回路が、前記センサが故障したことを出力する、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
更に、制御回路を備え、
前記制御回路が、
前記入力回路に入力された、前記センサによる検出結果と前記参照情報と前記位置情報との間に所定の関係がある場合、前記出力回路が、前記センサが故障したことを出力する、
との制御を行う、
センサ故障検出装置。 - 請求項2に記載のセンサ故障検出装置であって、
前記制御回路はプロセッサを備え、
前記プロセッサにおいて所定のプログラムを実行することで、
前記入力回路に入力された、前記センサによる検出結果と、前記参照情報と前記位置情報との間に所定の関係がある場合、前記出力回路が、前記センサが故障したことを出力する、
との制御を行う、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記入力回路は、
前記センサによる前記検出結果が入力される第1取得部と、
前記参照情報及び前記位置情報が入力される第2取得部と、
備える、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記出力回路は、外部の自動運転制御装置に接続されるように設定される、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記センサは、以下の(1)~(6)の内の少なくとも1つである、センサ故障検出装置:
(1)カメラ装置の撮像素子、
(2)ミリ波レーダ、
(3)LIDAR(Light Detection and Ranging)、
(4)LIDAR(Laser Imaging Detection and Ranging)、
(5)超音波ソナー、
(6)赤外線レーザセンサ。 - 請求項1に記載のセンサ故障検出装置であって、
前記参照情報は、少なくとも物体の種類と、前記物体が設置されている位置情報とを含む、
センサ故障検出装置。 - 請求項7に記載のセンサ故障検出装置であって、
前記物体の種類と、前記物体が設置された前記位置情報とを記憶する記憶部を、更に備える、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記入力回路は、前記車両に配置された測位部に接続されるように設定され、前記測位部より前記車両の前記位置情報を入力されるように設定された
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
外部と通信するように設定された通信回路を、更に備え、
前記参照情報は、前記通信回路を経由して前記入力回路に入力される、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記センサについて、以前に取得された検出結果を蓄積する蓄積回路を、更に備え、
前記参照情報は、前記蓄積回路に蓄積された前記センサについて以前に取得された前記検出結果を、少なくとも含む、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記センサによる前記検出結果と前記参照情報とを基に、前記センサの信頼度を導出し、
導出された前記信頼度が、所定のしきい値よりも低い場合、前記出力回路が、前記センサが故障したことを出力する、
センサ故障検出装置。 - 請求項12に記載のセンサ故障検出装置であって、
前記出力回路は、前記センサが故障したことを出力することに加え、前記信頼度を出力する、
センサ故障検出装置。 - 請求項1に記載のセンサ故障検出装置であって、
前記参照情報を基に、前記センサで検出が予定される予定検出結果を導出し、
前記センサによる前記検出結果と、前記予定検出結果との類似度が所定値以下の場合、
前記出力回路が、前記センサが故障したことを出力する、
センサ故障検出装置。 - 請求項14に記載のセンサ故障検出装置であって、
前記類似度の前記所定値を、第1の所定値とし、
前記センサによる前記検出結果と、前記予定検出結果との類似度が、前記第1の所定値より小さい第2の所定値以下で、かつ、第2の所定値より小さい第3の所定値より大きい場合、
前記出力回路は、前記センサが故障したことを出力しない、
センサ故障検出装置。 - 車両に配置されたセンサに接続されるように設定され、かつ、参照情報が入力されるように設定された入力回路と、出力回路と、を備えるセンサ故障検出装置のための制御方法であって、
前記入力回路に入力された、前記センサによる検出結果と、前記参照情報との間に所定の関係がある場合、前記出力回路が、前記センサが故障したことを出力する、
センサ故障検出装置のための制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780048609.8A CN109643492A (zh) | 2016-09-29 | 2017-07-21 | 传感器故障检测装置及其控制方法 |
JP2018541941A JPWO2018061425A1 (ja) | 2016-09-29 | 2017-07-21 | センサ故障検出装置およびそのための制御方法 |
DE112017004906.7T DE112017004906T5 (de) | 2016-09-29 | 2017-07-21 | Sensorversagenserfassungsvorrichtung und Steuerverfahren hierfür |
US16/321,614 US20200013242A1 (en) | 2016-09-29 | 2017-07-21 | Sensor failure detection device and control method for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-191992 | 2016-09-29 | ||
JP2016191992 | 2016-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061425A1 true WO2018061425A1 (ja) | 2018-04-05 |
Family
ID=61759456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026419 WO2018061425A1 (ja) | 2016-09-29 | 2017-07-21 | センサ故障検出装置およびそのための制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200013242A1 (ja) |
JP (1) | JPWO2018061425A1 (ja) |
CN (1) | CN109643492A (ja) |
DE (1) | DE112017004906T5 (ja) |
WO (1) | WO2018061425A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020250526A1 (ja) * | 2019-06-14 | 2020-12-17 | マツダ株式会社 | 外部環境認識装置 |
WO2021065559A1 (ja) * | 2019-10-04 | 2021-04-08 | ソニー株式会社 | 情報処理システム、および情報処理方法、並びに情報処理装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225596A1 (ja) * | 2017-06-07 | 2018-12-13 | パイオニア株式会社 | 情報処理装置 |
JP6915512B2 (ja) * | 2017-11-28 | 2021-08-04 | トヨタ自動車株式会社 | サーバ装置、故障車両推定方法および故障車両推定プログラム |
CN112433199B (zh) * | 2019-08-26 | 2024-06-14 | 北京京东乾石科技有限公司 | 一种安全传感器的故障检测方法和装置 |
CN112118991B (zh) * | 2019-08-30 | 2024-08-09 | 深圳市卓驭科技有限公司 | 一种传感器检测方法及车载控制终端 |
JP7097867B2 (ja) * | 2019-09-24 | 2022-07-08 | 本田技研工業株式会社 | 遠隔駐車システム |
JP7280901B2 (ja) * | 2021-01-27 | 2023-05-24 | 本田技研工業株式会社 | 車両制御装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009031847A (ja) * | 2007-07-24 | 2009-02-12 | Mazda Motor Corp | 車両の障害物検知装置 |
WO2014010546A1 (ja) * | 2012-07-10 | 2014-01-16 | 本田技研工業株式会社 | 故障判定装置 |
JP2014021709A (ja) * | 2012-07-18 | 2014-02-03 | Honda Motor Co Ltd | 物体位置検知装置 |
JP2014145709A (ja) * | 2013-01-30 | 2014-08-14 | Furukawa Electric Co Ltd:The | パルスレーダ装置 |
JP2015141073A (ja) * | 2014-01-28 | 2015-08-03 | 三菱重工業株式会社 | 位置測定方法、自己位置測定装置及び車載器 |
JP2016121986A (ja) * | 2014-12-24 | 2016-07-07 | パナソニックIpマネジメント株式会社 | レーダシステム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3733863B2 (ja) * | 2001-02-02 | 2006-01-11 | 株式会社日立製作所 | レーダ装置 |
JP4305312B2 (ja) * | 2004-07-20 | 2009-07-29 | 株式会社デンソー | 障害物検知装置 |
JP5223632B2 (ja) * | 2008-12-01 | 2013-06-26 | トヨタ自動車株式会社 | 異常診断装置 |
CN102970698A (zh) * | 2012-11-02 | 2013-03-13 | 北京邮电大学 | 无线传感器网络故障检测方法 |
KR20150055738A (ko) * | 2013-11-14 | 2015-05-22 | 현대모비스 주식회사 | 레이더를 이용한 차량용 사각지대 감지 시스템 및 이의 고장 표시 방법 |
CN104075749A (zh) * | 2014-06-30 | 2014-10-01 | 通号通信信息集团有限公司 | 物联网中设备异常状态检测的方法及系统 |
CN204904598U (zh) * | 2015-09-11 | 2015-12-23 | 四川巡天揽胜信息技术有限公司 | 一种报警系统 |
-
2017
- 2017-07-21 JP JP2018541941A patent/JPWO2018061425A1/ja active Pending
- 2017-07-21 CN CN201780048609.8A patent/CN109643492A/zh active Pending
- 2017-07-21 DE DE112017004906.7T patent/DE112017004906T5/de not_active Withdrawn
- 2017-07-21 US US16/321,614 patent/US20200013242A1/en not_active Abandoned
- 2017-07-21 WO PCT/JP2017/026419 patent/WO2018061425A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009031847A (ja) * | 2007-07-24 | 2009-02-12 | Mazda Motor Corp | 車両の障害物検知装置 |
WO2014010546A1 (ja) * | 2012-07-10 | 2014-01-16 | 本田技研工業株式会社 | 故障判定装置 |
JP2014021709A (ja) * | 2012-07-18 | 2014-02-03 | Honda Motor Co Ltd | 物体位置検知装置 |
JP2014145709A (ja) * | 2013-01-30 | 2014-08-14 | Furukawa Electric Co Ltd:The | パルスレーダ装置 |
JP2015141073A (ja) * | 2014-01-28 | 2015-08-03 | 三菱重工業株式会社 | 位置測定方法、自己位置測定装置及び車載器 |
JP2016121986A (ja) * | 2014-12-24 | 2016-07-07 | パナソニックIpマネジメント株式会社 | レーダシステム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020250526A1 (ja) * | 2019-06-14 | 2020-12-17 | マツダ株式会社 | 外部環境認識装置 |
JP2020204820A (ja) * | 2019-06-14 | 2020-12-24 | マツダ株式会社 | 外部環境認識装置 |
CN114008698A (zh) * | 2019-06-14 | 2022-02-01 | 马自达汽车株式会社 | 外部环境识别装置 |
JP7363118B2 (ja) | 2019-06-14 | 2023-10-18 | マツダ株式会社 | 外部環境認識装置 |
WO2021065559A1 (ja) * | 2019-10-04 | 2021-04-08 | ソニー株式会社 | 情報処理システム、および情報処理方法、並びに情報処理装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112017004906T5 (de) | 2019-06-13 |
US20200013242A1 (en) | 2020-01-09 |
CN109643492A (zh) | 2019-04-16 |
JPWO2018061425A1 (ja) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018061425A1 (ja) | センサ故障検出装置およびそのための制御方法 | |
JP6870604B2 (ja) | 自己位置推定装置 | |
US11002849B2 (en) | Driving lane detection device and driving lane detection method | |
US11498577B2 (en) | Behavior prediction device | |
US11597397B2 (en) | Abnormality determination apparatus, vehicle assistance system, and server | |
JP7003464B2 (ja) | 車両制御装置、車両制御方法 | |
JPWO2018079297A1 (ja) | 故障検知装置 | |
JP6443318B2 (ja) | 物体検出装置 | |
US10635106B2 (en) | Automated driving apparatus | |
JP6793883B2 (ja) | 車両走行制御装置、車両走行制御方法、制御回路および記憶媒体 | |
CN108780605B (zh) | 自动行驶辅助装置、路边设备及自动行驶辅助系统 | |
US11409728B2 (en) | Map information system | |
JP7229052B2 (ja) | 車両制御装置、車両制御システム | |
US11292481B2 (en) | Method and apparatus for multi vehicle sensor suite diagnosis | |
US20200172097A1 (en) | Server device and vehicle | |
US10885774B2 (en) | Travel control system for vehicle | |
JP6521753B2 (ja) | 車両の測位システム | |
JP6330732B2 (ja) | 制御装置,及び支援システム | |
CN113743709A (zh) | 用于自主和半自主车辆的在线感知性能评估 | |
JP2019133592A (ja) | 信号機認識装置 | |
US20220366788A1 (en) | Autonomous driving system, autonomous driving control method, and non-transitory storage medium | |
WO2020070996A1 (ja) | 走行車線推定装置、走行車線推定方法、制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体 | |
US20210174099A1 (en) | Image processing system, image processing device, image processing method and program storage medium | |
US11555913B2 (en) | Object recognition device and object recognition method | |
JP2010108344A (ja) | 運転支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855383 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018541941 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17855383 Country of ref document: EP Kind code of ref document: A1 |