WO2015115385A1 - 電力制御システム、方法、及び、情報伝達能力制御システム、方法 - Google Patents
電力制御システム、方法、及び、情報伝達能力制御システム、方法 Download PDFInfo
- Publication number
- WO2015115385A1 WO2015115385A1 PCT/JP2015/052091 JP2015052091W WO2015115385A1 WO 2015115385 A1 WO2015115385 A1 WO 2015115385A1 JP 2015052091 W JP2015052091 W JP 2015052091W WO 2015115385 A1 WO2015115385 A1 WO 2015115385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power consumption
- power
- value
- information
- elements
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/12—Arrangements for remote connection or disconnection of substations or of equipment thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2639—Energy management, use maximum of cheap power, keep peak load low
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/221—General power management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Definitions
- the present invention relates to a system and method for dynamically and efficiently allocating resources according to the priority of each element, particularly while reducing the traffic, while satisfying the constraints on the total amount of resources (power and information transmission capability). .
- the situation related to the demand peak can be drastically improved by flattening the peak by avoiding the generation of instantaneous peak power by carrying out the power “handling” at each home, office or the like.
- the current use of electrical appliances at homes, offices, etc. is not performed in consideration of flattening. Except for some dwelling units, power control in houses, office buildings, etc. It has not been realized and popularized.
- Japanese Patent Laid-Open No. 11-313438 Fault Protection Device for Power Distribution System
- the device group collects information via communication by the server, It is completely different in that the dynamic power management is performed by coordinating the power constraint and the required amount in consideration of the priority.
- the invention presupposes a method that does not collect / aggregate information from the device group, but in the present invention, the device group performs dynamic power management in coordination with the power constraints and required amount in consideration of priority. It is completely different in what it does.
- Japanese Unexamined Patent Publication No. 2013-38885 “In-house Power Generation System”
- the present invention deals with a power generator, but the present invention conversely supplies negative power.
- JP 2012-85511 A "Vehicle Charging System Having Charging Efficiency Control and Providing Adaptive Charging Service"
- power management is not performed in the charging station group, but the existence of a management station and the existence of a smart grid are assumed.
- the present invention is completely different in that dynamic power management is performed in cooperation with consideration of power constraints, necessary amounts, and priorities regardless of the presence of a management station or a smart grid.
- the present invention relates to a connection establishment method in power line communication.
- the present invention does not specify a communication method and does not state that establishment of communication should be solved.
- power line communication is listed as one of communication means, but connection establishment there is not listed as a problem to be solved.
- Japanese Patent Publication No. 2003-511842 “Contactor Breaker” In the present invention, fault detection and control based thereon are performed within the same individual.
- the present invention The device group is completely different in that it dynamically manages power in consideration of power constraints, required amount, and priority.
- JP 2013-70569 A "Distributed Power Supply System”
- failure detection and control are performed within the same individual, but in the present invention, in the device group, It is completely different in that it performs dynamic power management in cooperation with the power constraints, required amount, and priority.
- JP 2010-148125 A "System for Remote Acquisition of Electric Energy Consumption Including Home Use and Remote Control of Distributed Target Users"
- the present invention presupposes centralized management via a communication structure such as a central server, concentrator, and meter, but in the present invention, in the group of devices, dynamic power is coordinated in consideration of power constraints, required amount, and priority. This is completely different in that the starting point of the configuration is that the management is independently performed in a distributed local group.
- JP 2005-513900 A "System for remote acquisition of electric energy consumption including for home use and remote control of distributed target users"
- the present invention presupposes centralized management via a communication structure such as a central server, concentrator, and meter, but in the present invention, in the group of devices, dynamic power is coordinated in consideration of power constraints, required amount, and priority. This is completely different in that the starting point of the configuration is that the management is independently performed in a distributed local group.
- the power shut-off device referred to in the present invention is premised on a centralized management configuration that forms a tree or star system around it.
- the present invention is completely different in that dynamic power management is performed cooperatively in consideration of power constraints, necessary amounts, and priorities in the device group.
- the power shut-off device referred to in the present invention is premised on a centralized management configuration that forms a tree or star system around it.
- the present invention is completely different in that dynamic power management is performed cooperatively in consideration of power constraints, necessary amounts, and priorities in the device group.
- the power shut-off device referred to in the present invention is premised on a centralized management configuration that forms a tree or star system around it.
- the present invention is completely different in that dynamic power management is performed cooperatively in consideration of power constraints, necessary amounts, and priorities in the device group.
- the present invention is premised on the existence of a central supervisory control system.
- the present invention is completely different in that dynamic power management is performed cooperatively in consideration of power constraints, necessary amounts, and priorities in the device group.
- JP 2012-161202 A “Hierarchical Supply and Demand Control Device and Power System Control System”
- it constitutes a hierarchy, it is a centralized monitoring control system that aggregates information, and in one embodiment of the present invention, information collection and control within a group is performed in an independent and distributed manner with other groups and hierarchies. There is no point to do and it is completely different.
- JP 2010-279238 A "System Monitoring and Control System" Although the present invention constitutes a hierarchy, there is no point that information collection and control within a group is performed in an independent and distributed manner with other groups and hierarchies, which is an embodiment of the present invention. is there.
- the “independent distributed” control in the present invention is independence between types of controllers such as lighting and air conditioners. It does not mean that is done autonomously.
- the first feature is that dynamic power allocation is performed independently of other groups and hierarchies in consideration of the priority among members under the control. Is similar to The method is quite different.
- the “hierarchy” in the present invention refers to a hierarchy in the operation mode of time zone, cooperative energy saving, and peak, but the hierarchy in one embodiment of the present invention is applied to the present invention. Is a hierarchy consisting of a group whose members are stores, or a hierarchy consisting of a group whose members are representatives of regional stores. The name is a “hierarchy”, but the definition is fundamental. Different. In one embodiment of the present invention, on any one of those hierarchies, the first feature is to perform dynamic power allocation considering the priority between groups independently of other groups and hierarchies, The method is quite different.
- the hierarchy and distributed monitoring control referred to in the present invention is based on decentralization of an execution unit, an information exchange unit, and an interface unit.
- a dynamic is determined according to the priority among members under given power constraints. Is fundamentally different from the one that provides a way to determine the power allocation.
- the supervisory control referred to in the present invention does not perform autonomous control among members.
- a dynamic is determined according to the priority among members under given power constraints. Is fundamentally different from the one that provides a way to determine the power allocation.
- Japanese Unexamined Patent Application Publication No. 2008-90607 “Autonomous Decentralized Control with Resource Constraints” Distribution in the present invention refers to not specifying a server, but the present invention teaches that control is performed in subdivided units so that it can be handled locally and flexibly, not global batch control. is doing.
- the server may be specified or fixed.
- the present invention proposes a specific method for performing policy / decision processing, in the present invention, a server may be determined by some method, and the method for dynamically allocating the processing is not limited. . There is no need to use the card game system, and the server function “Change (Shift ) ”Is not specifically required.
- the server function can be changed in order of serial number or fixed.
- the purpose is to maintain and achieve performance by the input of resources.
- the power as a resource is not input, but the power is cut off permanently or intermittently.
- it is not a control to maximize the supply power that is the total resource, but based on the priority when the power consumption exceeds the allowable value or the target value, the required power amount and the power amount restriction are taken into consideration and the permanent power consumption is considered.
- the electric power that is input as a resource is determined by the control side, it is known in advance, whereas in the present invention, it is information that should be measured and acquired.
- the present invention aims at demonstrating “a control function that achieves and maintains the performance of the entire system”, and “a method for controlling the individual performance of all elements while satisfying the constraints of the total resources (sum of resources)” (Claim 1 of the same publication)
- the system performance can be reduced by aggressively sacrificing the achievement and maintenance of performance.
- the purpose is to prevent damage.
- JP 2013-38470 A “Control Device and Control System for Electrical Equipment”
- the restriction of the power that is a resource is not taken into consideration, and a solution that satisfies the restriction is not guaranteed. Only a certain operation preset in feed-forward is performed. It should be noted that “setting” in the claims of the same document refers to predefining. In the present invention, It is completely different from the invention described in this document in that the constraint of resources is handled explicitly and the operation to satisfy it is guaranteed.
- the operation proposed in this document is a command operation by so-called simultaneous transmission part processing.
- the Web site discloses an example of disconnecting a device with a predetermined priority. Compared with the present invention, at least the following points are different. (1) Whereas the example disclosed on the website performs control in units of outlets, the present invention is in units of equipment and does not limit the place of use. (2) Although the example of the website is configured to perform permanent interruption, the present invention is capable of continuously reducing power as well as permanent interruption. (3) Although the example of the Web site performs static priority setting for each outlet, the present invention can perform dynamic priority setting for each device. (4) The present invention has a structure in which power consumption allocation is dynamically determined within a group, independent control is performed between groups, a hierarchy is configured, and power consumption allocation is similarly determined dynamically in a higher hierarchy. Have it.
- a group in a domain an aggregate composed of individuals participating in power control (which is a power consuming element and also participates in control). It is defined as a minimum aggregate that performs power control while sharing the same information.
- f 1, f 2 the power consumption value to be assigned to each power consuming elements contained in, ..., f n, and f is a vector in which these are arranged vertically.
- the optimal solution is obtained as follows by counting the weights (priorities) in the group and performing partial differentiation as described above. (4) (5)
- the reassigned power consumption should be obtained as the power closest to the current consumption state of each power consumption element in the current group. Therefore, the solution is the current allocation state of power consumption as shown in equation (5) above. Depends on.
- the expansion evaluation function in the case of starting from a state where no power is consumed in the domain in the initial stage is a power consumption value to be assigned to each power consumption element included in the group in the domain as f 1, opt , If f 2, opt ,..., f n, opt and a vector in which these are arranged vertically are defined as f opt , the following expression (6) is obtained. (6)
- the optimal solution is to aggregate the weights (priorities) within the group, and the above equation (6) using f i, opt and ⁇ From the condition that the partial differential value of the enlargement evaluation function is zero, it is obtained as follows. (7) (8)
- the power consumed by each element in the current group and the priority information of each element are aggregated (FIGS. 1a and 1b) and reassigned. (Fig. 1c) and notify each element (Fig. 1d. Note that each element controls its own power consumption according to the allocated power as shown in Fig. 1e).
- Priorities include the margin for power control at each point in time, the number of people at the location of use, illuminance or temperature, etc. It can be dynamically changed depending on the situation where each element is placed, and is not necessarily fixed in advance in the group, but is grasped and defined by each element.
- this operation When this operation is performed on a server element provided in the domain, first, the server performs an operation for inquiring power consumption and priority for each element included in the group in the domain. Then, it is necessary to solve the optimization problem, and then notify or instruct the newly determined and updated allocated power for each device element.
- This operation especially increases the number of elements that make up the group related to power control in the domain, and dramatically increases the amount of communication. Power control is performed at high speed, that is, feedback is performed in real time and resource constraints are imposed. Make it difficult to optimize. If the group contained in the domain is small and consists of only 2 to 3 elements, the communication volume is not so high, but a group consisting of several hundred elements performs high-speed control.
- the present invention does not require one-to-one two-way communication between a server and individual clients. Therefore, even if the number of power consuming elements subject to power control increases, the amount of communication increases rapidly. It is an object of the present invention to provide a power control system and method excellent in expandability because it does not increase and setting work for one-to-one communication is unnecessary. Furthermore, the present invention provides It is an object of the present invention to provide an information transmission capability control system and method that can be implemented according to the same principle.
- broadcast as described in the present invention is defined. Means for delivering information to be shared to all individuals in the domain by only transmitting information in one direction or one direction in a significantly shorter time than the control time interval. Broadcast "or" broadcast transmission ". Depending on the method of configuring the network, information may be delivered in multiple steps, but “broadcast” or “broadcast transmission” described in the present invention does not describe strict synchronization. These cases are referred to as “broadcast” or “broadcast transmission” below.
- the present invention comprises a broadcast transmission element and one or more power consumption elements that are individually given or determined a priority.
- a power consumption update value to be used for updating its own power consumption is determined as a power consumption element other than itself among one or more power consumption elements and Provided is a power control system configured to control the total power consumption in a group by determining in parallel independently of broadcast transmission elements and controlling the power consumption of itself based on the power consumption update value .
- the total power consumption adjustment instruction value may be a function of system sensitivity.
- the power control system can be further configured such that the priority is dynamically changed in at least one of the one or more power consuming elements.
- System sensitivity differs depending on whether the current value of total power consumption is larger or smaller than the reference value of total power consumption.
- the system sensitivity when the current value is larger than the reference value is smaller than the reference value.
- the power control system can be further configured to improve the stability so that the response of the reduction is higher than the increase of the total power consumption in the control of the total power consumption by making the system sensitivity higher than the above case. it can.
- the power to be consumed by each of the one or more power consuming elements is provided with an upper limit value and a lower limit value, and self power consumption control based on the updated power consumption value is performed in each of the one or more power consuming elements.
- the power control system can be further configured to be performed within a power consumption range that does not exceed the upper limit value and does not fall below the lower limit value.
- the broadcast transmission element or the total power consumption monitoring element monitors the transition of the current value of the total power consumption adjusted by repeating the control of the total power consumption in the group,
- the value of the difference between the current value of the total power consumption and the reference value when the control is repeated k times is defined as x k ( k is an integer greater than or equal to 0), when the value at the time when control is repeated k + 1 times is x k + 1
- a power control system can be further configured.
- the broadcast transmission element further calculates at least one sub-constraint integrated power consumption adjustment instruction value, and broadcasts at least one sub-constraint information representing the sub-constraint integrated power consumption adjustment instruction value in the group,
- the power consumption element further receives the broadcasted sub-constraint information, and among the one or more power consumption elements, the power consumption element to be controlled based on the sub-constraint information is further given to itself.
- the sub-constraint power consumption adjustment instruction value is used to determine the sub-constraint power consumption update value, and the power control system is configured to further control its own power consumption based on the sub-constraint power consumption update value. can do.
- the power control system can be further configured to allow bi-directional communication between the broadcast transmission element and at least one of the one or more power consuming elements.
- the present invention also provides a broadcast transmission element that is given or determined an upper layer priority; One or more power consumption elements that are individually given or determined lower hierarchy priority, and The broadcast transmission element is configured to receive upper layer information representing an upper layer total power consumption adjustment instruction value broadcast from the upper layer broadcast transmission element and includes one or more power consumption elements. Measure the total power consumption of the lower tier within the tier group, and calculate the lower tier total power consumption by calculating the lower tier total power consumption, the upper tier priority, and the upper tier total power consumption adjustment value.
- Determine the lower layer total power consumption adjustment instruction value to be used for updating generate lower layer information to be shared in the lower layer group representing the lower layer total power consumption adjustment instruction value, and store the lower layer information in the lower layer group Configured to broadcast to one or more power consuming elements, It is configured to receive the lower layer information broadcast from the broadcast transmission element, and each of the one or more power consumption elements is given to or determined by the lower layer priority and the lower layer total power consumption.
- the power consumption update value to be used for updating its own power consumption is paralleled independently of one or more power consumption elements other than itself and the broadcast transmission element.
- a power control system configured to control total power consumption in a lower layer group by calculating and controlling self power consumption based on a power consumption update value.
- the lower layer total power consumption adjustment instruction value may be a function of lower layer system sensitivity.
- the power control system can be further configured so that the upper layer priority is dynamically changed.
- the lower layer total power consumption adjustment instruction value is a value that instructs the reduction of the total power consumption in the lower layer group
- the total consumption can be increased by increasing the lower layer system sensitivity than when it is an increase instruction value.
- the power control system can be further configured so that the response of the reduction is higher than the increase of the total power consumption and the stability is improved.
- Upper and lower limits are set for the total power consumption to be consumed in the lower layer group, and the lower layer total power consumption adjustment instruction value determined in the broadcast transmission element is determined by the total in the updated lower layer group.
- the power control system can be further configured so that the broadcast transmission element determines that the power consumption does not exceed the upper limit value and does not fall below the lower limit value.
- the broadcast transmission element or the total power consumption monitoring element monitors the transition of the current value of the total power consumption adjusted by repeating the control of the total power consumption in the lower hierarchy group, and the current value and reference value of the total power consumption are monitored.
- the value at the time when the control is repeated k times is x k (k is an integer of 0 or more), and the value at the time when the control is repeated k + 1 times is x k + 1.
- a power control system can be further configured.
- the broadcast transmission element further calculates at least one sub-constrained integrated power consumption adjustment instruction value, and broadcasts at least one sub-constraint information representing the sub-constraint integrated power consumption adjustment instruction value in the lower layer group.
- the above power consumption elements further receive the sub-constraint information broadcasted, and among the one or more power consumption elements, the power consumption element to be controlled based on the sub-constraint information is further given to itself.
- the sub-constraint power consumption update value is determined by calculation using the determined lower hierarchy priority and the sub-constraint integrated power consumption adjustment instruction value, and the self-power consumption is further controlled based on the sub-constraint power consumption update value.
- the power control system can be configured.
- the power control system can be further configured to allow bi-directional communication between the broadcast transmission element and at least one of the one or more power consuming elements.
- One or more power consuming elements are one or more power consuming devices belonging to a specific dwelling unit, office, building, or area, or a group of a plurality of power consuming devices belonging to a set of a specific dwelling unit, office, building, or region. It may be. In other words, one power consuming device may be defined as a power consuming element, or a plurality of power consuming devices may be regarded as one power consuming element.
- the one or more power consuming elements may be a mobile body or a collection of mobile bodies.
- the power consuming device may be a mobile object such as a portable information terminal.
- the present invention also includes a broadcast transmission element and one or more information transmission elements that are individually given or determined priority, and the broadcast transmission element includes a group of one or more information transmission elements. Measure the difference between the current value of the total information transmission capacity occupied by and the reference value of the total information transmission capacity, determine the total information transmission capacity adjustment instruction value as a function of the difference, and determine the total information transmission capacity adjustment instruction value Generating information to be shared within the group representing, broadcasting information within the group, receiving one or more information transmission elements, and each of the one or more information transmission elements comprising: An information transmission capability update value to be used for updating its own information transmission capability by calculation using the priority given to or determined by the self and the total information transmission capability adjustment instruction value, and one or more information transmission elements
- Information transmission elements other than self and broadcast transmission elements Provides an information transmission capability control system that is configured to control the total information transmission capability within a group by independently calculating in parallel and controlling its own information transmission capability based on the information transmission capability update value. To do.
- the broadcast transmission element is a communication server
- the information transmission element may be a client machine
- the information transmission capability may be a communication speed.
- the present invention provides a broadcast transmission element having a current value of total power consumption consumed in a group including one or more power consumption elements individually given priority or determined, and the total power consumption
- the step of measuring the difference from the reference value, and the broadcast transmission element determines a total power adjustment instruction value that is a function of the difference, and generates information to be shared within the group that represents the total power adjustment instruction value.
- the broadcast transmitting element broadcasts information within the group, the one or more power consuming elements receive broadcast information, and each of the one or more power consuming elements Given the, Or by calculating using the determined priority and the total power consumption adjustment instruction value, a power consumption update value to be used for updating its own power consumption is determined as a power consumption element other than itself among one or more power consumption elements and Controls the total power consumption in the group by determining in parallel independently of the broadcast transmission elements, and each of the one or more power consumption elements controlling its own power consumption based on the power consumption update value
- a power control method comprising the steps of:
- the determination of the total power consumption adjustment instruction value by the broadcast transmission element may be performed by determining the total power consumption adjustment instruction value as a function of the system sensitivity in addition to the difference.
- the power control method may further include dynamically changing the priority in at least one of the one or more power consuming elements.
- System sensitivity differs depending on whether the current value of total power consumption is larger or smaller than the reference value of total power consumption.
- the system sensitivity when the current value is larger than the reference value is smaller than the reference value.
- the power control method may be further configured to improve the stability so that the response of the reduction becomes higher than the increase of the total power consumption in the control of the total power consumption by making the system sensitivity higher in the case. it can.
- the power to be consumed by each of the one or more power consumption elements is provided with an upper limit value and a lower limit value, and the own power consumption is controlled based on the power consumption update value performed in each of the one or more power consumption elements.
- the power control method can be further configured such that the stage is performed within a power consumption range that does not exceed the upper limit value and does not fall below the lower limit value.
- the broadcast transmission element or the total power consumption monitoring element monitors the transition of the current value of the total power consumption adjusted by repeating the control of the total power consumption in the group, and the total power consumption
- the value of the difference between the current value and the reference value when the control is repeated k times is set to x k (k is an integer of 0 or more), and the value when the control is repeated k + 1 times is set to x k + 1 .
- the broadcast transmission element further calculates at least one sub-constrained integrated power consumption adjustment instruction value, and at least one sub-constraint information representing the sub-constraint integrated power consumption adjustment instruction value in the group. Broadcasting, one or more power consumption elements further receiving broadcast-transmitted sub-constraint information, and of the one or more power consumption elements, power to be controlled based on the sub-constraint information
- the consumption factor is further determined by the calculation using the priority given to or determined by the self and the sub-constrained integrated power consumption adjustment instruction value, and based on the sub-constraint power consumption update value. And further controlling the power consumption of the device.
- the power control method may further include performing bidirectional communication between the broadcast transmission element and at least one of the one or more power consumption elements in addition to the broadcast transmission.
- the present invention provides higher layer information representing an upper layer total power consumption adjustment instruction value in which a broadcast transmission element to which a higher layer priority is given or determined is broadcast from an upper layer broadcast transmission element.
- the broadcast transmission element measures the lower layer total power consumption consumed in the lower layer group that is individually given lower layer priority or includes one or more determined power consumption elements.
- the broadcast transmission element should be used for updating the lower layer total power consumption by calculating using the lower layer total power consumption, the upper layer priority, and the upper layer total power consumption adjustment instruction value.
- Determining a total hierarchical power consumption adjustment instruction value generating lower hierarchical information to be shared in a lower hierarchical group representing the lower hierarchical total power consumption adjustment instruction value, and a broadcast transmission element, within the group Comprising the steps of multicast transmission, one or more power elements, the method comprising: receiving lower layer information transmitted broadcast from broadcast transmission element, each of the one or more power consuming elements, The power consumption update value to be used for updating own power consumption is calculated by using the lower layer priority and the lower layer total power consumption adjustment instruction value given to or determined by itself.
- a power control method including a step of controlling the total power consumption in the lower layer group is provided.
- the lower layer total power consumption adjustment instruction value by the broadcast transmission element is determined by the lower layer total power consumption, It may be performed by determining the lower layer total power consumption adjustment instruction value by calculation using the lower layer system sensitivity in addition to the upper layer priority and the upper layer total power consumption adjustment instruction value.
- the power control method may further include a step of dynamically changing the upper layer priority.
- the lower layer total power consumption adjustment instruction value is a value that instructs the reduction of the total power consumption in the lower layer group
- the total consumption can be increased by increasing the lower layer system sensitivity than when it is an increase instruction value.
- the power control method can be further configured so that the reduction response is higher than the increase in the total power consumption and the stability is improved.
- Upper and lower limits are set for the total power consumption to be consumed in the lower layer group, and the lower layer total power consumption adjustment instruction value determined in the broadcast transmission element is determined by the total in the updated lower layer group.
- the power control method can be further configured so that the broadcast transmission element determines that the power consumption does not exceed the upper limit value and does not fall below the lower limit value.
- the broadcast transmission element or the total power consumption monitoring element monitors the transition of the current value of the total power consumption adjusted by repeating the control of the total power consumption in the lower layer group, and the total power consumption
- the value of the difference between the current power value and the reference value at the time when the control is repeated k times is defined as x k (k is an integer of 0 or more), and the value at the time when the control is repeated k + 1 times is denoted by x k + 1.
- the broadcast transmission element further calculates at least one sub-constraint integrated power consumption adjustment instruction value, and at least one sub-constraint information representing the sub-constraint integrated power consumption adjustment instruction value
- a broadcast transmission step one or more power consumption elements further receiving broadcast broadcast sub-restriction information, and one or more power consumption elements of the control target based on the sub-constraint information
- the sub-constraint power consumption is further determined by calculating the sub-constraint power consumption update value by calculation using the lower-layer priority and the sub-constraint integrated power consumption adjustment instruction value given to or determined by itself. And further controlling the power consumption of the device based on the updated value.
- the power control method may further include performing bidirectional communication between the broadcast transmission element and at least one of the one or more power consumption elements in addition to the broadcast transmission.
- the one or more power consuming elements are a specific dwelling unit, office, building, It may be one or more power consuming devices belonging to a region, or a group of a plurality of power consuming devices belonging to a specific dwelling unit, office, building, or region group.
- the one or more power consuming elements may be a mobile object or a collection of mobile objects.
- the present invention also provides a current value of total information transmission capability occupied in a group including one or more information transmission elements to which broadcast transmission elements are individually given or determined priority, and total information transmission.
- the step of measuring the difference from the reference value of the capability, and the broadcast transmission element should determine the total information transmission capability adjustment indication value that is a function of the difference and share it within the group representing the total information transmission capability adjustment indication value
- Each element has an information transmission capability update value to be used for updating its own information transmission capability by calculation using the priority given to or determined by itself and the total information transmission capability adjustment instruction value.
- Information transmission other than self among the above information transmission elements A step of calculating in parallel independently from hydrogen and broadcast transmission element, Each of the one or more information transfer elements controls its own information transfer capability based on the information transfer capability update value, thereby controlling the total information transfer capability within the group. provide.
- the broadcast transmission element may be a communication server, the information transmission element may be a client machine, and the information transmission capability may be a communication speed.
- the present invention includes a broadcast transmission element and one or more power consumption elements which have a function of directly consuming power or opening / closing power supply and which are individually given or determined priority.
- a multi-variable indicating a current value as a multivariate indicating a total power consumption or a power supply state, and a total power consumption or a power supply state being consumed in a group in which the broadcast transmission element includes one or more power consumption elements
- the broadcast transmission element includes one or more power consumption elements
- multivariate information that should be shared with each other is generated, the information is broadcast in the group, one or more power consumption elements receive the broadcast information, and each of the one or more power consumption elements , Given to self, or The calculation using the constant is the priority and the power adjustment value, Based on the power update value, the power update value to be used for updating its own power consumption or switching power is calculated in parallel independently of one or more power consumption elements other than its
- the present invention also includes a broadcast transmission element to which higher layer priority is given or determined, and a function of directly consuming power or switching power supply, and individually giving lower layer priority.
- One or more power consumption elements determined or determined, and the broadcast transmission element is calculated from the total power consumption or power supply status in the upper layer, which is broadcast from the upper layer broadcast transmission element.
- the lower layer total power consumption or power supply state is configured to receive upper layer information representing a multivariate power adjustment instruction value and is consumed in a lower layer group including one or more power consumption elements.
- Lower layer total power consumption or power supply status calculation using lower layer priority and upper layer power adjustment indication value, lower layer total power consumption or power supply state Determine the generally multivariate lower tier power adjustment indication value to be used for updating, or receive lower tier power adjustment indication values from other elements and share them within lower tier groups representing lower tier power adjustment indication values
- Power lower layer information is generated and the lower layer information is broadcasted in the lower layer group, so that one or more power consuming elements receive the lower layer information broadcast from the broadcast transmission element
- Each of the one or more power consuming elements is configured to calculate its own power consumption or power supply state by a calculation using the lower layer priority and the lower layer power adjustment instruction value given to or determined by itself.
- the power update value to be used for updating is calculated in parallel from one or more of the power consumption elements other than itself and the broadcast transmission element in parallel, and the power consumption is calculated based on the power update value.
- the present invention also includes one or more power consuming elements, each of which has a function of directly consuming power or opening / closing a power supply, and which is individually given or determined priority. Measures the difference between the current value as a multivariate indicating the total power consumption or power supply status consumed within the group and the reference value as a multivariate indicating the total power consumption or power supply status, and is a function of the difference.
- the multivariate power adjustment instruction value is determined, or the power adjustment instruction value is received from another element, and generally the multivariate information to be shared in the group representing the power adjustment instruction value is generated.
- one or more power consuming elements receive broadcast information, and each of the one or more power consuming elements is given or determined priority and power adjustment to itself Calculation using the indicated value
- the power update value to be used for updating its own power consumption or switching power is calculated in parallel independently of power consumption elements other than itself and broadcast transmission elements among one or more power consumption elements.
- a power control method configured to control the total power consumption or the power supply state in the group by controlling its own power consumption or switching power based on the above is provided.
- the present invention calculates from the total power consumption or the power supply state in the upper layer, in which the broadcast transmission element to which the upper layer priority is given or determined is broadcast from the upper layer broadcast transmission element.
- it has received the upper layer information representing the multivariate power adjustment instruction value, and has the function of directly consuming power or opening / closing the power supply, and individually assigned lower layer priority.
- the lower layer total power consumption or power supply state consumed in the lower layer group including one or more determined power consumption elements is measured, the lower layer total power consumption or power supply state, and the upper layer priority
- a multivariate lower layer power adjustment instruction value to be used for updating the lower layer total power consumption or the power supply state by the calculation using the upper layer power adjustment instruction value.
- ⁇ receive lower layer power adjustment instruction values from other elements, generate lower layer information to be shared in lower layer groups representing lower layer power adjustment instruction values, and store lower layer information in lower layer groups.
- Broadcast and one or more power consumption elements Receiving lower layer information broadcast from the broadcast transmission element, each of the one or more power consumption elements, A power update value to be used for updating own power consumption or power supply state by calculation using lower layer priority and lower layer power adjustment instruction value given to or determined by self, By calculating in parallel independently of power consumption elements other than self and broadcast transmission elements among one or more power consumption elements, and controlling their own power consumption or switching power based on the power update value, Provided is a power control method configured to control total power consumption or power supply status in a lower layer group.
- the priority of each power consumption element only needs to be grasped by the element and does not need to be collected by a server or the like. Further, in the power control system and method of the present invention, it is not necessary for the server or the like to collect the current value of the power consumption of each element.
- the only information that must be shared within the domain is the total power adjustment indication value, which is determined by the broadcast transmission element itself by measurement or provided with the measurement value, and broadcast within the group. To share. By identifying and separating information that should be shared within the domain and information that only needs to be grasped by individual power consumption elements, it is possible to greatly reduce the amount of communication by distributing power control. It becomes. If the same principle is applied to the domain to which the information transmission element belongs, it is possible to control the information transmission capability in the domain without requiring a large amount of communication.
- the figure showing the processing flow of the power control proposed in Japanese Patent Application No. 2014-12924 (inquiry of power consumption, priority, etc. from the server).
- the figure showing the processing flow of the power control proposed in Japanese Patent Application No. 2014-12924 (the response of each device to the inquiry from the server).
- the figure showing the processing flow of the power control proposed in Japanese Patent Application No. 2014-12924 (calculation of power consumption allocation using collected information by the server).
- the figure showing the processing flow of the electric power control proposed in Japanese Patent Application No. 2014-12924 distributedtion of the allocation electric power to each apparatus by a server).
- the figure showing the processing flow of the power control proposed in Japanese Patent Application No. 2014-12924 (implementation of power consumption control according to the allocated power in each device).
- the block diagram of the power control system comprised as one Embodiment of this invention which performs the power control of a lower hierarchy based on the information broadcast-transmitted from the upper hierarchy.
- the power control according to an embodiment of the present invention is a simplified expression of the solution of the optimization problem shown in the above equation (5) when Q is a diagonal matrix in the above equation (3).
- the following formula (14) (14) (14) Based on.
- f i, k is the i-th (in the group) at the time point when power control is repeated k times in the system (k is an integer of 0 or more) (referred to as “current time”).
- i is an integer greater than or equal to 1)
- the above equation (14) represents the power consumption f i, k + 1 of the i-th power consumption element to be realized in the (k + 1) th power control. This is a formula for determining.
- Q ii is a priority given to the i-th power consumption element.
- ⁇ P is a reference value of the total power consumption based on the current value of the total power consumption in the group (measured by the broadcast transmission element or received by the broadcast transmission element from another element to be measured). This is the difference obtained by subtracting the sum of the rated power consumption of each power consumption element included in the group. It can also be said to be a power consumption value (if the difference is negative, it corresponds to the power to be recovered).
- S t is the power to be reduced when controlling the total power consumption in the group, ⁇ P (if negative, ⁇ P The absolute value of is equivalent to the power to be recovered. The same applies to the following.
- system sensitivity is theoretically preferably “1”, but does not prevent other sensitivity from being set intentionally.
- a value obtained by multiplying the difference between the current value and the reference value by the system sensitivity is set as a total power consumption adjustment instruction value, and information indicating this is transmitted to the power transmission element by the broadcast transmission element.
- the total power consumption adjustment instruction value may be the difference value itself, and in this case, it is not necessary to use the system sensitivity (this is equivalent to the case where the system sensitivity is fixed to “1”).
- the constraint condition is described as a linear sum of power consumed by each power consumption element.
- the constraint condition is calculated from the power consumed by each power consumption element. It may be non-linear information that is determined. For example, it may be an absolute difference between the maximum power consumption and the minimum power in all elements.
- the broadcast information is the total power consumption or the power supply status.
- the information transmitted by broadcast need not be limited to the scalar quantity, and may include a case of taking a multivariate depending on the content of the constraint condition.
- the information transmission and the calculation of the power allocation amount are shared between the broadcast transmission element and the power consumption element. Can be made.
- the broadcast transmission element does not need to collect information from each power consumption element, and the processing in each power consumption element can be executed simultaneously by all the power consumption elements. Processing time is greatly reduced.
- each power consumption is obtained by obtaining f i, k + 1 by setting f i, k to zero (turning off the operation of each power consumption element in the group once).
- An optimal solution may be obtained using elements. There is a theoretical relationship between the system sensitivity and each power consumption element priority, and there are conditions that can be converged by this repetition. The range in which the stability can be ensured is very wide, and it will be described later that this method is effective in implementation.
- the system sensitivity St is typically stored as a specified value such as “1” in the broadcast transmission element, but this value may be dynamically changed.
- the system sensitivity S t when ⁇ P in the above formula (14) is positive (when the current value of the total power consumption in the group is larger than the reference value).
- the system sensitivity S t where ⁇ P is negative if the current value of the group in the total power consumption is smaller than the reference value, in the control group in the total power consumption than the increase of the total power
- the responsiveness of reduction can also be increased (such determination processing is performed by a determination / execution system circuit or the like in the broadcast transmission element). In addition, stability can be improved.
- the self-priority Q ii of each power consuming element is set to an arbitrary interval (typically from the interval at which the control of the above equation (14) is performed by each power consuming element in order to avoid an increase in communication volume. Can be transmitted to the broadcast transmission element at a sufficiently long interval. (Bidirectional communication between the broadcast transmission element and the power consumption element. Note that the self-priority is transmitted by the power included in the group.
- the broadcast transmission element has an ideal system sensitivity (referred to as effective system sensitivity).
- the information representing the above formula total power consumption adjustment value obtained by multiplying ⁇ P to system sensitivity S t (15) and broadcasts, the power consumption of the self each power consuming element is the formula (14) using the same
- the updated power consumption matches the optimal solution given by the above equation (5).
- total power consumption adjustment instruction value is information that does not require identification of a specific element at the destination
- information sharing can be performed by broadcast communication (broadcast communication). it can.
- the current power consumption and priority required only on each power consumption element do not need to be transmitted externally from each power consumption element, and each power consumption element is information indicating the total power consumption adjustment instruction value.
- the number of elements belonging to the domain is 1 Even in the case of tens or tens of thousands, this distributed processing type power control system can maintain a high-speed response without requiring an increase in control cycle time. Rather than acquiring information on all power consumption elements in server-client communication and realizing an ideal control solution in one cycle, the processing is shared between the broadcast transmission element and the power consumption element, and round-trip communication is performed.
- the use of the overwhelmingly high speed when the number of iterations is repeated while performing one-way communication is the basis of the measure that enables high-speed operation by power control of this embodiment. This is one of the biggest features.
- ⁇ P in the above equation (14) is obtained by subtracting the reference value of the total power consumption from the current value of the total power consumption in the group at the time when the power control in the system is repeated k times.
- ⁇ P k is a relative current total power consumption, that is, a total power consumption to be reduced or recovered, as viewed from a reference value of the total power consumption in the group.
- the total power consumption ⁇ P k + 1 to be reduced or recovered from the total power consumption in the group in the (k + 1) th power control process is expressed by the following equation (16).
- the simplest control method listed in 20) is the problem of reassigning the amount obtained by multiplying the total power consumption ⁇ P k to be reduced or recovered by the sum of ⁇ i as shown in the above equation (21). We can confirm that it is equivalent to the solution.
- the sum is the following formula (22) (22) If it satisfies, it can be understood that an optimization solution that satisfies the central condition of the above-described stability condition and reallocates the power consumption to be reduced or recovered, which is the original problem, is provided.
- a broadcast transmission element (such as a smart meter) configured as shown in FIG. 7 described later measures the difference between the current value of the total power consumption in the group and the reference value (step S301).
- Measure the current value of total power consumption within the group by connecting a broadcast transmission element equipped with a power meter to the switchboard, etc., and add up the rated power consumption of the power consumption elements included in the group ( In one example, it is stored in advance in a memory or the like included in the broadcast transmission element. ) Is subtracted from the current value to measure the difference.
- the broadcast transmission element multiplies the difference by the system sensitivity to determine a total power consumption adjustment instruction value, and generates information representing this (step S302).
- the system sensitivity is typically “1”, but other values may be used.
- the system sensitivity is typically stored in advance in the memory of the broadcast transmission element.
- the difference itself may be used as the total power consumption adjustment instruction value (the system sensitivity may not be used), and when the difference is positive, for example, than when it is negative. As described above, if the system sensitivity is increased, the reduction response becomes higher than the increase in the total power consumption.
- the broadcast transmission element broadcasts the information in the group (step S303). No address designation is required in the broadcast transmission, and information is broadcast from the broadcast transmission element at a specific radio frequency, for example.
- each power consumption element included in the group receives the information (step S3). 04).
- the power consumption element is an element configured by attaching, for example, a module shown in FIGS. 8 and 9 to an electric device (if the electric device has a function to be given by the module, the module is unnecessary) ), For example, using an antenna or various communication circuits, the information transmitted at the radio frequency is received.
- each power consumption element determines a power consumption update value from the received information and its own priority (step S305).
- the total power consumption adjustment instruction value ( ⁇ P ⁇ S t ) obtained from the received information is added to the reciprocal of its own priority (1 / Q ii ) To determine the power consumption update value.
- Each power consumption element only needs to store its own priority Q ii , and this priority can be dynamically changed at an arbitrary timing ( As shown in FIG. 8 and FIG. 9, a user interface may be provided in the power consumption element, and the user may set the priority via this, or may be changed by the operation of an arbitrary determination / implementation circuit. ).
- each power consumption element controls its own power consumption based on the power consumption update value determined by itself (step 306).
- each power consumption element reduces its own power consumption by the value of the power consumption update value under the control of the circuit breaker and inverter (FIGS. 8 and 9) provided therein (or the above formula (14)). If ⁇ P is negative, it is recovered). However, when an upper limit value and a lower limit value are provided for the power to be consumed in each power consumption element, control is performed within a power consumption range that does not exceed the upper limit value and does not fall below the lower limit value.
- the power consumption factor becomes inoperable if the power consumption is reduced by the power consumption update value, the power consumption is reduced only to the lowest operable level, or the power consumption is updated by the value of the power consumption update value. If the power consumption of the power consumption element is recovered, the rated power consumption of the power consumption element may be exceeded. Thereby, the total power consumption in the group is controlled.
- the system of the present embodiment can be configured to form part of a hierarchical structure.
- the broadcast transmission element is between the upper and lower layers, and the upper layer is a member element (behaves like a power consuming element and is reduced within the lower layer group using information received from the upper layer broadcast transmission element. Alternatively, the total power consumption to be recovered is determined.), And the broadcast transmission element (alert element) is provided in the lower hierarchy (FIG. 4).
- Such a broadcast transmission element (lower-layer broadcast transmission element) is referred to as a “soft breaker”.
- the specific configuration of the soft breaker is the same as the broadcast transmission element already described (FIG. 7), but not only the broadcast transmission function for the lower layer group but also the upper layer broadcasted from the upper layer broadcast transmission element. The difference is that it also has a function of receiving information.
- the soft breaker is the upper layer total power consumption adjustment instruction value (upper layer system sensitivity in the upper layer domain) that is sent by broadcast transmission from the upper layer broadcast element (alert element) of the upper layer domain. And the product of the total power consumption to be reduced or recovered), and based on the priority of the upper layer possessed by itself, for example, the upper layer total power consumption adjustment instruction value with the upper layer priority
- the total power consumption to be reduced or recovered, which is allocated in the lower hierarchy group that it is in charge of, is calculated by, for example, dividing. It is not necessary for the soft breaker to transmit to the higher-layer broadcast transmission element (however, as a smart grid client or the like, it does not prevent transmitting information for “visualization” based on the request).
- the higher layer priority may be transmitted at a certain timing, etc.). Thereafter, as already described, the lower layer total power consumption adjustment instruction value is determined by arbitrarily multiplying this value by the system sensitivity (lower layer system sensitivity), and information indicating this (lower layer information) Is broadcast to the lower layer group. It is not necessary to perform any reception from the power consumption elements belonging to the lower domain (as described above, the lower layer priority may be received at an arbitrary timing).
- the power consumption factor in the lower layer group that received the lower layer information is reduced from its own power consumption using the priority (lower layer priority) given to itself or determined by itself as described above. Alternatively, the power consumption update value to be recovered is determined, and its own power consumption is controlled based on this value.
- the upper layer priority and the lower layer priority can be dynamically changed at an arbitrary timing (FIG. 8).
- a user interface may be provided in the power consumption element as shown in FIG. 9, and the user may set the priority via this, or may be changed by the operation of an arbitrary determination / implementation circuit. ).
- the lower layer system sensitivity if the lower layer total power consumption adjustment instruction value is a value that instructs the reduction of the total power consumption in the lower layer group, the lower layer system sensitivity is more than the value that instructs the increase. As described above, the higher the power consumption, the higher the reduction response than the increase in the total power consumption in the lower layer group.
- upper and lower limits are set for the total power consumption to be consumed in the lower hierarchy group, and the lower hierarchy total is within the range that the soft breaker determines that the total power consumption does not exceed the upper limit and does not fall below the lower limit. It is preferable to determine power consumption.
- the updated total power consumption After the soft breaker measures the total power consumption in the lower layer group, if the total power consumption is reduced and restored by the lower layer total power adjustment indication value, the updated total power consumption The total power consumption after the update will be reduced if the value falls below the operable lower limit value or exceeds the upper limit rated total power consumption (the total rated power consumption of the power consumption elements in the lower layer group) Can be operated such as changing the lower layer total power consumption adjustment instruction value so that the value falls between the upper limit value and the lower limit value.
- Numerical Example 1 by Numerical Calculation Numerical Example-1 shown in Table 1 to Table 8 below has six different power consumption elements, and when different priorities are defined for them, all elements are initially turned on. And the excess power is 20 This is a result of numerical calculation when the power control according to the present embodiment is simulated seven times from the situation of 0 W (unit of power is W).
- the system sensitivity is assumed to be “1” in the broadcast transmission element (alert element).
- the power consumption elements in the system have their priorities set independently, and the effective system sensitivity is 0. 75.
- the results in Tables 1 to 8 correspond to an example in which the broadcast transmission element repeats without excessive control requests by 4/3 times.
- the system sensitivity at the time of recovery of the total power consumption that is, non-linear control is not performed. From the results in Tables 1 to 8, it can be seen that control is achieved promptly within the domain.
- Tables 9 to 16 below show the results of the simulation implementation (Numerical Example-2) performed with the power consumption factor E having a very high priority.
- the effective system sensitivity is a value greatly different from the system sensitivity of the broadcast transmission element due to the independent definition in each power consumption element.
- a method of transmitting the priority of each power consumption element to the broadcast transmission element by low-speed bidirectional communication in parallel with high-speed power control by broadcast transmission and collecting information from each power consumption element there is a method for confirming the soundness by estimating the effective system sensitivity while ensuring the dispersibility based on the original concept of the distributed processing required in the present invention. As a result, the performance is also improved.
- the power control in this embodiment requires more repetitions than the ideal power control that converges once.
- Total power consumption to be reduced or recovered difference between the current value of the total power consumption and the reference value
- X k k corresponds to the number of times of executing power control
- the equivalent transition ratio is not always constant. For example, the following equation (26) (26) As shown in FIG.
- the broadcast transmission element is typically (in addition to the broadcast transmission element, for example, a separate total power consumption monitoring element having a similar function in the system may be provided, and this may be performed. The same applies to the following), and it is possible to estimate the soundness by estimating the equivalent transition ratio C k, eq using the Kalman filter.
- Effective system sensitivity is an external factor such as adjustable power margin, number of users, illuminance, It can vary slowly depending on the temperature.
- the Kalman filter for estimating the system sensitivity ratio S t / S t * is expressed by the following equation (29). (29)
- the broadcast transmission element (or the total power consumption monitoring element, etc.) monitors the transition of the current value of the total power consumption adjusted by repeating the control of the total power consumption in the group,
- the value of the difference between the current value of the total power consumption and the reference value when the control is repeated k times is defined as x k (k is an integer of 0 or more), and the value when the control is repeated k + 1 times is denoted as x k.
- the broadcast transmission element (or the total power consumption monitoring element or the like) estimates the equivalent transition ratio C k, eq given by the above equation (27) when +1 is set based on the above equation (29).
- x k is first determined by measuring the difference between the current value of the total power consumption and the reference value, and then multiplied by the current estimated value of the equivalent transition ratio C k, eq to obtain C k, eq x k.
- Y k is determined as the difference between the current total power consumption after power control and the reference value, and an estimation error is calculated by subtracting C k, eq x k from y k , which is multiplied by K.
- the convergence value of the equivalent transition ratio can be obtained by repeating the procedure of updating the estimated value to C k + 1 , eq by adding the value to the current estimated value C k, eq . If this convergence value is close to zero, the power control method, It can be said that the soundness of the system is high.
- the true system sensitivity matches the system sensitivity recognized by the alert element, C k, eq * is zero, and the equivalent transition ratio estimate C k, eq is also zero. Should be. Equivalently, the transition of the total power consumption ⁇ P k to be reduced or recovered does not become zero due to the influence of the transient response of each element, that is, the influence of f and the recognition error of the system sensitivity.
- f should be set to a sufficiently small value, which means that the time period for repeating this Kalman filter is shorter than the transient response time constant of each element in the domain. Indicates that it should be kept large enough. That is, the repetition period of the Kalman filter should be sufficiently longer than the control period.
- the estimation of soundness of power control can be similarly performed when the broadcast transmission element is a soft breaker.
- the operation maintenance limit is set as the lower limit, and conversely the calculated negative
- operation such as setting the rated power consumption as the upper limit is performed.
- i-th equipment rated maximum reducible power in devices a [Delta] P imax obtained by subtracting the power consumption P imin of lower operable from the rated power P imax, instantaneous reducible power is currently consumed in the device This is ⁇ P i obtained by subtracting the operable lower limit power consumption P imin from the power P i (FIG. 5).
- the power or duty currently consumed is measured (performed by the galvanometer and detector I / F in FIGS. 8 and 9), and this is calculated by each device.
- the basic system sensitivity of the entire domain is set to approximately “1”. It is a feature of this method that even if the priority is manually increased on the individual device side, the control stability is not affected.
- / Instantaneous power reduction ”x“ Total number of inverter control devices in the domain ”x“ Standard illuminance / actual illuminance ” Can be employed in the LED lighting domain.
- the operation maintenance limit is set as the lower limit.
- the calculated negative reduction amount exceeds the rated power, the rated power is used.
- the rated maximum reducible power within the domain is the total of the device rated maximum reducible power for each device included in the group.
- priority numbers are fixed and the system is very stable. By doing so, the basic system sensitivity of the entire domain is set to approximately “1”. Note that the characteristic of this method is that control stability is not affected even if the priority is manually increased on the individual device side.
- “priority of each device” “maximum rating within the domain” Reducible power / instantaneous reducible power ”x“ reference illuminance / actual illuminance ” Can be employed in the LED lighting domain.
- the operation maintenance limit is set as the lower limit.
- the rated power is used.
- control stability is not affected even if the priority is manually increased on the individual device side.
- priority of each device “maximum rating within the domain”
- Reducible power / instantaneous reducible power ”x“ reference illuminance / actual illuminance ” Can be employed in the LED lighting domain.
- the operation maintenance limit is set as the lower limit.
- the calculated negative reduction amount exceeds the rated power, it is limited to the rated power.
- the “in-domain power adjustment degree” is defined by the following equation (35).
- In-domain power adjustment level (35)
- This “intra-domain power adjustment” is the actual (effective) system sensitivity in the domain. The value can be calculated by collecting information from member elements. In this power control method, the alert element has a predetermined sensitivity value unless otherwise specified in order to reduce the communication required for it. 1 ”is assumed. In fact, if all of the member elements are operating at rated power, Take 1 ”. The intra-domain power adjustment is used to calculate a priority representing a lower layer domain in which the member element becomes an alert element in the upper layer when the system is hierarchized.
- Prioritization related to power reduction is almost always a fixed value of type 1 in the case where a domain is composed of many devices of the same scale. In a case where a dwelling unit or the like is composed of devices of different scales, there is usually no problem with a fixed value of approximately type 3. In a case where a dwelling unit or the like is composed of devices of different scales and when responsiveness is to be pursued as much as possible, a type 4 prioritization method that is state dependent can be taken.
- N be the total number of power consumption elements in the domain.
- the simple method of setting the sum of the reciprocal of the sum of priorities to approximately “1” is the lowest priority, that is, (N / 2) is the element that contributes to power reduction, and (N) is the most on average.
- 2N For high-priority elements that do not want to participate in power reduction ( 2N) to (3N).
- the effective system sensitivity can be 6/7.
- the effective system sensitivity can be 70/79.
- the method of setting the effective system sensitivity to approximately 1, that is, the method of giving priority to the convergence of the control was shown.
- the higher the effective system sensitivity of the domain the lower the convergence, but the lower the priority.
- the degree to N and the highest priority to 2N to 3N, the robustness becomes higher.
- the priority is 3,4.5,6, the effective system sensitivity is 18/13, and for the five elements, the priority is 5,6,7,8,10.
- the effective system sensitivity is 840/617.
- the priority setting described above corresponds to a safe setting for making the actual system sensitivity smaller than one.
- the calculation may be performed based on the power of a rational number of “rated maximum reducible power / instantaneous reducible power in device or domain” instantaneously, and the function type is not particularly limited.
- “Priority of each device” “[3-2.5 ⁇ (power that can be instantaneously reduced / power that can be reduced to the maximum rated device) ⁇ 2] ⁇ “ total value of the number of inverter control devices in the domain ”” ( ⁇ 2 represents square). According to this, the lowest priority is N / 2 and the highest priority is 3N.
- Trapezoid policy A simple method for qualitative setting.
- Linear priority A method of mathematically setting based on the driving situation of each individual.
- Hyperbolic priority A method of mathematically setting based on the driving situation of each individual.
- Trapezoid policy A simple method for qualitative setting. While considering the average priority in the domain as N. N / 2 from lowest priority to highest priority Is a qualitative method from 2N to 3N and does not require quantitative evaluation (FIGS. 10 and 11). Increasing effective system sensitivity is inferior to transient response but leads to improved stability. In this case, from the lowest priority to the highest priority, from N to (2N) or N It may be practical to put (3N). Qualitatively, the system sensitivity can be approximated by trapezoidal integration.
- Linear priority A method of mathematically setting based on the driving situation of each individual.
- X (instantaneous reducible power / equipment rated maximum reducible power) can be considered to cause random fluctuations between 0 and 1.
- “Priority of each device” “[A ⁇ (A ⁇ 1 / 2) X] ⁇ “ total value of the number of inverter control devices in the domain ”
- the priority can be linearly changed from the lowest value N / 2 to 2N or 3N (FIG. 12).
- type 4 instead of “the total value of the number of inverter control devices in the domain”, for example, a method using “(rated maximum reducible power in the domain / power rated maximum reducible power in the domain)” is supported.
- Hyperbolic priority A method of mathematically setting based on the driving situation of each individual.
- X (Power that can be instantaneously reduced / Power that can be reduced to the maximum rated equipment)
- X (Power that can be instantaneously reduced / Power that can be reduced to the maximum rated equipment)
- X Power that can be instantaneously reduced / Power that can be reduced to the maximum rated equipment
- “Priority of each device” “X ⁇ ( ⁇ ⁇ ) / ( ⁇ + 1)”
- ⁇ is an arbitrary positive real number.
- the reciprocal of the priority is integrated between X intervals [0-1] and the reciprocal is taken to calculate the effective system sensitivity, it can be set to “1”, and it can be seen that an excellent control system can be configured.
- the system sensitivity (upper layer system sensitivity) in the upper layer domain is basically “1”. This soft breaker does not require any setting or monitoring. Even in the upper layer, as already explained using Equations (25) to (32), real-time estimation is performed using the alert element (upper layer broadcast transmission element) to evaluate system health and perform inspection. Is possible.
- the system sensitivity used by this soft breaker as an alert element in the lower hierarchical domain is also basically “1”. If necessary, different values may be set with this soft breaker. In the lower hierarchy, this soft breaker can perform real-time estimation as an alert element, evaluate the system soundness as already described using the equations (25) to (32), and perform an inspection. In the upper hierarchy, this soft breaker functions as one member element.
- the priority (upper hierarchy priority) possessed as one member element in this upper hierarchy can be set as the priorities of types 1 to 4 described above. In the simplest priority setting, for example, in a hierarchy composed of a plurality of domains of the same scale in a smart grid, the priority may be fixed to the number of domains, that is, the number of member elements (type 1 priority setting).
- the value obtained by dividing the total power that can be reduced in the upper layer by the power that can be reduced in the entire lower layer domain of this soft breaker is defined as the priority as one member element in the upper layer. Also good.
- This is an effective setting method in a hierarchy composed of multiple domains of different scales in a smart grid (type 3 priority setting) .
- the priority of the soft breaker in this higher layer domain is "Lower-layer power adjustment in domain” x "Number of members in upper-layer domain” Can be defined.
- “Lower-layer domain power adjustment” x “(Maximum rated power that can be reduced in higher-level domains) / (Rated maximum power that can be reduced in lower-level subordinates)” May be defined.
- equation (36) This setting can also be performed on each power consumption element. According to this, when the priority at the time of reduction is 2, 3 and 6 in the domain to which the three power consumption elements belong (the reciprocal sum is taken as 1), the priority at the time of return is 4, 3 , 2.4. In the type 1 priority setting described above, the priority is the total number N of individuals in the domain. In this case, the priority at the time of return is the same N. In this way, when power reduction is required within the domain and when power can be restored, depending on the sign of the total power consumption adjustment value indicated by the broadcast information, It is also possible to change the priority asymmetrically in the calculation in.
- the ratio assigned by the priority at the time of reduction and the ratio assigned by the priority at the time of restoration should satisfy a complementary relationship.
- the priority at the time of return is determined by the following equation (38). (38) According to this, in the domain to which the three elements belong, when the priority at the time of reduction is 2, 3 and 6 (the reciprocal sum is taken as 1), the priority at the time of return is set to 6, The opposite priority can be taken as 3 and 2.
- the reciprocal sum of the priorities at the time of reduction is less than “1”, and therefore the reciprocal sum of the priorities at the time of return is greater than “1”. That is, the effective system sensitivity at the time of return is less than “1”.
- this state is not preferable in the case where the system sensitivity assumed on the alert element side is excessive, and the reciprocal priority sum at the time of reduction and the reciprocal priority sum at the time of restoration are 2 / N. Instead, a device such as 3 / (2N) or 1 / N is required.
- the reciprocal priority sum at the time of return is less than “1”, the effective system sensitivity is set higher than “1”, and the robustness is improved.
- the reciprocal sum of the priority at the time of return is “1”, and the normalization condition is automatically satisfied.
- the effective system sensitivity in the recovery process is lower than “1”, which is not preferable. Instead of 2 / N, contrivance is required such as 3 / (2N) or 1 / N. Similarly, in the priority setting method at the time of return described above, the reciprocal priority sum at the time of return is less than “1”, and the effective system sensitivity is set higher than “1” to improve the robustness.
- the second method is advantageous from the viewpoint of setting the priority at return with an emphasis on performance, but the priority setting at the time of reduction in types 2 and 4 is advantageous.
- the robustness is lowered in setting the priority at the time of return, and thus a device is necessary for application.
- the main constraint condition is that the total power consumed by the power consumption elements included in the group is the designated power condition (equation (1)).
- An optimization method was considered. However, this control method can be further expanded and applied to optimization in the case where a sub-constraint is imposed.
- the original constraint represented by the above equation (1) is -0th order, and the sub-constraint is Consider an optimization using an expansion evaluation function expressed by the following equation (39), with a ⁇ 1 order, ⁇ 2 order,... ⁇ m order.
- e 0 T is an n-th unit row vector (T is a transposed symbol), and e 1 T to e m T Is an integration (row) vector corresponding to each sub-constraint, ⁇ 0 to ⁇ m are Lagrange's undetermined multipliers, and P 0 is a constraint value for the total power consumption in the group (P t in the above equation (1)). P 1 to P m are constraint values for integrated power consumption corresponding to the respective sub constraints.
- the current power consumption consumed by each power consumption element in the group is expressed as f * 1 , f * 2 ,... f * n, and a vector in which these are arranged vertically is f * .
- Other variables are defined in the same manner as the above formulas (1) to (3).
- the broadcast transmission element measures or determines an amount corresponding to f * ⁇ P i to determine m sub-constraint integrated power consumption adjustment instruction values, and m sub-constraint information representing this is already described.
- a group from a broadcast transmission element a soft breaker if the system has a hierarchical structure
- a lower hierarchical group if the system has a hierarchical structure. The same applies below. ) Is further broadcasted.
- Each power consumption element included in the group receives the above information and m pieces of sub-constraint information, and is given a total power consumption adjustment instruction value and m sub-constraint integrated power consumption adjustment instruction values. Or the self-determined (lower layer) priority according to the above equation (40) (in the equation for determining f, S 0 ⁇ P 0 , ⁇ P i are respectively received total power consumption adjustment instructions) value, Replace with the sub-constrained integrated power consumption adjustment instruction value. ) Update control of own power consumption. However, it is assumed that the secondary system sensitivity S i or its approximate value “N / (number of non-zero components of e i )” is stored in advance in the power consumption element subject to the secondary constraint. Control of the power consumption corresponding to the sub-constraint information is performed only by the power consumption element that is the target of each sub-constraint.
- a typical alert element should be transmitted by broadcasting the main restriction mode “0” and the total power consumption adjustment instruction value obtained by multiplying the power ⁇ P 0 to be adjusted by the system sensitivity.
- “I” and the sub-constrained integrated power consumption adjustment value given as the sub-constrained integrated power consumption ⁇ P i to be adjusted are continuously broadcast for i of 1 to m. For example, 0, ⁇ P 0 ⁇ (system sensitivity),..., I, ⁇ P i ,. In this way, broadcast transmission is also performed including sub-constraint conditions.
- the sub-constraint integrated power consumption adjustment instruction value ⁇ P i is multiplied by the sub-system sensitivity, and this is divided by the reduction or return priority of each element to each element. Calculate the imposed power allocation. Unlike S 0 , S i does not have a value close to “1” depending on the sub-constraint mode, and must be stored in advance for each individual.
- control by sub-constraint A specific example of control by sub-constraint will be described by dividing it into ideal optimal control and actual control.
- FIG. 7 is a diagram schematically showing a circuit configuration of the broadcast transmission element.
- the broadcast transmission element is configured as a smart meter connected to a switchboard, and is connected to a power supply port (outlet) or has a built-in battery.
- the broadcast transmission element is a communication system for performing broadcast transmission and receiving priority from the power consumption element, communication system I / F (interface), and power for measuring the total power consumption in the group Meter, detector I / F, total power consumption adjustment instruction value and sub-constrained integrated power consumption adjustment instruction value determination, information representing these, generation of sub-constraint information, estimation of system health, etc. It comprises a decision / implementation circuit that is responsible for information processing in general, and a power supply system for supplying power to these circuits.
- the rated power consumption of each device is stored in, for example, a storage circuit in the communication system I / F or a separate in-module memory (not shown).
- FIG. 8 shows a schematic configuration of an inverter-equipped module for operating an electric device as a power consuming element in the power consumption allocation of the present invention.
- the module is a communication system (such as an antenna for wireless communication, a modem for power line communication, etc.) for receiving the above information and sub-constraint information from the broadcast transmission element and transmitting priority if necessary.
- Communication system I / F communication circuit for general communication processing, including signal encoding, decoding, etc.
- galvanometer for measuring the power consumption of the device (for example, if the priority is a fixed value, the measurement of the power consumption is unnecessary) Yes, galvanometer is not required.)
- Detector I / F Power consumption measurement value is converted into digital signal and communication system I / F It also includes a circuit for transmitting to the network. If power consumption measurement is not required, detector I / F is also unnecessary.
- Judgment / implementation circuit that performs general information processing for updating its own power consumption using the information received from the broadcast transmission element as described above, and receives instructions from the judgment / implementation circuit to the device It comprises a circuit breaker that controls power consumption by intermittently interrupting power supply, a power supply system for supplying power to these, and the like.
- Rated power consumption, priority, subsystem sensitivity etc. For example, it is stored in a storage circuit in the communication system I / F or a separate in-module memory (not shown).
- the electric device can be operated as a client in power consumption allocation.
- the power consuming element is configured as a mobile body, the module and the battery may be built in the electric device.
- a user I / F may be provided to change the priority of power consumption elements.
- FIG. 9 shows a schematic configuration of an inverter control type module that is typically built in an electric device such as an air conditioner for operating the electric device as a power consuming element in the power consumption allocation of the present invention.
- an inverter controller included in a device such as a duty-off pulse accumulator / subtractor and a PWM (Pulse Width Modulation) modulator instead of the circuit breaker.
- a circuit is provided.
- the modulation pulse is inverted and then the logical product with the ON pulse that is the original drive signal of the air conditioner is taken to change the width of the ON pulse, thereby modulating the motor, etc. Any circuit that can adjust the rate may be used.
- Information transmission capability control system and method The series of measures for power consumption control described so far can be applied as they are even if information transmission capability is used as a resource instead of power, and power consumption is occupied as information transmission capability. Is possible.
- a transmission speed that is, a resource that is an information transmission capability
- Each subsystem or measuring device in the domain to which information is to be delivered must use its information transmission capability at a certain ratio, but multiple subsystems or measurement devices (member elements) have partial transmission capability. Requesting occupancy may deviate from the domain information transmission capability as a resource.
- each member element it is conceivable to change the priority dynamically, but even in such a case, it is necessary to perform optimal resource allocation in consideration of the priority of each member element.
- the total information transmission capability is measured in the domain, and the information generated using the system sensitivity of the domain based on the difference from the total rated capability (reference value)
- a software breaker can also be introduced for information transmission capability.
- the system includes a communication server (broadcast transmission element) and one or more client machines (information transmission elements) that are individually given or determined priority.
- the communication server measures the current value of the total communication speed (total information transmission capability) occupied in a group including one or more client machines, for example, by executing a communication speed detection application on the communication server. Measure the difference between the value and the reference value (total value of the reference communication speed defined for each client machine), multiply the difference by the system sensitivity, etc. to determine the total information transmission capability adjustment instruction value, Information to be shared within the group representing this is generated and broadcasted within the group.
- Each client machine receives the broadcast information, and uses the priority given to it or the determined priority and the total information transmission capability adjustment instruction value (the total information transmission described so far). It may be an operation such as multiplying the capability adjustment instruction value by the reciprocal of its own priority, etc.), and the information transmission capability update value to be used to update its own communication speed (information transmission capability) And the communication speed setting is changed by, for example, reducing the communication speed by an amount corresponding to the information transmission capability update value (for example, executing the communication application on each client machine). ) Control the total information transmission capability within the group by controlling its own information transmission capability.
- the present invention can be used in any system that uses electrical equipment or information transmission equipment, such as homes, offices, schools, and commercial facilities.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
じた資源の割当てを、特に通信量を抑えつつ動的に且つ効率よく行うシステム、及び方法
に関する。
と最大電力の契約を結び、また電力事業者も、各契約単位によって発生し得る消費電力の
総計を賄う発電、送電設備を整備しようとしてきた。しかし、例えば夏場においては、常
に電力供給能力は危機的な状況を迎えている。電力事業者は過剰な設備を保有することを
避けるため、その供給能力は需要を僅かに上回る状況で推移する。その結果、需要ピーク
時にはマージンが極めて少なくなる。
も行えば、電力危機は回避できる。将来における電力事業者と契約者との新たな契約関係
は、このようなものになることが考えられる。
、各家庭、オフィス等への電力制約が課されても、電力の「やりくり」を自律分散的に行
うことが求められる。この部分は電力事業者の担当外である。
の発生を避け、ピークの平坦化を行えば、上記需要ピークにかかる状況を劇的に改善する
ことができる。しかるに、現状での各家庭、オフィス等での電化製品等の利用は、平坦化
を考慮して行われていない。一部の住戸を除き、住宅、オフィスビル等での電力制御は、
実現、普及に至っていない。
同発明では、障害検知器によって故障を検知することに対応して、回路の遮断を行うハ
ードウェア対応だが、本発明では、機器群が、サーバーが通信を介して情報収集を行い、
電力制約と必要量を優先度を考慮して協調した動的な電力の管理を行う点で全く異なる。
同発明では、機器群からの情報収集・集計を行わない方式が前提だが、本発明では、機
器群で、電力制約と必要量を、優先度を考慮して協調した動的な電力の管理を行う点で全
く異なる。
同発明は、発電装置を扱っているが、本発明は、逆に、負の電力供給を行うものである
。
する車両充電システム」
同発明では、充電ステーション群での電力管理を行うものではなく、管理ステーション
の存在とスマートグリッドの存在を想定している。本発明は、管理ステーションやスマー
トグリッドの存在に関わらず、電力制約と必要量、優先度を考慮して協調した動的な電力
の管理を行う点で全く異なる。
」
同発明は、電力線通信での接続確立方法に関するものである。本発明は、通信方式を特
定しておらず、通信の確立は解決すべきと掲げてない。また、本発明では、電力線通信を
通信手段の1つとして掲げているが、そこでの接続確立を解決すべき課題として掲げてい
るわけではない。
装置」
同発明では、トータル負荷電流の超過を検出し、また、設定された順序での負荷の切断
を想定している。本発明では、負荷の超過は機器群での情報収集で行い、特定の検出手段
を求めていない。また、負荷の切断順序も予め設定するのではなく、機器群での動的な判
断によって定めることを特徴としている。
同発明では、障害検出とそれにもとづく制御は、同一の個体内で行われる。本発明は、
機器群で、電力制約と必要量、優先度を考慮して協調した動的な電力の管理を行う点で全
く異なる。
同発明では、故障検出と制御が同一個体内で行われているが、本発明では、機器群で、
電力制約と必要量、優先度を考慮して協調した動的な電力の管理を行う点で全く異なる。
ステム及び分電方法」
同発明では、停電検知とそれに続く予備電源への接続替え、および停電復旧後の逆操作
を同一個体内で行っている。機器群で、電力制約と必要量、優先度を考慮して協調した動
的な電力の管理を行う点で全く異なる。
び分散した目標ユーザの遠隔制御のためのシステム」
同発明では、中央サーバー、コンセントレータ、メーターという通信構造を介した集中
管理を前提としているが、本発明では、機器群で、電力制約と必要量、優先度を考慮して
協調した動的な電力の管理を、分散化された局所的なグループ内で独立的に行う点を構成
の原点としている点で全く異なる。
び分散した目標ユーザの遠隔制御のためのシステム」
同発明では、中央サーバー、コンセントレータ、メーターという通信構造を介した集中
管理を前提としているが、本発明では、機器群で、電力制約と必要量、優先度を考慮して
協調した動的な電力の管理を、分散化された局所的なグループ内で独立的に行う点を構成
の原点としている点で全く異なる。
同発明では、通信手段と遮断手段が記述されているのみである。本発明では、機器群で
、電力制約と必要量、優先度を考慮して協調した動的な電力の管理を行う点で全く異なる
。
同発明でいう、電源遮断装置は、周囲にツリーないしスター系をなす集中管理構成する
ことを前提としている。本発明では、機器群で、電力制約と必要量、優先度を考慮して協
調した動的な電力の管理を行う点で全く異なる。
同発明でいう、電源遮断装置は、周囲にツリーないしスター系をなす集中管理構成する
ことを前提としている。本発明では、機器群で、電力制約と必要量、優先度を考慮して協
調した動的な電力の管理を行う点で全く異なる。
テム」
同発明でいう、電源遮断装置は、周囲にツリーないしスター系をなす集中管理構成する
ことを前提としている。本発明では、機器群で、電力制約と必要量、優先度を考慮して協
調した動的な電力の管理を行う点で全く異なる。
同発明では、中央監視制御システムの存在が前提となっている。本発明では、機器群で
、電力制約と必要量、優先度を考慮して協調した動的な電力の管理を行う点で全く異なる
。
」
同発明では、階層を構成するものの、情報を集約する集中監視制御システムなっており
、本発明の一実施態様である、グループ内での情報収集と制御を他のグループ、階層と独
立分散的に行うという点が存在せず、全く異なるものである。
同発明では、階層を構成するものの、本発明の一実施態様である、グループ内での情報
収集と制御を他のグループ、階層と独立分散的に行うという点が存在せず、全く異なるも
のである。
同発明には、名称として、「階層」、「分散」のキーワードが現れているが、下記明細
書から引用して述べるように、内容は異質で、本発明とは全く異なる。
「[0020]また、各コントローラは自律分散システムを構成しており、サブシステム
としての一つのコントローラが不稼働になった場合にも他のコントローラが自己の管轄下
の機器を制御するに当たって何ら支障はなく(これを自律可制御性という)、かつ、各コ
ントローラ間で互いの目的を協調することができる(これを自律可協調性という)もので
ある。このため、各コントローラの間にはマスタ/スレーブの区別や重要性の差異はなく
、基本的に独自の資源を持って管理、制御を実行可能である。」
同発明でいう「自立分散」制御とは、同明細書の図2にあるように、照明とエアコンの
ような種別コントローラー間の独立性であって、コントローラー配下のエアコン間、照明
間の電力配置が自律的に行われることを指しているわけではない。本発明の一実施形態で
は、それら配下のメンバー間の優先度を考慮した、動的な電力配置を他のグループや階層
とは独立に行うことを第一の特徴としており、名称こそ「自律分散」と類似しているが、
方法は全く異なるものである。また、同発明でいう、「階層」とは、時間帯、連携省エネ
、ピークという運用モード上の階層を指しているが、本発明の一実施形態でいう階層とは
、同発明にあてはめた場合は、店舗をメンバーとするグループから構成される階層、ある
いは、地域店舗を代表するサーバーをメンバーとするグループから構成される階層などで
あって、名称こそ「階層」ではあるが、定義が根本的に異なる。本発明の一実施形態では
、それらのどの階層上でも、グループ間での優先度を考慮した動的な電力配置を他のグル
ープや階層とは独立に行うことをやはり第一の特徴としており、方法は全く異なるもので
ある。
同発明でいう階層、分散監視制御とは、実行部、情報交換部、インターフェース部とい
う分散化を基にしたものである。本発明の一実施形態のように、グループを構成員とする
各階層、あるいは機器を構成員とする各グループ内において、与えられた電力制約の下で
、メンバー間の優先度にしたがって、動的に電力配置を決定する方法を提供するものとは
、根本的に異なる。
置」
同発明でいう監視制御は、構成員間で、自律的な制御を実施するものではない。本発明
の一実施形態のように、グループを構成員とする各階層、あるいは機器を構成員とする各
グループ内において、与えられた電力制約の下で、メンバー間の優先度にしたがって、動
的に電力配置を決定する方法を提供するものとは、根本的に異なる。
同発明では、非常灯の点灯手段を与えているに過ぎない。
同発明での分散とは、サーバーを特定しないことを指しているが、本発明はグローバル
な一括制御ではなく、局所的且つ臨機応変な対応とれるよう、細分化した単位で制御を行
うことを教示している。本発明では、サーバーは特定されていても、固定されていてもよ
い。
同発明は、方策・意思決定処理を行わせる特定の方式を提案するものだが、本発明では
、何らかの方法でサーバーを定めればよいのであり、動的に同処理を割り当てる方式を限
定していない。カードゲーム方式である必要はなく、また、サーバー機能の「交代(Shift
)」をすることを格別に要求していない。サーバー機能は、何となれば、通し番号順に交
代することも、固定でもありうる。
同発明では、資源の投入によって、性能の維持・達成を目的にしているが、本発明の一
態様においては、資源たる電力を投入するではなく、電力を永久的ないし間欠的に遮断す
る。本特許では、総資源たる供給電力を最大限投入する制御ではなく、消費電力が許容値
ないし目標値を超えた場合に優先度に基づき、所要電力量と電力量制約を勘案し、電力の
永久的ないし間欠的な遮断を行う。同特許では、資源たる投入されている電力は制御側で
定めるため、予め既知であるのに対し、本発明では、計測して取得するべき情報である。
すなわち、同発明は、「システム全体の性能を達成・維持する制御機能」発揮を目的とし
ており、「総資源(資源の総和)の制約を満たしつつ、全ての要素の個別の性能を制御す
る方法」(同公報中、請求項1)であるが、本発明の一態様においては、資源の総和の制約
は存在するものの、性能の達成・維持をむしろ積極的に犠牲にすることで、システムの損
壊を防ぐことを目的としている。
(1)同文献では、資源たる電力の制約は考慮されておらず、またその制約を充足する
解も保証されない。フィードフォワード的に予め設定された一定の動作を行うのみである
。なお、同文献の特許請求の範囲で「設定」とは予め規定することを指す。本発明では、
資源の制約を陽に扱い、それを充足させる動作を保証している点で、同文献に記載の発明
とは全く異なる。
(2)同文献において提案される動作は、いわゆる一斉送信部分の処理による号令の動
作であるが、本発明では、後述する「同報」送信処理と、各要素での並行処理の連携で、
制約条件付き最適化の解を求める方法が提案されており、同文献の発明とは全く異なる。
(3)本発明においては、各要素での動的な優先度変化にかかわらず、制約条件つき最
適化の解を得られることが特徴であり、同文献の発明とは全く異なる。
特開2010-19530号公報「空調システム及び通信トラフィック調整方法」
特開2009-272966号公報「機器設備管理システム」
特開2007-240084号公報「空気調和機および空気調和機におけるアドレス設
定方法」
特開2007-228234号公報「伝送制御装置、機器管理システム及び伝送制御方
法」
特開2004-328184号公報「管理制御システム、情報伝送方法、通信方法、ネ
ットワークノード、送受信装置、情報共有装置、空調機器及び集中制御装置」
これらの文献は通信アドレス関係部分に言及するのみであり、制御方策を扱ったもので
はない。
同発明では、総資源に制約がある場合の、優先度つきの最適化と、それを可能にする、
電力制御システムを提案しているが、それらは、サーバーの各クライアントからの情報収
集と、割当て量のサーバーによる決定、サーバーからの各クライアントへの割当て量の通
知という段階をとるものであり、本発明で解決すべき課題をそのまま掲げているに過ぎな
い。本発明は、アラート要素と各メンバー要素とで分担することにより処理の高速化を図
るものである。なお、本発明者による発明が記載された上記出願は本願出願時点で未公開
である。
of」
同文献の開示は、電力の割当て法に関するものではない。
acked apparatus」
同文献は電源の機能を扱っているが、電力のメンバーへの動的割当てを扱ったものでは
ない。
in a chip through a power-performance monitor and control unit」
米国特許第7,421,601号明細書「Method and system for controlling power
in a chip through a power-performance monitor and control unit」
同文献は、マイクロプロセッサー電源に関するものであり、動的、自律的に電力割当て
を行う機能に関するものではない。
interface with power management features」
同文献は、電力モードの遷移を開示しており、メンバー間で動的に割当て決定する機能
を扱ったものではない。
for managing electrical power distribution and consumption」
同文献の開示内容は、インテリジェントデバイスとサーバーがネットワークで結ばれる
アーキテクチャとしていることまでである。実際にどのように電力管理を行うかは開示さ
れていない。本発明は、電力割当て方策を具体的に提供している。
er supply of electrical function devices of a vehicle」
同文献は、回路をモジュラーな形状とすることを要求しているに過ぎない。
rocessing unit」
同文献の開示内容は、誘導で電力を供給するハードウェアに関するもので、本発明とは
全く異なる。
tch」
同文献の開示内容は、dual substrate のMEMSで製作されるスウィッチのハードウェア
に関するもので、本発明とは全く異なる。
lines」
同文献の開示内容は、伝送メディアに関するものであるが、本発明は特定メディアに依
らない。
ystem」
同文献の開示内容は特定機器に関するものであり、本発明とは全く異なる。
notube structure」
同文献の開示内容はナノチューブを用いるデバイスに関するもので、本発明とは全く異
なる。
r using stirling engine principles」
同文献の開示内容はスターリングエンジンというハードウェアに関するもので、本発明
とは全く異なる。
layer under the phase shifting line and power amplifier using such a phase shif
ter」
同文献の開示内容は、通信機器における位相調整器というハードウェアに関するもので
あり、本発明とは全く異なる。
e spaced for improved thermal distribution and having reduced power dissipation
」
同文献の開示内容は、半導体配置と熱拡散に関するものであり、本発明とは全く異なる
。
system」
同文献の開示内容は、燃料電池というハードウェアに関するものであり、本発明とは全
く異なる。
wer station」
同文献の開示内容は、太陽光発電の装置に関するものであり、本発明とは全く異なる。
Line Communication Chip" インターネット<URL:http://technews.tmcnet.com/ivr/new
s/2005/sep/1186941.htm>又は<URL:http://www.businesswire.com/news/home/2005092700
5472/en/Hitachi-Offers-Connected-Air-Conditioners-Yitrans-IT800#.UtzSc3xKOSM>
上記Webサイトには、家電に通信装置をつけた例が開示されているが、本発明では、
通信、集中制御することもなく、独立分散制御を行うことを特徴としており、両者の技術
内容は全く異なる。
011/report/s_home/index.jsp>
上記Webサイトには、予め決めていた優先度で、機器を切断する例が開示されている
。本発明と比較すると、少なくとも以下の点で異なる。
(1)上記Webサイトに開示の例は、コンセント単位で制御を行うのに対し、本発明は
、機器単位であって、使用場所を限定しないこと。
(2)上記Webサイトの例は、永久断を行うよう構成されているが、本発明は、永久断
だけではなく、電力の削減を連続的にできる点。
(3)上記Webサイトの例は、静的な優先度設定をコンセント単位で行うが、本発明は
、動的な優先度設定を機器単位で行いうる点。
(4)本発明は、グループ内で動的に消費電力割当てを決め、グループ間では独立な制御
を行い、階層を構成して、上位階層でも、相似に動的に消費電力割当てを決める構造を持
っていること。
要素や、単独の制御に参加する電力消費要素を含む集合体。なお、電力を消費する個体、
ないしはそれら消費する個体に供給する電力を、永久的ないしは瞬時的に繰り返し開閉す
る個体を、電力消費要素と呼ぶ。)内での総消費電力、すなわち総資源量が制約を受ける
場合、現時点でのドメイン内での電力消費状況に最も近い電力割当て方策を求める問題は
、制約条件付きの最適化問題となり、その解は、過去の文献や特願2014-12924
でも明らかにされているように、下記のように得られる。
参加する)で構成する集合体。同一情報を共有して電力制御を行う最小集合体として
定義される。)に含まれる各電力消費要素に割り当てられるべき消費電力値をf1,f2,
…,fnとし、これらを縦に並べたベクトルをfとする。電力消費要素を含むグループに
対する総電力規制値をPtとすると、グループ内の消費電力合計値がPtに一致するという
制約条件は以下の式(1)で表わされる。
ただしeTはn次の単位行ベクトルである(Tは転置記号)。
し、これらを縦に並べたベクトルをf*とする。以下の評価関数
が、上記式(1)の束縛条件の下で極値を取るときのfi(i=1,2,…n)として、
消費電力の割り当て値を求める。なお、上記式(2)中のQは、対角要素Qiiがi番目の
電力消費要素の優先度に等しい正定対称行列である(一般には、対角でなくても正定対称
行列であればよいが、以下で優先度を個々に扱う場合は対角として議論できる。説明を簡
単にする目的で、以下ではQをn×n対角行列として扱う。)。
とも近い電力として求められるべきであり、したがって、解は、上記式(5)のとおり現
時点での消費電力の割当て状況に依存する。
価関数は、ドメイン内のグループに含まれる各電力消費要素に割り当てられるべき消費電
力値をf1,opt,f2,opt,…,fn,optとし、これらを縦に並べたベクトルをfoptとすれ
ば、下記式(6)のように記述される。
(8)を変形することより、
と書かれることから(上記式(9)中、「1」は単位行列を表わし、Q-1はQの逆行列を
表わす。)、再割当てされる電力は、現時点での各要素での消費電力状況に依存すること
になる。
解に収束する。したがって、foptが必要であれば、一旦、全ての電力消費
要素をオフとする段階を経て上記制御を行えばよい。同一情報を共有することで制御は達
成されることになる。なお、初期の電力消費状態が、例えば一様に同一の電力を消費して
いて、総資源に対して過不足のない状態であるならば、本分散制御ではその変更を要求し
ない。
それまでのオン、オフ状態をリセットして別の状態に移行させることは、無用の起動や停
止を要求することになるからである。現実に電力が消費されている状態で、過不足、ある
いは少なくとも不足なく各要素が運用されているならば、その状態が仮にfopt解と異な
るとしても、それは変更をあえて行う必要のない状態であるからである。
いる電力と、各要素がもつ優先度の情報を集計して(図1a,図1b)、再割当ての方策
を決定し(図1c)、それを各要素に通知しなくてはならない(図1d。なお、図1eに
示すとおり、各要素は割り当てられた電力に従い自己の消費電力を制御する。)。優先度
は、各時点で電力制御できる余裕や、使用位置での人の存在数や照度あるいは温度など、
各要素の置かれる状況で動的変動しうるものであり、グループ内で予め固定されていると
は限らず、各要素にて把握され定義される。この操作を、ドメイン内に設けられたサーバ
ー要素にて実施する場合には、まずサーバーがドメイン内のグループに含まれる各機器た
る要素個別に消費電力と優先度を照会する操作を行い、続いて、最適化問題を求解し、し
かるのちに、各機器たる要素ごとに新たに決定、更新された割当て電力を通知ないし指示
することが必要となる。この操作は、特にドメイン内で電力制御に関わるグループを構成
する要素数の増加とともに、通信量を飛躍的に高めることとなり、高速で電力制御を行う
、すなわち実時間でフィードバックさせて資源制約付きの最適化を行うことを困難にする
。ドメイン内に含まれるグループが小規模であり、2~3要素のみで構成されている場合
には、通信量はそれほど多くはないが、数百要素で構成されるグループで、高速の制御を
行うには、サーバーとクライアントが情報を双方向に交換する方式では、対応が難しい。
ドメイン全体の制御応答に速い速度が求められない場合でも、ドメインを構成する要素数
が非常に多い場合には、サーバー、クライアント間通信のトラフィック量が膨大となって
、制御が困難になり、同様に困難な状況に追い込まれる。ドメイン内で電力制御に関わる
グループを構成する要素数が、新たに出現し、あるいは外れていく場合には、グループ内
の要素数や通信に関わるパラメータ設定も必要となり、要素の存在数や通信環境情報を調
査することも必要となり、時々刻々に変化するグループの構成状況に対応させ得ることも
難しく、これらが、実時間でフィードバック制御を行うことを一層困難にさせている。
通信を必要とせず、したがって電力制御の対象となる電力消費要素数が増加しても通信量
が急激に増加することがなく、また1対1通信のための設定作業等も不要であるため拡張
性に優れた電力制御システム、及び方法を提供することを目的とする。さらに本発明は、
同様の原理により実施できる情報伝達能力制御システム、及び方法を提供することを目的
とする。
時間にて、前記ドメイン内の全個体に対して、一方向、ないし片方向の情報の送信のみに
て、共有すべき情報を送達せしめる手段を、「同報」ないし「同報送信」と定義する。ネ
ットワークを構成する方式によっては、多ステップを要して情報が送達される場合もある
が、本発明で述べる「同報」ないし「同報送信」とは、厳密な同時性を述べるものではな
く、それらの場合を含めて「同報」ないし「同報送信」と以下で参照する。
上記目的を達成するべく、本発明は、同報送信要素と、個別に優先度が与えられた、な
いし決定された、1以上の電力消費要素とを備え、同報送信要素が、1以上の電力消費要
素を含むグループ内で消費される総消費電力の現在値と、総消費電力の基準値との差を測
定し、差の関数である総消費電力調整指示値を決定し、総消費電力調整指示値を表わすグ
ループ内で共有すべき情報を生成し、情報をグループ内に同報送信し、1以上の電力消費
要素が同報送信された情報を受信し、1以上の電力消費要素の各々が、自己に与えられた、
ないし決定された優先度と総消費電力調整指示値とを用いた演算により、自己の消費電力
の更新に用いるべき消費電力更新値を、1以上の電力消費要素のうち自己以外の電力消費
要素及び同報送信要素から独立して並列に決定し、消費電力更新値に基づいて自己の消費
電力を制御することにより、グループ内の総消費電力を制御するよう構成された、電力制
御システムを提供する。
てよい。
が動的に変更されるよう更に構成することができる。
場合とで異なり、現在値が基準値よりも大きい場合のシステム感度を、現在値が基準値よ
りも小さい場合のシステム感度よりも高くすることにより、総消費電力の制御において総
消費電力の増加よりも削減の応答性が高くなるよう、且つ安定性を改善するよう上記電力
制御システムを更に構成することができる。
の電力消費要素の各々において行われる、消費電力更新値に基づいた自己の消費電力の制
御が、上限値を上回らず、且つ下限値を下回らない消費電力範囲内で行われるよう、上記
電力制御システムを更に構成することができる。
推移を同報送信要素又は総消費電力監視要素が監視し、
総消費電力の現在値と基準値との差の、制御がk回繰り返された時点の値をxkとし(
kは0以上の整数)、制御がk+1回繰り返された時点の値をxk+1としたときに
、等価推移比率Ck,eqの推定値を用いて電力制御システムの健全性を評価する
よう、上記電力制御システムを更に構成することができる。
約積算消費電力調整指示値を表わす少なくとも1つの副制約情報をグループ内に同報送信
し、1以上の電力消費要素が、同報送信された副制約情報を更に受信し、1以上の電力消
費要素のうち、副制約情報に基づく制御の対象となる電力消費要素が更に、自己に与えら
れた優先度と副制約積算消費電力調整指示値とを用いた演算により副制約消費電力更新値
を決定し、副制約消費電力更新値に基づいて自己の消費電力を更に制御するよう、上記電
力制御システムを構成することができる。
の双方向通信が可能であるよう、上記電力制御システムを更に構成することができる。
個別に下位階層優先度が与えられた、ないし決定された1以上の電力消費要素とを備え、
同報送信要素は、上位階層同報送信要素から同報送信される、上位階層総消費電力調整指
示値を表わす上位階層情報を受信するよう構成されるとともに、1以上の電力消費要素を
含む下位階層グループ内で消費される下位階層総消費電力を測定し、下位階層総消費電力
と、上位階層優先度と、上位階層総消費電力調整指示値とを用いた演算により、下位階層
総消費電力の更新に用いるべき、下位階層総消費電力調整指示値を決定し、下位階層総消
費電力調整指示値を表わす下位階層グループ内で共有すべき下位階層情報を生成し、下位
階層情報を下位階層グループ内に同報送信するよう構成され、1以上の電力消費要素が、
同報送信要素から同報送信された下位階層情報を受信するよう構成され、1以上の電力消
費要素の各々が、自己に与えられた、ないし決定された下位階層優先度と下位階層総消費
電力調整指示値とを用いた演算により、自己の消費電力の更新に用いるべき消費電力更新
値を、1以上の電力消費要素のうち自己以外の電力消費要素及び同報送信要素から独立し
て並列に算定し、消費電力更新値に基づいて自己の消費電力を制御することにより、下位
階層グループ内の総消費電力を制御するよう構成された電力制御システムを提供する。
できる。
である場合には、増加を指示する値である場合より下位階層システム感度を高くすること
により、総消費電力の制御において総消費電力の増加よりも削減の応答性が高くなるよう
、且つ安定性を改善するよう上記電力制御システムを更に構成することができる。
要素において行われる下位階層総消費電力調整指示値の決定は、更新後の下位階層グルー
プ内の総消費電力が上限値を上回らず、且つ下限値を下回らないと同報送信要素が判断し
た範囲で行われるよう、上記電力制御システムを更に構成することができる。
現在値の推移を同報送信要素又は総消費電力監視要素が監視し、総消費電力の現在値と基
準値との差の、制御がk回繰り返された時点の値をxkとし(kは0以上の整数)、制御
がk+1回繰り返された時点の値をxk+1としたときに
、等価推移比率Ck,eqの推定値を用いて電力制御システムの健全性を評価するよう、上記
電力制御システムを更に構成することができる。
約積算消費電力調整指示値を表わす少なくとも1つの副制約情報を下位階層グループ内に
同報送信し、1以上の電力消費要素が、同報送信された副制約情報を更に受信し、1以上
の電力消費要素のうち、副制約情報に基づく制御の対象となる電力消費要素が更に、自己
に与えられた、ないし決定された下位階層優先度と副制約積算消費電力調整指示値とを用
いた演算により副制約消費電力更新値を決定し、副制約消費電力更新値に基づいて自己の
消費電力を更に制御するよう、上記電力制御システムを構成することができる。
の双方向通信が可能であるよう、上記電力制御システムを更に構成することができる。
費機器、又は、特定の住戸、オフィス、建物、地域の集合体に属する複数の電力消費機器
の集合体であってよい。言い換えれば、1つの電力消費機器を電力消費要素と定義しても
よいし、複数の電力消費機器を1つの電力消費要素とみなしてもよい。
記電力消費機器とは携帯情報端末等の移動体であってよい。
の情報伝達要素とを備え、同報送信要素が、1以上の情報伝達要素を含むグループ内で占
有される総情報伝達能力の現在値と、総情報伝達能力の基準値との差を測定し、差の関数
である総情報伝達能力調整指示値を決定し、総情報伝達能力調整指示値を表わすグループ
内で共有すべき情報を生成し、情報をグループ内に同報送信し、1以上の情報伝達要素が
同報送信された情報を受信し、1以上の情報伝達要素の各々が、自己に与えられた、ない
し決定された優先度と総情報伝達能力調整指示値とを用いた演算により、自己の情報伝達
能力の更新に用いるべき情報伝達能力更新値を、1以上の情報伝達要素のうち自己以外の
情報伝達要素及び同報送信要素から独立して並列に算定し、情報伝達能力更新値に基づい
て自己の情報伝達能力を制御することにより、グループ内の総情報伝達能力を制御するよ
う構成された、情報伝達能力制御システムを提供する。
情報伝達要素はクライアントマシンであり、情報伝達能力は通信速度であってよい。
上の電力消費要素を含むグループ内で消費される総消費電力の現在値と、総消費電力の基
準値との差を測定する段階と、同報送信要素が、差の関数である総消費電力調整指示値を
決定し、総消費電力調整指示値を表わすグループ内で共有すべき情報を生成する段階と、
同報送信要素が、情報をグループ内に同報送信する段階と、1以上の電力消費要素が、同
報送信された情報を受信する段階と、1以上の電力消費要素の各々が、自己に与えられた、
ないし決定された優先度と総消費電力調整指示値とを用いた演算により、自己の消費電力
の更新に用いるべき消費電力更新値を、1以上の電力消費要素のうち自己以外の電力消費
要素及び同報送信要素から独立して並列に決定する段階と、1以上の電力消費要素の各々
が、消費電力更新値に基づいて自己の消費電力を制御することにより、グループ内の総消
費電力を制御する段階とを備えた電力制御方法を提供する。
して総消費電力調整指示値を決定することにより行われるものであってよい。
的に変更する段階を更に備えることができる。
場合とで異なり、現在値が基準値よりも大きい場合のシステム感度を、現在値が基準値よ
りも小さい場合のシステム感度よりも高くすることにより、総消費電力の制御において総
消費電力の増加よりも削減の応答性が高くなるよう、且つ安定性を改善するよう上記電力
制御方法を更に構成することができる。
の電力消費要素の各々において行われる、消費電力更新値に基づいて自己の消費電力を制
御する段階が、上限値を上回らず、且つ下限値を下回らない消費電力範囲内で行われるよ
う、上記電力制御方法を更に構成することができる。
総消費電力の現在値の推移を同報送信要素又は総消費電力監視要素が監視する段階と、総
消費電力の現在値と基準値との差の、制御がk回繰り返された時点の値をxkとし(kは
0以上の整数)、制御がk+1回繰り返された時点の値をxk+1としたときに
、等価推移比率Ck,eqの推定値を用いて電力制御方法の健全性を評価する段階とを更に備
えることができる。
指示値を算出する段階と、副制約積算消費電力調整指示値を表わす少なくとも1つの副制
約情報をグループ内に同報送信する段階と、1以上の電力消費要素が、同報送信された副
制約情報を更に受信する段階と、1以上の電力消費要素のうち、副制約情報に基づく制御
の対象となる電力消費要素が更に、自己に与えられた、ないし決定された優先度と副制約
積算消費電力調整指示値とを用いた演算により副制約消費電力更新値を決定し、副制約消
費電力更新値に基づいて自己の消費電力を更に制御する段階とを更に備えることができる。
少なくとも1つとの間で双方向通信する段階を更に備えることができる。
階層同報送信要素から同報送信される、上位階層総消費電力調整指示値を表わす上位階層
情報を受信する段階と、同報送信要素が、個別に下位階層優先度が与えられた、ないし決
定された1以上の電力消費要素を含む下位階層グループ内で消費される下位階層総消費電
力を測定する段階と、同報送信要素が、下位階層総消費電力と、上位階層優先度と、上位
階層総消費電力調整指示値とを用いた演算により、下位階層総消費電力の更新に用いるべ
き、下位階層総消費電力調整指示値を決定し、下位階層総消費電力調整指示値を表わす下
位階層グループ内で共有すべき下位階層情報を生成する段階と、同報送信要素が、下位階
層情報を下位階層グループ内に同報送信する段階と、1以上の電力消費要素が、同報送信
要素から同報送信された下位階層情報を受信する段階と、1以上の電力消費要素の各々が、
自己に与えられた、ないし決定された下位階層優先度と下位階層総消費電力調整指示値と
を用いた演算により、自己の消費電力の更新に用いるべき消費電力更新値を、1以上の電
力消費要素のうち自己以外の電力消費要素及び同報送信要素から独立して並列に算定する
段階と、1以上の電力消費要素の各々が、消費電力更新値に基づいて自己の消費電力を制
御することにより、下位階層グループ内の総消費電力を制御する段階とを備えた電力制御
方法を提供する。
上位階層優先度と、上位階層総消費電力調整指示値とに加えて下位階層システム感度も用
いた演算により下位階層総消費電力調整指示値を決定することにより行われるものであっ
てよい。
である場合には、増加を指示する値である場合より下位階層システム感度を高くすること
により、総消費電力の制御において総消費電力の増加よりも削減の応答性が高くなるよう
、且つ安定性を改善するよう上記電力制御方法を更に構成することができる。
要素において行われる下位階層総消費電力調整指示値の決定は、更新後の下位階層グルー
プ内の総消費電力が上限値を上回らず、且つ下限値を下回らないと同報送信要素が判断し
た範囲で行われるよう、上記電力制御方法を更に構成することができる。
整される総消費電力の現在値の推移を同報送信要素又は総消費電力監視要素が監視する段
階と、総消費電力の現在値と基準値との差の、制御がk回繰り返された時点の値をxkと
し(kは0以上の整数)、制御がk+1回繰り返された時点の値をxk+1としたときに
、等価推移比率Ck,eqの推定値を用いて電力制御方法の健全性を評価する段階とを更に備
えることができる。
指示値を算出する段階と、副制約積算消費電力調整指示値を表わす少なくとも1つの副制
約情報を下位階層グループ内に同報送信する段階と、1以上の電力消費要素が、同報送信
された副制約情報を更に受信する段階と、1以上の電力消費要素のうち、副制約情報に基
づく制御の対象となる電力消費要素が更に、自己に与えられた、ないし決定された下位階
層優先度と副制約積算消費電力調整指示値とを用いた演算により副制約消費電力更新値を
決定し、副制約消費電力更新値に基づいて自己の消費電力を更に制御する段階とを更に備
えることができる。
少なくとも1つとの間で双方向通信する段階を更に備えることができる。
地域に属する1以上の電力消費機器、又は、特定の住戸、オフィス、建物、地域の集合体
に属する複数の電力消費機器の集合体であってよい。
ってよい。
の情報伝達要素を含むグループ内で占有される総情報伝達能力の現在値と、総情報伝達能
力の基準値との差を測定する段階と、同報送信要素が、差の関数である総情報伝達能力調
整指示値を決定し、総情報伝達能力調整指示値を表わすグループ内で共有すべき情報を生
成する段階と、同報送信要素が、情報をグループ内に同報送信する段階と、1以上の情報
伝達要素が、同報送信された情報を受信する段階と、1以上の情報伝達要素の各々が、自
己に与えられた、ないし決定された優先度と総情報伝達能力調整指示値とを用いた演算に
より、自己の情報伝達能力の更新に用いるべき情報伝達能力更新値を、1以上の情報伝達
要素のうち自己以外の情報伝達要素及び同報送信要素から独立して並列に算定する段階と、
1以上の情報伝達要素の各々が、情報伝達能力更新値に基づいて自己の情報伝達能力を制
御することにより、グループ内の総情報伝達能力を制御する段階とを備えた情報伝達能力
制御方法を提供する。
伝達要素はクライアントマシンであり、情報伝達能力は通信速度であってよい。
る機能を備え、個別に優先度が与えられた、ないし決定された1以上の電力消費要素とを
備え、同報送信要素が、1以上の電力消費要素を含むグループ内で消費される総消費電力
あるいは電力供給状態を示す多変量としての現在値と、総消費電力あるいは電力供給状態
を示す多変量としての基準値との差を測定し、差の関数である一般には多変量の電力調整
指示値を決定し、あるいは電力調整指示値を他の要素から受領し、電力調整指示値を表わ
すグループ内で共有すべき一般には多変量の情報を生成し、情報をグループ内に同報送信
し、1以上の電力消費要素が同報送信された情報を受信し、1以上の電力消費要素の各々
が、自己に与えられた、ないし決定された優先度と電力調整指示値とを用いた演算により、
自己の消費電力ないしは開閉電力の更新に用いるべき電力更新値を、1以上の電力消費要
素のうち自己以外の電力消費要素及び同報送信要素から独立して並列に算定し、電力更新
値に基づいて自己の消費電力ないしは開閉電力を制御することにより、グループ内の総消
費電力あるいは電力供給状態を制御するよう構成された、電力制御システムを提供する。
を直接に消費する、ないしは電力の供給を開閉する機能を備え、個別に下位階層優先度が
与えられた、ないし決定された1以上の電力消費要素とを備え、同報送信要素は、上位階
層同報送信要素から同報送信される、上位階層における、総消費電力ないしは電力供給状
態から演算される、一般には多変量の電力調整指示値を表わす上位階層情報を受信するよ
う構成されるとともに、1以上の電力消費要素を含む下位階層グループ内で消費される下
位階層総消費電力ないしは電力供給状態を測定し、下位階層総消費電力ないしは電力供給
状態と、上位階層優先度と、上位階層電力調整指示値とを用いた演算により、下位階層総
消費電力ないしは電力供給状態の更新に用いるべき、一般には多変量の下位階層電力調整
指示値を決定し、あるいは下位階層電力調整指示値を他の要素から受領し、下位階層電力
調整指示値を表わす下位階層グループ内で共有すべき下位階層情報を生成し、下位階層情
報を下位階層グループ内に同報送信するよう構成され、1以上の電力消費要素が、同報送
信要素から同報送信された下位階層情報を受信するよう構成され、1以上の電力消費要素
の各々が、自己に与えられた、ないし決定された下位階層優先度と下位階層電力調整指示
値とを用いた演算により、自己の消費電力ないしは電力供給状態の更新に用いるべき電力
更新値を、1以上の電力消費要素のうち自己以外の電力消費要素及び同報送信要素から独
立して並列に算定し、電力更新値に基づいて自己の消費電力ないし開閉電力を制御するこ
とにより、下位階層グループ内の総消費電力ないしは電力供給状態を制御するよう構成さ
れた電力制御システムを提供する。
る機能を備え、個別に優先度が与えられた、ないし決定された1以上の電力消費要素を含
むグループ内で消費される総消費電力あるいは電力供給状態を示す多変量としての現在値
と、総消費電力あるいは電力供給状態を示す多変量としての基準値との差を測定し、差の
関数である一般には多変量の電力調整指示値を決定し、あるいは電力調整指示値を他の要
素から受領し、電力調整指示値を表わすグループ内で共有すべき一般には多変量の情報を
生成し、情報をグループ内に同報送信し、1以上の電力消費要素が同報送信された情報を
受信し、1以上の電力消費要素の各々が、自己に与えられた、ないし決定された優先度と
電力調整指示値とを用いた演算により、自己の消費電力ないしは開閉電力の更新に用いる
べき電力更新値を、1以上の電力消費要素のうち自己以外の電力消費要素及び同報送信要
素から独立して並列に算定し、電力更新値に基づいて自己の消費電力ないしは開閉電力を
制御することにより、グループ内の総消費電力あるいは電力供給状態を制御するよう構成
された、電力制御方法を提供する。
階層同報送信要素から同報送信される、上位階層における、総消費電力ないしは電力供給
状態から演算される、一般には多変量の電力調整指示値を表わす上位階層情報を受信する
とともに、電力を直接に消費する、ないしは電力の供給を開閉する機能を備え、個別に下
位階層優先度が与えられた、ないし決定された1以上の電力消費要素を含む下位階層グル
ープ内で消費される下位階層総消費電力ないしは電力供給状態を測定し、下位階層総消費
電力ないしは電力供給状態と、上位階層優先度と、上位階層電力調整指示値とを用いた演
算により、下位階層総消費電力ないしは電力供給状態の更新に用いるべき、一般には多変
量の下位階層電力調整指示値を決定し、あるいは下位階層電力調整指示値を他の要素から
受領し、下位階層電力調整指示値を表わす下位階層グループ内で共有すべき下位階層情報
を生成し、下位階層情報を下位階層グループ内に同報送信し、1以上の電力消費要素が、
同報送信要素から同報送信された下位階層情報を受信し、1以上の電力消費要素の各々が、
自己に与えられた、ないし決定された下位階層優先度と下位階層電力調整指示値とを用い
た演算により、自己の消費電力ないしは電力供給状態の更新に用いるべき電力更新値を、
1以上の電力消費要素のうち自己以外の電力消費要素及び同報送信要素から独立して並列
に算定し、電力更新値に基づいて自己の消費電力ないし開閉電力を制御することにより、
下位階層グループ内の総消費電力ないしは電力供給状態を制御するよう構成された、電力
制御方法を提供する。
アントとの間での1対1双方向通信が必要になるという問題の解決を困難にしている最大
の障害は、グループ内において制御対象のクライアント以外の他のクライアントに関する
情報(優先度や現時点の消費電力等)をも総合しなくては、資源制約下の最適化問題を求
解できない点にある。グループ内のクライアントから情報を収集して最適化問題を求解す
るべく、一例においてはドメイン内に専用のサーバー要素を設ける対処がとられるが、こ
の場合はサーバーと多数のクライアント間で1対1双方向通信が発生することによる通信
量が増加し、高速な電力制御処理が阻まれることになる。
は当該要素にて把握されていればよく、サーバー等により収集する必要はない。また本発
明の電力制御システム、及び方法においては各要素の消費電力の現在値をサーバー等が収
集する必要もない。ドメイン内で共有されなければならない情報は総消費電力調整指示値
のみであり、これは同報送信要素が、自ら測定により決定し、ないしは測定値を提供され
て決定し、グループ内に同報送信することで共有できる。ドメイン内で共有されるべき情
報と、個別の電力消費要素が把握していればよい情報とを識別分離して、電力制御を分散
処理化することにより、通信量を大幅に削減することが可能となる。同様の原理を情報伝
達要素が属するドメインに適用すれば、多量の通信を要せずにドメイン内での情報伝達能
力の制御を行うことが可能となる。
ステム、方法を実施するための形態を説明する。本発明による電力制御システム、方法の
概念、具体的手順をまず説明し、次に当該方法を実施するシステムを構成するための装置
構成の一例を説明し、更に、本発明による電力制御と同様の原理で実施可能な資源制御の
一例として、情報伝達能力の制御を説明する。前記にて、「同報」ないし「同報送信」に
関する定義を行ったが、以下でもそれを参照する。ただし、本発明の各システム及び方法
は、各実施例にて示される特定の具体的構成へと限定されるわけではなく、本発明の範囲
内で適宜変更可能である。
本発明の一実施形態に係る電力制御は、上記式(3)においてQが対角行列の場合、上
記式(5)に示す最適化問題の解の簡易化された表現である、以下の式(14)
に基づいて行われる。ここにおいて、fi,kは、システム内で電力制御がk回(kは0以
上の整数)繰り返された時点(「現時点」とする。)での、グループに含まれるi番目(
iは1以上の整数)の電力消費要素の消費電力であり、上記式(14)は、k+1回目の
電力制御において実現されるべきi番目の電力消費要素の消費電力fi,k+1を決定するた
めの式である。上記式(14)中、Qiiはi番目の電力消費要素に与えられた優先度であ
る。またΔPは、グループ内で消費される総消費電力の現在値(同報送信要素が計測する
、ないしは、計測する別の要素から同報送信要素が受領する。)から当該総消費電力の基
準値(グループに含まれる各電力消費要素の定格消費電力の和等。一例において、あらか
じめ同報送信個体に記憶されている。)を減算することで得られる差であり、グループ内
で削減すべき総消費電力値(差が負であれば、回復すべき電力に相当。)ともいえる。S
tは、グループ内の総消費電力を制御する時の、削減すべき電力ΔP(負であれば、ΔP
の絶対値が回復すべき電力に相当。以下においても同様。)に対する感度に相当し、ここ
ではシステム感度と称する。このシステム感度は、理論的には「1」とすることが好まし
いが、他の感度を意図して設定することを妨げるものではない。なお、以下の例において
は上記現在値と基準値の差にシステム感度を乗じて得られた値を総消費電力調整指示値と
して、これを表わす情報を同報送信要素が各電力消費要素に同報送信するが、総消費電力
調整指示値は上記差の値、それ自体でもよく、この場合はシステム感度を用いる必要がな
い(システム感度を「1」に固定した場合と同等である。)。
き電力ΔPと、それにシステム感度Stを乗じた総消費電力調整指示値を表わす情報のみ
である。この情報は、同報送信要素(アラート要素)によりグループ内の各電力消費要素
に同報送信される(図2a)。情報を受信した、対象グループ内の各電力消費要素は、上
記式(14)に示すとおり、この総消費電力調整指示値を各電力消費要素に対して定義さ
れる優先度で除算して(逆数を乗じて)、各電力消費要素で削減すべき電力あるいは回復
すべき電力(消費電力更新値)を算出し、消費電力更新値に基づいて自己の消費電力を変
更する(図2b)。
なお一般には、Qが非対角要素をもつ場合には、演算は、自己の優先度のみの単純な除算
だけではなく、何らかの規則によって自己が知りうる優先度を含む関数で定められた演算
を行ってもよい。
して説明を行っているが、一般には、各電力消費要素にて消費される電力から演算されて
定まる非線形情報であってもよい。たとえば、全要素における最大消費電力と最小電力の
絶対差であってもよい。同報される情報は、総消費電力ないしは電力供給状態である。ま
た、同報送信される情報は、スカラー量に限定される必要はなく、制約条件の内容によっ
ては、多変量をとる場合も含む。
に従う電力制御においては、同報送信要素と電力消費要素との間で情報収集と電力割当て
量の算出とを分担させることができる。同報送信要素が各電力消費要素から情報収集をす
る必要はなく、各電力消費要素における処理は全電力消費要素で同時に実行できるため、
処理時間は大幅に短縮される。なお、上記式(14)において、上述のとおりfi,kを現
時点でのi番目の電力消費要素の消費電力とすることは必須ではなく、上記式(6)~(
8)で最適解を求めた場合と同様にfi,kをゼロとして(一旦、グループ内の各電力消費
要素の動作をオフにして)fi,k+1を求めることにより、各電力消費要素で最適解を求め
てもよい。システム感度と、各電力消費要素優先度間には、理論的な関係があり、この繰
り返しで収束させることができる条件が存在する。その安定性が確保できる幅は非常に広
く、本方式が実施にあたって有効であることを、後述する。
憶されているが、この値を動的に変更してもよい。例えば、上記式(14)中のΔPが正
の場合(グループ内総消費電力の現在値が基準値よりも大きい場合)のシステム感度St
を、ΔPが負の場合(グループ内総消費電力の現在値が基準値よりも小さい場合)のシス
テム感度Stよりも大きくすれば、グループ内総消費電力の制御においては総消費電力の
増加よりも削減の応答性を高くすることができる(このような判断処理は、同報送信要素
内の判断/実施系回路等で行われる。)。且つ安定性も向上し得る。各電力消費要素が有
している自己の優先度Qiiを、任意の間隔(通信量の増大を避けるべく、典型的には各電
力消費要素による上記(14)式の制御が行われる間隔よりも十分長い間隔。)で同報送
信要素に送信するようにすれば(同報送信要素と電力消費要素との双方向通信。なお、自
己の優先度を送信するのは、グループに含まれる電力消費要素のうち一部であってもよい
。)、同報送信要素は、理想的なシステム感度(実効システム感度と称する。)である
をシステム感度Stとすることができる。上記式(15)のシステム感度StにΔPを乗じ
た総消費電力調整指示値を表わす情報を同報送信し、これを用いて各電力消費要素が上記
式(14)で自己の消費電力を制御した場合には、更新後の消費電力は上記式(5)で与
えられる最適解に一致する。優先度が動的に変更され、且つ各電力消費要素から同報送信
要素への優先度の送信を頻繁に行わない場合には、同報送信要素の有している優先度情報
が古いということも起こりうるが、優先度の動的変化があまり大きくない場合には、同報
送信要素が上記式(15)によって決定するシステム感度Stは、依然として実効システ
ム感度に近いと考えられる。
別を行う必要のない情報であるため、情報共有は同報通信(ブロードキャスト通信)で行
わせることができる。また、各電力消費要素上のみで必要となる、現時点での消費電力と
優先度は、各電力消費要素上から外部発信する必要がなく、各電力消費要素は総消費電力
調整指示値を表わす情報を受信すればよい。グループ内で消費される総消費電力の現在値
と基準値との差を測定し、その関数として総消費電力調整指示値を決定する同報送信要素
から、ドメインに属する要素数と無関係に1回の同報送信が行われるだけでよく、本実施
例の電力制御の実行においては通信量を大幅に削減できる。ドメインに属する要素数が1
個の場合でも、数万個の場合でも、この分散処理型の電力制御システムでは制御サイクル
時間の拡大を要さず、高速の応答を維持し続けることができる。サーバー・クライアント
間通信で全電力消費要素の情報を取得して1回のサイクルで理想的な制御解を実現するよ
りも、処理を同報送信要素と電力消費要素で分担し、往復の通信を1方向の通信としつつ
イタレーション回数を重ねた方が、圧倒的に高速である点を利用したことが、本実施例の
電力制御による高速動作を可能とする方策の根本であり、本実施例の最大の特徴の1つで
ある。
同報送信によって一斉号令を行って、ドメイン内の機器への制御を行う従来技術も存在す
るが、資源制約を満たす解を提供するには、メンバー要素への割当て量の総和が制約にか
なうことの証明が必要であり、それら号令による、いわばfeed forward的な方法では達成
する保証を与えることができない。また、特にオフィスにおける照明機器にように、使用
者数や照度環境で優先度が動的に変更することが起きる場合には、号令方式の既定の動作
モードの選択だけでは、優先度付き最適化の解を得ることはできない。
本方式での特徴は、単なる号令による制御ではなく、制御処理を、同報送信要素と電力
消費要素の両方で分担することで、最適解を高速で求める機能を提供するものである。
上述の方策は最適化計算法に基づき議論されたが、一連の操作をより一般的に定義する
ことが可能である。上記式(14)中のΔPは、システム内での電力制御がk回繰り返さ
れた時点での、グループ内で消費される総消費電力の現在値から当該総消費電力の基準値
を減算することで得られる差であるので、ここではΔPkと表わす。ΔPkは、グループ内
の総消費電力の基準値から見た、相対的な現時点の総消費電力、すなわち削減又は回復す
るべき総消費電力である。
力消費要素の総数をNとした。)の電力消費要素として定義される各電力消費要素が、Δ
Pkの関数であるαi(ΔPk)だけ消費電力を削減(αi(ΔPk)が正の場合。負であれ
ばαi(ΔPk)の絶対値の分だけ回復。以下においても同様。)する制御を行ったとする
と、k+1回目の電力制御処理において、グループ内の総消費電力から削減又は回復すべ
き総消費電力ΔPk+1は、以下の式(16)で表わされる。
り返すことによりΔPが収束するため、グループ内で総消費電力の制約を満たす制御を行
えることになる。
この条件は非常に緩やかであり、αiについて広範な関数表現導入を可能とする。
なる。これを以下に示す。
題における電力の割り当て解はβi=1/Qiiと置くことに対応し、上記式(20)で掲
げたもっとも簡単化された制御方法とは、上記式(21)に示すとおり、削減あるいは回
復すべき総消費電力ΔPkにβiの総和値を乗じた量を再割当てする問題の解と等価である
ことを確認できる。特に、その総和が下記式(22)
を満たす場合は、上述の安定性条件の中心条件を満たし、かつ本来の問題である削減又は
回復すべき消費電力を再割当てする最適化の解が提供されることと理解できる。このこと
は、βiの総和を「1」とすることの本来の意義を述べている。最適化問題から変形して
与えた、各要素上での処理で与えた、システム感度も、理論的には、同じ「1」を設定す
ることが望ましいが、あらためて個々の要素での簡易化された処理から容易にわかるよう
に、あえて、システム感度を「1」ではない値とすることは、削減又は回復すべき消費電
力のSt倍を再割当てする別の問題をあえて提供する運用方法に対応していることがわか
る。よって、システム感度を必ずしも「1」でない値として運用する場合がありうる。
上での処理に、システム内の処理を分散させることで、大幅な高速化をはかることができ
る。ドメイン内に置かれる電力消費要素数が、1個の場合でも、数万個の場合でも、この
分散処理型の電力制御システム、方法においては制御サイクル時間の拡大を要さず、高速
の応答を維持し続けられる。全電力消費要素の優先度を集計することを要せずに制御が収
束する、最大の要因は、この優先度の逆数の総和を、例えば上記式(22)に示すとおり
規格化して用いる点であり、この点が、この制御を可能にさせている最も重要な着想であ
る。実際、優先度をどのように割り付けるかが、実用化に大きく関わる。βi=1/Qii
と逆数で置くことは本質ではなく、全体のシステム感度を何らかに規格化することが本質
である。具体的な設定方法を後述する。
ここで、図3のフローチャートを用いて、本実施例による電力制御方法の具体的手順を
説明する。
総消費電力の現在値と基準値との差を測定する(ステップS301)。一例においては、
電力計を備えた同報送信要素を配電盤に接続する等して、グループ内で消費されている総
消費電力の現在値を測定し、グループ内に含まれる電力消費要素の定格消費電力の合計(
一例においては、同報送信要素が備えるメモリ等に予め記憶されている。)を当該現在値
から引くことにより、上記差を測定する。
、これを表わす情報を生成する(ステップS302)。上述のとおり、システム感度は典
型的には「1」であるが、これ以外の値を用いてもよい。なお、システム感度も、典型的
には同報送信要素のメモリ等が予め記憶している。上記差自体を総消費電力調整指示値と
してもよい(システム感度を用いなくてもよい)ことは既に述べたとおりであるし、上記
差が例えば正である場合には、負である場合よりもシステム感度を高くすれば、総消費電
力の増加よりも削減の応答性が高くなることも既に述べたとおりである。
同報送信において宛先指定は不要であり、例えば特定の無線周波数で同報送信要素から情
報がブロードキャストされる。
04)。電力消費要素とは、電気機器に対して例えば図8,図9に示すモジュールを取り
付けることで構成される要素であり(当該モジュールにより与えるべき機能を電気機器が
有しているならばモジュールは不要。)、例えばアンテナや各種の通信回路を用いて、上
記無線周波数で送信された情報を受信する。
定する(ステップS305)。一例においては、上記式(14)に示すとおり、受信した
情報から得られる総消費電力調整指示値(ΔP×St)に自己の優先度の逆数(1/Qii
)を乗じることで消費電力更新値を決定する。各々の電力消費要素は自己の優先度Qiiの
みを記憶していればよく、またこの優先度は任意のタイミングで動的に変更可能である(
図8,図9に示すとおり電力消費要素にユーザインターフェースを設け、これを介してユ
ーザが優先度を設定してもよいし、あるいは任意の判断/実施回路の動作により変更して
もよい。)。
電力を制御する(ステップ306)。一例において、各々の電力消費要素は、自己が備え
る遮断器、インバータ(図8,図9)の制御により、消費電力更新値の値だけ自己の消費
電力を削減する(あるいは、上記式(14)のΔPが負であれば回復する)。ただし、個
々の電力消費要素において消費すべき電力に上限値と下限値が設けられている場合は、こ
の上限値を上回らず、下限値を下回らない消費電力範囲内で制御が行われる。例えば、消
費電力更新値だけ消費電力を削減すれば電力消費要素が動作不能となってしまう場合には
、動作可能な最低レベルまでしか消費電力は削減されないし、あるいは消費電力更新値の
値だけ電力消費要素の消費電力を回復させれば当該電力消費要素の定格消費電力を超えて
しまう場合に、定格消費電力までの回復に留めておくことが可能である。これにより、グ
ループ内の総消費電力が制御される。
システム感度Stが「1」に調整された状況で、ある特定の電力消費要素にて優先度の
設定が独立に行われた場合を考える。すなわち、k番目の電力消費要素において優先度が
Qkk,0からQkk,1へと、大きくなるよう調整された場合、下記式(23)
であれば
(23)
の変形からわかるように、結果として解かれる問題は、削減又は回復すべき電力が、ΔP
から(1-ε)ΔPへと、わずかながら修正された問題に相当することがわかる。また、
εが小さければ前述の安定条件にも影響は軽微である。このことは、資源制約問題を「相
似」に求めることを可能とするとともに、ドメインに所属する各電力消費要素において時
々刻々に定義されうる優先度の変化を吸収できる優れた特性を示すものである。
電力制御能力のある電力消費要素が突然に現れた場合を考える。本実施例の電力制御にお
いて、ドメイン内の通信としては、同報送信要素(アラート要素)からの同報通信による
送信のみが必要であり、新たな電力消費要素の参加や離脱は通信量に影響しない。新たな
電力消費要素が持つ優先度をQN+1,N+1とすれば、システム感度は以下の式(24)
(24)
のStとなった場合と同一であり、これは、本来の資源制約付き最適化問題において、削
減又は回復すべき消費電力を、(1+ε’)倍した問題に等価であり、「相似」な解を提
供できることを示している。また、ε’が小さければ前述の安定性に関しても影響は軽微
であり、電力制御はプラグ・アンド・プレイ性を有していることがわかる。
本実施例のシステムを、階層構造の一部をなすよう構成することができる。一例におい
て、同報送信要素は上下2つの階層間にあって、上位階層ではメンバー要素(電力消費要
素のように振る舞い、上位階層の同報送信要素から受信した情報を用いて、下位階層グル
ープ内で削減又は回復するべき総消費電力を決定する。)となり、下位階層では同報送信
要素(アラート要素)となる(図4)。このような同報送信要素(下位階層同報送信要素
)を「ソフトブレーカー」と呼ぶこととする。ソフトブレーカーの具体的構成は既に説明
した同報送信要素(図7)と同様であるが、下位階層グループに対する同報送信機能だけ
でなく、上位階層同報送信要素から同報送信された上位階層情報を受信する機能も有して
いる点が異なる。
(アラート要素)から、同報送信で発せられる、上位階層総消費電力調整指示値(上位階
層ドメインでの上位階層システム感度と、削減又は回復すべき総消費電力の積)を表わす
上位階層情報を受信し、自らが持つ上位階層での優先度に基づいて、例えば上位階層総消
費電力調整指示値を上位階層優先度で除算するなどして、自らが管轄する下位階層グルー
プにおいて割り当てられる、削減又は回復するべき総消費電力を算出する。上位階層同報
送信要素に対して、ソフトブレーカーが送信を行う必要はない(ただし、スマートグリッ
ドのクライアント等として、「見える化」のための情報を要求に基づいて送信することを
妨げない。例えば、一定のタイミングで上位階層優先度を送信する等してもよい。)。そ
の後、既に説明したとおり、任意でこの値にシステム感度(下位階層システム感度)を乗
じる等して下位階層総消費電力調整指示値を決定し、これを表わす情報(下位階層情報)
を下位階層グループに対して同報送信する。下位ドメインに属する電力消費要素から何ら
の受信も行う必要はない(既に述べたとおり、任意のタイミングで下位階層の優先度を受
信してもよい。)。下位階層情報を受信した下位階層グループ内の電力消費要素は、既に
述べたとおり自己に与えられた、ないし自己で決定された優先度(下位階層優先度)を用
いて、自己の消費電力から削減または回復すべき消費電力更新値を決定し、これに基づい
て自己の消費電力を制御する。
,図9に示すとおり電力消費要素にユーザインターフェースを設け、これを介してユーザ
が優先度を設定してもよいし、あるいは任意の判断/実施回路の動作により変更してもよ
い。)。下位階層システム感度について、下位階層総消費電力調整指示値が下位階層グル
ープ内の総消費電力の削減を指示する値である場合には、増加を指示する値である場合よ
りも下位階層システム感度を高くすれば、下位階層グループにおける総消費電力の増加よ
りも削減の応答性が高くなることも既に述べたとおりである。また、下位階層グループ内
で消費すべき総消費電力には上限値と下限値を設け、総消費電力が上限値を上回らず、下
限値を下回らないとソフトブレーカーが判断した範囲内で下位階層総消費電力を決定する
ことが好ましい。具体的には、ソフトブレーカーが下位階層グループ内の総消費電力を測
定した上で、仮に下位階層総消費電力調整指示値の分だけ総消費電力を削減、回復したな
らば更新後の総消費電力が動作可能な下限値を下回ってしまう、又は上限値である定格総
消費電力(下位階層グループ内の電力消費要素における定格消費電力の合計)を超えてし
まうという場合に、更新後の総消費電力が上限値と下限値の間に収まるよう、下位階層総
消費電力調整指示値を変更する等の運用が可能である。
以下の表1~表8に示す数値例-1は、異なる6個の電力消費要素があり、それらに異
なる優先度を定義した場合において、初期には全要素がオン状態であり、超過電力が20
0Wとなっている状況から本実施例による電力制御を7回模擬的に実施した場合の、数値
計算による結果である(電力の単位はW)。
いるが、システム内の電力消費要素は各自独立に優先度を設定しており、実効システム感
度は0.75であった。すなわち、表1~表8の結果は、同報送信要素が4/3倍だけ過
剰な制御要求を図らずも繰り返した例に対応する。この例においては、総消費電力回復時
のシステム感度の低減、つまり非線形制御を行っていない。表1~表8の結果から、ドメ
イン内ではすみやかに制御が達成されていることがわかる。
費要素に非常に高い優先度を与え、制御指令をほぼ無視する要素を導入している。且つ、
同要素は、独立に消費電力変更を行っている例である。本制御では、このようにドメイン
内に制御指令を受信しない、あるいは無視するメンバー個体が存在することを容認してお
り、これにもかかわらず、制御は概ね順調に総電力の規制を満足していることがわかる。
理想的な実効システム感度と同報送信要素(アラート要素)が有しているシステム感度
(基本初期値は「1」である)には相違があって、大幅な食い違いがあれば前述のように
電力制御の安定性を損なう可能性がある。βiの総和が「1」を下回る場合には、漸近的
な収束が生ずるだけで障害とはならないが、「1」を大きく超えることは、発振的な様相
を呈することから好ましくない。これを防ぐもっとも簡単な方策は、システム感度に非線
形性を導入することである。具体的には、総消費電力が削減方向に調整されるべき場合に
は定義どおりのシステム感度を用い、対照的に余剰電力を検出して回復させる場合にはシ
ステム感度を下げて、同報送信要素から共有されるべき上述の情報を送信することである
。これにより、前述の安定性が確保される範囲を大きく改善することができる。
有するシステム感度から大きく異なる値となっていることは好ましくない。これに対して
は、同報送信による高速な電力制御に並行して低速な双方向通信によって各電力消費要素
の優先度を同報送信要素に送信し、各電力消費要素から情報を収集する方法でも対応でき
るが、本来の本発明で求める分散処理の考え方に基づいて分散性を確保しつつ、実効シス
テム感度の推定を行って健全性を確認する方法が存在する。この結果として性能向上にも
繋がる。
の回数を要する。削減又は回復すべき総消費電力(総消費電力の現在値と基準値との差)
をxkと置き(kは、電力制御を実行した回数に対応)、本実施例の電力制御処理を実行
した結果、これがyk=xk+1に変化したとして、等価推移比率を以下の式(25)で導入
する。
なお、等価推移比率は常に一定とは限らず、例えば以下の式(26)
に示すように動的に変化し得る。
要する場合がある。それらは、1次遅れ系である以下の式(27)
で表現することができる。ここにおいてukは指示された削減電力の入力指示値を示す。
過程よりも遅れ、あるいは実質的なシステム感度の食い違いを生じる。これを加味した等
価なシステム感度Stの、真値St *(理想的な実効システム感度)との比は、以下の式(
28)で表わされる。
(28)
ゼロから離れるほど健全性は低いと解釈することができる。以下に示すとおり、典型的に
は同報送信要素が(同報送信要素以外に、例えばシステム内に同様の機能を備えた別個の
総消費電力監視要素を設けて、これにより行ってもよい。以下同様。)、カルマンフィル
ターを用いて等価推移比率Ck,eqを推定し、健全性を評価することが可能である。
温度などによって、緩やかに変動しうる。システム感度比St/St *を推定するカルマン
フィルターは以下の式(29)で表わされる。
整される総消費電力の現在値の推移を同報送信要素(又は総消費電力監視要素等)が監視
し、総消費電力の現在値と基準値との差の、制御がk回繰り返された時点の値をxkとし
(kは0以上の整数)、制御がk+1回繰り返された時点の値をxk+1としたときに上記
式(27)によって与えられる等価推移比率Ck,eqを、上記式(29)に基づいて同報送
信要素(又は総消費電力監視要素等)が推定する。具体的には、総消費電力の現在値と基
準値の差を測定することでxkをまず決定し、等価推移比率Ck,eqの現在の推定値を乗じ
ることでCk,eqxkを算出し、電力制御後の総消費電力現在値と基準値の差としてykを決
定し、ykからCk,eqxkを引くことで推定誤差を算出し、これにKを乗じたものを現在の
推定値Ck,eqに加えることで推定値をCk+1,eqに更新する、という手順を繰り返すことで
等価推移比率の収束値を得ることができる。この収束値がゼロに近ければ電力制御方法、
システムの健全性が高いと言える。
ただし、δCk+1,eqとδCk,eqは、それぞれCk+1,eqとCk,eqの真値から推定値を引いて
得られる推定誤差であり、Ck,eq *は等価推移比率の真値である。さらに、以下の式(3
2)
に従って等価推移比率の真値が変動するモデルを想定している。
化する効果で、残差を生じる。この残差は、等価推移比率が一定期間中ではゼロとなる。
この期間に推定を行って、実効的なシステム感度比(すなわち等価推移比率)を点検する
ことで、システムの健全性を確認することができる。また、これに基づいて、上下に限界
を設けつつ、同報送信要素(アラート要素)にて保持するシステム感度を更新することも
可能である。本来の推移則では、各電力消費要素の応答は、十分に高速であり、fはほぼ
ゼロであることを理想としている。また、理想的には、真のシステム感度(実効システム
感度)とアラート要素の認識するシステム感度は一致し、Ck,eq *はゼロとなり、等価推
移比率の推定値Ck,eqもゼロであるべきである。等価的には、削減又は回復すべき総消費
電力ΔPkの推移は、各要素の過渡応答の影響、すなわちfの影響や、システム感度の認
識誤差の影響を受けて、ゼロにはならない。システム感度の認識誤差を抽出するためには
、fを十分に小さな値にとるべきであり、このことは、このカルマンフィルターを繰り返
す時間周期を、ドメイン内の各要素の過渡応答時定数よりも、十分に大きくとっておくべ
きことを示している。すなわち、カルマンフィルターの繰り返し周期は、制御周期よりも
十分長くあるべきである。電力制御の健全性の推定は、同報送信要素がソフトブレーカー
である場合にも同様に実施可能である。
以下、本実施例の電力制御に関わる、具体的な優先度設定の例について説明する。
で構成する場合)
「各機器が持つ優先度」=「グループ内の制御対象要素数の総和の値」を基本優先度と
する。固定値であるため、システムは非常に安定である。このようにすることで、ドメイ
ン全体の基本的なシステム感度を、概ね「1」にすることができる。なお、個々の機器側
で独立に優先度を高めても制御安定性に影響が出ないのが、本方式の特徴であり、例えば
「各要素が持つ優先度」=「グループ内の制御対象要素数の総和の値」×「基準照度/
実照度」
を、LED照明ドメインで採用できる。上述のとおり消費電力に上限、下限を設ける場合
には、計算により得られた消費電力削減量の削減で運転維持限界を下回る場合には運転維
持限界を下限とし、逆に、計算される負の削減量で定格消費電力を超えてしまう場合には
定格消費電力を上限とする等の運用がなされる。
機器で構成する場合)
「各機器が持つ優先度」=「機器定格最大削減可能電力/瞬時削減可能電力」×「ドメ
イン内のインバーター制御機器数の総和の値」
を基本優先度とする。i番目の機器における機器定格最大削減可能電力は、定格消費電力
Pimaxから動作可能な下限の消費電力Piminを引いて得られるΔPimaxであり、瞬時削減
可能電力は、当該機器の現時点の消費電力Piから動作可能な下限の消費電力Piminを引
いて得られるΔPiである(図5)。すなわち、現時点で消費している電力あるいはデュ
ーティを測定して(図8,図9中の検流計、検出器I/Fで行う。)、これを各機器で算
出する。こうすることで、ドメイン全体の基本的なシステム感度を、概ね「1」にするこ
とになる。なお、個々の機器側において手動で優先度を高めても制御安定性に影響が出な
いのが、本方式の特徴であり、例えば
「各機器が持つ優先度」=「機器定格最大削減可能電力/瞬時削減可能電力」×「ドメ
イン内のインバーター制御機器数の総和の値」×「基準照度/実照度」
を、LED照明ドメインで採用できる。計算される削減量で運転維持限界を下回る場合は
、運転維持限界を下限とし、逆に、計算される負の削減量で定格電力を超えてしまう場合
は、定格電力までとする。
なる機器で構成する場合)
「各機器が持つ優先度」=「ドメイン内での定格最大削減可能電力/機器定格最大削減
可能電力」
を基本優先度とする。ドメイン内での定格最大削減可能電力とは、グループに含まれる各
機器についての機器定格最大削減可能電力の合計である。このような優先度の数値は固定
値であり、システムは非常に安定である。こうすることで、ドメイン全体の基本的なシス
テム感度を、概ね「1」にすることになる。なお、個々の機器側において手動で優先度を
高めても制御安定性に影響が出ないのが、本方式の特徴であり、例えば
「各機器が持つ優先度」=「ドメイン内での定格最大削減可能電力/瞬時削減可能電力
」×「基準照度/実照度」
を、LED照明ドメインで採用できる。計算される削減量で運転維持限界を下回る場合は
、運転維持限界を下限とし、逆に、計算される負の削減量で定格電力を超えてしまう場合
は、定格電力までとする。
きくなる機器で構成する場合)
「各機器が持つ優先度」=「ドメイン内での定格最大削減可能電力/機器定格最大削減
可能電力」×「機器定格最大削減可能電力/瞬時削減可能電力」=「ドメイン内での定格
最大削減可能電力/瞬時削減可能電力」
を基本優先度とする(下記式(33)参照)。
機器jの優先度
すなわち、現時点で消費している電力あるいはデューティを測定して、これを各機器で算
出する。こうすることで、ドメイン全体の基本的なシステム感度を、概ね「1」にするこ
とになる。なお、個々の機器側において手動で優先度を高めても制御安定性に影響が出な
いのが、本方式の特徴であり、例えば
「各機器が持つ優先度」=「ドメイン内での定格最大削減可能電力/瞬時削減可能電力
」×「基準照度/実照度」
を、LED照明ドメインで採用できる。計算される削減量で運転維持限界を下回る場合は
運転維持限界を下限とし、逆に、計算される負の削減量で定格電力を超えてしまう場合は
、定格電力までとする。
ドメイン内電力調整度=
この「ドメイン内電力調整度」は、当該ドメインでの実際の(実効)システム感度である
。その値は、メンバー要素から情報収集を行えば計算できるが、本電力制御方式ではそれ
に要する通信を削減すべく、アラート要素は、特に定めない限りは所定の感度値である「
1」を想定している。実際、メンバー要素の全てが定格電力で運転されている場合は、「
1」をとる。ドメイン内電力調整度は、システムが階層化された場合に、上位階層にて同
メンバー要素がアラート要素となる、下位階層ドメインを代表する優先度を算出するため
に使われる。
は、ほぼタイプ1の固定値で問題ない。住戸などにおいて、異なる規模の機器で構成され
る場合では、通常は、ほぼタイプ3の固定値で問題ない。住戸などにおいて、異なる規模
の機器で構成される場合にあって、且つ、応答性を極力追求する場合には、タイプ4の状
態依存である優先度づけ法をとることができる。
ここでは、優先度の設定にあたり、瞬時での「機器またはドメイン内での定格最大削減
可能電力/瞬時削減可能電力」に基づく計算を推奨している。しかし、実際の設置におい
ては、予め、数値評価に依らずに、優先度を電力消費要素ごとに割り付けたい場合が存在
する。以下、このような場合について更に検討する。
る簡単な方法は、もっとも優先度が低い、つまり電力削減に貢献する要素に(N/2)を
、平均的には(N)を、最も優先度が高い、つまり電力削減に参加させたくない要素に(
2N)ないし(3N)を割り当てることである。例えば、3個の電力消費要素が属するド
メインでは、優先度を1.5,3,6とすれば、実効システム感度を6/7とできる。5
個の要素が属するドメインでは、優先度を2.5,3.5,5,7,10とすれば、実効
システム感度を70/79とできる。
法を示したが、ドメインの実効システム感度を大きくする方が、収束性は劣るが安全であ
り、最低優先度をN、最高優先度を2Nないし3Nとすることで、よりロバスト性が高く
なる。3個の電力消費要素では、3,4.5,6と優先度をとると、実効システム感度は
18/13となり、5個の要素では、5,6,7,8,10と優先度をとると、実効シス
テム感度は840/617となる。
る。設定にあたっては、瞬時での
「機器またはドメイン内での定格最大削減可能電力/瞬時削減可能電力」の有理数のべ
き乗に基づく計算を行ってもよく、関数型は特に限定されるものではない。例えば、タイ
プ2では、
「各機器が持つ優先度」=「[3-2.5×(瞬時削減可能電力/機器定格最大削減可
能電力)^2]×『ドメイン内のインバーター制御機器数の総和の値』」
という関数を採用してもよい(「^2」は2乗を表わす。)。これによれば、最低優先度
をN/2、最高優先度を3Nとすることになる。
。仮に、全ての電力消費要素において優先度をN/2とした時、実効システム感度Stは
、St=1/(N×(2/N))=1/2となる。この状態で仮にアラート要素が、デフ
ォルトのシステム感度である「1」を用いて同報送信を行うと、システムは持続的な振動
状態に陥り、安定限界に達する。よって、どの電力消費要素においても最低優先度がN/
2を下回らない設定法がとられるべきである。
以下、3種類の具体的な優先度設定例を説明する。ただし、優先度の設定方法はこれら
の方法に限らない。
(1)台形方策:定性的な設定を簡易に行う方法。
(2)直線型優先度:各個体の運転状況に基づいて、数学的に設定する方法。
(3)双曲線型優先度:各個体の運転状況に基づいて、数学的に設定する方法。
ドメイン内での平均優先度をNと配慮しつつ。最低優先度から最高優先度までを、N/2
から2Nないしは3Nとする定性的な方法であり、定量的な評価を要しない(図10,図
11)。実効システム感度を高めておくことについては、過渡応答に劣るが、安定性向上
につながる。この場合は、最低優先度から最高優先度までを、Nから(2N)ないし、N
から(3N)と置くことも実用的であろう。システム感度は、定性的には、台形積分で近
似評価することができる。
X=(瞬時削減可能電力/機器定格最大削減可能電力)は、0から1の間でランダムな
変動を起こすと考えることができる。タイプ2では、
「各機器が持つ優先度」=「[A-(A-1/2)X]×「ドメイン内のインバーター
制御機器数の総和の値」
とし、Aを2あるいは3に設定することで、優先度を、最低値のN/2から2Nあるいは
3Nに直線的に変化させることができる(図12)。この優先度の逆数を、Xについて、
[0-1]間で積分し、さらに逆数とすることで、実効システム感度を得ることができる
。それらは、1.082(A=2),1.395(A=3)となり、安定な制御を提供で
きるとわかる。
「各機器が持つ優先度」=「[A-(A-1)X]×「ドメイン内のインバーター制御
機器数の総和の値」
を優先度とすると、過渡応答には劣るが、安定性には有利な優先度設定が可能になる(図
12)。この場合、実効システム感度は、1.443(A=2),1.820(A=3)
と、さらに大きくとれる。
タイプ4では、「ドメイン内のインバーター制御機器数の総和の値」の代わりに、例えば
「(ドメイン内での定格最大削減可能電力/機器定格最大削減可能電力)」を用いる方法
が対応する。
同様に、
X=(瞬時削減可能電力/機器定格最大削減可能電力)
は、0から1の間でランダムな変動を起こすと考える。
このとき、
「各機器が持つ優先度」=「X^(-γ)/(γ+1)」
の優先度を用いる方策がある。ここにγは任意の正の実数である。優先度の逆数を、Xの
区間、[0-1]間で積分し、その逆数をとって実効システム感度を計算すると「1」と
することができ、のぞましい制御系を構成できることがわかる。γとして、最も直感的で
あるのは、γ=1の場合で、このときタイプ2では、
「各機器が持つ優先度」=「(機器定格最大削減可能電力/瞬時削減可能電力)×「ド
メイン内のインバーター制御機器数の総和の値」×(1/2)」とすることに対応し、最
低優先度はN/2、最大優先度は無限大となる(図12)。タイプ4では、
「各機器が持つ優先度」=「(ドメイン内での定格最大削減可能電力/瞬時削減可能電
力)×(1/2)」
とすることに対応する。この場合も、ドメイン全体で積分を行い、実効システム感度を評
価することが可能で、それによれば、実効システム感度は「1」以上を確保できると証明
できる。既に述べた優先度は、ここでの理論的に導かれた優先度の2倍にあたる。このこ
とは、実効システム感度を2倍にしていることに対応していて、過渡応答よりも安定性確
保を優先して設定されたものと理解できる。
上位階層ドメインでのシステム感度(上位階層システム感度)は、基本的に「1」であ
る。本ソフトブレーカーでは、これについては、設定も監視の必要もない。上位階層にお
いても、式(25)~式(32)を用いて既に説明したとおり、アラート要素(上位階層
同報送信要素)にてリアルタイム推定して、システム健全性を評価し、点検を行うことは
可能である。
も、基本的に「1」である。必要があれば、異なる値を本ソフトブレーカーにて設定する
ことがある。下位階層においては、本ソフトブレーカーがアラート要素として、リアルタ
イム推定して、式(25)~式(32)を用いて既に説明したとおりシステム健全性を評
価し、点検を行うことが可能である。上位階層においては、本ソフトブレーカーは、1つ
のメンバー要素として機能する。この上位階層での、1メンバー要素として有する優先度
(上位階層優先度)は、前述のタイプ1~4の優先度として設定できる。最も簡単な優先
度の設定では、例えばスマートグリッドにおいて同一規模の複数ドメインで構成される階
層において、優先度は、ドメイン数つまりメンバー要素数と固定してよい(タイプ1優先
度設定)。また、上位階層における定格の削減可能電力総量を、本ソフトブレーカーの下
位階層ドメイン全体で定格としている削減可能な電力で除算した値を、上位階層での1メ
ンバー要素としての優先度と定義してもよい。これはスマートグリッドにおいて、異なる
規模の複数ドメインで構成される階層にて有効な設定方法となる(タイプ3優先度設定)
。この上位階層ドメインでソフトブレーカーがもつ優先度としては、タイプ2優先度に倣
うと、
「下位階層のドメイン内電力調整度」×「上位階層ドメイン内のメンバー個体数」
と定義できる。また、タイプ4優先度に倣うと、
「下位階層のドメイン内電力調整度」×「(上位階層ドメイン内での定格最大削減可能
電力)/(配下の下位階層における定格最大削減可能電力)」
と定義してもよい。
総消費電力の削減が求められる場合、削減余裕の少ない電力消費要素においては消費電
力の削減を避けなくてはならない。そのような要素においては、ドメイン内全体で求めら
れる削減量のうち分担する電力を小さくするべく、優先度は高く定義される。この考え方
によれば、ドメイン内で許容される電力を削減された状態から復帰させる場合には、その
ような削減余裕の少ない要素に、より積極的に回復量を割り当てるべきであり、復帰時に
は逆に、そのような要素への優先度を小さくした方が運用上は好ましい場合がある。i番
目の電力消費要素における削減時の優先度をQiとすると、復帰時の優先度の合理的な設
定方法としては、相補性を考慮し、優先度逆数総和を「1」と規格化すると、例えば以下
の式(36)に従うものが考えられる。
この設定も各電力消費要素上で行うことができる。これによれば、3つの電力消費要素が
属するドメインにおいて削減時の優先度が2,3,6であった場合(逆数総和が1にとら
れている)、復帰時の優先度を4,3,2.4ととることができる。前述のタイプ1優先
度設定において、優先度はドメイン内での個体総数Nであり、その場合は復帰時の優先度
も同一のNである。このように、ドメイン内で電力削減が求められる場合と、電力を復帰
させてよい場合とでは、同報される情報が示す総消費電力調整指示値の正負に依存させて
、各電力消費要素上での計算で、優先度を非対称に変更することもできる。
削減を進行させていたときに電力供給の維持を要求していた、優先度の高かった要素には
、電力資源の回復にあたり、復帰電力の割付けが優先的になされる、すなわち復帰時の優
先度を下げるという考え方であり、各要素で解釈される割付け電力が1/(優先度)倍で
あることから、次の式(37)に従う表現で決定すると考えるのが適当である。
削減時の優先度の逆数和が「1」である場合、復帰時の優先度の逆数和が「1」であるた
めの条件は、aNb=1である。上記復帰時の優先度の定義は、a=bとして復帰時の優
先度の和の逆数和が「1」となるよう規格化した例である。
られる比率とが相補的な関係を満たすべきである、という考え方があり、この場合、規格
化条件を課すと復帰時の優先度は以下の式(38)で定められる。
これによれば、3要素が属するドメインにおいては、削減時の優先度が、2,3,6であ
った場合(逆数総和が1にとられている)、復帰時の優先度を、6,3,2として正反対
の優先度をとることができる。
ような性質が現れるかを以下に述べる。
優先度と同一になる。
の優先度の逆数和は「1」を上回る。つまり、復帰時の実効システム感度は「1」を下回
ることになる。実際、この状態は、アラート要素側で想定しているシステム感度が過大な
場合に相当して好ましくなく、削減時の優先度逆数和と復帰時の優先度逆数和を、2/N
ではなく、3/(2N)あるいは1/Nとするなど工夫が求められる。既に述べた復帰時
の優先度の設定方法では、復帰時の優先度逆数和は「1」を下回り、実効システム感度を
「1」より大きくして、ロバスト性を高めている。
満たされる。
が「1」より低下するため好ましくなく、削減時の優先度逆数和と復帰時の優先度逆数和
を、2/Nではなく、3/(2N)あるいは、1/Nとするなど工夫が求められる。同様
に、既に述べた復帰時の優先度の設定方法においては、復帰時の優先度逆数和は「1」を
下回り、実効システム感度を「1」より大きくしてロバスト性を高めている。
、2番目に述べた方式が有利であるが、タイプ2,4での削減時の優先度の設定がロバス
ト性の向上を狙っていることにより、復帰時の優先度の設定においてロバスト性が低下し
てしまうため、適用にあたって工夫が必要である。復帰時の優先度の設定幅には適切な範
囲があり、適用上は、この点にも配慮が必要である。
的である。しかし、実際に期待されるのは、むしろタイプ2,4のように動的な運用方法
であり、ここで述べた方法が有効に利用されるべきである。
これまでの説明においては、主たる制約条件として、グループに含まれる電療消費要素
で消費される電力の総和が、指定された電力となる制約条件下(式(1))での最適化法
を考えた。しかしながら本制御方式は、さらに拡大されて、副制約条件を課した場合での
最適化に応用できる。上記式(1)により表される元の制約を、-0次とし、副制約を、
-1次,-2次,…-m次とし、以下の式(39)で表わされる拡大評価関数による最適
化を考える。
ただし、
及び
(39)
上記式(39)の1番目の式から、e0 Tf-P0=0を主制約条件と呼び、ei Tf-Pi
=0を副制約条件と呼ぶことができる。
は各々の副制約に対応する積算(行)ベクトルであり、λ0~λmはラグランジュの未定乗
数であり、P0はグループ内の総消費電力に対する制約値(上記式(1)のPtに対応)で
あり、P1~Pmは、各々の副制約に対応する積算消費電力に対する制約値である。上記(
2)式と同様に、グループ内の各電力消費要素が消費している現時点の消費電力をf* 1,
f* 2,…f* nとし、これらを縦に並べたベクトルをf*とした。その他の変数については
、上記式(1)~(3)等と同様に定義される。
数の偏微分値がゼロになるという条件からfiの最適解が求められる。最適解をベクトル
表記で表わせば、以下の式(40)のとおりである。
(40)
、この副制約も課した解を求めることができる。理想的な実効副システム感度Si(i=
1,2,…m)は、上記のとおり積算ベクトルeiとQで定まるが、同報送信要素が副制
約積算消費電力調整指示値を決定するために用いる副システム感度は、近似的に、「N/
(eiの非ゼロ成分個数)」とすることができる。
f*-Piに相当する量を同報送信要素が測定又は決定することでm個の副制約積算消費電
力調整指示値を決定し、これを表わすm個の副制約情報を、既に説明した総消費電力調整
指示値を表わす情報に加えて、同報送信要素(システムが階層構造を有する場合は、ソフ
トブレーカー)からグループ(システムが階層構造を有する場合は、下位階層グループ。
以下同様。)内に更に同報送信する。グループに含まれる各々の電力消費要素は、上記情
報とm個の副制約情報とを受信し、総消費電力調整指示値、及びm個の副制約積算消費電
力調整指示値と、自己に与えられた、ないし自己で決定された(下位階層)優先度とを用
いて、上記式(40)に従い
(fを決定する式中、S0ΔP0,ΔPiを、それぞれ受信した総消費電力調整指示値、
副制約積算消費電力調整指示値で置き換えて計算する。)自己の消費電力を更新制御する
。ただし、副システム感度Si,又はその近似値「N/(eiの非ゼロ成分個数)」は、予
め副制約の対象となる電力消費要素に記憶されているとする。副制約情報に対応する消費
電力の制御は、個々の副制約の対象になっている電力消費要素のみが行う。
総消費電力制約値と現時点での消費電力との誤差ΔP0が容易に計測できるのと異なり、
同報送信要素によって直接には計測されない場合が多い。したがって、現実的には、ΔP
i=γi×ΔP0(if ΔP0<0,γi=0)として、主たる制約条件に連動して設定す
ることが現実的な方法である。これによれば、この副制約を課した最適化は、主たる制約
が満たされると同時に終了する。主たる制約では、積算対象は全電力消費要素であるが、
副制約では予め積算ベクトルeiに対応するべく、各電力消費要素では、自身が属するモ
ードが認識されていなくてはならない。例えば、e1 T=(1,0,-1)の場合、1番目
の副制約の対象は1番目、3番目の電力消費要素であり、これら要素は、自身が1番目の
副制約モードに属していることを、メモリへの記憶などにより認識している。これは機器
をドメイン内に設置した時点で定まっており、それを各要素内に記憶していることが前提
である。
き電力ΔP0にシステム感度を乗じた総消費電力調整指示値を同報送信し、更に、副制約
モード「i」と、調整すべき副制約積算消費電力ΔPiとして与えられる副制約積算消費
電力調整指示値を、1~mのiについて連続して同報送信することである。
例えば
0,ΔP0×(システム感度),…,i,ΔPi,…
のように、副制約条件も含めて同報送信することになる。
値ΔPiに副システム感度を乗じ、これを各要素の削減ないし復帰優先度で割って、各要
素に課せられた電力割当てを算出する。Siは、S0と異なり、副制約のモードによっては
「1」に近い値とはならないので、各個体にて予め記憶されていなければならない。
副制約による制御の具体例を、理想的な最適制御と実際の制御に分けて説明する。
グループ内の電力消費要素数N=3とし、全ての要素の優先度Qjjが3であるとする。
このとき、上記式(39)のQは、対角成分が3で非対角成分がゼロの対角行列となる。
副制約条件は1つのみであり、積算行ベクトルe1 T=(1,0,-1)とすると、上記式
(39)の2番目の式である(Q-1e0)Te1=0の直交関係が満たされている。副制約
条件は、上記式(39)の1番目の式から、e1 Tf-P1=0,すなわちf1-f3=P1と
表わされる。これは、1番目の電力消費要素の消費電力と3番目の電力消費要素の消費電
力の差をP1に保つという物理的意味を有しており、例えば窓際と廊下側でLED照明の
消費電力に差をつけるような場合に対応する。この例以外にも、積算行ベクトルの選択に
応じて、図13に概念的に示すとおり様々な副制約を課すことができる。
実際の制御においては、上記式(40)中、S0について、同報送信要素は正確な値(
実効システム感度)を有していないため、例えばシステム感度を1とする。さらに、ΔP
1=(f1 *-f3 *)-P1も同報送信要素が直接測定できるわけではないので、ΔP1=γ1
×ΔP0等として決定した上で、総消費電力調整指示値ΔP0×1を表わす情報と、副制約
積算消費電力調整指示値γ1×ΔP0を表わす副制約情報が同報送信される。これらを受信
した電力消費要素は、既に説明したとおり、これらに自己の優先度の逆数や副システム感
度を乗じるなどして、上記式(40)に従い自己の消費電力を更新する。したがって、上
記式(42)の消費電力ではなく、以下の式(43)の消費電力へと制御がなされる。
(43)
消費に副制約を導入した制御ができる。これは、スマートグリッドで構成されるドメイン
での、全体電力管理に加えて、グリッド間での差分副制約を与えられることにも応用でき
る。一例としては、図13で概念的に示すとおり、窓際では照明を暗くして廊下側では明
るくしたり(e11)、暗いエリアと明るいエリアを交互に設けたり(e21,e22)できる
。
成を説明する。
おいては配電盤に接続されたスマートメーターとして構成され、電力供給口(コンセント
)に接続されるか電池を内蔵している。同報送信要素は、同報送信をしたり、電力消費要
素から優先度を受信したりするための通信系、通信系I/F(インターフェース)、グル
ープ内の総消費電力を測定するための電力メーター、検出器I/F、総消費電力調整指示
値や副制約積算消費電力調整指示値の決定、これらを表わす情報、副制約情報の生成、シ
ステムの健全性の推定等、既に説明したさまざまな情報処理一般を担う判断/実施系回路
、及びこれらに電力を供給するための電源系等から構成されている。現在の総消費電力等
、任意の情報を表示するためのディスプレイや、例えば上位階層優先度等をユーザ入力す
るためのユーザI/Fを、更に備えていてもよい。各機器の定格消費電力は、例えば通信
系I/F内の記憶回路、又は別個のモジュール内メモリ(不図示)に記憶されている。
るためのインバーター装備型モジュールの概略構成を示している。モジュールは、同報送
信要素から上述の情報や副制約情報を受信したり、必要であれば優先度を送信したりする
ための通信系(無線通信ならばアンテナ等、電力線通信ならばモデム等。)、通信系I/
F(信号の符号化、復号化等を含む、通信処理一般を行うための通信回路)、機器の消費
電力を測定する検流計(例えば優先度が固定値ならば消費電力の測定は不要であり、検流
計も不要である。)、検出器I/F(消費電力測定値をデジタル信号化して通信系I/F
に送信する等のための回路も含む。消費電力測定が不要ならば検出器I/Fも不要。)、
同報送信要素から受信した情報を用いて、既に述べたとおり自己の消費電力の更新のため
の情報処理一般を行う判断/実施系回路、判断/実施系回路からの命令を受けて機器への
電力供給を間欠的に遮断することで消費電力を制御する遮断器、及びこれらに電力を供給
するための電源系等から構成されている。定格消費電力、優先度、副システム感度等は、
例えば通信系I/F内の記憶回路、又は別個のモジュール内メモリ(不図示)に記憶され
ている。このようなモジュールを、電力供給口(コンセント)と電気機器との間に設ける
ことにより、電気機器を消費電力割り当てにおけるクライアントとして動作させることが
できる。電力消費要素を移動体として構成する場合は、当該モジュール及び電池を電気機
器に内蔵すればよい。またユーザI/Fを設けて、電力消費要素の優先度を変更する等し
てもよい。
るための、典型的にはエアコン等の電気機器に内蔵される、インバーター制御型モジュー
ルの概略構成を示している。図8の回路構成とは異なり、遮断器の代わりにデューティオ
フパルス積算/減算器、PWM(Pulse Width Modulation)変調
器等の、機器が有するインバーター制御器に対して更に制御信号を供給するための回路が
備えられている。例えばPWM変調器を用いる場合には、当該PWM変調器からの変調パ
ルスによって、機器内でインバーター制御機に入力される、モーターにトルクをかけるた
めのONパルスを変調させることにより、デューティを規制して消費電力を調整すること
ができる。図9の例では、変調パルスを反転させた上で、エアコン本来の駆動信号である
ONパルスとの論理積をとることにより、ONパルスの幅を変えて変調させているが、モ
ーター等の稼働率を調整できる回路としては、どのようなものを採用してもよい。
いままで説明した、消費電力制御のための一連の方策は、電力の代わりに情報伝達能力
を資源とし、電力の消費を情報伝達能力の占有としても、そのまま適用が可能である。送
信機が情報を送信しようとする場合、送信機出力や、伝播距離、ないしは送受信のアンテ
ナ効率などの要因により、伝送速度、すなわち情報伝達能力たる資源が制約される場合が
出現する。情報を送達せしめたいドメイン内の各サブシステムあるいは計測装置は、その
情報伝達能力をある比率で利用しなくてはならないが、複数のサブシステムあるいは計測
装置(メンバー要素)が伝達能力の部分的な占有を要求すると、資源たるドメイン情報伝
達能力を逸脱する場合がでてくる。各メンバー要素においては、動的に優先度を変更する
ことが考えられるが、そのような場合であっても、各メンバー要素の優先度を考慮して最
適な資源割当て実施する必要がある。本方策によれば、同報送信要素において、ドメイン
内で、総情報伝達能力を計測し、その総定格能力(基準値)との差にもとづいてドメイン
のシステム感度を用いて生成される情報を同報で送信する機能と、各メンバー要素におい
て、優先度を用いた演算を行う機能を複合させることで、資源制約を満たしつつ最適解を
得ることができる。情報伝達能力についても、ソフトブレーカーの導入が可能である。
バー(同報送信要素)と、個別に優先度が与えられた、ないし決定された1以上のクライ
アントマシン(情報伝達要素)とを備えている。通信サーバーは、1以上のクライアント
マシンを含むグループ内で占有される通信速度合計(総情報伝達能力)の現在値を、例え
ば通信速度検出アプリケーションを通信サーバー上で実行することにより測定し、この現
在値と基準値(各クライアントマシンに対して定義された基準通信速度の合計値)との差
を測定し、この差にシステム感度を乗じるなどして、総情報伝達能力調整指示値を決定し、
これを表わすグループ内で共有すべき情報を生成し、これをグループ内に同報送信する。
決定された優先度と総情報伝達能力調整指示値とを用いた演算(これまでに説明した、総
情報伝達能力調整指示値に自己の優先度の逆数を乗じるなどの演算であってよい。)によ
り、自己の通信速度(情報伝達能力)の更新に用いるべき情報伝達能力更新値を、自己以
外のクライアントマシン及び通信サーバーから独立して決定し、情報伝達能力更新値の分
だけ自己の通信速度を落とす等して(例えば、各々のクライアントマシン上で通信アプリ
ケーションを実行することにより通信速度設定を変更する。)自己の情報伝達能力を制御
することにより、グループ内の総情報伝達能力を制御する。
意のシステム内で利用可能である。
Claims (44)
- 個別に優先度が与えられた、ないし決定された1以上の電力消費要素と、
制御時間間隔に比して、有意に短時間にて、前記1以上の電力消費要素を含むグループ内
の全消費電力要素に対して、一方向の情報の送信のみにて、該グループ内で共有すべき情
報を送達せしめる、同報送信要素を備え、
前記同報送信要素が、該グループ内で消費される総消費電力の現在値と、該総消費電力
の基準値との差を測定し、該差の関数である総消費電力調整指示値を決定し、該総消費電
力調整指示値を表わす該グループ内で共有すべき情報を生成し、該情報を該グループ内に
同報送信し、
前記1以上の電力消費要素が前記同報送信された前記情報を受信し、該1以上の電力消
費要素の各々が、自己に与えられた、ないし決定された前記優先度と前記総消費電力調整
指示値とを用いた演算により、自己の消費電力の更新に用いるべき消費電力更新値を、該
1以上の電力消費要素のうち自己以外の電力消費要素及び前記同報送信要素から独立して
並列に算定し、該消費電力更新値に基づいて自己の消費電力を制御することにより、該グ
ループ内の総消費電力を制御する
よう構成された、電力制御システム。 - 前記総消費電力調整指示値はシステム感度の関数でもある、請求項1に記載の電力制御
システム。 - 前記1以上の電力消費要素のうち少なくとも1つにおいて前記優先度が動的に変更され
るよう更に構成された、請求項1又は2に記載の電力制御システム。 - 前記システム感度は、前記総消費電力の前記現在値が該総消費電力の前記基準値よりも
大きい場合と小さい場合とで異なり、該現在値が該基準値よりも大きい場合のシステム感
度を、該現在値が該基準値よりも小さい場合のシステム感度よりも高くすることにより、
該総消費電力の制御において該総消費電力の増加よりも削減の応答性が高くなるよう、且
つ安定性を改善するよう更に構成された、請求項2に記載の電力制御システム。 - 前記1以上の電力消費要素の各々が消費すべき電力には上限値と下限値が設けられ、該
1以上の電力消費要素の各々において行われる、前記消費電力更新値に基づいた自己の消
費電力の制御が、該上限値を上回らず、且つ該下限値を下回らない消費電力範囲内で行わ
れるよう更に構成された、請求項1乃至4のいずれか一項に記載の電力制御システム。 - 前記同報送信要素が更に、少なくとも1つの副制約積算消費電力調整指示値を算出し、
該副制約積算消費電力調整指示値を表わす少なくとも1つの副制約情報を前記グループ内
に同報送信し、
前記1以上の電力消費要素が、前記同報送信された前記副制約情報を更に受信し、
前記1以上の電力消費要素のうち、前記副制約情報に基づく制御の対象となる電力消費
要素が更に、自己に与えられた、ないし自己で決定された前記優先度と前記副制約積算消
費電力調整指示値とを用いた演算により副制約消費電力更新値を決定し、該副制約消費電
力更新値に基づいて自己の消費電力を更に制御する
よう構成された、請求項1乃至6のいずれか一項に記載の電力制御システム。 - 前記同報送信に加えて、前記同報送信要素と前記1以上の電力消費要素のうち少なくと
も1つとの間の双方向通信が可能であるよう更に構成された、請求項1乃至7のいずれか
一項に記載の電力制御システム。 - 上下階層からなる電力制御において、
下位階層においては、
個別に下位階層優先度が与えられた、ないし決定された1以上の電力消費要素とを備え、
制御時間間隔に比して、有意に短時間にて、1以上の電力消費要素を含む下位階層グル
ープ内の全消費電力要素に対して、一方向の情報の送信のみにて、該グループ内で共有す
べき情報を送達せしめる機能を備えた、同報送信要素が設けられ、
前記同報送信要素が、
個別に、上位階層優先度を与えられ、ないし決定され、
上位階層同報送信要素から同報送信される、上位階層総消費電力調整指示値を表わす
上位階層情報を受信するよう構成されるとともに、
前記1以上の電力消費要素を含む下位階層グループ内で消費される下位階層総消費電
力を測定し、該下位階層総消費電力と、前記上位階層優先度と、前記上位階層総消費電力
調整指示値とを用いた演算により、該下位階層総消費電力の更新に用いるべき、下位階層
総消費電力調整指示値を決定し、該下位階層総消費電力調整指示値を表わす該下位階層グ
ループ内で共有すべき下位階層情報を生成し、該下位階層情報を該下位階層グループ内に
同報送信するよう構成され、
前記1以上の電力消費要素が、前記同報送信要素から同報送信された前記下位階層情報
を受信するよう構成され、
前記1以上の電力消費要素の各々が、自己に与えられた、ないし決定された前記下位階
層優先度と前記下位階層総消費電力調整指示値とを用いた演算により、自己の消費電力の
更新に用いるべき消費電力更新値を、該1以上の電力消費要素のうち自己以外の電力消費
要素及び前記同報送信要素から独立して並列に算定し、該消費電力更新値に基づいて自己
の消費電力を制御することにより、前記下位階層グループ内の総消費電力を制御するよう
構成された
電力制御システム。 - 前記下位階層総消費電力調整指示値は下位階層システム感度の関数でもある、請求項9
に記載の電力制御システム。 - 前記上位階層優先度が動的に変更されるよう更に構成された、請求項9又は10に記載
の電力制御システム。 - 前記下位階層総消費電力調整指示値が下位階層グループ内の総消費電力の削減を指示す
る値である場合には、増加を指示する値である場合より前記下位階層システム感度を高く
することにより、該総消費電力の制御において該総消費電力の増加よりも削減の応答性が
高くなるよう、且つ安定性を改善するよう更に構成された、請求項10に記載の電力制御
システム。 - 前記下位階層グループ内で消費すべき総消費電力には上限値と下限値が設けられ、前記
同報送信要素において行われる前記下位階層総消費電力調整指示値の決定は、更新後の該
下位階層グループ内の総消費電力が該上限値を上回らず、且つ該下限値を下回らないと該
同報送信要素が判断した範囲で行われるよう更に構成された、請求項9乃至12のいずれ
か一項に記載の電力制御システム。 - 前記同報送信要素が更に、少なくとも1つの副制約積算消費電力調整指示値を算出し、
該副制約積算消費電力調整指示値を表わす少なくとも1つの副制約情報を前記下位階層グ
ループ内に同報送信し、
前記1以上の電力消費要素が、前記同報送信された前記副制約情報を更に受信し、
前記1以上の電力消費要素のうち、前記副制約情報に基づく制御の対象となる電力消費
要素が更に、自己に与えられた、ないし決定された前記下位階層優先度と前記副制約積算
消費電力調整指示値とを用いた演算により副制約消費電力更新値を決定し、該副制約消費
電力更新値に基づいて自己の消費電力を更に制御する
よう構成された、請求項9乃至14のいずれか一項に記載の電力制御システム。 - 前記同報送信に加えて、前記同報送信要素と前記1以上の電力消費要素のうち少なくと
も1つとの間の双方向通信が可能であるよう更に構成された、請求項9乃至15のいずれ
か一項に記載の電力制御システム。 - 前記1以上の電力消費要素は、特定の住戸、オフィス、建物、地域に属する1以上の電
力消費機器、又は、特定の住戸、オフィス、建物、地域の集合体に属する複数の電力消費
機器の集合体である、請求項1乃至16のいずれか一項に記載の電力制御システム。 - 前記1以上の電力消費要素は、移動体又は移動体の集合体である、請求項1乃至16の
いずれか一項に記載の電力制御システム。 - 個別に優先度が与えられた、ないし決定された1以上の情報伝達要素と、
制御時間間隔に比して、有意に短時間にて、前記1以上の情報伝達要素を含むグループ内
の全情報伝達要素に対して、一方向の情報の送信のみにて、該グループ内で共有すべき情
報を送達せしめる、同報送信要素を備え、
前記同報送信要素が、該グループ内で占有される総情報伝達能力の現在値と、該総情報
伝達能力の基準値との差を測定し、該差の関数である総情報伝達能力調整指示値を決定し、
該総情報伝達能力調整指示値を表わす該グループ内で共有すべき情報を生成し、該情報を
該グループ内に同報送信し、
前記1以上の情報伝達要素が前記同報送信された前記情報を受信し、該1以上の情報伝
達要素の各々が、自己に与えられた、ないし決定された前記優先度と前記総情報伝達能力
調整指示値とを用いた演算により、自己の情報伝達能力の更新に用いるべき情報伝達能力
更新値を、該1以上の情報伝達要素のうち自己以外の情報伝達要素及び前記同報送信要素
から独立して並列に算定し、該情報伝達能力更新値に基づいて自己の情報伝達能力を制御
することにより、該グループ内の総情報伝達能力を制御する
よう構成された、情報伝達能力制御システム。 - 前記同報送信要素が通信サーバーであり、前記情報伝達要素がクライアントマシンであ
り、前記情報伝達能力が通信速度である、請求項19に記載の情報伝達能力制御システム
。 - 個別に優先度が与えられた、ないし決定された1以上の電力消費要素を含むグループ内
で、
制御時間間隔に比して、有意に短時間にて、該グループ内の全消費電力要素に対して、一
方向の情報の送信のみにて、該グループ内で共有すべき情報を送達せしめる、同報送信要
素が備えられ、
前記同報送信要素が、消費される総消費電力の現在値と、該総消費電力の基準値との差
を測定する段階と、
前記同報送信要素が、前記差の関数である総消費電力調整指示値を決定し、該総消費電
力調整指示値を表わす前記グループ内で共有すべき情報を生成する段階と、
前記同報送信要素が、前記情報を前記グループ内に同報送信する段階と、
前記1以上の電力消費要素が、前記同報送信された前記情報を受信する段階と、
前記1以上の電力消費要素の各々が、自己に与えられた、ないし決定された前記優先度
と前記総消費電力調整指示値とを用いた演算により、自己の消費電力の更新に用いるべき
消費電力更新値を、該1以上の電力消費要素のうち自己以外の電力消費要素及び前記同報
送信要素から独立して並列に算定する段階と、
前記1以上の電力消費要素の各々が、前記消費電力更新値に基づいて自己の消費電力を
制御することにより、前記グループ内の総消費電力を制御する段階と
を備えた電力制御方法。 - 前記同報送信要素による前記総消費電力調整指示値の決定は、前記差に加えてシステム
感度の関数として該総消費電力調整指示値を決定することにより行われる、請求項21に
記載の電力制御方法。 - 前記1以上の電力消費要素のうち少なくとも1つにおいて前記優先度を動的に変更する
段階を更に備えた、請求項21又は22に記載の電力制御方法。 - 前記システム感度は、前記総消費電力の前記現在値が該総消費電力の前記基準値よりも
大きい場合と小さい場合とで異なり、該現在値が該基準値よりも大きい場合のシステム感
度を、該現在値が該基準値よりも小さい場合のシステム感度よりも高くすることにより、
該総消費電力の制御において該総消費電力の増加よりも削減の応答性が高くなるよう、且
つ安定性を改善するよう更に構成された、請求項22に記載の電力制御方法。 - 前記1以上の電力消費要素の各々が消費すべき電力には上限値と下限値が設けられ、該
1以上の電力消費要素の各々において行われる、前記消費電力更新値に基づいて自己の消
費電力を制御する前記段階が、該上限値を上回らず、且つ該下限値を下回らない消費電力
範囲内で行われるよう更に構成された、請求項21乃至24のいずれか一項に記載の電力
制御方法。 - 前記同報送信要素が更に、少なくとも1つの副制約積算消費電力調整指示値を算出する
段階と、該副制約積算消費電力調整指示値を表わす少なくとも1つの副制約情報を前記グ
ループ内に同報送信する段階と、
前記1以上の電力消費要素が、前記同報送信された前記副制約情報を更に受信する段階
と、
前記1以上の電力消費要素のうち、前記副制約情報に基づく制御の対象となる電力消費
要素が更に、自己に与えられた、ないし決定された前記優先度と前記副制約積算消費電力
調整指示値とを用いた演算により副制約消費電力更新値を決定し、該副制約消費電力更新
値に基づいて自己の消費電力を更に制御する段階と
を更に備えた、請求項21乃至26のいずれか一項に記載の電力制御方法。 - 前記同報送信に加えて、前記同報送信要素と前記1以上の電力消費要素のうち少なくと
も1つとの間で双方向通信する段階を更に備えた、請求項21乃至27のいずれか一項に
記載の電力制御方法。 - 上下階層からなる電力制御において、
下位階層において、制御時間間隔に比して、有意に短時間にて、1以上の電力消費要素
を含む下位階層グループ内の全消費電力要素に対して、一方向の情報の送信のみにて、該
グループ内で共有すべき情報を送達せしめる機能を備えた、同報送信要素が設けられ、
前記同報送信要素が、個別に上位階層優先度を与えられ、ないし決定され、
上位階層同報送信要素から同報送信される、上位階層総消費電力調整指示値を表わす上
位階層情報を受信する段階と、
前記同報送信要素が、個別に下位階層優先度が与えられた、ないし決定された1以上の
電力消費要素を含む下位階層グループ内で消費される下位階層総消費電力を測定する段階
と、
前記同報送信要素が、前記下位階層総消費電力と、前記上位階層優先度と、前記上位階
層総消費電力調整指示値とを用いた演算により、前記下位階層総消費電力の更新に用いる
べき、下位階層総消費電力調整指示値を決定し、該下位階層総消費電力調整指示値を表わ
す該下位階層グループ内で共有すべき下位階層情報を生成する段階と、
前記同報送信要素が、前記下位階層情報を前記下位階層グループ内に同報送信する段階
と、
前記1以上の電力消費要素が、前記同報送信要素から同報送信された前記下位階層情報
を受信する段階と、
前記1以上の電力消費要素の各々が、自己に与えられた、ないし決定された前記下位階
層優先度と前記下位階層総消費電力調整指示値とを用いた演算により、自己の消費電力の
更新に用いるべき消費電力更新値を、該1以上の電力消費要素のうち自己以外の電力消費
要素及び前記同報送信要素から独立して並列に算定する段階と、
前記1以上の電力消費要素の各々が、前記消費電力更新値に基づいて自己の消費電力を
制御することにより、前記下位階層グループ内の総消費電力を制御する段階と
を備えた電力制御方法。 - 前記同報送信要素による前記下位階層総消費電力調整指示値の決定は、前記下位階層総
消費電力と、前記上位階層優先度と、前記上位階層総消費電力調整指示値とに加えて下位
階層システム感度も用いた演算により該下位階層総消費電力調整指示値を決定することに
より行われる、請求項29に記載の電力制御方法。 - 前記上位階層優先度を動的に変更する段階を更に備えた、請求項29又は30に記載の
電力制御方法。 - 前記下位階層総消費電力調整指示値が下位階層グループ内の総消費電力の削減を指示す
る値である場合には、増加を指示する値である場合より前記下位階層システム感度を高く
することにより、該総消費電力の制御において該総消費電力の増加よりも削減の応答性が
高くなるよう、且つ安定性を改善するよう更に構成された、請求項30に記載の電力制御
方法。 - 前記下位階層グループ内で消費すべき総消費電力には上限値と下限値が設けられ、前記
同報送信要素において行われる前記下位階層総消費電力調整指示値の決定は、更新後の該
下位階層グループ内の総消費電力が該上限値を上回らず、且つ該下限値を下回らないと該
同報送信要素が判断した範囲で行われるよう更に構成された、請求項29乃至32のいず
れか一項に記載の電力制御方法。 - 前記同報送信要素が更に、少なくとも1つの副制約積算消費電力調整指示値を算出する
段階と、該副制約積算消費電力調整指示値を表わす少なくとも1つの副制約情報を前記下
位階層グループ内に同報送信する段階と、
前記1以上の電力消費要素が、前記同報送信された前記副制約情報を更に受信する段階
と、
前記1以上の電力消費要素のうち、前記副制約情報に基づく制御の対象となる電力消費
要素が更に、自己に与えられた、ないし決定された前記下位階層優先度と前記副制約積算
消費電力調整指示値とを用いた演算により副制約消費電力更新値を決定し、該副制約消費
電力更新値に基づいて自己の消費電力を更に制御する段階と
を更に備えた、請求項29乃至34のいずれか一項に記載の電力制御方法。 - 前記同報送信に加えて、前記同報送信要素と前記1以上の電力消費要素のうち少なくと
も1つとの間で双方向通信する段階を更に備えた、請求項29乃至35のいずれか一項に
記載の電力制御方法。 - 前記1以上の電力消費要素は、特定の住戸、オフィス、建物、地域に属する1以上の電
力消費機器、又は、特定の住戸、オフィス、建物、地域の集合体に属する複数の電力消費
機器の集合体である、請求項21乃至36のいずれか一項に記載の電力制御方法。 - 前記1以上の電力消費要素は、移動体又は移動体の集合体である、請求項21乃至37
のいずれか一項に記載の電力制御方法。 - 個別に優先度が与えられた、ないし決定された1以上の情報伝達要素を含むグループ内
で、
制御時間間隔に比して、有意に短時間にて、該グループ内の全情報伝達要素に対して、一
方向の情報の送信のみにて、該グループ内で共有すべき情報を送達せしめる、同報送信要
素が備えられ、
前記同報送信要素が、占有される総情報伝達能力の現在値と、該総情報伝達能力の基準
値との差を測定する段階と、
前記同報送信要素が、前記差の関数である総情報伝達能力調整指示値を決定し、該総情
報伝達能力調整指示値を表わす前記グループ内で共有すべき情報を生成する段階と、
前記同報送信要素が、前記情報を前記グループ内に同報送信する段階と、
前記1以上の情報伝達要素が、前記同報送信された前記情報を受信する段階と、
前記1以上の情報伝達要素の各々が、自己に与えられた、ないし決定された前記優先度
と前記総情報伝達能力調整指示値とを用いた演算により、自己の情報伝達能力の更新に用
いるべき情報伝達能力更新値を、該1以上の情報伝達要素のうち自己以外の情報伝達要素
及び前記同報送信要素から独立して並列に算定する段階と、
前記1以上の情報伝達要素の各々が、前記情報伝達能力更新値に基づいて自己の情報伝
達能力を制御することにより、前記グループ内の総情報伝達能力を制御する段階と
を備えた情報伝達能力制御方法。 - 前記同報送信要素が通信サーバーであり、前記情報伝達要素がクライアントマシンであ
り、前記情報伝達能力が通信速度である、請求項39に記載の情報伝達能力制御方法。 - 電力を直接に消費する、ないしは電力の供給を開閉する機能を備え、個別に優先度が与
えられた、ないし決定された1以上の電力消費要素と、
制御時間間隔に比して、有意に短時間にて、前記1以上の電力消費要素を含むグループ内
の全消費電力要素に対して、一方向の情報の送信のみにて、該グループ内で共有すべき情
報を送達せしめる、同報送信要素を備え、
前記同報送信要素が、前記1以上の電力消費要素を含むグループ内で消費される総消費
電力あるいは電力供給状態を示す多変量としての現在値と、該総消費電力あるいは電力供
給状態を示す多変量としての基準値との差を測定し、該差の関数である一般には多変量の
電力調整指示値を決定し、あるいは該電力調整指示値を他の要素から受領し、該電力調整
指示値を表わす該グループ内で共有すべき一般には多変量の情報を生成し、該情報を該グ
ループ内に同報送信し、
前記1以上の電力消費要素が前記同報送信された前記情報を受信し、該1以上の電力消
費要素の各々が、自己に与えられた、ないし決定された前記優先度と前記電力調整指示値
とを用いた演算により、自己の消費電力ないしは開閉電力の更新に用いるべき該電力更新
値を、該1以上の電力消費要素のうち自己以外の電力消費要素及び前記同報送信要素から
独立して並列に算定し、該電力更新値に基づいて自己の消費電力ないしは開閉電力を制御
することにより、該グループ内の総消費電力あるいは電力供給状態を制御する
よう構成された、電力制御システム。 - 電力を直接に消費する、ないしは電力の供給を開閉する機能を備え、個別に下位階層優
先度が与えられた、ないし決定された1以上の電力消費要素と、
制御時間間隔に比して、有意に短時間にて、前記1以上の電力消費要素を含む下位階層グ
ループ内の全消費電力要素に対して、一方向の情報の送信のみにて、該グループ内で共有
すべき情報を送達せしめる、上位階層優先度が与えられた、ないし決定された同報送信要
素を備え、
前記同報送信要素は、上位階層同報送信要素から同報送信される、上位階層における、
総消費電力ないしは電力供給状態から演算される、一般には多変量の電力調整指示値を表
わす上位階層情報を受信するよう構成されるとともに、
前記1以上の電力消費要素を含む下位階層グループ内で消費される下位階層総消費電力
ないしは電力供給状態を測定し、該下位階層総消費電力ないしは電力供給状態と、前記上
位階層優先度と、前記上位階層電力調整指示値とを用いた演算により、該下位階層総消費
電力ないしは電力供給状態の更新に用いるべき、一般には多変量の下位階層電力調整指示
値を決定し、あるいは該下位階層電力調整指示値を他の要素から受領し、該下位階層電力
調整指示値を表わす該下位階層グループ内で共有すべき下位階層情報を生成し、該下位階
層情報を該下位階層グループ内に同報送信するよう構成され、
前記1以上の電力消費要素が、前記同報送信要素から同報送信された前記下位階層情報
を受信するよう構成され、
前記1以上の電力消費要素の各々が、自己に与えられた、ないし決定された前記下位階
層優先度と前記下位階層電力調整指示値とを用いた演算により、自己の消費電力ないしは
電力供給状態の更新に用いるべき該電力更新値を、該1以上の電力消費要素のうち自己以
外の電力消費要素及び前記同報送信要素から独立して並列に算定し、該電力更新値に基づ
いて自己の消費電力ないし開閉電力を制御することにより、前記下位階層グループ内の総
消費電力ないしは電力供給状態を制御するよう
構成された、電力制御システム。 - 個別に優先度が与えられた、ないし決定された1以上の電力消費要素を含むグループ内
で、
制御時間間隔に比して、有意に短時間にて、前記1以上の電力消費要素を含むグループ内
の全消費電力要素に対して、一方向の情報の送信のみにて、該グループ内で共有すべき情
報を送達せしめ、電力を直接に消費する、ないしは電力の供給を開閉する機能を備えた、
同報送信要素が、
消費される総消費電力あるいは電力供給状態を示す多変量としての現在値と、該総消費
電力あるいは電力供給状態を示す多変量としての基準値との差を測定し、該差の関数であ
る一般には多変量の電力調整指示値を決定し、あるいは該電力調整指示値を他の要素から
受領し、該電力調整指示値を表わす該グループ内で共有すべき一般には多変量の情報を生
成し、該情報を該グループ内に同報送信し、
前記1以上の電力消費要素が前記同報送信された前記情報を受信し、該1以上の電力消
費要素の各々が、自己に与えられた、ないし決定された前記優先度と前記電力調整指示値
とを用いた演算により、自己の消費電力ないしは開閉電力の更新に用いるべき該電力更新
値を、該1以上の電力消費要素のうち自己以外の電力消費要素及び前記同報送信要素から
独立して並列に算定し、該電力更新値に基づいて自己の消費電力ないしは開閉電力を制御
することにより、該グループ内の総消費電力あるいは電力供給状態を制御する
よう構成された、電力制御方法。 - 上下階層からなる電力制御において、
下位階層において、制御時間間隔に比して、有意に短時間にて、1以上の電力消費要素
を含む下位階層グループ内の全消費電力要素に対して、一方向の情報の送信のみにて、該
グループ内で共有すべき情報を送達せしめる機能を備えた、同報送信要素が設けられ、
該同報送信要素が、上位階層優先度を与えられ、ないし決定され、
上位階層同報送信要素から同報送信される、上位階層における、総消費電力ないしは電
力供給状態から演算される、一般には多変量の電力調整指示値を表わす上位階層情報を受
信するとともに、
電力を直接に消費する、ないしは電力の供給を開閉する機能を備え、個別に下位階層優
先度が与えられた、ないし決定された1以上の電力消費要素を含む下位階層グループ内で
消費される下位階層総消費電力ないしは電力供給状態を測定し、該下位階層総消費電力な
いしは電力供給状態と、前記上位階層優先度と、前記上位階層電力調整指示値とを用いた
演算により、該下位階層総消費電力ないしは電力供給状態の更新に用いるべき、一般には
多変量の下位階層電力調整指示値を決定し、あるいは該下位階層電力調整指示値を他の要
素から受領し、該下位階層電力調整指示値を表わす該下位階層グループ内で共有すべき下
位階層情報を生成し、該下位階層情報を該下位階層グループ内に同報送信し、
前記1以上の電力消費要素が、前記同報送信要素から同報送信された前記下位階層情報
を受信し、
前記1以上の電力消費要素の各々が、自己に与えられた、ないし決定された前記下位階
層優先度と前記下位階層電力調整指示値とを用いた演算により、自己の消費電力ないしは
電力供給状態の更新に用いるべき該電力更新値を、該1以上の電力消費要素のうち自己以
外の電力消費要素及び前記同報送信要素から独立して並列に算定し、該電力更新値に基づ
いて自己の消費電力ないし開閉電力を制御することにより、前記下位階層グループ内の総
消費電力ないしは電力供給状態を制御する
よう構成された、電力制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580006283.3A CN105940425B (zh) | 2014-01-28 | 2015-01-27 | 电力控制系统、方法及信息传达能力控制系统、方法 |
KR1020167022662A KR101950077B1 (ko) | 2014-01-28 | 2015-01-27 | 전력 제어 시스템, 방법 및 정보 전달 능력 제어 시스템, 방법 |
EP15742751.9A EP3101617B1 (en) | 2014-01-28 | 2015-01-27 | Power control system and method, and information communication ability control system and method |
US15/113,573 US10050799B2 (en) | 2014-01-28 | 2015-01-27 | Power control system and method, and information communication ability control system and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-012924 | 2014-01-28 | ||
JP2014012924A JP2015141482A (ja) | 2014-01-28 | 2014-01-28 | 電力管理方法、及びシステム |
JP2014153348 | 2014-07-28 | ||
JP2014-153348 | 2014-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115385A1 true WO2015115385A1 (ja) | 2015-08-06 |
Family
ID=53756958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052091 WO2015115385A1 (ja) | 2014-01-28 | 2015-01-27 | 電力制御システム、方法、及び、情報伝達能力制御システム、方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10050799B2 (ja) |
EP (1) | EP3101617B1 (ja) |
KR (1) | KR101950077B1 (ja) |
CN (1) | CN105940425B (ja) |
WO (1) | WO2015115385A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033292A1 (ja) * | 2015-08-26 | 2017-03-02 | 川口淳一郎 | 電力制御を安定化させるシステム、方法 |
JPWO2018047263A1 (ja) * | 2016-09-08 | 2019-03-07 | 三菱電機株式会社 | 消費電力調整装置、消費電力調整システム、消費電力調整方法、及び、プログラム |
CN111725844A (zh) * | 2019-03-20 | 2020-09-29 | 丰田自动车株式会社 | 供需控制装置 |
WO2020194010A1 (ja) * | 2019-03-22 | 2020-10-01 | 日産自動車株式会社 | 受電要素の受電制御方法、及び受電制御装置 |
US11843271B2 (en) | 2019-03-22 | 2023-12-12 | Nissan Motor Co., Ltd. | Power reception control method for power storage element and power reception control device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2927482A1 (fr) * | 2016-04-20 | 2017-10-20 | Hydro Quebec | Etalonnnage en ligne de compteurs et detection de non-conformites electriques |
CN108302742B (zh) * | 2018-04-13 | 2020-05-29 | 珠海格力电器股份有限公司 | 空调机组的控制器和空调器 |
CN109561426A (zh) * | 2018-11-20 | 2019-04-02 | 浙江威星智能仪表股份有限公司 | 一种无线射频gfsk组网通讯的可靠性方法 |
WO2022172045A1 (ja) | 2021-02-10 | 2022-08-18 | 日産自動車株式会社 | 充放電要素の充放電制御方法、及び充放電要素の充放電制御装置 |
US12057726B2 (en) * | 2021-02-10 | 2024-08-06 | Nissan Motor Co., Ltd. | Charge-discharge control method and charge-discharge control device |
WO2022180787A1 (ja) * | 2021-02-26 | 2022-09-01 | 三菱電機株式会社 | 電圧管理装置、電圧指令装置、電力系統監視システム、計測装置、電圧管理方法および電圧管理プログラム |
CN114296420A (zh) * | 2021-04-30 | 2022-04-08 | 华为数字能源技术有限公司 | 一种用于车辆的控制系统和车辆 |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4481774A (en) | 1978-01-18 | 1984-11-13 | Snook Stephen Robert | Solar canopy and solar augmented wind power station |
JPH0313438A (ja) | 1989-06-09 | 1991-01-22 | Hitachi Cable Ltd | 合成樹脂光伝送体を用いた光反射型用紙検知装置 |
JPH0731013A (ja) | 1993-07-13 | 1995-01-31 | Sekisui Chem Co Ltd | 屋内電気配線システム |
JPH07308036A (ja) | 1994-03-18 | 1995-11-21 | Hitachi Ltd | 配電系統監視方法,配電系統制御方法およびそれら装置 |
JPH08182194A (ja) * | 1994-12-27 | 1996-07-12 | Mark Tec:Kk | 最大需要電力制御装置 |
US5581130A (en) | 1992-04-22 | 1996-12-03 | Valoe Electronique | Circuit board for the control and/or power supply of electrical function devices of a vehicle |
JPH0993820A (ja) | 1995-09-22 | 1997-04-04 | Omron Corp | 太陽光発電装置 |
JPH1042481A (ja) | 1996-07-25 | 1998-02-13 | Hitachi Ltd | 車両用電源制御装置 |
JPH1145101A (ja) | 1997-07-25 | 1999-02-16 | Tokyo Electric Power Co Inc:The | 監視制御システム |
JPH11313438A (ja) | 1998-03-23 | 1999-11-09 | Electric Boat Corp | 電力配電系統用障害保護装置 |
JP2000016200A (ja) | 1998-07-03 | 2000-01-18 | Hitachi Ltd | 車両用電源制御装置 |
US6030718A (en) | 1997-11-20 | 2000-02-29 | Avista Corporation | Proton exchange membrane fuel cell power system |
JP2001069668A (ja) | 1999-08-27 | 2001-03-16 | Matsushita Seiko Co Ltd | 電力管理装置 |
US6310439B1 (en) | 1999-03-15 | 2001-10-30 | Lutron Electronics Company, Inc. | Distributed parallel semiconductor device spaced for improved thermal distribution and having reduced power dissipation |
JP2002027686A (ja) | 2000-07-10 | 2002-01-25 | Fuji Electric Co Ltd | 店舗内機器の消費電力制御方法 |
JP2003511842A (ja) | 1999-10-11 | 2003-03-25 | シュネーデル、エレクトリック、インダストリーズ、エスアーエス | コンタクタ・ブレーカー |
JP2004208393A (ja) | 2002-08-08 | 2004-07-22 | Tai-Her Yang | 優先の電源供給順序が設定できるマルチ出力回路装置 |
JP2004328184A (ja) | 2003-04-23 | 2004-11-18 | Daikin Ind Ltd | 管理制御システム、情報伝送方法、通信方法、ネットワークノード、送受信装置、情報共有装置、空調機器及び集中制御装置 |
JP2004348411A (ja) | 2003-05-22 | 2004-12-09 | Matsushita Electric Ind Co Ltd | 中央監視制御システム一体型分散型受配電設備 |
JP2005513900A (ja) | 2001-12-20 | 2005-05-12 | エネル ディストリビュズィオーネ ソシエタ ペル アチオニ | 家庭向けを含む電気エネルギー消費の遠隔取得及び分散した目標ユーザの遠隔制御のためのシステム |
JP2005178778A (ja) | 2005-02-14 | 2005-07-07 | Hitachi Ltd | 自動車用電源端末装置及び自動車の電力供給システム |
US6961641B1 (en) | 1994-12-30 | 2005-11-01 | Power Measurement Ltd. | Intra-device communications architecture for managing electrical power distribution and consumption |
US6965269B2 (en) | 2002-01-31 | 2005-11-15 | Kabushiki Kaisha Toshiba | Microwave phase shifter having an active layer under the phase shifting line and power amplifier using such a phase shifter |
JP2007228234A (ja) | 2006-02-23 | 2007-09-06 | Daikin Ind Ltd | 伝送制御装置、機器管理システム及び伝送制御方法 |
JP2007240084A (ja) | 2006-03-09 | 2007-09-20 | Daikin Ind Ltd | 空気調和機および空気調和機におけるアドレス設定方法 |
JP2007311950A (ja) * | 2006-05-17 | 2007-11-29 | Nec Corp | 無線システム、基地局、携帯端末及びそれらに用いる基地局電力制御方法並びにそのプログラム |
US7320218B2 (en) | 2004-10-12 | 2008-01-22 | Guy Silver | Method and system for generation of power using stirling engine principles |
JP2008090607A (ja) | 2006-10-02 | 2008-04-17 | Japan Aerospace Exploration Agency | 資源の制約をともなう自律分散型制御 |
US7421601B2 (en) | 2006-02-17 | 2008-09-02 | International Business Machines Corporation | Method and system for controlling power in a chip through a power-performance monitor and control unit |
JP2009094768A (ja) | 2007-10-09 | 2009-04-30 | Panasonic Corp | 電力線通信装置及び電力線通信装置の自動登録方法 |
JP2009272966A (ja) | 2008-05-08 | 2009-11-19 | Daikin Ind Ltd | 機器設備管理システム |
JP2010019530A (ja) | 2008-07-14 | 2010-01-28 | Daikin Ind Ltd | 空調システム及び通信トラフィック調整方法 |
US7755111B2 (en) | 2005-11-23 | 2010-07-13 | Lsi Corporation | Programmable power management using a nanotube structure |
US7805621B2 (en) | 2006-09-29 | 2010-09-28 | Broadcom Corporation | Method and apparatus for providing a bus interface with power management features |
US7825325B2 (en) | 2006-09-27 | 2010-11-02 | Kennedy & Violich Architecture Ltd. | Portable lighting and power-generating system |
JP2010279238A (ja) | 2009-04-28 | 2010-12-09 | Tokyo Electric Power Co Inc:The | 系統監視制御システム |
US7970374B2 (en) | 2005-10-03 | 2011-06-28 | Broadcom Corporation | Multi-wideband communications over power lines |
JP2011234561A (ja) | 2010-04-28 | 2011-11-17 | Nf Corp | インテリジェント分電盤、分電装置、停電対策システム及び分電方法 |
JP2011242030A (ja) | 2010-05-17 | 2011-12-01 | Daikin Industries Ltd | 空調制御装置 |
JP2012085511A (ja) | 2010-10-08 | 2012-04-26 | Taida Electronic Ind Co Ltd | 充電効率制御を有し且つ適応性充電サービスを提供する車両充電システム |
JP2012161202A (ja) | 2011-02-02 | 2012-08-23 | Mitsubishi Electric Corp | 階層型需給制御装置および電力系統制御システム |
US8276002B2 (en) | 2009-11-23 | 2012-09-25 | International Business Machines Corporation | Power delivery in a heterogeneous 3-D stacked apparatus |
JP2013038470A (ja) | 2011-08-03 | 2013-02-21 | Daikin Ind Ltd | 電気機器の制御装置および制御システム |
JP2013038885A (ja) | 2011-08-06 | 2013-02-21 | Takayasu Kanemura | 自家発電システム |
JP2013070569A (ja) | 2011-09-26 | 2013-04-18 | Aisin Seiki Co Ltd | 分散型電源システム |
US8466760B2 (en) | 2007-05-09 | 2013-06-18 | Innovative Micro Technology | Configurable power supply using MEMS switch |
US8504214B2 (en) | 2010-06-18 | 2013-08-06 | General Electric Company | Self-healing power grid and method thereof |
US8508540B2 (en) | 2009-07-08 | 2013-08-13 | Nvidia Corporation | Resonant induction to power a graphics processing unit |
JP2013219661A (ja) * | 2012-04-11 | 2013-10-24 | Bluemouse Technology Co Ltd | 電力線通信装置 |
US8588991B1 (en) | 2012-07-31 | 2013-11-19 | Causam Holdings, LLC | System, method, and apparatus for electric power grid and network management of grid elements |
JP2014012924A (ja) | 2009-06-26 | 2014-01-23 | Nippon Paper Industries Co Ltd | 印刷用紙 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5963457A (en) | 1994-03-18 | 1999-10-05 | Hitachi, Ltd. | Electrical power distribution monitoring system and method |
US7265652B2 (en) | 2001-07-10 | 2007-09-04 | Yingco Electronic Inc. | Controllable electronic switch |
US6636141B2 (en) | 2001-07-10 | 2003-10-21 | Yingco Electronic Inc. | Controllable electronic switch |
US6832135B2 (en) | 2001-07-10 | 2004-12-14 | Yingco Electronic Inc. | System for remotely controlling energy distribution at local sites |
US6825750B2 (en) | 2001-07-10 | 2004-11-30 | Yingco Electronic Inc. | Controllable electronic switch with interposable non-conductive element to break circuit path |
US6861956B2 (en) | 2001-07-10 | 2005-03-01 | Yingco Electronic Inc. | Remotely controllable wireless energy control unit |
US7324876B2 (en) | 2001-07-10 | 2008-01-29 | Yingco Electronic Inc. | System for remotely controlling energy distribution at local sites |
EP1454399A2 (en) | 2001-11-30 | 2004-09-08 | Yingco Electronic Inc. | System for remotely controlling energy distribution at local sites |
JP4032903B2 (ja) | 2002-09-27 | 2008-01-16 | ダイキン工業株式会社 | 目標電力制御システム |
EP1566875A1 (en) | 2004-02-19 | 2005-08-24 | Alcatel | Energy management method |
JP2006050862A (ja) | 2004-08-09 | 2006-02-16 | Inter Db:Kk | 電力制御システム |
US7917166B2 (en) | 2006-06-16 | 2011-03-29 | Samsung Electronics Co., Ltd. | System and method for controlling power in a communication system |
US8019373B2 (en) | 2006-06-16 | 2011-09-13 | Samsung Electronics Co., Ltd | System and method for controlling power in a communication system |
KR100978787B1 (ko) | 2006-06-16 | 2010-08-30 | 삼성전자주식회사 | 통신 시스템에서의 전력 제어 방법 및 장치 |
DE102008040272A1 (de) * | 2008-07-09 | 2010-01-14 | Robert Bosch Gmbh | Steuereinrichtung und Verfahren zum Steuern eines an eine Energieversorgung angeschlossenen Geräts |
JP4823322B2 (ja) * | 2009-01-28 | 2011-11-24 | 株式会社東芝 | 分散協調型需給制御ノード、ローカル電力系統の分散協調型需給制御システム及びその分散協調型需給制御方法 |
US8355746B2 (en) * | 2009-06-12 | 2013-01-15 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving group resource deallocation information in a communication system |
EP2354890B1 (en) * | 2010-01-25 | 2014-10-15 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling operations of devices based on information regarding power consumption of the devices |
JP2013027211A (ja) | 2011-07-22 | 2013-02-04 | Toshiba Corp | 電気機器制御システム及び電気機器制御装置 |
CN103503263B (zh) | 2011-08-11 | 2015-12-16 | 三菱电机株式会社 | 机器设备的需求控制装置 |
JP2013048326A (ja) | 2011-08-29 | 2013-03-07 | Nippon Telegr & Teleph Corp <Ntt> | 家電機器制御システムおよび家電機器制御方法 |
US8621026B2 (en) * | 2011-09-11 | 2013-12-31 | Microsoft Corporation | Batching notifications to optimize for battery life |
JP2013098672A (ja) | 2011-10-31 | 2013-05-20 | Hitachi Consumer Electronics Co Ltd | 制御装置及び制御対象機器 |
JP5743881B2 (ja) * | 2011-12-28 | 2015-07-01 | 株式会社東芝 | 電力管理システム、電力管理方法、需要家端末及び電力管理装置 |
JP5731416B2 (ja) | 2012-01-12 | 2015-06-10 | 株式会社日立製作所 | 電力制御システム、電力制御装置及び電力制御方法 |
JP5843690B2 (ja) | 2012-05-11 | 2016-01-13 | 三菱電機ビルテクノサービス株式会社 | 電気制御装置及び使用電力制御システム |
TWI520460B (zh) | 2012-07-13 | 2016-02-01 | 日東電工股份有限公司 | 隨選型複數電源管理系統、隨選型複數電源管理系統程式及記錄該程式之電腦可讀取記錄媒體 |
CN104137384A (zh) | 2013-01-11 | 2014-11-05 | 日东电工株式会社 | 按需型电力控制系统、按需型电力控制系统程序以及记录该程序的计算机可读记录介质 |
JP6150624B2 (ja) | 2013-06-10 | 2017-06-21 | 協立電機株式会社 | 電力制御装置 |
JP6285718B2 (ja) | 2013-08-29 | 2018-02-28 | 株式会社日立システムズ | 広域管理システム、広域管理装置、建物管理装置、および広域管理方法 |
WO2015079493A1 (ja) | 2013-11-26 | 2015-06-04 | 三菱電機株式会社 | エネルギー管理システム、電力計測装置、負荷機器、通信アダプタ、システムコントローラ、エネルギー管理方法及びプログラム |
-
2015
- 2015-01-27 US US15/113,573 patent/US10050799B2/en active Active
- 2015-01-27 KR KR1020167022662A patent/KR101950077B1/ko active IP Right Grant
- 2015-01-27 CN CN201580006283.3A patent/CN105940425B/zh active Active
- 2015-01-27 EP EP15742751.9A patent/EP3101617B1/en active Active
- 2015-01-27 WO PCT/JP2015/052091 patent/WO2015115385A1/ja active Application Filing
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4481774A (en) | 1978-01-18 | 1984-11-13 | Snook Stephen Robert | Solar canopy and solar augmented wind power station |
JPH0313438A (ja) | 1989-06-09 | 1991-01-22 | Hitachi Cable Ltd | 合成樹脂光伝送体を用いた光反射型用紙検知装置 |
US5581130A (en) | 1992-04-22 | 1996-12-03 | Valoe Electronique | Circuit board for the control and/or power supply of electrical function devices of a vehicle |
JPH0731013A (ja) | 1993-07-13 | 1995-01-31 | Sekisui Chem Co Ltd | 屋内電気配線システム |
JPH07308036A (ja) | 1994-03-18 | 1995-11-21 | Hitachi Ltd | 配電系統監視方法,配電系統制御方法およびそれら装置 |
JPH08182194A (ja) * | 1994-12-27 | 1996-07-12 | Mark Tec:Kk | 最大需要電力制御装置 |
US6961641B1 (en) | 1994-12-30 | 2005-11-01 | Power Measurement Ltd. | Intra-device communications architecture for managing electrical power distribution and consumption |
JPH0993820A (ja) | 1995-09-22 | 1997-04-04 | Omron Corp | 太陽光発電装置 |
JPH1042481A (ja) | 1996-07-25 | 1998-02-13 | Hitachi Ltd | 車両用電源制御装置 |
JPH1145101A (ja) | 1997-07-25 | 1999-02-16 | Tokyo Electric Power Co Inc:The | 監視制御システム |
US6030718A (en) | 1997-11-20 | 2000-02-29 | Avista Corporation | Proton exchange membrane fuel cell power system |
JPH11313438A (ja) | 1998-03-23 | 1999-11-09 | Electric Boat Corp | 電力配電系統用障害保護装置 |
JP2000016200A (ja) | 1998-07-03 | 2000-01-18 | Hitachi Ltd | 車両用電源制御装置 |
US6310439B1 (en) | 1999-03-15 | 2001-10-30 | Lutron Electronics Company, Inc. | Distributed parallel semiconductor device spaced for improved thermal distribution and having reduced power dissipation |
JP2001069668A (ja) | 1999-08-27 | 2001-03-16 | Matsushita Seiko Co Ltd | 電力管理装置 |
JP2003511842A (ja) | 1999-10-11 | 2003-03-25 | シュネーデル、エレクトリック、インダストリーズ、エスアーエス | コンタクタ・ブレーカー |
JP2002027686A (ja) | 2000-07-10 | 2002-01-25 | Fuji Electric Co Ltd | 店舗内機器の消費電力制御方法 |
JP2005513900A (ja) | 2001-12-20 | 2005-05-12 | エネル ディストリビュズィオーネ ソシエタ ペル アチオニ | 家庭向けを含む電気エネルギー消費の遠隔取得及び分散した目標ユーザの遠隔制御のためのシステム |
JP2010148125A (ja) | 2001-12-20 | 2010-07-01 | Enel Distribuzione Spa | 家庭向けを含む電気エネルギー消費の遠隔取得及び分散した目標ユーザの遠隔制御のためのシステム |
US6965269B2 (en) | 2002-01-31 | 2005-11-15 | Kabushiki Kaisha Toshiba | Microwave phase shifter having an active layer under the phase shifting line and power amplifier using such a phase shifter |
JP2004208393A (ja) | 2002-08-08 | 2004-07-22 | Tai-Her Yang | 優先の電源供給順序が設定できるマルチ出力回路装置 |
JP2004328184A (ja) | 2003-04-23 | 2004-11-18 | Daikin Ind Ltd | 管理制御システム、情報伝送方法、通信方法、ネットワークノード、送受信装置、情報共有装置、空調機器及び集中制御装置 |
JP2004348411A (ja) | 2003-05-22 | 2004-12-09 | Matsushita Electric Ind Co Ltd | 中央監視制御システム一体型分散型受配電設備 |
US7320218B2 (en) | 2004-10-12 | 2008-01-22 | Guy Silver | Method and system for generation of power using stirling engine principles |
JP2005178778A (ja) | 2005-02-14 | 2005-07-07 | Hitachi Ltd | 自動車用電源端末装置及び自動車の電力供給システム |
US7970374B2 (en) | 2005-10-03 | 2011-06-28 | Broadcom Corporation | Multi-wideband communications over power lines |
US7755111B2 (en) | 2005-11-23 | 2010-07-13 | Lsi Corporation | Programmable power management using a nanotube structure |
US8112642B2 (en) | 2006-02-17 | 2012-02-07 | International Business Machines Corporation | Method and system for controlling power in a chip through a power-performance monitor and control unit |
US7421601B2 (en) | 2006-02-17 | 2008-09-02 | International Business Machines Corporation | Method and system for controlling power in a chip through a power-performance monitor and control unit |
JP2007228234A (ja) | 2006-02-23 | 2007-09-06 | Daikin Ind Ltd | 伝送制御装置、機器管理システム及び伝送制御方法 |
JP2007240084A (ja) | 2006-03-09 | 2007-09-20 | Daikin Ind Ltd | 空気調和機および空気調和機におけるアドレス設定方法 |
JP2007311950A (ja) * | 2006-05-17 | 2007-11-29 | Nec Corp | 無線システム、基地局、携帯端末及びそれらに用いる基地局電力制御方法並びにそのプログラム |
US7825325B2 (en) | 2006-09-27 | 2010-11-02 | Kennedy & Violich Architecture Ltd. | Portable lighting and power-generating system |
US7805621B2 (en) | 2006-09-29 | 2010-09-28 | Broadcom Corporation | Method and apparatus for providing a bus interface with power management features |
JP2008090607A (ja) | 2006-10-02 | 2008-04-17 | Japan Aerospace Exploration Agency | 資源の制約をともなう自律分散型制御 |
US8466760B2 (en) | 2007-05-09 | 2013-06-18 | Innovative Micro Technology | Configurable power supply using MEMS switch |
JP2009094768A (ja) | 2007-10-09 | 2009-04-30 | Panasonic Corp | 電力線通信装置及び電力線通信装置の自動登録方法 |
JP2009272966A (ja) | 2008-05-08 | 2009-11-19 | Daikin Ind Ltd | 機器設備管理システム |
JP2010019530A (ja) | 2008-07-14 | 2010-01-28 | Daikin Ind Ltd | 空調システム及び通信トラフィック調整方法 |
JP2010279238A (ja) | 2009-04-28 | 2010-12-09 | Tokyo Electric Power Co Inc:The | 系統監視制御システム |
JP2014012924A (ja) | 2009-06-26 | 2014-01-23 | Nippon Paper Industries Co Ltd | 印刷用紙 |
US8508540B2 (en) | 2009-07-08 | 2013-08-13 | Nvidia Corporation | Resonant induction to power a graphics processing unit |
US8276002B2 (en) | 2009-11-23 | 2012-09-25 | International Business Machines Corporation | Power delivery in a heterogeneous 3-D stacked apparatus |
JP2011234561A (ja) | 2010-04-28 | 2011-11-17 | Nf Corp | インテリジェント分電盤、分電装置、停電対策システム及び分電方法 |
JP2011242030A (ja) | 2010-05-17 | 2011-12-01 | Daikin Industries Ltd | 空調制御装置 |
US8504214B2 (en) | 2010-06-18 | 2013-08-06 | General Electric Company | Self-healing power grid and method thereof |
JP2012085511A (ja) | 2010-10-08 | 2012-04-26 | Taida Electronic Ind Co Ltd | 充電効率制御を有し且つ適応性充電サービスを提供する車両充電システム |
JP2012161202A (ja) | 2011-02-02 | 2012-08-23 | Mitsubishi Electric Corp | 階層型需給制御装置および電力系統制御システム |
JP2013038470A (ja) | 2011-08-03 | 2013-02-21 | Daikin Ind Ltd | 電気機器の制御装置および制御システム |
JP2013038885A (ja) | 2011-08-06 | 2013-02-21 | Takayasu Kanemura | 自家発電システム |
JP2013070569A (ja) | 2011-09-26 | 2013-04-18 | Aisin Seiki Co Ltd | 分散型電源システム |
JP2013219661A (ja) * | 2012-04-11 | 2013-10-24 | Bluemouse Technology Co Ltd | 電力線通信装置 |
US8588991B1 (en) | 2012-07-31 | 2013-11-19 | Causam Holdings, LLC | System, method, and apparatus for electric power grid and network management of grid elements |
Non-Patent Citations (3)
Title |
---|
"Smart Home", RENESAS ELECTRONICS INC. |
TMC NEWS HITACHI OFFERS CONNECTED AIR CONDITIONERS WITH YITRAN'S IT800 POWER LINE COMMUNICATION CHIP, 27 September 2005 (2005-09-27), Retrieved from the Internet <URL:URL:http://technews.tmcnet.com/ivr/news/2005/sep/1186941.htm> |
TMC NEWS HITACHI OFFERS CONNECTED AIR CONDITIONERS WITH YITRAN'S IT800 POWER LINE COMMUNICATION CHIP, Retrieved from the Internet <URL:URL:http://technews.tmcnet.com/ivr/news/2005/sep/1186941.htm> |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033292A1 (ja) * | 2015-08-26 | 2017-03-02 | 川口淳一郎 | 電力制御を安定化させるシステム、方法 |
JPWO2018047263A1 (ja) * | 2016-09-08 | 2019-03-07 | 三菱電機株式会社 | 消費電力調整装置、消費電力調整システム、消費電力調整方法、及び、プログラム |
CN111725844A (zh) * | 2019-03-20 | 2020-09-29 | 丰田自动车株式会社 | 供需控制装置 |
CN111725844B (zh) * | 2019-03-20 | 2024-05-03 | 丰田自动车株式会社 | 供需控制装置 |
WO2020194010A1 (ja) * | 2019-03-22 | 2020-10-01 | 日産自動車株式会社 | 受電要素の受電制御方法、及び受電制御装置 |
JPWO2020194010A1 (ja) * | 2019-03-22 | 2020-10-01 | ||
US11390186B2 (en) | 2019-03-22 | 2022-07-19 | Nissan Motor Co., Ltd. | Power reception control method for power reception element and power reception control device |
JP7213335B2 (ja) | 2019-03-22 | 2023-01-26 | 日産自動車株式会社 | 受電要素の受電制御方法、及び受電制御装置 |
US11843271B2 (en) | 2019-03-22 | 2023-12-12 | Nissan Motor Co., Ltd. | Power reception control method for power storage element and power reception control device |
Also Published As
Publication number | Publication date |
---|---|
EP3101617A1 (en) | 2016-12-07 |
CN105940425A (zh) | 2016-09-14 |
KR20160114095A (ko) | 2016-10-04 |
CN105940425B (zh) | 2020-11-24 |
US20170010595A1 (en) | 2017-01-12 |
US10050799B2 (en) | 2018-08-14 |
EP3101617A4 (en) | 2017-11-29 |
KR101950077B1 (ko) | 2019-02-19 |
EP3101617B1 (en) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015115385A1 (ja) | 電力制御システム、方法、及び、情報伝達能力制御システム、方法 | |
JP6168528B2 (ja) | 電力制御システム、方法、及び、情報伝達能力制御システム、方法 | |
US8731732B2 (en) | Methods and system to manage variability in production of renewable energy | |
Setiawan et al. | A new technique for simultaneous load current sharing and voltage regulation in DC microgrids | |
US10048666B2 (en) | System and method for the distributed control and management of a microgrid | |
WO2018113265A1 (zh) | 无功功率的控制方法、装置和系统 | |
US11145012B2 (en) | Using cyber-physical system-enabled microgrid system for optimal power utilization and supply strategy | |
CN110114766B (zh) | 对分配电能的现有电网进行构造的方法 | |
CN106505630B (zh) | 基于事件触发机制的孤岛微电网频率电压协调控制方法 | |
WO2019148976A1 (zh) | 能源信息处理方法及其设备、能源互联网系统 | |
JP2010279238A (ja) | 系統監視制御システム | |
CN110957807B (zh) | 分布式能源的配电网能量信息管控系统及方法 | |
CN104348150A (zh) | 电力负荷管控方法、服务器、终端及系统 | |
CN103138293A (zh) | 火电厂厂级负荷优化分配方法及系统 | |
JP7102182B2 (ja) | 電力システム、制御装置、電力管理方法、プログラム、及び、電力管理サーバ | |
WO2019117071A1 (ja) | 群管理システム、電力制御装置、送信方法、プログラム | |
JP2015141482A (ja) | 電力管理方法、及びシステム | |
WO2017033292A1 (ja) | 電力制御を安定化させるシステム、方法 | |
US20230155414A1 (en) | Network for Distributing Electrical Energy | |
Jamian et al. | Conceptual data management and communication for smart distribution system | |
WO2018181731A1 (ja) | エネルギー管理方法、エネルギー管理装置及びエネルギー管理システム | |
CN107124010B (zh) | 一种用于柔性直流配电网的网络偏差响应指标的控制方法 | |
Stefani et al. | Grid optimization using DER grid support functions | |
EP3731172A1 (en) | System and method for district energy management | |
WO2019131228A1 (ja) | 電力制御装置、電力制御方法、プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15742751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167022662 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15113573 Country of ref document: US Ref document number: IDP00201605537 Country of ref document: ID |
|
REEP | Request for entry into the european phase |
Ref document number: 2015742751 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015742751 Country of ref document: EP |