WO2019148976A1 - 能源信息处理方法及其设备、能源互联网系统 - Google Patents

能源信息处理方法及其设备、能源互联网系统 Download PDF

Info

Publication number
WO2019148976A1
WO2019148976A1 PCT/CN2018/120624 CN2018120624W WO2019148976A1 WO 2019148976 A1 WO2019148976 A1 WO 2019148976A1 CN 2018120624 W CN2018120624 W CN 2018120624W WO 2019148976 A1 WO2019148976 A1 WO 2019148976A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
energy device
device itself
information
priority
Prior art date
Application number
PCT/CN2018/120624
Other languages
English (en)
French (fr)
Inventor
董明珠
赵志刚
罗晓
王灵军
任鹏
文武
张雪芬
李伟进
蒋世用
黄猛
曾云洪
刘洪明
张智伟
邵世卓
林宝伟
黄建军
佘国聪
卢扬渐
吴文豪
南树功
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019148976A1 publication Critical patent/WO2019148976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/18Network protocols supporting networked applications, e.g. including control of end-device applications over a network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present disclosure relates to the field of energy information, and in particular, to an energy information processing method and device thereof, and an energy internet system.
  • an energy device comprising: an interface module configured to receive energy information reported by other energy devices in the system, wherein the energy device in the system is in an access energy source When the Internet system, the exiting energy Internet system, or the energy data changes, the energy information is reported by itself; the energy state identification module is configured to determine whether the system is in an energy-stress state according to the current energy supply status of the system after the receiving module receives the energy information.
  • the power consumption adjustment module is configured to reduce the power consumption of the energy device itself when the system is in an energy tight state.
  • the power consumption adjustment module is further configured to query the priority of the energy device itself when the system is in an energy tight state, and in the case that the energy device itself has the highest priority, the wrong The power consumption of the energy device itself is adjusted; when the priority of the energy device itself is not the highest level, the power consumption of the energy device itself is reduced.
  • the power consumption adjustment module is further configured to further determine whether the priority of the energy device itself is the lowest level if the priority of the energy device itself is not the highest level, and the priority of the energy device itself When the level is the lowest level, the power consumption of the energy device itself is reduced.
  • the power consumption adjustment module is further configured to: if the priority of the energy device itself is not the lowest level, if the system is in an energy stress state, query whether there is a lower level than the self level in the system, and An energy device that has not reduced power consumption adjusts the power consumption of the energy device itself in the absence of an energy device that is lower than its own level and has not reduced power consumption.
  • the energy information includes voltage, current, power, and power information.
  • the energy device further includes: an access management module configured to determine, when the energy device accesses the energy internet system, whether the system is in an energy source after the energy device accesses the energy internet system according to the current energy supply status of the system. In a state of tension, when the system is in an energy-stressed state, it is determined that the energy device is not connected to the energy Internet system; when the system is not in a state of energy stress, the energy device is determined to access the energy Internet system, and access to the energy Internet system The energy information of the energy device itself is reported later.
  • an access management module configured to determine, when the energy device accesses the energy internet system, whether the system is in an energy source after the energy device accesses the energy internet system according to the current energy supply status of the system. In a state of tension, when the system is in an energy-stressed state, it is determined that the energy device is not connected to the energy Internet system; when the system is not in a state of energy stress, the energy device is determined to access the energy Internet system, and access
  • the access management module is further configured to determine, when the energy device accesses the energy internet system, whether the priority of the energy device itself is the highest level, and the priority of the energy device itself is the highest level. Next, determine that the energy device is connected to the energy Internet system; and if the priority of the energy device itself is not the highest level, perform an operation of judging whether the system is in an energy-tight state after the energy device is connected to the energy Internet system.
  • an energy information processing method includes: receiving energy information reported by other energy devices in a system, wherein an energy device in the system accesses an energy internet system, exits When the energy Internet system or energy data changes, it will report the energy information by itself; according to the current energy supply status of the system, it is judged whether the system is in an energy-tight state; when the system is in an energy-stressed state, the power consumption of the energy device itself is reduced.
  • reducing the power consumption of the energy device itself when the system is in an energy-stressed state includes: querying the priority of the energy device itself when the system is in an energy-stressed state; When the priority is the highest level, the power consumption of the energy device itself is not adjusted; when the priority of the energy device itself is not the highest level, the power consumption of the energy device itself is reduced.
  • reducing the power consumption of the energy device itself includes: further determining the energy device itself if the priority of the energy device itself is not the highest level Whether the priority of the energy device is the lowest level; when the priority of the energy device itself is the lowest level, the power consumption of the energy device itself is reduced.
  • the priority of the energy device itself is not the lowest level, if the system is in an energy tight state, whether there is an energy device in the system that is lower than its own level and has not reduced the power consumption. In the case where there is no energy device that is lower than its own level and has not reduced the power consumption, the power consumption of the energy device itself is adjusted.
  • the energy information includes voltage, current, power, and power information.
  • the energy device when the energy device is connected to the energy internet system, according to the current energy supply status of the system, it is determined whether the system is in an energy-tight state after the energy device is connected to the energy internet system; in the case that the system is in an energy-stress state, It is determined that the energy device is not connected to the energy internet system; when the system is not in an energy tight state, the energy device is determined to access the energy internet system, and the energy information of the energy device itself is reported after accessing the energy internet system.
  • the method when the energy device accesses the energy internet system, the method further includes: determining whether the priority of the energy device itself is the highest level; determining the energy device access if the energy device itself has the highest priority Energy Internet system; in the case where the priority of the energy device itself is not the highest level, the operation of judging whether the system is in an energy-tight state after the energy device is connected to the energy Internet system is performed.
  • an energy device comprising: a memory configured to store instructions; a processor coupled to the memory, the processor configured to execute the implementation based on the instructions stored by the memory A method as in any of the above embodiments.
  • an energy Internet system comprising: an energy device according to any of the above embodiments; an information gateway configured to collect energy information of a corresponding energy device in the system, And reporting the energy information to the control gateway; the control gateway is configured to report the energy information to the server; the server is configured to analyze the energy information, and control the related energy device according to the analysis result.
  • the server is further configured to determine whether the energy device has failed based on the energy information, and perform an alarm process in the event of a failure of the energy device.
  • the energy internet system further includes: a monitoring interaction device configured to interact with the control gateway to monitor the energy information.
  • the energy internet system further includes a management interaction device configured to interact with the server by wire or wirelessly to manage the energy internet system.
  • the energy internet system further includes an energy trading platform configured to interact with the server to implement an energy trading operation.
  • the energy trading platform is also configured to employ a blockchain for energy trading operations.
  • the energy device includes at least four types of energy devices, wherein the first energy device is a power generation device, the second energy device is a power storage device, and the third energy device is a power grid device, and the fourth The energy equipment is a power equipment.
  • communication between the energy devices, and between the energy device, the information gateway, and the control gateway is performed using a DC carrier communication method of the CAN protocol.
  • a computer readable storage medium stores computer instructions that, when executed by a processor, implement any of the embodiments described above method.
  • FIG. 1 is an exemplary block diagram of an energy device according to an embodiment of the present disclosure
  • FIG. 2 is an exemplary block diagram of an energy device in accordance with another embodiment of the present disclosure.
  • FIG. 3 is an exemplary flowchart of an energy information processing method according to an embodiment of the present disclosure
  • FIG. 4 is an exemplary flowchart of an energy information processing method according to another embodiment of the present disclosure.
  • FIG. 5 is an exemplary block diagram of an energy device according to still another embodiment of the present disclosure.
  • FIG. 6 is an exemplary block diagram of an energy internet system in accordance with an embodiment of the present disclosure.
  • FIG. 7 is an exemplary block diagram of an energy internet system in accordance with another embodiment of the present disclosure.
  • FIG. 8 is an exemplary block diagram of an energy internet system in accordance with yet another embodiment of the present disclosure.
  • the inventors found through research that in the existing power grid, energy and information are separated from each other, and deep integration and mutual assistance of energy and information cannot be achieved, which reduces the efficiency of energy use.
  • the present disclosure provides a solution that enables deep integration and mutual assistance of energy and information to improve energy use efficiency.
  • the energy device includes an interface module 11 , an energy state recognition module 12 , and a power consumption adjustment module 13 .
  • the energy equipment can be a power generation equipment, a power storage equipment, a power grid equipment, or a power equipment.
  • the interface module 11 is configured to receive energy information reported by other energy devices in the system. Energy equipment in the system will report energy information when it accesses the energy Internet system, exits the energy Internet system, or changes the energy data.
  • the energy information includes voltage (U), current (I), power (P), and power (Q) information.
  • the energy state identification module 12 is configured to determine whether the system is in an energy stress state according to the current energy supply status of the system after the receiving module receives the energy information.
  • the energy device will report its own UIPQ information such as power generation, storage, and power to the system bus. Other devices in the system will evaluate this accordingly. If the power generation + storage and discharge power ⁇ electric power + the power consumption of the newly added energy equipment during the duration (for example, 1 second), the current system energy is in a tense situation.
  • the energy internet system can transmit the running information of all the energy devices in the system in real time, so that the energy device can timely understand the current system energy situation.
  • the power consumption adjustment module 13 is configured to reduce the power consumption of the energy device itself when the system is in an energy tight state.
  • the energy device by integrating and mutually assisting the energy and information, the energy device can automatically adjust its power consumption according to the system energy state, thereby effectively improving the energy use efficiency.
  • the power consumption adjustment module 13 is further configured to query the priority of the energy device itself if the system is in an energy tight state. If the priority of the energy device itself is the highest level, the power consumption adjustment module 13 does not adjust the power consumption of the energy device itself. If the priority of the energy device itself is not the highest level, the power consumption adjustment module 13 reduces the power consumption of the energy device itself.
  • the priority of energy devices in an energy Internet system can be classified into system level, emergency level, customization level, and comfort level from high to low.
  • system-level energy equipment in order to ensure the normal operation of the system, system-level energy equipment does not need to reduce power consumption, while other levels of energy equipment can reduce power consumption accordingly.
  • the power consumption adjustment module 13 is further configured to further determine whether the priority of the energy device itself is the lowest level if the priority of the energy device itself is not the highest level. If the priority of the energy device itself is the lowest level, the power consumption adjustment module 13 reduces the power consumption of the energy device itself.
  • the power consumption adjustment module 13 is further configured to: if the priority of the energy device itself is not the lowest level, if the system is in an energy stress state, whether the system has a lower level than itself and has not yet Energy equipment that reduces power consumption. If there is no energy device that is lower than its own level and has not reduced the power consumption, the power consumption adjustment module 13 adjusts the power consumption of the energy device itself.
  • the power consumption adjustment can be performed in descending order of the energy device priority levels.
  • the priority of the device A is the highest
  • the power consumption of the device A does not need to be adjusted.
  • devices B, C, and D since device D has the lowest priority, device D reduces power consumption. If the device D reduces the power consumption, the system is still in an energy-tight state, and in this case, the device C reduces the power consumption. If the system is still in an energy tight state, device B reduces the power consumption. And so on, until the system is no longer in an energy tight state.
  • the energy device further includes an access management module 14.
  • the access management module 14 is configured to determine whether the system is in an energy-stressed state after the energy device accesses the energy Internet system according to the current energy supply status of the system when the energy device accesses the energy Internet system. If the system is in an energy tight state, the access management module 14 determines that the energy device is not connected to the energy internet system. If the system is not in an energy tight state, the access management module 14 determines that the energy device accesses the energy Internet system, and reports the energy information of the energy device itself after accessing the energy Internet system.
  • a new energy device when a new energy device is connected to an energy internet system, if the evaluation system is in an energy tight state, the new energy device is not connected to the energy internet system. Conversely, if the evaluation system is not in a state of constant energy stress, the new energy device is connected to the energy Internet system and reports its UIPQ information.
  • the access management module 14 is further configured to determine whether the priority of the energy device itself is the highest level when the energy device accesses the energy internet system. If the priority of the energy device itself is the highest level, the access management module 14 determines that the energy device is connected to the energy internet system. If the priority of the energy device itself is not the highest level, the access management module 14 performs an operation of determining whether the system is in an energy tight state after the energy device accesses the energy internet system.
  • the energy Internet system will be connected to make the system operate normally. Conversely, if the priority of the energy device is low, the energy device determines whether to access the energy Internet based on the amount of energy in the system.
  • FIG. 3 is an exemplary flowchart of an energy information processing method according to an embodiment of the present disclosure.
  • the method steps of the present embodiment can be performed by an energy device.
  • Step 301 Receive energy information reported by other energy devices in the system.
  • Energy equipment in the system will report energy information when it accesses the energy Internet system, exits the energy Internet system, or changes the energy data.
  • the energy information includes voltage, current, power, and power information.
  • Step 302 Determine whether the system is in an energy-stress state according to the current energy supply status of the system.
  • Step 303 reducing the power consumption of the energy device itself when the system is in an energy tight state.
  • the energy device by integrating and coordinating the deep integration of energy and information, the energy device can automatically adjust its power consumption according to the energy state of the system, thereby effectively improving the energy use efficiency.
  • reducing the power consumption of the energy device itself when the system is in an energy tight state includes querying the priority of the energy device itself when the system is in an energy tight state. If the priority of the energy device itself is the highest level, the power consumption of the energy device itself is not adjusted; if the priority of the energy device itself is not the highest level, the power consumption of the energy device itself is reduced.
  • the energy device if the energy device has the highest priority (for example, system level), there is no need to adjust the power consumption. Otherwise, the energy device will reduce the power consumption accordingly.
  • the highest priority for example, system level
  • reducing the power consumption of the energy device itself includes: further determining the energy device itself if the priority of the energy device itself is not the highest level. Whether the priority is the lowest level. If the energy device itself has the lowest priority, the power consumption of the energy device itself is reduced.
  • the priority of the energy device itself is not the lowest level, if the system is in an energy-stressed state, it is checked whether there is an energy device in the system that is lower than its own level and has not reduced the power consumption. If there is no energy device that is lower than its own level and has not reduced the power consumption, the power consumption of the energy device itself is adjusted.
  • the power consumption adjustment can be performed in descending order of the energy device priority levels.
  • FIG. 4 is an exemplary flowchart of an energy information processing method according to another embodiment of the present disclosure.
  • the method steps of the present embodiment can be performed by an energy device.
  • Step 401 When the energy device accesses the energy internet system, evaluate the system energy state after the energy device accesses the energy internet system according to the current energy supply status of the system.
  • step 402 it is determined whether the system is in an energy-stress state.
  • step 403 If the system is in an energy-stress state, step 403 is performed; if the system is not in an energy-stress state, step 404 is performed.
  • Step 403 determining that the energy device is not connected to the energy internet system.
  • Step 404 determining that the energy device is connected to the energy internet system.
  • Step 405 reporting energy information of the energy device itself after accessing the energy internet system.
  • the method when the energy device accesses the energy internet system, the method further includes: determining whether the priority of the energy device itself is the highest level. If the energy equipment itself has the highest priority, it is determined that the energy device is connected to the energy internet system. If the priority of the energy device itself is not the highest level, then an operation is performed to determine whether the system is in an energy-stressed state after the energy device is connected to the energy Internet system.
  • the energy Internet system will be connected to make the system operate normally. Conversely, if the priority of the energy device is low, the energy device determines whether to access the energy Internet based on the amount of energy in the system.
  • FIG. 5 is an exemplary block diagram of an energy device according to still another embodiment of the present disclosure. As shown in FIG. 5, the energy device includes a memory 51 and a processor 52. among them:
  • Memory 51 is used to store instructions
  • processor 52 is coupled to memory 51
  • processor 52 is configured to perform the methods involved in any of the embodiments of Figures 3-4 based on instructions stored in the memory.
  • the energy device further includes a communication interface 53 for performing information interaction with other devices.
  • the energy device further includes a bus 54, and the processor 52, the communication interface 53, and the memory 51 complete communication with each other via the bus 54.
  • the memory 51 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • the memory 51 can also be a memory array.
  • the memory 51 may also be partitioned, and the blocks may be combined into a virtual volume according to certain rules.
  • processor 52 can be a central processing unit CPU, or can be an application specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present disclosure.
  • the present disclosure also relates to a computer readable storage medium storing computer instructions that, when executed by a processor, implement the methods of any of the embodiments of FIGS. 3-4.
  • the energy internet system includes an energy device layer, a data link layer, an information control layer, and an information management layer.
  • the energy equipment layer includes units for generating, storing, consuming, and supplying electric energy, for example, including power generation equipment, electricity storage equipment, electric equipment, and power grid equipment. This makes it easy to deeply analyze the UIPQ (voltage, current, power, power) and other energy data of the device layer.
  • UIPQ voltage, current, power, power
  • the data link layer includes an energy information gateway.
  • energy data and feature status information such as voltage, current, power, and power of the device are transmitted, and energy information collection of all devices is compatible.
  • the information control layer can be used for field level energy management, and the upper layer system and device layer bridge can be uniformly processed through any one or more of a processor, a live touch screen, and a mobile phone application.
  • the information control layer is connected to the information management layer through the Internet, supports wired and wireless communication methods, and supports engineering access to a maximum extent, with large data volume and strong throughput.
  • the information management layer can be used for regional energy centralized management, analysis and application to achieve energy scheduling and equipment intelligent control.
  • the energy device in the energy device layer, is configured as described in any one of the embodiments of the present invention, and is configured to collect energy information of the corresponding energy device in the system, and report the energy information to the control gateway.
  • a corresponding information gateway is configured to report the energy information to the server.
  • a control gateway is provided in the information control layer.
  • a server is provided in the information management layer, configured to analyze the energy information, and control the related energy equipment according to the analysis result.
  • the server is further configured to determine whether the energy device has failed based on the energy information, and to perform an alarm process in the event of a failure of the energy device.
  • the energy device includes at least four types of energy devices.
  • the first type of energy equipment is a power generation equipment
  • the second type of energy equipment is a power storage equipment
  • the third type of energy equipment is a power grid equipment
  • the fourth type of energy equipment is a power generation equipment.
  • respective energy information gateways are respectively set for the power generation device, the power storage device, the power consumption device, and the power grid device.
  • communication is performed between each energy device, and between the energy device, the information gateway, and the control gateway using a non-primary DC carrier communication method (eg, a DC carrier communication method based on the CAN protocol).
  • a non-primary DC carrier communication method eg, a DC carrier communication method based on the CAN protocol.
  • FIG. 7 is an exemplary block diagram of an energy internet system in accordance with another embodiment of the present disclosure.
  • the application layer is further included, wherein an energy transaction platform is disposed in the commercial application layer, and is configured to interact with the server to implement energy transactions. operating. Therefore, under the premise that the access project has energy storage, energy transactions between households and households can be carried out, and energy can be traded freely.
  • the energy trading platform is also configured to employ a blockchain for energy trading operations to increase the security of energy transactions and related transactions.
  • a monitoring interaction device that interacts with the control gateway is further included to monitor the energy information.
  • the monitoring interaction device can be implemented through an interactive interface or an interactive application.
  • a management interaction device that interacts with the server by wire or wireless is also included to manage the energy internet system.
  • the management interaction device can interact through web pages and applications to achieve lightweight interaction.
  • FIG. 8 is an exemplary block diagram of an energy internet system in accordance with yet another embodiment of the present disclosure.
  • the information control layer, the data link layer, and the energy device layer may be defined as a field basic unit network, which mainly transmits device voltage, current, power, power, and device characteristic data, such as status parameters.
  • a field basic unit network which mainly transmits device voltage, current, power, power, and device characteristic data, such as status parameters.
  • Support a variety of network access can use the main DC carrier communication, energy and data transmission through the power line, eliminating the cumbersome wiring and construction.
  • the field-level communication adopts CAN no-master network, and the data is actively sent to the data bus when the data changes, and the associated device can actively acquire information point-to-point, which can meet the requirements of real-time and high efficiency.
  • the energy internet system of the present disclosure has the characteristics of distributed, coordinated, and peer-to-peer:
  • the network protocol fully connects the device, the site, and the terminal, and each node in the network can operate independently of the network;
  • the information is seamlessly connected. Through the non-master CAN network, mutual information can be obtained in real time.
  • the energy information gateway can be omitted.
  • an energy device has a protocol interface that can be accessed directly or accessed through a gateway.
  • the energy Internet system information is uploaded from the lower layer to the lower layer, while the upper layer is transmitted to the lower layer. From collecting information to analyzing processing to energy equipment control, energy equipment operates according to the system and its own needs, and can also be controlled by the management system.
  • the system can be freely accessed through lightweight, and the processor, gateway, and interactive terminal are equal in the information control layer.
  • the mobile phone application and the touch screen can directly communicate with the on-site network, that is, in the absence of a network, the local WIFI connection communication can display the system energy data in real time.
  • Web and mobile applications can display system information in real time based on the Internet.
  • the web, mobile application, and touch screen can display system data based on the Internet, wherein the touch screen is displayed in the form of a web page.
  • the energy device access system can be used, and it is not necessary to perform the corresponding device self-test in accordance with the prior art method to know which devices can be accessed, thereby realizing plug and play.
  • the application of energy blockchain and distributed ledger technology through the blockchain to complete transactions or transactions for all parties involved in the community, such as property management, households, payment agencies, energy Internet trading platforms.
  • the energy industry can also use joint or industrial blockchains, share books between producers, power grids, demand side (including end users), and use blockchains for cross-network transactions or transactions.
  • the following is an example of collecting photovoltaic air conditioner voltage, current, power, power and mode, temperature, wind speed, and switch data.
  • the energy information gateway collects the photovoltaic equipment of the electrical equipment in real time, classifies the voltage, current, power and electricity into energy data, and uses the function code 01 to classify the mode, temperature, wind speed and switch into characteristic data, which is represented by function code 02. .
  • the device data is updated, and the data is sent to the field bus.
  • the processor monitors the fieldbus data in real time, and transmits the device energy data and characteristic data to the upper layer server through TCP/IP.
  • the distributed local energy Internet system returns to the electric energy itself. Any behavior of the equipment will be reflected on the electric energy.
  • energy Auxiliary management By analyzing the original electric energy data collection, mining, application, and information through energy Auxiliary management, energy and information feedback in real time, and realize the open interconnection of distributed local energy Internet systems.
  • Energy data is more valuable for deep power levels, instantaneous power, and characteristics of power usage behavior. If the device is identified as fault based on historical energy data, the slave device instantaneous power data analyzes the cause of the device failure.
  • the functional unit modules described above may be implemented as a general purpose processor, a Programmable Logic Controller (PLC), a digital signal processor (for example) for performing the functions described in this disclosure ( Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistors Logic device, discrete hardware component, or any suitable combination thereof.
  • PLC Programmable Logic Controller
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种能源信息处理方法及其设备、能源互联网系统,该能源设备包括:接口模块(11),被配置为接收系统中其它能源设备上报的能量信息,其中系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息;能源状态识别模块(12),被配置为在接口模块接收到能量信息后,根据系统当前能源供应状况,判断系统是否处于能源紧张状态;耗电量调整模块(13),被配置为在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。通过将能源与信息的深度融合与互相协助,使得系统中各部件均能实时响应系统能量变化,有助于构建分布式局域能源互联网系统,以形成全新的能源生态。

Description

能源信息处理方法及其设备、能源互联网系统
相关申请的交叉引用
本申请是以CN申请号为201810107458.5,申请日为2018年2月2日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及能源信息领域,特别涉及一种能源信息处理方法及其设备、能源互联网系统。
背景技术
随着光伏、风电等新能源的分布式应用发展,以及光伏空调、电动汽车等领域的快速发展,发电、储电、用电、电网输配均已形成电气化、清洁化、智能化趋势,并推动着能源系统直流化的普及和发展。
发明内容
根据本公开的一个或多个实施例的一个方面,提供一种能源设备,包括:接口模块,被配置为接收系统中其它能源设备上报的能量信息,其中,系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息;能源状态识别模块,被配置为在接收模块接收到能量信息后,根据系统当前能源供应状况,判断系统是否处于能源紧张状态;耗电量调整模块,被配置为在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
在一些实施例中,所述耗电量调整模块还被配置为在系统处于能源紧张状态的情况下,查询能源设备自身的优先级,在能源设备自身的优先级为最高级的情况下,不对能源设备自身的耗电量进行调整;在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量。
在一些实施例中,所述耗电量调整模块还被配置为在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级,在能源设备自身的优先级为最低级的情况下,减小能源设备自身的耗电量。
在一些实施例中,所述耗电量调整模块还被配置为在能源设备自身的优先级不是 最低级的情况下,若系统处于能源紧张状态,则查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备,在不存在比自身级别低、且尚未减小耗电量的能源设备的情况下,对能源设备自身的耗电量进行调整。
在一些实施例中,所述能量信息包括电压、电流、功率和电量信息。
在一些实施例中,能源设备还包括:接入管理模块,被配置为在能源设备接入能源互联网系统时,根据系统当前能源供应状况,判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态,在系统处于能源紧张状态的情况下,确定能源设备不接入能源互联网系统;在系统不处于能源紧张状态的情况下,确定能源设备接入能源互联网系统,并在接入能源互联网系统后上报能源设备自身的能量信息。
在一些实施例中,所述接入管理模块还被配置为在能源设备接入能源互联网系统时,判断能源设备自身的优先级是否为最高级,在能源设备自身的优先级为最高级的情况下,确定能源设备接入能源互联网系统;在能源设备自身的优先级不是最高级的情况下,执行判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态的操作。
根据本公开的一个或多个实施例的一个方面,提供一种能源信息处理方法,包括:接收系统中其它能源设备上报的能量信息,其中,系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息;根据系统当前能源供应状况,判断系统是否处于能源紧张状态;在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
在一些实施例中,在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量包括:在系统处于能源紧张状态的情况下,查询能源设备自身的优先级;在能源设备自身的优先级为最高级的情况下,不对能源设备自身的耗电量进行调整;在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量。
在一些实施例中,在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量包括:在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级;在能源设备自身的优先级为最低级的情况下,减小能源设备自身的耗电量。
在一些实施例中,在能源设备自身的优先级不是最低级的情况下,在系统处于能源紧张状态的情况下,查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备;在不存在比自身级别低、且尚未减小耗电量的能源设备的情况下,对能源设备 自身的耗电量进行调整。
在一些实施例中,所述能量信息包括电压、电流、功率和电量信息。
在一些实施例中,在能源设备接入能源互联网系统时,根据系统当前能源供应状况,判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态;在系统处于能源紧张状态的情况下,确定能源设备不接入能源互联网系统;在系统不处于能源紧张状态的情况下,确定能源设备接入能源互联网系统,并在接入能源互联网系统后上报能源设备自身的能量信息。
在一些实施例中,在能源设备接入能源互联网系统时,还包括:判断能源设备自身的优先级是否为最高级;在能源设备自身的优先级为最高级的情况下,确定能源设备接入能源互联网系统;在能源设备自身的优先级不是最高级的情况下,执行判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态的操作。
根据本公开的一个或多个实施例的另一个方面,提供一种能源设备,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如上述任一实施例涉及的方法。
根据本公开的一个或多个实施例的一个方面,提供一种能源互联网系统,包括:如上述任一实施例涉及的能源设备;信息网关,被配置为采集系统中对应能源设备的能量信息,并将所述能量信息上报给控制网关;控制网关,被配置为将所述能量信息上报给服务器;服务器,被配置为对所述能量信息进行分析,并根据分析结果对相关能源设备进行控制。
在一些实施例中,所述服务器还被配置为根据所述能量信息判断能源设备是否出现故障,在能源设备出现故障的情况下进行报警处理。
在一些实施例中,能源互联网系统还包括:监控交互设备,被配置为与所述控制网关进行交互,以便监控所述能量信息。
在一些实施例中,能源互联网系统还包括:管理交互设备,被配置为通过有线或无线方式与所述服务器进行交互,以便对能源互联网系统进行管理。
在一些实施例中,能源互联网系统还包括:能源交易平台,被配置为与所述服务器进行交互,以实现能源交易操作。
在一些实施例中,能源交易平台还被配置为采用区块链进行能源交易操作。
在一些实施例中,所述能源设备至少包括四种类型的能源设备,其中第一种能源设备为发电设备,第二种能源设备为储电设备,第三种能源设备为电网设备,第四种 能源设备为用电设备。
在一些实施例中,所述能源设备之间,以及所述能源设备、信息网关和控制网关之间采用CAN协议的直流载波通信方式进行通信。
根据本公开的一个或多个实施例的一个方面,提供一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上述任一实施例涉及的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一个实施例的能源设备的示例性框图;
图2为本公开另一个实施例的能源设备的示例性框图;
图3为本公开一个实施例的能源信息处理方法的示例性流程图;
图4为本公开另一个实施例的能源信息处理方法的示例性流程图;
图5为本公开又一个实施例的能源设备的示例性框图;
图6为本公开一个实施例的能源互联网系统的示例性框图;
图7为本公开另一个实施例的能源互联网系统的示例性框图;
图8为本公开又一个实施例的能源互联网系统的示例性框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表 达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人通过研究发现,在现有的电网中,能源与信息相互分离,无法实现能源与信息的深度融合与互相协助,降低了能源的使用效率。
为此,本公开提供一种能够实现能源与信息深度融合与互相协助,提升能源使用效率的方案。
图1为本公开一个实施例的能源设备的示例性框图。如图1所示,能源设备包括接口模块11、能源状态识别模块12和耗电量调整模块13。能源设备可以为发电设备、储电设备、电网设备或用电设备。
接口模块11被配置为接收系统中其它能源设备上报的能量信息。系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息。
在一些实施例中,能量信息包括电压(U)、电流(I)、功率(P)和电量(Q)信息。
能源状态识别模块12被配置为在接收模块接收到能量信息后,根据系统当前能源供应状况,判断系统是否处于能源紧张状态。
需要说明的是,根据能量守恒定律,发电量+储电放电量=用电量,或发电量=储能充电量+用电量。从功率数据分析,发电功率+储电放电功率=用电功率,或发电功率=储能充电功率+用电功率。
例如,若有一个新的能源设备加入到能源互联网系统后,该能源设备会将其自身的发电、储电及用电等UIPQ信息上报系统总线。系统中的其它设备会对此进行相应的评估。若在持续时间(例如,1秒)内,发电功率+储电放电功率<用电功率+新加入能源设备的用电功率,则表明当前系统能源处于紧张情况。
在一些实施例中,能源互联网系统可将系统中全部能源设备的运行信息实时下发,以便能源设备及时了解当前的系统能源情况。
耗电量调整模块13被配置为在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
在本公开能源设备的上述实施例中,通过将能源与信息的深度融合与互相协助,从而可使能源设备根据系统能源状态自动调整自身的耗电量,从而有效提升了能源的使用效率。
在一些实施例中,耗电量调整模块13还被配置为在系统处于能源紧张状态的情况下,查询能源设备自身的优先级。若能源设备自身的优先级为最高级,则耗电量调整模块13不对能源设备自身的耗电量进行调整。若能源设备自身的优先级不是最高级,则耗电量调整模块13减小能源设备自身的耗电量。
例如,能源互联网系统中的能源设备的优先级从高到低可分为系统级、应急级、定制级和舒适级。在系统能源紧张的情况下,为了保证系统正常运行,系统级的能源设备无需减小耗电量,而其它级别的能源设备可相应减小耗电量。
在一些实施例中,耗电量调整模块13还被配置为在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级。若能源设备自身的优先级为最低级,则耗电量调整模块13减小能源设备自身的耗电量。
即,在该实施例中,只减小优先级别最低的能源设备的耗电量,而其它级别的能源设备保持耗电量不变。
在一些实施例中,耗电量调整模块13还被配置为若能源设备自身的优先级不是最低级,则在系统处于能源紧张状态的情况下,查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备。若不存在比自身级别低、且尚未减小耗电量的能源设备,则耗电量调整模块13对能源设备自身的耗电量进行调整。
即,在该实施例中,可按照能源设备优先级别由低到高的顺序进行耗电量调整。例如,能源互联网系统中有四个能源设备A、B、C和D,相应的优先级分别为系统级、应急级、定制级和舒适级。在系统处于能源紧张状态的情况下,由于设备A的优先级别最高,因此设备A的耗电量无需调整。在设备B、C、D中,由于设备D的优先级别最低,因此设备D会减小耗电量。若设备D减小耗电量后,系统仍处于能源紧张状态,在这种情况下设备C再减小耗电量。若系统仍处于能源紧张状态,设备B再减小耗电量。以此类推,直到系统不再处于能源紧张状态为止。
图2为本公开另一个实施例的能源设备的示例性框图。与图1所示实施例相比,在图2所示实施例中,能源设备还进一步包括接入管理模块14。
如图2所示,接入管理模块14被配置为在能源设备接入能源互联网系统时,根据系统当前能源供应状况,判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态。若系统处于能源紧张状态,则接入管理模块14确定能源设备不接入能源互联网系统。若系统不处于能源紧张状态,则接入管理模块14确定能源设备接入能源互联网系统,并在接入能源互联网系统后上报能源设备自身的能量信息。
例如,在新能源设备接入能源互联网系统时,若评估系统将会处于能源紧张状态,则该新能源设备不接入能源互联网系统。相反,若评估系统不会处于持续能源紧张的情况,则该新能源设备接入能源互联网系统,并上报自身的UIPQ信息。
在一些实施例中,接入管理模块14还被配置为在能源设备接入能源互联网系统时,判断能源设备自身的优先级是否为最高级。若能源设备自身的优先级为最高级,则接入管理模块14确定能源设备接入能源互联网系统。若能源设备自身的优先级不是最高级,则接入管理模块14执行判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态的操作。
也就是说,若能源设备的优先级为系统级,则无论当前系统能源是否紧张,都会接入能源互联网系统,以便系统正常运行。相反,若能源设备的优先级较低,则能源设备会根据系统能源的多少确定是否接入能源互联网。
图3为本公开一个实施例的能源信息处理方法的示例性流程图。在一些实施例中,本实施例的方法步骤可由能源设备执行。
步骤301,接收系统中其它能源设备上报的能量信息。
系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息。
在一些实施例中,能量信息包括电压、电流、功率和电量信息。
步骤302,根据系统当前能源供应状况,判断系统是否处于能源紧张状态。
步骤303,在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
在本公开能源信息处理方法的上述实施例中,通过将能源与信息的深度融合与互相协助,从而可使能源设备根据系统能源状态自动调整自身的耗电量,从而有效提升了能源的使用效率。
在一些实施例中,上述在系统处于能源紧张状态的情况下,减小能源设备自身的 耗电量包括:在系统处于能源紧张状态的情况下,查询能源设备自身的优先级。若能源设备自身的优先级为最高级,则不对能源设备自身的耗电量进行调整;若能源设备自身的优先级不是最高级,则减小能源设备自身的耗电量。
也就是说,在该实施例中,若能源设备的优先级最高(例如,系统级),则无需对耗电量进行调整。否则,能源设备就会相应减小耗电量。
在一些实施例中,上述若能源设备自身的优先级不是最高级,则减小能源设备自身的耗电量包括:在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级。若能源设备自身的优先级为最低级,则减小能源设备自身的耗电量。
也就是说,在该实施例中,在系统处于能源紧张状态的情况下,仅减小优先级最低的能源设备的耗电量。
在一些实施例中,若能源设备自身的优先级不是最低级,则在系统处于能源紧张状态的情况下,查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备。若不存在比自身级别低、且尚未减小耗电量的能源设备,则对能源设备自身的耗电量进行调整。
也就是说,在该实施例中,可按照能源设备优先级别由低到高的顺序进行耗电量调整。
图4为本公开另一个实施例的能源信息处理方法的示例性流程图。在一些实施例中,本实施例的方法步骤可由能源设备执行。
步骤401,在能源设备接入能源互联网系统时,根据系统当前能源供应状况,评估在能源设备接入能源互联网系统后的系统能源状态。
步骤402,判断系统是否处于能源紧张状态。
若系统处于能源紧张状态,则执行步骤403;若系统不处于能源紧张状态,则执行步骤404。
步骤403,确定能源设备不接入能源互联网系统。
步骤404,确定能源设备接入能源互联网系统。
步骤405,在接入能源互联网系统后上报能源设备自身的能量信息。
在一些实施例中,在能源设备接入能源互联网系统时,还包括:判断能源设备自身的优先级是否为最高级。若能源设备自身的优先级为最高级,则确定能源设备接入能源互联网系统。若能源设备自身的优先级不是最高级,则执行判断在能源设备接入 能源互联网系统后系统是否处于能源紧张状态的操作。
也就是说,若能源设备的优先级为系统级,则无论当前系统能源是否紧张,都会接入能源互联网系统,以便系统正常运行。相反,若能源设备的优先级较低,则能源设备会根据系统能源的多少确定是否接入能源互联网。
图5为本公开又一个实施例的能源设备的示例性框图。如图5所示,该能源设备包括存储器51和处理器52。其中:
存储器51用于存储指令,处理器52耦合到存储器51,处理器52被配置为基于存储器存储的指令执行实现如图3至图4中任一实施例涉及的方法。
如图5所示,该能源设备还包括通信接口53,用于与其它设备进行信息交互。同时,该能源设备还包括总线54,处理器52、通信接口53、以及存储器51通过总线54完成相互间的通信。
存储器51可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器51也可以是存储器阵列。存储器51还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器52可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或者是被配置成实施本公开实施例的一个或多个集成电路。
本公开同时还涉及一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图3至图4中任一实施例涉及的方法。
图6为本公开一个实施例的能源互联网系统的示例性框图。该系统也可称为分布式局域能源互联网系统。如图6所示,该能源互联网系统包括能源设备层、数据链路层、信息控制层和信息管理层。
能源设备层包括电能产生、存储、消耗及供给的单元,例如包括发电设备、储电设备、用电设备、电网设备。由此可便于深度分析设备层的UIPQ(电压、电流、功率、电量)等电能数据。
数据链路层包括能源信息网关。以便通过能源信息网关,使能源设备与其他层设备进行信息交互,将设备的电压、电流、功率、电量等能源数据和特征状态信息进行传输,且兼容所有设备的能源信息采集。
信息控制层可用于现场级能源管理,可通过处理器、现场触屏、手机应用中的任何一个或多个来统一处理上层系统与设备层桥接。
信息控制层通过互联网方式与信息管理层连接,支持有线、无线通讯方式,最大 限度支持工程接入,数据量大、吞吐量强。
信息管理层可用于区域能源集中管理、分析应用,以实现能源调度和设备智能控制。
例如,在能源设备层中,设有如图1、2、5中任一实施例所述的能源设备,被配置为采集系统中对应能源设备的能量信息,并将能量信息上报给控制网关。在数据链路层中,设有相应的信息网关,被配置为将能量信息上报给服务器。在信息控制层中设有控制网关。在信息管理层中设有服务器,被配置为对能量信息进行分析,并根据分析结果对相关能源设备进行控制。
在一些实施例中,服务器还被配置为根据能量信息判断能源设备是否出现故障,在能源设备出现故障的情况下进行报警处理。
在一些实施例中,如图6所示,能源设备至少包括四种类型的能源设备。第一种能源设备为发电设备,第二种能源设备为储电设备,第三种能源设备为电网设备,第四种能源设备为用电设备。
在一些实施例中,如图6所示,在数据链路层中,分别给发电设备、储电设备、用电设备和电网设备设置相应的能源信息网关。
在一些实施例中,在各能源设备之间,以及能源设备、信息网关和控制网关之间采用无主直流载波通信方式(例如,基于CAN协议的直流载波通信方式)进行通信。
图7为本公开另一个实施例的能源互联网系统的示例性框图。与图6所示实施例相比,在图7所示实施例中,还进一步包括商业应用层,其中在商业应用层中设有能源交易平台,被配置为与服务器进行交互,以实现能源交易操作。从而在接入工程都有储能前提下,可以进行户与户之间的能源交易,能源自由买卖。
在一些实施例中,能源交易平台还被配置为采用区块链进行能源交易操作,以便提高能源交易和相关事务处理的安全性。
在一些实施例中,如图7所示,在能源互联网系统中,还包括与控制网关进行交互的监控交互设备,以便监控能量信息。
例如,该监控交互设备可通过交互接口或交互应用实现。
在一些实施例中,如图7所示,在能源互联网系统中,还包括通过有线或无线方式与服务器进行交互的管理交互设备,以便对能源互联网系统进行管理。
例如,管理交互设备可通过网页、应用进行交互,从而实现轻量化交互。
图8为本公开又一个实施例的能源互联网系统的示例性框图。如图8所示,可将 信息控制层、数据链路层、能源设备层定义为现场基本单元网络,主要传输设备电压、电流、功率、电量以及设备特性数据,如状态参数。支持多种网络接入,可使用无主直流载波通讯,通过电力线实现能源和数据传输,省去繁琐布线、施工。现场级通讯采用CAN无主网络,数据有变化则主动发送到数据总线上,相关联设备可点对点地主动获取信息,可满足实时、高效的要求。
本公开的能源互联网系统具有分布式、协同、点对点的特点:
a、网络协议将设备、现场、终端全面连接,网络中各节点可独立于网络运行;
b、通过网络层次划分,将能源和信息有效结合,即可联动,也可自给自足;
c、信息无缝连接,通过无主CAN网络,相互信息可实时获取。
此外,需要说明的是,能源信息网关可省略。例如,能源设备具备协议接口可直接接入,或通过网关接入。
在能源互联网系统中,信息从下层上传上层,同时上层传输到下层。从采集信息到分析处理再到能源设备控制,能源设备根据系统和自身需求运行,也可被管理系统控制。通过轻量化可自由接入系统,在信息控制层,处理器、网关、交互终端地位平等。手机应用、触屏可以直接与现场网络通讯,即在没有网络情况下,通过本地WIFI连接通讯,实时显示系统能源数据。同时,Web、手机应用可以基于互联网实时展示系统信息。在信息管理层,Web、手机应用、触屏均可以基于互联网显示系统数据,其中触屏以访问网页形式显示。
在本公开中,能源设备接入系统即可使用,无需按照现有技术的方式,要进行相应的设备自检才能知道有哪些设备能够接入,从而实现即插即用。
此外,应用能源区块链和分布式账本技术,针对小区内参与的各方,如物业管理、住户、缴费代理机构、能源互联网交易平台之间都可以通过区块链来完成交易或事务处理。同时能源行业也可以采用联合或行业区块链,生产者、电网、需求侧(含终端用户)之间共享账本,使用区块链来进行跨网交易或事务处理。
下面以采集光伏空调电压、电流、功率、电量及模式、温度、风速、开关数据为例。
能源信息网关实时采集用电设备光伏空调,将电压、电流、功率、电量归类为能源数据,用功能码01表示,将模式、温度、风速、开关归类为特性数据,用功能码02表示。
在CAN无主网络中,设备数据有更新,主动往现场总线发数据,处理器实时监 听现场总线数据,将设备能源数据、特性数据,通过TCP/IP方式,向上层服务器传输。
相应的通用通讯格式如表1所示。
功能码 数据个数 数据1 数据2 …… 数据n
           
表1
相应的传输能源数据如表2所示。
功能码 数据个数 电压 电量 功率 电量
01 04 220 10 38 5
表2
通过实施本公开,可以得到以下有益效果中的至少一项:
1、与现有管理系统采用不同的思路,分布式局域能源互联网系统回归电能本身,设备的任何行为都将反映在电能上,通过分析原始电能数据采集、挖掘、应用,通过信息对能源的辅助管理,能源与信息实时互相反馈,切实实现分布式局域能源互联网系统开放互联。
2、定义能源互联网分层结构,解决分布式系统融合问题,分布式发电、可再生能源利用、信息互联,确保系统安全、可靠、实时、轻量化交互。
3、深度分析UIPQ(电压、电流、功率、电量)电能数据,从能源数据度量物理世界。
4、对于深度的功率级、瞬时电能、用电行为特征分析等,能源数据更有价值。如基于历史电能数据识别设备是否有故障,从设备瞬时电能数据分析设备故障原因。
在一些实施例中,在上面所描述的功能单元模块可以实现为用于执行本公开所描述功能的通用处理器、可编程逻辑控制器(Programmable Logic Controller,简称:PLC)、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。

Claims (24)

  1. 一种能源设备,包括:
    接口模块,被配置为接收系统中其它能源设备上报的能量信息,其中,系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息;
    能源状态识别模块,被配置为在接收模块接收到能量信息后,根据系统当前能源供应状况,判断系统是否处于能源紧张状态;
    耗电量调整模块,被配置为在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
  2. 根据权利要求1所述的能源设备,其中,
    所述耗电量调整模块还被配置为在系统处于能源紧张状态的情况下,查询能源设备自身的优先级,在能源设备自身的优先级为最高级的情况下,不对能源设备自身的耗电量进行调整;在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量。
  3. 根据权利要求2所述的能源设备,其中,
    所述耗电量调整模块还被配置为在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级,在能源设备自身的优先级为最低级的情况下,减小能源设备自身的耗电量。
  4. 根据权利要求3所述的能源设备,其中,
    所述耗电量调整模块还被配置为在能源设备自身的优先级不是最低级的情况下,若系统处于能源紧张状态,则查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备,在不存在比自身级别低、且尚未减小耗电量的能源设备的情况下,对能源设备自身的耗电量进行调整。
  5. 根据权利要求1所述的能源设备,其中:
    所述能量信息包括电压、电流、功率和电量信息。
  6. 根据权利要求1-5中任一项所述的能源设备,还包括:
    接入管理模块,被配置为在能源设备接入能源互联网系统时,根据系统当前能源供应状况,判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态,在系统处于能源紧张状态的情况下,确定能源设备不接入能源互联网系统;在系统不处于能源紧张状态的情况下,确定能源设备接入能源互联网系统,并在接入能源互联网系统后上报能源设备自身的能量信息。
  7. 根据权利要求6所述的能源设备,其中,
    所述接入管理模块还被配置为在能源设备接入能源互联网系统时,判断能源设备自身的优先级是否为最高级,在能源设备自身的优先级为最高级的情况下,确定能源设备接入能源互联网系统;在能源设备自身的优先级不是最高级的情况下,执行判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态的操作。
  8. 一种能源信息处理方法,包括:
    接收系统中其它能源设备上报的能量信息,其中,系统中的能源设备在接入能源互联网系统、退出能源互联网系统或电能数据发生变化时会自行上报能量信息;
    根据系统当前能源供应状况,判断系统是否处于能源紧张状态;
    在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量。
  9. 根据权利要求8所述的处理方法,其中,在系统处于能源紧张状态的情况下,减小能源设备自身的耗电量包括:
    在系统处于能源紧张状态的情况下,查询能源设备自身的优先级;
    在能源设备自身的优先级为最高级的情况下,不对能源设备自身的耗电量进行调整;
    在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量。
  10. 根据权利要求9所述的处理方法,其中,在能源设备自身的优先级不是最高级的情况下,减小能源设备自身的耗电量包括:
    在能源设备自身的优先级不是最高级的情况下,进一步判断能源设备自身的优先级是否为最低级;
    在能源设备自身的优先级为最低级的情况下,减小能源设备自身的耗电量。
  11. 根据权利要求10所述的处理方法,还包括:
    在能源设备自身的优先级不是最低级的情况下,若系统处于能源紧张状态,则查询系统中是否存在比自身级别低、且尚未减小耗电量的能源设备;
    在不存在比自身级别低、且尚未减小耗电量的能源设备的情况下,对能源设备自身的耗电量进行调整。
  12. 根据权利要求8所述的处理方法,其中:
    所述能量信息包括电压、电流、功率和电量信息。
  13. 根据权利要求8-12中任一项所述的处理方法,还包括:
    在能源设备接入能源互联网系统时,根据系统当前能源供应状况,判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态;
    在系统处于能源紧张状态的情况下,确定能源设备不接入能源互联网系统;
    在系统不处于能源紧张状态的情况下,确定能源设备接入能源互联网系统,并在接入能源互联网系统后上报能源设备自身的能量信息。
  14. 根据权利要求13所述的处理方法,其中,在能源设备接入能源互联网系统时,还包括:
    判断能源设备自身的优先级是否为最高级;
    在能源设备自身的优先级为最高级的情况下,确定能源设备接入能源互联网系统;
    在能源设备自身的优先级不是最高级的情况下,执行判断在能源设备接入能源互联网系统后系统是否处于能源紧张状态的操作。
  15. 一种能源设备,包括:
    存储器,被配置为存储指令;
    处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如权利要求8-14中任一项的方法。
  16. 一种能源互联网系统,包括:
    如权利要求1-7、15中任一项所述的能源设备;
    信息网关,被配置为采集系统中对应能源设备的能量信息,并将所述能量信息上报给控制网关;
    控制网关,被配置为将所述能量信息上报给服务器;
    服务器,被配置为对所述能量信息进行分析,并根据分析结果对相关能源设备进行控制。
  17. 根据权利要求16所述的能源互联网系统,其中,
    所述服务器还被配置为根据所述能量信息判断能源设备是否出现故障,在能源设备出现故障的情况下进行报警处理。
  18. 根据权利要求16所述的能源互联网系统,还包括:
    监控交互设备,被配置为与所述控制网关进行交互,以便监控所述能量信息。
  19. 根据权利要求16所述的能源互联网系统,还包括:
    管理交互设备,被配置为通过有线或无线方式与所述服务器进行交互,以便对能源互联网系统进行管理。
  20. 根据权利要求16所述的能源互联网系统,还包括:
    能源交易平台,被配置为与所述服务器进行交互,以实现能源交易操作。
  21. 根据权利要求20所述的能源互联网系统,其中:
    能源交易平台还被配置为采用区块链进行能源交易操作。
  22. 根据权利要求16-21中任一项所述的能源互联网系统,其中:
    所述能源设备至少包括四种类型的能源设备,其中第一种能源设备为发电设备,第二种能源设备为储电设备,第三种能源设备为电网设备,第四种能源设备为用电设备。
  23. 根据权利要求22所述的能源互联网系统,其中:
    所述能源设备之间,以及所述能源设备、信息网关和控制网关之间采用CAN协议的直流载波通信方式进行通信。
  24. 一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如权利要求8-14中任一项所述的方法。
PCT/CN2018/120624 2018-02-02 2018-12-12 能源信息处理方法及其设备、能源互联网系统 WO2019148976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810107458.5 2018-02-02
CN201810107458.5A CN108092412A (zh) 2018-02-02 2018-02-02 能源信息处理方法及其设备、能源互联网系统

Publications (1)

Publication Number Publication Date
WO2019148976A1 true WO2019148976A1 (zh) 2019-08-08

Family

ID=62194357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120624 WO2019148976A1 (zh) 2018-02-02 2018-12-12 能源信息处理方法及其设备、能源互联网系统

Country Status (2)

Country Link
CN (1) CN108092412A (zh)
WO (1) WO2019148976A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723128A (zh) * 2020-06-17 2020-09-29 珠海格力电器股份有限公司 能源互联网数据处理系统
CN112712191A (zh) * 2020-10-20 2021-04-27 国网吉林省电力有限公司吉林供电公司 一种能源互联网深度融合的能源利用方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092412A (zh) * 2018-02-02 2018-05-29 珠海格力电器股份有限公司 能源信息处理方法及其设备、能源互联网系统
CN109117651B (zh) * 2018-07-27 2022-01-25 国网重庆市电力公司电力科学研究院 一种计量数据安全防护方法
CN108830110B (zh) * 2018-09-10 2020-12-04 珠海格力电器股份有限公司 基于区块链的能源交互装置、能源互联网系统和交互方法
CN108833270B (zh) * 2018-09-10 2022-10-25 珠海格力电器股份有限公司 网关通信方法、网关和能源系统
CN109066691B (zh) * 2018-09-13 2020-10-02 珠海格力电器股份有限公司 能源调度方法、能源控制设备和能源系统
CN109780908B (zh) * 2019-01-09 2021-07-23 重庆海尔空调器有限公司 一种能源站的控制方法
WO2020154876A1 (zh) 2019-01-29 2020-08-06 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210726A1 (en) * 2008-02-18 2009-08-20 Song Song Central power management method and system
CN101853017A (zh) * 2009-02-18 2010-10-06 通用电气公司 能量管理系统和方法
CN102237681A (zh) * 2010-04-27 2011-11-09 海尔集团公司 家电用电量的控制方法、系统及相应装置
CN106208394A (zh) * 2016-09-21 2016-12-07 深圳市欧瑞博电子有限公司 基于云计算技术的智能节能供电系统及方法
CN107302560A (zh) * 2017-05-19 2017-10-27 珠海格力电器股份有限公司 能源信息系统、能源信息的处理方法及装置
CN108092412A (zh) * 2018-02-02 2018-05-29 珠海格力电器股份有限公司 能源信息处理方法及其设备、能源互联网系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800439B (zh) * 2009-12-23 2012-05-23 刘瑜 家用电器的用电管理装置
CN102999035A (zh) * 2012-12-13 2013-03-27 北京天地互连信息技术有限公司 基于ieee1888标准的楼宇智能节能系统
CN105449719B (zh) * 2014-08-26 2019-01-04 珠海格力电器股份有限公司 分布式能源电源控制方法、装置及系统
CN104901307A (zh) * 2015-06-11 2015-09-09 国家电网公司 一种多网络混合的家庭微电网用能互动管理系统及方法
CN105259847A (zh) * 2015-10-15 2016-01-20 深圳市万嘉明科技发展有限公司 一种基于能耗历史数据分析的能源管理控制方法及其系统
CN106707778B (zh) * 2016-12-06 2020-01-10 长沙理工大学 一种基于模型预测控制的家庭综合能源智能优化管理系统
CN206775540U (zh) * 2017-05-19 2017-12-19 珠海格力电器股份有限公司 能源信息系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210726A1 (en) * 2008-02-18 2009-08-20 Song Song Central power management method and system
CN101853017A (zh) * 2009-02-18 2010-10-06 通用电气公司 能量管理系统和方法
CN102237681A (zh) * 2010-04-27 2011-11-09 海尔集团公司 家电用电量的控制方法、系统及相应装置
CN106208394A (zh) * 2016-09-21 2016-12-07 深圳市欧瑞博电子有限公司 基于云计算技术的智能节能供电系统及方法
CN107302560A (zh) * 2017-05-19 2017-10-27 珠海格力电器股份有限公司 能源信息系统、能源信息的处理方法及装置
CN108092412A (zh) * 2018-02-02 2018-05-29 珠海格力电器股份有限公司 能源信息处理方法及其设备、能源互联网系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723128A (zh) * 2020-06-17 2020-09-29 珠海格力电器股份有限公司 能源互联网数据处理系统
CN112712191A (zh) * 2020-10-20 2021-04-27 国网吉林省电力有限公司吉林供电公司 一种能源互联网深度融合的能源利用方法

Also Published As

Publication number Publication date
CN108092412A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2019148976A1 (zh) 能源信息处理方法及其设备、能源互联网系统
US11581732B2 (en) Establishing communication and power sharing links between components of a distributed energy system
WO2023201916A1 (zh) 一种分布式灵活资源聚合控制装置及控制方法
Vega et al. Modeling for home electric energy management: A review
CN107330056B (zh) 基于大数据云计算平台的风电场scada系统及其运行方法
US20120310435A1 (en) Control command disaggregation and distribution within a utility grid
CN103559160B (zh) 基于sg-cim标准的智能配电系统的语义信息交互接口的构建方法
EP3101617A1 (en) Power control system and method, and information communication ability control system and method
CN113159598A (zh) 台区故障抢修与调度方法、装置及终端设备
Mourtzis et al. Development of a PSS for smart grid energy distribution optimization based on digital twin
CN115689004A (zh) 多源虚拟灵活聚合与分层协同控制平台构建方法及系统
Alhasnawi et al. A new communication platform for smart EMS using a mixed-integer-linear-programming
CN107357988A (zh) 基于iec61850的分布式光伏集群动态建模方法
Al Naqbi et al. Energy Reduction in Building Energy Management Systems Using the Internet of Things: Systematic Literature Review
CN101729342B (zh) 混合移动式电力系统实时内存计算数据结构实现方法
Kosek et al. Fault tolerant aggregation for power system services
Sazid et al. Developing a Low-cost SCADA System for Industrial Application
CN107394893A (zh) 一种光伏电站监控系统及其方法
CN105723659B (zh) 使系统控制单元与多台发电设备通信的方法
CN109256863B (zh) 一种微电网能量控制方法及微电网系统
Aduda et al. On defining information and communication technology requirements and associated challenges for ‘energy and comfort active’buildings
Florea et al. From bridge to control hub—The power Smart Grid evolution
Romero et al. Integration of real-intelligence in energy management systems to enable holistic demand response optimization in buildings and districts
JP5117556B2 (ja) 通信装置
CN206211660U (zh) 一种台区网格虚拟机组的量测调控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903211

Country of ref document: EP

Kind code of ref document: A1