WO2015113424A1 - 车辆及其动力传动系统 - Google Patents

车辆及其动力传动系统 Download PDF

Info

Publication number
WO2015113424A1
WO2015113424A1 PCT/CN2014/089842 CN2014089842W WO2015113424A1 WO 2015113424 A1 WO2015113424 A1 WO 2015113424A1 CN 2014089842 W CN2014089842 W CN 2014089842W WO 2015113424 A1 WO2015113424 A1 WO 2015113424A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
motor generator
output
input shaft
shaft
Prior art date
Application number
PCT/CN2014/089842
Other languages
English (en)
French (fr)
Inventor
杨冬生
廉玉波
张金涛
罗红斌
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410044681.1A external-priority patent/CN104290589B/zh
Priority claimed from CN201420058197.XU external-priority patent/CN204055305U/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP14881240.7A priority Critical patent/EP3100886B1/en
Priority to DK14881240.7T priority patent/DK3100886T3/da
Publication of WO2015113424A1 publication Critical patent/WO2015113424A1/zh
Priority to US15/215,316 priority patent/US10363806B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0039Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising three forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means

Definitions

  • the present invention relates to the field of vehicle technology, and in particular to a power transmission system for a vehicle and a vehicle therewith.
  • Hybrid vehicles as one of the new energy vehicles, are driven by engines and/or motors and have multiple modes to improve transmission efficiency and fuel economy.
  • the power transmission system in the hybrid vehicle generally has a complicated structure, a large volume, and a low transmission efficiency, and needs to simultaneously control a plurality of shifting actuators during gear shifting or mode switching, and control
  • the strategy is complex.
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
  • the present invention needs to provide a power transmission system for a vehicle that is compact in structure, high in transmission efficiency, and convenient in control.
  • the present invention is directed to providing a vehicle including the power transmission system described above.
  • a power transmission system for a vehicle includes: an engine unit; a plurality of input shafts, the engine unit being selectively connectable to the plurality of input shafts when the engine unit transmits power to the input shaft One of the input shafts is engaged, each of the input shafts is provided with a driving gear; an output shaft and a gear structure, the gear gear structure is differentially rotatable relative to the output shaft, and the gear gear structure is Having a plurality of gear portions respectively corresponding to the drive gears on the plurality of input shafts; an output portion adapted to output power from the output shaft; a clutch, a clutch configured to selectively engage the geared gear structure and the output shaft to output the power through the output portion to drive a wheel of the vehicle; and a first motor generator, the first electric motor The generator is directly or indirectly driven with one of the input shaft and the output shaft.
  • the power outputted by the engine unit and/or the first motor generator can be output from the output portion by the engagement of the clutch, which is compact and convenient to control.
  • a vehicle that includes a powertrain system for a vehicle as described above.
  • FIG. 1 is a schematic diagram of the principle of a power transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a powertrain system in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic illustration of a powertrain system in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic illustration of a powertrain system in accordance with yet another embodiment of the present invention.
  • FIG. 5 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 6 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 7 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 8 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 9 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 10 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG 11 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 14 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 15 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 16 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 17 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 18 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 19 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 20 is a schematic diagram of a power transmission system in accordance with still another embodiment of the present invention.
  • Figure 21 is a schematic diagram of a powertrain system in accordance with still another embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or dark. Indicates relative importance or implicitly indicates the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. Further, in the description of the present invention, the meaning of "a plurality" is two or more unless otherwise specified.
  • a power transmission system 100 which is suitable for use in a vehicle, particularly suitable for use in a hybrid vehicle having an engine unit 1 and a motor generator as a main power source, will be described in detail below with reference to FIGS.
  • a powertrain system 100 may include an engine unit 1, a transmission unit 2a, a first motor generator 41, a second motor generator 42, an output portion 5, and a power switching device (e.g., synchronization). 6, clutch 9).
  • the transmission unit 2a is adapted to be selectively coupled to the engine unit 1 in a power coupling manner.
  • the engine unit 1 can selectively output the power generated by the engine unit 1 to the transmission unit 2a, for example, by a clutch or the like; alternatively, the transmission unit 2a can also output, for example, a starting torque from the first motor generator 41 to the engine unit 1, To start the engine unit 1.
  • the transfer of power between the engine unit 1 and the transmission unit 2a for example by itself or by other components, is referred to as a power coupling connection.
  • the engine unit 1 is characterized in that liquid or gaseous fuel and air are mixed and directly input into the internal combustion of the machine to generate energy, which is then converted into mechanical energy.
  • the engine unit 1 can generally employ a four-stroke gasoline engine or a diesel engine.
  • the engine unit 1 can generally include a body group, a crank linkage mechanism, a supply system, an ignition system, a cooling system, and a lubrication system.
  • the body group is an assembly body of each mechanism and system of the engine unit 1.
  • the crank link mechanism can convert the linear reciprocating motion of the piston into the rotational motion of the crankshaft and can output power.
  • the valve train is used for timing intake and exhaust to ensure smooth operation of each cycle of the engine unit 1.
  • the supply system can supply the oil and gas mixture to the cylinder for combustion.
  • the cooling system is used to cool the engine unit 1 to ensure that the operating temperature of the engine unit 1 is within a suitable temperature range.
  • the lubrication system is used to lubricate the various motion pairs within the engine unit 1 to reduce wear and energy losses.
  • the first motor generator 41 is coupled to the transmission unit 2a in a power coupling manner.
  • the first motor generator 41 cooperates with the transmission unit 2a, that is, the first motor generator 41 can drive the transmission unit 2a, and the transmission unit 2a can also drive the first motor generator 41 in reverse.
  • the engine unit 1 may output at least part of the generated power to the first motor generator 41 through the transmission unit 2a, at which time the first motor generator 41 may generate electricity, and may convert mechanical energy into electrical energy to be stored in an energy storage component such as a battery. In the component.
  • the first motor generator 41 can convert electrical energy from the battery pack into mechanical energy, and can be output to the output portion 5 through the transmission unit 2a to drive the vehicle.
  • the first motor generator 41 is a motor having a motor and a generator function, and in the description of the "motor generator” of the present invention, this is understood unless otherwise specified.
  • the output portion 5 is configured to transmit power that is shifted through the transmission unit 2a to the wheels 200 of the vehicle, that is, the front wheels 210 and/or the rear wheels 220. In short, the output portion 5 is adapted to output power from the transmission unit 2a.
  • a power switching device such as a synchronizer 6 is adapted to transmit or disconnect power between the output 5 and the transmission unit 2a.
  • the power switching device may output the power output from the transmission unit 2a to the front wheel 210 and/or the rear wheel 220 through the output portion 5, or the power switching device may also disconnect the transmission unit 2a and the output portion 5, at which time the transmission unit 2a Power cannot be directly output to the front wheel 210 and/or the rear wheel 220 through the output unit 5.
  • the second motor generator 42 is used to drive the front wheel 210 or the rear wheel 220.
  • the vehicle having the powertrain system 100 can be a two-wheel drive vehicle.
  • the vehicle having the power transmission system 100 can be a four-wheel drive vehicle, and can be in a two-wheel drive mode and a four-wheel drive mode. Switch between.
  • the vehicle having the power transmission system 100 may be a four-wheel drive vehicle.
  • the power output from the engine unit 1 and/or the first motor generator 41 may be output to the output portion 5 through the power switching device, and then outputted to the front wheel 210 of the vehicle by the output portion 5. And/or rear wheel 220.
  • the second motor generator 42 can perform torque compensation on the front wheel 210 or the rear wheel 220, and can also drive the vehicle in cooperation with the engine unit 1 and the first motor generator 41.
  • the vehicle's operating mode is increased, so that the vehicle can better adapt to different working conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • the power switching device is configured as a synchronizer 6 which is arranged to be selectively synchronized between the output 5 and the transmission unit 2a for passage
  • the output unit 5 outputs power to drive the wheels 200 of the vehicle.
  • the action of the synchronizer 6 may be the final synchronizing output portion 5 and the transmission unit 2a, that is, after the synchronizing action of the synchronizer 6, the output portion 5 can be synchronized with the transmission unit 2a, so that the output portion 5 serves as a power output end.
  • the power output of the transmission unit 2a is output.
  • the synchronizer 6 does not synchronize the transmission unit 2a with the output unit 5, the power of the transmission unit 2a cannot be directly outputted to the wheel 200 (through the output unit 5).
  • the synchronizer 6 serves the purpose of power switching, that is, the synchronizer 6 is engaged, the power of the transmission unit 2a can be output through the output portion 5 and used to drive the wheel 200, and the synchronizer 6 is turned off, and the transmission unit 2a cannot pass the output.
  • the portion 5 transmits power to the wheel 200 such that by controlling the engagement or disconnection of a synchronizer 6, The conversion of the vehicle drive mode can be realized.
  • the transmission unit 2a includes a transmission power input portion 21a and a transmission power output portion 22a, and the transmission power input portion 21a and the engine unit 1 are selectively Engaged to transmit the power generated by the engine unit 1.
  • the transmission power output portion 22a is configured to output power to the output portion 5 by synchronizing the power from the transmission power input portion 21a through the synchronizer 6.
  • the transmission power input portion 21a further includes: an input shaft (eg, a first input shaft 21, a second input shaft 22) and a driving gear 25 disposed on the input shaft,
  • the input shaft is selectively engageable with the engine unit 1 to transmit the power generated by the engine unit 1.
  • the engine unit 1 can be engaged with the input shaft, so that the power output by the engine unit 1 can be transmitted to the input shaft.
  • the manner in which the engine unit 1 is engaged with the input shaft can be achieved by a clutch (e.g., the dual clutch 31), and a detailed description thereof will be given below, and details are not described herein again.
  • the transmission power output portion 22a includes an output shaft 24 and a driven gear 26, and the driven gear 26 is disposed on the output shaft 24 and corresponding to the driving gear 25 on the input shaft. Engage.
  • output shaft 24 is configured to output at least a portion of the power transmitted on the input shaft.
  • the output shaft 24 is coupled to the input shaft.
  • the output shaft 24 and the input shaft are movable between the drive gear 25 and the driven gear 26 described above.
  • the transmission mode of the output shaft 24 and the input shaft is not limited thereto, and may be, for example, a pulley transmission mechanism, a rack and pinion transmission mechanism, or the like.
  • a suitable transmission structure or manner can be specifically selected according to actual conditions.
  • the output shaft 24 is configured to transmit at least a portion of the power on the input shaft.
  • the power on the input shaft can be partially used for the first Another part of the power generation of the motor generator 41 can also be used to drive the vehicle, and of course all the power on the input shaft can also be used for power generation.
  • the first motor generator 41 is directly or indirectly driven with one of the input shaft and the output shaft 24.
  • direct drive means that the first motor generator 41 is directly connected to the corresponding shaft for transmission without any intermediate transmission components such as a shifting device, a clutch device, a transmission device, such as the output of the first motor generator 41. Directly connected to one of the input shaft and the output shaft 24.
  • the advantage of direct drive is that the intermediate drive components are reduced, reducing the loss of energy during the drive.
  • Indirect transmission excludes any other means of transmission other than direct transmission, such as transmissions through intermediate components such as transmissions, clutches, transmissions, and the like.
  • the advantage of the indirect transmission method is that the arrangement is more convenient, and the required gear ratio can be obtained by setting such as a shifting device.
  • the output portion 5 can serve as a power output terminal of the output shaft 24 for outputting power on the output shaft 24, and outputting
  • the portion 5 can be differentially rotated with respect to the output shaft 24, that is, the output portion 5 can be rotated asynchronously with respect to the output shaft 24, that is, there is a difference in rotational speed between the two, and there is no rigid connection.
  • the synchronizer 6 is disposed on the output shaft 24.
  • the synchronizer 6 can include a splined hub 61 and a splice sleeve 62 that can be secured to the output shaft 24 with the splined hub 61 along with the output shaft 24 Simultaneously rotating, the sleeve 62 is movable relative to the splined hub 61 in the axial direction of the output shaft 24 to selectively engage the output portion 5 such that the output portion 5 rotates synchronously with the output shaft 24, whereby power can be output from the output portion 5 is transmitted to the front wheel 210 and/or the rear wheel 220 for the purpose of driving the wheel 200.
  • the structure of the synchronizer 6 is not limited thereto.
  • the power output from the engine unit 1 and/or the first motor generator 41 can be output from the output portion 5 through the engagement of the synchronizer 6, which is compact in structure, convenient in control, and switched in the vehicle.
  • the synchronizer 6 is switched from the disengaged state to the engaged state.
  • the first motor generator 41 can target the rotational speed of the output unit 5, and the rotational speed control adjusts the rotational speed of the output shaft 24 to make the output.
  • the rotation speed of the shaft 24 and the output portion 5 is matched in a short time to facilitate the engagement of the synchronizer 6, thereby greatly improving the transmission efficiency, while reducing the transmission loss of the intermediate energy, and achieving the torque-free engagement of the synchronizer 6 (i.e., synchronization).
  • the device 6 When the device 6 is engaged, there is substantially no radial friction or radial friction which is much lower than the general level in the industry).
  • the output 5 is for driving a first pair of wheels of the vehicle, the second motor generator 42 being a pair and for driving the first pair of wheels.
  • the powertrain system 100 further includes at least one third motor generator 43 for driving a second pair of wheels of the vehicle.
  • the first pair of wheels is a pair of the front wheel 210 or the rear wheel 220
  • the second pair of wheels is the other pair of the front wheel 210 or the rear wheel 220.
  • the first pair of wheels refers to the front wheel 210 of the vehicle and the second pair of wheels refers to the rear wheel 220 of the vehicle.
  • the powertrain system 100 has four types of power output sources, namely, an engine unit 1, a first motor generator 41, a second motor generator 42, and a third motor generator 43, wherein the engine unit 1
  • the first motor generator 41 and the second motor generator 42 may be used to drive one of a pair of wheels of the vehicle, and the third motor generator 43 may be used to drive another pair of wheels. Therefore, the vehicle having the powertrain system 100 is a four-wheel drive vehicle.
  • the first motor generator 41 can target the rotational speed of the output portion 5, and the output shaft 24 is adjusted by the rotational speed control.
  • the rotation speed of the output shaft 24 and the output portion 5 is matched in a short time to facilitate the engagement of the synchronizer 6, thereby greatly improving the transmission efficiency and reducing the transmission loss of the intermediate energy.
  • the second motor generator 42 and the third motor generator 43 can perform torque compensation on the wheel 200, thereby being indirectly reflected to the output portion 5, that is, the first
  • the second motor generator 42 and the third motor generator 43 can indirectly adjust the rotational speed of the output portion 5, for example, when the synchronizer 6 transitions from the separated state to the engaged state, the second motor generator 42 and the third motor generator
  • the machine 43 can indirectly adjust the rotational speed of the output portion 5 as needed to match the rotational speed of the output shaft 24 and the output portion 5 in a short time, thereby facilitating the engagement of the synchronizer 6.
  • the second motor generator 42 and the third motor generator 43 can perform the speed adjustment simultaneously with the first motor generator 41, so that the rotation speeds of the output shaft 24 and the output portion 5 are synchronized in a shorter time, thereby The engagement condition is satisfied in a fast time, the synchronizer 6 is engaged, and the transmission efficiency is greatly improved.
  • the first motor generator 41 can perform individual speed regulation.
  • at least one of the second motor generator 42 and the third motor generator 43 may alternatively be individually regulated.
  • the first motor generator 41, the second motor generator 42, and the third motor generator 43 can simultaneously perform speed regulation.
  • the engagement/disconnection of the synchronizer 6 controls the output of the power of the transmission unit 2a while the first motor generator 41 and/or the second motor generator 42 and/or the third motor generator 43 are disconnected at the synchronizer 6.
  • the output shaft 24 and the output portion 5 can be speed-regulated separately during the transition from the open state to the engaged state, so that the rotational speeds of the output shaft 24 and the output portion 5 are quickly matched, thereby quickly achieving torque-free engagement of the synchronizer 6.
  • the input shaft is plural, i.e., two or more.
  • the plurality of input shafts are sequentially nested in a nested manner. For example, if the input shaft is N, the Kth input shaft is sleeved on the K-1th input shaft, wherein N ⁇ K ⁇ 2, and the N inputs The central axes of the shafts are coincident.
  • the input shafts are two, that is, the first input shaft 21 and the second input shaft 22, and the second input shaft 22 is sleeved on the first input shaft 21. And the central axes of the two coincide.
  • the input shaft is three, that is, the first input shaft 21 , the second input shaft 22 , and the third input shaft 23 , and the third input shaft 23 is sleeved on the second input shaft 22 .
  • the second input shaft 22 is sleeved on the first input shaft 21, and the central axes of the three shafts coincide.
  • the engine unit 1 is selectively engageable with one of the plurality of input shafts when the engine unit 1 transmits power to the input shaft or is coupled to the input shaft. In other words, when it is necessary to transmit the power of the engine unit 1, the output end of the engine unit 1 is engageable with one of the plurality of input shafts to rotate in synchronization. When the engine unit 1 is not required to operate or the engine unit 1 is at idle speed, the engine unit 1 can be disconnected from the plurality of input shafts, that is, the engine unit 1 is not connected to any one of the input shafts, thereby disconnecting from the engine unit 1 Power coupling connection.
  • a driving gear 25 is fixed on each input shaft, and the driving gear 25 rotates synchronously with the input shaft, and the driving gear 25 and the corresponding input shaft are fixed in various manners, for example, through a keyway.
  • the matching mode is fixed.
  • the driving gear 25 can be fixed to the input shaft by various methods such as hot pressing and integral molding to ensure that the two can rotate synchronously.
  • a plurality of driven gears 26 are fixed on the output shaft 24, and the plurality of driven gears 26 rotate synchronously with the output shaft 24.
  • the fixing manner of the driven gear 26 and the output shaft 24 can also be fixed by the driving gear 25 and the input shaft. , but not limited to this.
  • the present invention is not limited thereto, and for example, the number of the driving gears 25 provided on each input shaft may not be limited to one, and correspondingly, the plurality of driven gears 26 are provided on the output shaft 24 to form a plurality of blocking gears. Bits are achievable by those skilled in the art.
  • the plurality of driven gears 26 are respectively meshed with the driving gears 25 on the plurality of input shafts.
  • the number of driven gears 26 and the number of input shafts may be The same is true.
  • the input shafts are two, so that the two driven gears 26 can be respectively meshed with the driving gears 25 on the two input shafts, so that the two pairs of gear pairs Two gears can be constructed for transmission.
  • three or more input shafts may be provided according to the transmission requirements, and one driving gear 25 may be fixed on each of the input shafts, whereby the number of input shafts may be increased.
  • the more gears are used for the transmission the greater the range of transmission ratios of the powertrain 100, thereby accommodating the requirements of the transmission for a variety of vehicle types.
  • the plurality of input shafts include a first input shaft 21 and a second input shaft 22, and the second input shaft 22 is sleeved on the first input shaft 21,
  • the second input shaft 22 is a hollow shaft
  • the first input shaft 21 is preferably a solid shaft.
  • the first input shaft 21 may also be a hollow shaft.
  • the first input shaft 21 can be supported by bearings.
  • the bearing is preferably plural and can be arranged along the axial direction of the first input shaft 21 at a position that does not affect the assembly of the remaining components.
  • the second input shaft 22 can also be supported by bearings, and will not be described in detail herein.
  • the engine unit 1 is provided with a dual clutch 31 between the first input shaft 21 and the second input shaft 22, and the dual clutch 31 can be a conventional dry double clutch 31 or a wet double. Clutch 31.
  • the dual clutch 31 has an input end 313, a first output end 311 and a second output end 312.
  • the engine unit 1 is connected to the input end 313 of the dual clutch 31.
  • the engine unit 1 can pass through a flywheel, a shock absorber or a torsion disk.
  • Various forms are connected to the input end 313 of the dual clutch 31.
  • the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21 such that the first output end 311 rotates in synchronization with the first input shaft 21.
  • the second output 312 of the dual clutch 31 is coupled to the second input shaft 22 such that the second output 312 rotates in unison with the second input shaft 22.
  • the input end 313 of the dual clutch 31 may be a housing of the dual clutch 31, and the first output end 311 and the second output end 312 may be two driven discs.
  • the housing and the two driven disks may be disconnected, that is, the input end 313 is disconnected from both the first output end 311 and the second output end 312, when it is necessary to engage one of the driven plates.
  • the housing can be controlled to engage with the corresponding driven disk for synchronous rotation, that is, the input end 313 is engaged with one of the first output end 311 and the second output end 312, so that the power transmitted from the input end 313 can pass through the first output end 311. And outputting one of the second outputs 312.
  • the housing and the two driven plates do not engage at the same time.
  • the transmission unit 2a since the input shaft is a concentric two-axis structure, and only one driving gear 25 is provided on each input shaft, the transmission unit 2a has two different gears, the engine unit 1 The power can be output to the output portion 5 through the two gears, and the synchronizer 6 can be always engaged, that is, the output shaft 24 and the output portion 5 are engaged.
  • the synchronizer 6 When switching between gears, the synchronizer 6 does not need to be disconnected and then axially moved to engage another gear as in the conventional arrangement of the synchronizer structure, and simply controls the engagement/disconnection state of the dual clutch 31. At this time, the synchronizer 6 can be always in the engaged state, so that when the engine unit 1 outputs power to the output portion 5, it is only necessary to control one shift actuator, that is, the dual clutch 31, without controlling the synchronizer 6, so that The control strategy is greatly simplified, the number of engagement/disconnection of the synchronizer 6 is reduced, and the life of the synchronizer 6 is increased.
  • the first motor generator 41 is disposed to cooperate with one of the driving gear 25 and the driven gear 26, in other words, the first motor generator 41 is one of the input shaft and the output shaft 24. Indirect drive.
  • an intermediate transmission mechanism may be disposed between the first motor generator 41 and the corresponding gear, and the transmission mechanism may be a worm gear transmission mechanism, a first-stage or multi-stage gear pair transmission mechanism, a sprocket transmission mechanism, etc.
  • the transmission mechanism may be a combination of the above various transmission mechanisms, such that the first motor generator 41 can be arranged at different positions as needed, reducing the difficulty in arranging the first motor generator 41.
  • the first motor generator 41 can be driven by an intermediate gear 411.
  • the first motor generator 41 and the drive gear 25 on the first input shaft 21 are indirectly driven by an intermediate gear 411.
  • the first motor generator 41 and the drive gear 25 on the second input shaft 22 are indirectly driven by an intermediate gear 411.
  • the first motor generator 41 may be disposed in connection with one of the first input shaft 21 and the output shaft 24.
  • the first motor generator 41 may be disposed to be directly connected to the first input shaft 21.
  • the first motor generator 41 can be disposed in direct connection with the output shaft 24.
  • the first motor generator 41 is directly connected to the corresponding shaft, which makes the structure of the powertrain system 100 more compact, and at the same time reduces the circumferential dimension of the powertrain system 100, and is conveniently disposed in the cabin of the vehicle.
  • the first motor generator 41 is arranged coaxially with the first input shaft 21, and the first motor generator 41 is arranged coaxially with the engine unit 1.
  • the output portion 5 may include an output gear 51 and an engaging ring gear 52.
  • the output gear 51 and the output shaft 24 are relatively rotatable, that is, differentially rotated, and the ring gear 52 is engaged. It is fixed to the output gear 51, that is, the engaging ring gear 52 rotates in synchronization with the output gear 51.
  • the sleeve 62 of the synchronizer 6 can move in the direction of engaging the ring gear 52 in the axial direction, in synchronization with the rotational speed of the output portion 5 and the output shaft 24. Thereafter, the engagement sleeve 62 can be engaged with the engagement ring gear 52 such that a rigid connection is formed between the output shaft 24, the synchronizer 6 and the output portion 5, and the three are simultaneously rotated.
  • the output gear 51 can be the main reducer drive gear, the main The reducer drive gear can be directly meshed with the final drive driven gear 53 to output power to drive the wheel 200.
  • the present invention is not limited thereto, and other intermediate members for transmission may be provided between the output gear 51 and the final drive.
  • a differential 54 is disposed between the first pair of wheels, such as the front wheel 210, and the differential 54 is coupled to the output 5, and in particular, in some embodiments,
  • the speed reducer 54 is provided with a final drive driven gear 53
  • the output gear 51 is a main reducer driven gear
  • the main reducer drive gear meshes with the final drive driven gear 53 , so that the power can sequentially pass through the main reducer drive gear
  • the final drive driven gear 53 and the differential 54 are transmitted to the two front wheels 210.
  • the function of the differential 54 is to properly distribute the power required for the two front wheels 210, which may be a gear differential, a forced lock differential, a Tosson differential, and the like. It will be apparent to those skilled in the art that a suitable differential can be selected for different vehicle types.
  • a pair of second motor generators 42 are provided back to back on both sides of the differential 54, for example, a pair of second motor generators 42 respectively It is provided on the other side of the differential 54 and integrated with the differential 54 as a unitary structure.
  • the second motor generator 42 on the left side is disposed between the left side half shaft and the left side of the differential 54
  • the second motor generator 42 on the right side is disposed on the right side half shaft and the right side of the differential 54
  • the powertrain system 100 of Figures 5-7 is in the form of a four-wheel drive
  • the powertrain system 100 of Figure 10 is in the form of a two-wheel drive.
  • the motor generators are disposed back to back on both sides of the differential 54 , and it can be understood that the motor generators are respectively disposed on both sides of the differential 54 and integrated with the differential. structure.
  • the second motor generator 42 is a wheel Side motor.
  • one of the second motor generators 42 is disposed inside the left front wheel, and the other second motor generator 42 is disposed inside the right front wheel, and the second motor generator 42 can transmit power to the corresponding wheel through the gear mechanism.
  • Wheels Specifically, the powertrain system 100 of Figures 2 - 4 is in the form of a four-wheel drive, while the powertrain system 100 of Figure 9 is in the form of a two-wheel drive.
  • the third motor generator 43 is two, and the third motor generator 43 is a wheel motor, as shown in FIGS. 2 and 5.
  • the third motor generator 43 is a wheel motor, as shown in FIGS. 2 and 5.
  • one third motor generator 43 is disposed inside the left rear wheel
  • the other third motor generator 43 is disposed inside the right rear wheel
  • the third motor generator 43 can The power is transmitted to the corresponding rear wheel through the gear mechanism.
  • the third motor generator 43 is one, and the one third motor generator 43 drives the second pair of wheels through the first shifting mechanism 71.
  • the first shifting mechanism 71 is preferably a speed reducing mechanism, and the speed reducing mechanism may be a first speed reducing mechanism or a multi-stage speed reducing mechanism.
  • the speed reduction mechanism may be a gear reduction mechanism, a worm gear reduction mechanism, or the like, and the present invention is not particularly limited.
  • the second pair of wheels may be connected by an axle, which may be a unitary structure, and the third motor generator 43 can directly drive the integrated axle through the first shifting mechanism 71. , thereby driving the two wheels to rotate synchronously.
  • the third motor generators 43 are two, and each of the third motor generators 43 drives one of the second pair of wheels by a second shifting mechanism 72, respectively.
  • the second shifting mechanism 72 is preferably a speed reducing mechanism, and the speed reducing mechanism may be a first speed reducing mechanism or a multi-stage speed reducing mechanism.
  • the speed reduction mechanism may be a gear reduction mechanism, a worm gear reduction mechanism, or the like, and the invention is not particularly limited.
  • the second pair of wheels may be coupled to the corresponding third motor generator 43 and the second shifting mechanism 72 via the two half bridges, that is, a third motor generator 43 may pass a second
  • the shifting mechanism 72 drives the corresponding half bridge to drive the wheel outside the half bridge to rotate.
  • these powertrain systems 100 are both in the form of two drives.
  • the output portion 5 drives the front wheel 210
  • the second motor generator 42 is a wheel motor and is used to drive the front wheel 210.
  • the output portion 5 drives the front wheels 210
  • the second motor generators 42 are provided back to back on both sides of the differential 54, for example, the second motor generators 42 are respectively disposed on both sides of the differential 54 And integrated into a single structure.
  • these powertrain systems 100 are all in the form of a four-wheel drive. In the example of FIG.
  • the output portion 5 drives the front wheels 210, and the second motor generators 42 are two, and each of the second motor generators 42 drives the rear wheels 220 through a fourth shifting mechanism 74.
  • the output portion 5 drives the front wheel 210, and the second motor generator 42 is one, and the second motor generator 42 drives the rear wheel 220 through a third shifting mechanism 73.
  • the output portion 5 drives the front wheel 210, and the second motor generator 42 is two and is a wheel motor for driving the rear wheel 220.
  • the third shifting mechanism 73 it may be the same as the first shifting mechanism 71.
  • the fourth shifting mechanism 74 can be identical to the second shifting mechanism 72. Therefore, it will not be repeated here.
  • the powertrain system 100 may further include a battery assembly 300 that is preferably coupled to the first motor generator 41, the second motor generator 42, and the third motor generator 43.
  • a battery assembly 300 that is preferably coupled to the first motor generator 41, the second motor generator 42, and the third motor generator 43.
  • the plurality of input shafts include three axes, namely a first input shaft 21, a second input shaft 22, and a third input shaft.
  • the second input shaft 22 is sleeved on the first input shaft 21, and the third input shaft 23 is sleeved on the second input shaft 22.
  • the powertrain system 100 further includes a three clutch 32 having an input 324, a first output 321 , a second output 322 and a third output 323 , the engine unit 1 and the three clutch 32 .
  • the input end 324 is connected, the first output end 321 of the three clutch 32 is connected to the first input shaft 21, the second output end 322 of the third clutch 32 is connected to the second input shaft 22, and the third output end 323 of the third clutch 32 is connected. It is connected to the third input shaft 23.
  • the input end of the three clutch 32 may be its housing, and its three output ends may be three driven discs, the input end may be engaged with one of the three output ends, or the input end and the three output ends may be completely disconnected. open. It can be understood that the working principle of the three clutches 32 is similar to that of the dual clutch 31, and details are not described herein again.
  • the transmission mode of the first motor generator 41 and the first input shaft 21 or the output shaft 24, the second motor generator 42 and the third motor generator 43 The installation position and the driving form can be the same as those in the above-described dual clutch 31 technical solution. Please refer to the technical solution of the dual clutch 31 described above, and the detailed description thereof will not be repeated here.
  • the driven gear 26 is a gear gear structure, and the gear gear is coupled.
  • the structure 26 is sleeved on the output shaft 24, i.e., the two are differentially rotatable.
  • the synchronizer 6 is fixed to the output shaft 24 and is selectively engageable with the associated gear structure 26.
  • the powertrain system 100 can include an engine unit 1, a plurality of input shafts, an output shaft 24, and an output portion 5 (eg, a final drive gear 51). ), the synchronizer 6 and the first motor generator 41.
  • the driven gear 26 adopts a gear structure and is sleeved on the output shaft 24, and the output portion 5 is fixedly disposed on the output shaft.
  • the synchronizer 6 is used to engage the geared gear structure.
  • the arrangement of the first motor generator 41 is slightly modified from the arrangement of the first motor generator 41 in the power transmission system shown in Figs. 2 to 13 described above.
  • the input shaft is a plurality, and the input shaft is provided with a drive gear 25.
  • the output shaft 24 is sleeved with a geared gear structure 26, and the geared gear structure 26 has a plurality of gear portions (for example, a first gear portion 261 and a second gear portion 262), and the plurality of gear portions are respectively coupled to the plurality of input shafts.
  • the drive gear 24 is correspondingly engaged.
  • the output portion 5 is adapted to output power from the output shaft 24, for example, preferably the output portion 5 is fixedly disposed on the output shaft 24.
  • the output portion 5 includes the final drive gear 53, but is not limited thereto.
  • the synchronizer 6 is disposed on an output shaft 24 that is configured to selectively engage the geared gear structure 26 to output power through the output portion 5 to drive the wheels of the vehicle.
  • One of the first motor generator 41 and the input shaft and the output shaft 24 may be a direct drive or an indirect drive.
  • the effect of the synchronizer 6 is substantially the same as that of the synchronizer in the embodiment shown in Figures 2-13, with the difference that the synchronizer 6 is used to engage the geared gear structure 26 in some embodiments.
  • the output shaft 24, and the synchronizer 6 in the embodiment shown in Figs. 2 - 13 is for engaging the output portion 5 and the output shaft 24.
  • the synchronizer 6 can function as the final synchronized geared structure 26 and the output shaft 24, i.e., after the synchronizing action of the synchronizer 6, the synchronized gear structure 26 and the output shaft 24 are synchronized Thereby, the power of the engine unit 1 and/or the first motor generator 41 is outputted by the output unit 5 as a power output terminal.
  • the synchronizer 6 does not synchronize the gear gear structure 26 and the output shaft 24, the power of the engine unit 1 and/or the first motor generator 41 cannot be directly outputted to the wheel 200 (through the output portion 5).
  • the synchronizer 6 serves the purpose of power switching, that is, the synchronizer 6 is engaged, and the power of the engine unit 1 and/or the first motor generator 41 can be output through the output portion 5 and used to drive the wheel 200, and the synchronizer 6 Disconnected, the power of the engine unit 1 and/or the first motor generator 41 cannot transmit power to the wheel 200 through the output portion 5, so that by controlling the engagement or disconnection of a synchronizer 6, the vehicle driving mode can be realized. Conversion.
  • the first motor generator 41 can target the rotational speed of the output portion 5, and the speed of the interlocking gear structure 26 is adjusted by the change in the rotational speed so that the speed of the interlocking gear structure 26 and the output shaft 24 are quickly matched in a time-efficient manner.
  • the time required for synchronizing the synchronizer 6 is reduced, the intermediate energy loss is reduced, and the torqueless engagement of the synchronizer 6 can also be achieved, which greatly improves the transmission efficiency, synchronization controllability and real-time synchronization of the vehicle.
  • the life of the synchronizer 6 is further extended, thereby reducing the cost of vehicle maintenance.
  • the use of the geared gear structure 26 makes the structure of the powertrain system 100 more compact and convenient. Arrangement. The number of driven gears is reduced, thereby reducing the axial dimension of the powertrain system, which is advantageous for cost reduction and also reduces the difficulty of arrangement.
  • the synchronizer 6 can be controlled by a single shift fork, making the control step simple and more reliable to use.
  • a plurality of input shafts are coaxially nested, and a drive gear 25 is fixed to each of the input shafts.
  • the input shaft includes a first input shaft 21 and a second input shaft 22, each of which has a driving gear 25 fixed thereto, and the geared gear structure 26 is a double gear, the double gear The 26 has a first gear portion 261 and a second gear portion 262, and the first gear portion 261 and the second gear portion 262 are respectively engaged with the two driving gears 25, respectively.
  • a dual clutch 31 may be disposed between the engine unit 1 and the first input shaft 21 and the second input shaft 22, with reference to the dual clutch 31 portion of the powertrain system 100 illustrated in Figures 2-13.
  • a damping structure may be disposed on the dual clutch 31, for example, the damping structure may be disposed between the first output of the dual clutch 31 and the input of the dual clutch 31, which is more suitable for resisting starting.
  • the output of the first motor generator 41 is directly or indirectly driven with one of the drive gears.
  • the powertrain system 100 in this embodiment further includes an intermediate shaft 45 fixedly provided with a first countershaft gear 451 and a second countershaft gear 452, a first countershaft gear 451 and a second intermediate pumping gear
  • One of the 452 meshes with one of the driving gears 25, for example, in the example of FIGS. 14 and 15, the first intermediate pumping gear 451 is meshed with the driving gear 25 on the second input shaft 22, but the present invention is not limited thereto.
  • the output of the first motor generator 41 is directly driven by one of the first countershaft gear 451 and the second countershaft gear 452 or indirectly via the intermediate idler gear 44.
  • the output of the first motor generator 41 and the second countershaft gear 452 are indirectly transmitted through an intermediate idler 44.
  • the output end of the first motor generator 41 is directly meshed with the second counter gear 452.
  • the output end of the first motor generator 41 is directly meshed with one of the gear portions of the gear train structure 26.
  • the output end of the first motor generator 41 is directly meshed with the first gear portion 261.
  • the present invention is not limited thereto, and the arrangement position of the first motor generator 41 can be flexibly set according to actual needs, for example, the above several methods may be used, or FIG. 2 may also be used. Some of the arrangements shown in Figure 13 are not repeated here.
  • the first gear portion 261 is independently responsible for the torque input of the engine unit 1
  • the second gear portion 262 is responsible for the torque input of the engine unit 1 and the first motor generator 41, respectively. one side.
  • the side of the gear gear structure 26 facing the synchronizer 6 is fixedly provided with an engaging ring gear 52,
  • the synchronizer 6 is adapted to engage the engaging ring gear 52 to rigidly couple the geared gear structure 26 with the output shaft 24 for simultaneous rotation.
  • the input shafts may be three.
  • the geared gear structure 26 is a triple gear, i.e., has three teeth.
  • the triple gear has a first gear portion 261, a second gear portion 262, and a third gear portion 263 that mesh with the corresponding three input shaft upper drive gears 25, respectively.
  • the input shafts are four, that is, the first input shaft 21, the second input shaft 22, the third input shaft 23, and the fourth input shaft 27, and the second input shaft. 22 sets are disposed on the first input shaft 21, the third input shaft 23 is sleeved on the second input shaft 22, and the fourth input shaft 27 is sleeved on the third input shaft 23.
  • the interlocking gear structure 26 is two and both are double gears, each of the double gears having a first gear portion 261 and a second gear portion 262, each of the first gear portion 261 and each of the second gear portions 262 Separatingly with the corresponding driving gear 25, the synchronizer 6 is disposed between the two double gears 26 and selectively engages one of the two double gears 26. It is of course understood that the synchronizer 6 can also Both of the double gears 26 are disconnected.
  • a four clutch may be disposed between the engine unit 1 and the four input shafts, the four clutch having an input end, a first output end, a second output end, a third output end, and a fourth output end, the engine unit Connected to the input end of the four clutch, the first output of the four clutch is connected to the first input shaft 21, the second output of the four clutch is connected to the second input shaft 22, and the third output and the third input shaft of the four clutch The fourth input of the 23 connected and four clutches is coupled to the fourth input shaft 27.
  • the manner of connection between the engine unit 1 and the four input shafts is not limited thereto.
  • the driven gear 26 employs a geared gear structure.
  • the output portion 5 is fixedly disposed on the output shaft 24, and the synchronizer 6 is configured to engage the output shaft 24 and the gear train structure 26.
  • the powertrain system 100 may also include a second motor generator 42 and a third motor generator 43 in an arrangement that may take a substantially uniform arrangement in Figures 2-13, so that there is no longer a A narrative.
  • the power switching device is a clutch 9 that is configured to be adapted for transmission or disconnection of power between the transmission unit 2a and the output portion 5.
  • the transmission unit 2a can be synchronized with the output unit 5 by the engagement of the clutch 9, and the output unit 5 can output the power of the transmission unit 2a to the wheel 200.
  • the clutch 9 is turned off, the power output from the transmission unit 2a cannot be directly output through the output unit 5.
  • the powertrain system 100 may include an engine unit 1, a plurality of input shafts, an output shaft 24, and an output portion 5 (eg, main deceleration) The drive gear 51), the clutch 9 and the first motor generator 41.
  • the synchronizer 6 is replaced by a clutch 9 which is used to engage the geared gear structure 26 and the output shaft 24.
  • the arrangement of the first motor generator 41 may be identical to the arrangement of the first motor generator 41 in the power transmission system shown in FIGS. 14-16 described above.
  • the input shaft is a plurality, and the input shaft is provided with a drive gear 25.
  • the geared gear structure 26 is differentially rotatable relative to the output shaft 24, and the output shaft 24 is overlaid with a geared gear structure 26 having a plurality of gear portions (eg, a first gear portion 261, a second gear portion 262) The plurality of gear portions are respectively engaged with the driving gears 24 on the plurality of input shafts.
  • the output portion 5 is adapted to output power from the output shaft 24, for example, preferably the output portion 5 is fixedly disposed on the output shaft 24.
  • the output portion 5 includes the final drive gear 53, but is not limited thereto.
  • the clutch 9 is configured to selectively engage the geared gear structure 26 and the output shaft 24 to output power through the output portion 5 to drive the wheels of the vehicle.
  • One of the first motor generator 41 and the input shaft and the output shaft 24 may be a direct drive or an indirect drive.
  • the clutch 9 engages the gear gear structure 26 and the output shaft 24, and the first motor generator 41 can perform the speed adjustment without relying on the characteristics of the clutch 9, and the friction force is used for the engagement, thereby eliminating the speed adjustment step and simplifying Control Strategy.
  • the speed adjustment can also be performed by the first motor generator 41 to enable the clutch 9 to be quickly engaged.
  • the first motor generator 41 can target the rotational speed of the output portion 5, and the speed of the interlocking gear structure 26 is adjusted by the change in the rotational speed so that the speed of the interlocking gear structure 26 and the output shaft 24 are quickly matched in a time efficient manner.
  • the wear during the engagement of the clutch 9 is reduced, the intermediate energy loss is reduced, and the transmission efficiency of the vehicle is greatly improved.
  • the life of the clutch 9 can be further extended, thereby reducing the cost of vehicle maintenance.
  • the structure of the powertrain system 100 can be made more compact and easy to arrange. Moreover, the number of driven gears is reduced, thereby reducing the axial size of the powertrain system, which is advantageous for cost reduction and also reduces the difficulty of arrangement.
  • a plurality of input shafts are coaxially nested, and a drive gear 25 is fixed to each of the input shafts.
  • the input shaft includes a first input shaft 21 and a second input shaft 22, each of which has a driving gear 25 fixed thereto, and the geared gear structure 26 is a double gear, the double gear 26 has a first gear portion 261 and a second gear portion 262, and the first gear portion 261 and the second gear portion 262 are respectively coupled to the two driving gears 25 is engaged correspondingly.
  • a dual clutch 31 may be disposed between the engine unit 1 and the first input shaft 21 and the second input shaft 22.
  • the dual clutch in the power transmission system 100 shown in FIGS. 2-7, 9-13.
  • Part 31 Alternatively, a damping structure may be disposed on the dual clutch 31, for example, the damping structure may be disposed between the first output of the dual clutch 31 and the input of the dual clutch 31, which is more suitable for resisting starting.
  • the output of the first motor generator 41 is indirectly driven with one of the drive gears.
  • the powertrain system 100 in this embodiment further includes an intermediate shaft 45 fixedly provided with a first countershaft gear 451 and a second countershaft gear 452, a first countershaft gear 451 and a second intermediate pumping gear
  • One of the 452 meshes with one of the driving gears 25, for example, in the example of FIGS. 17 and 18, the first intermediate pumping gear 451 is meshed with the driving gear 25 on the second input shaft 22, but the present invention is not limited thereto.
  • the output of the first motor generator 41 is directly driven by one of the first countershaft gear 451 and the second countershaft gear 452 or indirectly via the intermediate idler gear 44.
  • the output of the first motor generator 41 and the second counter gear 452 are indirectly transmitted through an intermediate idler 44.
  • the output end of the first motor generator 41 is directly meshed with the second counter gear 452.
  • the output end of the first motor generator 41 directly meshes with one of the gear portions of the gear train structure 26.
  • the output end of the first motor generator 41 is directly meshed with the first gear portion 261.
  • the present invention is not limited thereto, and the arrangement position of the first motor generator 41 can be flexibly set according to actual needs, for example, the above several methods may be used, or FIG. 2 may also be used. Some of the arrangements shown in Figure 13 are not repeated here.
  • the first gear portion 261 is independently responsible for the torque input of the engine unit 1
  • the second gear portion 262 is responsible for the torque input of the engine unit 1 and the first motor generator 41, respectively. one side.
  • the input shafts may be three.
  • the geared gear structure 26 is a triple gear (shown in connection with Figure 20), i.e., has three teeth.
  • the triple gear has a first gear portion 261, a second gear portion 262, and a third gear portion 263 that mesh with the corresponding three input shaft upper drive gears 25, respectively.
  • the powertrain system 100 may also include a second motor generator 42 and a third motor generator 43 in an arrangement that may employ a substantially uniform arrangement in Figures 2-13, so Repeat them one by one.
  • the clutch 9 has an active portion and a driven portion, one of the active and driven portions of the clutch 9 being disposed on a geared gear structure such as the double gear 26, the active portion of the clutch 9 and the driven portion Another in the section One is disposed on the output shaft 24, and the active portion and the driven portion of the clutch 9 are detachable or engageable.
  • the driven portion may be disposed on the double gear structure 26, and the active portion may be disposed on the output shaft 24.
  • the clutch 9 may also employ a disc clutch (including an active portion and a driven portion).
  • the present invention is implemented according to the present invention.
  • the powertrain 100 of the example has a reduced volume, a more compact structure, and high transmission efficiency and can meet the requirements of high torque transmission.
  • the synchronizer 6 can be achieved without torque engagement, smoother, and the joint speed and The power response is faster, compared to the traditional clutch transmission mode, can withstand greater torque without failure, greatly improving the stability and reliability of the transmission.
  • the machine is responsible for driving one wheel.
  • the advantage of the four independent motor drives is that the ordinary mechanical four-wheel drive can only realize the torque distribution of the front and rear wheels, and the high-end full-time four-wheel drive can only realize the short-range torque difference between the left and right wheels.
  • the torque difference adjustment of +100% to -100% of the left and right wheel motors can be realized at any time, thereby greatly improving the steering stability at the time of high-speed cornering, and improving. Understeer and turn to transition issues.
  • the low-speed rotation of the two wheels in the opposite direction can greatly reduce the turning radius of the vehicle, making the vehicle more comfortable.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively, and the first motor generator 41 is indirectly driven by the driving gear 25 on the second input shaft 22 through an intermediate gear 411.
  • Two output gears 26 are fixedly disposed on the output shaft 24, and the two driven gears 26 are respectively meshed with the driving gears 25 on the first input shaft 21 and the second input shaft 22, thereby constituting two transmission gears.
  • the synchronizer 6 is fixed on the output shaft 24, and the main reducer drive gear (ie, the output gear 51) can be differentially rotated with respect to the output shaft 24.
  • the left side of the main reducer drive gear can be fixed with the synchronizer 6 through the connecting rod.
  • the mating ring gear 52 is provided.
  • the main reducer driving gear is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed on the differential 54 to transmit power to the differential 54, and the differential 54 is distributed. After the power is transmitted, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the two second motor generators 42 respectively constitute a wheel-side motor for driving the two front wheels 210
  • the two third motor generators 43 respectively constitute a wheel-side motor for driving the two rear wheels 220, that is, in the scheme A wheel motor is provided at each of the four wheels.
  • the dual clutch 31 can be disengaged or engaged so that the power of the engine unit 1 can be transmitted to the output shaft 24 in two speed ratios, respectively.
  • the first motor generator 41 passes the gear set to transmit power to the output shaft 24 at a fixed speed ratio.
  • the synchronizer 6 is engaged, the power of the output shaft 24 can be transmitted to the front wheel 210 through the final drive and the differential 54, and the synchronizer 6 is turned off, so that the power of the output shaft 24 cannot be transmitted to the front wheel 210.
  • the two second motor generators 42 are in the form of a wheel and can directly drive the two front wheels.
  • the two third motor generators 43 are in the form of a wheel and can directly drive the two rear wheels.
  • the powertrain system 100 in this embodiment can have at least the following operating conditions: a third motor generator 43 pure electric operating condition, a pure electric four-wheel drive condition, a parallel operating condition, a series operating condition, and a braking/deceleration feedback condition.
  • the third motor generator 43 is purely electric working condition: the double clutch 31 is cut off, the synchronizer 6 is cut off, the engine unit 1, the first motor generator 41 and the second motor generator 42 are not operated, and the two third motor generators 43 are respectively Two rear wheels 220 are driven. This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the third motor generator 43 directly drives the rear wheel 220, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle. Further, the third motor generator 43 separately drives the left rear wheel and the right rear wheel, and the electronic differential function can be realized, the steering stability is increased, and the wear amount of the tire is reduced.
  • the front drive portion disconnects the output gear 51 from the front wheel 210 through the synchronizer 6, so that the front drive has no mechanical loss, which reduces the energy consumption of the entire vehicle.
  • Pure electric four-wheel drive condition the dual clutch 31 is cut off, the synchronizer 6 is cut off, the first motor generator 41 is not working, and the two second motor generators 42 are respectively used to drive the two front wheels 210, and the two third electric power generation
  • the machine 43 is used to drive the rear wheel 220, respectively.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • the pure electric four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability than the front and rear drive.
  • the two second motor generators 42 and the two third motor generators 43 respectively drive four wheels independently, so that each wheel can obtain different torques and rotation speeds separately, realizing four-wheel independent control, and the power and operation are realized. Stability and off-road performance for maximum performance. When the corresponding motor generator applies torque in different directions to the left and right wheels, the in-situ steering of the entire vehicle can also be achieved.
  • Parallel operation the dual clutch 31 is engaged, the synchronizer 6 is engaged, and the engine unit 1 and the first motor generator 41 transmit power to the final drive gear 51 through the gear set and synchronizer 6 and through the differential 54 Power is transmitted to the front wheels 210 while the two second motor generators 42 respectively transmit power to the corresponding front wheels 210, and the two third motor generators 43 respectively transmit power to the corresponding rear wheels 220.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the five motor generators and the engine unit 1 simultaneously drive the vehicle to achieve maximum power performance.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the third motor generator 43 separately drives the left rear wheel and the right rear wheel, which can realize the electronic differential function, omitting the transmission mechanical differential, reducing the parts, and also increasing the steering stability and reducing the tire. The amount of wear.
  • the advantage of this condition is that the series (ie, four-wheel drive series) conditions have better acceleration performance, climbing performance, handling performance and off-road capability compared to the front and rear drive.
  • the two second motor generators 42 and the two third motor generators 43 respectively drive four wheels independently, so that each wheel can obtain different torques and rotation speeds separately, realizing four-wheel independent control, and the power and operation are realized. Stability and off-road performance for maximum performance.
  • the corresponding motor generator applies torque in different directions to the left and right wheels, the in-situ steering of the entire vehicle can also be achieved.
  • the first motor generator 41 can adjust the torque and the rotational speed to keep the engine unit 1 in the optimal economic zone, thereby reducing power generation fuel consumption.
  • Brake/deceleration feedback condition the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, the second motor generator 42 brakes the front wheel and generates electricity, and the third motor generator 43 is manufactured. Move the rear wheel and generate electricity.
  • This condition is mainly used for vehicle braking or deceleration.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the third motor generator 42 brakes the four wheels, respectively, and can ensure the braking force and stability of the vehicle regardless of whether it is turning or going straight. Underneath, fully absorb the power of each wheel to maximize the return energy.
  • the synchronizer 6 since the synchronizer 6 is turned off, the engine unit 1 and the first motor generator 41 can continue while the above four motor generators brake the wheels.
  • the power generation function makes the power generation state stable, avoids frequent switching, and enhances the life of components.
  • Hybrid operating condition the dual clutch 31 is engaged, the synchronizer 6 is engaged, part of the power of the engine unit 1 drives the first motor generator 41 to generate electricity through the dual clutch 31 and the gear gear set, and another part of the engine unit 1 is powered by the gear
  • the group and synchronizer 6 transmits power to the final drive gear 51, and the second motor generator 42 directly drives the front wheel 210 through the final drive gear 51 while the third motor generator 43 drives the rear wheel 220, respectively.
  • This working condition is mainly used for large load situations such as acceleration and climbing, and the power is not much.
  • the advantage of this condition is that the entire power of the engine unit 1 can be exerted, and the power of the vehicle can be ensured, and power generation can be simultaneously performed to maintain the power of the battery.
  • the above six operating conditions can be switched, and the typical working conditions are switched to: switch from the working condition 4 to the working condition 3, or switch from the working condition 4 to the working condition 5.
  • the power transmission system 100 can be switched from the working condition 4 to the working condition 3 according to the driver's throttle demand.
  • the first motor generator 41 targets the rotation speed of the main reducer drive gear, and adjusts the rotation speed of the output shaft 24 by the rotation speed control, so that the output shaft 24 and the main reducer drive gear speed are matched as much as possible, which is convenient for synchronization.
  • the unit 6 is combined.
  • the second motor generator 42 and the third motor generator 43 can increase the torque in response to the driving demand, and the vehicle can be accelerated without being accelerated as the normal vehicle is engaged until the synchronizer 6 is engaged.
  • This torque compensation function can greatly shorten the torque response time and improve the instantaneous acceleration performance of the vehicle.
  • switching from the working condition 4 to the working condition 5 when the vehicle brakes or decelerates, the power transmission system 100 can be switched from the working condition 4 to the working condition 5 according to the driver's throttle demand or the action of stepping on the brake pedal.
  • the second motor generator 42 and the third motor generator 43 can already satisfy the demand of the brake feedback without the first motor generator 41 performing the feedback, and the second motor generator 42 and the third motor generator 43 can respond immediately.
  • the engine unit 1 and the first motor generator 41 can maintain the original power generation state, and after the end of the braking condition, there is no need to switch, and the original series operation condition is directly entered.
  • This torque pre-compensation function can greatly shorten the motor brake response time and increase the amount of feedback.
  • the synchronizer 6 is often difficult to engage due to unstable vehicle speed.
  • the first motor generator 41 can adjust the rotational speed of the output shaft 24 by the rotational speed control, since the rotational speed of the main reducer drive gear is uncontrollable with the vehicle speed, the accuracy and speed of the first motor generator 41 can also be adjusted. Bring difficulties. Under these road conditions, the second motor generator 42 and the third motor generator 43 perform torque compensation on the vehicle, which can effectively stabilize the vehicle speed, thereby improving the driving experience of the entire vehicle and simplifying the engagement of the synchronizer 6. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the third motor generator 43.
  • each of the third motor generators 43 drives the corresponding rear wheel 220 through a second shifting mechanism 72.
  • the specific operating condition is substantially the same as that of the power transmission system 100 in the embodiment of FIG. 2, and the difference may be that only the third speed change mechanism is required between the third motor generator 43 and the corresponding rear wheel 220 when performing power transmission. 72, here is no longer detailed.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the third motor generator 43.
  • the third motor generator 43 is one and the corresponding rear wheel 220 is driven by a first shifting mechanism 71.
  • the specific working condition it is basically the same as the power transmission system 100 in the embodiment of FIG.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the second motor generator 42.
  • the second motor generators 42 are respectively disposed on the two sides of the differential 54 back to back, and the rest may be substantially identical to the power transmission system 100 in the embodiment of FIG. 2, and details are not described herein again.
  • the specific operating conditions are substantially the same as those of the powertrain system 100 in the embodiment of FIG. 2, and will not be described in detail herein.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 5 only in the arrangement of the third motor generator 43.
  • each of the third motor generators 43 drives the corresponding rear wheel 220 through a second shifting mechanism 72.
  • it can be substantially identical to the powertrain system 100 of the embodiment of FIG. Let me repeat.
  • the specific operating conditions are substantially the same as those of the powertrain system 100 in the embodiment of FIG. 2, and will not be described in detail herein.
  • the power transmission system 100 in this embodiment may be different from the power transmission system 100 in FIG. 5 only in the arrangement of the third motor generator 43.
  • the third motor generator 43 is one and the corresponding rear wheel 220 is driven by a first shifting mechanism 71.
  • the specific operating conditions are substantially the same as the power transmission system 100 in the embodiment of FIG. 5, and the difference may be that only the two rear wheels 220 are driven by a third motor generator 43 and a first shifting mechanism 71.
  • the differential function of the two rear wheels 220 cannot be realized by only one motor and one shifting mechanism without adding new components, but it can be understood that a differential can be added to realize the differential speed of the two rear wheels 220. Rotating, the differential can be integrated with the first shifting mechanism 71.
  • the power transmission system 100 in this embodiment differs from the power transmission system 100 in FIG. 2 only in the form of the clutch and the number of the input shaft, the driving gear 25, and the driven gear 26, which is implemented.
  • the clutch is a three-clutch 32
  • the input shaft is three
  • the driving gear 25 and the driven gear 26 correspond to three pairs.
  • the power transmission system 100 in the embodiment of FIG. 2 is substantially identical, and details are not described herein. .
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 2 only in that the third motor generator 43 in the embodiment of FIG. 2 is eliminated, and the power in this embodiment is
  • the transmission system 100 is in the form of a two-wheel drive.
  • the powertrain system 100 in this embodiment can have at least the following operating conditions:
  • the second motor generator 42 is purely electric: the dual clutch 31 is turned off, the synchronizer 6 is turned off, the engine unit 1 and the first motor generator 41 are not operated, and the second motor generator 42 directly drives the front wheel 210.
  • This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the second motor generator 42 directly drives the front wheel 210, which has the shortest transmission chain and the least number of components involved in the operation, and can achieve the highest transmission efficiency and minimum noise.
  • the second motor generator 42 separately drives the left and right front wheels 210, respectively, and can realize an electronic differential function, increase steering stability, and reduce wear of the tire.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • the advantage of this condition is that it has better power performance than a single motor drive, and has better performance than a hybrid drive. Economical and lower noise.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road).
  • Working condition three parallel: the dual clutch 31 is cut off, the synchronizer 6 is engaged, and the engine unit 1 and the first motor generator 41 transmit power to the final drive main gear 51 through the gear gear set and the synchronizer 6, and pass the differential
  • the unit 54 divides the power equally to the left and right front wheels, and the second motor generator 42 directly drives the front wheels.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the three motors and the engine unit 1 are driven at the same time, and the maximum dynamic performance can be exerted.
  • Working condition four in series: the double clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity through the dual clutch 31 and the gear gear set, and the second motor generator 42 directly drives the wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the second motor generator 42 directly drives the wheels, the transmission chain is the shortest, and the components involved in the work are minimized, and the highest transmission efficiency and minimum noise can be achieved.
  • the first motor generator 41 can be adjusted by the torque and the rotational speed to keep the engine unit 1 in the optimal economic zone, thereby reducing the fuel consumption of the power generation.
  • the second motor generator 42 separately drives the left and right wheels, and can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • Working condition 5 braking/deceleration feedback: the dual clutch 31 is engaged, the synchronizer 6 is disconnected, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator 42 directly brakes the wheel and generates electricity.
  • This condition is mainly used for braking or deceleration of the vehicle.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the second motor generator 42 is respectively braked two wheels, which can absorb the braking energy to the maximum, convert into electric energy, and the engine unit 1 and the first electric power generation
  • the machine 41 can continue to generate electricity, maintain stability of the power generation conditions, and reduce frequent switching.
  • the above five kinds of working conditions can be switched, and the typical working condition is switched to: switch from the working condition 4 to the working condition 3, or switch from the working condition 4 to the working condition 5.
  • the power system will switch from the working condition 4 to the working condition 3 according to the throttle demand of the driver.
  • the first motor generator 41 targets the rotation speed of the main reducer drive gear 51, and the rotation speed of the output shaft 24 is adjusted by the rotation speed control so that the rotation speeds of the two shafts are matched as much as possible to facilitate the engagement of the synchronizer 6.
  • the second motor generator 42 can increase the torque in response to the driving demand, so that the vehicle can be accelerated without having to wait until the synchronizer 6 is engaged to accelerate as in the case of the conventional vehicle.
  • This torque pre-compensation function can greatly shorten the torque response time and improve the instantaneous acceleration performance of the vehicle.
  • the power transmission system 100 can be switched from the operating condition 4 to the operating condition 5 according to the driver's throttle demand or the action of stepping on the brake pedal.
  • the second motor generator 42 can already meet the demand of the brake feedback without the first motor generator 41 performing the feedback. At this time, the second motor generator 42 can immediately respond to the driving demand, brake the wheel, and feed back the power without having to Like a normal vehicle, the power is not fed back until the synchronizer 6 is engaged.
  • the engine unit 1 and the first motor generator 41 can maintain the original power generation state, and after the end of the braking condition, there is no need to switch, and the original series operation condition is directly entered.
  • This torque pre-compensation function can greatly shorten the motor brake response time and increase the amount of feedback.
  • the synchronizer 6 is often difficult to engage due to unstable vehicle speed.
  • the first motor generator 41 can adjust the rotational speed of the output shaft 24 by the rotational speed control, since the rotational speed of the main reducer drive gear is uncontrollable with the vehicle speed, the accuracy and speed of the first motor generator 41 can also be adjusted. Bring difficulties. Under these road conditions, the vehicle is torque-compensated by the second motor generator 42, which can effectively stabilize the vehicle speed, thereby improving the driving experience of the entire vehicle and simplifying the engagement of the synchronizer 6.
  • the powertrain system 100 of this embodiment differs from the powertrain system 100 of FIG. 9 in the position of the second motor generator 42.
  • the second motor generator 42 is back to back. It is disposed on both sides of the differential 54 and is substantially identical to the power transmission system 100 in the embodiment of FIG. 9 for the rest, and details are not described herein again.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, in this embodiment, the second motor generator 42 is two.
  • Each of the second motor generators 42 drives the corresponding rear wheel 220 through a fourth shifting mechanism 74.
  • it can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9, and details are not described herein.
  • the powertrain system 100 in this embodiment has at least the following operating conditions:
  • the second motor generator 42 is purely electric: the dual clutch 31 is cut off, the synchronizer 6 is cut off, the engine unit 1 and the first motor generator 41 are not operated, and each of the second motor generators 42 passes the corresponding fourth shifting speed.
  • Mechanism 74 drives the rear wheels.
  • This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the second motor generator 42 drives the rear wheel, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle.
  • the second motor generator 42 separately drives the left and right wheels, and the electronic differential function can be realized, the steering stability is increased, and the wear amount of the tire is reduced.
  • the predecessor disconnects the gear set from the front wheel through the synchronizer 6, so that the front drive has no mechanical loss, reducing the energy consumption of the entire vehicle.
  • Working condition two, pure electric four-wheel drive the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not working, the first motor generator 41 drives the front wheel, and the second motor generator 42 drives the rear wheel.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • the advantage of this condition is that it is compared to a single motor drive. With better power performance, it has better economy and lower noise than hybrid drive.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road). Compared to the front and rear drive, the pure electric four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the second motor generator 42 separately drives the left and right rear wheels separately, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 and the first motor generator 41 simultaneously drive the front wheel 210, and the second motor generator 42 drives the rear wheel.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the dual motor and the engine unit are driven at the same time, and the maximum dynamic performance can be exerted.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the second motor generator separately drives the left and right rear wheels separately, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • Working condition four in series: the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator 42 drives the rear wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the two second motor generators respectively drive two rear wheels, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire. It has better acceleration performance, gradeability and ultimate steering capability compared to the front-wheel drive.
  • the first motor generator can be adjusted by torque and speed to keep the engine unit in the optimal economic zone and reduce power consumption.
  • braking/deceleration feedback the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit is not working, and the first motor generator and the second motor generator simultaneously brake the vehicle and generate electricity.
  • the advantage of this condition is that when the vehicle is decelerating or braking, three motors simultaneously brake the vehicle, so that the braking energy can be absorbed to the maximum and converted into electric energy.
  • the braking force of the engine unit friction torque is eliminated, and more power can be left for the motor to absorb.
  • the front and rear drive together with the brake feedback can better distribute the braking force to the front and rear motors under the premise of ensuring the braking force of the whole vehicle, and can return more electric energy than the single front or rear drive models.
  • the two second motor generators can individually control the magnitude of the braking force, and can improve the stability of the vehicle during cornering braking, and further improve the energy of the feedback.
  • the various operating conditions of the powertrain system 100 in this embodiment can be switched.
  • the more classical mode is that the operating condition 4 is switched to the operating condition 3 or the operating condition 5.
  • the principle of the corresponding switching part is similar, and will not be described here.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, which is a second motor generator 42 in this embodiment.
  • the second motor generator 42 drives the rear wheel 220 through a third shifting mechanism 73.
  • it can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9, and details are not described herein.
  • the second motor generator 42 can be used to separately drive the vehicle.
  • the dual clutch 31 and the synchronizer 6 are both cut off, and the working condition is mainly used for small load situations such as uniform speed or urban working conditions, and the battery power is high. Case.
  • the advantage of this condition is that the second motor generator 42 directly drives the rear wheel 220 through the third shifting mechanism 73, which has better acceleration performance, climbing performance and ultimate steering capability than the front drive.
  • the front part is disconnected by the synchronizer 6, so that the front part has no mechanical loss, which reduces the energy consumption of the whole vehicle.
  • the rear drive portion may further be provided with a differential, and the differential may be integrated with the third shifting mechanism 73.
  • the power transmission system can also have a pure electric four-wheel drive condition, in which case the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not working, the first motor generator 41 drives the front wheel, and the second motor power generation The machine 42 drives the rear wheels.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • This condition has better power performance than single-motor drive, and it has better economy and lower noise than hybrid drive.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road). Compared to front or rear-drive vehicles, pure electric four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the powertrain system also has a parallel operating condition: the dual clutch 31 is engaged, the synchronizer 6 is engaged, the engine unit 1 and the first motor generator 41 jointly drive the front wheel 210, and the second motor generator 42 drives the rear wheel 220.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the main advantage of this condition is that the dual motor and the engine unit are driven at the same time to maximize the power performance.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the powertrain system also has a series operating condition: at this time, the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator drives the rear wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the second motor generator 42 drives the rear wheel, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle.
  • the first motor generator 41 can be adjusted by torque and speed to keep the engine unit 1 in the optimal economic zone, reducing power consumption.
  • the powertrain system also has brake/deceleration feedback: the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not in operation, and the first motor generator 41 and the second motor generator 42 simultaneously brake the vehicle and Power generation.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the two motors are braked at the same time, which can absorb the braking energy to the maximum and convert it into electric energy.
  • the brake of the engine unit friction torque is eliminated, and more power can be left for the motor to absorb.
  • the front and rear drive together with the brake feedback can better distribute the braking force to the front and rear motors under the premise of ensuring the braking force of the whole vehicle, and can return more electric energy than the single front or rear drive models.
  • the various operating conditions of the powertrain system 100 in this embodiment can be switched.
  • the more classical mode is that the operating condition 4 is switched to the operating condition 3 or the operating condition 5.
  • the principle of the corresponding switching part is similar, and will not be described here.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, in this embodiment, the second motor generator 42 is two. And all of the wheel motors, the second motor generator 42 is used to drive the corresponding rear wheel 220, and the rest can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9 (the transmission mode is similar to FIG. 11). I won't go into details here.
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • a first countershaft gear 451 and a second countershaft gear 452 are fixedly disposed on the intermediate shaft 45.
  • the first countershaft gear 451 meshes with the driving gear 25 on the second input shaft 22, and the output end of the first motor generator 41 passes.
  • An intermediate idler gear 44 is indirectly coupled to the second countershaft gear 452.
  • the synchronizer 6 is fixed to the output shaft 24 and is used to engage the double gear 26.
  • the main reducer drive gear 51 is fixed to the output shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • a first countershaft gear 451 and a second countershaft gear 452 are fixedly disposed on the intermediate shaft 45.
  • the first countershaft gear 451 meshes with the driving gear 25 on the second input shaft 22, and the output end of the first motor generator 41 is directly Engaged with the second countershaft gear 452.
  • the synchronizer 6 is fixed to the output shaft 24 and is used to engage the double gear 26.
  • the main reducer drive gear 51 is fixed at the output Out of the shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • the output end of the first motor generator 41 is directly meshed with the first gear portion 261.
  • the synchronizer 6 is fixed to the output shaft 24 and is used to engage the double gear 26.
  • the main reducer drive gear 51 is fixed to the output shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 14 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 51 is fixedly disposed on the output shaft 24.
  • the power transmission system 100 in this embodiment differs from the power transmission system 100 in FIG. 15 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 51 is fixedly disposed on the output shaft 24.
  • the powertrain system 100 of this embodiment differs from the powertrain system 100 of FIG. 16 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 16, and the main reducer drive gear is provided. 51 is fixedly disposed on the output shaft 24.
  • the second motor generator 42 and the third motor generator 43 are included or only the second motor generator 42 (not shown in FIGS. 14-19) is included, and the specific arrangement may be corresponding to those in FIGS. 2-13. Arrangement (for example, in the form of a wheel, back to back on both sides of the differential, etc.).
  • the final drive main gear 51 of the powertrain system 100 shown in FIGS. 14-19 can be used to drive the front wheel 210, and the rear drive can adopt the rear drive mode of FIG.
  • a second motor generator 42 and a speed reduction mechanism drive the rear wheel 220.
  • the second motor generator 42 is configured to drive the front or rear wheels.
  • the second motor generator 42 is configured to drive the front wheel
  • the third motor generator 43 is configured to drive the rear wheel.
  • a vehicle including the powertrain system 100 as described above is further provided in accordance with an embodiment of the present invention.
  • other configurations of vehicles in accordance with embodiments of the present invention such as travel systems, steering systems, braking systems, etc., are well known in the art and are well known to those of ordinary skill in the art, and thus details of conventional structures are The description is omitted here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • General Engineering & Computer Science (AREA)
  • Structure Of Transmissions (AREA)

Abstract

 一种动力传动系统(100)及具有其的车辆。该动力传动系统(100)包括发动机单元(1)、输入轴(21、22)、输出轴(24)、联齿齿轮结构(26)、离合器(9)和第一电动发电机(41)。发动机单元(1)可选择性地与输入轴(21、22)之一接合,输入轴(21、22)设有主动齿轮(25),联齿齿轮结构(26)相对输出轴(24)可差速转动且具有齿轮部(261、262),齿轮部(261、262)与多个主动齿轮(25)对应啮合,离合器(9)可选择性地接合联齿齿轮结构(26)与输出轴(24),第一电动发电机(41)与输入轴和输出轴中的一个传动。

Description

车辆及其动力传动系统 技术领域
本发明涉及车辆技术领域,尤其是涉及一种用于车辆的动力传动系统及具有其的车辆。
背景技术
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动,具有多种模式,可以改善传动效率和燃油经济性。
但是,发明人所了解的相关技术中,混合动力汽车中的动力传动系统一般结构复杂,体积庞大,传动效率偏低,在挡位切换或模式切换时需要同时控制多个换挡执行元件,控制策略复杂。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明需要提供一种用于车辆的动力传动系统,该动力传动系统结构紧凑,传动效率高且控制方便。
进一步地,本发明需要提供一种车辆,该车辆包括上述的动力传动系统。
根据本发明实施例的用于车辆的动力传动系统,包括:发动机单元;多个输入轴,在所述发动机单元给所述输入轴传送动力时,所述发动机单元可选择性地与所述多个输入轴中的一个接合,每个所述输入轴上设置有主动齿轮;输出轴和联齿齿轮结构,所述联齿齿轮结构相对所述输出轴可差速转动,所述联齿齿轮结构具有多个齿轮部,所述多个齿轮部分别与所述多个输入轴上的主动齿轮对应地啮合;输出部,所述输出部适于输出来自所述输出轴的动力;离合器,所述离合器设置成可选择性地接合所述联齿齿轮结构与所述输出轴,从而通过所述输出部输出所述动力以驱动所述车辆的车轮;以及第一电动发电机,所述第一电动发电机与所述输入轴和所述输出轴中的一个直接传动或间接传动。
根据本发明实施例的动力传动系统,发动机单元和/或第一电动发电机输出的动力可以通过离合器的接合作用而从输出部输出,结构紧凑且控制方便。
根据本发明的另外一方面,提供了一种车辆,所述车辆包括如上所述的用于车辆的动力传动系统。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的动力传动系统的原理简图;
图2是根据本发明一个实施例的动力传动系统的示意图;
图3是根据本发明另一个实施例的动力传动系统的示意图;
图4是根据本发明又一个实施例的动力传动系统的示意图;
图5是根据本发明再一个实施例的动力传动系统的示意图;
图6是根据本发明再一个实施例的动力传动系统的示意图;
图7是根据本发明再一个实施例的动力传动系统的示意图;
图8是根据本发明再一个实施例的动力传动系统的示意图;
图9是根据本发明再一个实施例的动力传动系统的示意图;
图10是根据本发明再一个实施例的动力传动系统的示意图;
图11是根据本发明再一个实施例的动力传动系统的示意图;
图12是根据本发明再一个实施例的动力传动系统的示意图;
图13是根据本发明再一个实施例的动力传动系统的示意图;
图14是根据本发明再一个实施例的动力传动系统的示意图;
图15是根据本发明再一个实施例的动力传动系统的示意图;
图16是根据本发明再一个实施例的动力传动系统的示意图;
图17是根据本发明再一个实施例的动力传动系统的示意图;
图18是根据本发明再一个实施例的动力传动系统的示意图;
图19是根据本发明再一个实施例的动力传动系统的示意图;
图20是根据本发明再一个实施例的动力传动系统的示意简图;
图21是根据本发明再一个实施例的动力传动系统的示意简图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考图1-图21详细描述根据本发明实施例的动力传动系统100,该动力传动系统100适用于车辆,特别适用于以发动机单元1和电动发电机为主要动力源的混合动力车辆中。
如附图所示,根据本发明实施例的动力传动系统100可以包括发动机单元1、变速器单元2a、第一电动发电机41、第二电动发电机42、输出部5和动力切换装置(例如同步器6、离合器9)。
变速器单元2a适于选择性地与发动机单元1动力耦合连接。发动机单元1可以例如通过离合器等选择性地将其产生的动力输出给变速器单元2a;可选择性地,变速器单元2a也可将例如来自第一电动发电机41的启动力矩输出给发动机单元1,以启动发动机单元1。在本公开的上下文中,发动机单元1与变速器单元2a之间可以进行例如通过自身或者通过其他部件所产生的动力的传递称之为动力耦合连接。
发动机单元1的特点是液体或气体燃料和空气混合后直接输入机器内部燃烧而产生能量,然后再转变成机械能。对于车辆而言,其发动机单元1一般可采用四冲程的汽油机或柴油机,发动机单元1一般可以包括机体组、曲柄连杆机构、供给系统、点火系统、冷却系统和润滑系统等。
机体组是发动机单元1各机构、系统的装配机体,曲柄连杆机构可将活塞的直线往复运动转变为曲轴的旋转运动并可输出动力。配气机构用于定时进气、排气,保证发动机单元1各循环的顺利进行。供给系统可将油气混合物供给气缸内用于燃烧。冷却系统用于冷却发动机单元1,保证发动机单元1的工作温度处在适宜的温度区间内。润滑系统用于润滑发动机单元1内的各运动副,减少磨损和能量损耗。
应当理解的是,上述关于发动机单元1及其各个子系统、子机构的具体构造、工作原理等均已为现有技术,且为本领域普通技术人员所熟知,这里出于简洁的目的,不再一一详细赘述。
第一电动发电机41与变速器单元2a动力耦合连接。换言之,第一电动发电机41与变速器单元2a配合传动,即第一电动发电机41可以驱动变速器单元2a,而变速器单元2a也可以反过来驱动第一电动发电机41。
例如,发动机单元1可将产生的至少部分动力通过变速器单元2a输出给第一电动发电机41,此时第一电动发电机41可发电,并可将机械能转换为电能储存在蓄能部件例如电池组件中。又如,第一电动发电机41可以将来自电池组件的电能转换为机械能,且可通过变速器单元2a输出给输出部5以驱动车辆。
第一电动发电机41是具有电动机和发电机功能的电机,在本发明有关“电动发电机”的描述中,如果没有特殊说明,均作此理解。
输出部5构造成将经过变速器单元2a变速的动力传输至车辆的车轮200,即前轮210和/或后轮220。简言之,输出部5适于输出来自变速器单元2a的动力。
动力切换装置如同步器6适于在输出部5和变速器单元2a之间进行动力的传输或者断开。换言之,动力切换装置可以将变速器单元2a输出的动力通过输出部5输出至前轮210和/或后轮220,或者动力切换装置也可断开变速器单元2a与输出部5,此时变速器单元2a无法直接通过输出部5而将动力输出至前轮210和/或后轮220。
参照图1且结合图2-图13所示,第二电动发电机42用于驱动前轮210或后轮220。
由此,在输出部5用于驱动前轮210而第二电动发电机42也用于驱动前轮210时,具有该动力传动系统100的车辆可为两驱车辆。在输出部5用于驱动前轮210而第二电动发电机42用于驱动后轮220时,具有该动力传动系统100的车辆可为四驱车辆,同时可以在两驱模式与四驱模式之间切换。在输出部5用于驱动前轮210和后轮220而第二电动发电机42用于驱动前轮210和后轮220中的一个时,具有该动力传动系统100的车辆可为四驱车辆。
根据本发明实施例的动力传动系统100,发动机单元1和/或第一电动发电机41输出的动力可以通过动力切换装置而输出至输出部5,再由输出部5输出给车辆的前轮210和/或后轮220。
同时,由于第二电动发电机42的引入,第二电动发电机42可以对前轮210或后轮220进行扭矩补偿,同时也可以配合发动机单元1以及第一电动发电机41对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。
根据本发明的一些实施例,如图1-图16所示,动力切换装置构造成同步器6,同步器6设置成适于在输出部5和变速器单元2a之间可选择地同步,从而通过输出部5输出动力以驱动车辆的车轮200。
这里,同步器6的作用可以是最终同步输出部5和变速器单元2a,即通过同步器6的同步作用后,使得输出部5能够与变速器单元2a同步动作,从而由输出部5作为动力输出端,将变速器单元2a的动力输出。而在同步器6未同步变速器单元2a与输出部5时,变速器单元2a的动力无法(通过输出部5)直接输出至车轮200。
简言之,同步器6起到了动力切换的目的,即同步器6接合,变速器单元2a的动力可以通过输出部5输出并用于驱动车轮200,而同步器6断开,变速器单元2a无法通过输出部5将动力传递给车轮200,这样通过控制一个同步器6的接合或断开,从而 可以实现整车驱动模式的转换。
根据本发明的一些实施例,如图2-图6且结合图7所示,变速器单元2a包括变速器动力输入部21a和变速器动力输出部22a,变速器动力输入部21a与发动机单元1可选择性地接合,以传输发动机单元1所产生的动力。变速器动力输出部22a构造成适于将来自变速器动力输入部21a上的动力通过同步器6的同步而将动力输出至输出部5。
如图2-图6且结合图7所示,进一步,变速器动力输入部21a进一步包括:输入轴(例如第一输入轴21、第二输入轴22)和设置在输入轴上的主动齿轮25,输入轴与发动机单元1可选择性地接合,以传输发动机单元1所产生的动力。换言之,在发动机单元1需要将动力输出给输入轴时,发动机单元1可与输入轴进行接合,从而发动机单元1输出的动力可传递至输入轴。发动机单元1与输入轴的接合方式可以通过离合器(例如,双离合器31)来实现,关于这部分内容将在下面给出详细说明,这里不再赘述。
如图2-图6且结合图7所示,变速器动力输出部22a包括:输出轴24和从动齿轮26,从动齿轮26设置在输出轴24上且与输入轴上的主动齿轮25对应地啮合。
参照图2-图5所示,输出轴24构造成输出输入轴上传输的动力的至少一部分。具体而言,输出轴24与输入轴配合传动,例如优选地,输出轴24与输入轴之间可以通过上述的主动齿轮25和从动齿轮26进行传动。
当然,应当理解,对于输出轴24与输入轴的传动方式并不限于此,例如还可以是通过皮带轮传动机构、齿轮齿条传动机构等。对于本领域技术人员而言,可以根据实际情况而具体选择适宜的传动结构或者方式。
输出轴24用于传输输入轴上的至少一部分动力,例如在动力传动系统100处于某些传动模式时,如第一电动发电机41进行电动发电,此时输入轴上的动力可以部分用于第一电动发电机41的发电,另一部分也可以用于驱动车辆行驶,当然输入轴上的全部动力也可均用于发电。
根据本发明的一些实施例,第一电动发电机41与输入轴和输出轴24中的一个直接传动或间接传动。这里,“直接传动”指的是第一电动发电机41与相应轴直接相连进行传动,不经任何诸如变速装置、离合装置、传动装置等中间传动部件,比如第一电动发电机41的输出端直接与输入轴和输出轴24中的一个刚性相连。直接传动的优点在于减少了中间传动部件,降低了能量在传动过程中的损失。
“间接传动”即排除直接传动之外的任何其它传动方式,例如通过变速装置、离合装置、传动装置等中间部件进行传动。间接传动方式的优点在于布置更加方便,并且可以通过设置诸如变速装置来获得所需的传动比。
输出部5可以作为输出轴24的动力输出终端,用于输出输出轴24上的动力,输出 部5相对于输出轴24是可以差速转动的,即输出部5相对输出轴24可以存在不同步转动的情况,也就是说二者之间存在转速差,没有刚性连接在一起。
同步器6设置在输出轴24上。具体地,参照图1且结合图2-图6所示,同步器6可以包括花键毂61和接合套62,花键毂61可以固定在输出轴24上,花键毂61随输出轴24同步转动,接合套62相对花键毂61可沿输出轴24的轴向动作,以可选择性地接合输出部5,从而使得输出部5随输出轴24同步转动,由此动力可从输出部5传递给前轮210和/或后轮220,实现驱动车轮200的目的。但是,应当理解的是,同步器6的结构不限于此。
根据本发明实施例的动力传动系统100,发动机单元1和/或第一电动发电机41输出的动力可以通过同步器6的接合而从输出部5输出,结构紧凑、控制方便,而且在车辆切换工况过程中,可能出现同步器6从分离状态转换为接合状态的情况,此时第一电动发电机41可以输出部5的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24与输出部5的转速在短时间内匹配,方便同步器6的接合,从而大大提高了传动效率,同时减少了中间能量的传递损失,且可实现同步器6的无扭矩接合(即同步器6接合时基本无径向摩擦力或径向摩擦力远低于行业内一般水平)。
根据本发明的一些实施例,输出部5用于驱动车辆的第一对车轮,第二电动发电机42为一对且用于驱动第一对车轮。进一步,动力传动系统100还包括至少一个第三电动发电机43,第三电动发电机43用于驱动车辆的第二对车轮。其中,第一对车轮为前轮210或后轮220中的一对,第二对车轮为前轮210或后轮220中的另一对。例如,在图2-图8的示例中,该第一对车轮指的是车辆的前轮210,第二对车轮指的是车辆的后轮220。
由此,根据本发明实施例的动力传动系统100具有四类动力输出源,即发动机单元1、第一电动发电机41、第二电动发电机42和第三电动发电机43,其中发动机单元1、第一电动发电机41和第二电动发电机42可以用于驱动车辆的其中一对车轮,第三电动发电机43可以用于驱动另一对车轮。因此,具有该动力传动系统100的车辆为四驱车辆。
而且,在车辆切换工况过程中,可能出现同步器6从分离状态转换为接合状态的情况,此时第一电动发电机41可以输出部5的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24与输出部5的转速在短时间内匹配,方便同步器6的接合,从而大大提高了传动效率,同时减少了中间能量的传递损失。
同时,由于第二电动发电机42和第三电动发电机43的引入,第二电动发电机42和第三电动发电机43可以对车轮200进行扭矩补偿,从而间接反映到输出部5,即第 二电动发电机42和第三电动发电机43可以间接地调节输出部5的转速,例如在出现同步器6从分离状态转换为接合状态时,此时第二电动发电机42和第三电动发电机43可以按照需要间接调节输出部5的转速,使输出轴24与输出部5的转速在短时间内匹配,从而方便同步器6的接合。
并且,第二电动发电机42和第三电动发电机43可以配合第一电动发电机41同时进行调速,使输出轴24和输出部5的转速在更短的时间内进行同步,从而在最快的时间内满足接合条件,使同步器6接合,大大提高了传动效率。
简言之,可选地,第一电动发电机41可以进行单独调速。或者,可选地,第二电动发电机42和第三电动发电机43中的至少一种可以进行单独调速。再者,进一步可选地,第一电动发电机41、第二电动发电机42、第三电动发电机43可以同时进行调速。
这样,同步器6的接合/断开控制了变速器单元2a动力的输出,同时第一电动发电机41和/或第二电动发电机42和/或第三电动发电机43在同步器6从断开状态转换为接合状态期间可分别对输出轴24和输出部5进行调速补偿,使得输出轴24和输出部5的转速快速匹配,从而快速实现同步器6的无扭矩接合。
根据本发明的一些优选实施例,如图2-图9所示,输入轴为多个,即两个或两个以上。该多个输入轴依次同轴嵌套设置,例如,输入轴为N个,则第K个输入轴套设在第K-1个输入轴上,其中N≥K≥2,并且该N个输入轴的中心轴线是重合的。
在图2-图7,图9-图19的示例中,输入轴为两个,即第一输入轴21和第二输入轴22,则第二输入轴22套设在第一输入轴21上且二者的中心轴线重合。又如,在图8的示例中,输入轴为三个,即第一输入轴21、第二输入轴22和第三输入轴23,则第三输入轴23套设在第二输入轴22上,第二输入轴22套设在第一输入轴21上,并且该三个轴的中心轴线重合。
在发动机单元1给输入轴传送动力或者与输入轴进行动力耦合连接时,发动机单元1可选择性地与多个输入轴中的一个接合。换言之,在需要将发动机单元1的动力传送出来时,发动机单元1的输出端是可与多个输入轴中的一个接合从而同步转动的。而在不需要发动机单元1工作或发动机单元1处于怠速时,则发动机单元1可与多个输入轴均断开,即发动机单元1不与任何一个输入轴相连,从而断开与发动机单元1的动力耦合连接。
进一步,如图2-图6所示,每个输入轴上固定有一个主动齿轮25,主动齿轮25随输入轴同步旋转,主动齿轮25与对应输入轴的固定方式有多种,例如可以通过键槽配合方式固定,当然也可以通过热压、一体成型等多种方式将主动齿轮25与输入轴固定,保证二者可以同步旋转。
输出轴24上固定有多个从动齿轮26,多个从动齿轮26随输出轴24同步旋转,从动齿轮26与输出轴24的固定方式也可采用上述主动齿轮25与输入轴的固定方式,但不限于此。
但是,本发明不限于此,如,在每个输入轴上设置的主动齿轮25上的的数量可以不限于一个,对应地,在输出轴24上设置多个从动齿轮26已形成多个挡位,对于本领域技术人员而言是可以实现的。
如图2-图6所示,多个从动齿轮26与多个输入轴上的主动齿轮25分别对应地啮合,根据本发明的一个实施例,从动齿轮26的数量与输入轴的数量可以是相同的,例如从动齿轮26为两个,则输入轴为两个,这样两个从动齿轮26可以分别对应地与两个输入轴上的主动齿轮25啮合传动,使得该两对齿轮副可以构成两个挡位进行传动。
在根据本发明的一个实施例中,可以根据传动需要而设置三个或更多个输入轴,并且在每个输入轴上均可固定一个主动齿轮25,由此输入轴的数量越多,可以进行传动的挡位就越多,该动力传动系统100的传动比的范围就越大,从而适应多种车型对于传动的要求。
根据本发明的一些具体实施例,如图2-图7所示,多个输入轴包括第一输入轴21和第二输入轴22,第二输入轴22套设在第一输入轴21上,第二输入轴22是空心轴,第一输入轴21优选为实心轴,当然可选地,第一输入轴21也可以是空心轴。
第一输入轴21可以采用轴承进行支承,为了保证第一输入轴21传动时的平顺性,轴承优选是多个且可沿第一输入轴21的轴向在不影响其余部件装配的位置进行布置。同样地,第二输入轴22也可采用轴承进行支承,这里不再详细描述。
进一步,参照图2-图7所示,发动机单元1与第一输入轴21和第二输入轴22之间设置有双离合器31,双离合器31可以采用现有的干式双离合器31或湿式双离合器31。
双离合器31具有输入端313、第一输出端311和第二输出端312,发动机单元1与双离合器31的输入端313相连,具体而言,发动机单元1可以通过飞轮、减震器或扭转盘等多种形式与双离合器31的输入端313相连。
双离合器31的第一输出端311与第一输入轴21相连,从而该第一输出端311与第一输入轴21同步旋转。双离合器31的第二输出端312与第二输入轴22相连,从而该第二输出端312与第二输入轴22同步旋转。
其中,双离合器31的输入端313可以是双离合器31的壳体,其第一输出端311和第二输出端312可以是两个从动盘。一般地,壳体与两个从动盘可以是都断开的,即输入端313与第一输出端311和第二输出端312均断开,在需要接合其中一个从动盘时, 可以控制壳体与相应从动盘进行接合从而同步旋转,即输入端313与第一输出端311和第二输出端312之一接合,从而输入端313传来的动力可以通过第一输出端311和第二输出端312中的一个输出。一般地,壳体与两个从动盘不会同时接合。
应当理解,双离合器31的具体接合状态受到控制策略的影响,对于本领域的技术人员而言,可以根据实际所需的传动模式而适应性设定控制策略,从而可以在输入端与两个输出端全部断开以及输入端与两个输出端之一接合的三种模式中进行切换。
在图2-图7的示例中,由于输入轴为同心的双轴结构,且每个输入轴上只设置有一个主动齿轮25,因此该变速器单元2a具有两个不同的挡位,发动机单元1可以通过该两个挡位将动力输出至输出部5,同步器6可以一直处于接合状态,即接合输出轴24和输出部5。
在挡位之间切换时,同步器6无需像以传统布置方式的同步器结构要先断开再轴向移动才能接合另外的齿轮,而只需简单地控制双离合器31的接合/断开状态,此时同步器6可以一直处于接合状态,这样在发动机单元1将动力输出至输出部5时,只需控制一个换挡执行元件即双离合器31即可,而无需控制同步器6,这样可以大大简化控制策略,减少同步器6的接合/断开次数,提高同步器6的寿命。
根据本发明的一些实施例,第一电动发电机41设置成与主动齿轮25和从动齿轮26中的一个配合传动,换言之,第一电动发电机41是与输入轴和输出轴24中的一个间接传动。
进一步,作为可选的方案,第一电动发电机41与相应齿轮之间可以设置中间传动机构,该传动机构可以是蜗轮蜗杆传动机构、一级或多级齿轮副传动机构、链轮传动机构等,或者在不抵触的情况下,还可以是上述多种传动机构的组合,这样第一电动发电机41可以根据需要而布置在不同位置,降低了第一电动发电机41的布置难度。
考虑到便于空间上布置的问题,根据本发明的一个实施例,第一电动发电机41可以通过一个中间齿轮411进行传动。例如,在图3(结合图2)的示例中,第一电动发电机41与第一输入轴21上的主动齿轮25之间通过一个中间齿轮411间接传动。又如,在图2的示例中,第一电动发电机41与第二输入轴22上的主动齿轮25之间通过一个中间齿轮411间接传动。
但是,本发明并不限于此。在本发明的其它实施例中,第一电动发电机41可设置成与第一输入轴21和输出轴24中的一个相连。例如,第一电动发电机41可设置成与第一输入轴21直接相连。又如,第一电动发电机41可设置成与输出轴24直接相连。第一电动发电机41采用与相应轴直接相连的方式,可以使得动力传动系统100的结构更加紧凑,同时还能减少动力传动系统100的周向尺寸,便于布置在车辆的机舱内。
根据本发明的一个实施例,第一电动发电机41与第一输入轴21同轴布置,并且第一电动发电机41与发动机单元1同轴布置。这里,“第一电动发电机41与发动机单元1同轴布置”应当理解为:第一电动发电机41的转子的转动轴线与发动机单元1的曲轴的旋转轴线是大体重合的。由此,使得动力传动系统100的结构更加紧凑。
根据本发明的一些实施例,参照图2-图6所示,输出部5可以包括输出齿轮51和接合齿圈52,输出齿轮51与输出轴24可相对转动即差速转动,接合齿圈52与输出齿轮51固定,即接合齿圈52与输出齿轮51同步转动。
由此,同步器6需要将输出部5与输出轴24接合时,同步器6的接合套62可以沿着轴向向接合齿圈52的方向运动,在输出部5与输出轴24的转速同步后,接合套62可以与接合齿圈52接合,从而输出轴24、同步器6和输出部5三者之间形成刚性连接,进而三者同步旋转。
为了减少中间传动部件,降低能量损失,并尽可能地提高动力传动系统100的传动效率,作为优选的方式,如图2-图6所示,输出齿轮51可为主减速器主动齿轮,该主减速器主动齿轮可以与主减速器从动齿轮53直接啮合从而将动力输出,以驱动车轮200。但是,本发明并不限于此,在输出齿轮51与主减速器之间也可以设置其它用于传动的中间部件。
参照图2-图10所示,第一对车轮例如前轮210之间设置有差速器54,差速器54是与输出部5配合传动的,具体而言,在一些实施例中,差速器54上设置有主减速器从动齿轮53,输出齿轮51为主减速器从动齿轮,主减速器主动齿轮与主减速器从动齿轮53啮合,从而动力可依次通过主减速器主动齿轮、主减速器从动齿轮53和差速器54后传递至两个前轮210。
差速器54的作用是合理地分配给两个前轮210所需动力,差速器54可以是齿轮式差速器、强制锁止式差速器、托森差速器等。对于本领域的技术人员而言,可以根据不同车型而选择合适的差速器。
根据本发明的一些实施例,参照图5-图7、图10所示,一对第二电动发电机42背靠背地设在差速器54的两侧,例如一对第二电动发电机42分别设在差速器54的另侧且与差速器54集成为一体结构。换言之,左侧的第二电动发电机42设在左侧半轴与差速器54的左侧之间,右侧的第二电动发电机42设在右侧半轴与差速器54的右侧之间。具体而言,图5-图7中的动力传动系统100为四驱形式,而图10中的动力传动系统100为两驱形式。需要说明的是,在下面有关电动发电机背靠背地设在差速器54的两侧,均可以理解为该电动发电机分别设在差速器54的两侧并与该差速器集成为一体结构。
根据本发明的另一些实施例,参照图2-图4、图9所示,第二电动发电机42为轮 边电机。换言之,其中一个第二电动发电机42设在左前轮的内侧,另一个第二电动发电机42设在右前轮的内侧,第二电动发电机42可以通过齿轮机构将动力传递至相应车轮的轮毂。具体而言,图2-图4中的动力传动系统100为四驱形式,而图9中的动力传动系统100为两驱形式。
在本发明的一些实施例中,第三电动发电机43为两个,且第三电动发电机43为轮边电机,如图2和图5所示。换言之,在图2和图5的示例中,一个第三电动发电机43设于左后轮的内侧,另一个第三电动发电机43设于右后轮的内侧,第三电动发电机43可以通过齿轮机构将动力传递给相应的后轮。
在本发明的另一些实施例中,第三电动发电机43为一个,该一个第三电动发电机43通过第一变速机构71驱动第二对车轮。其中,第一变速机构71优选是减速机构,减速机构可以是一级减速机构或多级减速机构。减速机构可以是齿轮减速机构、蜗轮蜗杆减速机构等,对此本发明并不作特殊限定。
在该一些实施例中,第二对车轮可以通过一根车桥相连,该车桥可以是一体式结构,此时第三电动发电机43通过第一变速机构71可以直接驱动该一体式车桥,从而带动两个车轮同步转动。
在本发明的再一些实施例中,第三电动发电机43为两个,每个第三电动发电机43分别通过一个第二变速机构72驱动第二对车轮中的一个。其中,第二变速机构72优选是减速机构,该减速机构可以是一级减速机构或多级减速机构。该减速机构可以是齿轮减速机构、蜗轮蜗杆减速机构等,对此本发明并不作特殊限定。
在该一些实施例中,第二对车轮可以通过两个半桥与对应的第三电动发电机43以及第二变速机构72相连,也就是说,一个第三电动发电机43可以通过一个第二变速机构72来驱动对应的半桥,从而带动该半桥外侧的车轮旋转。
根据本发明的另一些实施例,如图9-图10所示,这些动力传动系统100均为两驱形式。在图9的示例中,输出部5驱动前轮210,第二电动发电机42为轮边电机且用于驱动前轮210。在图10的示例中,输出部5驱动前轮210,第二电动发电机42背靠背地设在差速器54的两侧,例如第二电动发电机42分别设在差速器54的两侧且集成为一体结构。如图11-图13所示,这些动力传动系统100均为四驱形式。在图11的示例中,输出部5驱动前轮210,第二电动发电机42为两个,每个第二电动发电机42均通过一个第四变速机构74驱动后轮220。在图12的示例中,输出部5驱动前轮210,第二电动发电机42为一个,该第二电动发电机42通过一个第三变速机构73驱动后轮220。在图13的示例中,输出部5驱动前轮210,第二电动发电机42为两个且为轮边电机,其用于驱动后轮220。
关于第三变速机构73,其可与第一变速机构71相同。类似地,第四变速机构74可与第二变速机构72相同。因此,这里不再赘述。
根据本发明的一些实施例,动力传动系统100还可以包括电池组件300,电池组件300优选与第一电动发电机41、第二电动发电机42和第三电动发电机43相连。由此,第一电动发电机41由发动机单元1驱动进行发电或制动回收的电能可以供给并存储在电池组件300中,第二电动发电机42和第三电动发电机43在制动工况时回收的电能也可以供给并存储在电池组件300中。在车辆处于电动模式时,可以由电池组件300将电能分别供给至第一电动发电机41和/或第二电动发电机42和/或第三电动发电机43。需要说明的是,图8中的虚线表示电池组件300可分别与第一电动发电机41、第二电动发电机42和第三电动发电机43电连接。
作为上述实施例中描述的动力传动系统100的一种变型实施例,如图8所示,多个输入轴包括三个轴,即第一输入轴21、第二输入轴22和第三输入轴23,第二输入轴22套设在第一输入轴21上,第三输入轴23套设在第二输入轴22上。
在该变型实施例中,动力传动系统100进一步包括三离合器32,三离合器32具有输入端324、第一输出端321、第二输出端322和第三输出端323,发动机单元1与三离合器32的输入端324相连,三离合器32的第一输出端321与第一输入轴21相连、三离合器32的第二输出端322与第二输入轴22相连且第三离合器32的第三输出端323与第三输入轴23相连。
类似地,三离合器32的输入端可以是其壳体,其三个输出端可以是三个从动盘,输入端可与三个输出端之一接合,或者输入端与三个输出端全部断开。可以理解的是,三离合器32的工作原理与双离合器31近似,这里不再赘述。
需要说明的是,在该变型实施例中,对于其余部分,例如第一电动发电机41与第一输入轴21或输出轴24的传动方式,第二电动发电机42和第三电动发电机43的设置位置和驱动形式等均可采用上述双离合器31技术方案中同样的设置方式,请一并参照上述双离合器31的技术方案,这里不再一一详细描述。
作为上述实施例中描述的动力传动系统100的另一种变型实施例,如图14-图16所示,在该动力传动系统100中,从动齿轮26为联齿齿轮结构,该联齿齿轮结构26空套设置在输出轴24上,即二者可差速转动。其中,同步器6固定在输出轴24上且可选择地与该联齿齿轮结构26接合。
在该一些实施例中,如图14-图16所示,具体地,动力传动系统100可以包括发动机单元1、多个输入轴、输出轴24、输出部5(例如,主减速器主动齿轮51)、同步器6和第一电动发电机41。
该变型实施例与图2-图13中所示的动力传动系统100的最主要的区别在于:从动齿轮26采用联齿结构且空套于输出轴24上,输出部5固定设置于输出轴24上,同步器6则用于接合联齿齿轮结构。该实施例中,第一电动发电机41的布置形式与上述图2-图13中所示的动力传动系统中的第一电动发电机41的布置形式稍作变型。
在一些实施例中,如图14-图16所示,输入轴是多个,输入轴上设置有主动齿轮25。输出轴24上空套有联齿齿轮结构26,联齿齿轮结构26具有多个齿轮部(例如,第一齿轮部261、第二齿轮部262),多个齿轮部分别与多个输入轴上的主动齿轮24对应地啮合。
参照图14-图16,输出部5适于输出来自输出轴24的动力,例如优选地,输出部5固定设置在输出轴24上。根据本发明的一个实施例,输出部5包括主减速器主动齿轮51,但并不限于此。
同步器6设置在输出轴24上,同步器6设置成可选择性地接合联齿齿轮结构26,从而通过输出部5输出动力以驱动车辆的车轮。第一电动发电机41与输入轴和输出轴24中的一个可以是直接传动或间接传动。
该一些实施例中,同步器6的作用与图2-图13中所示实施例中的同步器的作用大致相同,区别在于该一些实施例中同步器6是用于接合联齿齿轮结构26和输出轴24的,而图2-图13中所示实施例中的同步器6是用于接合输出部5和输出轴24的。
具体地,在该实施例中,同步器6的作用可以是最终同步联齿齿轮结构26和输出轴24,即通过同步器6的同步作用后,使得联齿齿轮结构26和输出轴24同步动作,从而由输出部5作为动力输出端,将发动机单元1和/或第一电动发电机41的动力输出。而在同步器6未同步联齿齿轮结构26和输出轴24时,发动机单元1和/或第一电动发电机41的动力无法(通过输出部5)直接输出至车轮200。
简言之,同步器6起到了动力切换的目的,即同步器6接合,发动机单元1和/或第一电动发电机41的动力可以通过输出部5输出并用于驱动车轮200,而同步器6断开,发动机单元1和/或第一电动发电机41的动力无法通过输出部5将动力传递给车轮200,这样通过控制一个同步器6的接合或断开,从而可以实现整车驱动模式的转换。
并且,第一电动发电机41可以输出部5的转速为目标,通过转速的改变,调节联齿齿轮结构26的速度,使得联齿齿轮结构26与输出轴24的速度以时间有效的方式迅速匹配,从而减少同步器6同步所需的时间,减少中间能量损失,同时还能够实现同步器6的无扭矩接合,极大地提高了车辆的传动效率、同步可控性和同步的实时性。此外,同步器6的寿命得以进一步延长,从而降低整车维护的成本。
此外,采用联齿齿轮结构26,可以使得动力传动系统100的结构更加紧凑,便于 布置。减少了从动齿轮的个数,进而减小了动力传动系统的轴向尺寸,利于成本的降低,同时也降低了布置难度。
而且,同步器6可由一个单独的拨叉控制其运动,使得控制步骤简单,使用可靠性更高。
根据本发明的一些实施例,多个输入轴同轴嵌套设置,每个输入轴上固定有一个主动齿轮25。具体地,在一个实施例中,输入轴包括第一输入轴21和第二输入轴22,每个输入轴上固定有一个主动齿轮25,联齿齿轮结构26为双联齿轮,该双联齿轮26具有第一齿轮部261和第二齿轮部262,第一齿轮部261和第二齿轮部262分别与两个主动齿轮25对应地啮合。
在发动机单元1与第一输入轴21和第二输入轴22之间可以设置双离合器31,关于这部分请参照图2-图13所示动力传动系统100中的双离合器31部分。可选地,双离合器31上可以布置减振结构,例如减振结构可以布置在双离合器31的第一输出端与双离合器31的输入端之间,这样更加适合抵挡起步。
参照图14-图16所示,第一电动发电机41的输出端与其中一个主动齿轮直接传动或间接传动。
例如,该实施例中的动力传动系统100还包括中间轴45,中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451和第二中间抽齿轮452中的一个与其中一个主动齿轮25啮合,例如在图14和图15的示例中,第一中间抽齿轮451与第二输入轴22上的主动齿轮25啮合,但是本发明不限于此。
根据本发明的一些实施例,第一电动发电机41的输出端与第一中间轴齿轮451和第二中间轴齿轮452中的一个直接传动或通过中间惰轮44间接传动。例如在图14的示例中,第一电动发电机41的输出端与第二中间轴齿轮452之间通过一个中间惰轮44间接传动。又如在图15的示例中,第一电动发电机41的输出端直接与第二中间轴齿轮452啮合传动。
参照图16所示,第一电动发电机41的输出端直接与联齿齿轮结构26中的一个齿轮部啮合,例如第一电动发电机41的输出端直接与第一齿轮部261啮合传动。
但是,应当理解的是,本发明并不限于此,对于第一电动发电机41的布置位置,可以根据实际需要而灵活设定,例如可以采用上述的几种方式,或者也可以采用图2-图13中所示的一些布置方式,这里不再一一赘述。
参照图14-图15所示,第一齿轮部261独立负责发动机单元1的扭矩输入,第二齿轮部262可同时负责发动机单元1和第一电动发电机41的扭矩输入,当然也可单独负责其中一方。
参照图14-图16所示,联齿齿轮结构26的朝向同步器6的一侧固定设置有接合齿圈52, 同步器6适于接合接合齿圈52,从而将联齿齿轮结构26与输出轴24刚性连接在一起以同步转动。
根据本发明的另一些实施例,输入轴可以是三个,请结合图8以及说明书上述关于三个输入轴、三离合器的说明,这里对于这部分不再详细展开。在该实施例中,联齿齿轮结构26为三联齿轮,即具有三个联齿。具体地,如图20所示,该三联齿轮具有第一齿轮部261、第二齿轮部262和第三齿轮部263,该三个齿轮部分别与对应的三个输入轴上主动齿轮25啮合。
根据本发明的另一个实施例,如图21所示,输入轴为四个,即第一输入轴21、第二输入轴22、第三输入轴23和第四输入轴27,第二输入轴22套设在第一输入轴21上,第三输入轴23套设在第二输入轴22上,第四输入轴27套设在第三输入轴23上。进一步,联齿齿轮结构26为两个且均为双联齿轮,每个双联齿轮具有第一齿轮部261和第二齿轮部262,每个第一齿轮部261和每个第二齿轮部262分别与对应的主动齿轮25啮合,同步器6设置在两个双联齿轮26之间且可选择性地接合两个双联齿轮26中的一个,当然可以理解的是,同步器6也可以与两个双联齿轮26全部断开。
在该实施例中,发动机单元1与四个输入轴之间可以设置四离合器,该四离合器具有输入端、第一输出端、第二输出端、第三输出端和第四输出端,发动机单元与四离合器的输入端相连,四离合器的第一输出端与第一输入轴21相连、四离合器的第二输出端与第二输入轴22相连、四离合器的第三输出端与第三输入轴23相连且四离合器的第四输入端与第四输入轴27相连。但是,发动机单元1与该四个输入轴之间的连接方式并不限于此。
应当理解的是,关于联齿齿轮结构26的变型实施例中,与上述图2-图13实施例中所示的动力传动系统100的最主要的区别在于从动齿轮26采用了联齿齿轮结构,且空套于输出轴24上,输出部5是固定设置在输出轴24上的,同步器6用于接合输出轴24和联齿齿轮结构26。在这些变型实施例中,动力传动系统100也可以包括第二电动发电机42和第三电动发电机43,其布置方式可采用图2-图13中基本一致的布置方式,因此这里不再一一赘述。
作为上述联齿齿轮实施例中描述的动力传动系统100的另一种变型实施例,如图17-图19所示,在该动力传动系统100中,通过离合器9来取代上述实施例中的同步器6。
具体地,在该一些实施例中,如图17-图19所示,动力切换装置为离合器9,离合器9设置成适于在变速器单元2a和输出部5之间进行动力的传输或者断开。换言之,通过离合器9的接合作用,可以使得变速器单元2a与输出部5同步动作,此时输出部5可将变速器单元2a的动力输出至车轮200。而离合器9断开后,变速器单元2a输出的动力无法直接通过输出部5输出。
具体而言,在该一些实施例中,如图17-图19所示,具体地,动力传动系统100可以包括发动机单元1、多个输入轴、输出轴24、输出部5(例如,主减速器主动齿轮51)、离合器9和第一电动发电机41。
该变型实施例与图14-图16中所示的动力传动系统100的最主要的区别在于:将同步器6替换为离合器9,离合器9则用于接合联齿齿轮结构26和输出轴24。该实施例中,第一电动发电机41的布置形式与上述图14-图16中所示的动力传动系统中的第一电动发电机41的布置形式可以完全相同。
在一些实施例中,如图17-图19所示,输入轴是多个,输入轴上设置有主动齿轮25。联齿齿轮结构26相对输出轴24可差速转动,输出轴24上空套有联齿齿轮结构26,联齿齿轮结构26具有多个齿轮部(例如,第一齿轮部261、第二齿轮部262),多个齿轮部分别与多个输入轴上的主动齿轮24对应地啮合。
参照图17-图19,输出部5适于输出来自输出轴24的动力,例如优选地,输出部5固定设置在输出轴24上。根据本发明的一个实施例,输出部5包括主减速器主动齿轮51,但并不限于此。
离合器9设置成可选择性地接合联齿齿轮结构26与输出轴24,从而通过输出部5输出动力以驱动车辆的车轮。第一电动发电机41与输入轴和输出轴24中的一个可以是直接传动或间接传动。
采用离合器9接合联齿齿轮结构26和输出轴24,第一电动发电机41可以不进行调速,仅依靠离合器9自身特性,利用摩擦力来进行接合,这样省去了调速步骤,可以简化控制策略。
当然,应当理解的是,也可以通过第一电动发电机41进行调速以使得离合器9能够快速接合。例如,第一电动发电机41可以输出部5的转速为目标,通过转速的改变,调节联齿齿轮结构26的速度,使得联齿齿轮结构26与输出轴24的速度以时间有效的方式迅速匹配,从而减少离合器9接合过程中的磨损,减少中间能量损失,极大地提高了车辆的传动效率。并且,离合器9的寿命得以进一步延长,从而降低整车维护的成本。
此外,采用联齿齿轮结构26,可以使得动力传动系统100的结构更加紧凑,便于布置。而且,减少了从动齿轮的个数,进而减小了动力传动系统的轴向尺寸,利于成本的降低,同时也降低了布置难度。
根据本发明的一些实施例,多个输入轴同轴嵌套设置,每个输入轴上固定有一个主动齿轮25。具体地,在一个实施例中,输入轴包括第一输入轴21和第二输入轴22,每个输入轴上固定有一个主动齿轮25,联齿齿轮结构26为双联齿轮,该双联齿轮26具有第一齿轮部261和第二齿轮部262,第一齿轮部261和第二齿轮部262分别与两个主动齿轮 25对应地啮合。
在发动机单元1与第一输入轴21和第二输入轴22之间可以设置双离合器31,关于这部分请参照图2-图7、图9-图13所示动力传动系统100中的双离合器31部分。可选地,双离合器31上可以布置减振结构,例如减振结构可以布置在双离合器31的第一输出端与双离合器31的输入端之间,这样更加适合抵挡起步。
参照图17-图19所示,第一电动发电机41的输出端与其中一个主动齿轮间接传动。
例如,该实施例中的动力传动系统100还包括中间轴45,中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451和第二中间抽齿轮452中的一个与其中一个主动齿轮25啮合,例如在图17和图18的示例中,第一中间抽齿轮451与第二输入轴22上的主动齿轮25啮合,但是本发明不限于此。
根据本发明的一些实施例,第一电动发电机41的输出端与第一中间轴齿轮451和第二中间轴齿轮452中的一个直接传动或通过中间惰轮44间接传动。例如在图17的示例中,第一电动发电机41的输出端与第二中间轴齿轮452之间通过一个中间惰轮44间接传动。又如在图18的示例中,第一电动发电机41的输出端直接与第二中间轴齿轮452啮合传动。
参照图19所示,第一电动发电机41的输出端直接与联齿齿轮结构26中的一个齿轮部啮合,例如第一电动发电机41的输出端直接与第一齿轮部261啮合传动。
但是,应当理解的是,本发明并不限于此,对于第一电动发电机41的布置位置,可以根据实际需要而灵活设定,例如可以采用上述的几种方式,或者也可以采用图2-图13中所示的一些布置方式,这里不再一一赘述。
参照图17-图18所示,第一齿轮部261独立负责发动机单元1的扭矩输入,第二齿轮部262可同时负责发动机单元1和第一电动发电机41的扭矩输入,当然也可单独负责其中一方。
根据本发明的另一些实施例,输入轴可以是三个,请结合图8以及说明书上述关于三个输入轴、三离合器的说明,这里对于这部分不再详细展开。在该实施例中,联齿齿轮结构26为三联齿轮(结合图20所示),即具有三个联齿。具体地,该三联齿轮具有第一齿轮部261、第二齿轮部262和第三齿轮部263,该三个齿轮部分别与对应的三个输入轴上主动齿轮25啮合。
在这些离合器的变型实施例中,动力传动系统100也可以包括第二电动发电机42和第三电动发电机43,其布置方式可采用图2-图13中基本一致的布置方式,因此这里不再一一赘述。
在该一些实施例中,离合器9具有主动部分和从动部分,离合器9的主动部分和从动部分中的一个设在联齿齿轮结构例如双联齿轮26上,离合器9的主动部分和从动部分中的另 一个设置在输出轴24上,离合器9的主动部分和从动部分可分离或接合。
由此,在离合器9的主动部分与从动部分接合后,输出轴24与空套其上的双联齿轮26接合,动力可从输出部5输出。而在离合器9的主动部分与从动部分断开后,联齿齿轮26空套与输出轴24上,输出部5不传递变速器单元2a的动力。
例如,参照图17所示,从动部分可以设置在双联齿轮结构26上,主动部分可以设在输出轴24上。但是,应当理解的是,本发明并不限于此。在本发明的其它实施例中,离合器9也可以采用盘式离合器(包括主动部分和从动部分)。
整体而言,根据本发明实施例的动力传动系统100,由于采用同步器6进行动力切换,且同步器6具有体积小、结构简单、承受扭矩大、传动效率高等诸多优点,因此根据本发明实施例的动力传动系统100的体积有所减小、结构更加紧凑,且传动效率高并能满足大扭矩传动要求。
同时,通过第一电动发电机41和/或第二电动发电机42和/或第三电动发电机43的调速补偿,可以实现同步器6无扭矩接合,平顺性更好,且接合速度和动力响应更快,相比传统离合器传动方式,可以承受更大的扭矩而不会发生失效现象,大大地提高了传动的稳定性以及可靠性。
在本发明的一些实施例中,为实现对每个车轮的扭矩分配,如图2、图3、图5、图6、图8所示,该五个实施例中,采用了四个电动发电机分别负责驱动一个车轮,该四个独立电机驱动的优势在于:普通的机械四驱车仅能实现前后轮的扭矩分配,高端的全时四驱车转弯时仅能实现左右轮瞬时小范围扭矩差异。而上述五个实施例中,由于采用四个电机分别驱动,因此可随时实现左右轮电机的+100%到-100%的扭矩差异调节,从而大大提高了高速转弯时的操控稳定性,改善了转向不足和转向过渡的问题。此外,低速时通过左右两个车轮的相反方向转动可以大大减小车辆转弯半径,使车辆操控更加自如。
下面参照图2-图21简单描述各具体实施例中动力传动系统100的构造。
实施例一:
如图2所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,第一电动发电机41通过一个中间齿轮411而与第二输入轴22上的主动齿轮25间接传动。输出轴24上固定设置有两个从动齿轮26,该两个从动齿轮26分别与第一输入轴21和第二输入轴22上的主动齿轮25对应啮合,从而构成两个传动挡位。
同步器6固定在输出轴24上,主减速器主动齿轮(即,输出齿轮51)相对输出轴24可差速转动,主减速器主动齿轮的左侧可以通过连接杆固定有与同步器6适配的接合齿圈52。其中,主减速器主动齿轮与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
两个第二电动发电机42分别构成用于驱动两个前轮210的轮边电机,两个第三电动发电机43分别构成用于驱动两个后轮220的轮边电机,即该方案中,四个车轮处均设置有一个轮边电机。
该实施例中的动力传动系统100,双离合器31可以通过切断或接合,使发动机单元1的动力可分别以大小两种速比传递到输出轴24上。第一电动发电机41通过挡位齿轮组,可以一固定速比将动力传递到输出轴24上。同步器6接合,输出轴24的动力可以通过主减速器和差速器54传递至前轮210,同步器6切断,则输出轴24的动力不能传递至前轮210。两个第二电动发电机42为轮边形式,可以直接驱动两个前轮。两个第三电动发电机43同为轮边形式,可以直接驱动两个后轮。
该实施例中的动力传动系统100可以至少具有如下工况:第三电动发电机43纯电动工况、纯电动四驱工况、并联工况、串联工况和制动/减速回馈工况。
工况一:
第三电动发电机43纯电动工况:双离合器31切断,同步器6切断,发动机单元1、第一电动发电机41和第二电动发电机42不工作,两个第三电动发电机43分别驱动两个后轮220。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。
该工况的优点在于第三电动发电机43直接驱动后轮220,相比于前驱车,拥有更好的加速性能、爬坡性能以及极限转向能力。并且,第三电动发电机43分别单独驱动左后轮和右后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。而前驱部分则通过同步器6断开输出齿轮51和前轮210的关联,使得前驱没有机械损耗,降低了整车的能耗。
工况二:
纯电动四驱工况:双离合器31切断,同步器6切断,第一电动发电机41不工作,两个第二电动发电机42分别用于驱动两个前轮210,两个第三电动发电机43分别用于驱动后轮220。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。
该工况的优点在于相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。
而且,相比于前驱和后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且两个第二电动发电机42和两个第三电动发电机43分别独立驱动四个车轮,使得每个车轮可以单独获得不同的扭矩和转速,实现了四轮单独控制,将动力性、操纵稳定性和越野性能达到了最大性能。而当相应电动发电机对左右车轮施加不同方向的扭矩时,还能够实现整车的原地转向。
工况三:
并联工况:双离合器31接合,同步器6接合,发动机单元1与第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力传至前轮210,同时两个第二电动发电机42分别将动力传递给对应的前轮210,且两个第三电动发电机43分别将动力传递给对应的后轮220。该工况主要用于急加速、爬大坡等最大负荷场合。
该工况的优点在于五个电动发电机和发动机单元1同时驱动车辆,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第三电动发电机43分别单独驱动左后轮和右后轮,可以实现电子差速功能,省略了传动机械式差速器,减少了零部件,同时还能增加操纵稳定性,减小轮胎的磨损量。
工况四:
串联工况:双离合器31接合,同步器6切断,发动机单元1通过双离合器31和挡位齿轮组带动第一电动发电机41发电,第二电动发电机42用于驱动前轮210且第三电动发电机43用于驱动后轮220。该工况主要用于中等负荷,且电池电量较少的情况。
该工况的优点在于相比前驱和后驱车,串联(即,四驱串联)工况拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且两个第二电动发电机42和两个第三电动发电机43分别独立驱动四个车轮,使得每个车轮可以单独获得不同的扭矩和转速,实现了四轮单独控制,将动力性、操纵稳定性和越野性能达到了最大性能。而当相应电动发电机对左右车轮施加不同方向的扭矩时,还能够实现整车的原地转向。此外,第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。
工况五:
制动/减速回馈工况:双离合器31接合,同步器6切断,发动机单元1带动第一电动发电机41发电,第二电动发电机42制动前轮并发电,第三电动发电机43制动后轮并发电。该工况主要用于车辆制动或减速。该工况的优点在于减速或制动时,第二电动发电机42第三电动发电机43分别制动四个车轮,无论在转弯还是直行,都能在保证整车制动力和稳定性的前提下,充分地吸收每个车轮的动力,达到回馈能量的最大化。且由于同步器6切断,在上述四个电动发电机对车轮制动的同时,发动机单元1和第一电动发电机41可以继续进 行发电功能,使得发电状态稳定,避免频繁切换,增强了部件的寿命。
工况六:
混联工况:双离合器31接合,同步器6接合,发动机单元1的部分动力通过双离合器31和挡位齿轮组带动第一电动发电机41发电,发动机单元1的另一部分动力通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,第二电动发电机42直接通过主减速器主动齿轮51驱动前轮210,同时第三电动发电机43分别驱动后轮220。该工况主要用于加速、爬坡等较大负荷场合且电量不多的情况下。该工况的优点是可以发挥发动机单元1的全部动力,既保证车辆的动力性,又可以同时进行发电,保持电池的电量。
上述的六种工况可以进行切换,其中比较典型的工况切换为:由工况四切换为工况三,或者从工况四切换至工况五。
具体地,由工况四切换为工况三时:当需要急加速超车、躲避障碍物或其它情况时,根据司机的油门需求,动力传动系统100可从工况四切换至工况三。此时第一电动发电机41会以主减速器主动齿轮的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24和主减速器主动齿轮的转速尽可能的匹配,方便同步器6结合。
而在匹配过程中,第二电动发电机42和第三电动发电机43可以响应驾驶需求,增大扭矩,使车辆得到加速,而不必像通常的车辆那样,等到同步器6接合后才能加速。这一扭矩提前补偿的功能,可以大大地缩短扭矩响应时间,提高车辆的瞬时加速性能。
再如,从工况四切换至工况五:当车辆制动或减速时,根据司机的油门需求或踩踏制动踏板的动作,动力传动系统100可从工况四切换至工况五。第二电动发电机42和第三电动发电机43已经可以满足制动回馈的需求,无需第一电动发电机41进行回馈,此时第二电动发电机42和第三电动发电机43能立即响应驾驶需求,对车轮进行制动,回馈电量,而不必像通常的车辆那样,等到同步器6接合后才能回馈电量。
与此同时,发动机单元1和第一电动发电机41可以保持原先的发电状态,待制动工况结束后,也无需转换,直接进入原先的串联工况。这一扭矩提前补偿功能,可以大大的缩短电机制动响应时间,增加回馈的电量。
特别地,对于复杂路况,例如当车辆在上坡、下坡、颠簸、低附等复杂路况下行驶时,往往因为车速不稳定而导致同步器6接合困难。即使第一电动发电机41可以通过转速控制,调节输出轴24的转速,但由于主减速器主动齿轮的转速随车速不可控,也会给第一电动发电机41的调速的准确度和速度带来困难。在这些路况下,通过第二电动发电机42和第三电动发电机43对车辆进行扭矩补偿,可以有效地稳定车速,既提高了整车的驾驶体验,也使得同步器6的接合变得简单。
实施例二:
如图3所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第三电动发电机43的布置形式。在该实施例中,每个第三电动发电机43均通过一个第二变速机构72驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,区别可以仅在于第三电动发电机43与对应的后轮220之间在进行动力传递时需经过第二变速机构72,这里同样不再详细说明。
实施例三:
如图4所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第三电动发电机43的布置形式。在该实施例中,第三电动发电机43为一个且通过一个第一变速机构71驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,区别可以仅在于,由于通过一个第三电动发电机43和一个第一变速机构71驱动两个后轮220,因此在不增加新部件的前提下,仅通过一电机和一变速机构无法实现两个后轮220的差速功能,但是可以理解的是,可以增设差速器以实现两个后轮220的差速转动,该差速器可以与第一变速机构71集成为一体。
实施例四:
如图5所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第二电动发电机42的布置形式。在该实施例中,第二电动发电机42分别背靠背地设在差速器54的两侧,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,这里同样不再详细说明。
实施例五:
如图6所示,该实施例中的动力传动系统100与图5中的动力传动系统100的区别可以仅在于第三电动发电机43的布置形式。在该实施例中,每个第三电动发电机43均通过一个第二变速机构72驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,这里同样不再详细说明。
实施例六:
如图7所示,该实施例中的动力传动系统100与图5中的动力传动系统100的区别可以仅在于第三电动发电机43的布置形式。在该实施例中,第三电动发电机43为一个且通过一个第一变速机构71驱动对应的后轮220,对于其余部分则可与图5实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图5实施例中的动力传动系统100基本一致,区别可以仅在于,由于通过一个第三电动发电机43和一个第一变速机构71驱动两个后轮220,因此在不增加新部件的前提下,仅通过一电机和一变速机构无法实现两个后轮220的差速功能,但是可以理解的是,可以增设差速器以实现两个后轮220的差速转动,该差速器可以与第一变速机构71集成为一体。
实施例七:
如图8所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于离合器的形式以及输入轴、主动齿轮25以及从动齿轮26的个数,该实施例中离合器为三离合器32,输入轴为三个,主动齿轮25和从动齿轮26对应为三对,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。
实施例八:
如图9所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于取消了图2实施例中的第三电动发电机43,该实施例中的动力传动系统100为两驱形式。
该实施例中的动力传动系统100至少可以具有如下工况:
工况一,第二电动发电机42纯电动:双离合器31切断,同步器6切断,发动机单元1和第一电动发电机41不工作,第二电动发电机42直接驱动前轮210。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。
该工况的优点在于第二电动发电机42直接驱动前轮210,传动链最短、参与工作的部件最少,可以达到最高的传动效率和最小的噪音。第二电动发电机42分别单独驱动左右不同的前轮210,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况二,三电机纯电动:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力平均分到左右前轮,同时第二电动发电机42直接驱动左右前轮。
该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况的优点在于相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好的 经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。
工况三,并联:双离合器31切断,同步器6接合,发动机单元1与第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力平均分到左右前轮,第二电动发电机42直接驱动前轮。该工况主要用于急加速、爬大坡等最大负荷场合。
该工况的优点在于三电机和发动机单元1同时驱动,可以发挥最大的动力性能。
工况四,串联:双离合器31接合,同步器6切断,发动机单元1通过双离合器31和挡位齿轮组带动第一电动发电机41发电,第二电动发电机42直接驱动车轮。该工况主要用于中等负荷,且电池电量较少的情况。
该工况的优点在于第二电动发电机42直接驱动车轮,传动链最短、参与工作的部件最少,可以达到最高的传动效率和最小的噪音。
同时第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。第二电动发电机42分别单独驱动左右不同的车轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况五,制动/减速回馈:双离合器31接合,同步器6断开,发动机单元1带动第一电动发电机41发电,第二电动发电机42直接制动车轮并发电。该工况主要用于车辆的制动或减速。该工况的优点在于在车辆减速或制动时,将第二电动发电机42分别制动两个车轮,可以最大限度的吸收制动能量,转化为电能,且发动机单元1和第一电动发电机41可以继续进行发电,保持发电工况的稳定性,并减少频繁切换。
上述的五种工况可以进行切换,其中比较典型的工况切换为:由工况四切换为工况三,或者从工况四切换至工况五。
具体地,由工况四切换为工况三时,例如当需要急加速超车、躲避障碍物时,根据司机的油门需求,动力系统会从工况四切换至工况三。此时第一电动发电机41会以主减速器主动齿轮51的转速为目标,通过转速控制,调节输出轴24的转速,使二者的转速尽可能的匹配,方便同步器6接合。而在匹配过程中,第二电动发电机42可以响应驾驶需求,增大扭矩,使车辆得到加速,而不必像通常的车辆那样,等到同步器6接合后才能加速。这一扭矩提前补偿功能,可以大大的缩短扭矩响应时间,提高车辆的瞬时加速性能。
由工况四切换为工况五时,例如当车辆制动或减速时,根据司机的油门需求或踩踏制动踏板的动作,动力传动系统100可从工况四切换至工况五。第二电动发电机42已经可以满足制动回馈的需求,无需第一电动发电机41进行回馈,此时第二电动发电机42能立即响应驾驶需求,对车轮进行制动,回馈电量,而不必像通常的车辆那样,等到同步器6接合后才能回馈电量。
与此同时,发动机单元1和第一电动发电机41可以保持原先的发电状态,待制动工况结束后,也无需转换,直接进入原先的串联工况。这一扭矩提前补偿功能,可以大大的缩短电机制动响应时间,增加回馈的电量。
特别地,对于复杂路况,例如当车辆在上坡、下坡、颠簸、低附等复杂路况下行驶时,往往因为车速不稳定而导致同步器6接合困难。即使第一电动发电机41可以通过转速控制,调节输出轴24的转速,但由于主减速器主动齿轮的转速随车速不可控,也会给第一电动发电机41的调速的准确度和速度带来困难。在这些路况下,通过第二电动发电机42对车辆进行扭矩补偿,可以有效地稳定车速,既提高了整车的驾驶体验,也使得同步器6的接合变得简单。
实施例九:
如图10所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42背靠背地设置于差速器54的两侧,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
实施例十:
如图11所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为两个,每个第二电动发电机42均通过一个第四变速机构74驱动对应的后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
该实施例中的动力传动系统100至少具有如下工况:
工况一,第二电动发电机42纯电动:双离合器31切断,同步器6切断,发动机单元1和第一电动发电机41不工作,每个第二电动发电机42通过对应的第四变速机构74驱动后轮。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。该工况的优点在于第二电动发电机42驱动后轮,相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。且第二电动发电机42分别单独驱动左右不同的车轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。前驱通过同步器6断开齿轮组和前轮的关联,使得前驱没有机械损耗,降低了整车的能耗。
工况二,纯电动四驱:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41驱动前轮,第二电动发电机42驱动后轮。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况的优点在于相较于单电机驱动 拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。相比于前驱和后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第二电动发电机42分别单独驱动左右不同的后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况三,并联:双离合器31切断,同步器6接合,发动机单元1与第一电动发电机41同时驱动前轮210,第二电动发电机42驱动后轮。该工况主要用于急加速、爬大坡等最大负荷场合。该工况的优点在于双电机和发动机单元同时驱动,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第二电动发电机分别单独驱动左右不同的后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况四,串联:双离合器31接合,同步器6切断,发动机单元1驱动第一电动发电机41发电,第二电动发电机42驱动后轮。该工况主要用于中等负荷,且电池电量较少的情况。该工况的优点在于两个第二电动发电机分别驱动两个后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。且第一电动发电机可以通过扭矩和转速调节,使发动机单元保持在最佳经济区域运行,减少发电油耗。
工况五,制动/减速回馈:双离合器31切断,同步器6接合,发动机单元不工作,第一电动发电机和第二电动发电机同时制动车辆并发电。该工况的优点在于车辆减速或制动时,有三个电机同时制动车辆,从而可以最大限度的吸收制动能量,转化为电能。且通过切断双离合器,消除了发动机单元摩擦力矩对车辆的制动,可以留下更多的动力让电机吸收。前后驱一起制动回馈,可以在保证整车制动力的前提下,更好的分配制动力至前后电机,比单独前驱或后驱车型能回馈更多的电能。并且,两个第二电动发电机可以单独控制制动力的大小,在转弯制动时,能提高整车的操稳性,并进一步提高回馈的能量。
类似地,该实施例中的动力传动系统100的各个工况之间可以进行切换,比较经典的模式为工况四切换为工况三或工况五,对于这部分,与上述实施例中描述的相应切换部分原理类似,这里不再赘述。
实施例十一:
如图12所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为一个,该第二电动发电机42通过一个第三变速机构73驱动后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
该实施例中,可以采用第二电动发电机42单独驱动车辆,此时双离合器31和同步器6均切断,该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。该工况的优点在于第二电动发电机42通过第三变速机构73直接驱动后轮220,相比前驱,拥有更好的加速性能、爬坡性能以及极限转向能力。而且前驱部分通过同步器6断开,使得前驱部分没有机械损耗,降低了整车的能耗。其中,后驱部分还可以增设差速器,差速器可以与第三变速机构73集成为一体。
该实施例中,动力传动系统还可以具有纯电动四驱工况,此时双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41驱动前轮,第二电动发电机42驱动后轮。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。相比于前驱或后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。
该实施例中,动力传动系统还具有并联工况:双离合器31接合,同步器6接合,发动机单元1和第一电动发电机41共同驱动前轮210,第二电动发电机42驱动后轮220。该工况主要用于急加速、爬大坡等最大负荷场合。该工况主要优点在于双电机和发动机单元同时驱动,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。
该实施例中,动力传动系统还具有串联工况:此时双离合器31接合,同步器6切断,发动机单元1驱动第一电动发电机41发电,第二电动发电机驱动后轮。该工况主要用于中等负荷,且电池电量较少的情况。该工况的优点在于第二电动发电机42驱动后轮,相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。
该实施例中,动力传动系统还具有制动/减速回馈:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41和第二电动发电机42同时制动车辆并发电。该工况的优点在于车辆减速或制动时,将两个电机同时制动,可以最大限度的吸收制动能量,转化为电能。且通过切断双离合器31,消除了发动机单元摩擦力矩对车辆的制动,可以留下更多的动力让电机吸收。前后驱一起制动回馈,可以在保证整车制动力的前提下,更好的分配制动力至前后电机,比单独前驱或后驱车型能回馈更多的电能。
类似地,该实施例中的动力传动系统100的各个工况之间可以进行切换,比较经典的模式为工况四切换为工况三或工况五,对于这部分,与上述实施例中描述的相应切换部分原理类似,这里不再赘述。
实施例十二:
如图13所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为两个且均为轮边电机,第二电动发电机42用于驱动对应的后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致(传动模式与图11类似),这里不再赘述。
实施例十三:
如图14所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。
中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451与第二输入轴22上的主动齿轮25啮合,第一电动发电机41的输出端通过一个中间惰轮44与第二中间轴齿轮452间接传动。
同步器6固定在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十四:
如图15所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。
中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451与第二输入轴22上的主动齿轮25啮合,第一电动发电机41的输出端直接与第二中间轴齿轮452啮合传动。
同步器6固定在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输 出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十五:
如图16所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。第一电动发电机41的输出端直接与第一齿轮部261啮合传动。
同步器6固定在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十六:
如图17所示,该实施例中的动力传动系统100与图14中的动力传动系统100的区别在于:设置离合器9取代图14中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
实施例十七:
如图18所示,该实施例中的动力传动系统100与图15中的动力传动系统100的区别在于:设置离合器9取代图15中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
实施例十八:
如图19所示,该实施例中的动力传动系统100与图16中的动力传动系统100的区别在于:设置离合器9取代图16中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
需要说明的是,参照图14-图19所示,该联齿齿轮结构26的变型实施例中,其还可以 包括第二电动发电机42和第三电动发电机43或者只包括第二电动发电机42(未在图14-图19中示出),其具体布置方式可采用图2-图13中对应的布置方式(例如采用轮边形式、背靠背地设在差速器两侧等)。例如作为一种可选的实施例,图14-图19所示的动力传动系统100的主减速器主动齿轮51可用于驱动前轮210,其后驱可以采用图12的后驱模式,即通过一个第二电动发电机42以及一个减速机构来驱动后轮220。
例如,可选地,第二电动发电机42设置成用于驱动前轮或后轮。再如,可选地,第二电动发电机42设置成用于驱动前轮,第三电动发电机43设置成用于驱动后轮。
此外,根据本发明的实施例进一步提供了包括如上所述的动力传动系统100的车辆。应当理解的是,根据本发明实施例的车辆的其它构成例如行驶系统、转向系统、制动系统等均已为现有技术且为本领域的普通技术人员所熟知,因此对习知结构的详细说明此处进行省略。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种用于车辆的动力传动系统,其特征在于,包括:
    发动机单元;
    多个输入轴,在所述发动机单元给所述输入轴传送动力时,所述发动机单元可选择性地与所述多个输入轴中的一个接合,每个所述输入轴上设置有主动齿轮;
    输出轴和联齿齿轮结构,所述联齿齿轮结构相对所述输出轴可差速转动,所述联齿齿轮结构具有多个齿轮部,所述多个齿轮部分别与所述多个输入轴上的主动齿轮对应地啮合;
    输出部,所述输出部适于输出来自所述输出轴的动力;
    离合器,所述离合器设置成可选择性地接合所述联齿齿轮结构与所述输出轴,从而通过所述输出部输出所述动力以驱动所述车辆的车轮;以及
    第一电动发电机,所述第一电动发电机与所述输入轴和所述输出轴中的一个直接传动或间接传动。
  2. 根据权利要求1所述的用于车辆的动力传动系统,其特征在于,所述输出部固定设置在所述输出轴上。
  3. 根据权利要求1所述的用于车辆的动力传动系统,其特征在于,所述多个输入轴依次同轴嵌套设置,每个所述输入轴上固定有一个主动齿轮。
  4. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,
    所述多个输入轴包括第一输入轴和第二输入轴,所述第二输入轴套设在所述第一输入轴上;以及
    所述联齿齿轮结构为双联齿轮,所述双联齿轮具有第一齿轮部和第二齿轮部,所述第一齿轮部和所述第二齿轮部分别与两个所述主动齿轮对应地啮合。
  5. 根据权利要求4所述的用于车辆的动力传动系统,其特征在于,还包括:
    双离合器,所述双离合器具有输入端、第一输出端和第二输出端,所述发动机单元与所述双离合器的输入端相连,所述双离合器的第一输出端与所述第一输入轴相连且所述双离合器的第二输出端与所述第二输入轴相连。
  6. 根据权利要求1所述的用于车辆的动力传动系统,其特征在于,所述离合器的主动部分设在所述输出轴和所述联齿齿轮结构中的一个上,所述离合器的从动部分设在所述输出轴和所述联齿齿轮结构中的另一个上,所述主动部分与所述从动部分可分离或接合。
  7. 根据权利要求1所述的用于车辆的动力传动系统,其特征在于,所述第一电动发电机的输出端与其中一个主动齿轮直接传动或间接传动。
  8. 根据权利要求7所述的用于车辆的动力传动系统,其特征在于,还包括:
    中间轴,所述中间轴上固定设置有第一中间轴齿轮和第二中间轴齿轮,所述第一中间轴齿轮和所述第二中间轴齿轮中的一个与其中一个所述主动齿轮啮合;
    其中,第一电动发电机的输出端与所述第一中间轴齿轮和所述第二中间轴齿轮中的另外一个直接传动,或者所述第一电动发电机的输出端与所述第一中间轴齿轮和所述第二中间轴齿轮中的另外一个通过中间惰轮间接传动。
  9. 根据权利要求3所述的用于车辆的动力传动系统,其特征在于,所述多个输入轴包括第一输入轴、第二输入轴和第三输入轴,所述第二输入轴套设在所述第一输入轴上,所述第三输入轴套设在所述第二输入轴上;以及
    所述联齿齿轮结构为三联齿轮,所述三联齿轮具有第一齿轮部、第二齿轮部和第三齿轮部,所述第一齿轮部、所述第二齿轮部和第三齿轮部分别与三个所述主动齿轮对应地啮合。
  10. 根据权利要求9所述的用于车辆的动力传动系统,其特征在于,还包括:
    三离合器,所述三离合器具有输入端、第一输出端、第二输出端和第三输出端,所述发动机单元与所述三离合器的输入端相连,所述三离合器的第一输出端与所述第一输入轴相连、所述三离合器的第二输出端与所述第二输入轴相连且所述第三离合器的第三输出端与所述第三输入轴相连。
  11. 根据权利要求1-10中任一项所述的用于车辆的动力传动系统,其特征在于,还包括:
    第二电动发电机,所述第二电动发电机设置成用于驱动所述前轮或后轮。
  12. 根据权利要求11所述的用于车辆的动力传动系统,其特征在于,所述第二电动发电机设置成用于驱动所述前轮;以及
    所述动力传动系统还包括:
    第三电动发电机,所述第三电动发电机设置成用于驱动所述后轮。
  13. 一种车辆,其特征在于,包括根据权利要求1-12中任一项所述的用于车辆的动力传动系统。
PCT/CN2014/089842 2014-01-30 2014-10-29 车辆及其动力传动系统 WO2015113424A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14881240.7A EP3100886B1 (en) 2014-01-30 2014-10-29 Vehicle and power transmission system thereof
DK14881240.7T DK3100886T3 (da) 2014-01-30 2014-10-29 Køretøj og kraftoverføringssystem deraf
US15/215,316 US10363806B2 (en) 2014-01-30 2016-07-20 Power transmission system for vehicle and vehicle comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410044681.1A CN104290589B (zh) 2014-01-30 2014-01-30 用于车辆的动力传动系统及具有其的车辆
CN201410044681.1 2014-01-30
CN201420058197.X 2014-01-30
CN201420058197.XU CN204055305U (zh) 2014-01-30 2014-01-30 用于车辆的动力传动系统及具有其的车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/215,316 Continuation US10363806B2 (en) 2014-01-30 2016-07-20 Power transmission system for vehicle and vehicle comprising the same

Publications (1)

Publication Number Publication Date
WO2015113424A1 true WO2015113424A1 (zh) 2015-08-06

Family

ID=53756217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089842 WO2015113424A1 (zh) 2014-01-30 2014-10-29 车辆及其动力传动系统

Country Status (4)

Country Link
US (1) US10363806B2 (zh)
EP (1) EP3100886B1 (zh)
DK (1) DK3100886T3 (zh)
WO (1) WO2015113424A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014004691B4 (de) * 2014-03-31 2016-09-22 Audi Ag Geschwindigkeits-Wechselgetriebe für ein Kraftfahrzeug
CN104786815B (zh) * 2015-01-16 2016-03-30 比亚迪股份有限公司 变速器、动力传动系统和车辆
CN106523629A (zh) * 2016-11-18 2017-03-22 精进电动科技股份有限公司 一种横置双动力源车辆驱动总成
DE102017101744B4 (de) * 2017-01-30 2019-06-19 Gkn Automotive Ltd. Antriebsanordnung für ein Kraftfahrzeug
CN206678766U (zh) * 2017-03-06 2017-11-28 精进电动科技股份有限公司 一种纵置双动力源车辆驱动总成
EP3935882A4 (en) 2019-03-08 2022-11-16 Gotenna Inc. METHOD OF USAGE-BASED TRAFFIC THROATTING IN A MESH WIRELESS NETWORK
US11541861B2 (en) * 2019-04-30 2023-01-03 Borgwarner Inc. Transmission system for use in a vehicle
CN112172506B (zh) * 2020-10-16 2022-07-08 北京未来智酷汽车科技有限公司 动力耦合装置、动力系统及其控制方法
CN113602073A (zh) * 2021-09-10 2021-11-05 中国第一汽车股份有限公司 一种双电机混合动力系统及其控制方法
JP2023153543A (ja) * 2022-04-05 2023-10-18 マツダ株式会社 車両の変速制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033059A1 (en) * 2000-07-18 2002-03-21 Thomas Pels Gearbox
CN1637327A (zh) * 2003-12-24 2005-07-13 现代自动车株式会社 混合电动汽车的双离合器变速装置和操作该装置的方法
CN102490588A (zh) * 2011-12-02 2012-06-13 吉林大学 基于机械自动变速器的插电式混合动力驱动装置
CN102678839A (zh) * 2011-12-08 2012-09-19 河南科技大学 一种拖拉机中使用的双离合器变速器
JP2013112073A (ja) * 2011-11-25 2013-06-10 Daimler Ag ハイブリッド自動車の制御装置

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9659898A (en) 1997-10-21 1999-05-10 Stridsberg Innovation Ab A hybrid powertrain
JP2003529477A (ja) * 1998-10-02 2003-10-07 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 自動車
US7252020B2 (en) 2000-01-10 2007-08-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Vehicle drive-train including a clutchless transmission, and method of operation
JP3706290B2 (ja) 2000-02-04 2005-10-12 株式会社日立製作所 ハイブリッド自動車の制御装置
US6490945B2 (en) 2001-01-10 2002-12-10 New Venture Gear, Inc. Twin clutch automated transmission with integrated transfer case
DE10209514B4 (de) 2001-03-30 2016-06-09 Schaeffler Technologies AG & Co. KG Antriebsstrang
CN2602978Y (zh) 2002-08-14 2004-02-11 同济大学新能源汽车工程中心 汽车电子稳定控制系统
JP3864950B2 (ja) 2003-11-18 2007-01-10 日産自動車株式会社 ハイブリッド変速機
US7610891B2 (en) 2004-04-16 2009-11-03 Avl List Gmbh Method for controlling the start-up phase of a motor vehicle
JP4069901B2 (ja) 2004-05-20 2008-04-02 トヨタ自動車株式会社 ハイブリッド車のドライブトレーン
JP4453468B2 (ja) 2004-07-16 2010-04-21 日産自動車株式会社 先行車追従走行制御装置
JP4569493B2 (ja) 2005-06-06 2010-10-27 日産自動車株式会社 ハイブリッド車両のオイルポンプ駆動制御装置
DE102005044181A1 (de) * 2005-09-15 2007-04-19 Deere & Company, Moline Antriebssystem für ein Fahrzeug und ein landwirtschaftliches Nutzfahrzeug
DE102005063248B4 (de) 2005-12-21 2010-09-30 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Doppelkupplungsanordnung
DE112007001971A5 (de) 2006-09-15 2009-05-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Hybridantriebsstrangs für ein Kraftfahrzeug
JP4562195B2 (ja) 2006-09-20 2010-10-13 三菱ふそうトラック・バス株式会社 ハイブリッド電気自動車の変速制御装置
US7691026B2 (en) 2006-11-17 2010-04-06 Gm Global Technology Operations, Inc. Control architecture for optimization and control of a hybrid powertrain system
CN101209675B (zh) 2006-12-26 2010-05-19 比亚迪股份有限公司 电动汽车能量回馈控制方法
EP1972481A1 (de) * 2007-03-20 2008-09-24 FEV Motorentechnik GmbH Verfahren zum Betrieb eines Hybridantriebssystems sowie Hybridsantriebssystem mit zwei Teilgetrieben
WO2008136094A1 (ja) 2007-04-24 2008-11-13 Mitsubishi Electric Corporation 電気駆動システムおよびハイブリット駆動システム
JP4285571B2 (ja) * 2007-09-27 2009-06-24 トヨタ自動車株式会社 車両用駆動装置
EP2210758B1 (en) 2007-10-22 2015-06-24 BYD Company Limited Hybrid power driving system and driving method thereof
CN101450609B (zh) 2007-11-30 2012-09-05 比亚迪股份有限公司 混合动力驱动系统及其驱动方法
CN101450608B (zh) 2007-12-07 2012-09-05 比亚迪股份有限公司 混合动力车的停车发电机构及其控制方法
CN201214410Y (zh) 2007-12-29 2009-04-01 桂林吉星电子等平衡动力有限公司 一种油电混合动力电动车的速度巡航控制装置
WO2009118924A1 (ja) 2008-03-27 2009-10-01 三菱重工業株式会社 ハイブリッド型産業車両
JP5017450B2 (ja) 2008-03-31 2012-09-05 アイシン・エーアイ株式会社 ハイブリッド動力装置
JP4942212B2 (ja) 2008-04-21 2012-05-30 アイシン・エーアイ株式会社 ハイブリッド動力装置
CN201241396Y (zh) * 2008-06-26 2009-05-20 张程军 一种多用途组合房屋
CN101659203A (zh) 2008-08-28 2010-03-03 比亚迪股份有限公司 一种混合动力驱动系统及其驱动方法
CN101380887B (zh) 2008-10-23 2012-11-07 上海交通大学 含有驱动电机工作模式切换装置的混合动力轿车驱动系统
US8523734B2 (en) 2008-11-07 2013-09-03 Ricardo, Inc. Multi-mode hybrid transmission
CN201390137Y (zh) 2009-04-22 2010-01-27 重庆恒通客车有限公司 前置后驱气电混合动力客车
CN101549634A (zh) 2009-05-14 2009-10-07 上海交通大学 多模式无级变速混联式混合动力系统
CN102574456B (zh) 2009-10-05 2015-01-28 本田技研工业株式会社 车辆用驱动装置
CN201511806U (zh) 2009-10-19 2010-06-23 重庆恒通客车有限公司 同轴并联式油电/气电混合动力客车三类底盘
CN102085795B (zh) 2009-12-04 2015-04-15 上海汽车集团股份有限公司 一种车用离合器动力藕合同步器换档混合动力驱动系统
CN104691301B (zh) 2009-12-16 2017-05-17 本田技研工业株式会社 混合动力车辆及其控制方法
BR112012018339A2 (pt) 2009-12-22 2019-09-24 Honda Motor Co Ltd controlador para veículo híbrido
KR20120123277A (ko) 2010-01-18 2012-11-08 히다찌 겐끼 가부시키가이샤 작업용 차량의 구동 제어 장치
JP5273069B2 (ja) 2010-03-02 2013-08-28 アイシン精機株式会社 ハイブリッド駆動装置
EP2385270B1 (en) 2010-05-03 2012-05-23 C.R.F. Società Consortile per Azioni A hybrid propulsion system for a motor vehicle with a double-drum gear control device
CN102259583B (zh) 2010-05-31 2014-03-19 比亚迪股份有限公司 混合动力驱动系统及具有该系统的车辆
CN201777113U (zh) 2010-05-31 2011-03-30 比亚迪股份有限公司 混合动力驱动系统及具有该系统的车辆
CN102259584B (zh) 2010-05-31 2014-07-02 比亚迪股份有限公司 混合动力驱动系统及包含该驱动系统的车辆
US8647231B2 (en) 2010-07-07 2014-02-11 Ford Global Technologies, Llc Transitioning between electric-drive and parallel-drive in a hybrid-electric vehicle powertrain
CN102371893A (zh) 2010-08-13 2012-03-14 上海捷能汽车技术有限公司 车辆用电驱动变速装置
CN202242966U (zh) 2010-09-26 2012-05-30 比亚迪股份有限公司 电动车辆的驱动系统
CN101973207B (zh) 2010-09-30 2015-05-27 长城汽车股份有限公司 一种混合动力汽车变速器
JP5201190B2 (ja) 2010-10-08 2013-06-05 三菱自動車工業株式会社 ハイブリット車のクラッチ制御装置
US9358867B2 (en) 2010-10-15 2016-06-07 GM Global Technology Operations LLC Micro electro-mechanical system (MEMS) based hydraulic control system for full hybrid vehicles
DE102011115780A1 (de) 2010-10-15 2012-04-19 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Hydraulisches Steuersystem für Vollhybridfahrzeuge auf der Basis eines elektromechanischen Mikrosystems (MEMS)
JP5640094B2 (ja) 2010-10-21 2014-12-10 本田技研工業株式会社 ハイブリッド車両用駆動装置
CN102009587B (zh) 2010-11-19 2012-11-14 中国汽车技术研究中心 基于电控机械式变速器的混合动力装置
CN201907400U (zh) 2010-12-20 2011-07-27 浙江吉利汽车研究院有限公司 并联混合动力驱动系统
JP5616467B2 (ja) 2011-02-08 2014-10-29 本田技研工業株式会社 ハイブリッド車両の駆動装置
DE102011005451A1 (de) 2011-03-11 2012-09-13 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs und Verfahren zur Steuerung eines Hybridantriebs
CN102303517B (zh) 2011-06-23 2014-03-19 苏州安远新能源动力有限公司 采用同步器实现模式切换的增程式混合动力汽车动力系统
ITPD20110252A1 (it) 2011-07-22 2013-01-23 Mecaprom Technologies Corp I Talia Srl A So Veicolo a propulsione ibrida
JP2013032119A (ja) 2011-08-02 2013-02-14 Honda Motor Co Ltd ハイブリッド駆動装置
CN102381178B (zh) 2011-08-24 2014-07-02 奇瑞汽车股份有限公司 插电式混合动力汽车动力系统及其再生制动控制方法
JP5720893B2 (ja) 2011-09-01 2015-05-20 三菱自動車工業株式会社 ハイブリット車両の制御装置
US8771138B2 (en) 2011-09-16 2014-07-08 Eaton Corporation Hybrid hydraulic drive system architecture
CN103029558A (zh) 2011-09-30 2013-04-10 比亚迪股份有限公司 一种混合动力系统及包括该系统的车辆
CN202345366U (zh) 2011-11-18 2012-07-25 同济大学 一种采用双同步器的模块化混合动力电动汽车动力系统
CN202319954U (zh) 2011-11-18 2012-07-11 同济大学 采用惯性同步器电机模块的双电机动力耦合驱动装置
JP5856465B2 (ja) 2011-12-16 2016-02-09 トヨタ自動車株式会社 車両
CN202429065U (zh) 2011-12-30 2012-09-12 比亚迪股份有限公司 电动车辆及其驱动系统
US9181895B2 (en) 2012-03-01 2015-11-10 Johnson Controls Technology Company Start-stop retrofit systems and methods
CN102555769B (zh) 2012-03-12 2014-12-10 重庆大学 一种混联式双电机多工作模式混合动力驱动总成
DE102012204719A1 (de) 2012-03-23 2013-09-26 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs eines Fahrzeugs mit Parallel-Hybrid-Antrieb
JP5891926B2 (ja) * 2012-04-20 2016-03-23 株式会社デンソー 動力伝達装置
US8738207B2 (en) 2012-04-30 2014-05-27 GM Global Technology Operations LLC Hybrid vehicle with electric transmission and electric drive module
CN102678871A (zh) * 2012-05-09 2012-09-19 北京汽车新能源汽车有限公司 一种用于电动车的三离合变速器装置及电动车
CN202656855U (zh) 2012-05-11 2013-01-09 北京智行鸿远汽车技术有限公司 一种单轴并联混合动力系统
JP5811464B2 (ja) 2012-05-14 2015-11-11 住友電装株式会社 電気接続箱
CN102673382A (zh) 2012-05-16 2012-09-19 同济大学 轮边动力混合的驱动系统
CN102691770B (zh) * 2012-05-29 2015-07-15 浙江吉利汽车研究院有限公司杭州分公司 一种混合动力用的双离合器变速器
CN102673365A (zh) 2012-06-01 2012-09-19 同济大学 采用同步带传动的混合动力电动汽车驱动系统
CN202641355U (zh) 2012-06-12 2013-01-02 福建省福工动力技术股份公司 具有停车熄火功能的混联式混合动力系统
CN102951005A (zh) 2012-10-29 2013-03-06 同济大学 独立控制左右车轮功率输出的混合动力汽车用有源传动装置
CN102975607A (zh) 2012-11-02 2013-03-20 同济大学 以非对称式行星锥齿轮机构作为动力耦合装置的混合动力汽车驱动和传动系统
DE102012221889A1 (de) 2012-11-29 2014-06-05 Zf Friedrichshafen Ag Zugkraftunterstütztes Mehrgruppengetriebe
KR101362059B1 (ko) 2012-12-10 2014-02-12 현대자동차 주식회사 더블 클러치 변속기
DE102013201744A1 (de) 2013-02-04 2014-08-07 Zf Friedrichshafen Ag Hybridisiertes Kraftfahrzeuggetriebe
CN103144528B (zh) 2013-02-20 2015-10-07 上海中科深江电动车辆有限公司 应用于混合动力汽车的双离合变速器及其使用方法
CN203283020U (zh) 2013-04-28 2013-11-13 长城汽车股份有限公司 混合动力变速器及相应的车辆
CN203305832U (zh) 2013-05-14 2013-11-27 北汽福田汽车股份有限公司 用于混合动力车辆的双离合自动变速器和混合动力车辆
CN103332102B (zh) 2013-07-04 2016-08-10 重庆大学 基于双离合器自动变速器的单电机混合动力驱动系统
CN203516615U (zh) 2013-10-14 2014-04-02 谢晋 变速器
CN103527726B (zh) 2013-10-14 2016-02-24 谢晋 变速器
CN103697118A (zh) 2013-12-26 2014-04-02 天津市松正电动汽车技术股份有限公司 多用变速器
CN103832263B (zh) 2014-02-26 2016-09-07 长城汽车股份有限公司 用于车辆的动力传动系统及具有其的车辆
CN103912640A (zh) 2014-04-09 2014-07-09 天津天海同步科技股份有限公司 电动车用两挡自动变速器
CN103921674A (zh) 2014-04-19 2014-07-16 诸暨市中汽机械零部件有限公司 一种电动汽车用变速箱
CN203962884U (zh) 2014-06-04 2014-11-26 上海通用汽车有限公司 用于混合动力车的双离合变速器系统及装设其的汽车
CN203876574U (zh) 2014-06-04 2014-10-15 合肥工业大学 一种两挡电动汽车的动力系统总成
CN204095490U (zh) 2014-07-31 2015-01-14 比亚迪股份有限公司 动力传动系统及具有该动力传动系统的车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020033059A1 (en) * 2000-07-18 2002-03-21 Thomas Pels Gearbox
CN1637327A (zh) * 2003-12-24 2005-07-13 现代自动车株式会社 混合电动汽车的双离合器变速装置和操作该装置的方法
JP2013112073A (ja) * 2011-11-25 2013-06-10 Daimler Ag ハイブリッド自動車の制御装置
CN102490588A (zh) * 2011-12-02 2012-06-13 吉林大学 基于机械自动变速器的插电式混合动力驱动装置
CN102678839A (zh) * 2011-12-08 2012-09-19 河南科技大学 一种拖拉机中使用的双离合器变速器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3100886A4 *

Also Published As

Publication number Publication date
EP3100886A1 (en) 2016-12-07
US20160325614A1 (en) 2016-11-10
US10363806B2 (en) 2019-07-30
EP3100886B1 (en) 2022-06-01
EP3100886A4 (en) 2017-06-28
DK3100886T3 (da) 2022-06-27

Similar Documents

Publication Publication Date Title
WO2015113424A1 (zh) 车辆及其动力传动系统
WO2015113426A1 (zh) 车辆及其动力传动系统
US9919699B2 (en) Vehicle and method for controlling synchronizer of the same
WO2015113419A1 (zh) 车辆及车辆的巡航控制方法
US9568082B2 (en) Power transmission system for vehicle and vehicle comprising the same
WO2015113420A1 (zh) 车辆中发动机单元的控制方法和车辆
CN104276026B (zh) 用于车辆的动力传动系统及具有其的车辆
WO2015113417A1 (zh) 车辆及其的滑行回馈控制方法
US9944165B2 (en) Power transmission system for vehicle and vehicle comprising the same
CN104290586B (zh) 用于车辆的动力传动系统及具有其的车辆
CN204055300U (zh) 用于车辆的动力传动系统及具有其的车辆
US10670123B2 (en) Power transmission system for vehicle and vehicle comprising the same
CN204055303U (zh) 用于车辆的动力传动系统及具有其的车辆
WO2015113425A1 (zh) 车辆及其动力传动系统
WO2015113422A1 (zh) 车辆及其动力传动系统
CN107599823A (zh) 差动多模混合动力车辆驱动系统
CN104290587B (zh) 用于车辆的动力传动系统及具有其的车辆
CN204055296U (zh) 用于车辆的动力传动系统及具有其的车辆
US9568081B2 (en) Power transmission system for vehicle and vehicle comprising the same
US9568080B2 (en) Power transmission system for vehicle and vehicle comprising the same
CN104276027B (zh) 用于车辆的动力传动系统及具有其的车辆
CN204055297U (zh) 用于车辆的动力传动系统及具有其的车辆
WO2015113423A1 (zh) 车辆及其动力传动系统
CN204055302U (zh) 用于车辆的动力传动系统及具有其的车辆
CN104290588B (zh) 用于车辆的动力传动系统及具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881240

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014881240

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE