WO2015111563A1 - 金又は白金ターゲット及びそれらの製造方法 - Google Patents
金又は白金ターゲット及びそれらの製造方法 Download PDFInfo
- Publication number
- WO2015111563A1 WO2015111563A1 PCT/JP2015/051328 JP2015051328W WO2015111563A1 WO 2015111563 A1 WO2015111563 A1 WO 2015111563A1 JP 2015051328 W JP2015051328 W JP 2015051328W WO 2015111563 A1 WO2015111563 A1 WO 2015111563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- ingot
- forging
- temperature range
- gold
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/02—Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/002—Hybrid process, e.g. forging following casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/14—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3488—Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
- H01J37/3491—Manufacturing of targets
Definitions
- the present invention relates to a gold sputtering target for forming a gold thin film or a platinum sputtering target for forming a platinum thin film, and methods for producing them.
- a sputtering target (hereinafter also referred to as a target) using high-purity gold of 99.99% or more is used for forming a gold thin film on a semiconductor electrode, a contact point of a crystal oscillator, or the like.
- a target using 99.95% or more of high-purity platinum is a special material that causes magnetic anisotropy to appear by coexistence with a magnetic material, and is chemically inert. Widely used in applications such as semiconductor magnetic materials.
- Sputtering is a technique for forming a film by ionizing argon and making it collide with a target to fly an element and depositing the element on a substrate.
- the sputtering rate varies depending on the orientation of the crystal plane.
- the sputtering rate is not stable when the size of the surface of the target or the internal structure is non-uniform, or when the texture having a specific plane orientation is non-uniform.
- the high-purity gold or platinum target after dissolution tends to be coarse because the high-purity target.
- the size of the target surface and the internal structure tends to be non-uniform, Textures with plane orientations were likely to exist unevenly.
- the crystal grain size of the gold target is 0.1 mm to 10 mm, resulting in equiaxed crystals.
- the crystal grain size is 100 ⁇ m or more, the grain size is large, which is not sufficient to suppress the occurrence of the above problem.
- an object of the present invention is to increase the stabilization of film formation characteristics during sputtering, and in the target, the average crystal grain size of gold or platinum is small, and the in-plane direction of the target surface and the thickness direction of the target This is to produce a target having a uniform crystal grain size.
- Gold stacking fault energy (hereinafter also referred to as SFE) takes a very small value of 45 mJm ⁇ 2 .
- SFE Gold stacking fault energy
- a material having a small SFE strain due to processing is likely to accumulate as stacking faults, and in that case, the shape of crystal grains formed by recrystallization tends to be twins. Therefore, a large number of crystal grains having a twin structure can appear by introducing a large number of processing strains and performing heat treatment in an appropriate temperature range.
- Platinum SFE has been reported to be 322 mJm -2 , which is larger than gold.
- strain due to processing is accumulated in the grains to form subgrains.
- the structure of the ingot after dissolution was a coarse crystal having a crystal grain size of 1 to 20 mm.
- These crystals can be miniaturized by forging or rolling, but it is difficult to make them smaller than 100 ⁇ m, particularly 50 ⁇ m or less, and it is difficult to make them uniform over the entire target surface. Therefore, the present inventors divided forging into two stages within an appropriate temperature range in order to introduce a large number of processing strains, and subsequently performed cross-rolling so that there is no deviation of the plane orientation in the in-rolling plane direction.
- the recrystallized grains are expressed using the introduced strain as the driving force, so that the average crystal grain size of gold or platinum can be made smaller and the target surface
- the present inventors have found that the crystal grain size in the in-plane direction and the thickness direction of the target can be made uniform, thereby completing the present invention.
- an ingot production step of injecting molten gold or platinum to obtain an ingot, and the ingot obtained by pouring the ingot are 0.4 Tm to In the first temperature range of 0.7 Tm (Tm indicates the melting point (K) of the ingot), the primary forging step for forging and the primary forging ingot obtained in the primary forging step are more than the first temperature range.
- Adjust the cross pressure A cross-rolling process for forming a target shape, and a heat-treatment process for heat-treating the target-shaped ingot obtained in the cross-rolling process in a fourth temperature range of 0.3 to 0.5 Tm. It is characterized by.
- the forging performed in the primary forging step is a pre-forming step for preparing an ingot shape for facilitating forging from six directions performed in the secondary forging step. Preferably there is.
- the processing in the secondary forging step which is the next step, can be facilitated.
- the forging from the six directions performed in the secondary forging step is preferably a step of processing the longest side of the ingot to a range of 50 to 80%.
- the secondary forging process by performing such processing, casting defects generated by melting are eliminated, and a non-uniform molten structure is made uniform, and at the same time, processing strain is introduced.
- the degree of processing of the cross rolling process is preferably 50% or more.
- the average crystal grain size of the target gold or platinum obtained in the heat treatment step is 5 to 50 ⁇ m, and the in-plane direction of the target surface and the thickness direction of the target It is preferable to control the tolerance of the crystal grain size to 20% or less.
- the average crystal grain size of gold or platinum is as small as 5 to 50 ⁇ m in the target, and the crystal grain size in the in-plane direction of the target surface and in the thickness direction of the target has a tolerance of 20% or less. Can fit in.
- the average crystal grain size of gold or platinum is 5 to 50 ⁇ m, and the tolerance of the crystal grain size in the in-plane direction of the target surface and in the thickness direction of the target is 20% or less. It is characterized by being.
- the average crystal grain size of gold or platinum in the target is reduced, and the crystal grain size in the in-plane direction of the target surface and in the thickness direction of the target is set. It can be uniform.
- the manufacturing method of the gold or platinum target according to the present embodiment includes (1) an ingot production process for injecting molten gold or platinum to obtain an ingot, and (2) an ingot obtained by pouring the above ingot.
- a primary forging step for forging In a first temperature range of 4 Tm to 0.7 Tm (Tm represents the melting point (K) of the ingot), a primary forging step for forging, and (3) a primary forging ingot obtained in the primary forging step, A step of cooling to a second temperature range of 0.1 Tm to 0.4 Tm that is lower than one temperature range, and (4) six directions of the cooled primary forging ingot: up / down / left / right / front / back A secondary forging step in which the cooled primary forging ingot is further forged from the six directions in the second temperature range, and (5) a secondary forging ingot obtained in the secondary forging step is set to 0.
- the cross-rolling process is carried out by adjusting to the range and performing the cross-rolling process to obtain the target shape, and the target shape ingot obtained in the cross-rolling process is heat-treated in a fourth temperature range of 0.3 to 0.5 Tm. Heat treatment step.
- the length: width: thickness (0.5-2) :( 0.5-2): 1.
- radius: thickness (0.25 to 1): 1.
- the ingot obtained by pouring is adjusted to a first temperature range of 0.4 Tm to 0.7 Tm (Tm represents the melting point (K) of the ingot).
- Tm represents the melting point (K) of the ingot.
- the temperature adjustment method enters the first temperature range in the course of cooling of the ingot obtained by pouring the hot water, and may enter the first temperature range by heating the ingot cooled once with an electric furnace or the like.
- the first temperature range is gold (melting point: 1337.33K), it is 534.9 to 936.1K, and preferably 773.2 to 873.2K.
- the first temperature range is platinum (melting point: 2041.4K), it is 816.6 to 1429.0K, and preferably 1173.2 to 1373.2K.
- the primary forging step is a pre-forming step for adjusting the shape to an ingot for facilitating forging from six directions performed in the secondary forging step.
- the ingot shape for facilitating forging from six directions is, for example, a cube or a rectangular parallelepiped.
- the secondary forging process which is the next process, can be facilitated.
- a primary forging ingot is obtained through forging.
- Step of cooling to the second temperature range the primary forging ingot is cooled to a second temperature range lower than the first temperature range and from 0.1 Tm to 0.4 Tm.
- the temperature adjustment method is air cooling or water cooling, but water cooling is preferable.
- the first temperature range and the second temperature range overlap at 0.4 Tm, but when the actual temperature in the first temperature range is 0.4 Tm, the actual temperature in the second temperature range is When it is less than 0.4 Tm and the actual temperature in the first temperature range is higher than 0.4 Tm, the actual temperature in the second temperature range is 0.4 Tm or less.
- the second temperature range is gold, it is 267.4 to 534.9K, and preferably 323.2 to 473.2K.
- the second temperature range is 204.1 to 816.6K, and preferably 573.2 to 773.2K. If it is less than 0.1 Tm, there is a possibility that cracks will occur in subsequent steps. On the other hand, if it exceeds 0.4 Tm, the high temperature is maintained even after the completion of the secondary forging process in the next step, so that recovery and recrystallization occur, and the introduced strain is removed.
- the six directions of top, bottom, left, right, front and back are determined. How to determine the six directions is arbitrary, but the top and bottom are in a facing relationship, the left and right are in a facing relationship, the front and the back are in a facing relationship, the up and down direction, The left-right direction and the front-rear direction are preferably orthogonal to each other.
- the ingot is a rectangular parallelepiped
- the bottom of the rectangular parallelepiped when pouring is ⁇ down ''
- the top is ⁇ up ''
- one of the long sides is ⁇ front ''
- the opposite side is ⁇ rear ''
- the short side One of these is “left” and the opposite surface is “right”.
- the cooled primary forging ingot is forged from the six directions in the second temperature range (hereinafter also referred to as hexagonal forging).
- the hexagonal forging is preferably performed using an air hammer as in the case of the primary forging process. It is preferable to forge in order from six directions.
- Forging preferably includes a step of processing the longest side of the ingot to a range of 50 to 80%. More preferably, it is 50 to 70%.
- hexagonal forging in the secondary forging process, casting defects can be eliminated, and the melted structure can be eliminated and uniformized. Furthermore, processing strain is introduced. Then, it is preferable to include the process for forging so that the side which was the longest side may become the longest side again.
- a secondary forging ingot is obtained through forging.
- the secondary forging ingot is adjusted to a third temperature range of 0.15 Tm to 0.3 Tm. Since the second temperature range is a temperature range that overlaps with the third temperature range, temperature adjustment is not necessary when the secondary forging ingot is already in the third temperature range. However, when the temperature is outside the third temperature range, the temperature adjustment method is preferably air cooling or heating.
- the third temperature range is 200.6 to 401.2K, and preferably 273.2 to 323.2K. In the case of platinum, the third temperature range is 306.2 to 612.4K, and preferably 306.2 to 473.2K. If it is less than 0.15 Tm, there is a possibility that cracks will occur in subsequent steps. On the other hand, if it exceeds 0.3 Tm, the strain is removed by recovery and recrystallization.
- the crystal grain may be coarsened by the heat treatment in the next step, which is not preferable.
- the secondary forging ingot adjusted to the third temperature range is subjected to cross rolling to obtain a target shape.
- Cross rolling is not a main purpose but a secondary purpose of adjusting the secondary forged ingot to the shape of the target, and the main purpose is to further add distortion by reducing the thickness while adjusting the shape. Therefore, it is preferable that the workability of the cross rolling process is 50% or more. More preferably, it is 70 to 90%. By performing such processing in the cross rolling process, it is possible to prevent a texture that is biased only in a specific plane direction from being obtained, and to make the plane orientation random. Through the cross rolling process, a target-shaped ingot is obtained.
- the degree of processing of the cross rolling process is defined by (plate thickness before processing ⁇ plate thickness after processing) ⁇ plate thickness before processing ⁇ 100.
- the target-shaped ingot is heat-treated in a fourth temperature range of 0.3 to 0.5 Tm.
- the temperature adjustment method is preferably heating with an electric furnace.
- the fourth temperature range is gold, it is 401.2 to 668.7K, preferably 473.2 to 573.2K.
- the second temperature range is 612.4 to 1020.7K, and preferably 773.2 to 873.2K. If it is less than 0.3 Tm, recrystallization does not proceed sufficiently and an equiaxed crystal cannot be obtained. On the other hand, if it exceeds 0.5 Tm, crystal growth proceeds remarkably and fine crystals cannot be obtained.
- the heat treatment time is preferably 0.5 to 3 hours, for example, and more preferably 1 to 2 hours.
- the first temperature range, the second temperature range, the third temperature range, and the fourth temperature range are defined, but each step includes a form that deviates from these temperature ranges during the process. That is, in each step, if the time in the first temperature range, the second temperature range, the third temperature range, and the fourth temperature range occupies 50% or more of the total time in each step, the respective temperatures It is within the scope of the present invention since it can be said that it is within the range, and preferably accounts for 80% or more of the total time in each step, more preferably 90% or more.
- the average crystal grain size of gold or platinum is as small as 5 to 50 ⁇ m in the target, and the crystal grain size in the in-plane direction of the target surface and in the thickness direction of the target has a tolerance of 20% or less.
- the tolerance of 20% or less means that it is within ⁇ 20%, that is, ⁇ 20% to + 20%.
- Example 1 [Gold target] In a high frequency furnace, 8.5 kg of gold (purity 99.99%) was melted and poured into a carbon mold (longitudinal) 150 ⁇ (horizontal) 120 ⁇ (thickness) 24.5 mm rectangular ingot. This ingot was forged with an air hammer in the first temperature range of 0.609 Tm (541 ° C.) to 0.430 Tm (302 ° C.), and the long side was forged to 58.7% (longitudinal) 88.
- the cooled primary forged ingot is forged by hexagonal forging up to 71.5% on the long side to form a rectangular ingot of (length) 88 ⁇ (width) 90 ⁇ (thickness) 55 mm, and then (length) 148 ⁇ (Horizontal) 105 ⁇ (thickness) was forged to 29.5 mm and deformed.
- the secondary forging was carried out by controlling the heat of deformation to a maximum of 0.323 Tm (159.2 ° C.) to obtain a secondary forging ingot.
- the secondary forging ingot cooled to 0.234 Tm (40 ° C.) was put on a rolling mill and rolled to (length) 270 ⁇ (width) 290 ⁇ (thickness) 6.1 mm.
- the degree of processing of the cross rolling process at this time was 90%.
- the cross rolling process was performed in the range of 0.228 Tm (32 ° C.) to 0.243 Tm (52 ° C.).
- heat treatment was performed at 0.391 Tm (250 ° C.) for 1 hour to produce a target.
- the particle size was measured in accordance with JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”.
- a sample was cut out and mirror-polished with a buff. This sample was subjected to electrolysis using a corrosive solution obtained by adding 5% alcohol to 1N hydrochloric acid to reveal the structure.
- a structural photograph was taken with a metal microscope, five lines were inserted at equal intervals in the vertical and horizontal directions, and the particle diameter was calculated by dividing the number of times the line intersected the grain boundary by the length of the line segment as the number of crystal grains. This operation was performed for each line segment, and all of them were averaged to obtain the average particle size of the part.
- FIG. 1 shows a place where an observation sample is cut out from the target.
- three locations (indicated as 1, 2 and 3 in FIG. 1) are cut out along the longitudinal direction passing through the center in the target width direction.
- the sample piece numbered 1 is observed on the front surface (represented as 1-front surface) and the back surface (represented as 1-rear surface).
- subjected the number 3 it observes about the surface (represented as 3-front) and the back surface (denoted 3-rear surface).
- the upper side denoted as 2-upper side
- of the cross section that crosses the longitudinal direction of the front surface represented as 2-front surface
- the rear surface represented as 2-rear surface
- the target. The center (denoted as 2-center), and the lower side (denoted as 2-lower).
- FIG. 2 shows an image of the sample of Example 1 using an optical microscope.
- FIG. 2 shows the result of observing the surface, the back surface, and the cross section (three locations along the thickness direction) at three locations of the target by observing the sample cut out according to FIG. It was found from FIG. 2 that there is no difference in the crystal grain size depending on the part.
- Example 1 The results of Example 1 are shown in Table 1.
- the target average particle size was 11.7 ⁇ m, and the average particle size tolerance of each part was ⁇ 8.97% and + 15.81%.
- Example 2 A gold target was produced in the same manner as in Example 1 except that the degree of cross-rolling was 50%, and the size of the workpiece at that time was (vertical) 174 ⁇ (horizontal) 174 ⁇ (thickness) 15.5 mm. Then, the obtained gold target was observed with an optical microscope. The portion observed with an optical microscope was the 2-surface shown in FIG. FIG. 3 shows an image obtained by an optical microscope. Thereafter, the particle size of the portion observed with an optical microscope was measured according to JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”. The average crystal grain size was 17 ⁇ m.
- Example 3 [Platinum target] In a plasma melting furnace, 5.2 kg of platinum (purity 99.99%) was melted and poured into a carbon mold to make a cylindrical ingot of (diameter) 78 ⁇ (height) 50 mm. This ingot was forged using an air hammer in a first temperature range of 0.673 Tm (1100 ° C.) to 0.452 Tm (302 ° C.), and (vertical) 89 ⁇ (horizontal) 88 ⁇ (thickness) 32 mm After forming a rectangular parallelepiped ingot, primary forging was performed by further forging up to (length) 98 ⁇ (width) 77 ⁇ (thickness) 33 mm to obtain a primary forging ingot.
- the cooled primary forging ingot is forged by hexagonal forging to 69.4% of the long side to form a rectangular ingot of (length) 87 ⁇ (width) 89 ⁇ (thickness) 30 mm, and then (length) 104 ⁇ (Horizontal) 98 ⁇ (thickness) was forged to 25 mm and deformed.
- the secondary forging was carried out by controlling the heat of deformation to a maximum of 0.350 Tm (442 ° C.) to obtain a secondary forging ingot.
- the secondary forging ingot cooled to 0.150 Tm (33 ° C.) was put on a rolling mill and rolled to (length) 207 ⁇ (width) 205 ⁇ (thickness) 5.6 mm.
- the degree of processing of the cross rolling process at this time was 76%.
- the cross rolling process was performed in the range of 0.150 Tm (33 ° C.) to 0.153 Tm (40 ° C.).
- heat treatment was performed at 0.428 Tm (600 ° C.) for 1 hour to prepare a target.
- the particle size was measured in accordance with JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”.
- a sample was cut out and mirror-polished with a buff.
- the structure of this sample was made to appear by electrolysis using an aqueous solution containing 10% hydrochloric acid, 10% hydrogen peroxide, and 10% alcohol as a corrosive solution.
- a structural photograph was taken with a metal microscope, five lines were inserted at equal intervals in the vertical and horizontal directions, and the particle diameter was calculated by dividing the number of times the line intersected the grain boundary by the length of the line segment as the number of crystal grains. This operation was performed for each line segment, and all of them were averaged to obtain the average particle size of the part.
- FIG. 4 shows a place where an observation sample is cut out from the target. As shown in FIG. 4, three locations (indicated as 1, 2 and 3 in FIG. 4) are cut out along the longitudinal direction passing through the center in the target width direction. Next, for the sample piece numbered 1, the surface (denoted as 1-surface) and the cross section (denoted as 1-cross section) are observed. About the sample piece which attached
- FIG. 5 shows an image of the sample of Example 3 using an optical microscope.
- FIG. 5 shows the result of observing the front surface, the back surface, and the cross-section (three locations along the thickness direction) at three locations of the target by observing the sample cut out according to FIG. 4. From FIG. 5, it was found that there was no difference in the crystal grain size depending on the part.
- Example 3 The results of Example 3 are shown in Table 2.
- the target average particle size was 42.8 ⁇ m, and the average particle size tolerance of each part was ⁇ 5% and + 8%.
- Example 4 A platinum target was prepared in the same manner as in Example 3 except that the degree of cross rolling was 50% and the size of the workpiece at that time was (vertical) 139 ⁇ (horizontal) 109 ⁇ (thickness) 16.5 mm. Then, the obtained platinum target was observed with an optical microscope. The portion observed with an optical microscope was the 2-surface shown in FIG. FIG. 6 shows an image obtained by an optical microscope. Thereafter, the particle size of the portion observed with an optical microscope was measured according to JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”. The average crystal grain size was 37 ⁇ m.
- Example 5 The degree of processing of the cross rolling process is 90%, the size of the workpiece at that time is (length) 310 ⁇ (width) 244 ⁇ (thickness) 3.3 mm, and the heat treatment temperature is 0.379 Tm (500 ° C.)
- the portion observed with an optical microscope was the 2-surface shown in FIG. In FIG. 7, the image by an optical microscope was shown. Thereafter, the particle size of the portion observed with an optical microscope was measured according to JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”. The average crystal grain size was 26 ⁇ m.
- Example 1 A platinum target was produced in the same manner as in Example 3 except that the final heat treatment temperature was 0.575 Tm (900 ° C.), and a part of the obtained platinum target was observed with an optical microscope.
- FIG. 8 shows an image obtained by an optical microscope. Thereafter, the particle size of the portion observed with an optical microscope was measured according to JIS G0551: 2013 “Steel—Microscopic Test Method for Crystal Grain Size”. The average crystal grain size was 364 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Forging (AREA)
Abstract
Description
インゴットの原料となる金は99.99%以上の高純度のものを用いることが好ましい。 インゴットの原料となる白金は99.95%以上の高純度のものを用いることが好ましい。金又は白金の溶解は、高周波炉、電気炉又はプラズマ溶解炉を用いて大気雰囲気、不活性ガス雰囲気又は真空で行なう。鋳型を使用する場合は、鋳鉄製の角型鋳型又は丸型鋳型を用いることができるが、カーボン製の角型鋳型又は丸型鋳型を用いることが好ましい。このうち、カーボン製の角型鋳型を用いることがより好ましい。不純物元素の混入を抑制することができ、かつ、インゴットの6面を鋳型に流すことで形成することができる。直方体のインゴットとする場合には、縦:横:厚さ=(0.5~2):(0.5~2):1とすることが好ましい。円柱体のインゴットとする場合には、半径:厚さ=(0.25~1):1とすることが好ましい。最終凝固部に巣がある場合など、インゴットを上面及び下面を必要により、バーナー等で加熱して表面を部分溶融してもよい。
注湯して得たインゴットを0.4Tm~0.7Tm(Tmは前記インゴットの融点(K)を示す。)の第一温度範囲に調整する。温度調整方法は、注湯して得たインゴットが冷却する過程で第一温度範囲に入る場合と、一端冷却されたインゴットを電気炉等で加熱することで第一温度範囲に入れる場合とがある。第一温度範囲は金(融点:1337.33K)である場合には、534.9~936.1Kであり、773.2~873.2Kであることが好ましい。第一温度範囲は白金(融点:2041.4K)である場合には、816.6~1429.0Kであり、1173.2~1373.2Kであることが好ましい。0.4Tm未満である場合には、以後の加工工程中に割れが発生する可能性が生じる。また、0.7Tmを超えると次工程の鍛造加工終了後も高温を保持してしまうため、回復、再結晶が起こり、導入した歪みが除去されてしまう。
次に一次鍛造インゴットを、第一温度範囲よりも低く、かつ、0.1Tm~0.4Tmの第二温度範囲に冷却する。温度調整方法は、空冷又は水冷でおこなうが、水冷が好ましい。なお、第一温度範囲と第二温度範囲とは、0.4Tmで重複するが、第一温度範囲での実際の温度が0.4Tmの場合には、第二温度範囲での実際の温度を0.4Tm未満とし、第一温度範囲での実際の温度が0.4Tmより高い場合には、第二温度範囲での実際の温度は0.4Tm以下とする。第二温度範囲は金である場合には、267.4~534.9Kであり、323.2~473.2Kであることが好ましい。第二温度範囲は白金である場合には、204.1~816.6Kであり、573.2~773.2Kであることが好ましい。0.1Tm未満である場合には、以後の工程で割れが発生する可能性が生じる。また、0.4Tmを超えると次工程の二次鍛造加工終了後も高温を保持してしまうため、回復、再結晶が起こり、導入した歪みが除去されてしまう。
一次鍛造工程において得た冷却した一次鍛造インゴットについて上・下・左・右・前・後の六方向を決める。六方向をどのように決定するかは任意であるが、上と下とは対向する関係にあり、左と右とは対向する関係にあり、前と後とは対向する関係にあり、上下方向と、左右方向と、前後方向とは、それぞれが直交関係であることが好ましい。例えばインゴットが直方体である場合には、注湯したときの直方体の底面を「下」、天面を「上」、長手側面の一方を「前」、その対向面を「後」、短手側面の一方を「左」、その対向面を「右」とする。
二次鍛造インゴットを、0.15Tm~0.3Tmの第三温度範囲に調整する。第二温度範囲が第三温度範囲と重複する温度範囲であるため、二次鍛造インゴットがすでに第三温度範囲に入っている場合には、温度調整は不要となる。しかし、第三温度範囲から外れている場合には、温度調整方法は、空冷又は加熱とすることが好ましい。第三温度範囲は金である場合には、200.6~401.2Kであり、273.2~323.2Kであることが好ましい。第三温度範囲は白金である場合には、306.2~612.4Kであり、306.2~473.2Kであることが好ましい。0.15Tm未満である場合には、以後の工程で割れが発生する可能性が生じる。また、0.3Tmを超えると、回復、再結晶により歪みが除去されてしまう。次工程の熱処理により結晶粒が粗大化する可能性があり好ましくない。
ターゲット形状のインゴットを0.3~0.5Tmの第四温度範囲にて熱処理する。温度調整方法は、電気炉による加熱とすることが好ましい。第四温度範囲は金である場合には、401.2~668.7Kであり、473.2~573.2Kであることが好ましい。第二温度範囲は白金である場合には、612.4~1020.7Kであり、773.2~873.2Kであることが好ましい。0.3Tm未満である場合には、再結晶が十分に進まず、等軸晶が得られない。また、0.5Tmを超えると著しく結晶成長が進み、微細結晶が得られない。熱処理時間は、例えば0.5~3時間であることが好ましく、1~2時間とすることがより好ましい。
[金ターゲット]
高周波炉で金(純度99.99%)8.5kgを溶かし、カーボン製の鋳型に流して(縦)150×(横)120×(厚さ)24.5mmの直方体のインゴットを作った。このインゴットを0.609Tm(541℃)から0.430Tm(302℃)の第一温度範囲において、エアーハンマーを用いて鍛造をして、長い辺を58.7%まで鍛造して(縦)88×(横)80×(厚さ)62mmの直方体のインゴットとした後、(縦)123×(横)123×(厚さ)31mmまでさらに鍛造して一次鍛造を行ない、一次鍛造インゴットを得た。その後、水冷し、0.229Tm(33.2℃)とした。冷却した一次鍛造インゴットを六方鍛造にて、長い辺を71.5%まで鍛造して(縦)88×(横)90×(厚さ)55mmの直方体のインゴットとした後、(縦)148×(横)105×(厚さ)29.5mmまで鍛造して変形させた。このときの温度は変形熱をコントロールし最大0.323Tm(159.2℃)となる二次鍛造を行ない、二次鍛造インゴットを得た。その後、0.234Tm(40℃)まで冷却した二次鍛造インゴットを圧延機にかけて、(縦)270×(横)290×(厚さ)6.1mmまで圧延した。このときのクロス圧延加工の加工度は90%であった。クロス圧延加工は0.228Tm(32℃)~0.243Tm(52℃)の範囲で行なった。最後に0.391Tm(250℃)で熱処理を1時間行ない、ターゲットを作製した。
得られたターゲットについて、JIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。まず、サンプルを切り出し、バフにて鏡面研磨を行なった。このサンプルを、1N塩酸に5%アルコールを添加した腐食液を用いて電解にて組織を現出させた。金属顕微鏡にて組織写真を撮り、縦横に均等間隔で5本線を入れ、線が粒界と交わった回数を結晶粒の個数として線分の長さで除して粒径を算出した。この作業をそれぞれの線分で行ない、全てを平均化してその部位の平均粒径とした。
クロス圧延加工の加工度を50%、そのときの加工物の大きさを(縦)174×(横)174×(厚さ)15.5mmとした以外は実施例1と同様に金ターゲットを作製し、得られた金ターゲットを光学顕微鏡で観察した。光学顕微鏡で観察した箇所は、図1に示す2‐表面とした。図3に、光学顕微鏡による画像を示した。その後、光学顕微鏡で観察した箇所をJIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。平均結晶粒径は17μmであった。
[白金ターゲット]
プラズマ溶解炉で白金(純度99.99%)5.2kgを溶かし、カーボン製の鋳型に流して(径)78×(高さ)50mmの円柱状のインゴットを作った。このインゴットを0.673Tm(1100℃)から0.452Tm(302℃)の第一温度範囲において、エアーハンマーを用いて鍛造をして、(縦)89×(横)88×(厚さ)32mmの直方体のインゴットとした後、(縦)98×(横)77×(厚さ)33mmまでさらに鍛造して一次鍛造を行ない、一次鍛造インゴットを得た。その後、水冷し、0.146Tm(24℃)とした。冷却した一次鍛造インゴットを六方鍛造にて、長い辺を69.4%まで鍛造して(縦)87×(横)89×(厚さ)30mmの直方体のインゴットとした後、(縦)104×(横)98×(厚さ)25mmまで鍛造して変形させた。このときの温度は変形熱をコントロールし最大0.350Tm(442℃)となる二次鍛造を行ない、二次鍛造インゴットを得た。その後、0.150Tm(33℃)まで冷却した二次鍛造インゴットを圧延機にかけて、(縦)207×(横)205×(厚さ)5.6mmまで圧延した。このときのクロス圧延加工の加工度は76%であった。クロス圧延加工は0.150Tm(33℃)~0.153Tm(40℃)の範囲で行なった。最後に0.428Tm(600℃)で熱処理を1時間行い、ターゲットを作製した。
得られたターゲットについて、JIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。まず、サンプルを切り出し、バフにて鏡面研磨を行なった。このサンプルを、塩酸10%、過酸化水素水10%、アルコール10%を添加した水溶液を腐食液として用いて電解にて組織を現出させた。金属顕微鏡にて組織写真を撮り、縦横に均等間隔で5本線を入れ、線が粒界と交わった回数を結晶粒の個数として線分の長さで除して粒径を算出した。この作業をそれぞれの線分で行い、全てを平均化してその部位の平均粒径とした。
クロス圧延加工の加工度を50%、そのときの加工物の大きさを(縦)139×(横)109×(厚さ)16.5mmとした以外は実施例3と同様に白金ターゲットを作製し、得られた白金ターゲットを光学顕微鏡で観察した。光学顕微鏡で観察した箇所は、図4に示す2‐表面とした。図6に、光学顕微鏡による画像を示した。その後、光学顕微鏡で観察した箇所をJIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。平均結晶粒径は37μmであった。
クロス圧延加工の加工度を90%、そのときの加工物の大きさを(縦)310×(横)244×(厚さ)3.3mm、熱処理温度を0.379Tm(500℃)とした以外は実施例3と同様に白金ターゲットを作製し、得られた白金ターゲットを光学顕微鏡で観察した。光学顕微鏡で観察した箇所は、図4に示す2‐表面とした。図7に、光学顕微鏡による画像を示した。その後、光学顕微鏡で観察した箇所をJIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。平均結晶粒径は26μmであった。
最後の熱処理温度を0.575Tm(900℃)とした以外は実施例3と同様に白金ターゲットを作製し、得られた白金ターゲットの一部分を光学顕微鏡で観察した。図8に、光学顕微鏡による画像を示した。その後、光学顕微鏡で観察した箇所をJIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。平均結晶粒径は364μmであった。
二次鍛造を行わずに一次鍛造後のインゴット(但し、インゴットの形状は(縦)104×(横)104×(厚さ)26mmとした。)から圧延機でクロス圧延加工を行ったこと以外は実施例3と同様に白金ターゲットを作製し、得られた白金ターゲットを光学顕微鏡で観察した。光学顕微鏡で観察した箇所は、図4に示す1‐表面、1‐断面とした。光学顕微鏡による1‐表面の画像を図9に示し、光学顕微鏡による1‐断面の画像を図10に示した。その後、光学顕微鏡で観察した箇所をJIS G0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って粒径を測定した。1-表面の平均結晶粒径は138μm、1-断面の平均結晶粒径は95μmであり、組織の均一性が低いことが確認された。
Claims (6)
- 溶融した金又は白金を注湯してインゴットを得るインゴット作製工程と、
前記注湯して得たインゴットを、0.4Tm~0.7Tm(Tmは前記インゴットの融点(K)を示す。)の第一温度範囲において、鍛造する一次鍛造工程と、
該一次鍛造工程で得た一次鍛造インゴットを、前記第一温度範囲よりも低く、かつ、0.1Tm~0.4Tmの第二温度範囲に冷却する工程と、冷却した一次鍛造インゴットについて上・下・左・右・前・後の六方向を決めて、該冷却した一次鍛造インゴットを前記第二温度範囲にて前記六方向からさらに鍛造する二次鍛造工程と、
該二次鍛造工程で得た二次鍛造インゴットを、0.15Tm~0.3Tmの第三温度範囲に調整して、クロス圧延加工を行ない、ターゲット形状とするクロス圧延加工工程と、
該クロス圧延加工工程で得たターゲット形状のインゴットを0.3~0.5Tmの第四温度範囲にて熱処理する熱処理工程と、を有することを特徴とする金又は白金ターゲットの製造方法。 - 前記一次鍛造工程で行なわれる鍛造は、前記二次鍛造工程で行なわれる六方向からの鍛造を行いやすくするためのインゴット形状に整える事前成形工程であることを特徴とする請求項1に記載の金又は白金ターゲットの製造方法。
- 前記二次鍛造工程で行なわれる六方向からの鍛造は、インゴットの最も長い辺を50~80%の範囲まで加工する工程であることを特徴とする請求項1又は2に記載の金又は白金ターゲットの製造方法。
- 前記クロス圧延加工工程において、クロス圧延加工の加工度は50%以上であることを特徴とする請求項1~3のいずれか一つに記載の金又は白金ターゲットの製造方法。
- 前記熱処理工程で得られたターゲットの金又は白金の平均結晶粒径を5~50μmとし、かつ、ターゲット面の面内方向及びターゲットの厚さ方向の結晶粒径の公差を20%以下に制御することを特徴とする請求項1~4のいずれか一つに記載の金又は白金ターゲットの製造方法。
- 金又は白金の平均結晶粒径が5~50μmであり、かつ、ターゲット面の面内方向及びターゲットの厚さ方向の結晶粒径の公差が20%以下であることを特徴とする金又は白金ターゲット。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015558848A JP6514646B2 (ja) | 2014-01-24 | 2015-01-20 | 金又は白金ターゲット及びそれらの製造方法 |
US15/112,772 US10297430B2 (en) | 2014-01-24 | 2015-01-20 | Gold or platinum target, and production method for same |
TW104102407A TWI527911B (zh) | 2014-01-24 | 2015-01-23 | 金靶材或白金靶材及其等之製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-011337 | 2014-01-24 | ||
JP2014011337 | 2014-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111563A1 true WO2015111563A1 (ja) | 2015-07-30 |
Family
ID=53681367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051328 WO2015111563A1 (ja) | 2014-01-24 | 2015-01-20 | 金又は白金ターゲット及びそれらの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10297430B2 (ja) |
JP (1) | JP6514646B2 (ja) |
TW (1) | TWI527911B (ja) |
WO (1) | WO2015111563A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017209281A1 (ja) * | 2016-06-02 | 2017-12-07 | 田中貴金属工業株式会社 | 金スパッタリングターゲット |
CN108531864A (zh) * | 2018-06-26 | 2018-09-14 | 济源豫金靶材科技有限公司 | 一种银蒸镀材料及其制备方法 |
WO2019111945A1 (ja) | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | 金スパッタリングターゲットの製造方法及び金膜の製造方法 |
WO2019111900A1 (ja) | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | 金スパッタリングターゲットとその製造方法 |
WO2022102765A1 (ja) * | 2020-11-16 | 2022-05-19 | 国立大学法人東北大学 | 白金系スパッタリングターゲット及びその製造方法 |
RU2784174C2 (ru) * | 2017-12-06 | 2022-11-23 | Танака Кикинзоку Когио К.К. | Способ получения золотой пленки с использованием золотой распыляемой мишени |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111850488B (zh) * | 2020-07-17 | 2023-04-07 | 联德电子科技(常熟)有限公司 | 一种快速制作高纯细晶粒黄金靶胚的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002146521A (ja) * | 2000-11-10 | 2002-05-22 | Nikko Materials Co Ltd | 金ターゲットの製造方法 |
JP2003213389A (ja) * | 2002-01-15 | 2003-07-30 | Toho Titanium Co Ltd | ターゲット用チタン材の製造方法 |
JP2011184711A (ja) * | 2010-03-05 | 2011-09-22 | Mitsubishi Materials Corp | 均一かつ微細結晶組織を有する高純度銅加工材及びその製造方法 |
WO2014136702A1 (ja) * | 2013-03-06 | 2014-09-12 | Jx日鉱日石金属株式会社 | スパッタリング用チタンターゲット及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4094959B2 (ja) * | 2001-04-13 | 2008-06-04 | 田中貴金属工業株式会社 | 強化白金材料の製造方法 |
US7235143B2 (en) * | 2002-08-08 | 2007-06-26 | Praxair S.T. Technology, Inc. | Controlled-grain-precious metal sputter targets |
US7740720B2 (en) * | 2005-09-07 | 2010-06-22 | Fogel Kenneth D | Platinum-palladium alloy |
US7754027B2 (en) * | 2007-08-27 | 2010-07-13 | China Steel Corporation | Method for manufacturing a sputtering target |
JP5550027B1 (ja) * | 2013-06-26 | 2014-07-16 | 田中貴金属工業株式会社 | 医療用合金及びその製造方法 |
JP5582484B1 (ja) * | 2013-12-20 | 2014-09-03 | 田中貴金属工業株式会社 | 医療用合金及びその製造方法 |
-
2015
- 2015-01-20 WO PCT/JP2015/051328 patent/WO2015111563A1/ja active Application Filing
- 2015-01-20 US US15/112,772 patent/US10297430B2/en active Active
- 2015-01-20 JP JP2015558848A patent/JP6514646B2/ja active Active
- 2015-01-23 TW TW104102407A patent/TWI527911B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002146521A (ja) * | 2000-11-10 | 2002-05-22 | Nikko Materials Co Ltd | 金ターゲットの製造方法 |
JP2003213389A (ja) * | 2002-01-15 | 2003-07-30 | Toho Titanium Co Ltd | ターゲット用チタン材の製造方法 |
JP2011184711A (ja) * | 2010-03-05 | 2011-09-22 | Mitsubishi Materials Corp | 均一かつ微細結晶組織を有する高純度銅加工材及びその製造方法 |
WO2014136702A1 (ja) * | 2013-03-06 | 2014-09-12 | Jx日鉱日石金属株式会社 | スパッタリング用チタンターゲット及びその製造方法 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109196137B (zh) * | 2016-06-02 | 2021-11-30 | 田中贵金属工业株式会社 | 金溅射靶 |
KR102614205B1 (ko) * | 2016-06-02 | 2023-12-14 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃 |
CN109196137A (zh) * | 2016-06-02 | 2019-01-11 | 田中贵金属工业株式会社 | 金溅射靶 |
JPWO2017209281A1 (ja) * | 2016-06-02 | 2019-04-18 | 田中貴金属工業株式会社 | 金スパッタリングターゲット |
US11817299B2 (en) | 2016-06-02 | 2023-11-14 | Tanaka Kikinzoku Kogyo K.K. | Gold sputtering target |
JP7320639B2 (ja) | 2016-06-02 | 2023-08-03 | 田中貴金属工業株式会社 | Au膜の形成方法 |
US11569074B2 (en) | 2016-06-02 | 2023-01-31 | Tanaka Kikinzoku Kogyo K.K. | Gold sputtering target |
EP3467141A4 (en) * | 2016-06-02 | 2020-04-15 | Tanaka Kikinzoku Kogyo K.K. | GOLD SPUTTER TARGET |
WO2017209281A1 (ja) * | 2016-06-02 | 2017-12-07 | 田中貴金属工業株式会社 | 金スパッタリングターゲット |
RU2785130C2 (ru) * | 2016-06-02 | 2022-12-05 | Танака Кикинзоку Когио К.К. | Золотая распыляемая мишень |
JP7077225B2 (ja) | 2016-06-02 | 2022-05-30 | 田中貴金属工業株式会社 | 金スパッタリングターゲット |
JP2022048244A (ja) * | 2016-06-02 | 2022-03-25 | 田中貴金属工業株式会社 | Au膜の形成方法 |
KR20210103593A (ko) | 2016-06-02 | 2021-08-23 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃 |
KR20200085291A (ko) | 2017-12-06 | 2020-07-14 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃의 제조 방법 및 금막의 제조 방법 |
JP7214650B2 (ja) | 2017-12-06 | 2023-01-30 | 田中貴金属工業株式会社 | 金スパッタリングターゲットの製造方法及び金膜の製造方法 |
WO2019111945A1 (ja) | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | 金スパッタリングターゲットの製造方法及び金膜の製造方法 |
CN111448335A (zh) * | 2017-12-06 | 2020-07-24 | 田中贵金属工业株式会社 | 金溅射靶及其制造方法 |
KR102418935B1 (ko) * | 2017-12-06 | 2022-07-07 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃의 제조 방법 및 금막의 제조 방법 |
JP2022128463A (ja) * | 2017-12-06 | 2022-09-01 | 田中貴金属工業株式会社 | Au膜の形成方法 |
RU2784174C2 (ru) * | 2017-12-06 | 2022-11-23 | Танака Кикинзоку Когио К.К. | Способ получения золотой пленки с использованием золотой распыляемой мишени |
KR20200085290A (ko) | 2017-12-06 | 2020-07-14 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃과 그 제조 방법 |
RU2785507C2 (ru) * | 2017-12-06 | 2022-12-08 | Танака Кикинзоку Когио К.К. | Золотая распыляемая мишень и способ ее получения |
US11555238B2 (en) | 2017-12-06 | 2023-01-17 | Tanaka Kikinzoku Kogyo K. K. | Producing method for gold sputtering target and producing method for gold film |
US11560620B2 (en) | 2017-12-06 | 2023-01-24 | Tanaka Kikinzoku Kogyo K. K. | Gold sputtering target and method for producing the same |
JPWO2019111945A1 (ja) * | 2017-12-06 | 2021-01-07 | 田中貴金属工業株式会社 | 金スパッタリングターゲットの製造方法及び金膜の製造方法 |
JP2019099891A (ja) * | 2017-12-06 | 2019-06-24 | 田中貴金属工業株式会社 | 金スパッタリングターゲットとその製造方法 |
TWI798304B (zh) * | 2017-12-06 | 2023-04-11 | 日商田中貴金屬工業股份有限公司 | 金濺鍍靶材及其製造方法 |
JP7274816B2 (ja) | 2017-12-06 | 2023-05-17 | 田中貴金属工業株式会社 | 金スパッタリングターゲットとその製造方法 |
WO2019111900A1 (ja) | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | 金スパッタリングターゲットとその製造方法 |
JP7353424B2 (ja) | 2017-12-06 | 2023-09-29 | 田中貴金属工業株式会社 | Au膜の形成方法 |
US11795540B2 (en) | 2017-12-06 | 2023-10-24 | Tanaka Kikinzoku Kogyo K. K. | Gold sputtering target and method for producing the same |
KR102598372B1 (ko) * | 2017-12-06 | 2023-11-03 | 다나카 기킨조쿠 고교 가부시키가이샤 | 금 스퍼터링 타깃과 그 제조 방법 |
CN108531864A (zh) * | 2018-06-26 | 2018-09-14 | 济源豫金靶材科技有限公司 | 一种银蒸镀材料及其制备方法 |
WO2022102765A1 (ja) * | 2020-11-16 | 2022-05-19 | 国立大学法人東北大学 | 白金系スパッタリングターゲット及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015111563A1 (ja) | 2017-03-23 |
TW201538752A (zh) | 2015-10-16 |
US10297430B2 (en) | 2019-05-21 |
TWI527911B (zh) | 2016-04-01 |
JP6514646B2 (ja) | 2019-05-15 |
US20160343553A1 (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015111563A1 (ja) | 金又は白金ターゲット及びそれらの製造方法 | |
CN109500331B (zh) | Tc25钛合金大规格棒材加工方法 | |
WO2014136702A1 (ja) | スパッタリング用チタンターゲット及びその製造方法 | |
JP5752736B2 (ja) | スパッタリング用ターゲット | |
US20070023281A1 (en) | Tantalum sputtering target | |
JP5324016B1 (ja) | タンタルスパッタリングターゲット及びその製造方法並びに同ターゲットを用いて形成した半導体配線用バリア膜 | |
US10179944B2 (en) | Titanium slab for hot rolling use and method of production of same | |
WO2004090193A1 (ja) | タンタルスパッタリングターゲット及びその製造方法 | |
JP5654126B2 (ja) | Co−Cr−Pt−B系合金スパッタリングターゲット及びその製造方法 | |
WO2013047276A1 (ja) | 銅合金線材およびその製造方法 | |
CN106521434B (zh) | 一种具有择优取向的高纯钽靶材的制备方法 | |
TWI707046B (zh) | 鉭濺鍍靶及其製造方法 | |
TWI798304B (zh) | 金濺鍍靶材及其製造方法 | |
CN113416906B (zh) | 一种采用挤压开坯与脉冲电流热处理相结合制备钛合金棒坯的工艺 | |
JP6027823B2 (ja) | 熱延銅板、及び、熱延銅板の形状調整方法 | |
TWI676691B (zh) | 鉭濺鍍靶及其製造方法 | |
TW201742942A (zh) | 金濺鍍靶材 | |
CN113718110B (zh) | 一种采用累积能量控制板材组织的高品质铌板的制备方法 | |
CN114905010A (zh) | 镍基合金线材及其制备方法 | |
JP3073734B1 (ja) | シャドウマスク用Fe―Ni系合金素材の製造方法 | |
CN115976395A (zh) | 一种金属掩膜版用因瓦合金的制备方法 | |
JPH02258959A (ja) | 微細でかつ等軸的な組織を有するα+β型チタン合金の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15740857 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015558848 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15112772 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15740857 Country of ref document: EP Kind code of ref document: A1 |