WO2017209281A1 - 金スパッタリングターゲット - Google Patents

金スパッタリングターゲット Download PDF

Info

Publication number
WO2017209281A1
WO2017209281A1 PCT/JP2017/020617 JP2017020617W WO2017209281A1 WO 2017209281 A1 WO2017209281 A1 WO 2017209281A1 JP 2017020617 W JP2017020617 W JP 2017020617W WO 2017209281 A1 WO2017209281 A1 WO 2017209281A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sputtering
target
gold
vickers hardness
Prior art date
Application number
PCT/JP2017/020617
Other languages
English (en)
French (fr)
Inventor
加藤 哲也
陽平 水野
千春 石倉
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020217025934A priority Critical patent/KR102614205B1/ko
Priority to EP17806831.8A priority patent/EP3467141B1/en
Priority to JP2018521015A priority patent/JP7077225B2/ja
Priority to KR1020187037313A priority patent/KR20190015346A/ko
Priority to CN201780032766.XA priority patent/CN109196137B/zh
Priority to RU2018146163A priority patent/RU2785130C2/ru
Publication of WO2017209281A1 publication Critical patent/WO2017209281A1/ja
Priority to US16/205,471 priority patent/US11569074B2/en
Priority to JP2022009034A priority patent/JP7320639B2/ja
Priority to US18/088,454 priority patent/US11817299B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon

Definitions

  • the use of a cylindrical target is considered as well as a plate-like target.
  • the quartz oscillator device is configured by forming an Au film as an electrode on both sides of a quartz chip (blank) as described above.
  • the outer shape is trimmed by etching to round the corners, or the corners are mechanically rounded when pulled out with a press, and the center of gravity is at the center to stabilize the frequency.
  • High smoothness is desirable because the rough surface of the crystal chip adversely affects the frequency characteristics.
  • the electrode formed on the crystal chip it is desirable that the smoothness be high, that is, the variation in film thickness be small. Since the electrode has a three-dimensional structure having a thickness, when the crystal chip is miniaturized, the influence of the variation in film thickness on the three-dimensional shape becomes larger. Therefore, with the miniaturization of the crystal oscillator device and the like, it is required to further reduce the thickness variation of the Au film applied to the electrode.
  • the Au sputtering target has a surface to be sputtered (sputtered surface).
  • the surface of the plate is a sputtered surface
  • the surface of a cylinder is a sputtered surface.
  • the Au sputtering target of the embodiment has a Vickers hardness of 40 or more and 60 or less.
  • a Vickers hardness of 40 or more and 60 or less By performing sputtering film formation using an Au sputtering target having such Vickers hardness, an Au film excellent in uniformity of film thickness distribution can be formed. That is, that the Vickers hardness of Au sputtering target exceeds 60 HV means that the distortion which arose at the time of manufacture in the sputtering target remains. In such a case, the flying of particles from the target becomes uneven during sputtering, and the uniformity of the film thickness distribution is lost.
  • the Vickers hardness of the Au sputtering target is preferably 55 HV or less.
  • the ratio (HV av 3 / HV tav ) to the Vickers hardness (HV tav ) is preferably in the range of 0.8 to 1.2, respectively.
  • the variation in Vickers hardness of the Au sputtering target within ⁇ 20%.
  • the flying direction of particles at the time of sputtering is further uniformed, and the uniformity of film thickness distribution is further improved.
  • the cylindrical Au sputtering target the entire cylindrical surface is sputtered while rotating the cylindrical target. Therefore, the variation in the Vickers hardness at each part of the sputtering surface (cylindrical surface) is reduced, and the uniformity of the film thickness distribution is obtained. Can be improved.
  • the average crystal grain size is preferably 15 ⁇ m or more and 200 ⁇ m or less.
  • the uniformity of the film thickness distribution of the Au film can be further enhanced. That is, when the average crystal grain size of the Au sputtering target is less than 15 ⁇ m, the particles may not fly uniformly from the target at the time of sputtering, and the uniformity of the film thickness distribution may be impaired.
  • the average crystal grain size of the Au sputtering target is preferably 30 ⁇ m or more.
  • X-ray diffraction of the sputtered surface of the Au sputtering target is carried out that the sputtered surface is preferentially oriented to the ⁇ 110 ⁇ plane, and the following formula (1) of Wilson is obtained from the diffraction intensity ratio of each crystal surface of Au.
  • the orientation index N of each crystal plane is determined from the above, and the case where the orientation index N of the ⁇ 110 ⁇ plane is larger than 1 and the largest among the orientation indices N of all crystal planes is shown.
  • the orientation index N of Au ⁇ 110 ⁇ plane is more preferably 1.3 or more.
  • the holding time (heat treatment time) according to the heat treatment temperature is preferably, for example, 10 minutes or more and 120 minutes or less. If the heat treatment time is too short, there is a possibility that the removal of the strain is insufficient or the metal structure can not be sufficiently recrystallized. On the other hand, if the heat treatment time is too long, the Vickers hardness may be too low, or the average grain size may be too large.
  • the Vickers hardness is 40 or more and 60 or less, and the variation in Vickers hardness is controlled by controlling the working ratio in the step of processing the Au ingot into a plate or cylindrical shape and the temperature of the recrystallization heat treatment step.
  • the sputtered surface of the Au sputtering target was subjected to X-ray diffraction, and the preferentially oriented crystal plane was evaluated according to the method described above.
  • the orientation index N of the ⁇ 110 ⁇ plane was determined according to the method described above.
  • Table 5 The results are shown in Table 5.
  • the film forming process was performed in the same manner as in Example 1, and the standard deviation ⁇ of the film thickness of the Au film and the standard deviation ⁇ of the resistance value were obtained. The results are shown in Table 6.
  • the Vickers hardness of the obtained Au sputtering target was measured according to the measuring method of the cylindrical sputtering target mentioned above.
  • the average Vickers hardness (HV av1 ) on the first straight line of the sputter surface as a result of measuring the Vickers hardness of each measurement point with a test force (press load) of 200 gf is 50.6, the second of the sputter surface
  • the average value (HV av2 ) of the Vickers hardness on the straight line of 2 is 50.4, the average value (HV av3 ) of the Vickers hardness at the cross section is 52.0, and the average value of these respective values (Vickers hardness as the whole target (HV tav )) was 51.0.
  • the Au sputtering targets according to Examples 20 to 24 and Comparative Examples 5 to 6 described above are attached to a cylindrical sputtering apparatus, and the inside of the apparatus is evacuated to 1 ⁇ 10 -3 Pa or less, and then Ar gas pressure: 0.4 Pa, Sputtering was performed under the conditions of input power: DC 100 W, target-substrate distance: 40 mm, and sputtering time: 5 minutes to form an Au film on a 6-inch Si substrate (wafer).
  • the film thickness distribution of the obtained Au film was measured according to the method described above, and the standard deviation ⁇ of the film thickness of the Au film was determined. Further, the standard deviation ⁇ of the resistance value of the Au film was determined according to the method described above. The results are shown in Table 12.
  • the sputtered surface of the Au sputtering target was subjected to X-ray diffraction, and the crystal plane preferentially oriented was evaluated according to the method described above, and the orientation index N of the ⁇ 110 ⁇ plane was determined.
  • the results are shown in Table 14.
  • the film forming step was carried out in the same manner as in Example 20, and the standard deviation ⁇ of the film thickness of the Au film and the standard deviation ⁇ of the resistance value were measured. The results are shown in Table 15.
  • the Au sputtering target of the present invention is useful for forming an Au film used for various applications. Further, by performing sputtering using the Au sputtering target of the present invention, it is possible to obtain an Au film excellent in uniformity of film thickness distribution and resistance value. Therefore, the characteristics of the Au film used for various applications can be enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Forging (AREA)

Abstract

Au膜の膜厚分布の均一性を高めることを可能にした金スパッタリングターゲットを提供する。本発明の金スパッタリングターゲットは、金および不可避不純物からなり、スパッタされる表面を有する。そのような金スパッタリングターゲットにおいて、ビッカース硬さの平均値が40以上60以下であり、平均結晶粒径が15μm以上200μm以下である。スパッタされる表面には金の{110}面が優先配向している。

Description

金スパッタリングターゲット
 本発明は、金スパッタリングターゲットに関する。
 金(Au)スパッタリングターゲットを用いて成膜されたAu膜は、Au自体の優れた化学的安定性と電気特性のために様々な分野で用いられている。例えば、水晶振動子デバイスにおいては、水晶チップの両面に形成する励振電極等としてAuスパッタリング膜が用いられている。水晶振動子デバイスでは、Au膜の膜厚により振動周波数を調整すること等から、スパッタリング時に均一な膜厚分布でAu膜を成膜することが可能なAuスパッタリングターゲットが求められている。
 スパッタリングターゲットの形状に関しては、プレーナマグネトロンスパッタリングに用いられる円板や矩形板等のプレート状のスパッタリングターゲットが一般的に知られている。これとは別に、円筒状のスパッタリングターゲットも知られている。円筒状のスパッタリングターゲットは、プレート状のスパッタリングターゲットに比べて、スパッタリング時におけるターゲット材料の使用率が向上することから、セラミックス材料のターゲット等で展開が始まり、金属/合金系のターゲットへも展開も進められており、銀(Ag)等の貴金属ターゲットへの適用も検討されている(特許文献1、2参照)。
 Au膜の成膜に用いられるAuスパッタリングターゲットにおいても、プレート状ターゲットに限らず、円筒状ターゲットの使用が検討されている。しかしながら、従来のAuスパッタリングターゲットでは、プレート状ターゲットおよび円筒状ターゲットのいずれにおいても、水晶振動子デバイス等の電極として用いられるAu膜に求められる膜厚分布の均一性を満足させることが難しい。特に、円筒状のAuスパッタリングターゲットは、円筒形状加工に由来してAu膜の膜厚分布の均一性を高めることが難しい。
 水晶振動子デバイスについて詳述すると、水晶振動子デバイスは携帯機器等に使用されており、携帯機器に対する小型化、軽量化、薄型化等の要求に伴って、水晶振動子デバイス自体も小型化、軽量化、薄型化等が求められている。例えば、水晶振動子デバイスのパッケージサイズは、5.0×3.2mm(5032サイズ)から、3.2×2.5mm(3252サイズ)、2.5×2.0mm(2520サイズ)、2.0×1.6mm(2016サイズ)、1.6×1.2mm(1612サイズ)へと小型化が進められており、それに伴って水晶振動子(水晶チップ)自体も小型化が進められている。
 水晶振動子デバイスは、上述したように水晶チップ(ブランク)の両面にAu膜を電極として形成することにより構成される。水晶チップは、外形をエッチングにより整えて角を丸くする、またはプレスで抜いた場合に機械的に角を丸くし、重心が中央にくるようにして周波数を安定化させている。水晶チップの表面が粗いと周波数特性に悪影響を与えるので、平滑性が高いことが望まれる。水晶チップに形成される電極にも、平滑性が高いこと、すなわち膜厚バラツキが小さいことが望まれる。電極は厚さを有する立体構造であるため、水晶チップが小型化されると膜厚バラツキが立体形状に与える影響がより大きくなる。従って、水晶振動子デバイス等の小型化に伴って、電極に適用されるAu膜の膜厚バラツキをより小さくすることが求められている。
 また、時計用として使用される周波数が32kHzの水晶振動子では、Au膜の質量のバラツキが周波数特性に及ぼす影響が大きい。周波数が32kHzの水晶振動子には、フォーク型や音叉型と呼ばれる形状が適用されている。音叉型水晶振動子は小型化に適するものの、Au膜の質量バラツキが周波数特性に影響を及ぼすことから、Au膜の膜厚バラツキに基づく質量バラツキを低減することが強く求められている。音叉型水晶振動子は周波数の調整が難しいことから、種々の工夫がなされてきた。例えば、Au膜の形成に関しては、蒸着法からスパッタリング法に移行している。Au膜をスパッタリング法で形成した後、レーザビームでAu膜の一部を除去して質量を調整したり、Au膜をスパッタリング法で形成する際に、質量調整用の錘を形成すること等が行われている。このような状況下において、Au膜の膜厚バラツキに基づく質量バラツキを低減することが可能になれば、周波数の調整に要する手間を大幅に削減することができる。特に、水晶振動子が小型化するほど、膜厚バラツキの影響が大きくなるため、質量がばらつきやすくなる。このような点からも、Auスパッタ膜の膜厚バラツキを小さくすることが求められている。
特表2009-512779号公報 特開2013-204052号公報 国際公開第2015/111563号
 本発明は、Au膜の膜厚分布の均一性を高めることを可能にした金スパッタリングターゲットを提供することを目的とする。
 本発明の金スパッタリングターゲットは、金および不可避不純物からなり、スパッタされる表面を有する金スパッタリングターゲットであって、ビッカース硬さの平均値が40以上60以下であり、平均結晶粒径が15μm以上200μm以下であり、前記表面に金の{110}面が優先配向していることを特徴としている。
 本発明の金スパッタリングターゲットを用いてスパッタ成膜することによって、膜厚分布の均一性に優れる金膜を再現性よく得ることができる。
 以下、本発明を実施するための形態について説明する。実施形態のスパッタリングターゲットは、金(Au)および不可避不純物からなる。Auスパッタリングターゲットに含まれるAu以外の不可避不純物は、特に限定されるものではない。スパッタリングターゲットにおけるAuの純度は、ターゲットの使用用途やターゲットを用いて形成した膜の使用用途に応じて設定され、例えばAu純度は99.99%以上に設定される。Au純度が99.99%以上のスパッタリングターゲットを用いることによって、高純度のAu膜を得ることができる。
 実施形態のAuスパッタリングターゲットの形状は、特に限定されるものではなく、プレートおよび円筒のいずれであってもよい。プレート状スパッタリングターゲットの代表的な形状としては、例えば円板や矩形板のような多角形板等が挙げられる。これら以外に、例えば円板や多角形板の一部をくり抜いて中空部を形成したもの、円板や多角形板の表面の一部に傾斜部、凸部、凹部等を設けたものであってもよく、その形状は特に限定されるものではない。円筒状スパッタリングターゲットの形状は、特に限定されるものではなく、スパッタリング装置に応じた形状等が適用される。円筒状スパッタリングターゲットの代表的な形状としては、例えば外径が170~50mm、内径が140~20mm、長さが100~3000mmの形状が挙げられる。Auスパッタリングターゲットは、スパッタされる表面(スパッタ面)を有する。プレート状スパッタリングターゲットの場合、プレートの表面がスパッタ面となり、円筒状スパッタリングターゲットの場合、円筒の表面(円筒面)がスパッタ面となる。
 実施形態のAuスパッタリングターゲットは、40以上60以下のビッカース硬さを有する。このようなビッカース硬さを有するAuスパッタリングターゲットを用いて、スパッタ成膜を行うことによって、膜厚分布の均一性に優れるAu膜を成膜することができる。すなわち、Auスパッタリングターゲットのビッカース硬さが60HVを超えるということは、スパッタリングターゲット内に製造時に生じた歪が残存していることを意味する。このような場合、スパッタリング時にターゲットからの粒子の飛翔が不均一になり、膜厚分布の均一性が損なわれることになる。Auスパッタリングターゲットのビッカース硬さは55HV以下であることが好ましい。また、スパッタリング時に熱が加わると硬さや結晶粒径が変化し、これらによっても粒子の飛翔の均一性が低下する。一方、Auスパッタリングターゲットのビッカース硬さが40HV未満であると、結晶の粒成長の発生に伴う結晶配向が崩れ始めると思われ、これにより膜厚分布の均一性が損なわれる。Auスパッタリングターゲットのビッカース硬さは45HV以上であることが好ましい。
 Auスパッタリングターゲットのビッカース硬さは、以下のようにして測定するものとする。プレート状スパッタリングターゲットの場合、測定箇所はスパッタ面(スパッタされる面)の任意の直線上の10mmおきの3か所と、スパッタ面に対して直交する第1の断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)と、スパッタ面と第1の断面に対して直角な第2の断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)の計9か所とする。これら各測定箇所のビッカース硬さを、200gfの試験力(押し付け荷重)で測定する。スパッタ面におけるビッカース硬さの平均値(HVav1)、第1の断面におけるビッカース硬さの平均値(HVav2)、および第2の断面におけるビッカース硬さの平均値(HVav3)を、それぞれ算出する。これらスパッタ面、第1の断面、および第2の断面の各平均値(HVav1、HVav2、HVav3)を平均し、その値をプレート状のAuスパッタリングターゲットの全体としてのビッカース硬さの平均値(HVtav)とする。
 プレート状のAuスパッタリングターゲットにおいては、上述したスパッタ面のビッカース硬さの平均値(HVav1)のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav1/HVtav)、第1の断面のビッカース硬さの平均値(HVav2)のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav2/HVtav)、および第2の断面におけるビッカース硬さの平均値のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav3/HVtav)が、それぞれ0.8~1.2の範囲であることが好ましい。すなわち、Auスパッタリングターゲットのビッカース硬さのばらつきを±20%以内とすることが好ましい。このように、Auスパッタリングターゲットの各部のビッカース硬さのばらつきを小さくすることによって、スパッタリング時における粒子の飛翔方向がより均一化され、膜厚分布の均一性がさらに向上する。
 Auスパッタリングターゲットが円筒状スパッタリングターゲットの場合、測定箇所はスパッタ面(円筒面)における円筒軸に平行な任意の第1の直線上の10mmおきの3か所と、第1の直線から90°回転させた第2の直線上の10mmおきの3か所と、円筒軸に対して直交する断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)の計9か所とする。これら各測定箇所のビッカース硬さを、200gfの試験力(押し付け荷重)で測定する。スパッタ面上の第1の直線上におけるビッカース硬さの平均値(HVav1)、第2の直線上におけるビッカース硬さの平均値(HVav2)、および断面におけるビッカース硬さの平均値(HVav3)を、それぞれ算出する。これらスパッタ面および断面の各平均値(HVav1、HVav2、HVav3)をさらに平均し、その値を円筒状のAuスパッタリングターゲットの全体としてのビッカース硬さの平均値(HVtav)とする。
 円筒状のAuスパッタリングターゲットにおいては、上述したスパッタ面の第1のビッカース硬さの平均値(HVav1)のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav1/HVtav)、スパッタ面の第2のビッカース硬さの平均値(HVav2)のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav2/HVtav)、および断面におけるビッカース硬さの平均値(HVav3)のターゲット全体としてのビッカース硬さ(HVtav)に対する比(HVav3/HVtav)が、それぞれ0.8~1.2の範囲であることが好ましい。すなわち、Auスパッタリングターゲットのビッカース硬さのばらつきを±20%以内とすることが好ましい。円筒状のAuスパッタリングターゲットの各部のビッカース硬さのばらつきを小さくすることによって、スパッタリング時における粒子の飛翔方向がより均一化され、膜厚分布の均一性がさらに向上する。円筒状のAuスパッタリングターゲットは、円筒状ターゲットを回転させながら円筒面全体がスパッタリングされるため、スパッタ面(円筒面)の各部におけるビッカース硬さのばらつきを小さくすることで、膜厚分布の均一性を向上させることができる。
 実施形態のAuスパッタリングターゲットにおいて、平均結晶粒径は15μm以上200μm以下であることが好ましい。このような平均結晶粒径を有するAuスパッタリングターゲットを用いて、スパッタ成膜を行うことによって、Au膜の膜厚分布の均一性をさらに高めることができる。すなわち、Auスパッタリングターゲットの平均結晶粒径が15μm未満であると、スパッタリング時にターゲットからの粒子の飛翔が不均一になり、膜厚分布の均一性が損なわれるおそれがある。Auスパッタリングターゲットの平均結晶粒径は30μm以上であることが好ましい。一方、Auスパッタリングターゲットの平均結晶粒径が200μmを超えると、スパッタリング時における粒子の飛翔性が低下し、膜厚分布の均一性が損なわれるおそれがある。Auスパッタリングターゲットの平均結晶粒径は150μm以下であることがより好ましい。
 Auスパッタリングターゲットの平均結晶粒径は、以下のようにして測定するものとする。Auスパッタリングターゲットがプレート状スパッタリングターゲットの場合、測定箇所はスパッタ面の任意の直線上の10mmおきの3か所と、スパッタ面に対して直交する第1の断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)と、スパッタ面と第1の断面に対して直角な第2の断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)の計9か所とする。各測定箇所について光学顕微鏡で拡大写真を撮影する。写真の倍率は結晶粒径を計測しやすい倍率、例えば50倍または100倍とする。拡大写真の中心を通るように縦と横に直線を引き、それぞれの直線で切断された結晶粒の数を数える。なお、線分の端の結晶粒は、0.5個とカウントする。縦横それぞれの直線の長さを結晶粒の数で割り、縦横の平均粒径を求め、これらの値の平均値を1つの試料の平均粒径とする。
 このようにして、スパッタ面における結晶粒径の平均値(ADav1)、第1の断面における結晶粒径の平均値(ADav2)、および第2の断面における結晶粒径の平均値(ADav3)を、それぞれ算出する。これらスパッタ面、第1の断面、および第2の断面の結晶粒径の各平均値(ADav1、ADav2、ADav3)をさらに平均し、その値をプレート状のAuスパッタリングターゲットの全体としての平均結晶粒径(ADtav)とする。
 プレート状のAuスパッタリングターゲットにおいては、上述したスパッタ面の平均結晶粒径(ADav1)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav1/ADtav)、第1の断面の平均結晶粒径(ADav2)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav2/ADtav)、および第2の断面における平均結晶粒径(ADav3)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav3/ADtav)が、それぞれ0.8~1.2の範囲であることが好ましい。すなわち、Auスパッタリングターゲットの平均結晶粒径のばらつきを±20%以内とすることが好ましい。このように、Auスパッタリングターゲットの各部の平均結晶粒径のばらつきを小さくすることによって、スパッタリング時における粒子の飛翔方向がより均一化され、膜厚分布の均一性がさらに向上する。
 Auスパッタリングターゲットが円筒状スパッタリングターゲットの場合、測定箇所はスパッタ面(円筒面)における円筒軸に平行な任意の第1の直線上の10mmおきの3か所と、第1の直線から90°回転させた第2の直線上の10mmおきの3か所と、円筒軸に対して直交する断面の厚さ方向に3分割した領域から各1か所の計3か所(実施例では厚さ5mmの試料に対して厚さ方向の直線上に1.5mmおきに計3か所)の計9か所とする。スパッタ面の第1の直線上における結晶粒径の平均値(ADav1)、第2の直線上における結晶粒径の平均値(ADav2)、および断面における結晶粒径の平均値(ADav3)を、それぞれ算出する。これらスパッタ面および断面の各平均値(ADav1、ADav2、ADav3)をさらに平均し、その値を円筒状のAuスパッタリングターゲットの全体としての平均結晶粒径(ADtav)とする。
 円筒状のAuスパッタリングターゲットにおいては、上述したスパッタ面の第1の平均結晶粒径(ADav1)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav1/ADtav)、スパッタ面の第2の平均結晶粒径(ADav2)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav2/ADtav)、および断面における平均結晶粒径(ADav3)のターゲット全体としての平均結晶粒径(ADtav)に対する比(ADav3/ADtav)が、それぞれ0.8~1.2の範囲であることが好ましい。すなわち、Auスパッタリングターゲットの平均結晶粒径のばらつきを±20%以内とすることが好ましい。このように、円筒状のAuスパッタリングターゲットの各部の平均結晶粒径のばらつきを小さくすることによって、スパッタリング時における粒子の飛翔方向がより均一化され、膜厚分布の均一性がさらに向上する。円筒状のAuスパッタリングターゲットは、円筒状ターゲットを回転させながら円筒面全体がスパッタリングされるため、スパッタ面(円筒面)の各部における平均結晶粒径のばらつきを小さくすることで、膜厚分布の均一性をさらに向上させることができる。
 実施形態のAuスパッタリングターゲットにおいて、スパッタ面にはAuの{110}面が優先配向していることが好ましい。Auは面心立方格子構造を有し、それを構成する結晶面のうち、{110}面は他の結晶面よりスパッタされやすい。そのような{110}面をスパッタ面に優先配向させることによって、スパッタリング時における粒子の飛翔方向が安定するため、膜厚分布の均一性をさらに向上させることができる。ここで、スパッタ面が{110}面に優先配向している状態とは、Auスパッタリングターゲットのスパッタ面をX線回折し、Auの各結晶面の回折強度比から下記のウィルソンの式(1)から各結晶面の配向指数Nを求め、{110}面の配向指数Nが1より大きく、かつ全ての結晶面の配向指数Nのうち最も大きい場合を示すものとする。Auの{110}面の配向指数Nは1.3以上であることがより好ましい。
Figure JPOXMLDOC01-appb-M000002
 式(1)において、I/I(hkl)はX線回折における(hkl)面の回折強度比、JCPDS・I/I(hkl)はJCPDS(Joint Committee for Powder Diffraction Standards)カードにおける(hkl)面の回折強度比、Σ(I/I(hkl))はX線回折における全結晶面の回折強度比の和、Σ(JCPDS・I/I(hkl))はJCPDSカードにおける全結晶面の回折強度比の和である。
 実施形態のAuスパッタリングターゲットは、上述した40以上60以下のビッカース硬さと15μm以上200μm以下の平均結晶粒径とAuの{110}面が優先配向してスパッタ面の組み合わせに基づいて、Auスパッタ膜の膜厚分布の均一性を格段に向上させることを可能にしたものである。すなわち、上述したビッカース硬さと平均結晶粒径とAuの優先配向面の個々の効果が相乗的に作用することによって、スパッタリング時における粒子の飛翔性およびその均一性、さらに粒子の飛翔方向の安定性が向上する。これらによって、例えば小型化が進められている水晶振動子デバイスのような電子デバイスの電極等にAuスパッタ膜を適用する際に、膜厚バラツキおよびそれに基づく質量バラツキが小さく、膜厚分布および質量分布の均一性に優れるAu膜を提供することが可能になる。
 上述した実施形態のAuスパッタリングターゲットの製造方法は、特に限定されるものではない。例えば、プレート状のAuスパッタリングターゲットの場合には、Au原料の鋳造、切削、鍛造、および熱処理を組み合わせた製造方法により作製することができる。また、プレート状のAuスパッタリングターゲットの場合、Au原料の鋳造に代えて、圧延を適用してもよい。円筒状のAuスパッタリングターゲットの場合には、Au原料の鋳造、切削、パイプ加工、および熱処理を組み合わせた製造方法により作製することができる。パイプ加工としては、ラフロ法のような押出加工、引き抜き加工、鍛造加工等が挙げられる。これら各加工工程における加工率や熱処理温度を制御することによって、上述したビッカース硬さ、平均結晶粒径、優先結晶面等を得ることができる。
 Au原料の鋳造工程は、真空雰囲気または不活性雰囲気中にて黒鉛るつぼ内で溶解するか、あるいは大気溶解炉を用いて溶湯表面に不活性ガスを吹き付けながら、または炭素系固体シール材で溶湯表面を覆いながら黒鉛るつぼ内で溶解し、黒鉛または鋳鉄製の鋳型内に鋳造することにより実施することが好ましい。次いで、鋳造したAuインゴットの外周面の表面欠陥を研削除去する。AuインゴットのAu純度は99.99%以上(4N以上)であることが好ましい。
 プレート状のAuスパッタリングターゲットを作製する場合には、Auインゴットを所望のプレート形状に鍛造する。Auインゴットの鍛造工程は、200~800℃の範囲の熱間で実施することが好ましく、さらに加工率(断面減少率または厚さ減少率)が50%以上90%以下となるように実施することが好ましい。鍛造工程は複数回実施してもよく、その途中で熱処理を実施してもよい。鍛造工程を複数回実施する場合、加工率は全体としての加工率である。鍛造加工の加工率を50%以上とすることによって、鋳造組織を壊して均一な再結晶組織が得られやすくなると共に、その後の熱処理工程における硬さや結晶粒径の制御性や均一性を高めることができる。Au鍛造材に必要に応じて冷間で圧延処理を施してもよい。圧延処理の加工率は鍛造時の加工率にもよるが、50%以上90%以下であることが好ましい。さらに、Auインゴットの加工工程に、鍛造工程に代えて圧延工程を適用してもよい。Auインゴットの圧延工程は、鍛造工程と同様に、200~800℃の範囲の熱間で実施することが好ましく、また加工率(断面減少率または厚さ減少率)が50~90%の範囲となるように実施することが好ましい。
 円筒状のAuスパッタリングターゲットを作製する場合には、円柱状に成形したAuビレットを、ラフロ法のような押出加工、引き抜き加工、鍛造加工等によりパイプ状に加工する。ラフロ法のような押出加工を適用する場合、押出加工は冷間で実施することが好ましく、またダイスの形状(内径等)とマンドレルの形状(外径等)によりパイプの外径および肉厚を制御する。この際、押出比(ビレットの外径/パイプの外径)を1.5以上3.0以下となるように調整することが好ましい。押出比を1.5以上とすることによって、鋳造組織を壊して均一な再結晶組織が得られやすくなると共に、その後の熱処理工程における硬さの制御性や均一性を高めることができる。ただし、押出比が3.0を超えると、内部歪が大きくなりすぎると共に、割れやシワ等が発生しやすくなる。
 引き抜き加工を適用する場合、押出加工やくり抜き加工等で作製したAu素管を冷間で引き抜き加工して所望形状のパイプ状に加工することが好ましく、またダイスの形状(内径等)とプラグの形状(外径等)によりパイプの外径および肉厚を制御する。この際、1回当たりの加工率を2%以上5%以下に調整することが好ましい。引き抜き加工は複数回繰り返し実施してもよく、そのような場合には加工率の合計を50%以上90%以下に調整することが好ましい。加工率の合計を50%以上とすることによって、鋳造組織を壊して均一な再結晶組織が得られやすくなると共に、その後の熱処理工程における硬さの制御性や均一性を高めることができる。
 鍛造加工を適用する場合、押出加工やくり抜き加工等で作製したAu素管を200~800℃の範囲の温度で熱間鍛造して所望のパイプ状に加工することが好ましく、また鍛造時の加工率によりパイプの外径および肉厚を制御する。鍛造工程は、加工率を30%以上80%以下に調整して実施することが好ましい。加工率を30%以上とすることによって、鋳造組織を壊して均一な再結晶組織が得られやすくなると共に、その後の熱処理工程における硬さの制御性や均一性を高めることができる。ただし、加工率が80%を超えると、内部歪が大きくなりすぎると共に、割れやシワ等が発生しやすくなる。
 次に、鍛造工程や圧延工程で作製したプレート状のターゲット素材、およびパイプ加工工程で作製したパイプ状のターゲット素材を、例えば大気中または不活性ガス雰囲気中にて200℃以上500℃以下の温度で熱処理することによって、ターゲット素材の金属組織を再結晶させる。このような熱処理によって、40以上60以下のビッカース硬さを有するAuスパッタリングターゲットを得ることができる。さらに、15μm以上200μm以下の平均結晶粒径を有するAuスパッタリングターゲットや、スパッタ面を{110}面に優先配向させたAuスパッタリングターゲットを得ることかできる。熱処理工程は、複数回実施してもよい。熱処理工程後には、必要に応じて切削加工等によりスパッタリングターゲットの形状を整える工程を実施してもよい。
 熱処理温度が200℃未満であると、加工時に生じた内部歪を十分に除去することができず、ビッカース硬さが60を超えるおそれがある。さらに、ターゲット素材の金属組織を十分に再結晶化させることができないため、平均結晶粒径が15μm未満となったり、またスパッタ面を{110}面に優先配向させることができないおそれがある。一方、熱処理温度が500℃を超えると、ビッカース硬さが40未満になるおそれがある。さらに、再結晶組織が成長しすぎて、平均結晶粒径が200μmを超えたり、スパッタ面が{110}面以外の結晶面に優先配向するおそれがある。熱処理温度による保持時間(熱処理時間)は、例えば10分以上120分以下とすることが好ましい。熱処理時間が短すぎると、歪の除去が不十分であったり、金属組織を十分に再結晶化させることができないおそれがある。一方、熱処理時間が長すぎると、ビッカース硬さが低下しすぎたり、平均結晶粒径が大きくなりすぎるおそれがある。
 上述したように、Auインゴットをプレート状や円筒状に加工する工程の加工率と再結晶化熱処理工程の温度を制御することによって、ビッカース硬さが40以上60以下で、かつビッカース硬さのばらつきが小さいAuスパッタリングターゲットを得ることができる。さらに、平均結晶粒径が15μm以上200μm以下で、平均結晶粒径のばらつきが小さいAuスパッタリングターゲット、またスパッタ面を{110}面に優先配向させたAuスパッタリングターゲットを得ることができる。このようなAuスパッタリングターゲットを用いてAu膜を成膜することによって、例えば水晶振動子デバイス等の電極に求められる膜厚分布の均一性を満足させたAu膜を得ることができる。本発明のAuスパッタリングターゲットは、水晶振動子デバイスの電極膜(Au膜)に限らず、各種電子部品に適用されるAu膜の成膜に用いることができる。
 次に、本発明の具体的な実施例およびその評価結果について述べる。
(実施例1)
 まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去することによって、幅が190mm、長さが270mm、厚さが50mmのAuビレット(純度99.99%)を作製した。次いで、Auビレットを800℃の温度で熱間鍛造し、幅が70mm、長さが200mm、厚さが45mmのAuターゲット素材とした。鍛造時の加工率は三軸方向共に80%とした。鍛造後のAuターゲット素材を500℃の温度で30分間熱処理した。熱処理後のAuターゲット素材を研削加工して、直径が152.4mm、厚さが5mmの円板状のAuスパッタリングターゲットを作製した。Auスパッタリングターゲットは、各部の特性測定と膜厚特性の測定のために2個作製した。以下の実施例および比較例も同様である。
 得られたAuスパッタリングターゲットのビッカース硬さを、前述したプレート状スパッタリングターゲットの測定方法にしたがって測定した。前述した各測定箇所のビッカース硬さを、200gfの試験力(押し付け荷重)で測定した結果、スパッタ面のビッカース硬さの平均値(HVav1)は50.5、第1の断面のビッカース硬さの平均値(HVav2)は52.1、第2の断面のビッカース硬さの平均値(HVav3)は51.6、これら各値の平均値(ターゲット全体としてのビッカース硬さ(HVtav))は51.4であった。ターゲット全体としてのビッカース硬さ(HVtav)に対する各部のビッカース硬さ(HVav1、HVav2、HVav3)の比は、HVav1/HVtavが0.98、HVav2/HVtavが1.01、HVav3/HVtavが1.00であった。
 さらに、Auスパッタリングターゲットの平均結晶粒径を、前述したプレート状スパッタリングターゲットの測定方法にしたがって測定した。その結果、ターゲット全体としての平均結晶粒径(ADtav)は34.2μmであった。また、Auスパッタリングターゲットのスパッタ面をX線回折し、前述した方法にしたがって優先配向している結晶面を評価した。その結果、スパッタ面にはAuの{110}面が優先配向していることが確認された。前述した方法にしたがって{110}面の配向指数Nを求めたところ、{110}面の配向指数Nは1.32であった。このようなAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。
(実施例2~5、比較例1~2)
 実施例1と同様にして作製したAuビレットを用いて、表1に示す加工率を適用する以外は、実施例1と同様に鍛造加工してAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表1に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例1と同一形状のAuスパッタリングターゲットを作製した。これらAuスパッタリングターゲットのビッカース硬さ、平均結晶粒径、スパッタ面の優先配向面、および{110}面の配向指数Nを、実施例1と同様にして測定および評価した。それらの測定結果を表2に示す。このようなAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上述した実施例1~5および比較例1~2による各Auスパッタリングターゲットを枚様式スパッタリング装置に取り付け、装置内を1×10-3Pa以下まで真空排気した後、Arガス圧:0.4Pa、投入電力:DC100W、ターゲット-基板間距離:40mm、スパッタ時間:5分の条件でスパッタを行い、6インチSi基板(ウエハ)上にAu膜を成膜した。得られたAu膜の膜厚分布を以下のようにして評価した。Au膜を成膜した基板を蛍光X線膜厚計に取り付け、測定時間:60秒、繰り返し測定回数:10回、測定開始点:基板端部、測定点間隔:5mmの条件で、Au膜の膜厚を測定した。膜厚の測定軸は4軸、すなわち基板の中心を通る縦および横の2軸と、それから45度回転させた状態での基板の中心を通る縦および横の2軸とした。測定後、各測定点の10点平均膜厚を算出し、4軸の同測定位置における測定値の標準偏差を算出し、全測定位置の標準偏差の平均値を算出した。この値を膜厚の標準偏差σとして表3に示す。次に、Au膜の抵抗値を四端子法により測定し、膜厚と同様に抵抗値の標準偏差σを求めた。その結果を表3にAu膜の抵抗値の標準偏差σとして示す。
Figure JPOXMLDOC01-appb-T000005
 表3から明らかなように、実施例1~5の各Auスパッタリングターゲットにおいては、ビッカース硬さが40~60の範囲であり、また各部のビッカース硬さのばらつきも小さいことが分かる。平均結晶粒径は15~200μmの範囲であり、さらにスパッタ面には{110}面が優先配向しており、{110}面の配向指数Nは1より大きいことが分かる。このようなビッカース硬さ、平均結晶粒径、およびスパッタ面の優先配向面が組み合わされたAuスパッタリングターゲットを用いてスパッタ成膜したAu膜は、膜厚分布の均一性に優れ、また抵抗値の均一性も優れていることが分かる。
(実施例6~10)
 実施例1と同様にして作製したAuビレットを用いて、表4に示す加工率を適用する以外は、実施例1と同様に鍛造加工してAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表4に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例1と同一形状のAuスパッタリングターゲットを作製した。
Figure JPOXMLDOC01-appb-T000006
 得られたAuスパッタリングターゲットのビッカース硬さを、実施例1と同様にして測定した。さらに、Auスパッタリングターゲットの平均結晶粒径を、前述したプレート状スパッタリングターゲットの測定方法にしたがって測定した。測定結果として、スパッタ面、第1の断面、および第2の断面のそれぞれの平均結晶粒径(ADav1、ADav2、ADav3)、これら各値の平均値(ターゲット全体としての平均結晶粒径(ADtav))、およびターゲット全体としての平均結晶粒径(ADtav)に対する各部の平均結晶粒径(ADav1、ADav2、ADav3)の比を、表5に示す。さらに、Auスパッタリングターゲットのスパッタ面をX線回折し、前述した方法にしたがって優先配向している結晶面を評価した。前述した方法にしたがって{110}面の配向指数Nを求めた。それら結果を表5に示す。このようなAuスパッタリングターゲットを用いて、実施例1と同様にして成膜工程を実施し、Au膜の膜厚の標準偏差σと抵抗値の標準偏差σを求めた。それらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(実施例11~19、比較例3~4)
 まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去することによって、幅が200mm、長さが300mm、厚さが45mmのAuビレット(純度99.99%)を作製した。次いで、Auビレットを800℃の温度で熱間圧延し、幅が70mm、長さが200mm、厚さが45mmのAuターゲット素材とした。圧延時の加工率は厚さの減少率として80%とした。圧延後のAuターゲット素材を表7に示す条件で熱処理した。熱処理後のAuターゲット素材を研削加工して、直径が152.4mm、厚さが5mmの円板状のAuスパッタリングターゲットを作製した。
Figure JPOXMLDOC01-appb-T000009
 得られたAuスパッタリングターゲットについて、ターゲット全体としてのビッカース硬さの平均値(HVtav)、およびターゲット全体としての平均結晶粒径(ADtav)を、実施例1と同様にして測定した。さらに、Auスパッタリングターゲットのスパッタ面に優先配向している結晶面を実施例1と同様して評価すると共に、{110}面の配向指数Nを実施例1と同様して求めた。それら結果を表8に示す。このようなAuスパッタリングターゲットを用いて、実施例1と同様にして成膜工程を実施し、Au膜の膜厚の標準偏差σと抵抗値の標準偏差σを求めた。それらの結果を表9に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(実施例20)
 まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去すると共に、内径50mmでくり抜き加工することによって、外径が100mm、内径が50mm、長さが200mmの円筒状Auビレット(純度99.99%)を作製した。次いで、円筒状Auビレットの中空部に芯材を挿入した状態で、800℃の温度に加熱して熱間鍛造し、外径が80mm、内径が50mm、長さが400mm以上のパイプ状Auターゲット素材とした。鍛造時の加工率は厚さの減少率として35%とした。鍛造後のパイプ状Auターゲット素材を500℃の温度で30分間熱処理した。熱処理後のAuターゲット素材を研削加工することによって、外径が70mm、内径が65mm、長さが350mmの円筒状のAuスパッタリングターゲットを作製した。
 得られたAuスパッタリングターゲットのビッカース硬さを、前述した円筒状スパッタリングターゲットの測定方法にしたがって測定した。各測定箇所のビッカース硬さを、200gfの試験力(押し付け荷重)で測定した結果、スパッタ面の第1の直線上におけるビッカース硬さの平均値(HVav1)は50.6、スパッタ面の第2の直線上におけるビッカース硬さの平均値(HVav2)は50.4、断面におけるビッカース硬さの平均値(HVav3)は52.0、これら各値の平均値(ターゲット全体としてのビッカース硬さ(HVtav))は51.0であった。ターゲット全体としてのビッカース硬さ(HVtav)に対する各部のビッカース硬さ(HVav1、HVav2、HVav3)の比については、HVav1/HVtavが0.99、HVav2/HVtavが0.99、HVav3/HVtavが1.02であった。
 さらに、Auスパッタリングターゲットの平均結晶粒径を、前述した円筒状スパッタリングターゲットの測定方法にしたがって測定した。その結果、ターゲット全体としての平均結晶粒径(ADtav)は38.1μmであった。また、Auスパッタリングターゲットのスパッタ面をX線回折し、前述した方法にしたがって優先配向している結晶面を評価した。その結果、スパッタ面にはAuの{110}面が優先配向していることが確認された。前述した方法にしたがって{110}面の配向指数Nを求めたところ、{110}面の配向指数Nは1.31であった。このような円筒状のAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。
(実施例21~24、比較例5~6)
 実施例20と同様にして作製したAuビレットを用いて、表10に示す加工率を適用する以外は、実施例20と同様に鍛造加工して円筒状のAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表10に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例20と同一形状のAuスパッタリングターゲットを作製した。これらAuスパッタリングターゲットのビッカース硬さ、および平均結晶粒径(ADtav)を、実施例20と同様にして測定した。さらに、Auスパッタリングターゲットのスパッタ面に優先配向している結晶面を実施例20と同様して評価すると共に、{110}面の配向指数Nを実施例20と同様して求めた。それらの結果を表11に示す。このような円筒状のAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 上述した実施例20~24および比較例5~6による各Auスパッタリングターゲットを円筒型スパッタリング装置に取り付け、装置内を1×10-3Pa以下まで真空排気した後、Arガス圧:0.4Pa、投入電力:DC100W、ターゲット-基板間距離:40mm、スパッタ時間:5分の条件でスパッタを行い、6インチSi基板(ウエハ)上にAu膜を成膜した。得られたAu膜の膜厚分布を前述した方法にしたがって測定し、Au膜の膜厚の標準偏差σを求めた。また、前述した方法にしたがってAu膜の抵抗値の標準偏差σを求めた。これらの結果を表12に示す。
Figure JPOXMLDOC01-appb-T000014
 表12から明らかなように、実施例20~24の各Auスパッタリングターゲットにおいては、ビッカース硬さが40~60の範囲であり、また各部のビッカース硬さのばらつきも小さいことが分かる。平均結晶粒径は15~200μmの範囲であり、さらにスパッタ面には{110}面が優先配向しており、{110}面の配向指数Nは1より大きいことが分かる。このようなビッカース硬さ、平均結晶粒径、およびスパッタ面の優先配向面が組み合わされたAuスパッタリングターゲットを用いてスパッタ成膜したAu膜は、膜厚分布の均一性に優れ、また抵抗値の均一性も優れることが分かる。
(実施例25~29)
 実施例20と同様にして作製したAuビレットを用いて、表13に示す加工率を適用する以外は、実施例20と同様に鍛造加工して円筒状のAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表13に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例20と同一形状のAuスパッタリングターゲットを作製した。
Figure JPOXMLDOC01-appb-T000015
 得られたAuスパッタリングターゲットのビッカース硬さを、実施例20と同様にして測定した。さらに、Auスパッタリングターゲットの平均結晶粒径を、前述した円筒状スパッタリングターゲットの測定方法にしたがって測定した。測定結果として、第1のスパッタ面、第2のスパッタ面、および断面のそれぞれの結晶粒径の平均値(ADav1、ADav2、ADav3)、これら各値の平均値(ターゲット全体としての平均結晶粒径(ADtav))、およびターゲット全体としての平均結晶粒径(ADtav)に対する各部の平均結晶粒径(ADav1、ADav2、ADav3)の比を、表14に示す。さらに、Auスパッタリングターゲットのスパッタ面をX線回折し、前述した方法にしたがって優先配向している結晶面を評価すると共に、{110}面の配向指数Nを求めた。それらの結果を表14に示す。このようなAuスパッタリングターゲットを用いて、実施例20と同様にして成膜工程を実施し、Au膜の膜厚の標準偏差σと抵抗値の標準偏差σを測定した。それらの結果を表15に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 本発明のAuスパッタリングターゲットは、各種の用途に用いられるAu膜の成膜用として有用である。また、本発明のAuスパッタリングターゲットを用いてスパッタリングを行うことによって、膜厚分布および抵抗値の均一性に優れるAu膜を得ることができる。従って、各種の用途に用いられるAu膜の特性を高めることができる。

Claims (7)

  1.  金および不可避不純物からなり、スパッタされる表面を有する金スパッタリングターゲットであって、
     ビッカース硬さの平均値が40以上60以下であり、
     平均結晶粒径が15μm以上200μm以下であり、
     前記表面に金の{110}面が優先配向している、金スパッタリングターゲット。
  2.  前記表面をX線回折し、金の各結晶面の回折強度比から下記の式(1)から各結晶面の配向指数Nを求めたとき、金の{110}面の配向指数Nが1より大きく、かつ全ての結晶面の配向指数Nのうち最も大きい、請求項1に記載の金スパッタリングターゲット。
    Figure JPOXMLDOC01-appb-M000001
     式(1)において、I/I(hkl)はX線回折における(hkl)面の回折強度比、JCPDS・I/I(hkl)はJCPDSカードにおける(hkl)面の回折強度比、Σ(I/I(hkl))はX線回折における全結晶面の回折強度比の和、Σ(JCPDS・I/I(hkl))はJCPDSカードにおける全結晶面の回折強度比の和である。
  3.  前記スパッタリングターゲット全体としての前記ビッカース硬さのばらつきが±20%以内である、請求項1または請求項2に記載の金スパッタリングターゲット。
  4.  前記スパッタリングターゲット全体としての前記平均結晶粒径のばらつきが±20%以内である、請求項1ないし請求項3のいずれか1項に記載の金スパッタリングターゲット。
  5.  前記スパッタリングターゲットの金純度が99.99%以上である、請求項1ないし請求項4のいずれか1項に記載の金スパッタリングターゲット。
  6.  プレート形状を有する、請求項1ないし請求項5のいずれか1項に記載の金スパッタリングターゲット。
  7.  円筒形状を有する、請求項1ないし請求項5のいずれか1項に記載の金スパッタリングターゲット。
PCT/JP2017/020617 2016-06-02 2017-06-02 金スパッタリングターゲット WO2017209281A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020217025934A KR102614205B1 (ko) 2016-06-02 2017-06-02 금 스퍼터링 타깃
EP17806831.8A EP3467141B1 (en) 2016-06-02 2017-06-02 Gold sputtering target
JP2018521015A JP7077225B2 (ja) 2016-06-02 2017-06-02 金スパッタリングターゲット
KR1020187037313A KR20190015346A (ko) 2016-06-02 2017-06-02 금 스퍼터링 타깃
CN201780032766.XA CN109196137B (zh) 2016-06-02 2017-06-02 金溅射靶
RU2018146163A RU2785130C2 (ru) 2016-06-02 2017-06-02 Золотая распыляемая мишень
US16/205,471 US11569074B2 (en) 2016-06-02 2018-11-30 Gold sputtering target
JP2022009034A JP7320639B2 (ja) 2016-06-02 2022-01-25 Au膜の形成方法
US18/088,454 US11817299B2 (en) 2016-06-02 2022-12-23 Gold sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111245 2016-06-02
JP2016-111245 2016-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/205,471 Continuation US11569074B2 (en) 2016-06-02 2018-11-30 Gold sputtering target

Publications (1)

Publication Number Publication Date
WO2017209281A1 true WO2017209281A1 (ja) 2017-12-07

Family

ID=60477574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020617 WO2017209281A1 (ja) 2016-06-02 2017-06-02 金スパッタリングターゲット

Country Status (7)

Country Link
US (2) US11569074B2 (ja)
EP (1) EP3467141B1 (ja)
JP (2) JP7077225B2 (ja)
KR (2) KR102614205B1 (ja)
CN (1) CN109196137B (ja)
TW (1) TWI752035B (ja)
WO (1) WO2017209281A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111945A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
WO2019111900A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットとその製造方法
WO2022102765A1 (ja) * 2020-11-16 2022-05-19 国立大学法人東北大学 白金系スパッタリングターゲット及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127861A (ja) * 1984-11-26 1986-06-16 Mitsubishi Metal Corp スパツタリング用金タ−ゲツト
JP2002146521A (ja) * 2000-11-10 2002-05-22 Nikko Materials Co Ltd 金ターゲットの製造方法
JP2006161066A (ja) * 2004-12-02 2006-06-22 Seiko Epson Corp スパッタリングターゲットとその製造方法及びスパッタリング装置並びに液体噴射ヘッド
CN103726024A (zh) * 2014-01-02 2014-04-16 昆山全亚冠环保科技有限公司 一种溅射镀膜用金靶材的生产方法
WO2015111563A1 (ja) * 2014-01-24 2015-07-30 株式会社フルヤ金属 金又は白金ターゲット及びそれらの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU547242A1 (ru) 1975-09-19 1977-02-25 Предприятие П/Я Х-5476 Способ изготовлени металлической ленты
JPS62172543A (ja) * 1986-01-24 1987-07-29 Citizen Watch Co Ltd 光記録素子
DE3631830A1 (de) 1986-09-19 1988-03-31 Demetron Mehrstofflegierung fuer targets von kathodenzerstaeubungsanlagen und deren verwendung
JPH10195610A (ja) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd 結晶方位の制御されたfcc金属及びその製造方法
US6946039B1 (en) * 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
RU2214476C2 (ru) 2001-07-18 2003-10-20 Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан Способ формирования покрытия из драгоценных металлов и их сплавов
JP2003328059A (ja) * 2002-05-10 2003-11-19 Matsuda Sangyo Co Ltd 硬化型金合金
DE102005050424B4 (de) 2005-10-19 2009-10-22 W.C. Heraeus Gmbh Sputtertarget aus mehrkomponentigen Legierungen
MY149446A (en) 2006-09-26 2013-08-30 Oerlikon Trading Ag Workpiece with hard coating
JP5472353B2 (ja) 2012-03-27 2014-04-16 三菱マテリアル株式会社 銀系円筒ターゲット及びその製造方法
CN103128303A (zh) * 2013-02-28 2013-06-05 北京科技大学 一种利用气相沉积工艺制备纳米金的方法
CN104561639B (zh) * 2014-12-26 2017-01-18 北京有色金属与稀土应用研究所 一种金合金靶材及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127861A (ja) * 1984-11-26 1986-06-16 Mitsubishi Metal Corp スパツタリング用金タ−ゲツト
JP2002146521A (ja) * 2000-11-10 2002-05-22 Nikko Materials Co Ltd 金ターゲットの製造方法
JP2006161066A (ja) * 2004-12-02 2006-06-22 Seiko Epson Corp スパッタリングターゲットとその製造方法及びスパッタリング装置並びに液体噴射ヘッド
CN103726024A (zh) * 2014-01-02 2014-04-16 昆山全亚冠环保科技有限公司 一种溅射镀膜用金靶材的生产方法
WO2015111563A1 (ja) * 2014-01-24 2015-07-30 株式会社フルヤ金属 金又は白金ターゲット及びそれらの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111945A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
WO2019111900A1 (ja) * 2017-12-06 2019-06-13 田中貴金属工業株式会社 金スパッタリングターゲットとその製造方法
CN111433387A (zh) * 2017-12-06 2020-07-17 田中贵金属工业株式会社 金溅射靶的制造方法和金膜的制造方法
JPWO2019111945A1 (ja) * 2017-12-06 2021-01-07 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
US11555238B2 (en) 2017-12-06 2023-01-17 Tanaka Kikinzoku Kogyo K. K. Producing method for gold sputtering target and producing method for gold film
US11560620B2 (en) 2017-12-06 2023-01-24 Tanaka Kikinzoku Kogyo K. K. Gold sputtering target and method for producing the same
JP7214650B2 (ja) 2017-12-06 2023-01-30 田中貴金属工業株式会社 金スパッタリングターゲットの製造方法及び金膜の製造方法
US11795540B2 (en) 2017-12-06 2023-10-24 Tanaka Kikinzoku Kogyo K. K. Gold sputtering target and method for producing the same
WO2022102765A1 (ja) * 2020-11-16 2022-05-19 国立大学法人東北大学 白金系スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
RU2018146163A3 (ja) 2020-07-09
US20190103257A1 (en) 2019-04-04
KR20190015346A (ko) 2019-02-13
JPWO2017209281A1 (ja) 2019-04-18
EP3467141A4 (en) 2020-04-15
EP3467141A1 (en) 2019-04-10
EP3467141B1 (en) 2023-10-11
KR20210103593A (ko) 2021-08-23
TW201742942A (zh) 2017-12-16
CN109196137B (zh) 2021-11-30
US11817299B2 (en) 2023-11-14
RU2018146163A (ru) 2020-07-09
CN109196137A (zh) 2019-01-11
JP2022048244A (ja) 2022-03-25
US20230126513A1 (en) 2023-04-27
JP7077225B2 (ja) 2022-05-30
KR102614205B1 (ko) 2023-12-14
TWI752035B (zh) 2022-01-11
US11569074B2 (en) 2023-01-31
JP7320639B2 (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
JP7320639B2 (ja) Au膜の形成方法
US11795540B2 (en) Gold sputtering target and method for producing the same
US11555238B2 (en) Producing method for gold sputtering target and producing method for gold film
TWI676691B (zh) 鉭濺鍍靶及其製造方法
RU2785507C2 (ru) Золотая распыляемая мишень и способ ее получения
RU2785130C2 (ru) Золотая распыляемая мишень
RU2784174C2 (ru) Способ получения золотой пленки с использованием золотой распыляемой мишени

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187037313

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017806831

Country of ref document: EP

Effective date: 20190102