WO2017209281A1 - Gold sputtering target - Google Patents
Gold sputtering target Download PDFInfo
- Publication number
- WO2017209281A1 WO2017209281A1 PCT/JP2017/020617 JP2017020617W WO2017209281A1 WO 2017209281 A1 WO2017209281 A1 WO 2017209281A1 JP 2017020617 W JP2017020617 W JP 2017020617W WO 2017209281 A1 WO2017209281 A1 WO 2017209281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sputtering target
- sputtering
- target
- gold
- vickers hardness
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/16—Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/06—Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
- B21J5/12—Forming profiles on internal or external surfaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/14—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
Definitions
- the use of a cylindrical target is considered as well as a plate-like target.
- the quartz oscillator device is configured by forming an Au film as an electrode on both sides of a quartz chip (blank) as described above.
- the outer shape is trimmed by etching to round the corners, or the corners are mechanically rounded when pulled out with a press, and the center of gravity is at the center to stabilize the frequency.
- High smoothness is desirable because the rough surface of the crystal chip adversely affects the frequency characteristics.
- the electrode formed on the crystal chip it is desirable that the smoothness be high, that is, the variation in film thickness be small. Since the electrode has a three-dimensional structure having a thickness, when the crystal chip is miniaturized, the influence of the variation in film thickness on the three-dimensional shape becomes larger. Therefore, with the miniaturization of the crystal oscillator device and the like, it is required to further reduce the thickness variation of the Au film applied to the electrode.
- the Au sputtering target has a surface to be sputtered (sputtered surface).
- the surface of the plate is a sputtered surface
- the surface of a cylinder is a sputtered surface.
- the Au sputtering target of the embodiment has a Vickers hardness of 40 or more and 60 or less.
- a Vickers hardness of 40 or more and 60 or less By performing sputtering film formation using an Au sputtering target having such Vickers hardness, an Au film excellent in uniformity of film thickness distribution can be formed. That is, that the Vickers hardness of Au sputtering target exceeds 60 HV means that the distortion which arose at the time of manufacture in the sputtering target remains. In such a case, the flying of particles from the target becomes uneven during sputtering, and the uniformity of the film thickness distribution is lost.
- the Vickers hardness of the Au sputtering target is preferably 55 HV or less.
- the ratio (HV av 3 / HV tav ) to the Vickers hardness (HV tav ) is preferably in the range of 0.8 to 1.2, respectively.
- the variation in Vickers hardness of the Au sputtering target within ⁇ 20%.
- the flying direction of particles at the time of sputtering is further uniformed, and the uniformity of film thickness distribution is further improved.
- the cylindrical Au sputtering target the entire cylindrical surface is sputtered while rotating the cylindrical target. Therefore, the variation in the Vickers hardness at each part of the sputtering surface (cylindrical surface) is reduced, and the uniformity of the film thickness distribution is obtained. Can be improved.
- the average crystal grain size is preferably 15 ⁇ m or more and 200 ⁇ m or less.
- the uniformity of the film thickness distribution of the Au film can be further enhanced. That is, when the average crystal grain size of the Au sputtering target is less than 15 ⁇ m, the particles may not fly uniformly from the target at the time of sputtering, and the uniformity of the film thickness distribution may be impaired.
- the average crystal grain size of the Au sputtering target is preferably 30 ⁇ m or more.
- X-ray diffraction of the sputtered surface of the Au sputtering target is carried out that the sputtered surface is preferentially oriented to the ⁇ 110 ⁇ plane, and the following formula (1) of Wilson is obtained from the diffraction intensity ratio of each crystal surface of Au.
- the orientation index N of each crystal plane is determined from the above, and the case where the orientation index N of the ⁇ 110 ⁇ plane is larger than 1 and the largest among the orientation indices N of all crystal planes is shown.
- the orientation index N of Au ⁇ 110 ⁇ plane is more preferably 1.3 or more.
- the holding time (heat treatment time) according to the heat treatment temperature is preferably, for example, 10 minutes or more and 120 minutes or less. If the heat treatment time is too short, there is a possibility that the removal of the strain is insufficient or the metal structure can not be sufficiently recrystallized. On the other hand, if the heat treatment time is too long, the Vickers hardness may be too low, or the average grain size may be too large.
- the Vickers hardness is 40 or more and 60 or less, and the variation in Vickers hardness is controlled by controlling the working ratio in the step of processing the Au ingot into a plate or cylindrical shape and the temperature of the recrystallization heat treatment step.
- the sputtered surface of the Au sputtering target was subjected to X-ray diffraction, and the preferentially oriented crystal plane was evaluated according to the method described above.
- the orientation index N of the ⁇ 110 ⁇ plane was determined according to the method described above.
- Table 5 The results are shown in Table 5.
- the film forming process was performed in the same manner as in Example 1, and the standard deviation ⁇ of the film thickness of the Au film and the standard deviation ⁇ of the resistance value were obtained. The results are shown in Table 6.
- the Vickers hardness of the obtained Au sputtering target was measured according to the measuring method of the cylindrical sputtering target mentioned above.
- the average Vickers hardness (HV av1 ) on the first straight line of the sputter surface as a result of measuring the Vickers hardness of each measurement point with a test force (press load) of 200 gf is 50.6, the second of the sputter surface
- the average value (HV av2 ) of the Vickers hardness on the straight line of 2 is 50.4, the average value (HV av3 ) of the Vickers hardness at the cross section is 52.0, and the average value of these respective values (Vickers hardness as the whole target (HV tav )) was 51.0.
- the Au sputtering targets according to Examples 20 to 24 and Comparative Examples 5 to 6 described above are attached to a cylindrical sputtering apparatus, and the inside of the apparatus is evacuated to 1 ⁇ 10 -3 Pa or less, and then Ar gas pressure: 0.4 Pa, Sputtering was performed under the conditions of input power: DC 100 W, target-substrate distance: 40 mm, and sputtering time: 5 minutes to form an Au film on a 6-inch Si substrate (wafer).
- the film thickness distribution of the obtained Au film was measured according to the method described above, and the standard deviation ⁇ of the film thickness of the Au film was determined. Further, the standard deviation ⁇ of the resistance value of the Au film was determined according to the method described above. The results are shown in Table 12.
- the sputtered surface of the Au sputtering target was subjected to X-ray diffraction, and the crystal plane preferentially oriented was evaluated according to the method described above, and the orientation index N of the ⁇ 110 ⁇ plane was determined.
- the results are shown in Table 14.
- the film forming step was carried out in the same manner as in Example 20, and the standard deviation ⁇ of the film thickness of the Au film and the standard deviation ⁇ of the resistance value were measured. The results are shown in Table 15.
- the Au sputtering target of the present invention is useful for forming an Au film used for various applications. Further, by performing sputtering using the Au sputtering target of the present invention, it is possible to obtain an Au film excellent in uniformity of film thickness distribution and resistance value. Therefore, the characteristics of the Au film used for various applications can be enhanced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Forging (AREA)
Abstract
Description
まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去することによって、幅が190mm、長さが270mm、厚さが50mmのAuビレット(純度99.99%)を作製した。次いで、Auビレットを800℃の温度で熱間鍛造し、幅が70mm、長さが200mm、厚さが45mmのAuターゲット素材とした。鍛造時の加工率は三軸方向共に80%とした。鍛造後のAuターゲット素材を500℃の温度で30分間熱処理した。熱処理後のAuターゲット素材を研削加工して、直径が152.4mm、厚さが5mmの円板状のAuスパッタリングターゲットを作製した。Auスパッタリングターゲットは、各部の特性測定と膜厚特性の測定のために2個作製した。以下の実施例および比較例も同様である。 Example 1
First, an Au block was inserted into a graphite crucible and melted. Au molten metal was cast into a graphite mold to prepare an Au ingot. By grinding and removing the surface of the Au ingot, an Au billet (purity 99.99%) having a width of 190 mm, a length of 270 mm and a thickness of 50 mm was produced. Then, the Au billet was hot forged at a temperature of 800 ° C. to form an Au target material having a width of 70 mm, a length of 200 mm, and a thickness of 45 mm. The processing rate during forging was 80% in all three axial directions. The forged Au target material was heat treated at a temperature of 500 ° C. for 30 minutes. The heat-treated Au target material was ground to prepare a disk-shaped Au sputtering target having a diameter of 152.4 mm and a thickness of 5 mm. Two Au sputtering targets were prepared for measuring the characteristics of each part and measuring the film thickness characteristics. The same applies to the following examples and comparative examples.
実施例1と同様にして作製したAuビレットを用いて、表1に示す加工率を適用する以外は、実施例1と同様に鍛造加工してAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表1に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例1と同一形状のAuスパッタリングターゲットを作製した。これらAuスパッタリングターゲットのビッカース硬さ、平均結晶粒径、スパッタ面の優先配向面、および{110}面の配向指数Nを、実施例1と同様にして測定および評価した。それらの測定結果を表2に示す。このようなAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。 (Examples 2 to 5, Comparative Examples 1 to 2)
An Au target material was produced by forging in the same manner as in Example 1 except that the working ratio shown in Table 1 was applied using an Au billet produced in the same manner as in Example 1. Next, heat treatment was performed on the forged Au target material under the conditions shown in Table 1. After that, the Au target material after the heat treatment was ground to produce an Au sputtering target having the same shape as that of Example 1. The Vickers hardness, average grain size, preferred orientation plane of sputtered surface, and orientation index N of {110} plane of these Au sputtering targets were measured and evaluated in the same manner as in Example 1. The measurement results are shown in Table 2. The characteristics were evaluated by using such an Au sputtering target in a film forming process described later.
実施例1と同様にして作製したAuビレットを用いて、表4に示す加工率を適用する以外は、実施例1と同様に鍛造加工してAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表4に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例1と同一形状のAuスパッタリングターゲットを作製した。 (Examples 6 to 10)
An Au target material was produced by forging in the same manner as in Example 1 except that the working ratio shown in Table 4 was applied using an Au billet produced in the same manner as in Example 1. Next, the forged Au target material was heat-treated under the conditions shown in Table 4. After that, the Au target material after the heat treatment was ground to produce an Au sputtering target having the same shape as that of Example 1.
まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去することによって、幅が200mm、長さが300mm、厚さが45mmのAuビレット(純度99.99%)を作製した。次いで、Auビレットを800℃の温度で熱間圧延し、幅が70mm、長さが200mm、厚さが45mmのAuターゲット素材とした。圧延時の加工率は厚さの減少率として80%とした。圧延後のAuターゲット素材を表7に示す条件で熱処理した。熱処理後のAuターゲット素材を研削加工して、直径が152.4mm、厚さが5mmの円板状のAuスパッタリングターゲットを作製した。 (Examples 11 to 19, Comparative examples 3 to 4)
First, an Au block was inserted into a graphite crucible and melted. Au molten metal was cast into a graphite mold to prepare an Au ingot. By grinding and removing the surface of the Au ingot, an Au billet (purity 99.99%) having a width of 200 mm, a length of 300 mm, and a thickness of 45 mm was produced. Subsequently, the Au billet was hot-rolled at a temperature of 800 ° C. to obtain an Au target material having a width of 70 mm, a length of 200 mm, and a thickness of 45 mm. The processing rate at the time of rolling was 80% as the reduction rate of thickness. The rolled Au target material was heat treated under the conditions shown in Table 7. The heat-treated Au target material was ground to prepare a disk-shaped Au sputtering target having a diameter of 152.4 mm and a thickness of 5 mm.
まず、Au塊を黒鉛るつぼに挿入して溶解した。Au溶湯を黒鉛鋳型に鋳造してAuインゴットを作製した。Auインゴットの表面を研削除去すると共に、内径50mmでくり抜き加工することによって、外径が100mm、内径が50mm、長さが200mmの円筒状Auビレット(純度99.99%)を作製した。次いで、円筒状Auビレットの中空部に芯材を挿入した状態で、800℃の温度に加熱して熱間鍛造し、外径が80mm、内径が50mm、長さが400mm以上のパイプ状Auターゲット素材とした。鍛造時の加工率は厚さの減少率として35%とした。鍛造後のパイプ状Auターゲット素材を500℃の温度で30分間熱処理した。熱処理後のAuターゲット素材を研削加工することによって、外径が70mm、内径が65mm、長さが350mmの円筒状のAuスパッタリングターゲットを作製した。 Example 20
First, an Au block was inserted into a graphite crucible and melted. Au molten metal was cast into a graphite mold to prepare an Au ingot. The surface of the Au ingot was ground and removed, and hollowed with an inner diameter of 50 mm to produce a cylindrical Au billet (purity 99.99%) having an outer diameter of 100 mm, an inner diameter of 50 mm, and a length of 200 mm. Next, with the core inserted in the hollow portion of the cylindrical Au billet, the core is heated to a temperature of 800 ° C. and hot forged, and a pipe-shaped Au target having an outer diameter of 80 mm, an inner diameter of 50 mm and a length of 400 mm or more It was a material. The processing rate at the time of forging was 35% as the reduction rate of thickness. The forged pipe-like Au target material was heat-treated at a temperature of 500 ° C. for 30 minutes. By grinding the Au target material after the heat treatment, a cylindrical Au sputtering target having an outer diameter of 70 mm, an inner diameter of 65 mm, and a length of 350 mm was produced.
実施例20と同様にして作製したAuビレットを用いて、表10に示す加工率を適用する以外は、実施例20と同様に鍛造加工して円筒状のAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表10に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例20と同一形状のAuスパッタリングターゲットを作製した。これらAuスパッタリングターゲットのビッカース硬さ、および平均結晶粒径(ADtav)を、実施例20と同様にして測定した。さらに、Auスパッタリングターゲットのスパッタ面に優先配向している結晶面を実施例20と同様して評価すると共に、{110}面の配向指数Nを実施例20と同様して求めた。それらの結果を表11に示す。このような円筒状のAuスパッタリングターゲットを後述する成膜工程に供して特性を評価した。 (Examples 21 to 24 and Comparative Examples 5 to 6)
A cylindrical Au target material was produced in the same manner as in Example 20 except that the working rates shown in Table 10 were applied using an Au billet produced in the same manner as in Example 20. Next, heat treatment was performed on the forged Au target material under the conditions shown in Table 10. Thereafter, the Au target material after the heat treatment was ground to produce an Au sputtering target having the same shape as that of Example 20. The Vickers hardness and the average crystal grain size (AD tav ) of these Au sputtering targets were measured in the same manner as in Example 20. Furthermore, the crystal plane preferentially oriented to the sputtered surface of the Au sputtering target was evaluated in the same manner as in Example 20, and the orientation index N of the {110} plane was determined in the same manner as in Example 20. The results are shown in Table 11. The characteristics were evaluated by using such a cylindrical Au sputtering target in a film forming process described later.
実施例20と同様にして作製したAuビレットを用いて、表13に示す加工率を適用する以外は、実施例20と同様に鍛造加工して円筒状のAuターゲット素材を作製した。次いで、鍛造後のAuターゲット素材に表13に示す条件で熱処理を施した。この後、熱処理後のAuターゲット素材を研削加工することによって、実施例20と同一形状のAuスパッタリングターゲットを作製した。 (Examples 25 to 29)
A cylindrical Au target material was produced in the same manner as in Example 20 except that the working ratio shown in Table 13 was applied using an Au billet produced in the same manner as in Example 20. Next, the forged Au target material was heat-treated under the conditions shown in Table 13. Thereafter, the Au target material after the heat treatment was ground to produce an Au sputtering target having the same shape as that of Example 20.
Claims (7)
- 金および不可避不純物からなり、スパッタされる表面を有する金スパッタリングターゲットであって、
ビッカース硬さの平均値が40以上60以下であり、
平均結晶粒径が15μm以上200μm以下であり、
前記表面に金の{110}面が優先配向している、金スパッタリングターゲット。 A gold sputtering target comprising gold and unavoidable impurities and having a surface to be sputtered,
The average value of Vickers hardness is 40 or more and 60 or less,
An average crystal grain size of 15 μm to 200 μm,
A gold sputtering target, in which the {110} plane of gold is preferentially oriented on the surface. - 前記表面をX線回折し、金の各結晶面の回折強度比から下記の式(1)から各結晶面の配向指数Nを求めたとき、金の{110}面の配向指数Nが1より大きく、かつ全ての結晶面の配向指数Nのうち最も大きい、請求項1に記載の金スパッタリングターゲット。
- 前記スパッタリングターゲット全体としての前記ビッカース硬さのばらつきが±20%以内である、請求項1または請求項2に記載の金スパッタリングターゲット。 The gold sputtering target according to claim 1 or 2, wherein the variation of the Vickers hardness as the entire sputtering target is within ± 20%.
- 前記スパッタリングターゲット全体としての前記平均結晶粒径のばらつきが±20%以内である、請求項1ないし請求項3のいずれか1項に記載の金スパッタリングターゲット。 The gold sputtering target according to any one of claims 1 to 3, wherein the variation of the average crystal grain size as a whole of the sputtering target is within ± 20%.
- 前記スパッタリングターゲットの金純度が99.99%以上である、請求項1ないし請求項4のいずれか1項に記載の金スパッタリングターゲット。 The gold sputtering target according to any one of claims 1 to 4, wherein the gold purity of the sputtering target is 99.99% or more.
- プレート形状を有する、請求項1ないし請求項5のいずれか1項に記載の金スパッタリングターゲット。 The gold sputtering target according to any one of claims 1 to 5, which has a plate shape.
- 円筒形状を有する、請求項1ないし請求項5のいずれか1項に記載の金スパッタリングターゲット。 The gold sputtering target according to any one of claims 1 to 5, which has a cylindrical shape.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018521015A JP7077225B2 (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
EP17806831.8A EP3467141B1 (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
KR1020217025934A KR102614205B1 (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
CN201780032766.XA CN109196137B (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
RU2018146163A RU2785130C2 (en) | 2016-06-02 | 2017-06-02 | Golden sprayed target |
KR1020187037313A KR20190015346A (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
US16/205,471 US11569074B2 (en) | 2016-06-02 | 2018-11-30 | Gold sputtering target |
JP2022009034A JP7320639B2 (en) | 2016-06-02 | 2022-01-25 | Method for forming Au film |
US18/088,454 US11817299B2 (en) | 2016-06-02 | 2022-12-23 | Gold sputtering target |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-111245 | 2016-06-02 | ||
JP2016111245 | 2016-06-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/205,471 Continuation US11569074B2 (en) | 2016-06-02 | 2018-11-30 | Gold sputtering target |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017209281A1 true WO2017209281A1 (en) | 2017-12-07 |
Family
ID=60477574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020617 WO2017209281A1 (en) | 2016-06-02 | 2017-06-02 | Gold sputtering target |
Country Status (7)
Country | Link |
---|---|
US (2) | US11569074B2 (en) |
EP (1) | EP3467141B1 (en) |
JP (2) | JP7077225B2 (en) |
KR (2) | KR20190015346A (en) |
CN (1) | CN109196137B (en) |
TW (1) | TWI752035B (en) |
WO (1) | WO2017209281A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019111900A1 (en) * | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | Gold sputtering target and method for producing same |
WO2019111945A1 (en) * | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | Method for producing gold sputtering target and method for producing gold film |
WO2022102765A1 (en) * | 2020-11-16 | 2022-05-19 | 国立大学法人東北大学 | Platinum-base sputtering target and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127861A (en) * | 1984-11-26 | 1986-06-16 | Mitsubishi Metal Corp | Gold target for sputtering |
JP2002146521A (en) * | 2000-11-10 | 2002-05-22 | Nikko Materials Co Ltd | Method for manufacturing gold target |
JP2006161066A (en) * | 2004-12-02 | 2006-06-22 | Seiko Epson Corp | Sputtering target, manufacturing method therefor, sputtering device and liquid-spouting head |
CN103726024A (en) * | 2014-01-02 | 2014-04-16 | 昆山全亚冠环保科技有限公司 | Production method of gold target material for sputter coating |
WO2015111563A1 (en) * | 2014-01-24 | 2015-07-30 | 株式会社フルヤ金属 | Gold or platinum target, and production method for same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU547242A1 (en) | 1975-09-19 | 1977-02-25 | Предприятие П/Я Х-5476 | Method of making metal tape |
JPS62172543A (en) * | 1986-01-24 | 1987-07-29 | Citizen Watch Co Ltd | Optical recording element |
DE3631830A1 (en) * | 1986-09-19 | 1988-03-31 | Demetron | MULTI-MATERIAL ALLOY FOR TARGETS OF CATHODE SPRAYING SYSTEMS AND THEIR USE |
JPH10195610A (en) * | 1996-12-27 | 1998-07-28 | Dowa Mining Co Ltd | Fcc metal in which crystal orientation is regulated and its production |
US6946039B1 (en) * | 2000-11-02 | 2005-09-20 | Honeywell International Inc. | Physical vapor deposition targets, and methods of fabricating metallic materials |
RU2214476C2 (en) | 2001-07-18 | 2003-10-20 | Дочернее государственное предприятие "Институт ядерной физики" Национального ядерного центра Республики Казахстан | Method of forming coat from precious metals and their alloys |
JP2003328059A (en) * | 2002-05-10 | 2003-11-19 | Matsuda Sangyo Co Ltd | Hardening gold alloy |
US7235143B2 (en) | 2002-08-08 | 2007-06-26 | Praxair S.T. Technology, Inc. | Controlled-grain-precious metal sputter targets |
US8252126B2 (en) | 2004-05-06 | 2012-08-28 | Global Advanced Metals, Usa, Inc. | Sputter targets and methods of forming same by rotary axial forging |
DE102005050424B4 (en) | 2005-10-19 | 2009-10-22 | W.C. Heraeus Gmbh | Sputtering target made of multi-component alloys |
MY149446A (en) | 2006-09-26 | 2013-08-30 | Oerlikon Trading Ag | Workpiece with hard coating |
JP5472353B2 (en) | 2012-03-27 | 2014-04-16 | 三菱マテリアル株式会社 | Silver-based cylindrical target and manufacturing method thereof |
CN103128303A (en) * | 2013-02-28 | 2013-06-05 | 北京科技大学 | Method for preparing nanogold by vapor deposition process |
CN104561639B (en) * | 2014-12-26 | 2017-01-18 | 北京有色金属与稀土应用研究所 | Gold alloy target and preparation method thereof |
JP7274816B2 (en) | 2017-12-06 | 2023-05-17 | 田中貴金属工業株式会社 | Gold sputtering target and its manufacturing method |
-
2017
- 2017-06-02 CN CN201780032766.XA patent/CN109196137B/en active Active
- 2017-06-02 KR KR1020187037313A patent/KR20190015346A/en not_active IP Right Cessation
- 2017-06-02 KR KR1020217025934A patent/KR102614205B1/en active IP Right Grant
- 2017-06-02 JP JP2018521015A patent/JP7077225B2/en active Active
- 2017-06-02 WO PCT/JP2017/020617 patent/WO2017209281A1/en unknown
- 2017-06-02 EP EP17806831.8A patent/EP3467141B1/en active Active
- 2017-06-02 TW TW106118251A patent/TWI752035B/en active
-
2018
- 2018-11-30 US US16/205,471 patent/US11569074B2/en active Active
-
2022
- 2022-01-25 JP JP2022009034A patent/JP7320639B2/en active Active
- 2022-12-23 US US18/088,454 patent/US11817299B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127861A (en) * | 1984-11-26 | 1986-06-16 | Mitsubishi Metal Corp | Gold target for sputtering |
JP2002146521A (en) * | 2000-11-10 | 2002-05-22 | Nikko Materials Co Ltd | Method for manufacturing gold target |
JP2006161066A (en) * | 2004-12-02 | 2006-06-22 | Seiko Epson Corp | Sputtering target, manufacturing method therefor, sputtering device and liquid-spouting head |
CN103726024A (en) * | 2014-01-02 | 2014-04-16 | 昆山全亚冠环保科技有限公司 | Production method of gold target material for sputter coating |
WO2015111563A1 (en) * | 2014-01-24 | 2015-07-30 | 株式会社フルヤ金属 | Gold or platinum target, and production method for same |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019111900A1 (en) * | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | Gold sputtering target and method for producing same |
WO2019111945A1 (en) * | 2017-12-06 | 2019-06-13 | 田中貴金属工業株式会社 | Method for producing gold sputtering target and method for producing gold film |
CN111433387A (en) * | 2017-12-06 | 2020-07-17 | 田中贵金属工业株式会社 | Method for producing gold sputtering target and method for producing gold film |
JPWO2019111945A1 (en) * | 2017-12-06 | 2021-01-07 | 田中貴金属工業株式会社 | Manufacturing method of gold sputtering target and manufacturing method of gold film |
US11555238B2 (en) | 2017-12-06 | 2023-01-17 | Tanaka Kikinzoku Kogyo K. K. | Producing method for gold sputtering target and producing method for gold film |
US11560620B2 (en) | 2017-12-06 | 2023-01-24 | Tanaka Kikinzoku Kogyo K. K. | Gold sputtering target and method for producing the same |
JP7214650B2 (en) | 2017-12-06 | 2023-01-30 | 田中貴金属工業株式会社 | Gold sputtering target manufacturing method and gold film manufacturing method |
US11795540B2 (en) | 2017-12-06 | 2023-10-24 | Tanaka Kikinzoku Kogyo K. K. | Gold sputtering target and method for producing the same |
WO2022102765A1 (en) * | 2020-11-16 | 2022-05-19 | 国立大学法人東北大学 | Platinum-base sputtering target and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20210103593A (en) | 2021-08-23 |
KR102614205B1 (en) | 2023-12-14 |
JP7077225B2 (en) | 2022-05-30 |
JP2022048244A (en) | 2022-03-25 |
JP7320639B2 (en) | 2023-08-03 |
TW201742942A (en) | 2017-12-16 |
US11817299B2 (en) | 2023-11-14 |
US20230126513A1 (en) | 2023-04-27 |
RU2018146163A3 (en) | 2020-07-09 |
US11569074B2 (en) | 2023-01-31 |
CN109196137A (en) | 2019-01-11 |
US20190103257A1 (en) | 2019-04-04 |
JPWO2017209281A1 (en) | 2019-04-18 |
KR20190015346A (en) | 2019-02-13 |
TWI752035B (en) | 2022-01-11 |
EP3467141A1 (en) | 2019-04-10 |
CN109196137B (en) | 2021-11-30 |
EP3467141A4 (en) | 2020-04-15 |
RU2018146163A (en) | 2020-07-09 |
EP3467141B1 (en) | 2023-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7320639B2 (en) | Method for forming Au film | |
JP7353424B2 (en) | Au film formation method | |
US11555238B2 (en) | Producing method for gold sputtering target and producing method for gold film | |
TWI676691B (en) | Sputum sputtering target and manufacturing method thereof | |
RU2785507C2 (en) | Golden sprayed target and its production method | |
RU2785130C2 (en) | Golden sprayed target | |
RU2784174C2 (en) | Method for production of gold film, using gold sprayed target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018521015 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187037313 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017806831 Country of ref document: EP Effective date: 20190102 |