WO2015111309A1 - 難燃性樹脂組成物、及び、これを用いたケーブル - Google Patents

難燃性樹脂組成物、及び、これを用いたケーブル Download PDF

Info

Publication number
WO2015111309A1
WO2015111309A1 PCT/JP2014/082013 JP2014082013W WO2015111309A1 WO 2015111309 A1 WO2015111309 A1 WO 2015111309A1 JP 2014082013 W JP2014082013 W JP 2014082013W WO 2015111309 A1 WO2015111309 A1 WO 2015111309A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin composition
flame retardant
polyolefin resin
Prior art date
Application number
PCT/JP2014/082013
Other languages
English (en)
French (fr)
Inventor
悠佳 福島
誠之 岩田
知久 渡邉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201480073223.9A priority Critical patent/CN105916930A/zh
Priority to EP14880006.3A priority patent/EP3098261B1/en
Priority to US15/112,327 priority patent/US10242769B2/en
Priority to JP2015558746A priority patent/JP6170182B2/ja
Publication of WO2015111309A1 publication Critical patent/WO2015111309A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives

Definitions

  • the present invention relates to a flame retardant resin composition and a cable using the same.
  • a flame retardant resin composition a composition obtained by adding a metal hydroxide as a flame retardant to a polyolefin resin and adding a silicone compound such as silicone oil or magnesium stearate as a flame retardant aid is known. (See Patent Document 1 below).
  • the composition described in Patent Document 1 sometimes fails to ensure sufficient flame retardancy.
  • the amount of the flame retardant added is increased, the flame retardancy can be improved.
  • the mechanical properties of the composition are deteriorated.
  • the silicone type compound since the composition contains the silicone type compound, the silicone type compound might bleed out at the time of the extrusion process of the composition.
  • the bleeding out of the silicone compound means that the blending amount of the silicone compound with respect to the base resin in the obtained insulating layer or sheath is smaller than the initial blending amount. In this case, depending on the amount to be reduced, the characteristics of the obtained insulating layer and sheath will be lower than desired characteristics.
  • the present invention has been made in view of the above circumstances, and is capable of sufficiently suppressing bleeding out of a silicone-based compound during extrusion while achieving both excellent flame retardancy and excellent mechanical properties.
  • An object is to provide a resin composition and a cable using the same.
  • the present inventors have studied focusing on a metal hydroxide that is a flame retardant.
  • flame retardant compound such as silicone compound and magnesium stearate and aluminum hydroxide are blended at a predetermined ratio with respect to 100 parts by mass of polyolefin resin, excellent flame retardancy and excellent machine
  • the present inventors have found that it is possible to achieve both the desired characteristics. However, even in this case, there is room for further improvement in terms of suppression of bleeding out of the silicone compound during extrusion processing.
  • the present inventors have found that blending calcium carbonate at a predetermined ratio with respect to 100 parts by mass of the base resin is effective in suppressing bleeding out of the silicone compound during extrusion processing. I found out. Thus, the present inventors have completed the present invention.
  • the present invention is a polyolefin resin, a silicone compound blended at a ratio of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin, and 5 parts by mass or more with respect to 100 parts by mass of the polyolefin resin.
  • It is a flame retardant resin composition containing aluminum hydroxide blended at a ratio of 5 parts by mass or more and 60 parts by mass or less.
  • the bleed-out of the silicone compound during the extrusion process can be sufficiently suppressed while achieving both excellent flame retardancy and excellent mechanical properties.
  • the present inventors speculate as follows about the reason why more excellent flame retardancy is obtained in the flame retardant resin composition of the present invention.
  • the aluminum hydroxide is decomposed at the initial stage of combustion, causing an endothermic reaction. For this reason, the temperature rise of polyolefin resin is fully suppressed and it becomes possible to inhibit continuation of combustion.
  • the silicone compound is decomposed by heat, a barrier layer is formed on the surface of the polyolefin resin by the silicone compound. For this reason, the present inventors speculate that the flame-retardant effect is enhanced.
  • the inventors of the present invention infer the reason why the flame-retardant resin composition of the present invention can suppress bleed-out of the silicone compound during extrusion processing as follows.
  • the silicone compound melted during the extrusion process is captured by calcium carbonate that is difficult to bleed out during the extrusion process, and this may prevent the silicone compound from bleeding out onto the surface of the extruded product.
  • the aluminum hydroxide is preferably blended at a ratio of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared with the case where the amount of aluminum hydroxide is out of the above range.
  • the silicone compound is preferably blended at a ratio of 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the fatty acid-containing compound is preferably magnesium stearate or calcium stearate.
  • the flame retardant resin composition includes the polyolefin resin, the silicone compound, the fatty acid-containing compound, the inorganic flame retardant, an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a colorant, and a charge. It may be composed of at least one additive selected from the group consisting of inhibitors.
  • the flame retardant resin composition comprises a polyolefin resin, a silicone compound, a fatty acid-containing compound, an inorganic flame retardant, an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a colorant, and an antistatic agent. It is comprised only by the at least 1 sort (s) of additive selected.
  • the antioxidant is a phenol-based antioxidant, an amine-based antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant, a hydrazine-based antioxidant, or an amide-based antioxidant. It is composed of at least one selected from the group consisting of an antioxidant, phosphoric acid and citric acid, and the UV degradation inhibitor is a benzophenone UV degradation inhibitor, a salicylate UV degradation inhibitor, or a benzotriazole UV degradation prevention Comprising at least one selected from the group consisting of an agent, an acrylonitrile-based UV degradation inhibitor, a metal complex-based UV degradation inhibitor, and a hindered amine UV degradation inhibitor, and the processing aid is a hydrocarbon processing aid , Fatty acid processing aids, fatty acid amide processing aids, ester processing aids, alcohol processing aids, metal soaps and wacks
  • the colorant is composed of at least one selected from the group consisting of inorganic pigments, organic pigments, dyes, and carbon black, and
  • the present invention is a cable that includes an insulated wire having a conductor and an insulating layer that covers the conductor, and the insulating layer is composed of the above-described flame-retardant resin composition.
  • the present invention is a cable having a conductor, an insulating layer covering the conductor, and a sheath covering the insulating layer, wherein at least one of the insulating layer and the sheath is the flame retardant resin composition described above. It is a configured cable.
  • this invention is a cable which has a sheath and the optical fiber provided inside the said sheath or provided so that the said sheath may be penetrated, and the said sheath is comprised with the flame-retardant resin composition mentioned above. .
  • the flame retardant resin composition which can fully suppress the bleed-out of the silicone type compound at the time of an extrusion process, and a cable using the same, making it compatible with the outstanding flame retardance and the outstanding mechanical characteristic Is provided.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is sectional drawing which shows 2nd Embodiment of the cable of this invention. It is sectional drawing which shows 3rd Embodiment of the cable of this invention.
  • FIG. 1 is a partial side view showing a first embodiment of a cable according to the present invention
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the cable 10 includes one insulated wire 4 and a sheath 3 that covers the one insulated wire 4.
  • the insulated wire 4 includes an inner conductor 1 and an insulating layer 2 that covers the inner conductor 1.
  • the insulating layer 2 and the sheath 3 are made of a flame retardant resin composition, and the flame retardant resin composition is 3 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the polyolefin resin and the polyolefin resin. 10 parts by mass with respect to 100 parts by mass of the silicone compound compounded at the following ratio, a fatty acid-containing compound compounded at a ratio of 5 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyolefin resin. Calcium carbonate blended at a ratio of less than 100 parts by mass and aluminum hydroxide blended at a ratio of 5 parts by mass to 60 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the flame retardant resin composition can sufficiently suppress the bleeding out of the silicone compound during extrusion processing while achieving both excellent flame retardancy and excellent mechanical properties. For this reason, the insulating layer 2 and the sheath 3 comprised with the said flame-retardant resin composition can fully suppress the fall of these characteristics, making it compatible with the outstanding flame retardance and the outstanding mechanical characteristic. For this reason, the cable 10 can sufficiently suppress a decrease in these characteristics while achieving both excellent flame retardancy and excellent mechanical characteristics.
  • the inner conductor 1 is prepared.
  • the inner conductor 1 may be composed of only one strand, or may be configured by bundling a plurality of strands. Further, the inner conductor 1 is not particularly limited with respect to the conductor diameter, the material of the conductor, and the like, and can be appropriately determined according to the application.
  • the flame retardant resin composition On the other hand, the flame retardant resin composition is prepared.
  • the flame retardant resin composition comprises a polyolefin resin, a silicone compound blended at a ratio of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin, and 100 parts by mass of the polyolefin resin.
  • polyolefin resin examples include an ethylene resin and a propylene resin. You may use these individually by 1 type or in mixture of 2 or more types.
  • the ethylene-based resin refers to a resin containing ethylene as a structural unit. Examples of the ethylene-based resin include polyethylene resin (PE), ethylene ethyl acrylate copolymer (EEA), and ethylene vinyl acetate copolymer ( EVA).
  • the propylene-based resin refers to a resin containing propylene as a structural unit, and examples of the propylene-based resin include polypropylene resin (PP).
  • the silicone-based compound functions as a flame retardant aid, and examples thereof include polyorganosiloxane.
  • the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain.
  • the organic group include a methyl group, a vinyl group, an ethyl group, a propyl group, and a phenyl group.
  • polyorganosiloxane examples include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, and methyl (3,3,3-trifluoropropyl) polysiloxane. Is mentioned.
  • the polyorganosiloxane include silicone powder, silicone gum, and silicone resin. Among these, silicone gum is preferable. In this case, bloom is less likely to occur.
  • the silicone compound is blended at a ratio of 3 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the flame retardancy is significantly reduced.
  • the blending ratio of the silicone compound with respect to 100 parts by mass of the polyolefin resin is larger than 20 parts by mass, bleeding out of the silicone compound at the time of extrusion of the flame retardant resin composition cannot be sufficiently suppressed.
  • the silicone compound is preferably blended at a ratio of 3 to 10 parts by mass with respect to 100 parts by mass of the base resin. In this case, more excellent mechanical properties can be obtained as compared with the case where the blending ratio of the silicone compound with respect to 100 parts by mass of the base resin is out of the above range.
  • the silicone compound may be attached in advance to the surface of calcium carbonate.
  • the uniformity of characteristics in the flame retardant resin composition is further improved.
  • the bleed-out of the silicone compound at the time of extrusion of the flame retardant resin composition can be more sufficiently suppressed.
  • a silicone compound is added to calcium carbonate and mixed to obtain a mixture, and then the mixture is dried at 40 to 75 ° C. for 10 to 40 minutes.
  • the dried mixture can be obtained by grinding with a Henschel mixer, an atomizer or the like.
  • the fatty acid-containing compound functions as a flame retardant aid.
  • the fatty acid-containing compound refers to a compound containing a fatty acid or a metal salt thereof.
  • a fatty acid having 12 to 28 carbon atoms is used as the fatty acid.
  • examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid.
  • stearic acid or tuberculostearic acid is preferable, and stearic acid is particularly preferable. In this case, more excellent flame retardancy can be obtained as compared with the case of using a fatty acid other than stearic acid or tuberculostearic acid.
  • the metal constituting the fatty acid metal salt examples include magnesium, calcium, zinc and lead.
  • the fatty acid metal salt magnesium stearate or calcium stearate is preferable. In this case, more excellent flame retardancy can be obtained as compared with the case where the fatty acid-containing compound is neither magnesium stearate nor calcium stearate.
  • the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the flame retardancy is significantly reduced.
  • the fatty acid-containing compound is preferably blended at a ratio of 15 parts by mass or less. In this case, superior mechanical properties can be obtained as compared with the case where the proportion of the fatty acid-containing compound is larger than 15 parts by mass.
  • Calcium carbonate is blended at a ratio of 10 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • Calcium carbonate is preferably blended at a ratio of 30 parts by mass or more and less than 100 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the bleed-out of the silicone compound at the time of extrusion of the flame retardant resin composition can be effectively suppressed as compared with the case where the amount of calcium carbonate is out of the above range.
  • Aluminum hydroxide is blended at a ratio of 5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the mechanical properties are further improved as compared with the case where the blending ratio of aluminum hydroxide with respect to 100 parts by mass of the polyolefin resin exceeds 60 parts by mass.
  • the flame retardancy is remarkably improved as compared with the case where the mixing ratio of aluminum hydroxide to 100 parts by mass of the polyolefin resin is less than 5 parts by mass.
  • aluminum hydroxide is blended at a ratio of 5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  • the flame retardancy of the flame retardant resin composition can be further improved as compared with the case where the amount of aluminum hydroxide is out of the above range.
  • the flame retardant resin composition may further contain an additive as necessary.
  • the additive is composed of a material different from the above-described polyolefin resin, silicone compound, fatty acid-containing compound, and inorganic flame retardant.
  • examples of such additives include antioxidants, ultraviolet degradation inhibitors, processing aids, colorants, and antistatic agents. These can be used alone or in combination of two or more.
  • an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a colorant and an antistatic agent are all contained in the above-mentioned flame retardant resin composition, so that the flame retardant resin composition has flame retardancy. Refers to additives that do not improve.
  • “does not improve the flame retardancy of the flame retardant resin composition” means a flame retardant resin composition containing an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a colorant or an antistatic agent.
  • the evaluation results by the vertical single-line combustion test used for the evaluation of the flame retardancy of the flame retardant resin composition are an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a colorant and a charge. It says that it is the same or inferior to the flame retardant evaluation results for flame retardant resin compositions that differ only in that none of the inhibitors are included.
  • antioxidants examples include phenolic antioxidants, amine antioxidants, sulfur antioxidants, phosphorus antioxidants, hydrazine antioxidants, amide antioxidants, phosphoric acid and citric acid. It is done. These can be used alone or in combination of two or more.
  • a phenol-based antioxidant is particularly preferable.
  • UV degradation inhibitor examples include, for example, a benzophenone UV degradation inhibitor, a salicylate UV degradation inhibitor, a benzotriazole UV degradation inhibitor, an acrylonitrile UV degradation inhibitor, a metal complex UV degradation inhibitor, and a hindered amine UV radiation.
  • examples include deterioration inhibitors. These can be used alone or in combination of two or more.
  • a hindered amine UV degradation inhibitor is particularly preferable.
  • processing aids include hydrocarbon processing aids, fatty acid processing aids, fatty acid amide processing aids, ester processing aids, alcohol processing aids, metal soaps and waxes. These can be used alone or in combination of two or more.
  • a hydrocarbon processing aid is particularly preferable.
  • the colorant examples include inorganic pigments, organic pigments, dyes, and carbon black. These can be used alone or in combination of two or more. Here, an inorganic pigment is particularly preferable as the colorant.
  • inorganic pigments include chromates, ferrocyan compounds, sulfides, oxides, sulfates, silicates, carbonates and phosphates. These can be used alone or in combination of two or more.
  • organic pigments examples include azo pigments, phthalocyanine pigments, vat dye pigments, dyed lake pigments, quinacridone pigments, and dioxazine pigments. These can be used alone or in combination of two or more.
  • the dye examples include anthraquinone dyes, indigoid dyes, and azo dyes. These can be used alone or in combination of two or more.
  • the antistatic agent examples include a cationic active agent, an anionic active agent, a nonionic active agent, and an amphoteric active agent. These can be used alone or in combination of two or more.
  • a cationic activator is particularly preferable.
  • cationic activator examples include primary amine salts, tertiary amines, quaternary ammonium compounds and pyridine derivatives. These can be used alone or in combination of two or more.
  • anionic activator examples include sulfated oil, soap, sulfated ester oil, sulfated amide oil, sulfate esters, sulfonic acids and phosphate esters. These can be used alone or in combination of two or more.
  • nonionic activators include polyhydric alcohol fatty acid esters and ethylene oxide adducts. These can be used alone or in combination of two or more.
  • amphoteric activators include carboxylic acid derivatives and imidazoline derivatives. These can be used alone or in combination of two or more.
  • the compounding quantity of the additive with respect to 100 mass parts of polyolefin resin is not specifically limited, It is more preferable that it is 2 mass parts or less, and it is especially preferable that it is less than 1 mass part. However, it is preferable that the compounding quantity of the additive with respect to 100 mass parts of polyolefin resin is 0.1 mass part or more.
  • the flame retardant resin composition can be obtained by kneading a polyolefin resin, a silicone compound, a fatty acid-containing compound, calcium carbonate, aluminum hydroxide and the like.
  • the kneading can be performed with a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, a mixing roll, and the like.
  • a part of the polyolefin resin and the silicone compound are kneaded, and the obtained master batch (MB) is mixed with the remaining polyolefin resin, fatty acid-containing compound, carbonic acid. You may knead
  • the inner conductor 1 is covered with the flame retardant resin composition.
  • the flame retardant resin composition is melt kneaded using an extruder to form a tubular extrudate. Then, the tubular extrudate is continuously coated on the inner conductor 1. Thus, the insulated wire 4 is obtained.
  • sheath Finally, one insulated wire 4 obtained as described above is prepared, and these insulated wires 4 are covered with the sheath 3 produced using the above-mentioned flame-retardant resin composition.
  • the sheath 3 protects the insulating layer 2 from physical or chemical damage.
  • the cable 10 is obtained as described above.
  • the present invention is not limited to the first embodiment.
  • the cable 10 has one insulated wire 4, but the cable of the present invention is not limited to a cable having one insulated wire 4.
  • Two or more insulated wires 4 may be provided.
  • a resin portion made of polypropylene or the like may be provided between the sheath 3 and the insulated wire 4.
  • the insulating layer 2 and the sheath 3 of the insulated wire 4 are comprised with said flame-retardant resin composition
  • the insulating layer 2 is comprised with normal insulating resin
  • only the sheath 3 is comprised.
  • the flame retardant resin composition may be configured
  • the sheath 3 may be configured with a normal insulating resin
  • only the insulating layer 2 may be configured with the flame retardant resin composition.
  • the flame-retardant resin composition of this invention is an optical fiber cable, That is, the present invention can also be applied to a sheath in a cable including a sheath and an optical fiber provided inside the sheath or provided so as to penetrate the sheath.
  • the optical fiber cable include a drop type optical fiber cable, an indoor type optical fiber cable, a layer type optical fiber cable, and a tape slot type optical fiber cable.
  • FIG. 3 is a cross-sectional view showing an indoor type optical fiber cable.
  • the indoor optical fiber cable 20 includes two tension members 22 and 23, an optical fiber 24, and a sheath 25 that covers them.
  • the optical fiber 24 is provided so as to penetrate the sheath 25.
  • FIG. 4 is a cross-sectional view showing a layered optical fiber cable.
  • the layered optical fiber cable 30 includes a core portion 31 and a sheath 35 provided so as to surround the core portion 31.
  • the core portion 31 includes a tension member 32, a lip cord 33 provided so as to surround the tension member 32, and an optical fiber disposed between the tension member 32 and the lip cord 33 along the longitudinal direction of the tension member 32.
  • a unit 34 is configured by arranging the optical fiber 24 inside a tube 36 which is colored or not colored. Therefore, the optical fiber 24 is provided inside the sheath 35.
  • the press-winding tape 37 is usually wound around the core portion 31, the layered optical fiber cable 30 may not have the press-winding tape 37.
  • a waterproof material 38 may be filled around the optical fiber unit 34 between the lip cord 33 and the tension member 32.
  • the sheath 25 and the sheath 35 are made of the flame retardant resin composition of the present invention.
  • Example 1 to 19 and Comparative Examples 1 to 8 Base resin, silicone masterbatch (silicone MB), fatty acid-containing compound, calcium carbonate and aluminum hydroxide were blended in the blending amounts shown in Tables 1 to 5, and kneaded at 160 ° C. for 15 minutes with a Banbury mixer. A resin composition was obtained.
  • Tables 1 to 5 the unit of the blending amount of each blending component is part by mass.
  • the base resin is also contained in the silicone MB, the total amount of the base resin is 100 parts by mass when the PE, EEA, EVA or PP and the base resin in the silicone MB are totaled.
  • Base resin Polyethylene resin (PE) (trade name “Excellen GMH GH030”, manufactured by Sumitomo Chemical Co., Ltd.)
  • B Ethylene acrylate copolymer (EEA, trade name “DPDJ-6503”, manufactured by Nihon Unicar)
  • C Ethylene vinyl acetate copolymer (EVA, trade name “Evaflex V5274”, manufactured by Mitsui DuPont Polychemical Co., Ltd.)
  • D Polypropylene resin (PP, trade name “E111G”, manufactured by Prime Polymer Co., Ltd.)
  • Silicone MB (trade name “X-22-2125H”, manufactured by Shin-Etsu Chemical Co., Ltd.) 50% by weight silicone gum and 50% by weight PE
  • Fatty acid-containing compound Mg stearate (trade name “Efcochem MGS”, manufactured by ADEKA) Stearic
  • the insulated wires of Examples 1 to 19 reached the acceptance standards in terms of flame retardancy, mechanical properties, and the effect of suppressing bleed out of the silicone compound during extrusion.
  • the insulated wires of Comparative Examples 1 to 8 did not reach the acceptance criteria in at least one of flame retardancy, mechanical properties, and bleed-out suppression effect of the silicone compound during extrusion.
  • the flame retardant resin composition of the present invention it is possible to sufficiently suppress the bleed-out of the silicone compound at the time of extrusion while achieving both excellent flame retardancy and excellent mechanical properties. confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 ポリオレフィン樹脂と、ポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合されるシリコーン系化合物と、ポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される脂肪酸含有化合物と、ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される炭酸カルシウムと、ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される水酸化アルミニウムとを含む難燃性樹脂組成物が開示されている。

Description

難燃性樹脂組成物、及び、これを用いたケーブル
 本発明は、難燃性樹脂組成物、及び、これを用いたケーブルに関する。
 難燃性樹脂組成物として、ポリオレフィン樹脂に、難燃剤として金属水酸物を添加するとともに、難燃助剤としてシリコーン油などのシリコーン系化合物やステアリン酸マグネシウムを添加してなる組成物が知られている(下記特許文献1参照)。
特開平10-7913号公報
 しかしながら、上記特許文献1に記載の組成物では、難燃性が十分に確保されない場合があった。ここで、難燃剤の添加量を増加させれば難燃性を向上させることはできる。しかし、この場合、組成物の機械的特性が低下してしまう。また上記特許文献1に記載の組成物では、組成物がシリコーン系化合物を含んでいるため、その組成物の押出加工時にシリコーン系化合物がブリードアウトする場合があった。ここで、シリコーン系化合物のブリードアウトは、得られる絶縁層やシースにおいてシリコーン系化合物のベース樹脂に対する配合量が、当初の配合量よりも減少することを意味する。この場合、減少する量によっては、得られる絶縁層やシースの特性が所望の特性よりも低下することとなる。
 このため、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できる難燃性樹脂組成物が求められていた。
 本発明は、上記事情に鑑みてなされたものであり、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できる難燃性樹脂組成物、及び、これを用いたケーブルを提供することを目的とする。
 本発明者らは上記課題を解決するため、難燃剤である金属水酸化物に着目して検討した。その結果、ポリオレフィン樹脂100質量部に対し、シリコーン系化合物、ステアリン酸マグネシウム等の脂肪酸含有化合物及び水酸化アルミニウムがそれぞれ所定の割合で配合されている場合には、優れた難燃性と優れた機械的特性とを両立させることができることを本発明者らは見出した。しかし、この場合でも、押出加工時のシリコーン系化合物のブリードアウトの抑制の点ではさらなる改善の余地があった。そこで、本発明者らはさらに鋭意研究を重ねた結果、炭酸カルシウムをベース樹脂100質量部に対して所定の割合で配合することが押出加工時のシリコーン系化合物のブリードアウトの抑制に効果的であることを見出した。こうして本発明者らは本発明を完成するに至った。
 すなわち本発明は、ポリオレフィン樹脂と、前記ポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合されるシリコーン系化合物と、前記ポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される脂肪酸含有化合物と、前記ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される炭酸カルシウムと、前記ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される水酸化アルミニウムとを含む難燃性樹脂組成物である。
 本発明の難燃性樹脂組成物によれば、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できる。
 なお、本発明者らは、本発明の難燃性樹脂組成物において、より優れた難燃性が得られる理由については以下のように推察している。
 すなわち燃焼初期に水酸化アルミニウムが分解され、吸熱反応を起こすと考えられる。このため、ポリオレフィン樹脂の温度上昇が十分に抑制され、燃焼の継続を阻害することが可能となる。そして、シリコーン系化合物が熱によって分解されるようになると、シリコーン系化合物によってポリオレフィン樹脂の表面にバリア層が形成される。このため、難燃効果が高まっているものと本発明者らは推察している。
 また本発明者らは、本発明の難燃性樹脂組成物において、押出加工時のシリコーン系化合物のブリードアウトを抑制できる理由については以下のように推察している。
 すなわち、押出加工時に溶融したシリコーン系化合物が、押出加工時にブリードアウトしにくい炭酸カルシウムによって捕捉され、それによってシリコーン系化合物が押出加工物の表面にブリードアウトすることが抑制されるのではないかと本発明者らは推測している。
 また、上記難燃性樹脂組成物においては、前記水酸化アルミニウムが前記ポリオレフィン樹脂100質量部に対して5質量部以上25質量部以下の割合で配合されていることが好ましい。
 この場合、水酸化アルミニウムの配合量が上記範囲を外れる場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。
 また、上記難燃性樹脂組成物においては、前記シリコーン系化合物が前記ポリオレフィン樹脂100質量部に対して3質量部以上10質量部以下の割合で配合されることが好ましい。
 この場合、ベース樹脂100質量部に対するシリコーン系化合物の配合割合が上記範囲を外れる場合に比べて、より優れた機械特性が得られる。
 上記難燃性樹脂組成物においては、前記脂肪酸含有化合物がステアリン酸マグネシウム又はステアリン酸カルシウムであることが好ましい。
 この場合、脂肪酸含有化合物がステアリン酸マグネシウム及びステアリン酸カルシウムのいずれでもない場合に比べて、より優れた難燃性が得られる。
 上記難燃性樹脂組成物は、前記ポリオレフィン樹脂と、前記シリコーン系化合物と、前記脂肪酸含有化合物と、前記無機系難燃剤と、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤からなる群より選択される少なくとも1種の添加剤とで構成されてもよい。
 この場合、難燃性樹脂組成物は、ポリオレフィン樹脂、シリコーン系化合物、脂肪酸含有化合物、無機系難燃剤、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤からなる群より選択される少なくとも1種の添加剤のみで構成されることになる。
 上記難燃性樹脂組成物においては、前記酸化防止剤が、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ヒドラジン系酸化防止剤、アミド系酸化防止剤酸化防止剤、リン酸及びクエン酸からなる群より選ばれる少なくとも1種で構成され、前記紫外線劣化防止剤が、ベンゾフェノン系紫外線劣化防止剤、サルチレート系紫外線劣化防止剤、ベンゾトリアゾール系紫外線劣化防止剤、アクリロニトリル系紫外線劣化防止剤、金属錯塩系紫外線劣化防止剤及びヒンダートアミン系紫外線劣化防止剤からなる群より選ばれる少なくとも1種で構成され、前記加工助剤が、炭化水素系加工助剤、脂肪酸系加工助剤、脂肪酸アミド系加工助剤、エステル系加工助剤、アルコール系加工助剤、金属石鹸及びワックスからなる群より選ばれる少なくとも1種で構成され、前記着色剤が、無機顔料、有機顔料、染料及びカーボンブラックからなる群より選ばれる少なくとも1種で構成され、前記帯電防止剤が、陽イオン活性剤、アニオン活性剤、非イオン活性剤及び両性活性剤からなる群より選ばれる少なくとも1種で構成されることが好ましい。
 また本発明は、導体と、前記導体を被覆する絶縁層とを有する絶縁電線を備えており、前記絶縁層が、上述した難燃性樹脂組成物で構成されるケーブルである。
 さらに本発明は、導体と、前記導体を被覆する絶縁層と、前記絶縁層を覆うシースを有するケーブルであって、前記絶縁層と前記シースの少なくとも一方が、上述した難燃性樹脂組成物で構成されるケーブルである。
 また本発明は、シースと、前記シースの内側に設けられ又は前記シースを貫通するように設けられる光ファイバとを有し、前記シースが上述した難燃性樹脂組成物で構成されるケーブルである。
 本発明によれば、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できる難燃性樹脂組成物及びこれを用いたケーブルが提供される。
本発明のケーブルの第1実施形態を示す部分側面図である。 図1のII-II線に沿った断面図である。 本発明のケーブルの第2実施形態を示す断面図である。 本発明のケーブルの第3実施形態を示す断面図である。
 以下、本発明の第1実施形態について図1及び図2を用いて詳細に説明する。
 [ケーブル]
 図1は、本発明に係るケーブルの第1実施形態を示す部分側面図であり、図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、ケーブル10は、1本の絶縁電線4と、1本の絶縁電線4を被覆するシース3とを備えている。そして、絶縁電線4は、内部導体1と、内部導体1を被覆する絶縁層2とを有している。
 ここで、絶縁層2及びシース3は難燃性樹脂組成物で構成されており、この難燃性樹脂組成物は、ポリオレフィン樹脂と、ポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合されるシリコーン系化合物と、ポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される脂肪酸含有化合物と、ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される炭酸カルシウムと、ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される水酸化アルミニウムとを含んでいる。
 上記難燃性樹脂組成物は、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できる。このため、上記難燃性樹脂組成物で構成される絶縁層2及びシース3は、優れた難燃性と優れた機械的特性とを両立させつつ、これらの特性の低下を十分に抑制できる。このため、ケーブル10は、優れた難燃性と優れた機械的特性とを両立させつつ、これらの特性の低下を十分に抑制できる。
 [ケーブルの製造方法]
 次に、上述したケーブル10の製造方法について説明する。
 (導体)
 まず内部導体1を準備する。内部導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、内部導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。
 (難燃性樹脂組成物)
 一方、上記難燃性樹脂組成物を準備する。難燃性樹脂組成物は、上述したように、ポリオレフィン樹脂と、ポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合されるシリコーン系化合物と、ポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される脂肪酸含有化合物と、ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される炭酸カルシウムと、ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される水酸化アルミニウムとを含んでいる。
 (ポリオレフィン樹脂)
 上述したように、ポリオレフィン樹脂としては、例えばエチレン系樹脂、及び、プロピレン系樹脂などが挙げられる。これらは1種類単独で又は2種以上を混合して用いてもよい。ここで、エチレン系樹脂とは、エチレンを構成単位として含む樹脂を言い、エチレン系樹脂としては、例えばポリエチレン樹脂(PE)、エチレンアクリル酸エチル共重合体(EEA)及びエチレン酢酸ビニル共重合体(EVA)が挙げられる。またプロピレン系樹脂としては、プロピレンを構成単位として含む樹脂を言い、プロピレン系樹脂としては、例えばポリプロピレン樹脂(PP)などが挙げられる。
 (シリコーン系化合物)
 シリコーン系化合物は、難燃助剤として機能するものであり、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものであり、有機基としては、例えばメチル基、ビニル基、エチル基、プロピル基、フェニル基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン、メチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンとして、シリコーンパウダー、シリコーンガム及びシリコーンレジンが挙げられる。中でも、シリコーンガムが好ましい。この場合、ブルームが起こりにくくなる。
 シリコーン系化合物は、上述したようにポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合される。
 ポリオレフィン樹脂100質量部に対するシリコーン系化合物の割合が3質量部未満である場合、難燃性が顕著に低下する。
 また、ポリオレフィン樹脂100質量部に対するシリコーン系化合物の配合割合が20質量部より大きい場合、難燃性樹脂組成物の押出加工時のシリコーン系化合物のブリードアウトを十分に抑制することができない。
 シリコーン系化合物は、ベース樹脂100質量部に対して3~10質量部の割合で配合されていることが好ましい。この場合、ベース樹脂100質量部に対するシリコーン系化合物の配合割合が上記範囲を外れる場合に比べて、より優れた機械特性が得られる。
 シリコーン系化合物は、炭酸カルシウムの表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中に含まれる各炭酸カルシウムの全体がシリコーン系化合物で被覆されていることが好ましい。この場合、炭酸カルシウムをポリオレフィン樹脂中に容易に分散させることができるため、難燃性樹脂組成物における特性の均一性がより向上する。また難燃性樹脂組成物の押出加工時のシリコーン系化合物のブリードアウトをより十分に抑制することができる。
 炭酸カルシウムの表面にシリコーン系化合物を付着させる方法としては、例えば炭酸カルシウムにシリコーン系化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕することによって得ることができる。
 (脂肪酸含有化合物)
 脂肪酸含有化合物は、難燃助剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を含有するものを言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸又はツベルクロステアリン酸が好ましく、ステアリン酸が特に好ましい。この場合、ステアリン酸又はツベルクロステアリン酸以外の脂肪酸を用いる場合に比べて、より優れた難燃性が得られる。
 脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛及び鉛などが挙げられる。脂肪酸の金属塩としては、ステアリン酸マグネシウム又はステアリン酸カルシウムが好ましい。この場合、脂肪酸含有化合物がステアリン酸マグネシウム及びステアリン酸カルシウムのいずれでもない場合に比べて、より優れた難燃性が得られる。
 脂肪酸含有化合物は、上述したようにポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される。
 脂肪酸含有化合物の割合が5質量部未満である場合、難燃性が顕著に低下する。
 ポリオレフィン樹脂100質量部に対する脂肪酸含有化合物の配合割合が20質量部より大きい場合、ブルームが発生しやすくなる。
 脂肪酸含有化合物は、15質量部以下の割合で配合されることが好ましい。この場合、脂肪酸含有化合物の割合が15質量部より大きい場合に比べて、より優れた機械特性が得られる。
 (炭酸カルシウム)
 炭酸カルシウムは、ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される。
 この場合、ポリオレフィン樹脂100質量部に対する炭酸カルシウムの配合割合が100質量部以上である場合に比べて、機械特性がより向上する。一方、ポリオレフィン樹脂100質量部に対する炭酸カルシウムの配合割合が10質量部未満である場合に比べて、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できなくなる。
 また、炭酸カルシウムはポリオレフィン樹脂100質量部に対して30質量部以上100質量部未満の割合で配合されることが好ましい。この場合、炭酸カルシウムの配合量が上記範囲を外れる場合に比べて、難燃性樹脂組成物の押出加工時のシリコーン系化合物のブリードアウトを効果的に抑制できる。
 (水酸化アルミニウム)
 水酸化アルミニウムは、ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される。
 この場合、ポリオレフィン樹脂100質量部に対する水酸化アルミニウムの配合割合が60質量部を超える場合に比べて、機械的特性がより向上する。一方、ポリオレフィン樹脂100質量部に対する水酸化アルミニウムの配合割合が5質量部未満である場合に比べて、難燃性が顕著に向上する。
 また、水酸化アルミニウムはポリオレフィン樹脂100質量部に対して5質量部以上25質量部以下の割合で配合されることが好ましい。この場合、水酸化アルミニウムの配合量が上記範囲を外れる場合に比べて、難燃性樹脂組成物の難燃性をより向上させることができる。
 上記難燃性樹脂組成物は、添加剤を必要に応じてさらに含んでもよい。添加剤は、上述したポリオレフィン樹脂、シリコーン系化合物、脂肪酸含有化合物及び無機系難燃剤とは異なる材料で構成される。このような添加剤としては、例えば酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤はいずれも、上述した難燃性樹脂組成物に含まれることで、難燃性樹脂組成物の難燃性を向上させない添加剤を言う。ここで、「難燃性樹脂組成物の難燃性を向上させない」とは、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤又は帯電防止剤を含む難燃性樹脂組成物について、後述する実施例及び比較例で難燃性樹脂組成物の難燃性の評価に使用される垂直一条燃焼試験による評価結果が、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤のいずれも含まない点でのみ異なる難燃性樹脂組成物についての難燃性の評価結果に対して同じか、又は劣ることを言う。
 酸化防止剤としては、例えばフェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ヒドラジン系酸化防止剤、アミド系酸化防止剤、リン酸及びクエン酸が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、酸化防止剤としては、フェノール系酸化防止剤が特に好ましい。
 紫外線劣化防止剤としては、例えばベンゾフェノン系紫外線劣化防止剤、サルチレート系紫外線劣化防止剤、ベンゾトリアゾール系紫外線劣化防止剤、アクリロニトリル系紫外線劣化防止剤、金属錯塩系紫外線劣化防止剤及びヒンダートアミン系紫外線劣化防止剤が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、紫外線劣化防止剤としては、ヒンダートアミン系紫外線劣化防止剤が特に好ましい。
 加工助剤としては、例えば炭化水素系加工助剤、脂肪酸系加工助剤、脂肪酸アミド系加工助剤、エステル系加工助剤、アルコール系加工助剤、金属石鹸及びワックスが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、加工助剤としては、炭化水素系加工助剤が特に好ましい。
 着色剤としては、例えば無機顔料、有機顔料、染料及びカーボンブラックが挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、着色剤としては、無機顔料が特に好ましい。
 無機顔料としては、例えばクロム酸塩、フェロシアン化合物、硫化物、酸化物、硫酸塩、ケイ酸塩、炭酸塩およびリン酸塩が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 有機顔料としては、例えばアゾ系顔料、フタロシアニン系顔料、建染染料系顔料、染付レーキ系顔料、キナクリドン系顔料、ジオキサジン系顔料が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 染料としては、例えばアントラキノン系染料、インジゴイド系染料およびアゾ系染料が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 帯電防止剤としては、例えば陽イオン活性剤、アニオン活性剤、非イオン活性剤及び両性活性剤が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。ここで、帯電防止剤としては、陽イオン活性剤が特に好ましい。
 陽イオン活性剤としては、例えば第一級アミン塩、第三級アミン、第四級アンモニウム化合物及びピリジン誘導体が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 アニオン活性剤としては、例えば硫酸化油、石鹸、硫酸化エステル油、硫酸化アミド油、硫酸エステル類、スルホン酸類及びリン酸エステル類が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 非イオン活性剤としては、例えば多価アルコール脂肪酸エステル類及びエチレンオキサイド付加物が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 両性活性剤としては、例えばカルボン酸誘導体及びイミダゾリン誘導体が挙げられる。これらは単独で又は2種以上を組み合せて用いることができる。
 ポリオレフィン樹脂100質量部に対する添加剤の配合量は特に限定されるものではないが、2質量部以下であることがより好ましく、1質量部未満であることが特に好ましい。但し、ポリオレフィン樹脂100質量部に対する添加剤の配合量は0.1質量部以上であることが好ましい。
 上記難燃性樹脂組成物は、ポリオレフィン樹脂、シリコーン系化合物、脂肪酸含有化合物、炭酸カルシウム、水酸化アルミニウム等を混練することにより得ることができる。混練は、例えばバンバリーミキサ、タンブラ、加圧ニーダ、混練押出機、二軸押出機、ミキシングロール等の混練機で行うことができる。このとき、シリコーン系化合物の分散性を向上させる観点からは、ポリオレフィン樹脂の一部とシリコーン系化合物とを混練し、得られたマスターバッチ(MB)を、残りのポリオレフィン樹脂、脂肪酸含有化合物、炭酸カルシウム、及び水酸化アルミニウム等と混練してもよい。
 次に、上記難燃性樹脂組成物で内部導体1を被覆する。具体的には、上記の難燃性樹脂組成物を、押出機を用いて溶融混練し、チューブ状の押出物を形成する。そして、このチューブ状押出物を内部導体1上に連続的に被覆する。こうして絶縁電線4が得られる。
 (シース)
 最後に、上記のようにして得られた絶縁電線4を1本用意し、これら絶縁電線4を、上述した難燃性樹脂組成物を用いて作製したシース3で被覆する。シース3は、絶縁層2を物理的又は化学的な損傷から保護するものである。
 以上のようにしてケーブル10が得られる。
 本発明は、上記第1実施形態に限定されるものではない。例えば上記第1実施形態ではケーブル10は1本の絶縁電線4を有しているが、本発明のケーブルは1本の絶縁電線4を有するケーブルに限定されるものではなく、シース3の内側に絶縁電線4を2本以上有していてもよい。またシース3と絶縁電線4との間には、ポリプロピレン等からなる樹脂部が設けられていてもよい。
 また上記第1実施形態では、絶縁電線4の絶縁層2及びシース3が上記の難燃性樹脂組成物で構成されているが、絶縁層2が通常の絶縁樹脂で構成され、シース3のみが上記の難燃性樹脂組成物で構成されてもよいし、シース3が通常の絶縁樹脂で構成され、絶縁層2のみが上記の難燃性樹脂組成物で構成されてもよい。
 さらに、上記第1実施形態においては、本発明の難燃性樹脂組成物を絶縁電線4の絶縁層2及びシース3に適用したが、本発明の難燃性樹脂組成物は、光ファイバケーブル、すなわち、シースと、シースの内側に設けられ又はシースを貫通するように設けられる光ファイバとを備えるケーブルにおけるシースにも適用可能である。ここで、光ファイバケーブルとしては、例えばドロップ型光ファイバケーブル、インドア型光ファイバケーブル、層型光ファイバケーブル、テープスロット型光ファイバケーブルなどが挙げられる。
 図3は、インドア型光ファイバケーブルを示す断面図である。図3に示すように、インドア型光ファイバケーブル20は、2本のテンションメンバ22,23と、光ファイバ24と、これらを被覆するシース25とを備えている。ここで、光ファイバ24は、シース25を貫通するように設けられている。
 図4は、層型光ファイバケーブルを示す断面図である。図4に示すように、層型光ファイバケーブル30は、コア部31と、コア部31を包囲するように設けられるシース35とを備えている。コア部31は、テンションメンバ32と、テンションメンバ32を包囲するように設けられるリップコード33と、テンションメンバ32とリップコード33との間でテンションメンバ32の長手方向に沿って配置される光ファイバユニット34とを備えている。ここで、光ファイバユニット34は、着色され又は着色されていないチューブ36の内側に光ファイバ24を配置して構成される。従って、光ファイバ24は、シース35の内側に設けられることになる。なお、コア部31の周囲には通常、押さえ巻きテープ37が巻かれるが、層型光ファイバケーブル30は、押さえ巻きテープ37を有していなくてもよい。またリップコード33とテンションメンバ32との間には、光ファイバユニット34の周囲に防水材38が充填されていてもよい。
 上記光ファイバケーブルにおいては、シース25及びシース35が本発明の難燃性樹脂組成物で構成される。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 (実施例1~19及び比較例1~8)
 ベース樹脂、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物、炭酸カルシウム及び水酸化アルミニウムを、表1~5に示す配合量で配合し、バンバリーミキサによって160℃にて15分間混練し、難燃性樹脂組成物を得た。なお、表1~5において、各配合成分の配合量の単位は質量部である。また表1~5において、ベース樹脂であるポリエチレン樹脂(PE)、エチレンアクリル酸エチル共重合体(EEA),エチレン酢酸ビニル共重合体(EVA)又はポリプロピレン樹脂(PP)の配合量が100質量部となっていないが、シリコーンMB中にもベース樹脂が含まれており、PE、EEA,EVA又はPPとシリコーンMB中のベース樹脂とを合計すればベース樹脂の合計量は100質量部となる。
 上記ベース樹脂、シリコーンMB、脂肪酸含有化合物、炭酸カルシウム及びおよび水酸化アルミニウムとしては具体的には下記のものを用いた。
(1)ベース樹脂
(A)ポリエチレン樹脂(PE)(商品名「エクセレンGMH GH030」、住友化学社製)
(B)エチレンアクリル酸エチル共重合体(EEA、商品名「DPDJ-6503」、日本ユニカー社製)
(C)エチレン酢酸ビニル共重合体(EVA、商品名「エバフレックス V5274」、三井デュポンポリケミカル社製)
(D)ポリプロピレン樹脂(PP、商品名「E111G」、プライムポリマー社製)
(2)シリコーンMB(商品名「X-22-2125H」、信越化学社製)
50質量%シリコーンガムと50質量%PEとを含有
(3)脂肪酸含有化合物
ステアリン酸Mg(商品名「エフコケムMGS」、ADEKA社製)
ステアリン酸Ca(商品名「SC-P」、堺化学工業社製)
(4)炭酸カルシウム
商品名「NCC-P」、日東粉化工業株式会社製、平均粒径:1.7μm
(5)水酸化アルミニウム
商品名「BF013」、日本軽金属社製、平均粒径:1.2μm
 次いで、この難燃性樹脂組成物をバンバリーミキサによって160℃にて15分間混練した。その後、この難燃性樹脂組成物を、単軸押出機(L/D=20、スクリュー形状:フルフライトスクリュー、マース精機社製)に投入し、その押出機からからチューブ状の押出物を押し出し、導体(素線数1本/断面積2mm)上に、厚さ0.7mmとなるように被覆した。こうして絶縁電線を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記のようにして得られた実施例1~19及び比較例1~8の絶縁電線について、以下のようにして難燃性、機械的特性及び押出加工時のシリコーン系化合物のブリードアウト抑制効果についての評価を行った。
 <難燃性>
 実施例1~19及び比較例1~8の絶縁電線をそれぞれ10本用意し、これらについて、JIS C3665-1に基づいて垂直一条燃焼試験を行い、難燃性を評価した。このとき、具体的には、絶縁電線を上部で支持する上部支持材の下端から炭化の終了点までの長さが50mm以上540mm以下であれば「合格」とし、50mm未満又は540mm超の場合には「不合格」とした。そして、合格率(%)を求めた。結果を表1~5に示す。表1~5においては、燃焼時間についても併記した。また表1~5において、難燃性の合否基準は下記の通りとした。なお、燃焼試験においては、絶縁電線に対し、バーナーの炎を60秒間接触させた。
 
合格率が70%以上:合格
合格率が70%未満:不合格
 
 <機械的特性>
 機械的特性の評価は、実施例1~19及び比較例1~8の絶縁電線について、JIS C3005により引張試験を行い、測定された引張強度に基づいて行った。結果を表1~5に示す。表1~5において、引張強度の単位はMPaであり、引張強度の合否基準は下記の通りとした。引張試験において、引張速度は200mm/min、標線間距離は20mmとした。
 
10MPa以上:合格
10MPa未満:不合格
 
 <押出加工時のシリコーン系化合物のブリードアウト抑制効果>
 実施例1~19及び比較例1~8の絶縁電線について、絶縁層の表面を目視にて観察し、押出加工時のシリコーン系化合物のブリードアウトを評価した。結果を表1~5に示す。表1~5において、押出加工時のシリコーン系化合物のブリードアウトの合否基準は下記の通りとし、合格である場合には「○」と表記し、不合格である場合には「×」と表記した。
 
押出加工時のシリコーン系化合物のブリードアウトが観察されない: 合格
押出加工時のシリコーン系化合物のブリードアウトが観察される :不合格
 
 表1~5に示す結果より、実施例1~19の絶縁電線は、難燃性、機械的特性及び押出加工時のシリコーン系化合物のブリードアウト抑制効果の点で合格基準に達していた。これに対し、比較例1~8の絶縁電線は、難燃性、機械的特性及び押出加工時のシリコーン系化合物のブリードアウト抑制効果のうち少なくとも1つの点で合格基準に達していなかった。
 このことから、本発明の難燃性樹脂組成物によれば、優れた難燃性と優れた機械的特性とを両立させつつ、押出加工時のシリコーン系化合物のブリードアウトを十分に抑制できることが確認された。
 1…内部導体
 2…絶縁層
 3,25,35…シース
 4…絶縁電線
 10,20,30…ケーブル

Claims (10)

  1.  ポリオレフィン樹脂と、
     前記ポリオレフィン樹脂100質量部に対して3質量部以上20質量部以下の割合で配合されるシリコーン系化合物と、
     前記ポリオレフィン樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される脂肪酸含有化合物と、
     前記ポリオレフィン樹脂100質量部に対して10質量部以上100質量部未満の割合で配合される炭酸カルシウムと、
     前記ポリオレフィン樹脂100質量部に対して5質量部以上60質量部以下の割合で配合される水酸化アルミニウムとを含む難燃性樹脂組成物。
  2.  前記水酸化アルミニウムが前記ポリオレフィン樹脂100質量部に対して5質量部以上25質量部以下の割合で配合されている、請求項1に記載の難燃性樹脂組成物。
  3.  前記シリコーン系化合物が前記ポリオレフィン樹脂100質量部に対して3質量部以上10質量部以下の割合で配合される、請求項1又は2に記載の難燃性樹脂組成物。
  4.  前記脂肪酸含有化合物がステアリン酸マグネシウム又はステアリン酸カルシウムである請求項1~3のいずれか一項に記載の難燃性樹脂組成物。
  5.  前記ポリオレフィン樹脂と、前記シリコーン系化合物と、前記脂肪酸含有化合物と、前記無機系難燃剤と、酸化防止剤、紫外線劣化防止剤、加工助剤、着色剤及び帯電防止剤からなる群より選択される少なくとも1種の添加剤とで構成される、請求項1~4のいずれか一項に記載の難燃性樹脂組成物。
  6.  前記酸化防止剤が、フェノール系酸化防止剤、アミン系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、ヒドラジン系酸化防止剤、アミド系酸化防止剤、リン酸及びクエン酸からなる群より選ばれる少なくとも1種で構成され、
     前記紫外線劣化防止剤が、ベンゾフェノン系紫外線劣化防止剤、サルチレート系紫外線劣化防止剤、ベンゾトリアゾール系紫外線劣化防止剤、アクリロニトリル系紫外線劣化防止剤、金属錯塩系紫外線劣化防止剤及びヒンダートアミン系紫外線劣化防止剤からなる群より選ばれる少なくとも1種で構成され、
     前記加工助剤が、炭化水素系加工助剤、脂肪酸系加工助剤、脂肪酸アミド系加工助剤、エステル系加工助剤、アルコール系加工助剤、金属石鹸及びワックスからなる群より選ばれる少なくとも1種で構成され、
     前記着色剤が、無機顔料、有機顔料、染料及びカーボンブラックからなる群より選ばれる少なくとも1種で構成され、
     前記帯電防止剤が、陽イオン活性剤、アニオン活性剤、非イオン活性剤及び両性活性剤からなる群より選ばれる少なくとも1種で構成される、請求項5に記載の難燃性樹脂組成物。
  7.  前記添加剤が、前記ポリオレフィン樹脂100質量部に対して1質量部未満の割合で配合される、請求項5又は6に記載の難燃性樹脂組成物。
  8.  導体と、
     前記導体を被覆する絶縁層とを有する絶縁電線を備えており、
     前記絶縁層が、請求項1~7のいずれか一項に記載の難燃性樹脂組成物で構成されるケーブル。
  9.  導体と、
     前記導体を被覆する絶縁層と、
     前記絶縁層を覆うシースを有するケーブルであって、
     前記絶縁層と前記シースの少なくとも一方が、請求項1~7のいずれか一項に記載の難燃性樹脂組成物で構成されるケーブル。
  10.  シースと、
     前記シースの内側に設けられ又は前記シースを貫通するように設けられる光ファイバとを有し、
     前記シースが請求項1~6のいずれか一項に記載の難燃性樹脂組成物で構成されるケーブル。
PCT/JP2014/082013 2014-01-21 2014-12-03 難燃性樹脂組成物、及び、これを用いたケーブル WO2015111309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480073223.9A CN105916930A (zh) 2014-01-21 2014-12-03 阻燃性树脂组合物和使用其的缆线
EP14880006.3A EP3098261B1 (en) 2014-01-21 2014-12-03 Flame-retardant resin composition and cable using same
US15/112,327 US10242769B2 (en) 2014-01-21 2014-12-03 Flame retardant resin composition and cable using the same
JP2015558746A JP6170182B2 (ja) 2014-01-21 2014-12-03 難燃性樹脂組成物、及び、これを用いたケーブル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014008597 2014-01-21
JP2014-008597 2014-01-21

Publications (1)

Publication Number Publication Date
WO2015111309A1 true WO2015111309A1 (ja) 2015-07-30

Family

ID=53681129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082013 WO2015111309A1 (ja) 2014-01-21 2014-12-03 難燃性樹脂組成物、及び、これを用いたケーブル

Country Status (6)

Country Link
US (1) US10242769B2 (ja)
EP (1) EP3098261B1 (ja)
JP (1) JP6170182B2 (ja)
CN (1) CN105916930A (ja)
TW (1) TWI635124B (ja)
WO (1) WO2015111309A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080511A1 (ja) * 2014-11-21 2016-05-26 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6069573B1 (ja) * 2015-12-14 2017-02-01 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP6069574B1 (ja) * 2015-12-14 2017-02-01 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP2017160286A (ja) * 2016-03-07 2017-09-14 株式会社戸出O−Fit 難燃性複合樹脂材料の製造方法と難燃性複合樹脂材料
WO2018034173A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034174A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574491B (zh) * 2020-12-14 2023-02-10 上海凯波电缆特材股份有限公司 一种海缆用特种半导电聚烯烃护套料及其制备方法
WO2023056207A1 (en) 2021-09-30 2023-04-06 Exxonmobil Chemical Patents Inc. Fluorine-free polymer processing aids
WO2023056250A1 (en) 2021-09-30 2023-04-06 Exxonmobil Chemical Patents Inc. Fluoropolymer-free processing aids for ethylene-based polymers
WO2023149985A1 (en) 2022-02-07 2023-08-10 Exxonmobil Chemical Patents Inc. Polyethylene glycol-based polymer processing aids
WO2023154744A1 (en) 2022-02-14 2023-08-17 Exxonmobil Chemical Patents Inc. Polyethylene glycol-based polymer processing aids

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231947A (ja) * 1989-12-05 1991-10-15 Sakai Chem Ind Co Ltd ポリオレフィン系樹脂組成物およびその製造方法
JPH107913A (ja) 1996-03-19 1998-01-13 Alcatel Alsthom Co General Electricite 難燃性ハロゲン不含組成物
JP2001152035A (ja) * 1999-11-30 2001-06-05 Shin Etsu Chem Co Ltd 流動性及び機械的特性に優れた熱可塑性樹脂組成物
JP2001348466A (ja) * 2000-06-06 2001-12-18 Fujikura Ltd 難燃性樹脂組成物
WO2005013291A1 (ja) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Limited 非ハロゲン系難燃ケーブル
JP2013108053A (ja) * 2011-10-28 2013-06-06 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル
JP2013133411A (ja) * 2011-12-27 2013-07-08 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678942A1 (fr) * 1991-07-09 1993-01-15 Alcatel Cable Composition a haute resistance a la propagation du feu.
JP2001311484A (ja) * 2000-04-28 2001-11-09 Fujikura Ltd 難燃性可撓電線管
JP4526658B2 (ja) * 2000-06-14 2010-08-18 東レ・ダウコーニング株式会社 難燃性ポリオレフィン系樹脂組成物、その製造方法および難燃性ケーブル
EP1620504A1 (en) * 2003-05-05 2006-02-01 Dow Global Technologies Inc. Filled thermoplastic olefin composition
EP1512718A1 (en) * 2003-08-27 2005-03-09 Borealis Technology Oy Flame retardant polymer composition comprising nanofillers
WO2008075203A2 (en) * 2006-06-21 2008-06-26 Martinswerk Gmbh Process for the production of aluminum hydroxide
CN101878264B (zh) * 2007-09-25 2012-11-07 陶氏环球技术有限责任公司 将苯乙烯类聚合物作为共混组分来控制烯烃类基材之间的粘合力
US20120225980A1 (en) 2011-01-31 2012-09-06 Basf Se Methods of flame retarding polyethylene processed at high temperatures
JP5167428B1 (ja) 2011-10-28 2013-03-21 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
CN102643548B (zh) 2012-04-28 2013-11-06 宜兴市聚金信化工有限公司 有机硅系复合阻燃剂
JP5951473B2 (ja) 2012-12-27 2016-07-13 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
JP5669924B1 (ja) 2013-12-04 2015-02-18 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231947A (ja) * 1989-12-05 1991-10-15 Sakai Chem Ind Co Ltd ポリオレフィン系樹脂組成物およびその製造方法
JPH107913A (ja) 1996-03-19 1998-01-13 Alcatel Alsthom Co General Electricite 難燃性ハロゲン不含組成物
JP2001152035A (ja) * 1999-11-30 2001-06-05 Shin Etsu Chem Co Ltd 流動性及び機械的特性に優れた熱可塑性樹脂組成物
JP2001348466A (ja) * 2000-06-06 2001-12-18 Fujikura Ltd 難燃性樹脂組成物
WO2005013291A1 (ja) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Limited 非ハロゲン系難燃ケーブル
JP2013108053A (ja) * 2011-10-28 2013-06-06 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル
JP2013133411A (ja) * 2011-12-27 2013-07-08 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253262B2 (en) 2014-11-21 2019-04-09 Fujikura Ltd. Flame retardant resin composition, and cable and optical fiber cable using the same
WO2016080511A1 (ja) * 2014-11-21 2016-05-26 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6069573B1 (ja) * 2015-12-14 2017-02-01 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP6069574B1 (ja) * 2015-12-14 2017-02-01 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
WO2017104361A1 (ja) * 2015-12-14 2017-06-22 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
WO2017104362A1 (ja) * 2015-12-14 2017-06-22 株式会社フジクラ 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
US10669411B2 (en) 2015-12-14 2020-06-02 Fujikura Ltd. Flame-retardant resin composition and metal cable, optical fiber cable, and molded article using the same
EP3375815A4 (en) * 2015-12-14 2019-09-18 Fujikura Ltd. FLAME RESISTANT RESIN COMPOSITION, METAL CABLE THEREOF, FIBER OPTIC CABLE AND FORM BODY
JP2017160286A (ja) * 2016-03-07 2017-09-14 株式会社戸出O−Fit 難燃性複合樹脂材料の製造方法と難燃性複合樹脂材料
WO2018034173A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JPWO2018034174A1 (ja) * 2016-08-16 2019-03-28 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JPWO2018034173A1 (ja) * 2016-08-16 2019-02-21 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034174A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品

Also Published As

Publication number Publication date
US10242769B2 (en) 2019-03-26
EP3098261A4 (en) 2017-08-16
TWI635124B (zh) 2018-09-11
JP6170182B2 (ja) 2017-07-26
CN105916930A (zh) 2016-08-31
EP3098261A1 (en) 2016-11-30
TW201542649A (zh) 2015-11-16
US20160343470A1 (en) 2016-11-24
EP3098261B1 (en) 2018-05-16
JPWO2015111309A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6170182B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
JP6053236B2 (ja) 難燃性樹脂組成物を用いたケーブル
JP5282163B1 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
EP3375816B1 (en) Flame-retardant resin composition, metal cable using same, optical fiber cable, and molded article
JP2015183157A (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
JP6069573B1 (ja) 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP2016155931A (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6043331B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6563016B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6046100B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6178934B1 (ja) 難燃性樹脂組成物、これを用いたメタルケーブル及び光ファイバケーブル並びに成形品
JP5993264B2 (ja) 難燃性樹脂組成物の製造方法、難燃性樹脂組成物及びこれを用いたケーブル
JP2018039902A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル、自動車用ワイヤハーネス、及び成形品
JP2017025203A (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP2019089983A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2013133411A (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
JP2019089982A (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558746

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014880006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15112327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE