WO2015109658A1 - 3d打印机用的金属粉末及其制备方法 - Google Patents

3d打印机用的金属粉末及其制备方法 Download PDF

Info

Publication number
WO2015109658A1
WO2015109658A1 PCT/CN2014/074722 CN2014074722W WO2015109658A1 WO 2015109658 A1 WO2015109658 A1 WO 2015109658A1 CN 2014074722 W CN2014074722 W CN 2014074722W WO 2015109658 A1 WO2015109658 A1 WO 2015109658A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
printer
powder
submicron
average particle
Prior art date
Application number
PCT/CN2014/074722
Other languages
English (en)
French (fr)
Inventor
陈钢强
Original Assignee
宁波广博纳米新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波广博纳米新材料股份有限公司 filed Critical 宁波广博纳米新材料股份有限公司
Priority to US15/113,055 priority Critical patent/US10065240B2/en
Publication of WO2015109658A1 publication Critical patent/WO2015109658A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/084Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of all raw materials of a 3D printer, in particular to a metal powder for a 3D printer and a preparation method thereof.
  • the metal powder is a metal powder composed of a plurality of submicron-sized metal particles having an average particle diameter of 10 to 50 ⁇ m.
  • 3D printing technology has become one of the most emerging technologies in the world. This new production approach, along with other digital production models, will drive the realization of the third industrial revolution.
  • One of the major bottlenecks that constrain the rapid development of 3D printing technology is printed materials, especially metal printed materials. R&D and production of better and more versatile metal materials is key to improving 3D printing technology.
  • various metal powders with fine particle size, uniform particle size, high sphericity, and low oxygen content are required.
  • high-end metal powders are mainly imported. Foreign manufacturers often bundle high-priced sales of raw materials and equipment, which greatly restricts the development of metal 3D printing technology in China.
  • the preparation method of the metal powder mainly includes an atomization method, a rotating electrode method, and the like.
  • the metal powder prepared by vacuum atomization has the characteristics of high sphericity, uniform composition and low oxygen content, and is widely used.
  • the average particle size of the metal powder prepared by the atomization method is limited, the average particle diameter is 10-50 ⁇ m, and the fine powder yield is low, and it has not been possible to prepare a submicron-sized metal powder by atomization.
  • the smaller the particle size of the metal powder the faster the melting rate, and the printing speed and accuracy can be improved.
  • the metal powder has a submicron particle size (particle size diameter of 100 ⁇ ⁇ to 1.0 ⁇ m)
  • the dispersibility of the metal powder is deteriorated, resulting in difficulty in transporting the metal powder, which limits the submicron metal powder in 3D printing manufacturing.
  • Applications. How to obtain a metal powder suitable for 3D printing manufacturing is one of the key issues in 3D printing technology.
  • the present invention has been made in view of the above-mentioned deficiencies of the prior art, and provides a metal powder for a 3D printer which has various advantages of submicron particles and a dispersibility and transportability of atomized metal powder.
  • the technical solution adopted by the present invention is: a metal powder for a 3D printer, which is a submicron-sized metal powder obtained by physical vapor deposition or chemical vapor deposition.
  • the metal powder has an average particle diameter of 0.1 to 3 ⁇ m; the submicron-sized metal powder having an average particle diameter of 0.1 to 3 ⁇ m is agglomerated into a metal powder for an average particle diameter of 10 to 50 ⁇ m 3D printer.
  • the metal powder type used in the above 3D printer of the present invention may be a pure metal powder or an alloy powder.
  • the invention also provides a preparation method of a metal powder for a 3D printer, and the specific preparation steps include:
  • step (3) Stir the mixed slurry in step (3) through a centrifugal spray granulator (centrifugal spray granulator or centrifugal granulation spray dryer) or a pressure spray granulator (pressure spray granulator or pressure) Spray Drying Granulator)
  • a centrifugal spray granulator centrifugal spray granulator or centrifugal granulation spray dryer
  • a pressure spray granulator pressure spray granulator or pressure
  • Spray Drying Granulator A metal powder for 3D printing having a spherical shape and an average particle diameter of 10 to 50 ⁇ m was prepared.
  • the above step (4) obtaining the average diameter of the metal powder for 3D printing can obtain the desired metal powder size by adjusting the rotational speed of the centrifugal spray or the pressure of the pressure spray and other control parameters, and the solid-liquid ratio of the slurry;
  • the pressure of the pressure spray granulator is 6-30 kg/cm 2 (ie 0.6).
  • the pressure of the pressure spray granulator is 6-30 kg/cm 2 (ie 0.6).
  • the process parameters involved in the above two granulation machines ie the operating parameters (ie the operating parameters applicable to both the pressure spray granulator and the centrifugal spray granulator) can be controlled at:
  • the inlet temperature of the dry air is 200-350 °C, the outlet temperature of dry air is 80-150 °C ;
  • the flow rate of dry air is 100-300 Nm 3 /h (the standard hour is the volume flow under standard conditions);
  • the feed rate of the pressure spray granulator or the centrifugal spray granulator is 5-20 kg/h.
  • the submicron-sized metal powder according to the step (1) of the present invention has an average particle diameter of 0.5 to 2 ⁇ m, and the metal powder having the particle diameter is used for the agglomeration process of the granulation process, which is more advantageous for each submicron metal.
  • the powders are agglomerated with each other and the structure is more stable.
  • the metal powder for the 3D printer according to the step (4) of the present invention has an average particle diameter of 20 to 30 ⁇ m, and the use of the metal powder of the particle size range is more advantageous for application on a 3D printer.
  • the metal powder of the present invention may be a pure metal powder such as titanium, nickel or copper, or a nickel-based alloy powder such as NiCr21Fel8Mo9, NiCrl9Nb5Mo3 or the like; a titanium-based alloy powder such as Ti6A14V; an aluminum-based alloy powder, for example Al-SilOMg, A1SU2, etc.; Fe-based alloy powders, such as GP1-stainless steel, 316 L, etc., and other metal powders that can be used for 3D printing, such as Co28Cr6Mo, CoCr-2LC.
  • a pure metal powder such as titanium, nickel or copper, or a nickel-based alloy powder such as NiCr21Fel8Mo9, NiCrl9Nb5Mo3 or the like
  • a titanium-based alloy powder such as Ti6A14V
  • an aluminum-based alloy powder for example Al-SilOMg, A1SU2, etc.
  • Fe-based alloy powders such as GP1-stain
  • the liquid described in the above step (2) of the present invention may be water, ethanol or other organic solution (e.g., isopropanol, methanol, etc.).
  • the above organic binder of the present invention such as polyvinyl alcohol, ethyl cellulose or special metal ore powder granulation binder, etc. (such as the model produced by Baoding Jingsu Biotechnology Co., Ltd.: HY-1 metallurgical ore powder)
  • Pellet adhesive model:
  • the metal powder for a 3D printer of the present invention is obtained by agglomerating a submicron-sized metal powder having a particle diameter of 0.1 to 3 ⁇ m into a metal powder having an average particle diameter of 10 to 50 ⁇ m by a granulation process, not a a complete integrated metal powder, but a plurality of submicron metal powders are bonded to each other.
  • the metal powder for the 3D printer has various advantages of submicron particles (such as high sphericity, Uniform composition, low oxygen content, and dispersibility and transportability of atomized metal powder, thus solving the problem of dispersion and transportation of submicron metal powder in 3D printing, making submicron metal powder in 3D
  • submicron particles such as high sphericity, Uniform composition, low oxygen content, and dispersibility and transportability of atomized metal powder
  • the metal powder slurry having a small solid-liquid ratio can obtain a smaller metal powder at the same centrifugal spray rotation speed or the same pressure spray pressure, because at the same rotation speed, the discharge is performed.
  • the droplet diameter is equivalent, because the metal powder content in the droplet is small, the droplet is dried, and less metal powder is shrunk into a smaller diameter metal powder. Therefore, the solid-liquid ratio of 0.25-2.0 is successfully selected in the present invention.
  • the technical effect of preparing the above metal powder having an average diameter of 10 to 50 micrometers is achieved. By this granulation method, a powder smaller than the atomized metal powder can be obtained.
  • the metal powder is then passed through a screening machine to remove un-agglomerated loose powder and oversized powder to obtain a metal powder of the desired size.
  • This metal powder has various advantages of submicron particles and dispersibility and transportability of atomized metal powder, enabling submicron metal powders to be used in existing 3D printing equipment.
  • Figure 1 Scanning electron micrograph of submicron metal powder.
  • Figure 3 Scanning electron micrograph of copper-based alloy powder with an average particle size of 1.0 ⁇ m.
  • Figure 4. Scanning electron micrograph of copper-based alloy powder with an average particle size of 40 microns.
  • Figure 5 Scanning electron micrograph of titanium-based alloy powder with an average particle size of 0.5 ⁇ m.
  • Figure 7 Scanning electron micrograph of nickel-based alloy powder with an average particle size of 0.25 ⁇ m.
  • Figure 8 Scanning electron micrograph of a nickel-based alloy powder with an average particle size of 30 microns.
  • Figure 9 Scanning electron micrograph of pure metal nickel powder with an average particle size of 0.5 ⁇ m.
  • Figure 10 Scanning electron micrograph of pure metal nickel powder with an average particle size of 40 microns.
  • the equipment involved in the invention such as a pressure spray granulator or a centrifugal spray granulator, is a commercially available product, and the specific working principle is as follows: the feed liquid is input through a pump, sprays a mist droplet, and then the same hot air (dry air) The cocurrent flow is reduced, the powder particles are collected by the bottom discharge port, the exhaust gas and its tiny powder are separated by a cyclone, the exhaust gas is discharged by the exhaust fan, and the powder is collected by the powder cylinder disposed at the lower end of the cyclone, and the fan outlet can also be Equipped with a secondary dust removal device, the pressure, flow rate, and orifice size are adjusted according to product specifications to obtain the desired spherical particles in a certain proportion.
  • Physical vapor deposition method The copper-based alloy as a raw material is dissolved in the crucible, and the gas (hydrogen, argon, nitrogen, etc.) enters from the inlet pipe in the plasma transfer arc torch, is plasmaized by the external power source, and A plasma transfer arc is generated between the plasma transfer arc torches (ie, the lower end of the plasma transfer arc generated by the plasma transfer arc torch is connected to the metal liquid surface in the crucible); the metal is evaporated and vaporized by the plasma transfer arc; Adding a room temperature inert gas or nitrogen to the metal vapor at a high speed through a polycooling pipe to reduce the temperature of the metal vapor to
  • a copper-based alloy powder having an average particle diameter of 1.0 ⁇ m is obtained (Fig. 3) (the above physical vapor deposition method is a conventional method in the industry, which is described in detail in this step); and then a solid-liquid ratio of 1.5:1 is prepared with ethanol.
  • the weight of the organic binder polyvinyl alcohol
  • the metal powder slurry was prepared into a spherical metal powder by a centrifugal spray granulator.
  • the rotational speed of the centrifugal spray granulator was controlled at 12,000 rpm, the inlet temperature of the dry air of the centrifugal spray granulator was 200 ° C, the outlet temperature was 90 ° C, and the dry air flow rate was 220 Nm 3 /h.
  • the metal powder slurry was fed at a rate of 12 kg/h.
  • the dry granulated metal powder was collected by a cyclone, and the ultrafine metal powder was collected through a filter bag.
  • the metal powder collected by the cyclone was classified by a shaker to obtain a metal powder having an average particle diameter of 40 ⁇ m (Fig. 4).
  • the metal powder collected in the filter bag and the metal powder separated by the sieve are recovered and prepared into a metal powder slurry.
  • Example 2 A titanium-based alloy powder having an average particle diameter of 0.5 ⁇ m (Fig. 5) produced by physical vapor deposition, and a metal powder slurry having a solid-liquid ratio of 2:1.
  • the weight of the organic binder (ethyl cellulose) was 1.5% by weight of the solid.
  • the metal powder slurry was prepared into a spherical metal powder by a centrifugal spray granulator. The speed of the centrifugal spray granulator is controlled at
  • the inlet temperature of dry air is 350 ° C
  • the outlet temperature is 120 ° C
  • the dry air flow rate is 250 Nm 3 /h.
  • the metal powder slurry was fed at a rate of 10 kg/h.
  • the dry granulated metal powder was collected by a cyclone, and the ultrafine metal powder was collected through a filter bag.
  • the metal powder collected by the cyclone was classified by a shaker to obtain a metal powder having an average particle diameter of 45 ⁇ m (Fig. 6).
  • the metal powder collected in the filter bag and the metal powder separated by the sieve are recovered and prepared into a metal powder slurry.
  • the weight of the organic binder (manufactured by Baoding Jingsu Biotechnology Co., Ltd.: HY-1 metallurgical ore fines binder) is 1.5% by weight of solids.
  • the metal powder slurry was prepared into a spherical metal powder by a centrifugal spray granulator.
  • the rotation speed of the centrifugal spray was controlled at 25,000 rpm, the inlet temperature of the dry air was 200 ° C, the outlet temperature was 90 ° C, and the dry air flow rate was 220 Nm 3 /h.
  • the metal powder slurry was fed at a rate of 10 kg/h.
  • the dry granulated metal powder was collected by a cyclone, and the ultrafine metal powder was collected through a filter bag.
  • the metal powder collected by the cyclone was classified by a shaker to obtain a metal powder having an average particle diameter of 30 ⁇ m (Fig. 8).
  • the metal powder collected in the filter bag and the metal powder separated by the sieve are recovered and prepared into a metal powder slurry.
  • Pure metal nickel powder (Fig. 9) having an average particle diameter of 0.5 ⁇ m produced by physical vapor deposition was prepared, and a metal powder slurry having a solid-liquid ratio of 1.5:1 was prepared with methanol.
  • the weight of the organic binder was 1.0% by weight of the solid.
  • the metal powder slurry was prepared into a spherical metal powder by a pressure spray granulator. The pressure of the pressure spray was controlled at 15 kg/cm 2 , the inlet temperature of the dry air was 250 ° C, the outlet temperature was 95 ° C, and the dry air flow rate was 250 Nm 3 /h.
  • the metal powder slurry was fed at a rate of 12 kg/h.
  • the dry granulated metal powder was collected by a cyclone, and the ultrafine metal powder was collected through a filter bag.
  • the metal powder collected by the cyclone was classified by a shaker to obtain a metal powder having an average particle diameter of 40 ⁇ m (Fig. 10).
  • the metal powder collected in the filter bag and the metal powder separated by the sieve are recovered and prepared into a metal powder slurry.
  • the metal powder for the 3D printer prepared in the above embodiment can be seen from the drawings, the structure is not a complete integrated metal powder, but a plurality of submicron metal powders are bonded and agglomerated with each other, therefore,
  • the metal powder for the 3D printer has various advantages of submicron particles (such as high sphericity, uniform composition, low oxygen content), and dispersibility and transportability of atomized metal powder.
  • the 3D printer prepared by the above embodiment uses metal powder for 3D printing, and the 3D printer uses metal powder to be sprayed onto the heating model table in the protective chamber of the protective gas through the nozzle of the 3D printer to form a layer by layer to form a 3D printing.
  • the product has the advantages of good dispersibility in the nozzle spraying process and smooth metal powder transportation. In the layer-by-layer printing process, the contact area of each layer of metal powder at the junction is sufficiently ensured to be bonded and fastened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种3D打印机用的金属粉末,是由许多亚微米级的金属颗粒通过造粒工艺团聚成10-50微米的金属粉末。由于该金属粉末是由亚微米金属颗粒组合,它的熔点低、熔融速度快,可以提高金属3D打印机的打印速度以及打印构件的精度。同时金属粉末的平均粒径又与现有的3D打印机用的雾化金属粉相当,具有良好的分散性和输送性,可以适用于现有的3D打印机设备。

Description

说 明 书
3D打印机用的金属粉末及其制备方法
技术领域:
本发明涉及 3D打印机所有原料技术领域,具体涉及一种用于 3D打印机的金属粉末 及其制备方法。 该金属粉末是由许多亚微米级的金属粒子组成的平均粒径为 10-50微米 的金属粉末。
背景技术:
3D打印技术目前已成为全球最关注的新兴技术之一。这种新型的生产方式与其他数 字化生产模式一起将推动第三次工业革命的实现。制约 3D 打印技术迅速发展的其中一 大瓶颈是打印材料, 特别是金属打印材料。 研发和生产性能更好和通用性更强的金属材 料是提升 3D打印技术的关键。 在高性能金属构件直接采用 3D打印技术制造方面, 需 要粒径细、 粒径均匀、 高球形度、 低氧含量的各类金属粉末。 目前高端的金属粉末主要 依赖进口。 而国外厂商常将原材料与设备捆绑高价销量, 极大地制约了我国的金属 3D 打印技术的发展。
金属粉末的制备方法主要有雾化法、 旋转电极法等。 其中采用真空雾化法制备的金 属粉末具有球形度高、 成分均匀、 氧含量低等特点, 受到广泛应用。 雾化法制备的金属 粉末的平均粒径受到限制, 平均粒径在 10-50微米, 并且细粉得率低, 目前还无法采用 雾化法来制备亚微米级金属粉末。 一般来讲, 金属粉末粒径越小, 熔融速度越快, 可以 提高打印速度和精度。但当金属粉末粒径达到亚微米级 (粒度直径 1 00ηΓΠ〜1 .0μ m)时, 金属粉末的分散性变差, 导致金属粉末输送困难, 限制了亚微米级的金属粉末在 3D打 印制造中的应用。 如何获得一种适合于 3D打印制造中的金属粉是 3D打印技术的关键 问题之一。
发明内容:
本发明针对现有技术的上述不足, 提供一种使金属粉末既具有亚微米粒子的各种优 点, 又具有雾化金属粉末的分散性和输送性的 3D打印机用的金属粉末。
为了解决上述技术问题, 本发明采用的技术方案为: 一种 3D打印机用的金属粉末, 该金属粉末为先采用物理气相沉积法或化学气相沉积法制备亚微米级金属粉末,所得的 亚微米级金属粉末的平均粒径为 0.1-3微米;该平均粒径为 0.1-3微米的亚微米级金属粉 末通过造粒团聚成平均粒径 10-50微米 3D打印机用的的金属粉末。
本发明上述的 3D打印机用的金属粉末种类可以是纯金属粉或合金粉。 本发明还提供一种 3D打印机用的金属粉末的制备方法, 具体制备步骤包括:
( 1 ) 先采用物理气相沉积法或化学气相沉积法制备出亚微米级金属粉末, 所得的 亚微米级金属粉末的平均粒径为 0.1-3微米;
(2) 将步骤 (1 ) 所得的平均粒径为 0.1-3微米的亚微米级金属粉末与液体混合、 配制成金属粉浆料; 上述金属粉浆料的亚微米级金属粉末与液体的重量比(即固液重量 比) 为 0.25-2.0:1 ;
(3 )在步骤(2)所得的金属粉浆料中加入亚微米级金属粉末(固体)重量 0.1-10% 的有机粘合剂, 搅拌混合均匀;
( 4)将步骤(3 )搅拌混合均匀的浆料通过离心喷雾造粒机(离心喷雾造粒器或称 离心造粒喷雾干燥机) 或压力喷雾造粒机 (压力喷雾造粒器或称压力喷雾干燥造粒机) 制备成球形、 平均粒径为 10-50微米的 3D打印用的金属粉末。
上述步骤 (4) 3D打印用的金属粉末的平均直径的获得可以通过调节离心喷雾的转 速或压力喷雾的压力和其他控制参数以及浆料的固液比等得到所需的金属粉末大小; 为 了实现上述粒径的产品, 本发明步骤 (4 ) 所述的离心喷雾造粒机的转速控制在 10000-40000转 /分; 压力喷雾造粒机的压力为 6-30kg/cm2 (即 0. 6-3兆帕); 对上述二 种造粒机器涉及到的工艺参数即操作参数(即压力喷雾造粒机和离心喷雾造粒机均适用 的操作参数) 可控制在: 干燥空气的进口温度为 200-350 °C、 干燥空气的出口温度为 80-150°C ;干燥空气的流量为 100-300 Nm3/h (标方每小时即指标准状况下的体积流量); 金属粉浆料在压力喷雾造粒机或离心喷雾造粒机的进料速度为 5-20kg/h。
作为优选, 本发明步骤(1 )所述的亚微米级金属粉末的平均粒径为 0.5-2微米, 采 用该粒径的金属粉, 再进行造粒工艺团聚过程, 更利于各亚微米级金属粉末彼此之间的 团聚, 结构更加稳固。
作为优选, 本发明步骤(4)所述的 3D打印机用的金属粉末其平均粒径为 20-30微 米, 采用该粒径范围的金属粉末, 更利于在 3D打印机上的应用。
作为优选, 本发明所述的金属粉末可以为钛、镍、铜等纯金属粉, 也可以是镍基合金粉, 例如 NiCr21Fel8Mo9 、 NiCrl9Nb5Mo3等; 钛基合金粉, 例如 Ti6A14V ; 铝基合金 粉, 例如 Al-SilOMg 、 A1SU2等; 铁基合金粉, 例如 GP1-不锈钢、 316 L等以及可用 于 3D打印的其他金属粉, 例如 Co28Cr6Mo 、 CoCr-2LC 。
本发明上述步骤 (2) 中所述的液体可以是水、 乙醇或者其他有机溶液 (如异丙醇, 甲醇等)。 本发明上述的有机粘合剂如聚乙烯醇、 乙基纤维素或者专用的金属矿粉造粒粘合剂 等 (如保定京素生物科技有限公司生产的型号为: HY-1的冶金矿粉球团粘合剂、 型号:
G-S的钢渣粉球团粘合剂等)。
本发明的优点和有益效果:
1.本发明 3D打印机用的金属粉末, 采用的是将亚微米级(粒径为 0.1-3微米)金属 粉末通过造粒工艺团聚成平均粒径 10-50微米的金属粉末而成, 不是一个完整的一体化 的金属粉末, 而是有多个亚微米级的金属粉末彼此粘结团聚而成, 因此, 该 3D打印机 用的金属粉末既具有亚微米粒子的各种优点 (如球形度高、 成分均匀、 氧含量低), 又 具有雾化金属粉末的分散性和输送性, 因此, 解决了亚微米级金属粉末在 3D打印中分 散和输送困难的问题, 使亚微米级的金属粉末在 3D 打印技术中的应用成为可能, 本发 明的实施使得 3D 打印技术得到进一步的发展。
2.本发明 3D打印机用的金属粉末的制备方法, 采用在金属粉浆料里添加固体重量 0.1-5 %的有机粘合剂, 金属粉浆料通过离心喷雾造粒机、压力喷雾造粒机或其他造粒设 备制备成球形状的、 平均直径在 10-50微米的金属粉末工艺。 金属粉末的平均直径可以 通过调节离心喷雾的转速或压力喷雾的压力以及浆料的固液比得到所需的金属粉末大 小。 特别是调节浆料的固液比, 可以得到较小的金属粉末。 经过本发明实验可得在相同 的离心喷雾的转速下或相同的压力喷雾的压力下, 固液比小的金属粉浆料可以得到较小 金属粉末, 这是因为在相同的转速下, 喷出的液滴直径相当, 由于在液滴中的金属粉粒 含量少, 液滴经过干燥, 较少的金属粉粒收缩成较小直径的金属粉末因此, 本发明选用 0.25-2.0的固液比成功实现制备上述平均直径在 10-50微米金属粉体的技术效果。 通过 这种造粒方法, 可以得到比雾化的金属粉更小的粉末。 然后金属粉末通过分筛机, 除去 未成团的散粉和超大的粉团, 得到所需大小的金属粉末。 这种金属粉末既具有亚微米粒 子的各种优点, 又具有雾化金属粉末的分散性和输送性, 能够使亚微米的金属粉在现有 3D打印设备得到应用。
附图说明
图 1 亚微米级金属粉末的扫描电镜图。
图 2 3D打印机用的金属粉末 (I) 扫描电镜图。
图 3 平均粒径 1.0微米的铜基合金粉扫描电镜图。
图 4 平均粒径 40微米的铜基合金粉末扫描电镜图。 图 5 平均粒径 0.5微米的钛基合金粉扫描电镜图。
图 6 平均粒径 45微米的钛基合金粉末扫描电镜图。
图 7 平均粒径 0.25微米的镍基合金粉扫描电镜图。
图 8 平均粒径 30微米的镍基合金粉末扫描电镜图。
图 9 平均粒径 0.5微米的纯金属镍粉扫描电镜图。
图 10 平均粒径 40微米的纯金属镍粉末扫描电镜图。
图 11 3D打印机用的金属粉末 (II) 扫描电镜图。
具体实 51^式
下面通过实施例进一步详细描述本发明, 但本发明不仅仅局限于以下实施例。 本发明涉及到的设备如压力喷雾造粒机或离心喷雾造粒机等均为市售产品,具体工 作原理为: 料液通过泵输入, 喷出雾状液滴, 然后同热空气 (干燥空气) 并流下降, 粉 粒由塔底排料口收集, 废气及其微小粉末经过旋风分离器分离, 废气由抽风机排出, 粉 末由设在旋风分离器下端的粉筒收集, 风机出口处还可装备二级除尘装置, 按产品规格 要求调节压力、 流量、 喷孔的大小, 得到所需的按一定大小比例的球形颗粒。
实施例 1
采用物理气相沉积法: 将作为原料的铜基合金在坩埚中溶解, 气体 (氢气、 氩气、 氮气等)从等离子体转移弧炬中的进气管进入、 通过外加电源被等离子化, 在坩埚和等 离子体转移弧炬之间产生等离子体转移弧(即等离子体转移弧炬产生的等离子体转移弧 下端与坩埚中的金属液面相接); 金属通过等离子体转移弧被蒸发、 汽化; 金属蒸气通 过聚冷管道, 将室温的惰性气体或氮气高速加入到金属蒸气中, 使金属蒸气温度降到
30CTC以下, 得到平均粒径为 1.0微米的铜基合金粉 (图 3) (上述物理气相沉积法为行业 常规方法, 在此步骤详细赘述); 然后与乙醇配成固液比为 1.5:1的金属粉浆料。 有机粘 合剂 (聚乙烯醇) 的重量为固体重量的 2%。 通过离心喷雾造粒器把金属粉浆料制备成 球形状的金属粉末。离心喷雾造粒器的转速控制在 12000转 /分,离心喷雾造粒器的干燥 空气的进口温度为 200 °C, 出口温度为 90°C, 干燥空气流量为 220Nm3/h。 金属粉浆料 的进料速度为 12kg/h。 干燥造粒后的金属粉末通过旋风器收集, 超细的金属粉末通过滤 袋收集。 旋风器收集的金属粉末用振动筛分级, 得到平均粒径为 40微米的金属粉末 (图 4)。 滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
实施例 2: 采用物理气相沉积法生产的平均粒径为 0.5微米的钛基合金粉 (图 5),与水配成固液 比为 2:1的金属粉浆料。有机粘合剂(乙基纤维素)的重量为固体重量的 1.5 %。通过离 心喷雾造粒器把金属粉浆料制备成球形状的金属粉末。 离心喷雾造粒机的转速控制在
12000 转 /分, 干燥空气的进口温度为 350°C, 出口温度为 120°C, 干燥空气流量为 250Nm3/h。 金属粉浆料的进料速度为 10kg/h。 干燥造粒后的金属粉末通过旋风器收集, 超细的金属粉末通过滤袋收集。 旋风器收集的金属粉末用振动筛分级, 得到平均粒径为 45微米的金属粉末 (图 6)。 滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金 属粉浆料。
实施例 3:
采用物理气相沉积法生产的平均粒径为 0.25微米的镍基合金粉 (图 7), 与乙醇配成 固液比为 1:1的金属粉浆料。 有机粘合剂 (保定京素生物科技有限公司生产的型号为: HY-1的冶金矿粉球团粘合剂) 的重量为固体重量的 1.5 %。 通过离心喷雾造粒器把金属 粉浆料制备成球形状的金属粉末。离心喷雾的转速控制在 25000转 /分,干燥空气的进口 温度为 200°C, 出口温度为 90°C, 干燥空气流量为 220Nm3/h。 金属粉浆料的进料速度 为 10kg/h。 干燥造粒后的金属粉末通过旋风器收集, 超细的金属粉末通过滤袋收集。 旋 风器收集的金属粉末用振动筛分级, 得到平均粒径为 30微米的金属粉末 (图 8)。 滤袋收 集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
实施例 4:
采用物理气相沉积法生产的平均粒径为 0.5微米的纯金属镍粉 (图 9),与甲醇配成固 液比为 1.5:1的金属粉浆料。有机粘合剂的重量为固体重量的 1.0%。通过压力喷雾造粒 器把金属粉浆料制备成球形状的金属粉末。压力喷雾的压力控制在 15kg/cm2, 干燥空气 的进口温度为 250°C, 出口温度为 95°C, 干燥空气流量为 250Nm3/h。 金属粉浆料的进 料速度为 12kg/h。干燥造粒后的金属粉末通过旋风器收集, 超细的金属粉末通过滤袋收 集。 旋风器收集的金属粉末用振动筛分级, 得到平均粒径为 40微米的金属粉末 (图 10)。 滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
上述实施例制备的 3D打印机用金属粉末, 从附图可以得知, 其结构不是一个完整 的一体化的金属粉末,而是有多个亚微米级的金属粉末彼此粘结团聚而成, 因此,该 3D 打印机用的金属粉末既具有亚微米粒子的各种优点(如球形度高、成分均匀、氧含量低), 又具有雾化金属粉末的分散性和输送性。 将上述实施例制备的 3D打印机用金属粉末用于 3D打印, 3D打印机用金属粉末通 过 3D打印机的喷嘴喷撒到具有防护性气体的防护室中的加热模型工作台上逐层打印, 形成 3D打印产品; 在喷嘴喷撒过程具有分散性好, 金属粉末输送顺利的优点, 在逐层 打印过程充分保证相接处的每层金属粉末的接触面积增大, 粘结紧固。

Claims

权利 要求 书
1.一种 3D打印机用的金属粉末, 其特征在于: 该金属粉末为先采用物理气相沉积 法或化学气相沉积法制备成平均粒径为 0.1-3微米的亚微米级金属粉末, 该平均粒径为 0.1-3微米的金属粉末通过造粒团聚成平均粒径 10-50微米 3D打印机用的的金属粉末。
2.根据权利要求 1所述的 3D打印机用的金属粉末, 其特征在于: 所述的金属粉末 为纯金属粉或合金粉。
3.根据权利要求 1所述的 3D打印机用的金属粉末, 其特征在于: 所述的亚微米级 金属粉末的平均粒径为 0.5-2微米; 所述的 3D打印机用的金属粉末其平均粒径为 20-30 微米。
4.一种 3D打印机用的金属粉末的制备方法, 其特征在于: 具体制备步骤包括:
( 1 ) 先采用物理气相沉积法或化学气相沉积法制备出亚微米级金属粉末, 所得的 亚微米级金属粉末的平均粒径为 0.1-3微米;
(2) 将步骤 (1 ) 所得的平均粒径为 0.1-3微米的亚微米级金属粉末与液体混合、 配制成金属粉浆料; 上述金属粉浆料的亚微米级金属粉末液体的重量比为 0.25-2.0:1;
(3 ) 在步骤 (2) 所得的金属粉浆料中加入亚微米级金属粉末重量 0.1-10%的有机 粘合剂, 搅拌混合均匀;
(4)将步骤(3 )搅拌混合均匀的浆料通过离心喷雾造粒机或压力喷雾造粒机制备 成球形状的、 平均粒径为 10-50微米的 3D打印用的金属粉末。
5.根据权利要求 4所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 步骤
( 1 ) 所述的亚微米级金属粉末的平均粒径为 0.5-2微米。
6.根据权利要求 5所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 步骤 (4) 所述的 3D打印机用的金属粉末其平均粒径为 20-30微米。
7.根据权利要求 4所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 所述 的金属粉末为钛、 镍或铜的纯金属粉, 或者是镍基合金粉、 钛基合金粉、 铝基合金粉或 铁基合金粉的合金金属粉。
8.根据权利要求 4所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 步骤
(2) 中所述的液体为水、 乙醇、 异丙醇或甲醇。
9.根据权利要求 4所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 步骤
(3 ) 中所述的有机粘合剂为聚乙烯醇、 乙基纤维素或者金属矿粉造粒粘合剂。
10.根据权利要求 4所述的 3D打印机用的金属粉末的制备方法, 其特征在于: 步骤 (4) 所述的离心喷雾造粒机的转速控制在 10000-40000转 /分; 压力喷雾造粒机的压力 为 6-30kg/cm2 ; 上述压力喷雾造粒机或离心喷雾造粒机其他操作参数控制在: 干燥空气 的进口温度为 200-350°C和出口温度为 80-150°C ; 干燥空气的流量为 100-300 Nm3/h; 金 属粉浆料在压力喷雾造粒机或离心喷雾造粒机的进料速度为 5-20 kg/h。
PCT/CN2014/074722 2014-01-22 2014-04-03 3d打印机用的金属粉末及其制备方法 WO2015109658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/113,055 US10065240B2 (en) 2014-01-22 2014-04-03 Metal powder for 3D printers and preparation method for metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410028642.2 2014-01-22
CN201410028642.2A CN103785860B (zh) 2014-01-22 2014-01-22 3d打印机用的金属粉末及其制备方法

Publications (1)

Publication Number Publication Date
WO2015109658A1 true WO2015109658A1 (zh) 2015-07-30

Family

ID=50662150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074722 WO2015109658A1 (zh) 2014-01-22 2014-04-03 3d打印机用的金属粉末及其制备方法

Country Status (3)

Country Link
US (1) US10065240B2 (zh)
CN (1) CN103785860B (zh)
WO (1) WO2015109658A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104234A1 (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
WO2017110829A1 (ja) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
WO2017110828A1 (ja) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
WO2017114852A1 (en) * 2015-12-30 2017-07-06 Siemens Aktiengesellschaft 3d printing powder and 3d printing method
CN111112635A (zh) * 2020-01-16 2020-05-08 深圳市金中瑞通讯技术有限公司 一种钛合金粉及其制备方法

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505058B2 (en) * 2014-05-16 2016-11-29 Xerox Corporation Stabilized metallic nanoparticles for 3D printing
EP3159141A4 (en) * 2014-06-20 2018-01-24 Fujimi Incorporated Powder material to be used in powder lamination shaping and powder lamination shaping method using same
MY191292A (en) * 2014-07-08 2022-06-14 Emery Oleochemicals Gmbh Sinterable feedstock for use in 3d printing devices
CN104475742A (zh) * 2014-12-04 2015-04-01 南京大学 一种铁基非晶软磁合金球形粉末的制造方法
US10144061B2 (en) 2014-12-30 2018-12-04 Delavan Inc. Particulates for additive manufacturing techniques
CN105801012A (zh) * 2014-12-31 2016-07-27 优克材料科技股份有限公司 浆料
CN104668552B (zh) * 2015-01-30 2016-09-07 成都新柯力化工科技有限公司 一种用于3d打印的铝粉及其制备方法
CN104772473B (zh) * 2015-04-03 2016-09-14 北京工业大学 一种3d打印用细颗粒球形钛粉的制备方法
US20180065324A1 (en) * 2015-05-15 2018-03-08 Konica Minolta, Inc. Powder material, method for producing three-dimensional molded article, and three-dimensional molding device
CN104942300B (zh) * 2015-06-15 2017-04-26 江苏博迁新材料股份有限公司 空心或实心球形金属粉体的制备方法
CA3200272A1 (en) 2015-12-16 2017-06-22 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
EP3442780A4 (en) * 2016-04-11 2019-12-04 Hewlett-Packard Development Company, L.P. PARTICULATE CONSTRUCTION MATERIAL
CN105880612B (zh) * 2016-06-28 2018-07-06 浙江亚通焊材有限公司 一种增材制造用活性金属粉末制备方法
CN106077620A (zh) * 2016-08-24 2016-11-09 江苏星火特钢有限公司 一种用于3d打印的不锈钢金属粉体及其制备方法
CN106216705B (zh) * 2016-09-19 2018-04-27 北京工业大学 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN106270520A (zh) * 2016-09-29 2017-01-04 柳州增程材料科技有限公司 高强度高模量3d打印材料的制备方法
CN106392087A (zh) * 2016-09-29 2017-02-15 柳州增程材料科技有限公司 一种高强度3d打印金属材料的制备方法
CN106216698A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 一种3d打印用合金粉末的制备工艺
CN106166616A (zh) * 2016-09-29 2016-11-30 柳州增程材料科技有限公司 一种3d打印用金属粉末的制备方法
CN106346011A (zh) * 2016-09-29 2017-01-25 柳州增程材料科技有限公司 3d打印用复合金属粉末的制备方法
CN106424743A (zh) * 2016-09-29 2017-02-22 柳州增程材料科技有限公司 一种高强度高模量增材制造材料的制备方法
CN106346010A (zh) * 2016-09-29 2017-01-25 柳州增程材料科技有限公司 一种增材制造材料的制备方法
CN106216699A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 一种3d打印用金属粉末制备工艺
CN106270541A (zh) * 2016-09-29 2017-01-04 柳州增程材料科技有限公司 高强度增材制造材料的加工方法
CN106216697A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 3d打印用合金粉末的制备方法
CN106216701A (zh) * 2016-09-30 2016-12-14 柳州增程材料科技有限公司 铝镁合金粉末的制备方法
CN106148777A (zh) * 2016-09-30 2016-11-23 柳州增程材料科技有限公司 汽车发动机用铝镁合金的加工方法
CN106346014A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 变速箱用铝镁合金的加工方法
CN106392086A (zh) * 2016-09-30 2017-02-15 柳州增程材料科技有限公司 一种铝镁合金粉末的制备工艺
CN106346012A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 汽车变速箱用铝镁合金的制备方法
CN106346013A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 汽车发动机用铝镁合金粉末的制备方法
CN106216700A (zh) * 2016-09-30 2016-12-14 柳州增程材料科技有限公司 一种变速箱用铝镁合金粉末的制备工艺
CN106238741A (zh) * 2016-09-30 2016-12-21 柳州增程材料科技有限公司 汽车用铝镁合金材料的制备方法
CN106636844A (zh) * 2016-11-23 2017-05-10 武汉华智科创高新技术有限公司 一种适用于激光3d打印的铌合金粉末及其制备方法
CN108262473A (zh) * 2016-12-30 2018-07-10 西门子公司 3d打印用复合粉末、打印设有嵌入的元器件的部件的方法及该部件和其打印模型
CN106890995A (zh) * 2017-02-23 2017-06-27 深圳市卡德姆科技有限公司 一种金属注塑成型烧结用催化脱脂型喂料的制作方法
JP6862917B2 (ja) * 2017-02-28 2021-04-21 セイコーエプソン株式会社 三次元造形物製造用組成物および三次元造形物の製造方法
CN106903303A (zh) * 2017-03-15 2017-06-30 铜陵元精工机械有限公司 一种应用于选择性激光烧结技术的高强度金属粉末及其工艺
CN107116224A (zh) * 2017-04-25 2017-09-01 上海材料研究所 一种用于3D打印技术的18Ni‑300模具钢粉末的制备方法
WO2019045733A1 (en) * 2017-08-31 2019-03-07 Desktop Metal, Inc. PARTICLE AGGLOMERATION FOR THE ADDITIVE MANUFACTURE OF METAL
CN107695338B (zh) * 2017-09-21 2019-11-12 北京宝航新材料有限公司 一种AlSi7Mg粉末材料及其制备方法和其应用
US11897193B2 (en) 2017-10-24 2024-02-13 Hewlett-Packard Development Company, L.P. Build material slurry
US10982306B2 (en) * 2017-10-30 2021-04-20 GM Global Technology Operations LLC Additive manufacturing process and powder material therefor
CN109795987B (zh) * 2017-11-16 2023-11-07 上海镁源动力科技有限公司 制备氢化镁粉末的一体化装置及制备氢化镁粉末的方法
US11273496B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
US11273601B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
CN110405218B (zh) * 2018-04-26 2022-07-08 广东正德材料表面科技有限公司 一种高球形度纳米结构不锈钢粉末及其制备方法
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
WO2019246321A1 (en) * 2018-06-20 2019-12-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
CN110893465A (zh) * 2018-08-22 2020-03-20 西门子股份公司 3d打印金属粉末、3d打印及制备3d打印金属粉末的方法
US20200164963A1 (en) 2018-11-26 2020-05-28 Embraer S.A. Thermally configurable structural elements especially useful for aircraft components
WO2020118231A1 (en) 2018-12-06 2020-06-11 Jabil Inc. Apparatus, system and method of forming polymer microspheres for use in additive manufacturing
CN109365803B (zh) * 2018-12-20 2021-02-09 哈尔滨工业大学 一种粉末表面稀土改性的铝合金复杂构件增材制造方法
US11787108B2 (en) 2019-01-10 2023-10-17 Hewlett-Packard Development Company, L.P. Three-dimensional printing
AU2020266556A1 (en) 2019-04-30 2021-11-18 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
KR20220019680A (ko) * 2019-05-02 2022-02-17 테크나 플라즈마 시스템 인코포레이티드 물리적 특징이 개선된 적층 제조 분말, 이의 제조 방법 및 용도
CN110164677B (zh) * 2019-06-11 2020-11-06 莱芜职业技术学院 一种制备用于3d打印的铁基软磁复合材料丝材
WO2021097320A1 (en) * 2019-11-15 2021-05-20 Holo, Inc. Compositions and methods for three-dimensional printing
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN110961619A (zh) * 2019-12-23 2020-04-07 北京科技大学 一种低成本3d打印钛制品的方法
CN116034496A (zh) 2020-06-25 2023-04-28 6K有限公司 微观复合合金结构
KR20230073182A (ko) 2020-09-24 2023-05-25 6케이 인크. 플라즈마를 개시하기 위한 시스템, 디바이스 및 방법
JP2023548325A (ja) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド 球状化金属粉末の合成のためのシステムおよび方法
US11668314B2 (en) 2020-11-10 2023-06-06 Greenheck Fan Corporation Efficient fan assembly
CN112692294B (zh) * 2020-12-22 2022-12-09 厦门钨业股份有限公司 一种高比重钨合金粉末及其制备方法
CN113319273B (zh) * 2021-07-05 2022-12-09 北京科技大学顺德研究生院 一种铜锡复合球形颗粒粉末及其制备方法
CN113564545B (zh) * 2021-07-27 2022-02-22 杭州阿凡达光电科技有限公司 一种环保型氧化铌靶材的加工工艺及其装置
CN116217206A (zh) * 2023-02-27 2023-06-06 共享智能装备有限公司 一种打印用固废粉料制备方法及3d打印方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184609A (ja) * 1992-12-18 1994-07-05 Nippon Shinkinzoku Kk 均粒微細な金属タングステン粉末の製造法
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
CN1398990A (zh) * 2001-07-20 2003-02-26 上海天嘉应用生物技术有限公司 一种化学气相沉积球形还原铁
CN101884892A (zh) * 2010-06-25 2010-11-17 北京工业大学 一种超细及纳米WC-Co复合粉的团聚造粒方法
CN102218533A (zh) * 2011-05-17 2011-10-19 陈钢强 银包镍合金粉
WO2012169255A1 (ja) * 2011-06-08 2012-12-13 株式会社東芝 モリブデン造粒粉の製造方法およびモリブデン造粒粉

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743980B2 (ja) * 2002-03-28 2006-02-08 同和鉱業株式会社 低融点金属粉末及びその製造方法
JP4119667B2 (ja) * 2002-04-12 2008-07-16 トーカロ株式会社 複合サーメット粉末およびその製造方法
EP1615767A1 (de) * 2003-04-16 2006-01-18 AHC Oberflächentechnik GmbH & Co. OHG Rapid prototyping-verfahren
WO2005090448A1 (de) * 2004-03-21 2005-09-29 Toyota Motorsport Gmbh Pulver für das rapid prototyping und verfahren zu dessen herstellung
DE102005061965A1 (de) * 2005-12-23 2007-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oxidische Agglomeratpartikel, Verfahren zur Herstellung von Nanokompositen sowie deren Verwendung
CN100446897C (zh) * 2006-08-02 2008-12-31 南昌航空工业学院 一种选区激光烧结快速制造金属模具的方法
JP6141318B2 (ja) * 2013-06-13 2017-06-07 石原ケミカル株式会社 Ta粉末の製造方法およびTa造粒粉の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184609A (ja) * 1992-12-18 1994-07-05 Nippon Shinkinzoku Kk 均粒微細な金属タングステン粉末の製造法
US5328763A (en) * 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
CN1398990A (zh) * 2001-07-20 2003-02-26 上海天嘉应用生物技术有限公司 一种化学气相沉积球形还原铁
CN101884892A (zh) * 2010-06-25 2010-11-17 北京工业大学 一种超细及纳米WC-Co复合粉的团聚造粒方法
CN102218533A (zh) * 2011-05-17 2011-10-19 陈钢强 银包镍合金粉
WO2012169255A1 (ja) * 2011-06-08 2012-12-13 株式会社東芝 モリブデン造粒粉の製造方法およびモリブデン造粒粉

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104234A1 (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
WO2017110829A1 (ja) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
WO2017110828A1 (ja) * 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
WO2017114852A1 (en) * 2015-12-30 2017-07-06 Siemens Aktiengesellschaft 3d printing powder and 3d printing method
CN111112635A (zh) * 2020-01-16 2020-05-08 深圳市金中瑞通讯技术有限公司 一种钛合金粉及其制备方法

Also Published As

Publication number Publication date
CN103785860B (zh) 2016-06-15
US20170008082A1 (en) 2017-01-12
CN103785860A (zh) 2014-05-14
US10065240B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2015109658A1 (zh) 3d打印机用的金属粉末及其制备方法
CN108213411B (zh) 基于TiCN-MxC-Co的涂层喷涂和3D打印金属陶瓷材料及其制备方法
CN104475743B (zh) 一种微细球形钛及钛合金粉末的制备方法
JP5284080B2 (ja) 金属粉末およびそれを製造するための方法
JP7330963B2 (ja) 粗くて角張った粉末供給物質から微細な球状粉末を製造するための方法および装置
JP5911938B2 (ja) 球状二硫化モリブデン粉末、二硫化モリブデンコーティング、およびその生産方法
CN104942300B (zh) 空心或实心球形金属粉体的制备方法
TWI588092B (zh) 碳化鈦微粒子之製造方法
CN104988451B (zh) 一种超细碳化钨基球形热喷涂粉末的制备方法
CN109570521A (zh) 等离子球化制备金属粉末的方法
CN108356274A (zh) 一种热喷涂用TiB2-Ni基金属陶瓷复合结构喂料及其制备方法
KR102546750B1 (ko) 고융점 금속 또는 합금 분말의 미립화 제조 방법
CN110405218A (zh) 一种高球形度纳米结构不锈钢粉末及其制备方法
CN110605401B (zh) 一种钛铝合金粉末的制备方法
CN114728338A (zh) 微粒子的制造装置及微粒子的制造方法
CN104070173A (zh) 球形钨粉的制备方法
JP2010255020A (ja) 流体の供給方法
JP7488832B2 (ja) 微粒子および微粒子の製造方法
Zhao et al. Synthesis and characterization of high-purity micro-spherical (NH4) 2RuCl6 particles using chemical separation combined with spray dried techniques
JPWO2019146414A1 (ja) 銅微粒子
CN113618071A (zh) 用于制备增材制造用高球形度金属粉末的雾化室、装置及方法
JP5946179B2 (ja) セラミックス皮膜の成膜装置及び成膜方法
CN110172605A (zh) 一种金属基陶瓷复合材料粉体的制备方法
CN111482611A (zh) 一种用于3d打印的球形碳化钨-钴粉末的制备方法
CN117161388B (zh) 一种低氧含量钛合金粉末及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879758

Country of ref document: EP

Kind code of ref document: A1