WO2015109647A1 - 一种两性分子改性的钙钛矿光电功能材料及其应用 - Google Patents

一种两性分子改性的钙钛矿光电功能材料及其应用 Download PDF

Info

Publication number
WO2015109647A1
WO2015109647A1 PCT/CN2014/073653 CN2014073653W WO2015109647A1 WO 2015109647 A1 WO2015109647 A1 WO 2015109647A1 CN 2014073653 W CN2014073653 W CN 2014073653W WO 2015109647 A1 WO2015109647 A1 WO 2015109647A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional material
perovskite
organic
modified
photoelectric functional
Prior art date
Application number
PCT/CN2014/073653
Other languages
English (en)
French (fr)
Inventor
韩宏伟
梅安意
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to JP2016520247A priority Critical patent/JP6151447B2/ja
Priority to EP14880101.2A priority patent/EP3098871B1/en
Publication of WO2015109647A1 publication Critical patent/WO2015109647A1/zh
Priority to US14/979,477 priority patent/US10059875B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/006Compounds containing, besides germanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a M z A y BX z+y+2 perovskite-based photoelectric functional material and a preparation method thereof, and belongs to the technical field of electronic devices.
  • a perovskite material having an eight-eighth structure has its characteristic crystal structure and also exhibits excellent properties. These materials have high carrier mobility, high porosity, and a wide spectral response range, with strong absorption in the range of 300 nm to 800 nm. In addition, electrons and holes have a longer lifetime in the ABX 3 perovskite material, and the carrier diffusion length reaches 100 nm, making charge separation easier.
  • the preparation method has the advantages of simple preparation method, wide source of materials and low cost, and the obtained photoelectric functional material has excellent photoelectric performance and good stability, and the efficiency and stability of the battery are obviously improved in the field of solar cells based on perovskite materials. The advantages have great industrial application prospects.
  • an organic amphiphile-modified M z A y BX z+y+2 perovskite-based photoelectric functional material is provided, which is based on an ABX3 perovskite material, organic
  • the amphiphilic molecule M is a modified component, and its chemical formula can be expressed as M x A y BX x+y+2 .
  • R2 in the amphiphilic group R1-R-R2 is at least one of -COOH, -OSiOH, -0 3 P0H , -0 2 S0H and the like.
  • R in the amphiphile R1-R-R2 is a type of organic group, and may be, for example, a linear or branched or halogenated alkyl group in C1-C30; C3-C12 Cycloalkyl; heterocyclic ring in C1-C12; alkenyl group in C2-C8; alkynyl group in C2-C8; aryl group in C6-C12; aralkyl group in C8-C30; C6-C30 An alkylaryl group; an isoaryl group in C1-C12; an alkyl heteroaryl group in C6-C30; an alkyl heterocycle in C6-C30, and the like.
  • a in the M x A y BX x+y+2 photoelectric functional material is at least one of methylamine, formazan, hydrazine and the like.
  • B in the M x A y BX x+y+2 photoelectric functional material is at least one of lead, tin, copper, bismuth and the like.
  • X in the M x A y BX x+y+2 photoelectric functional material is at least one of chlorine, bromine, iodine and the like.
  • M x A y BX x+y+2 photoelectric functional material in a solar cell, wherein M x A y BX x+y+2 is used as light in a solar cell Absorbent layer, n-type or p-type material.
  • an application of an M x A y BX x+y+2 optoelectronic functional material in other fields such as LEDs, electronic components, and the like is provided.
  • a method of preparing the above-described electrically functional material is provided, and specifically includes:
  • amphiphilic molecule M with hydriodic acid in a mixed bath in ice water, spin-dry, and wash the precipitate with diethyl ether to obtain an iodate.
  • the iodate, the methylamine iodide MAI and the Pbl2 are weighed stoichiometrically, and an appropriate amount of gamma-martactone is added thereto, and stirred to sufficiently react to obtain a precursor solution.
  • the invention has the significant advantages of: improving the crystal form of the ABX3 perovskite material by using a low-cost, wide-ranging organic amphiphilic molecule, thereby greatly improving the crystallization property, thereby significantly improving the photoelectricity of the solar cell based on the perovskite material. Conversion efficiency and stability.
  • the material preparation method of the invention is simple, the equipment used is simple, the materials used are widely sourced, the cost is low, and the obtained material has excellent photoelectric performance and stability.
  • M in M x A y BX x+y+2 is 4-aminobutyric acid
  • A is methylamine
  • B is lead
  • X is chlorine
  • x is 0.1
  • y 0.95
  • the photoelectric conversion efficiency of 11% is obtained, which is much higher than that of the same battery, and exhibits good stability.
  • the M x A y BX x+y+2 photoelectric functional material of the present invention has a good industrial application prospect.
  • the ABX 3 perovskite-based photoelectric functional material modified by the organic amphiphile disclosed by the invention is prepared by using the whole solution method and used in the solar cell, and the crystallization property thereof is greatly improved compared with the unmodified material, and the photoelectricity is improved. Conversion efficiency and stability show significant advantages. Under the same conditions, when the M x A y BX x+ y 2 photoelectric functional material of the present invention is applied to a mesoscopic solar cell based on a carbon counter electrode, the photoelectric conversion efficiency and stability obtained are significantly higher than that. The efficiency of applying unmodified material ABX3 to such batteries has previously been reported.
  • an organic amphiphilic modified ABX3 perovskite-based photoelectric functional material is based on an ABX3 perovskite material, and the organic amphiphilic molecule M is a modified component, and the chemical formula can be expressed as M z A y BX z+y+2 .
  • R2 in the amphiphile R1-R-R2 may be at least one of -COOH, -OSiOH, -0 3 P0H , -0 2 S0H and the like.
  • R in the amphoteric molecule R1-R-R2 is an organic group, and may be various organic groups, such as linear, or branched, or substituted alkyl groups in C1-C30; a cycloalkyl group in C12; a heterocyclic ring in C1-C12; an alkenyl group in C2-C8; an alkynyl group in C2-C8; an aryl group in C6-C12; an aralkyl group in C8-C30; C6 - an alkylaryl group in C30; an isoaryl group in C1-C12; an alkylisoaryl group in C6-C30; an alkyl heterocyclic ring in C6-C30, etc., or other organic group.
  • organic groups such as linear, or branched, or substituted alkyl groups in C1-C30; a cycloalkyl group in C12; a heterocyclic ring in C1-C12; an alkeny
  • a in the M z A y BX z+y+2 photoelectric functional material is preferably one of methylamine, formazan, hydrazine, and the like.
  • B in the M z A y BX z+y+2 photoelectric functional material is preferably one of lead, tin, copper, bismuth or the like.
  • X in the M z A y BX z+y+2 photoelectric functional material is preferably at least one of chlorine, bromine, iodine and the like.
  • the content z of M in the photoelectric functional material of M z A y BX z+y+2 is in the range of 0 ⁇ z ⁇ 0.5, and the content y of A is 0 ⁇ y ⁇ l, and y + z ⁇ l .
  • short-chain ammonium cations such as methylamine, formazan, hydrazine and the like are filled into the voids of the metal halide BX2 octahedron to form a three-dimensional perovskite material;
  • a short-chain ammonium cation or a monovalent ion such as ruthenium ion is filled into the void of the apex of the metal octahedron to form a three-dimensional perovskite layer (the thickness of which is determined by the stoichiometry of the amphiphilic M and the monovalent ion)
  • the ratio is determined, and the amphiphilic M forms an organic layer between the three-dimensional perovskite layer and the layer, and finally forms a modified perovskite material in which a plurality of layers of perovskite sheets and amphiphilic molecules are alternately stacked.
  • the method for preparing an organic amphiphilic modified ABX3 perovskite-based photoelectric functional material comprises the following steps:
  • the amphoteric molecule M and the hydroiodic acid may be sufficiently reacted in a mixed bath of ice water, and the mixture is subjected to rotary evaporation, and the precipitate is washed with diethyl ether to obtain iodic acid. salt; (2) taking an appropriate amount of the halide and the methyl iodide to react with 131 2 to obtain a perovskite precursor solution. Specifically, it is preferred to weigh the iodate, the methyl iodide MAI and the Pbl2, respectively, in a stoichiometric ratio. Adding an appropriate amount of gamma lactone to the mixture and stirring it to fully react to obtain a precursor solution;
  • the perovskite material can be obtained by drying the precursor solvent.
  • the amphiphilic 4-aminobutyric acid GABA and hydriodic acid were sufficiently reacted in a mixing bath of ice-water at a stoichiometric ratio of 1:1, and the precipitate was rotary-screwed, and the precipitate was washed with diethyl ether to obtain (GABA)I.
  • GABA 4-aminobutyric acid
  • hydriodic acid was sufficiently reacted in a mixing bath of ice-water at a stoichiometric ratio of 1:1, and the precipitate was rotary-screwed, and the precipitate was washed with diethyl ether to obtain (GABA)I.
  • weigh (GABA)I, iodide methylamine MAI, Pbl2 according to stoichiometric ratio add appropriate amount of gamma lactone to it, stir and fully react to obtain (GABA)o .iMAo.95Pbl3.05 precursor
  • the amphiphilic 4-aminobutyric acid GABA and hydrochloric acid were sufficiently reacted in a water-mixing bath at a stoichiometric ratio of 1:1, and the precipitate was rotary-screwed, and the precipitate was washed with diethyl ether to obtain (GABA)CI.
  • GABA 4-aminobutyric acid
  • hydrochloric acid was sufficiently reacted in a water-mixing bath at a stoichiometric ratio of 1:1, and the precipitate was rotary-screwed, and the precipitate was washed with diethyl ether to obtain (GABA)CI.
  • GABA iodide methylamine MAI, Pbl2
  • add appropriate amount of DMF to it, and stir it to fully react to obtain (GABA)o.06MAo.97Pbl2.
  • the 97Clo.06 precursor solution was filled in a mesoscopic solar cell based on a carbon counter electrode and dried at 70 °
  • the iBra.95 precursor solution was filled in a mesoscopic solar cell based on a carbon counter electrode and dried at 60 ° C. The efficiency of the tested battery was 9.8%.
  • methyl iodide may be replaced by methylamine chloride, methyl bromide, etc.
  • lead iodide may be replaced by lead bromide, lead chloride, cesium iodide, tin iodide, and the like.
  • the stoichiometric ratio is not limited to the above range, and only needs to satisfy 0 ⁇ z ⁇ 0.5, 0 ⁇ y ⁇ l, y+z ⁇ l.
  • the perovskite-based photoelectric functional material of the present invention can be used in a solar cell, and as a light absorbing layer in a solar cell, an n-type or p-type material can also be used for an LED or an electronic component as a semiconductor material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种有机两性分子改性的MzAyBXz+y+2钙钛矿基光电功能材料及其制备方法和应用,该功能材料是以ABX3钙钛矿材料为基体,以有机两性分子M为改性成分,其化学通式表示为MzAyBXz+y+2。所使用的基体材料与改性材料成本低廉,原料丰富;此外,制备方法可采用全溶液法,制备工艺简单,无需昂贵的设备仪器,同时很好地改善了所得钙钛矿材料的结晶性能,用其制得的太阳能电池的光电转换效率与稳定性得到大幅度提升。

Description

一种两性分子改性的钙钛矿光电功能材料及其应用 【技术领域】
本发明涉及一种 MzAyBXz+y+2钙钛矿基光电功能材料及其制备方法, 属于电子 器件技术领域。
【背景技术】
随着人类社会发展对能源需求的与日俱增与传统化石能源的日益减少,未来 面临一个很大的挑战就是需要找一种可再生的新能源来代替传统的化石能源。目 前正在研究利用的新能源包括风能, 地热, 核能, 太阳等。 但是风能和地热有着 很大的地域限制, 核能存在较大的安全隐患且原料不可再生。太阳能以其取之不 尽,用之不竭而又不产生污染等特点而受到重视。对太阳能的利用主要有光热转 换, 光化学转换和光电转换等; 由于种种原因, 光热转换与光化学转换的推广使 用受到一定的限制,光电转换即太阳能电池以独特的优势而被广泛研究。 目前市 场上占主导地位的太阳能电池为硅基太阳能电池,但其制备成本较高,工艺复杂, 因此寻找成本低廉的, 制备工艺简单的光电转换材料就很有必要。
钙钛矿材料 ABX3作为一种光电性能优良的材料, 高的光电转换效率, 而迅 速成为焦点。 具有八8^结构的钙钛矿材料具有其特有的晶体结构, 同时也表现 出优异的性能。这类材料有很高的载流子迁移率, 高的空穴率以及较宽的光谱响 应范围, 在 300nm~800nm的范围内有很强的吸收。 此外, 电子与空穴等在 ABX3 钙钛矿材料中的寿命较长,载流子扩散长度达到 lOOnm,使得电荷分离更加容易。 因此, 当基于 ABX3钙钛矿材料, 并采用全溶液法的太阳能电池于 2012年 8月报 道出 9.7%的光电转换效率之后, 迅速成为研究的热点, 在短短一年多的时间内, 通过工艺的改变与控制, 其效率从 9.7%迅速提升到 14.1%乃至 16.4%。 这些研究 结果为低成本, 高效率的太阳能电池提供一片广阔的空间。
虽然 八8^钙钛矿材料应用在太阳能电池中取得了重大进展, 但是采用全溶 液法时其结晶形态存在的不足大大制约了基于该类材料的太阳能电池的效率与 稳定性。利用真空气相沉积等手段虽然有助于控制其结晶,但却大幅度提升了成 本, 制约了其应用。
【发明内容】 本发明的目的在于提供一种有机两性分子改性的 MzAyBXz+y+2钙钛矿基光电 功能材料。 本发明制备方法简单, 使用的材料来源广泛, 成本低廉, 所制得的光 电功能材料光电性能优良,稳定性好,在基于钙钛矿材料的太阳能电池领域对提 升电池的效率与稳定性有着明显的优势, 有很大的工业化应用前景。
为实现上述目的, 按照本发明的一个方面, 提供一种有机两性分子改性的 MzAyBXz+y+2钙钛矿基光电功能材料, 其以 ABX3钙钛矿材料为基体, 有机两性分 子 M为改性成分, 其化学通式可以表示为 MxAyBXx+y+2
进一步地, MxAyBXx+y+2光电功能材料中的两性分子 M可以表示为 R1-R-R2, 两性分子 R1-R-R2中的 R1至少为 -NH2, -NH-C(NH2)=NH , -N=CH-NH2等中的一种。
进一步地,两性分子 R1-R-R2中的 R2至少为 -COOH, -OSiOH , -03P0H , -02S0H 等中的一种。
进一步地, 两性分子 R1-R-R2中的 R为各类有机基团, 例如可以为 C1-C30中 的一种线性的、 或者带支链的、 或者卤代的烷基; C3-C12 中的环烷基; C1-C12 中的杂环; C2-C8中的烯基; C2-C8中的炔基; C6-C12中的芳基; C8-C30中的芳 烷基; C6-C30中的烷基芳香基; C1-C12中的异芳基; C6-C30中的烷基异芳基; C6-C30中的烷基杂环等中至少一种。
进一步地, 所述的 MxAyBXx+y+2光电功能材料中的 A为甲胺, 甲脒, 铯等中至 少一种。
进一步地, 所述的 MxAyBXx+y+2光电功能材料中的 B为铅, 锡, 铜, 锗等中至 少一种。
进一步地, 所述的 MxAyBXx+y+2光电功能材料中的 X为氯, 溴, 碘等中至少一 种。
按照本发明的另一方面, 提供一种上述 MxAyBXx+y+2光电功能材料在太阳能电 池中的应用, 其中, MxAyBXx+y+2作为太阳能电池中的光吸收层, n型或 p型材料。
按照本发明的又一方面, 提供一种 MxAyBXx+y+2光电功能材料在 LED、 电子元 器件等其他领域的应用。
按照本发明的再一方面, 提供一种种上述 电功能材料的制备方 法, 具体包括:
( 1 ) 将两性分子与氢卤酸反应得到卤酸盐; ( 2 ) 取适量卤酸盐和碘化甲胺一起与 1312反应得到钙钛矿前驱体溶液; ( 3 ) 烘干前驱体溶剂即可得到钙钛矿材料。
具体地,可以优选将两性分子 M与氢碘酸在在冰水混合浴中充分反应,旋蒸, 用乙醚清洗沉淀, 得到碘酸盐。
优选按化学计量比分别称量碘酸盐, 碘化甲胺 MAI以及 Pbl2, 向其中加入适 量伽马丁内酯, 搅拌使其充分反应, 得到前驱体溶液。
本发明的显著优点在于: 利用成本低廉, 来源广泛的有机两性分子来改善 ABX3 钙钛矿材料的结晶形态, 使其结晶性能大幅度提升, 从而显著提高了基于 钙钛矿材料的太阳能电池的光电转换效率和稳定性。
本发明所述材料制备方法简单, 所用设备简单, 使用的材料来源广泛, 成本 低廉, 同时得到的材料有优异的光电性能和稳定性。
当 MxAyBXx+y+2中的 M为 4-氨基丁酸, A为甲胺, B为铅, X为氯, x取值 0.1, y取值 0.95的时候, 将其应用于已报道的基于碳对电极的介观太阳能电池中时, 得到 11%的光电转换效率, 远高于同种电池的效率, 同时表现出很好地稳定性。 与已有的 ABX3钙钛矿材料相比, 本发明所述的 MxAyBXx+y+2光电功能材料有很好 的工业应用前景。
本发明公布的以有机两性分子改性的 ABX3钙钛矿基光电功能材料, 利用全 溶液法制备并用在太阳能电池中时, 与未改性材料相比,其结晶性能有着大幅度 改善, 光电转换效率和稳定性表现出了明显的优势。在相同的条件下, 将本发明 所述的 MxAyBXx+y2光电功能材料应用于基于碳对电极的介观太阳能电池中时,得 到的光电转换效率和稳定性显著高于此前报道的将未改性材料 ABX3应用于此类 电池中的效率。
【具体实 式】
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合实施例, 对 本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释 本发明, 并不用于限定本发明。
本实施例的一种有机两性分子改性的 ABX3钙钛矿基光电功能材料, 以 ABX3 钙钛矿材料为基体, 有机两性分子 M 为改性成分, 其化学通式可以表示为 MzAyBXz+y+2。 MxAyBXx+y+2光电功能材料中的两性分子 M可以表示为 R1-R-R2, 其中, 两性 分子 R1-R-R2中的 R1可以为 -NH2, -NH-C(NH2)=NH , -N=CH-NH2等中的至少一种。
两性分子 R1-R-R2中的 R2可以为 -COOH, -OSiOH , -03P0H , -02S0H等中的至 少一种。
本实施例中, 两性分子 R1-R-R2中的 R为有机基团, 可以是各类有机基团, 例如 C1-C30中的线性的、或者带支链的、或者 代的烷基; C3-C12中的环烷基; C1-C12中的杂环; C2-C8中的烯基; C2-C8中的炔基; C6-C12中的芳基; C8-C30 中的芳烷基; C6-C30中的烷基芳香基; C1-C12中的异芳基; C6-C30中的烷基异 芳基; C6-C30中的烷基杂环等, 也可以是其他有机基团。
本实施例中, MzAyBXz+y+2光电功能材料中的 A优选为甲胺, 甲脒, 铯等中的 一种。
本实施例中, MzAyBXz+y+2光电功能材料中的 B优选为铅, 锡, 铜, 锗等中的 一种。
本实施例中, MzAyBXz+y+2光电功能材料中的 X优选为为氯, 溴, 碘等中的至 少一种。
MzAyBXz+y+2光电功能材料中 M的含量 z的取值范围为, 0<z≤0.5, A的含量 y 的取值为 0<y≤l, 并且 y+z≥l。 优选 z=0.01~0.1, y=0.95~l。
在不使用两性分子改性时, 短链的铵阳离子如甲胺, 甲脒, 铯等一价离子填 入到金属卤化物 BX2八面体共顶点连接的空隙中形成三维的钙钛矿材料; 当加入 两性分子之后,短链的铵阳离子或者铯离子等一价离子填入到金属 ¾化物八面体 共顶点连接的空隙中形成三维钙钛矿层 (其厚度由两性分子 M与一价离子的化 学计量比确定), 而两性分子 M则在该三维钙钛矿层与层之间形成有机层, 最终 形成多层钙钛矿片层与两性分子交替堆积的改性钙钛矿材料。有机两性分子的存 在, 大大改善了材料的大面积成膜性能以及其稳定性, 同时优化了其光电性能。
本实施例的一种有机两性分子改性的 ABX3钙钛矿基光电功能材料的制备方 法, 包括如下步骤:
( 1 )将两性分子与氢卤酸反应得到卤酸盐, 具体地, 可以优选将两性分子 M与氢碘酸在在冰水混合浴中充分反应, 旋蒸, 用乙醚清洗沉淀, 得到碘酸盐; ( 2 ) 取适量其卤酸盐和碘化甲胺一起与 1312反应得到钙钛矿前驱体溶液, 具体地, 优选按化学计量比分别称量碘酸盐, 碘化甲胺 MAI 以及 Pbl2, 向其中 加入适量伽马丁内酯, 搅拌使其充分反应, 得到前驱体溶液;
( 3 ) 烘干前驱体溶剂即可得到钙钛矿材料。
实施例 1
本实施例中, 将两性分子 4-氨基丁酸 GABA与氢碘酸按照化学计量比 1:1在 冰水混合浴中充分反应,旋蒸,用乙醚清洗沉淀,得到(GABA)I。取 z=0.1, y=0.95 , 按化学计量比分别称量 (GABA)I, 碘化甲胺 MAI, Pbl2, 向其中加入适量伽马丁内 酯, 搅拌使其充分反应, 得到 (GABA)o.iMAo.95Pbl3.05前驱体溶液。 取适量填充于 基于碳对电极的介观太阳能电池中, 并在 50°C烘干, 测试得到的电池的光电转 换效率, 达到 11%。
实施例 2
本实施例中, 将两性分子 4-氨基丁酸 GABA与盐酸按照化学计量比 1:1在冰 水混合浴中充分反应, 旋蒸, 用乙醚清洗沉淀, 得到 (GABA)CI。取 z=0.06, y=0.97 按化学计量比分别称量 (GABA)CI, 碘化甲胺 MAI, Pbl2, 向其中加入适量 DMF, 搅拌使其充分反应, 得到 (GABA)o.06MAo.97Pbl2.97Clo.06前驱体溶液, 取适量填充于 基于碳对电极的介观太阳能电池中, 并在 70°C烘干, 测试得到的电池的光电转 换效率, 达到 10.3%。
实施例 3
本实施例中, 将两性分子 4-氨基丁酸 GABA与氢碘酸按照化学计量比 1: 1在 冰水混合浴中充分反应, 旋蒸, 用乙醚清洗沉淀, 得到(GABA)I, 取 z=0.1, y=0.95 分别称量 (GABA)I, 溴化甲胺 MABr, Pbl2, 向其中加入适量的伽马丁内酯, 搅拌 使其充分反应, 得到 (GABA) o.iMAo.95Pbl2.iBra.95前驱体溶液, 取适量填充于基 于碳对电极的介观太阳能电池电池中, 并在 60°C下烘干, 测试得到的电池的效 率, 达至 Ij 9.8%。
上述实施实例中, 两性分子并不限于 4-氨基丁酸 GABA, 还可以为其他材料, 诸如 6-氨基己酸, HOOC-CH2-CH=CH-CH2-NH2, 4-胍基丁酸, 对氨基苯磺酸等; 一 般地,两性分子 M表示为 R1-R-R2,其中, Rl ¾-NH2, -NH-C(NH2)=NH或 -N=CH-NH2 中的至少一禾中, R2为- C00H, -OSiOH, -03P0H或 -02S0H中的至少一种, R为有 机基团。
另外, 碘化甲胺可以替换为氯化甲胺, 溴化甲胺等, 碘化铅可以替换为溴化 铅, 氯化铅, 碘化锗, 碘化锡等。 同时化学计量比并不限于上述范围, 只需满足 0<z≤0.5 , 0<y≤l, y+z≥l即可。
本发明的钙钛矿基光电功能材料可以用于太阳能电池中, 作为太阳能电池中 的光吸收层, n型或 p型材料, 也可以用于 LED、 电子元器件, 作为半导体材料。
本领域的技术人员容易理解, 以上所述仅为本发明的较佳实例而已, 并不用 以限制本发明, 凡在本发明的精神和原则之内所做的任何修改,等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

1、 一种有机两性分子改性 MzAyBXz+y+2钙钛矿基光电功能材料, 其特征在于, 该功能材料是以 ABX3钙钛矿材料为基体, 以有机两性分子 M为改性成分, 其化 学通式表示为 MzAyBXz+y+2
2、 根据权利要求 1所述的一种有机两性分子改性的 MzAyBXz+y+2钙钛矿基光 电功能材料, 其特征在于, A为一价离子, B为二价金属离子, X为卤素离子。
3、 根据权利要求 1或 2所述的一种有机两性分子改性的 ABX3钙钛矿基光电 功能材料, 其特征在于, A为有机铵阳离子或者碱金属离子, 优选为甲胺, 甲脒 或铯中的至少一种。
4、 根据权利要求 1-3中任一项所述的一种有机两性分子改性的 ABX3钙钛矿 基光电功能材料, 其特征在于, B为铅, 锡, 铜, 锗中的至少一种。
5、 根据权利要求 1-4中任一项所述的一种有机两性分子改性的 ABX3钙钛矿 基光电功能材料,其特征在于,所述两性分子 M表示为 R1-R-R2,其中, R1为 -NH2, -NH-C(NH2)=NH或 -N=CH-NH2中的至少一种, R2为- COOH, -OSiOH , -03P0H或 -02S0H中的至少一种, R为有机基团。
6、 根据权利要求 5所述的一种有机两性分子改性的 ABX3钙钛矿基光电功能 材料, 其特征在于, 所述 R为 C1-C30中的一种线性的、 或者带支链的、 或者卤 代的烷基; C3-C12中的环烷基,或 C1-C12中的杂环,或 C2-C8中的烯基,或 C2-C8 中的炔基, 或 C6-C12中的芳基, 或 C6-C30中的芳烷基, 或 C6-C30中的烷基芳 香基, C1-C12中的异芳基, C6-C30中的烷基异芳基, C6-C30中的烷基杂环中的 至少一种。
7、 根据权利要求 1-6中任一项所述的一种有机两性分子改性的 ABX3钙钛矿 基光电功能材料, 其特征在于, X为氯, 溴, 碘中的至少一种。
8、 根据权利要求 1-7中任一项所述的一种有机两性分子改性的 ABX3钙钛矿 基光电功能材料, 其特征在于, M的含量 z的取值范围为 0<z≤0.5, A的含量 y 的取值为 0<y≤l, 并且 y+z≥l。
9、 一种有机两性分子改性的 MzAyBXz+y+ 钛矿基光电功能材料的制备方法, 具体包括如下步骤:
( 1 ) 将两性分子与氢卤酸反应得到卤酸盐; ( 2 ) 取适量卤酸盐和碘化甲胺一起与 1312反应得到钙钛矿前驱体溶液;
( 3 ) 烘干前驱体溶剂即可得到钙钛矿材料。
10、 权利要求 1-8中任一项所述的有机两性分子改性的 MzAyBXz+y+ 钛矿基 光电功能材料在太阳能电池中的应用,其中, 该电功能材料作为太阳能电池中的 光吸收层, n型或 p型材料; 或作为半导体材料在 LED或电子元器件中的应用。
PCT/CN2014/073653 2014-01-21 2014-03-19 一种两性分子改性的钙钛矿光电功能材料及其应用 WO2015109647A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016520247A JP6151447B2 (ja) 2014-01-21 2014-03-19 両親媒性分子で修飾したペロブスカイト電材料及びその応用
EP14880101.2A EP3098871B1 (en) 2014-01-21 2014-03-19 Perovskite photoelectric functional material modified with amphipathic molecule and use thereof
US14/979,477 US10059875B2 (en) 2014-01-21 2015-12-27 Perovskite photoelectric functional material modified with amphipathic molecule, and methods for preparing and using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410027583.7A CN103762344B (zh) 2014-01-21 2014-01-21 一种两性分子改性的钙钛矿光电功能材料及其应用
CN201410027583.7 2014-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/979,477 Continuation-In-Part US10059875B2 (en) 2014-01-21 2015-12-27 Perovskite photoelectric functional material modified with amphipathic molecule, and methods for preparing and using the same

Publications (1)

Publication Number Publication Date
WO2015109647A1 true WO2015109647A1 (zh) 2015-07-30

Family

ID=50529545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073653 WO2015109647A1 (zh) 2014-01-21 2014-03-19 一种两性分子改性的钙钛矿光电功能材料及其应用

Country Status (5)

Country Link
US (1) US10059875B2 (zh)
EP (1) EP3098871B1 (zh)
JP (1) JP6151447B2 (zh)
CN (1) CN103762344B (zh)
WO (1) WO2015109647A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977389A (zh) * 2016-06-07 2016-09-28 昆明理工大学 一种钙钛矿光吸收材料及其制备方法
US10535828B2 (en) 2015-11-27 2020-01-14 Oxford University Innovation Limited Mixed cation perovskite

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133658A4 (en) * 2014-04-18 2017-05-10 Fujifilm Corporation Photoelectric conversion element, solar cell using same and method for manufacturing photoelectric conversion element
CN103956394B (zh) * 2014-05-13 2016-08-24 国家纳米科学中心 一种改善钙钛矿太阳电池吸光层性能的方法
CN105218594B (zh) * 2014-06-06 2018-08-03 清华大学 钙钛矿材料及太阳电池
CN104134720A (zh) * 2014-07-10 2014-11-05 上海大学 单源闪蒸法生长有机无机杂化钙钛矿材料及其平面型太阳能电池的制备方法
EP2966703A1 (en) * 2014-07-11 2016-01-13 Ecole Polytechnique Fédérale de Lausanne (EPFL) Template enhanced organic inorganic perovskite heterojunction photovoltaic device
CN104327827B (zh) * 2014-11-03 2016-08-17 南昌航空大学 钙钛矿量子点纳米晶的制备及其在量子点太阳电池中的应用
DE102014225541A1 (de) * 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detektionsschicht umfassend Perowskitkristalle
JP6563212B2 (ja) * 2015-02-23 2019-08-21 大阪瓦斯株式会社 ペロブスカイト系材料及びそれを用いた光電変換装置
CN104851987B (zh) * 2015-04-09 2017-05-24 中国科学院广州能源研究所 一种吸收光谱可调钙钛矿结构有机‑无机三元合金杂合物薄膜光阳极及其制备方法
KR102164354B1 (ko) 2015-06-12 2020-10-12 옥스퍼드 포토발테익스 리미티드 광기전 디바이스
CN105390614B (zh) * 2015-11-05 2018-03-30 吉林大学 一种钙钛矿太阳电池及其制备方法
CN105244444B (zh) * 2015-11-06 2018-03-23 石家庄铁道大学 一种钙钛矿太阳能电池光电转换层的制备方法
CN105405974A (zh) * 2015-11-17 2016-03-16 华中科技大学 一种p型掺杂的钙钛矿光电功能材料及其应用
CN105505375B (zh) * 2015-11-26 2017-08-01 上海交通大学 一种高荧光效率有机无机杂化钙钛矿材料及制备方法
CN105514284B (zh) * 2015-12-21 2017-11-10 曹胜伟 一种改性的钙钛矿结构的光电转化材料及其制备方法
CN106588956B (zh) * 2016-11-21 2018-06-12 湘潭大学 一种光电功能材料及其应用
CN106589438B (zh) * 2016-11-25 2020-01-24 清华大学 光响应形状记忆复合材料及其制备方法以及形状记忆材料的应用方法
CN106642757A (zh) * 2016-11-25 2017-05-10 清华大学 光热转换器件
CN108511633A (zh) * 2017-02-28 2018-09-07 中国科学院半导体研究所 一种无机钙钛矿发光二极管及其制备方法
CN108630831B (zh) * 2017-03-23 2019-12-06 南京工业大学 一种提高钙钛矿发光器件寿命的方法及钙钛矿发光器件
CN108183170B (zh) * 2018-01-03 2022-08-16 苏州大学 一种钙钛矿材料及其在太阳能电池应用和太阳能电池的制备方法
CN109411607B (zh) * 2018-09-27 2021-01-19 西安交通大学 太阳能电池及其制备方法和改善钙钛矿层传输特性的方法
CN109390473A (zh) * 2018-10-17 2019-02-26 华中科技大学 基于双官能团单分子修饰层的钙钛矿电池及其制备方法
CN111223989B (zh) * 2018-11-23 2023-04-18 国家纳米科学中心 一种两性分子修饰的钙钛矿光伏器件及其制备方法和用途
CN111584723B (zh) * 2020-05-11 2022-08-05 深圳市华星光电半导体显示技术有限公司 发光器件及其制作方法
CN112051249B (zh) * 2020-09-07 2021-06-22 福州大学 一种对氨基苯磺酸修饰的钙钛矿复合材料及其在检测亚硝酸盐中的应用
CN112442356B (zh) * 2020-12-03 2022-10-14 南京邮电大学 一种abx3型稳定钙钛矿量子点的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316427A (zh) * 2000-02-07 2001-10-10 国际商业机器公司 具有金属缺陷无机构架的层状有机-无机钙钛矿
CN103346018A (zh) * 2013-06-26 2013-10-09 中国科学院青岛生物能源与过程研究所 通过固液反应制备具有钙钛矿结构的碘化物太阳能电池
CN103400697A (zh) * 2013-08-15 2013-11-20 厦门大学 一种全固态柔性敏化太阳能电池及其制备方法
CN103474574A (zh) * 2013-09-26 2013-12-25 天津理工大学 一种铝掺杂氧化锌纳米棒为电子传输层的杂化太阳能电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871579A (en) * 1997-09-25 1999-02-16 International Business Machines Corporation Two-step dipping technique for the preparation of organic-inorganic perovskite thin films
JP4412812B2 (ja) * 2000-05-15 2010-02-10 独立行政法人科学技術振興機構 有機アンモニウム・無機層状ペロブスカイト化合物薄膜の作製方法
KR20110042184A (ko) * 2008-07-18 2011-04-25 니폰 가가쿠 고교 가부시키가이샤 개질 페로브스카이트형 복합 산화물, 그의 제조 방법 및 복합 유전체 재료
GB201208793D0 (en) * 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316427A (zh) * 2000-02-07 2001-10-10 国际商业机器公司 具有金属缺陷无机构架的层状有机-无机钙钛矿
CN103346018A (zh) * 2013-06-26 2013-10-09 中国科学院青岛生物能源与过程研究所 通过固液反应制备具有钙钛矿结构的碘化物太阳能电池
CN103400697A (zh) * 2013-08-15 2013-11-20 厦门大学 一种全固态柔性敏化太阳能电池及其制备方法
CN103474574A (zh) * 2013-09-26 2013-12-25 天津理工大学 一种铝掺杂氧化锌纳米棒为电子传输层的杂化太阳能电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535828B2 (en) 2015-11-27 2020-01-14 Oxford University Innovation Limited Mixed cation perovskite
CN105977389A (zh) * 2016-06-07 2016-09-28 昆明理工大学 一种钙钛矿光吸收材料及其制备方法

Also Published As

Publication number Publication date
US10059875B2 (en) 2018-08-28
EP3098871A4 (en) 2017-01-25
US20160137915A1 (en) 2016-05-19
EP3098871B1 (en) 2019-01-02
EP3098871A1 (en) 2016-11-30
CN103762344B (zh) 2016-08-17
CN103762344A (zh) 2014-04-30
JP6151447B2 (ja) 2017-06-21
JP2016531414A (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2015109647A1 (zh) 一种两性分子改性的钙钛矿光电功能材料及其应用
Gao et al. Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation
Ye et al. Cost-effective high-performance charge-carrier-transport-layer-free perovskite solar cells achieved by suppressing ion migration
Chen et al. Efficient and reproducible CH 3 NH 3 PbI 3− x (SCN) x perovskite based planar solar cells
Bi et al. Deciphering the roles of MA-based volatile additives for α-FAPbI3 to enable efficient inverted perovskite solar cells
Li et al. Structure tunable organic–inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material
CN106025073B (zh) 一种以三元组分为活性层的有机太阳能电池
CN110054638B (zh) 一种铜碘杂化半导体材料及其光电应用
Feng et al. Optoelectronic Modulation of Undoped NiO x Films for Inverted Perovskite Solar Cells via Intrinsic Defect Regulation
CN103943368A (zh) 一种新型含锗钙钛矿材料及其太阳能电池
Chen et al. A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with> 27% efficiency
CN103903872A (zh) 一种钙钛矿相有机无机混合结晶材料的制备方法
CN102686636B (zh) 含芴共轭聚合物、其制备方法和太阳能电池器件
CN106252511A (zh) 光电转换元件及其制造方法
Pitchaiya et al. Bio-inspired graphitic carbon-based large-area (10× 10 cm2) perovskite solar cells: Stability assessments under indoor, outdoor, and water-soaked conditions
Gonzalez-Juarez et al. Improving performance of perovskites solar cells using solvent engineering, via Lewis adduct of MAI-DMSO-PbI2 and incorporation of imidazolium cation
Ji et al. Jahn− Teller Distortion-Stabilized Halide Double Perovskites with Unusual Rock-Salt-type Ordering of Divalent B-Site Cations
Mohammed et al. Synergistic effects of energy level alignment and trap passivation via 3, 4-dihydroxyphenethylamine hydrochloride for efficient and air-stable perovskite solar cells
Wu et al. Antimony Doping of CsBi3I10 for Tailoring the Film Morphology and Defects toward Efficient Lead-Free Thin-Film Solar Cells
Li et al. Hydroxyethyl and ester co-functionalized imidazolium iodide for highly efficient solid-state dye-sensitized solar cells
CN109336852A (zh) 一种非富勒烯电子传输材料及其合成方法和用途
CN108117568A (zh) 硅基三苯胺衍生物及其制备方法与在钙钛矿太阳能电池中的应用
CN109232527B (zh) 自掺杂型富勒烯吡啶盐电子传输材料及其构成的有机太阳电池
Zhao et al. Emerging photovoltaic materials and devices
CN105609662B (zh) 一种钙钛矿光伏材料专用的空穴传输材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520247

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014880101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880101

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE