WO2015107423A2 - 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム - Google Patents

水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム Download PDF

Info

Publication number
WO2015107423A2
WO2015107423A2 PCT/IB2015/000321 IB2015000321W WO2015107423A2 WO 2015107423 A2 WO2015107423 A2 WO 2015107423A2 IB 2015000321 W IB2015000321 W IB 2015000321W WO 2015107423 A2 WO2015107423 A2 WO 2015107423A2
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
aqueous electrolyte
sodium ion
ion secondary
Prior art date
Application number
PCT/IB2015/000321
Other languages
English (en)
French (fr)
Other versions
WO2015107423A3 (ja
Inventor
稲澤 信二
敬三 原田
前田 和幸
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015107423A2 publication Critical patent/WO2015107423A2/ja
Publication of WO2015107423A3 publication Critical patent/WO2015107423A3/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aqueous electrolyte sodium ion secondary battery that exhibits high electromotive force while suppressing electrolysis of water contained in the electrolyte.
  • aqueous electrolyte secondary battery As a secondary battery containing an aqueous electrolyte (aqueous electrolyte secondary battery), a lead storage battery is widely used.
  • lithium ion secondary batteries and sodium ion secondary batteries have been reported as secondary batteries containing an aqueous electrolyte instead (see Patent Documents 1 to 3).
  • the aqueous electrolyte sodium ion secondary battery is promising as an aqueous electrolyte secondary battery replacing the lead storage battery because the raw material is inexpensive.
  • aqueous electrolyte secondary battery generation of hydrogen and oxygen gas due to electrolysis of water during charging is a major issue.
  • the oxygen generation potential at pH 7 is about 0.82 V with respect to the standard hydrogen electrode, and the hydrogen generation potential is about -0.41 V. Therefore, in a sodium ion secondary battery using an aqueous electrolyte, it is difficult to suppress the generation of hydrogen gas during charging, regardless of what negative electrode active material is used. Furthermore, oxygen gas is also generated depending on the positive electrode active material used. In addition, when the oxygen gas and hydrogen gas generated during use stay on the positive electrode and the negative electrode, current hardly flows due to polarization.
  • One aspect of the present invention is a positive electrode having a positive electrode active material and a positive electrode current collector holding the positive electrode active material, a negative electrode having a negative electrode active material and a negative electrode current collector holding the negative electrode active material, sodium ions,
  • An aqueous electrolyte sodium ion secondary battery comprising: an aqueous electrolyte containing water; and a solid electrolyte that shields at least one of the positive electrode and the negative electrode from water in the aqueous electrolyte and has sodium ion conductivity About.
  • the aqueous electrolyte sodium ion secondary battery a charge control device that controls a charging current of the aqueous electrolyte sodium ion secondary battery, and the aqueous electrolyte sodium ion secondary battery discharge
  • a charge control device for controlling current so that a charge termination voltage of the aqueous electrolyte sodium ion secondary battery is 1.5 V or more.
  • an aqueous electrolyte sodium ion secondary battery that exhibits high electromotive force while suppressing electrolysis of water during charging.
  • a first aspect of the present invention is: (1) a positive electrode having a positive electrode active material and a positive electrode current collector holding the positive electrode active material; and a negative electrode having a negative electrode active material and a negative electrode current collector holding the negative electrode active material; An aqueous electrolyte containing sodium ions and water, and a solid electrolyte that shields at least one of the positive electrode and the negative electrode from water in the aqueous electrolyte and has sodium ion conductivity
  • the present invention relates to a sodium ion secondary battery.
  • the solid electrolyte preferably contains a compound having a NASICON type crystal structure. This is because the sodium ion conductivity is very high.
  • At least the negative electrode is preferably shielded from water in the aqueous electrolyte by a solid electrolyte membrane.
  • the negative electrode active material is preferably covered with a solid electrolyte film.
  • the positive electrode active material preferably contains at least one selected from the group consisting of sodium-containing transition metal oxides and sodium-containing transition metal phosphates. Thereby, the electromotive force of the aqueous electrolyte sodium ion secondary battery can be further increased.
  • the negative electrode preferably has a plateau region at a potential of 0.8 V or higher with respect to the metal sodium electrode. That is, it is preferable that the potential in the plateau region in the charge / discharge curve of the negative electrode is 0.8 V or more on average with respect to the metal sodium electrode. Thereby, precipitation of metallic sodium at the negative electrode can be suppressed.
  • the negative electrode active material preferably contains a lithium-containing titanium compound. Thereby, generation
  • the negative electrode preferably does not contain amorphous carbon or contains 30% by mass or less of amorphous carbon. Thereby, the irreversible capacity
  • the negative electrode current collector is preferably a porous metal body having a three-dimensional network structure. This can be expected to further reduce the irreversible capacity of the negative electrode.
  • the aqueous electrolyte sodium ion secondary battery can develop an electromotive force of 1.5 V or more. That is, the difference between the potential in the plateau region in the charge / discharge curve of the positive electrode and the potential in the plateau region in the charge / discharge curve of the negative electrode can be 1.5 V or more on average. Further, the charge end voltage can be set to 1.5 V or more.
  • the aqueous electrolyte sodium ion secondary battery (10) the aqueous electrolyte sodium ion secondary battery, a charge control device for controlling a charging current of the aqueous electrolyte sodium ion secondary battery, and the aqueous electrolyte sodium ion secondary battery are provided.
  • Solid electrolyte Some solid electrolytes having sodium ion conductivity do not allow water to permeate.
  • the negative electrode or the positive electrode is shielded from water in the aqueous electrolyte, thereby preventing the transfer of electrons between hydrogen ions or hydroxide ions in water and the negative electrode or the positive electrode. Is suppressed. That is, shielding the positive electrode and / or negative electrode from water means, for example, interposing a solid electrolyte between water in the aqueous electrolyte and the positive electrode active material and / or negative electrode active material.
  • the negative electrode active material used for the negative electrode is not limited, and a secondary battery having a larger electromotive force can be obtained.
  • the positive electrode or the positive electrode active material is not necessarily shielded from water by a solid electrolyte in consideration of overvoltage.
  • a method for shielding the positive electrode or the negative electrode from water by the solid electrolyte As a method for shielding the positive electrode or the negative electrode from water by the solid electrolyte, a method of forming a solid electrolyte film on the surface of the positive electrode or the negative electrode, a negative electrode active material or a positive electrode active material (hereinafter, simply referred to as an active material) And a method of coating the surface with a solid electrolyte membrane.
  • a solid electrolyte film is directly formed on the surface of the positive electrode or the negative electrode by a spray coating method, a mechano-fusion method, a vapor deposition method such as CDV or laser vapor deposition, a thermal spray method such as a sol-gel method and low-pressure spraying, etc.
  • a spray coating method a mechano-fusion method, a vapor deposition method such as CDV or laser vapor deposition, a thermal spray method such as a sol-gel method and low-pressure spraying, etc.
  • a thermal spray method such as a sol-gel method and low-pressure spraying
  • the latter method includes mixing and sintering the solid electrolyte and the active material powder, embedding the active material in the matrix of the solid electrolyte, and coating the surface of the active material powder with the solid electrolyte by a spray coating method, etc. After the sintering method and the combination of these methods, the solid electrolyte and the active material powder are mixed and sintered, and then the surface of the obtained sintered body is further coated with the solid electrolyte, and again And a method of sintering.
  • the volume ratio of the solid electrolyte powder is larger than that of the active material so that the active material is not exposed on the surface of the sintered body.
  • a method of disposing a solid electrolyte membrane between a negative electrode and an aqueous electrolyte a method of covering the whole negative electrode with a solid electrolyte membrane, a nonaqueous electrolyte for a negative electrode, and an aqueous electrolyte for a positive electrode are used. And a method of separating a non-aqueous electrolyte and an aqueous electrolyte with a solid electrolyte membrane.
  • the aqueous electrolyte and non-aqueous electrolyte will be described later.
  • Examples of the solid electrolyte having sodium ion conductivity include a solid electrolyte containing a compound having a NASICON (Na super ionic conductor) type crystal structure.
  • the NASICON crystal structure is a structure in which the MO 6 octahedron (M is a transition metal) and the XO 4 tetrahedron (X is S, P, As, etc.) share a vertex and are arranged three-dimensionally. is there. Since this crystal structure often has large voids inside, the solid electrolyte membrane containing this compound exhibits sodium ion conductivity.
  • Such a solid electrolyte membrane also exhibits lithium ion conductivity, but sodium ion conductivity is much larger, and it is most suitable for use in a sodium ion secondary battery. Further, such a solid electrolyte membrane has a large interaction with sodium ions, hardly allows water molecules to pass therethrough, and hardly exhibits proton conductivity.
  • a compound having a NASICON type crystal structure As a compound having a NASICON type crystal structure (hereinafter referred to as a NASICON type compound), specifically, Na 3 ZrMg (PO 4 ) 3 , Na 3 Zr 2 Si 2 PO 12 , Na 2.85 Zr 0.15 In 2.85 (PO 4 ) 3 and the like. Among these, those containing Na, Zr, Si and P are preferable. For example, in the general formula (1): Na 1 + x Zr 2 Si x P 3-x O 12 (1.8 ⁇ x ⁇ 2.2) A compound having a monoclinic crystal structure is preferable in terms of high sodium ion conductivity.
  • a part of Zr may be replaced with another element, for example, Ti, Al, Sn, Zn, Fe, Ge, etc.
  • a part of Si may be replaced with another element, for example, S, Mo, You may substitute with W etc.
  • Na 3 Zr 2 Si 2 PO 12 is preferable.
  • the NASICON type compound may be in the form of a powder or a thin film.
  • a solid electrolyte membrane can be formed on the surface of the positive electrode or the negative electrode by a vapor deposition method or a sol-gel method.
  • a solid electrolyte membrane may be formed by transferring a NASICON-type compound thin film as it is onto the surface of the positive electrode or the negative electrode.
  • the average particle size of the NASICON-type compound powder is not particularly limited.
  • the average particle diameter D50 is measured by a laser diffraction scattering method using, for example, a laser diffraction particle size distribution measuring apparatus.
  • the average particle size of the NASICON type compound powder is preferably smaller than the particle size of the active material.
  • the average particle size of the NASICON-type compound powder is preferably 100 nm or more, preferably 20 ⁇ m or less, and more preferably 800 nm or less. When the average particle size is within this range, the active material coated with the NASICON-type compound powder is difficult to be exposed, and the effect of shielding the active material from water is enhanced.
  • the thickness of the solid electrolyte membrane is not particularly limited, but when the positive electrode or the negative electrode is coated, for example, it is preferably 50 to 800 ⁇ m, and more preferably 100 to 300 ⁇ m. When coating the negative electrode active material, the thickness of the solid electrolyte membrane is preferably 20 to 100 ⁇ m. If the thickness of the solid electrolyte membrane is in this range, it becomes easy to shield the positive electrode or the negative electrode from water without reducing the conductivity of sodium ions.
  • the solid electrolyte membrane may contain a NASICON type compound powder and a binder.
  • a binder is not specifically limited, Organic compounds, such as a binder used for the positive electrode or negative electrode mentioned later, can be used.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material held by the positive electrode current collector.
  • the positive electrode may contain a conductive additive, a binder and the like as optional components.
  • the positive electrode active material is selected from materials that electrochemically occlude and release (or insert and desorb) sodium ions.
  • the electrode potential of the positive electrode active material may be nobler than the redox potential of oxygen, and is not particularly limited.
  • the positive electrode active material for example, a compound having an O 3 type or P 2 type layered structure that forms an interlayer compound with sodium ions, or a polyanion type compound is preferable. These compounds include sodium-containing transition metal oxides or sodium-containing transition metal phosphates. These materials can be used singly or in combination of two or more.
  • the average particle diameter of the positive electrode active material particles is preferably 0.1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 50 ⁇ m or less.
  • a NASICON type compound can basically adsorb sodium ions, but basically allows sodium ions to pass therethrough. That is, the NASICON type compound does not show an electrochemical reaction. Therefore, it is difficult to charge and discharge a secondary battery using a NASICON type compound as an active material.
  • sodium-containing transition metal oxide for example, sodium chromite (NaCrO 2 ) can be used.
  • sodium chromite a part of Na or a part or all of Cr may be substituted with other elements.
  • a compound represented by O 2 (0 ⁇ x ⁇ 2/3, 0 ⁇ y ⁇ 1, M 1 and M 2 are each independently a metal element other than Cr and Na) is preferable.
  • x preferably satisfies 0 ⁇ x ⁇ 0.5
  • M 1 and M 2 are at least one selected from the group consisting of Ni, Co, Mn, Fe and Al, for example. Preferably there is.
  • M 1 is an element occupying Na site
  • M 2 is an element occupying Cr site.
  • Such a compound can be produced at a low cost and is excellent in reversibility of structural change accompanying charge / discharge.
  • the electrode potential of NaCrO 2 is equal to or lower than the oxidation-reduction potential of oxygen
  • NaCrO 2 may be used as the positive electrode active material even if the positive electrode is not covered with the solid electrolyte membrane. is there.
  • sodium-containing transition metal oxides other than sodium chromite include NaFeO 2 , NaNi 1/2 Mn 1/2 O 2 , NaFe 0.4 Ni 0.3 Mn 0.3 O 2 and the like.
  • the sodium-containing transition metal phosphate is represented by the general formula (3): Na a M 3 PO 4 F b (1 ⁇ a ⁇ 2, 0 ⁇ b ⁇ 2, M 3 is a metal element other than Na).
  • M 3 is preferably at least one selected from the group consisting of Fe, Co, Ni and Mn, for example. Specific examples include NaFePO 4 , Na 2 FePO 4 F, NaVPO 4 F, NaCoPO 4 , NaNiPO 4 , and NaMnPO 4 .
  • Examples of the conductive auxiliary agent included in the positive electrode active material layer include graphite, carbon black, and carbon fiber.
  • carbon black is particularly preferable because it can easily form a sufficient conductive path when used in a small amount.
  • Examples of carbon black include acetylene black, ketjen black, and thermal black.
  • the amount of the conductive assistant is preferably 2 to 15 parts by mass, more preferably 3 to 8 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the binder serves to bond the positive electrode active materials to each other and fix the positive electrode active material to the positive electrode current collector.
  • fluorine resin synthetic rubber latex, polyamide, polyimide, polyamideimide and the like can be used.
  • fluororesin polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, or the like can be used.
  • synthetic rubber latex styrene butadiene latex or the like can be used.
  • carboxymethyl cellulose may be used in combination as a viscosity modifier.
  • PTFE is preferable from the viewpoint of stability to the aqueous electrolyte.
  • the amount of the binder is preferably 1 to 10 parts by mass and more preferably 3 to 5 parts by mass per 100 parts by mass of the positive electrode active material.
  • the positive electrode current collector a metal foil, a non-woven fabric made of metal fibers, a porous metal sheet, or the like is used.
  • the metal constituting the positive electrode current collector is preferably aluminum or an aluminum alloy because it is stable at the positive electrode potential, but is not particularly limited. When using an aluminum alloy, it is preferable that metal components (for example, Fe, Si, Ni, Mn, etc.) other than aluminum are 0.5 mass% or less.
  • metal components for example, Fe, Si, Ni, Mn, etc.
  • carbon coated aluminum in which the surface of an aluminum or aluminum alloy foil is coated with carbon fine particles may be used. In this embodiment, an aqueous electrolyte is used. This is because there is a concern about corrosion of aluminum.
  • the thickness of the metal foil serving as the positive electrode current collector is, for example, 10 to 50 ⁇ m, and the thickness of the metal fiber nonwoven fabric or the metal porous body sheet is, for example, 100 to 600 ⁇ m.
  • the positive electrode is applied or filled with a positive electrode mixture slurry containing a positive electrode active material on a positive electrode current collector, and then the dispersion medium contained in the positive electrode mixture slurry is removed. It can be obtained by compressing (or rolling) the current collector holding the.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material held by the negative electrode current collector.
  • the negative electrode active material includes a material that occludes and releases (or inserts and desorbs) sodium ions electrochemically.
  • the electrode potential of the negative electrode active material or the potential of the plateau region in the charge / discharge curve of the negative electrode may be lower than the redox potential of hydrogen.
  • Such materials include carbon materials, lithium-containing titanium compounds (such as spinel-type lithium titanium oxides such as lithium titanate), and sodium-containing titanium compounds (such as spinel-type sodium titanium oxides such as sodium titanate).
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the average particle diameter of the negative electrode active material particles is preferably 0.1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 80 ⁇ m or less.
  • the negative electrode active material is preferably a material other than the NASICON type compound.
  • Examples of the carbon material include graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon).
  • An alloy-based active material is an active material containing an element that forms an alloy with an alkali metal. Examples thereof include silicon oxide, silicon alloy, tin oxide, and tin alloy.
  • sodium titanate is preferable, and more specifically, it is preferable to use at least one selected from the group consisting of Na 2 Ti 3 O 7 and Na 4 Ti 5 O 12 . Moreover, you may substitute a part of Ti or Na of sodium titanate with another element. For example, Na 2 ⁇ x M 4 x Ti 3 ⁇ y M 5 y O 7 (0 ⁇ x ⁇ 3/2, 0 ⁇ y ⁇ 8/3, M 4 and M 5 are independently other than Ti and Na.
  • lithium titanate is preferable. Specifically, it is preferable to use at least one selected from the group consisting of LiTi 2 O 4 , Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12 . Moreover, you may substitute a part of Ti or Na of lithium titanate with another element.
  • Li 1-x M 8 x Ti 2-y M 9 y O 4 (0 ⁇ x ⁇ 2/3, 0 ⁇ y ⁇ 8/3, M 8 and M 9 are each independently other than Ti and Na
  • a metal element for example, at least one selected from the group consisting of Ni, Co, Mn, Fe, Al and Cr
  • Li 2-x M 10 x Ti 3-y M 11 y O 7 (0 ⁇ x ⁇ 3 / 2,0 ⁇ y ⁇ 8/3, M 10 and M 11 is a metal element other than independently Ti and Na, made of for example Ni, Co, Mn, Fe, Al and Cr At least one selected from the group)
  • Li 4-x M 12 x Ti 5-y M 13 y O 12 (0 ⁇ x ⁇ 11/3, 0 ⁇ y ⁇ 14/3, M 12 and M 13 is a metal element other than Ti and Na independently Can for example Ni, Co, Mn, Fe, at least one selected from the group consisting of Al and Cr) may be used.
  • a lithium-containing titanium compound may be used individually by 1 type, and may be used in combination of multiple types.
  • the lithium-containing titanium compound may be used in combination with non-graphitizable carbon.
  • M 8 , M 10 and M 12 are Li sites, and M 9 , M 11 and M 13 are elements occupying Ti sites.
  • the negative electrode active material is preferably a compound that can average the potential (vs. Na / Na + ) in the plateau region of the negative electrode to 0.8 V or higher. This is because precipitation of metallic sodium can be suppressed.
  • the lithium-containing titanium compound as described above is preferable.
  • the negative electrode active material has a wide plateau region around 0.9 to 1.0 V (vs. Na / Na + ) on average.
  • the average potential (vs. Na / Na + ) in the plateau region of the negative electrode is preferably 0.9 V (vs. Na / Na + ) or more.
  • a negative electrode using hard carbon as a negative electrode active material has a large reversible capacity of 260 mAh / g and is a preferable material from the viewpoint of capacity.
  • this negative electrode has a plateau region near 0.2 V (vs. Na / Na + )
  • metal sodium may be deposited on the hard carbon.
  • carbon and sodium of the hard carbon easily react to form sodium acetylide (Na 2 C 2 ).
  • a negative electrode using a sodium-containing titanium compound has a reversible capacity of about 150 mAh / g, and is a preferred material.
  • this negative electrode has a plateau region in the vicinity of 0.2 V (vs. Na / Na + ), so that metallic sodium may be deposited.
  • the negative electrode is, for example, coated or filled with a negative electrode mixture slurry containing a negative electrode active material on a negative electrode current collector, and then the dispersion medium contained in the negative electrode mixture slurry is removed, and further, if necessary, the negative electrode active material It can be obtained by compressing (or rolling) the current collector holding the. Moreover, as a negative electrode, you may use what is obtained by forming the deposit film of a negative electrode active material on the surface of a negative electrode collector by vapor phase methods, such as vapor deposition and sputtering.
  • the negative electrode mixture slurry may contain a binder, a conductive auxiliary agent and the like in addition to the negative electrode active material.
  • a binder it can select suitably from what was illustrated about the positive mix.
  • Examples of the conductive aid include carbon simple substance, metal powder (Cu powder, Ni powder, Al powder, etc.), Ti compound powder, and the like.
  • Examples of the simple carbon include graphite, carbon fiber, carbon nanotube, and amorphous carbon (carbon black, hard carbon, soft carbon, etc.).
  • the carbon black the materials exemplified for the positive electrode can be used.
  • Examples of the Ti compound include TiC, TiB 2 , and TiN.
  • a conductive support agent it is preferable that they are the carbon simple substance except an amorphous carbon, a metal powder, and the powder of Ti compound.
  • the amount of the conductive auxiliary is preferably 2 to 15 parts by mass, more preferably 2 to 8 parts by mass, per 100 parts by mass of the negative electrode active material.
  • the amount of the conductive auxiliary agent is preferably as small as possible.
  • the content of amorphous carbon contained in the negative electrode is preferably 30% by mass or less, more preferably 15% by mass or less, and particularly preferably 5% by mass or less.
  • the content of simple carbon contained in the negative electrode is preferably 30% by mass or less, more preferably 15% by mass or less, and particularly preferably 5% by mass or less.
  • the negative electrode current collector a metal foil, a non-woven fabric made of metal fibers, a porous metal sheet, or the like is used.
  • the metal a metal that is not alloyed with sodium can be used.
  • aluminum, an aluminum alloy, copper, a copper alloy, nickel, a nickel alloy, and the like are preferable because they are stable at the negative electrode potential.
  • aluminum and aluminum alloys are preferable in terms of excellent lightness.
  • the aluminum alloy for example, an aluminum alloy similar to that exemplified as the positive electrode current collector may be used.
  • the thickness of the metal foil serving as the negative electrode current collector is, for example, 10 to 50 ⁇ m, and the thickness of the metal fiber non-woven fabric or metal porous sheet is, for example, 100 to 600 ⁇ m.
  • the negative electrode current collector is preferably a porous metal body having a three-dimensional network structure from the viewpoints of filling properties, retention properties, and current collection of the negative electrode active material.
  • a metal porous body When such a metal porous body is used, the conductivity of the negative electrode is improved, so that it can be expected that the amount of the conductive auxiliary agent can be reduced. That is, the content of simple carbon (particularly amorphous carbon) contained in the negative electrode can be reduced.
  • a porous body containing nickel can be obtained by forming a coating layer of nickel or a nickel alloy on the surface of a foamed resin or a nonwoven fabric serving as a base material and then removing the base material.
  • metal porous bodies include “Aluminum Celmet” (registered trademark) manufactured by Sumitomo Electric Industries, Ltd., which is an aluminum porous body (a porous body containing aluminum or an aluminum alloy), and a copper porous body (copper or copper alloy).
  • “Celmet” (registered trademark) of copper or nickel manufactured by Sumitomo Electric Industries, Ltd. which is a porous body containing nickel or a porous body containing nickel or a nickel alloy.
  • the metal porous body preferably has a three-dimensional network structure and a hollow skeleton. Since the skeleton has a cavity inside, the metal porous body is extremely lightweight while having a bulky three-dimensional structure.
  • a metal porous body can be formed by plating a resin porous body having continuous voids with the metal constituting the current collector and further decomposing or dissolving the internal resin by heat treatment or the like.
  • a three-dimensional network skeleton is formed by the plating process, and the inside of the skeleton can be made hollow by decomposition and dissolution of the resin.
  • the resin porous body examples include foamed urethane (polyurethane foam), foamed styrene (polystyrene foam), and the like.
  • urethane foam is preferable in terms of high porosity, high cell diameter uniformity, and excellent thermal decomposability. When urethane foam is used, it is difficult for thickness variations to occur, and a nickel porous body having excellent surface flatness can be obtained.
  • the plating process is not limited as long as a metal layer functioning as a current collector can be formed on the surface of the resin porous body (including the surface in the continuous void).
  • a known plating process method such as an electrolytic plating method or a molten salt plating method may be used. Etc. can be adopted.
  • Etc. can be adopted.
  • a three-dimensional network metal porous body corresponding to the shape of the resin porous body is formed.
  • the conductive layer may be formed on the surface of the resin porous body by electroless plating, vapor deposition, sputtering, or by applying a conductive agent.
  • the resin porous body is immersed in a dispersion containing the conductive agent. May be formed.
  • the metal porous body has a three-dimensional network structure corresponding to the shape of the resin foam.
  • a schematic diagram of the skeleton of the porous metal body is shown in FIG.
  • the porous metal body has a plurality of cellular holes 101 surrounded by a metal skeleton 102, and a substantially polygonal opening (or window) 103 is formed between the adjacent holes 101.
  • the openings 103 communicate with each other between the adjacent holes 101, whereby the current collector has a continuous gap.
  • the shape of the opening 103 (or window) is not particularly limited, and is, for example, a substantially polygonal shape (such as a substantially triangular shape, a substantially square shape, a substantially pentagonal shape, and / or a substantially hexagonal shape).
  • the substantially polygonal shape is used in the meaning including a polygon and a shape similar to the polygon (for example, a shape in which the corners of the polygon are rounded or a shape in which the sides of the polygon are curved).
  • a substantially triangular shape for example, a substantially rectangular shape, a substantially pentagonal shape, and a substantially hexagonal shape.
  • FIG. 3 is a schematic cross-sectional view showing a state in which the gap in the metal porous body of FIG. 2 is filled with a negative electrode mixture.
  • the cellular holes 101 are filled with the negative electrode mixture 104 and adhere to the surface of the metal skeleton 102 to form a negative electrode mixture layer. Since the negative electrode mixture 104 adheres in a layered manner over a wide area including the surface in the voids, the porosity can be increased while a large amount of the negative electrode active material is held in the metal porous body. Therefore, the contact area between the aqueous electrolyte and the negative electrode active material is increased.
  • a negative electrode active material can be used effectively.
  • hydrogen gas is easily generated. Therefore, when using a metal porous body as the negative electrode current collector, it is preferable to use a negative electrode active material whose surface (and the entire surface) is covered with a solid electrolyte film.
  • the average diameter of the holes 101 is, for example, 50 to 1000 ⁇ m, preferably 100 to 900 ⁇ m, and more preferably 350 to 900 ⁇ m. Therefore, the negative electrode active material whose surface (and also the entire surface) is covered with a solid electrolyte film can be filled in the pores 101.
  • an average hole diameter is smaller than the thickness of a metal porous body (or electrode).
  • the skeleton of the porous metal body is deformed by rolling, and the porosity and the average pore diameter are changed.
  • the range of the average pore diameter and the porosity described later are the porosity and average pore diameter of the metal porous body before rolling (before filling the mixture).
  • the thickness w m of the mixture layer formed by filling the mixture in the cellular pores of the porous metal body is, for example, 10 to 500 ⁇ m, preferably 40 to 250 ⁇ m, more preferably 100 to 200 ⁇ m. is there.
  • the thickness w m of the mixture layer should be 5 to 40% of the average pore diameter of the cell-like pores so that voids can be secured inside the mixture layer formed in the cell-like pores. Preferably, it is 10 to 30%.
  • the specific surface area of the porous metal body (BET specific surface area) is, for example, 100 ⁇ 700cm 2 / g, preferably 150 ⁇ 650cm 2 / g, more preferably 200 ⁇ 600cm 2 / g.
  • the porosity of the metal porous body is, for example, 40 to 99% by volume, preferably 60 to 98% by volume, and more preferably 80 to 98% by volume.
  • the ratio of the positive electrode capacity (Cp) and the negative electrode capacity (Cn) is not particularly limited, but may be, for example, Cp ⁇ Cn. Thereby, it becomes easy to suppress precipitation of metallic sodium on the negative electrode surface.
  • the separator may be interposed between the positive electrode and the negative electrode.
  • the separator is not particularly required.
  • a material of the separator for example, polyolefin such as polyethylene and polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; glass fiber and the like can be used.
  • the average pore diameter of the separator is not particularly limited and is, for example, about 0.01 to 5 ⁇ m.
  • the thickness of the separator is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the aqueous electrolyte is an aqueous solution containing sodium ions and water.
  • the aqueous solution containing sodium ions include aqueous solutions of sodium nitrate, sodium sulfate, sodium chloride, and the like.
  • the concentration of the sodium salt is not particularly limited, and may be a saturated aqueous solution. For example, it can be 0.1 to 5 mol / liter.
  • Nonaqueous electrolyte A non-aqueous electrolyte may be used as necessary.
  • an electrolyte organic electrolyte in which a salt (sodium salt) of sodium ion and anion is dissolved in a nonaqueous solvent (or organic solvent), an ionic liquid containing sodium ion and anion, and the like are used.
  • the concentration of sodium salt in the nonaqueous electrolyte may be, for example, 0.3 to 3 mol / liter.
  • the aqueous electrolyte sodium ion secondary battery is used in a state where the electrode group including the positive electrode and the negative electrode and the aqueous electrolyte are accommodated in a battery case.
  • the electrode group is formed by laminating or winding a positive electrode and a negative electrode with a separator interposed between them as necessary. However, at least one surface of the negative electrode and the positive electrode or at least one surface of the positive electrode active material and the negative electrode active material is covered with a solid electrolyte membrane.
  • a positive electrode in which a positive electrode current collector containing NaCrO 2 is supported on a positive electrode current collector of carbon-coated aluminum foil; and a Li 4 Ti 5 O coated with a solid electrolyte membrane on a negative electrode current collector made of aluminum A combination with a negative electrode carrying a negative electrode mixture containing 12 , and (Ii) A positive electrode current collector comprising NaCrO 2 supported on a positive electrode current collector made of carbon coated aluminum foil, and a negative electrode current collector that is a nickel metal porous body were coated with a solid electrolyte membrane. Examples thereof include a combination with a negative electrode filled with a negative electrode mixture containing Li 4 Ti 5 O 12 and no conductive assistant.
  • the aqueous electrolyte sodium ion secondary battery 100 includes a stacked electrode group, an aqueous electrolyte (both not shown), and a rectangular aluminum battery case 10 that houses them.
  • the battery case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
  • the electrode group is not limited to the laminated type, and can be configured by winding the positive electrode 2 and the negative electrode 3 through the separator 1.
  • An external positive terminal (not shown) penetrating through the sealing plate lid 13 is provided near one side of the lid 13, and the sealing plate lid 13 is provided at a position near the other side of the sealing plate lid 13.
  • a penetrating external negative terminal 15 is provided.
  • Each terminal is preferably insulated from the battery case 10.
  • a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the battery case 10 rises.
  • the stacked electrode group is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed therebetween, all in the form of a rectangular sheet.
  • the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator 1 is not particularly limited.
  • the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction within the electrode group.
  • FIG. 1 shows a case where the negative electrode 3 is formed using a negative electrode mixture (not shown) in which the negative electrode active material is covered with a solid electrolyte.
  • a positive electrode lead piece 2 c may be formed at one end of each positive electrode 2.
  • the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 c of the plurality of positive electrodes 2 and connecting them to an external positive terminal provided on the lid portion 13 of the battery case 10.
  • a negative electrode lead piece 3 c may be formed at one end of each negative electrode 3.
  • the plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 c of the plurality of negative electrodes 3 and connecting them to the external negative terminal 15 provided on the lid portion 13 of the battery case 10. It is desirable that the bundle of the positive electrode lead pieces 2c and the bundle of the negative electrode lead pieces 3c are arranged on the left and right sides of the one end surface of the electrode group with an interval so as to avoid mutual contact.
  • Both the external positive terminal and the external negative terminal 15 are columnar, and at least a portion exposed to the outside has a screw groove.
  • a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid portion 13 by rotating the nut 7.
  • a flange portion 8 is provided in a portion of each terminal accommodated in the case, and the flange portion 8 is fixed to the inner surface of the lid portion 13 via a washer 9 by the rotation of the nut 7.
  • Charge / discharge of the aqueous electrolyte sodium ion secondary battery 100 can be performed by, for example, a charge / discharge system as shown in FIG.
  • the charging / discharging system includes an aqueous electrolyte sodium ion secondary battery 100, a charge control device (charging circuit) 201 that controls the charging current of the aqueous electrolyte sodium ion secondary battery 100, and the discharge current of the aqueous electrolyte sodium ion secondary battery 100.
  • a control unit 203 including a discharge control device (discharge circuit) 202 to be controlled.
  • the charge control device 201 controls the charging current supplied from the power supply 204 so that the charge termination voltage of the aqueous electrolyte sodium ion secondary battery 100 is 1.5 V or higher.
  • the aqueous electrolyte sodium ion secondary battery 100 is used as a battery for the external load 205.
  • the surface of at least one of the negative electrode and the positive electrode is covered with a solid electrolyte that has sodium ion conductivity and does not transmit water.
  • the negative electrode active material is covered with a NASICON type compound. Therefore, the electrolysis of water does not occur at the time of charging, or is slight even if it occurs, and charging can be performed until the end-of-charge voltage is 1.5 V or more, for example. That is, in the charge / discharge system, the end-of-charge voltage Vmax can be set to 1.5V or higher, preferably 2.0V or higher, further 2.5V or higher, and particularly 3.0V or higher. The end-of-charge voltage Vmax can be set up to, for example, 4.5V at the maximum.
  • a negative electrode active material having an electrode potential lower than the hydrogen generation potential or a positive electrode active material nobler than the oxygen generation potential can be used. Therefore, a battery having a large electromotive force, for example, a battery expressing an average electromotive force of 1.5 V or more can be obtained. In addition, an electromotive force exceeding 2.0 V, further 2.5 V, particularly 3.0 V can be developed. The electromotive force can be developed up to, for example, 4.5V.
  • the electrolyte contains an aqueous solution, safety is high and maintenance is easy. Similarly, it is promising as an alternative to lead-acid batteries using aqueous electrolytes. In addition, since it is possible to express an electromotive force higher than a lead acid battery, space saving can be achieved.
  • a negative electrode slurry was prepared by dispersing 85 parts by mass of Li 4 Ti 5 O 12 powder having an average particle size of 0.5 ⁇ m, 10 parts by mass of acetylene black (conductive agent) and 5 parts by mass of PTFE (binder) in NMP. .
  • the obtained negative electrode slurry was applied on both sides of an aluminum foil having a thickness of 20 ⁇ m, sufficiently dried at 120 ° C., and rolled to prepare a negative electrode having a total thickness of about 50 ⁇ m having a negative electrode mixture layer on both sides.
  • the obtained negative electrode had a capacity of 1.6 mAh / cm 2 .
  • the negative electrode was cut into a rectangle having a size of about 6 mm ⁇ 20 mm, and a lead piece for current collection was formed at one end of one side of the negative electrode.
  • Na 3 Zr 2 Si 2 PO 12 powder which is a NASICON type compound having an average particle size of less than 10 ⁇ m.
  • the obtained powder was molded into a sufficiently large sheet capable of covering the whole negative electrode, fired, and further crystallized to obtain a solid electrolyte membrane.
  • the negative electrode was sandwiched between two solid electrolyte membranes, the ends were sealed, and a negative electrode covered with the solid electrolyte membrane was produced.
  • an aqueous electrolyte sodium ion secondary battery A2 was completed in the same manner as in Example 1 except that the negative electrode produced as follows was used.
  • Ethanol was added to 85 parts by mass of Li 4 Ti 5 O 12 powder having an average particle size of 17 ⁇ m, 10 parts by mass of SiC, and 5 parts by mass of PTFE, and pulverized and mixed with a ball mill. Subsequently, ethanol was volatilized in a drying furnace at 60 ° C. The obtained powder was mixed with a Na 3 Zr 2 Si 2 PO 12 powder, which is a NASICON type compound produced by the same method as described above, at a mass ratio of 1: 1. NMP was added to the mixed powder little by little until it became a slurry, and further crushed and mixed by a ball mill.
  • the obtained mixed slurry of NASICON type compound and negative electrode active material was applied to both sides of an aluminum foil having a thickness of 20 ⁇ m, sufficiently dried at 120 ° C., and rolled. In this way, a negative electrode having a total thickness of about 160 ⁇ m and a negative electrode active material coated with a NASICON type compound was produced.
  • the obtained negative electrode had a capacity of 1.0 mAh / cm 2 .
  • the aqueous solution electrolyte sodium ion secondary battery A3 was completed in the same manner as in Example 1 except that the negative electrode produced as follows was used.
  • the foam is immersed in a conductive suspension containing graphite, carbon black (average particle size 0.5 ⁇ m), a resin binder, a penetrating agent, and an antifoaming agent, and then dried to obtain the foam.
  • a conductive layer was formed on the surface.
  • the total content of graphite and carbon black in the suspension was 25% by mass.
  • a foam having a conductive layer formed on the surface is immersed in a 30 ° C. nickel sulfate plating bath (watt bath) and a direct current having a cathode current density of 3 A / dm 2 is applied to the surface.
  • a Ni layer was formed.
  • the mass of the nickel layer per apparent area of the foam was 600 g / m 2 .
  • the foam with the Ni layer formed on the surface is heat-treated at 700 ° C. in an air atmosphere to decompose the foam, and then fired in a hydrogen atmosphere to remove the oxide film formed on the surface.
  • a nickel porous body (negative electrode current collector) was obtained.
  • the obtained negative electrode current collector has a three-dimensional network-like porous structure in which the pores communicate with each other, reflecting the pore shape of the foam, and has a porosity of 97%, an average pore diameter of 550 ⁇ m, and a BET specific surface area of 200 cm.
  • the thickness was 2 / g and the thickness was 1100 ⁇ m.
  • the three-dimensional network nickel skeleton had a cavity formed by removing the foam inside.
  • a negative electrode mixture slurry in which the negative electrode active material was coated with a NASICON type compound was obtained.
  • the obtained negative electrode mixture slurry was filled in the current collector obtained in the step (a), dried at 100 ° C. for 30 minutes, and then rolled using a pair of rolls. In this way, a negative electrode (total thickness of about 300 ⁇ m) in which a negative electrode mixture was filled in a metal porous body was produced.
  • the obtained negative electrode had a capacity of 20 mAh / cm 2 .
  • Comparative Example 1 An aqueous electrolyte sodium ion secondary battery B1 was completed in the same manner as in Example 1 except that the negative electrode was not covered with the solid electrolyte membrane.
  • the potential in the plateau region of the negative electrode using Li 4 Ti 5 O 12 as the negative electrode active material is about ⁇ 1.4 V with respect to the standard hydrogen electrode, which is much lower than the hydrogen generation potential (about ⁇ 0.41 V). It is. Therefore, in the battery B1 that does not have the solid electrolyte membrane, hydrogen gas was generated on the negative electrode with the start of charging, and the charging current seemed to flow, but the discharging was hardly performed. On the other hand, in the batteries A1 to A3 in which the negative electrode or the negative electrode active material was coated with a solid electrolyte, hydrogen gas was hardly generated and a high electromotive force was obtained.
  • the aqueous electrolyte sodium ion secondary battery of the present invention can be applied to various aqueous electrolyte sodium ion secondary batteries because it suppresses electrolysis of water during charging and develops high electromotive force.

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

正極活物質および前記正極活物質を保持する正極集電体を有する正極と、負極活物質および前記負極活物質を保持する負極集電体を有する負極と、ナトリウムイオンおよび水を含む水溶液電解質と、前記正極および前記負極の少なくともいずれか一方を前記水溶液電解質中の水から遮蔽し、かつ、ナトリウムイオン伝導性を有する固体電解質と、を含む、水溶液電解質ナトリウムイオン二次電池である。

Description

水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム
 本発明は、電解質に含まれる水の電気分解を抑制しつつ、高い起電力を発現する、水溶液電解質ナトリウムイオン二次電池に関する。
 水溶液電解質を含む二次電池(水溶液電解質二次電池)としては、鉛蓄電池が広く実用されている。
 また、これに代わる水溶液電解質を含む二次電池として、リチウムイオン二次電池や、ナトリウムイオン二次電池が報告されている(特許文献1~3参照)。なかでも、水溶液電解質ナトリウムイオン二次電池は、原料が安価であるため、鉛蓄電池に代わる水溶液電解質二次電池として有望である。
特開2011−86402号公報 特開2012−54208号公報 特開2012−3928号公報
 水溶液電解質二次電池においては、充電時の水の電気分解反応による水素および酸素ガスの発生が大きな課題である。pH7のときの酸素発生電位は、標準水素電極に対して約0.82Vであり、水素発生電位は約−0.41Vである。そのため、水溶液電解質を用いたナトリウムイオン二次電池においては、どのような負極活物質を用いても、充電時における水素ガスの発生を抑制することが困難である。さらに、使用する正極活物質によっては、酸素ガスも発生する。また、使用時に発生した酸素ガスおよび水素ガスが正極上および負極上に留まると、分極により電流が流れにくくなる。
 水素ガスおよび酸素ガスの発生を抑制するには、理論上、0.82V~−0.41Vに酸化還元電位(標準水素電極基準)を持つ活物質を選択しなければならず、1.23V以上、実際には1.5V以上の起電力を有する水溶液のアルカリ金属二次電池を得ることは、困難である。例えば、特許文献2に開示された水溶液電解質ナトリウムイオン二次電池の起電力は、約1.25Vである。
 なお、鉛蓄電池においては、充電時に正極で発生した酸素ガスを負極で吸収させる制御弁式鉛蓄電池が主流である。また、鉛の酸化還元電位は水素発生電位よりも貴であるため、水素ガスの発生が問題となりにくい。そのため、鉛蓄電池は水溶液電解質を使用しているが、得られる起電力は約2.1Vであり、比較的高いものである。
 本発明の一局面は、正極活物質および前記正極活物質を保持する正極集電体を有する正極と、負極活物質および前記負極活物質を保持する負極集電体を有する負極と、ナトリウムイオンおよび水を含む水溶液電解質と、前記正極および前記負極の少なくともいずれか一方を前記水溶液電解質中の水から遮蔽し、かつ、ナトリウムイオン伝導性を有する固体電解質と、を含む、水溶液電解質ナトリウムイオン二次電池に関する。
 また、本発明の他の一局面は、前記水溶液電解質ナトリウムイオン二次電池と、前記水溶液電解質ナトリウムイオン二次電池の充電電流を制御する充電制御装置と、前記水溶液電解質ナトリウムイオン二次電池の放電電流を制御する放電制御装置と、を具備し、前記充電制御装置は、前記水溶液電解質ナトリウムイオン二次電池の充電終止電圧が1.5V以上となるよう制御する、充放電システムに関する。
 本発明によれば、充電時の水の電気分解を抑制しつつ、高い起電力を発現する、水溶液電解質ナトリウムイオン二次電池を提供することができる。
本発明の一実施形態に係る水溶液電解質ナトリウムイオン二次電池の構成を説明する縦断面図である。 負極集電体の骨格の一部の構造の一例を示す模式図である。 負極集電体に電極合剤を充填した状態を示す断面模式図である。 本発明の一実施形態に係る充放電システムの概要を示す構成図である。
 1:セパレータ、2:正極、2c:正極リード片、3:負極、3c:負極リード片、7:ナット、8:鍔部、9:ワッシャ、10:電池ケース、12:容器本体、13:蓋部、15:外部負極端子、16:安全弁、100:水溶液電解質ナトリウムイオン二次電池、101:空孔、102:金属製骨格、103:開口、104:負極合剤、201:充電制御装置(充電回路)、202:放電制御装置(放電回路)、203:制御部、204:電源装置、205:外部負荷
[発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 本発明の第一の局面は、(1)正極活物質および前記正極活物質を保持する正極集電体を有する正極と、負極活物質および前記負極活物質を保持する負極集電体を有する負極と、ナトリウムイオンおよび水を含む水溶液電解質と、前記正極および前記負極の少なくともいずれか一方を前記水溶液電解質中の水から遮蔽し、かつ、ナトリウムイオン伝導性を有する固体電解質と、を含む、水溶液電解質ナトリウムイオン二次電池に関する。少なくともいずれかの電極を水から遮蔽し、水との接触を抑制することで、電解質に含まれる水の電気分解が抑制される。なお、水から遮蔽する、とは、完全にいずれかの電極と水との接触を防ぐことまでは要せず、水の電気分解により、水素ガスおよび/または酸素ガスが発生することを抑制することができる程度であればよい。換言すれば、例えば、鉛蓄電池と同程度の水素ガスおよび/または酸素ガスの発生が認められてもよい。
 (2)固体電解質は、NASICON型結晶構造を有する化合物を含むことが好ましい。ナトリウムイオン伝導性が非常に高いためである。
 (3)少なくとも負極は、固体電解質の膜により水溶液電解質中の水から遮蔽されていることが好ましい。特に、負極活物質が、固体電解質の膜により覆われていることが好ましい。これにより、水の電気分解を抑制する効果がより高くなる。
 (4)正極活物質は、ナトリウム含有遷移金属酸化物およびナトリウム含有遷移金属リン酸塩よりなる群から選択される少なくとも1種を含むことが好ましい。これにより、水溶液電解質ナトリウムイオン二次電池の起電力をより大きくすることができる。
 (5)負極は、金属ナトリウム電極基準で0.8V以上の電位にプラトー領域をもつことが好ましい。つまり、負極の充放電カーブにおけるプラトー領域での電位が、金属ナトリウム電極基準で平均的に0.8V以上であることが好ましい。これにより、負極での金属ナトリウムの析出を抑制することができる。
 (6)負極活物質は、リチウム含有チタン化合物を含むことが好ましい。これにより、負極での水素ガスの発生をより容易に抑制することができ、また、負極での金属ナトリウムの析出をさらに抑制することができる。
 (7)負極は、非晶質炭素を含まないか、または、30質量%以下の非晶質炭素を含むことが好ましい。これにより、負極の不可逆容量を低減することができ、また、安全性がより向上する。
 (8)負極集電体は、三次元網目状の構造を有する金属多孔体であることが好ましい。これにより、負極の不可逆容量をさらに低減することが期待できる。
 (9)水溶液電解質ナトリウムイオン二次電池は、1.5V以上の起電力を発現することが可能である。つまり、正極の充放電カーブにおけるプラトー領域での電位と、負極の充放電カーブにおけるプラトー領域での電位との差を、平均的に1.5V以上とすることができる。また、充電終止電圧を1.5V以上に設定することが可能である。
 本発明の第二の局面は、(10)前記水溶液電解質ナトリウムイオン二次電池と、前記水溶液電解質ナトリウムイオン二次電池の充電電流を制御する充電制御装置と、前記水溶液電解質ナトリウムイオン二次電池の放電電流を制御する放電制御装置と、を具備し、前記充電制御装置は、前記水溶液電解質ナトリウムイオン二次電池の充電終止電圧が1.5V以上となるよう制御する、充放電システムに関する。本システムによれば、充電終止電圧を高く設定することが可能である。
[発明の実施形態の詳細]
 本発明の実施形態を具体的に以下に説明する。なお、本発明は、以下の内容に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[固体電解質]
 ナトリウムイオン伝導性を有する固体電解質の中には、水を透過させないものがある。このような固体電解質を用いて、水溶液電解質中の水から負極または正極を遮蔽することにより、水中の水素イオンあるいは水酸化物イオンと、負極あるいは正極との間で電子の授受が妨げられ、ガスの発生が抑制される。すなわち、正極および/または負極を水から遮蔽するとは、例えば、水溶液電解質中の水と、正極活物質および/または負極活物質との間に、固体電解質を介在させることを意味する。特に、負極活物質の多くは、水素発生電位よりも低い電位でナトリウムイオンと反応するため、負極では、水素ガスが発生し易い。そこで、少なくとも負極を、固体電解質で水から遮蔽することが好ましい。一方で、固体電解質は、ナトリウムイオン伝導性を有しているため、電極間でのナトリウムイオンの授受が可能である。
 特に、負極活物質を固体電解質の膜で被覆することにより、負極を水から遮蔽することが好ましい。これにより、負極活物質と水との接触を、更に回避することができる。そのため、負極に用いる負極活物質が制限されず、より大きな起電力を有する二次電池を得ることが可能となる。なお、正極もしくは正極活物質については、過電圧を考慮すると、必ずしも固体電解質で水から遮蔽しなくてもよい。
 固体電解質により、正極または負極を水から遮蔽する方法としては、正極または負極の表面に固体電解質の膜を形成する方法や、負極活物質または正極活物質(以下、併せて単に活物質と称する場合がある)の表面を固体電解質の膜で被覆する方法などが挙げられる。
 前者の方法としては、スプレーコーティング法、メカノフュージョン法、CDVやレーザー蒸着などの蒸着法、ゾルゲル法および減圧溶射などの溶射法などにより、正極または負極の表面に直接に固体電解質の膜を形成する方法や、正極または負極と水溶液電解質との間に、成型された固体電解質膜を配置する方法が挙げられる。
 後者の方法としては、固体電解質と活物質の粉末とを混合し焼結して、固体電解質のマトリックス中に活物質を埋め込む方法、スプレーコーティング法等によって活物質の粉末の表面を固体電解質でコーティングした後、焼結する方法、および、これらの方法を組み合わせて、固体電解質と活物質の粉末とを混合し焼結した後、得られた焼結体の表面をさらに固体電解質でコーティングし、再度焼結する方法、などが挙げられる。マトリックス中に活物質を埋め込む方法により被覆する場合、焼結体の表面に活物質が露出しないように、固体電解質の粉末の体積割合を、活物質より多くすることが好ましい。
 例えば、負極と水溶液電解質との間に固体電解質膜を配置する方法としては、負極全体を固体電解質膜で被覆する方法や、負極用として非水電解質を使用し、正極用として水溶液電解質を使用し、非水電解質と水溶液電解質との間を固体電解質膜で区切る方法などが挙げられる。水溶液電解質および非水電解質については、後述する。
 ナトリウムイオン伝導性を有する固体電解質としては、NASICON(Na super ionic conductor)型結晶構造を有する化合物を含む固体電解質が挙げられる。NASICON型結晶構造とは、MO八面体(Mは、遷移金属)とXO四面体(Xは、S、P、Asなど)とが頂点を共有して、3次元的に配列した構造である。この結晶構造は、内部に大きな空隙をもつことが多いため、この化合物を含む固体電解質膜は、ナトリウムイオン伝導性を示す。なお、このような固体電解質膜は、リチウムイオン伝導性も示すが、ナトリウムイオン伝導性の方がはるかに大きく、ナトリウムイオン二次電池に使用するのに最も適している。また、このような固体電解質膜は、ナトリウムイオンとの相互作用が大きく、水分子を通しにくく、プロトン伝導性はほとんど示さない。
 NASICON型結晶構造を有する化合物(以下、NASICON型化合物と称す)としては、具体的には、NaZrMg(PO、NaZrSiPO12、Na2.85Zr0.15In2.85(POなどが挙げられる。なかでも、Na、Zr、SiおよびPを含んでいるものが好ましく、例えば、一般式(1):Na1+xZrSi3−x12(1.8<x<2.2)で表わされる単斜晶構造を有する化合物であることが、ナトリウムイオン伝導性が高い点で好ましい。一般式(1)中、Zrの一部を他元素、例えば、Ti、Al、Sn、Zn、Fe、Geなどで置換してもよく、Siの一部を他元素、例えば、S、Mo、Wなどで置換してもよい。なかでも、NaZrSiPO12が好ましい。
 NASICON型化合物は、粉末状であってもよく、薄膜状であってもよい。NASICON型化合物が粉末状である場合は、前記したように、正極または負極の表面に、蒸着法やゾルゲル法によって固体電解質膜を形成することができる。また、粉末状のNASICON型化合物をバインダー等と混合してシート状に成型した後、焼成し、焼結体である固体電解質膜を得ることができる。NASICON型化合物の薄膜を、そのまま正極または負極の表面に転写することにより、固体電解質膜を形成してもよい。
 NASICON型化合物の粉末の平均粒径(体積粒度分布の累積体積50%における粒径D50。以下同様。)は、特に限定されない。平均粒径D50は、例えば、レーザー回折式の粒度分布測定装置を用いて、レーザー回折散乱法によって測定される。なかでも、NASICON型化合物の粉末で活物質の表面を被覆する場合、NASICON型化合物の粉末の平均粒径は、活物質の粒径よりも小さいことが好ましい。例えば、NASICON型化合物の粉末の平均粒径は、100nm以上であることが好ましく、20μm以下、さらには800nm以下であることが好ましい。平均粒径がこの範囲であると、NASICON型化合物の粉末で被覆された活物質が露出しにくくなり、活物質を水から遮蔽する効果が高くなる。
 固体電解質膜の膜厚は、特に限定されないが、正極または負極を被覆する場合は、例えば、50~800μmであることが好ましく、100~300μmであることがより好ましい。負極活物質を被覆する場合は、固体電解質膜の膜厚は、20~100μmであることが好ましい。固体電解質膜の膜厚がこの範囲であれば、ナトリウムイオンの伝導性を低下させずに、水から、正極または負極を遮蔽することが容易となる。
 固体電解質膜は、NASICON型化合物の粉末とバインダーとを含んでいてもよい。バインダーは特に限定されず、後述する正極または負極に用いられる結着剤などの有機化合物を用いることができる。
[正極]
 正極は、正極集電体および正極集電体に保持された正極活物質を含む。正極は、その他、任意成分として導電助剤、結着剤等を含んでもよい。
 正極活物質としては、電気化学的にナトリウムイオンを吸蔵および放出(もしくは、挿入および脱離)する材料の中から選択される。正極を固体電解質膜で被覆する場合は、正極活物質の電極電位が酸素の酸化還元電位よりも貴であってもよく、特に制限されない。正極活物質としては、例えば、ナトリウムイオンと層間化合物を形成するO型またはP型層状構造を有する化合物や、ポリアニオン型の化合物が好ましい。これらの化合物としては、ナトリウム含有遷移金属酸化物またはナトリウム含有遷移金属リン酸塩が挙げられる。これらの材料は、一種を単独でまたは二種以上を組み合わせて使用できる。正極活物質粒子の平均粒径は、好ましくは0.1μm以上、より好ましくは2μm以上、好ましくは50μm以下である。なお、NASICON型化合物を活物質として用いることは、適当ではない。NASICON型化合物は、ナトリウムイオンを一時的には吸着することができるものの、基本的にはナトリウムイオンを透過させるためのものである。つまり、NASICON型化合物は、電気化学的反応を示さない。したがって、NASICON型化合物を活物質として用いた二次電池において、充放電を行うことは困難である。
 ナトリウム含有遷移金属酸化物としては、例えば、亜クロム酸ナトリウム(NaCrO)を用いることができる。亜クロム酸ナトリウムは、Naの一部あるいはCrの一部または全部が他元素で置換されていてもよく、例えば、一般式(2):Na1−x Cr1−y (0≦x≦2/3、0≦y≦1、MおよびMは、それぞれ独立にCrおよびNa以外の金属元素である)で表される化合物であることが好ましい。上記一般式において、xは、0≦x≦0.5を満たすことがより好ましく、MおよびMは、例えばNi、Co、Mn、FeおよびAlよりなる群から選択される少なくとも1種であることが好ましい。なお、MはNaサイト、MはCrサイトを占める元素である。このような化合物は、低コストで製造可能であるとともに、充放電に伴う構造変化の可逆性に優れている。ここで、NaCrOの電極電位は、酸素の酸化還元電位と同等か卑であるので、正極が固体電解質膜で被覆されていなくても、正極活物質としてNaCrOを使用することができる場合がある。亜クロム酸ナトリウム以外のナトリウム含有遷移金属酸化物としては、NaFeO、NaNi1/2Mn1/2、NaFe0.4Ni0.3Mn0.3などが例示される。
 ナトリウム含有遷移金属リン酸塩としては、一般式(3):NaPO(1≦a≦2、0≦b≦2、MはNa以外の金属元素である)で表される化合物が挙げられる。Mは、例えばFe、Co、NiおよびMnよりなる群から選択される少なくとも1種であることが好ましい。具体的には、NaFePO、NaFePOF、NaVPOF、NaCoPO、NaNiPO、NaMnPOなどが挙げられる。
 正極活物質層に含ませる導電助剤としては、黒鉛、カーボンブラック、炭素繊維などが挙げられる。導電助剤のうちでは、少量使用で十分な導電経路を形成しやすいことから、カーボンブラックが特に好ましい。カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック、サーマルブラック等を挙げることができる。導電助剤の量は、正極活物質100質量部あたり、2~15質量部が好ましく、3~8質量部がより好ましい。
 結着剤は、正極活物質同士を結合させるとともに、正極活物質を正極集電体に固定する役割を果たす。結着剤としては、フッ素樹脂、合成ゴムラテックス、ポリアミド、ポリイミド、ポリアミドイミド等を用いることができる。フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等を用いることができる。合成ゴムラテックスとしては、スチレンブタジエンラテックス等を用いることができる。この場合、カルボキシメチルセルロースを粘度調整剤として併用してもよい。なかでも、水溶液電解質に対する安定性の点で、PTFEが好ましい。結着剤の量は、正極活物質100質量部あたり、1~10質量部が好ましく、3~5質量部がより好ましい。
 正極集電体としては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。正極集電体を構成する金属としては、正極電位で安定であることから、アルミニウムやアルミニウム合金が好ましいが、特に限定されない。アルミニウム合金を用いる場合、アルミニウム以外の金属成分(例えばFe、Si、Ni、Mnなど)は0.5質量%以下であることが好ましい。また、正極集電体として、アルミニウムやアルミニウム合金の箔の表面をカーボンの微粒子で被覆した、カーボンコートアルミニウムを用いてもよい。本実施形態では、水溶液電解質を用いている。アルミニウムの腐食が懸念されるためである。正極集電体となる金属箔の厚さは、例えば10~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100~600μmである。
 正極は、例えば、正極集電体に、正極活物質を含む正極合剤スラリーを塗布または充填し、その後、正極合剤スラリーに含まれる分散媒を除去し、さらに必要に応じて、正極活物質を保持した集電体を圧縮(または圧延)することにより得られる。
[負極]
 負極は、負極集電体および負極集電体に保持された負極活物質を含む。
 負極活物質は、電気化学的にナトリウムイオンを吸蔵および放出(もしくは、挿入および脱離)する材料を含む。負極を固体電解質膜で被覆する場合、負極活物質の電極電位または負極の充放電カーブにおけるプラトー領域(以下、単にプラトー領域と称す)の電位は、水素の酸化還元電位よりも卑であってもよく、特に制限されない。このような材料としては、例えば、炭素材料の他、リチウム含有チタン化合物(チタン酸リチウムなどのスピネル型リチウムチタン酸化物など)、ナトリウム含有チタン化合物(チタン酸ナトリウムなどのスピネル型ナトリウムチタン酸化物など)、合金系活物質、およびアナターゼ型の酸化チタン(TiO)などが挙げられる。負極活物質は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。負極活物質粒子の平均粒径は、好ましくは0.1μm以上、より好ましくは2μm以上、好ましくは80μm以下である。なお、正極活物質と同じ理由で、負極活物質としては、NASICON型化合物以外の材料が好ましい。
 炭素材料としては、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)などが例示できる。合金系活物質とは、アルカリ金属と合金化する元素を含む活物質である。例えば、ケイ素酸化物、ケイ素合金、錫酸化物および錫合金などが挙げられる。
 ナトリウム含有チタン化合物としては、チタン酸ナトリウムが好ましく、より具体的には、NaTiおよびNaTi12よりなる群から選択される少なくとも1種を用いることが好ましい。また、チタン酸ナトリウムのTiまたはNaの一部を他元素で置換してもよい。例えば、Na2−x Ti3−y (0≦x≦3/2、0≦y≦8/3、MおよびMは、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)や、Na4−x Ti5−y 12(0≦x≦11/3、0≦y≦14/3、MおよびMは、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)などを用いることもできる。なお、MおよびMはNaサイト、MおよびMはTiサイトを占める元素である。
 リチウム含有チタン化合物としては、チタン酸リチウムが好ましい。具体的には、LiTi、LiTiおよびLiTi12よりなる群から選択される少なくとも1種を用いることが好ましい。また、チタン酸リチウムのTiまたはNaの一部を他元素で置換してもよい。例えば、Li1−x Ti2−y (0≦x≦2/3、0≦y≦8/3、MおよびMは、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)、Li2−x10 Ti3−y11 (0≦x≦3/2、0≦y≦8/3、M10およびM11は、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)、または、Li4−x12 Ti5−y13 12(0≦x≦11/3、0≦y≦14/3、M12およびM13は、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)などを用いることもできる。リチウム含有チタン化合物は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。リチウム含有チタン化合物は、難黒鉛化性炭素と組み合わせて用いてもよい。なお、M、M10およびM12はLiサイト、M、M11およびM13はTiサイトを占める元素である。
 なかでも、負極活物質は、負極のプラトー領域での電位(vs.Na/Na)を、平均して0.8V以上にすることのできる化合物が好ましい。金属ナトリウムの析出を抑制できるためである。このような化合物としては、例えば、上記したようなリチウム含有チタン化合物が好ましい。負極活物質としてリチウム含有チタン化合物を用いる場合、負極は、平均して0.9~1.0V付近(vs.Na/Na)に、広いプラトー領域をもつ。負極のプラトー領域での平均的な電位(vs.Na/Na)は、0.9V(vs.Na/Na)以上であることが好ましい。
 例えば、負極活物質としてハードカーボンを用いた負極は、可逆容量が260mAh/gと大きく、容量の観点で好ましい材料である。一方、この負極は、0.2V付近(vs.Na/Na)にプラトー領域をもつため、ハードカーボン上に金属ナトリウムが析出する可能性がある。さらに、ハードカーボンの炭素とナトリウムとは容易に反応し、ナトリウムアセチリド(Na)を形成する。このように、副反応にナトリウムが消費されるため、充放電特性が低下し易い。ナトリウム含有チタン化合物を用いた負極は、可逆容量が150mAh/g程度であり、好ましい材料の一つである。一方、ハードカーボン同様、この負極は0.2V付近(vs.Na/Na)にプラトー領域をもつため、金属ナトリウムが析出する可能性がある。
 負極は、例えば、負極集電体に、負極活物質を含む負極合剤スラリーを塗布または充填し、その後、負極合剤スラリーに含まれる分散媒を除去し、さらに必要に応じて、負極活物質を保持した集電体を圧縮(または圧延)することにより得られる。また、負極としては、負極集電体の表面に、蒸着、スパッタリングなどの気相法で負極活物質の堆積膜を形成することにより得られるものを用いてもよい。
 負極合剤スラリーは、負極活物質の他に、結着剤、導電助剤などを含んでもよい。結着剤としては、正極合剤について例示したものから適宜選択できる。
 導電助剤としては、炭素単体、金属粉末(Cu粉末、Ni粉末、Al粉末など)、Ti化合物の粉末などが挙げられる。炭素単体としては、黒鉛、炭素繊維、カーボンナノチューブ、非晶質炭素(カーボンブラック、ハードカーボン、ソフトカーボンなど)などが挙げられる。カーボンブラックとしては、正極で例示した材料を用いることができる。Ti化合物としては、TiC、TiB、TiNなどが挙げられる。なかでも、導電助剤としては、非晶質炭素を除く炭素単体、金属粉末、Ti化合物の粉末であることが好ましい。導電助剤としてカーボンブラックなどの非晶質炭素を用いると、非晶質炭素に挿入したナトリウムイオンがそのままトラップされ、不可逆容量が増加することが懸念されるためである。導電助剤の量は、負極活物質100質量部あたり、2~15質量部が好ましく、2~8質量部がより好ましい。特に、生産性の向上や副反応の抑制の観点から、導電助剤の量は、できるだけ少ないことが好ましい。
 以上のように、負極が、負極活物質および/または導電助剤として非晶質炭素を含む場合には、金属ナトリウムが析出したり、不可逆容量が大きくなることが懸念される。そのため、負極に含まれる非晶質炭素の含有量は、30質量%以下であることが好ましく、15質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。また、負極に含まれる炭素単体の含有量を、好ましくは30質量%以下、より好ましくは15質量%以下、特に好ましくは5質量%以下にすることが望ましい。
 負極集電体としては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。前記金属としては、ナトリウムと合金化しない金属を使用することができる。なかでも負極電位で安定であることから、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金などが好ましい。これらのうち、軽量性に優れる点では、アルミニウムやアルミニウム合金が好ましい。アルミニウム合金は、例えば、正極集電体として例示したものと同様のアルミニウム合金を用いてもよい。負極集電体となる金属箔の厚さは、例えば10~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100~600μmである。
 なかでも、負極活物質の充填性や保持性、集電性の点で、負極集電体は、三次元網目状の構造を有する金属多孔体であることが好ましい。このような金属多孔体を用いると、負極の導電性が向上するため、導電助剤の量を低減できることも期待できる。すなわち、負極に含まれる炭素単体(特には非晶質炭素)の含有量を少なくすることが可能となる。
 例えば、ニッケルを含む多孔体は、基材となる発泡樹脂又は不織布の表面にニッケルまたはニッケル合金の被覆層を形成した後、基材を除去することにより得ることができる。市販されている金属多孔体としては、アルミニウム多孔体(アルミニウムまたはアルミニウム合金を含む多孔体)である住友電気工業株式会社製の「アルミセルメット」(登録商標)や、銅多孔体(銅または銅合金を含む多孔体)またはニッケル多孔体(ニッケルまたはニッケル合金を含む多孔体)である住友電気工業株式会社製の銅またはニッケルの「セルメット」(登録商標)を用いることができる。
 以下、金属多孔体についてさらに詳しく説明する。
 金属多孔体は、三次元網目状の構造および中空の骨格を有することが好ましい。骨格が内部に空洞を有することで、金属多孔体は、嵩高い三次元構造を有しながらも、極めて軽量である。このような金属多孔体は、連続空隙を有する樹脂製の多孔体を、集電体を構成する金属でメッキ処理し、さらに加熱処理などにより、内部の樹脂を分解または溶解させることにより形成できる。メッキ処理により、三次元網目状の骨格が形成され、樹脂の分解や溶解により、骨格の内部を中空にすることができる。
 樹脂製の多孔体としては、発泡ウレタン(ポリウレタンフォーム)、発泡スチレン(ポリスチレンフォーム)等を例示することができる。特に発泡ウレタンは、気孔率が高く、セル径の均一性が高く、熱分解性に優れる点で好ましい。発泡ウレタンを用いた場合には、厚みのばらつきが発生しにくく、表面の平坦性に優れたニッケル多孔体が得られる。
 メッキ処理は、樹脂製多孔体の表面(連続空隙内の表面も含む)に、集電体として機能する金属層を形成できればよく、公知のメッキ処理方法、例えば、電解メッキ法、溶融塩メッキ法などが採用できる。メッキ処理により、樹脂製多孔体の形状に応じた、三次元網目状の金属多孔体が形成される。なお、電解メッキ法によりメッキ処理を行う場合、電解メッキに先立って、導電性層を形成することが望ましい。導電性層は、樹脂製多孔体の表面に、無電解メッキ、蒸着、スパッタリングなどの他、導電剤の塗布などにより形成してもよく、導電剤を含む分散液に樹脂製多孔体を浸漬することにより形成してもよい。
 金属多孔体は、樹脂製発泡体の形状に対応する三次元網目状の構造を有する。金属多孔体の骨格の模式図を図2に示す。金属多孔体は、金属製骨格102に囲まれたセル状の空孔101を複数有し、互いに隣接する空孔101間には、略多角形の開口(または窓)103が形成されている。開口103により、隣接する空孔101間が連通し、これにより、集電体は、連続空隙を有する。開口103(または窓)の形状は特に制限されないが、例えば、略多角形(略三角形、略四角形、略五角形、および/または略六角形など)である。
なお、略多角形状とは、多角形、および多角形に類似の形状(例えば、多角形の角が丸まった形状、多角形の辺が曲線となった形状など)を含む意味で使用する。略三角形、略四角形、略五角形および略六角形についても同様である。
 空孔101に負極活物質を含む負極合剤を充填して、負極が形成される。図3は、図2の金属多孔体の空隙に、負極合剤を充填した状態を示す断面模式図である。セル状の空孔101には、負極合剤104が充填され、金属製骨格102の表面に付着し、負極合剤層を形成する。負極合剤104は、空隙内の表面も含む広い面積に層状に付着するため、多くの負極活物質が金属多孔体に保持されながらも、気孔率を大きくすることができる。したがって、水溶液電解質と負極活物質との接触面積が大きくなる。これにより、負極活物質を有効利用することができる。一方で、水素ガスが発生し易くなる。そのため、負極集電体として金属多孔体を用いる場合、表面(さらには、表面全体)が固体電解質の膜で被覆された負極活物質を用いることが好ましい。
 空孔101の平均径(三次元網目状の構造における平均空孔径)は、例えば50~1000μmであり、好ましくは100~900μm、さらに好ましくは350~900μmである。そのため、表面(さらには、表面全体)が固体電解質の膜で被覆された負極活物質は、この空孔101の内部に充填され得る。なお、平均空孔径は、金属多孔体(または電極)の厚みよりも小さい。また、圧延により、金属多孔体の骨格は変形して、気孔率および平均空孔径は変化する。上記平均空孔径および後述する気孔率の範囲は、圧延前(合剤充填前)の金属多孔体の気孔率および平均空孔径である。
 金属多孔体のセル状の空孔内に、合剤を充填することにより形成される合剤層の厚みwは、例えば、10~500μm、好ましくは40~250μm、さらに好ましくは100~200μmである。セル状の空孔内に形成される合剤層の内側に空隙を確保できるように、合剤層の厚みwは、セル状の空孔の平均空孔径の5~40%であることが好ましく、10~30%であることがさらに好ましい。
 金属多孔体の比表面積(BET比表面積)は、例えば100~700cm/g、好ましくは150~650cm/g、さらに好ましくは200~600cm/gである。金属多孔体の気孔率は、例えば、40~99体積%、好ましくは60~98体積%、さらに好ましくは80~98体積%である。
 正極の容量(Cp)と負極の容量(Cn)との比は、特に限定されないが、例えばCp<Cnとすることができる。これにより、負極表面における金属ナトリウムの析出を抑制することが容易となる。
[セパレータ]
 セパレータは、正極と負極との間に介在させてもよいが、例えば、負極を固体電解質膜で覆う場合には、セパレータは、特になくてもよい。セパレータの材質としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリエチレンレテフタレートなどのポリエステル;ポリアミド;ポリイミド;セルロース;ガラス繊維などを用いることができる。セパレータの平均孔径は特に制限されず、例えば、0.01~5μm程度である。セパレータの厚さは、10μm~500μm、更には20~50μmであることが好ましい。この範囲の厚さであれば、内部短絡を有効に防止でき、かつ電極群に占めるセパレータの容積占有率を低く抑えることができるため、高い容量密度を得ることができる。また、セパレータとして、前記した固体電解質膜を使用してもよい。
[水溶液電解質]
 水溶液電解質は、ナトリウムイオンと水とを含む水溶液である。ナトリウムイオンを含む水溶液としては、例えば、硝酸ナトリウム、硫酸ナトリウム、塩化ナトリウムなどの水溶液が挙げられる。ナトリウム塩の濃度は、特に限定されず、飽和水溶液であってもよい。例えば、0.1~5mol/リットルとすることができる。
[非水電解質]
 必要に応じて、非水電解質を用いてもよい。非水電解質としては、非水溶媒(または有機溶媒)にナトリウムイオンとアニオンとの塩(ナトリウム塩)を溶解させた電解質(有機電解質)の他、ナトリウムイオンおよびアニオンを含むイオン液体などが用いられる。非水電解質におけるナトリウム塩の濃度は、例えば0.3~3mol/リットルであればよい
[電極群]
 水溶液電解質ナトリウムイオン二次電池は、上記の正極と負極を含む電極群および水溶液電解質を、電池ケースに収容した状態で用いられる。電極群は、正極と負極とを、必要に応じてこれらの間にセパレータを介在させて積層または捲回することにより形成される。ただし、負極および正極の少なくともいずれか一方の表面、または、正極活物質および負極活物質の少なくともいずれか一方の表面は、固体電解質膜により覆われている。
 正極および負極の好ましい組み合わせとしては、
(i)カーボンコートされたアルミニウム箔の正極集電体にNaCrOを含む正極合剤を担持させた正極と、アルミニウム製の負極集電体に、固体電解質膜で被覆されたLiTi12を含む負極合剤を担持させた負極との組み合わせ、および、
(ii)カーボンコートされたアルミニウム箔の正極集電体にNaCrOを含む正極合剤を担持させた正極と、ニッケル製の金属多孔体である負極集電体に、固体電解質膜で被覆されたLiTi12を含み、導電助剤を含まない負極合剤を充填させた負極との組み合わせ、などが例示できる。
[水溶液電解質ナトリウムイオン二次電池]
 図1に、本発明の一実施形態である水溶液電解質ナトリウムイオン二次電池100の構成を、概略的に示す。
 水溶液電解質ナトリウムイオン二次電池100は、積層型の電極群、水溶液電解質(ともに図示せず)およびこれらを収容する角型のアルミニウム製の電池ケース10を具備する。電池ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋部13とで構成されている。ただし、電極群は、積層タイプに限らず、正極2と負極3とをセパレータ1を介して捲回することにより構成することもできる。
 蓋部13の一方側寄りには、封口板蓋部13を貫通する外部正極端子(図示せず)が設けられ、封口板蓋部13の他方側寄りの位置には、封口板蓋部13を貫通する外部負極端子15が設けられている。各端子は、電池ケース10と絶縁することが好ましい。封口板蓋部13の中央には、電池ケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。
 積層型の電極群は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図1では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータ1の形態は特に限定されない。複数の正極2と複数の負極3は、電極群内で積層方向に交互に配置される。なお、図1では、負極活物質が固体電解質により覆われた負極合剤(図示せず)を用いて、負極3が形成されている場合を示す。
 各正極2の一端部には、正極リード片2cを形成してもよい。複数の正極2の正極リード片2cを束ねるとともに、電池ケース10の蓋部13に設けられた外部正極端子に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3cを形成してもよい。複数の負極3の負極リード片3cを束ねるとともに、電池ケース10の蓋部13に設けられた外部負極端子15に接続することにより、複数の負極3が並列に接続される。正極リード片2cの束と負極リード片3cの束は、互いの接触を避けるように、電極群の一端面の左右に、間隔を空けて配置することが望ましい。
 外部正極端子および外部負極端子15は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋部13に対してナット7が固定される。各端子のケース内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋部13の内面に、ワッシャ9を介して固定される。
[充放電システム]
 水溶液電解質ナトリウムイオン二次電池100の充放電は、例えば、図4に示されるような充放電システムにより行うことができる。充放電システムは、水溶液電解質ナトリウムイオン二次電池100と、水溶液電解質ナトリウムイオン二次電池100の充電電流を制御する充電制御装置(充電回路)201および水溶液電解質ナトリウムイオン二次電池100の放電電流を制御する放電制御装置(放電回路)202を備える制御部203と、を具備する。充電制御装置201は、水溶液電解質ナトリウムイオン二次電池100の充電終止電圧が1.5V以上となるように、電源204から供給される充電電流を制御する。水溶液電解質ナトリウムイオン二次電池100は、外部負荷205の電池として使用される。
 ここで、負極および正極の少なくともいずれか一方の表面は、ナトリウムイオン伝導性を有し、かつ、水を透過させない固体電解質により覆われている。例えば、負極活物質が、NASICON型化合物により覆われている。そのため、充電時に水の電気分解が起こらず、あるいは、起こってもわずかであり、充電終止電圧が、例えば1.5V以上になるまで、充電することができる。つまり、充放電システムにおいては、充電終止電圧Vmaxを1.5V以上、好ましくは2.0V以上、さらには2.5V以上、特には3.0V以上に設定することが可能である。充電終止電圧Vmaxは、最高で、例えば4.5Vまで設定することができる。
 また、水溶液電解質ナトリウムイオン二次電池には、水素発生電位よりも卑な電極電位を有する負極活物質、あるいは、酸素発生電位よりも貴な正極活物質を用いることができる。そのため、起電力の大きな電池、例えば、平均的に1.5V以上の起電力を発現する電池を得ることができる。また、2.0V、さらには2.5V、特には3.0Vを超える起電力を発現させることもできる。起電力は、最高で、例えば4.5Vまで発現させることができる。
 さらに、電解質が水溶液を含むため、安全性が高く、メンテナンスが容易である。同様に水溶液電解質を用いた鉛蓄電池の代替としても、有望である。なお、鉛蓄電池よりも高い起電力を発現することが可能であるため、省スペース化が図れる。
 以下、実施例に基づき、本発明をより具体的に説明するが、以下の実施例は本発明を限定するものではない。
(正極の作製)
 平均粒子径10μmのNaCrO(正極活物質)85質量部、アセチレンブラック(導電剤)10質量部およびPTFE(結着剤)5質量部を、N−メチル−2−ピロリドン(NMP)に分散させて、正極スラリーを調製した。得られた正極スラリーを、厚さ20μmのカーボンコートされたアルミニウム箔の両面に塗布した。次いで、120℃で十分に乾燥させ、圧延して、総厚約60μmの正極を作製した。得られた正極の容量は1.6mAh/cmであった。最後に、正極をサイズ約5mm×20mmの矩形に裁断し、正極の一辺の一方側端部に、集電用のリード片を形成した。
(負極の作製)
 平均粒子径0.5μmのLiTi12粉末85質量部、アセチレンブラック(導電剤)10質量部およびPTFE(結着剤)5質量部を、NMPに分散させて、負極スラリーを調製した。得られた負極スラリーを、厚さ20μmのアルミニウム箔の両面に塗布し、120℃で十分に乾燥させ、圧延して、両面に負極合剤層を有する総厚約50μmの負極を作製した。得られた負極の容量は1.6mAh/cmであった。最後に、負極をサイズ約6mm×20mmの矩形に裁断し、負極の一辺の一方側端部に、集電用のリード片を形成した。
(固体電解質膜)
 試薬特級のNaPO(7.6g)、SiO(2.4g)およびイットリア安定化ジルコニア(YSZ)(5.05g)をボールミルにて粉砕混合した。このとき、エタノールを少量加え、湿式で粉砕を行った。その後、ペレット状に成型し、60℃の乾燥炉で乾燥して、エタノールを揮発させた。次に、1100℃の電気炉(大気雰囲気下)で8時間加熱し、炉冷した。再度、ボールミルでの粉砕、成型、加熱および炉冷を繰り返し、平均粒径10μm未満のNASICON型化合物であるNaZrSiPO12粉末を得た。
 得られた粉末を、負極の全体を覆うことのできる十分な大きさのシート状に成型し、焼成した後、さらに結晶化させ、固体電解質膜を得た。
(水溶液電解質)
 1Mの硝酸ナトリウム水溶液を調製した。
(水溶液電解質ナトリウムイオン二次電池の組み立て)
 負極を2枚の固体電解質膜で挟み、端部をシールして、固体電解質膜で覆われた負極を作製した。電池ケースに、正極、固体電解質膜で覆われた負極、これらの間に介在するセパレータおよび水溶液電解質を収容し、水溶液電解質ナトリウムイオン二次電池A1を完成させた。
 固体電解質膜で覆われた負極の代わりに、以下のようにして作製した負極を使用したこと以外は、実施例1と同様にして、水溶液電解質ナトリウムイオン二次電池A2を完成させた。
(負極の作製)
 平均粒子径17μmのLiTi12粉末85質量部、SiC10質量部およびPTFE5質量部にエタノールを加え、ボールミルにて粉砕混合した。次いで、60℃の乾燥炉でエタノールを揮発させた。得られた粉末と、先と同様の方法で作製したNASICON型化合物であるNaZrSiPO12粉末とを、質量比で1対1の割合で混合した。この混合粉に、NMPを少しずつ、スラリー状になるまで添加し、ボールミルにて更に破砕混合した。得られたNASICON型化合物と負極活物質との混合スラリーを、厚さ20μmのアルミニウム箔の両面に塗布し、120℃で十分に乾燥させ、圧延した。このようにして、総厚約160μm、負極活物質がNASICON型化合物で被覆された負極を作製した。得られた負極の容量は1.0mAh/cmであった。
 以下のようにして作製した負極を使用したこと以外は、実施例1と同様にして、水溶液電解質ナトリウムイオン二次電池A3を完成させた。
(負極集電体の作製)
 熱硬化性ポリウレタンの発泡体(気孔率:95体積%、表面1インチ(=2.54cm)長さ当たりの空孔(セル)数:約50個、縦100mm×横30mm×厚み1.1mm)を準備した。
 発泡体を、黒鉛、カーボンブラック(平均粒径0.5μm)、樹脂結着剤、浸透剤および消泡剤を含む導電性懸濁液の中に浸漬した後、乾燥することにより、発泡体の表面に導電性層を形成した。なお、懸濁液中の黒鉛およびカーボンブラックの含有量は合計で25質量%であった。
 表面に導電性層が形成された発泡体をワークとして、30℃の硫酸ニッケルメッキ浴(ワット浴)中に浸漬して、陰極電流密度3A/dmの直流電流を印加することにより、表面にNi層を形成した。なお、発泡体の見掛け面積当たりのニッケル層の質量は、600g/mであった。
 表面にNi層が形成された発泡体を、大気雰囲気下、700℃で熱処理することにより、発泡体を分解させ、次いで、水素雰囲気下で焼成することにより表面に形成された酸化被膜を除去することにより、ニッケル製の多孔体(負極集電体)を得た。得られた負極集電体は、発泡体の空孔形状を反映した、空孔が互いに連通した三次元網目状の多孔構造を有し、気孔率97%、平均空孔径550μm、BET比表面積200cm/g、厚み1100μmであった。また、三次元網目状のニッケル製の骨格は、発泡体の除去により形成された空洞を内部に有していた。
(負極の作製)
 平均粒径50μmのLiTi12粉末95質量部およびPTFE5質量部にエタノールを加え、ボールミルにて粉砕混合した。次いで、60℃の乾燥炉でエタノールを揮発させた。得られた粉末と、先と同様の方法で作製したNASICON型化合物であるNaZrSiPO12粉末とを、質量比で約1対1の割合で混合した。この混合粉に、NMPを少しずつ、スラリー状になるまで添加し、ボールミルにて更に破砕混合した。これにより、負極活物質がNASICON型化合物で被覆された負極合剤スラリーを得た。得られた負極合剤スラリーを、上記工程(a)で得られた集電体に充填し、100℃にて30分乾燥した後、一対のロールを用いて圧延した。このようにして、負極合剤を金属多孔体に充填した負極(総厚約300μm)を作製した。得られた負極の容量は20mAh/cmであった。
《比較例1》
 負極を固体電解質膜で覆わなかったこと以外は、実施例1と同様にして、水溶液電解質ナトリウムイオン二次電池B1を完成させた。
[評価1]
 各電池A1、A2、A3およびB1について、25℃の恒温室内で、以下の(1)および(2)の条件を1サイクルとして充放電を行った。各電池の正極活物質の質量当たりの放電容量(mAh/g)を表1に示す。
(1)充電電流0.5Cで、充電終止電圧2.5Vまで充電
(2)放電電流0.5Cで、放電終止電圧1.5Vまで放電
Figure JPOXMLDOC01-appb-T000001
 負極活物質としてLiTi12を用いた負極のプラトー領域での電位は、標準水素電極に対して約−1.4Vであり、水素発生電位(約−0.41V)よりはるかに卑である。そのため、固体電解質膜を有していない電池B1では、充電の開始とともに負極上で水素ガスが発生し、見かけ上、充電電流は流れたが、放電は殆どできなかった。一方、負極あるいは負極活物質を固体電解質で被覆した電池A1~A3では、水素ガスの発生はほとんど見られず、高い起電力が得られた。
 本発明の水溶液電解質ナトリウムイオン二次電池は、充電時の水の電気分解を抑制し、高い起電力を発現することから、様々な水溶液電解質ナトリウムイオン二次電池に適用することができる。

Claims (12)

  1.  正極活物質および前記正極活物質を保持する正極集電体を有する正極と、
     負極活物質および前記負極活物質を保持する負極集電体を有する負極と、
     ナトリウムイオンおよび水を含む水溶液電解質と、
     前記正極および前記負極の少なくともいずれか一方を前記水溶液電解質中の水から遮蔽し、かつ、ナトリウムイオン伝導性を有する固体電解質と、を含む、水溶液電解質ナトリウムイオン二次電池。
  2.  前記固体電解質が、NASICON型結晶構造を有する化合物を含む、請求項1に記載の水溶液電解質ナトリウムイオン二次電池。
  3.  少なくとも前記負極が、前記固体電解質の膜により前記水溶液電解質中の水から遮蔽されている、請求項1または2に記載の水溶液電解質ナトリウムイオン二次電池。
  4.  前記負極活物質が、前記固体電解質の膜により覆われている、請求項1または2に記載の水溶液電解質ナトリウムイオン二次電池。
  5.  前記正極活物質が、ナトリウム含有遷移金属酸化物およびナトリウム含有遷移金属リン酸塩よりなる群から選択される少なくとも1種を含む、請求項1~4のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  6.  前記負極が、金属ナトリウム電極基準で0.8V以上の電位にプラトー領域をもつ、請求項1~5のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  7.  前記負極活物質が、リチウム含有チタン化合物を含む、請求項1~6のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  8.  前記負極が、非晶質炭素を含まないか、または、30質量%以下の非晶質炭素を含む、請求項1~7のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  9.  前記負極集電体が、三次元網目状の構造を有する金属多孔体である、請求項1~8のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  10.  1.5V以上の起電力を発現する、請求項1~9のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  11.  充電終止電圧が1.5V以上である、請求項1~10のいずれか一項に記載の水溶液電解質ナトリウムイオン二次電池。
  12.  請求項1に記載の水溶液電解質ナトリウムイオン二次電池と、
     前記水溶液電解質ナトリウムイオン二次電池の充電電流を制御する充電制御装置と、
     前記水溶液電解質ナトリウムイオン二次電池の放電電流を制御する放電制御装置と、を具備し、
     前記充電制御装置は、前記水溶液電解質ナトリウムイオン二次電池の充電終止電圧が1.5V以上となるよう制御する、充放電システム。
PCT/IB2015/000321 2014-01-14 2015-03-13 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム WO2015107423A2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-004246 2014-01-14
JP2014004246 2014-01-14
JP2014-162426 2014-08-08
JP2014162426A JP2015156356A (ja) 2014-01-14 2014-08-08 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム

Publications (2)

Publication Number Publication Date
WO2015107423A2 true WO2015107423A2 (ja) 2015-07-23
WO2015107423A3 WO2015107423A3 (ja) 2015-10-29

Family

ID=53543567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/000321 WO2015107423A2 (ja) 2014-01-14 2015-03-13 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム

Country Status (2)

Country Link
JP (1) JP2015156356A (ja)
WO (1) WO2015107423A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220460A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
EP3379624A1 (en) * 2017-03-21 2018-09-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
EP3379625A1 (en) * 2017-03-22 2018-09-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
CN109524725A (zh) * 2017-09-19 2019-03-26 株式会社东芝 二次电池、电池组以及车辆
CN114784270A (zh) * 2022-03-05 2022-07-22 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
CN107925131B (zh) * 2016-02-01 2021-08-13 株式会社东芝 二次电池、组电池、电池包及车辆
JP6774378B2 (ja) * 2017-05-23 2020-10-21 本田技研工業株式会社 リチウムイオン二次電池
JP6746549B2 (ja) * 2017-09-19 2020-08-26 株式会社東芝 二次電池、電池パック及び車両
JP6837950B2 (ja) * 2017-09-21 2021-03-03 株式会社東芝 二次電池、電池パック、及び車両
JP7203304B2 (ja) * 2017-09-29 2023-01-13 パナソニックIpマネジメント株式会社 水系二次電池
JP6889125B2 (ja) * 2018-03-16 2021-06-18 株式会社東芝 セパレータ、電極群、二次電池、電池パック、車両、及び定置用電源
JP6845189B2 (ja) * 2018-07-25 2021-03-17 株式会社東芝 二次電池、電池パック及び車両
CN109494390A (zh) * 2018-10-30 2019-03-19 溧阳天目先导电池材料科技有限公司 一种改性固态电解质膜及其制备方法和锂电池
KR20230037480A (ko) * 2020-07-09 2023-03-16 니폰 덴키 가라스 가부시키가이샤 소결체 전극, 전지용 부재, 및 소결체 전극 및 전지용 부재의 제조 방법, 고체 전해질 전구체 용액, 고체 전해질 전구체, 및 고체 전해질
DE102022104964A1 (de) 2022-03-02 2023-09-07 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Kombination einer Elektrode und eines Festelektrolyten für eine Batteriezelle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454426B2 (ja) * 2010-09-03 2014-03-26 株式会社豊田中央研究所 水溶液系二次電池
WO2012133527A1 (ja) * 2011-03-28 2012-10-04 国立大学法人九州大学 ナトリウムイオン二次電池
JP2013137907A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp ナトリウムイオン電池用負極活物質およびナトリウムイオン電池
DE112012005715T5 (de) * 2012-01-20 2014-11-06 Kabushiki Kaisha Toyota Jidoshokki Sekundärbatterie
JP5600131B2 (ja) * 2012-03-13 2014-10-01 日本電信電話株式会社 ナトリウム二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220460A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
EP3379624A1 (en) * 2017-03-21 2018-09-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
US10559854B2 (en) 2017-03-21 2020-02-11 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
EP3379625A1 (en) * 2017-03-22 2018-09-26 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
US10720667B2 (en) 2017-03-22 2020-07-21 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN109524725A (zh) * 2017-09-19 2019-03-26 株式会社东芝 二次电池、电池组以及车辆
CN109524725B (zh) * 2017-09-19 2022-01-28 株式会社东芝 二次电池、电池组以及车辆
CN114784270A (zh) * 2022-03-05 2022-07-22 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法
CN114784270B (zh) * 2022-03-05 2023-09-19 四川龙蟒磷化工有限公司 一种钠离子电池材料的制备方法

Also Published As

Publication number Publication date
JP2015156356A (ja) 2015-08-27
WO2015107423A3 (ja) 2015-10-29

Similar Documents

Publication Publication Date Title
WO2015107423A2 (ja) 水溶液電解質ナトリウムイオン二次電池、および、これを含む充放電システム
JP2023011777A (ja) 固体電解質物質を含むイオン伝導性バッテリー
CN103746089B (zh) 一种具有梯度结构的全固态锂电池及其制备方法
JP7198736B2 (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
JP5365260B2 (ja) イオン液体を含む電極膜及び電極、それらの製造方法、並びに蓄電デバイス
US10535870B2 (en) Electrical device
EP3103150A1 (en) Anode compositions and alkali metal batteries comprising same
JP2016201310A (ja) 全固体リチウム二次電池
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
EP3098892B1 (en) Electrical device
CN109546202A (zh) 二次电池、电池组、和车辆
Jiang et al. Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors
JP2017124951A (ja) 遮水性ナトリウムイオン伝導膜およびナトリウム電池
US10483586B2 (en) All-solid-state battery using sodium ion intercalation cathode with Li/Na exchanging layer
KR20230004824A (ko) 다공성 전극을 제조하기 위한 방법 및 그러한 전극을 포함하는 배터리
WO2016147853A1 (ja) ナトリウムイオン二次電池用正極活物質粉末
JP2023524426A (ja) セパレータ及び多孔性電極からなる組立体を製造する方法、セパレータ及び多孔性電極からなる組立体、並びにそうした組立体を含む電気化学デバイス
BR112013033882B1 (pt) acumulador de lítio
US20230343930A1 (en) Graphite/lithium hybrid negative electrode
KR20130136117A (ko) 리튬황 배터리의 유황전극과 이의 제조방법, 및 유황전극을 적용한 리튬황 배터리
JP2009187700A (ja) 二次電池及びその製造方法
JP2015002069A (ja) 二次電池
CN112290024B (zh) 一种全固态电池及其制备方法
JP2016162739A (ja) ナトリウムイオン二次電池負極活物質パウダー、ナトリウムイオン二次電池負極用スラリー組成物、ナトリウムイオン二次電池用負極、並びにナトリウムイオン二次電池
You et al. Conclusions and Perspectives on New Opportunities of Nanostrucutres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737691

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737691

Country of ref document: EP

Kind code of ref document: A2